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Preface

The main topic of this book is the kernel of the VAX/VMS Version 4.4 operat-
ing system: process management; memory management; the I/O subsystem;
the mechanisms that transfer control to, from, and among these; and the
system services that support and complement them.

In explaining the operation of a subsystem, this book emphasizes the data
structures manipulated by that subsystem. Most of the operations of VMS
can be more easily understood once the contents of the various data struc-
tures are known. The book also provides a detailed description of the flow of
some major routines and annotated excerpts from certain key routines.

The intended readers are system programmers and other users of VAX/
VMS who wish to understand its components, mechanisms, and data struc-
tures. For system programmers, the book provides technical background
helpful in activities such as writing privileged utilities and system services.
Its detailed description of data structures should help system managers make
better informed decisions when they configure systems for space- or time-
critical applications. It should also help application designers appreciate the
effects (in speed or in memory consumption) of different design and imple-
mentation decisions.

In addition, this book is intended as a case study of VMS for an advanced
undergraduate or graduate course in operating systems.

It assumes that the reader is familiar with the VAX architecture, particu-
larly its memory management, and the VMS operating system, particularly
its system services. \

The book is divided into nine parts, each of which describes a different
aspect of the operating system.

¢ Part 1 presents an overview of the operating system and reviews those con-
cepts that are basic to its workings.

* Part 2 describes the mechanisms used to pass control between user pro-
grams and the operating system, and within the system itself.

* Part 3 describes scheduling, timer support, process control, and lock man-
agement. _

* Part 4 discusses memory management, with emphasis on system data
structures and their manipulation by paging and swapping routines.

* Part 5 contains an overview of the I/O subsystem paying particular atten-
tion to the I/O-related system services.

» Part 6 describes the life cycle of a process: its creation, the activation and
termination of images within its context, and its deletion.
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« Part 7 covers system initialization, powerfail recovery, and asymmetric
multiprocessing support.

« Part 8 discusses the implementation of logical names and the internals of
several miscellaneous system services.

« The appendixes include a summary of VMS data structures, a detailed lay-
out of system and P1 virtual address space, and information on the use of
listing and map files, and the conventions used in naming symbols.

This book does not include a discussion of VAXcluster Systems.

There is no guarantee that any data structure or subroutine described here
will remain the same from release to release. With each new version of the
operating system, a privileged application program that relies on details con-
tained in this book should be rebuilt and tested prior to production use.

The VAX/VMS document set supplies important background information
for the topics discussed in this book. The following provide an especiélly
important foundation: VAX/VMS System Services Reference Manual, Writ-
ing a Device Driver for VAX/VMS, and the chapter in the VAX/VMS Run-
Time Library Routines Reference Manual that describes condition handling.

The VAX Architecture Reference Manual (Digital Press, 1987) documents
the VAX architecture in detail. An excellent description of the VAX architec-
ture, as well as a discussion of some of the design decisions made for its first
implementation, the VAX-11/780, is found in Computer Programming and
Architecture: The VAX-11 by Henry M. Levy and Richard H. Eckhouse, Jr.,
(Digital Press, 1980). This book also contains a bibliography of some of the
literature dealing with operating system design.

There are several conventions used throughout this book. In all diagrams of
memory, the lowest virtual address appears at the top of the page and ad-
dresses increase toward the bottom of the page. This convention means that
the direction of stack growth is upward from the bottom of the page. In dia-
grams that display more detail, such as bytes within longwords, addresses
also increase from right to left. That is, the lowest addressed byte (or bit) in a
longword is on the right-hand side of a figure and the most significant byte (or
bit) is on the left-hand side.

The word executive refers to those parts of the operating system that reside
in system virtual address space. The executive includes the contents of the
file SYS.EXE, device drivers, and other code and data structures loaded at
initialization time, including RMS and the system message file.

The words system and VMS system are used to describe the entire VAX/
VMS software package, including privileged processes, utilities, and other
support software as well as the executive itself.

VAX/VMS consists of many different components, each a different file in a
directory on the system disk. One component is the system image itself,
SYS$SYSTEM:SYS.EXE. Other components include device drivers, the DCL
command language interpreter, and utility programs.



Preface

The source modules from which these components are built, and their
listings on microfiche, are divided into facilities. Each facility is a directory
containing sources and command procedures to build one or more compo-
nents. The facility [DRIVER], for example, contains sources for most of the
device drivers. The facility [BOOTS] includes sources for the primary boot-
strap program, VMB; the secondary bootstrap program, SYSBOOT; and the
SYSGEN Utility. The facility [SYS] contains the sources that comprise
SYS.EXE. :

It is a convention of this book that a source module identified solely by file
name is part of the [SYS] facility. Modules from all other facilities are identi-
fied by facility directory name and file name. For example,
[DRIVER|LPDRIVER refers to the file which is the source for the line printer
device driver. Appendix B discusses how to locate a module in the VAX/VMS
source listing microfiche.

When either process control block or PCB is used without a modifier, it
refers to the software structure used by the scheduler. The data structure that
contains copies of the general registers (which the hardware locates through
the PR$_PCBB register) is always called the hardware PCB.

In reference to access modes, the term inner access modes means those
access modes with more privilege. The term outer access modes means those
with less privilege. Thus, the innermost access mode is kernel and the outer-
most mode is user. '

The term SYSBOOT parameter is used to describe any of the adjustable
parameters that are used by the secondary bootstrap program SYSBOOT to
configure the system. (These parameters are often referred to elsewhere as
SYSGEN parameters.) These include both the dynamic parameters that can
be changed on the running system and the static parameters that require a
reboot in order for their values to change. These parameters are referred to by
their parameter names rather than by the global locations where their values
are stored. Appendix C relates parameter names to their corresponding global
locations. : ,

The terms byte index, word index, longword index, and quadword index
refer to methods of VAX operand access that use context indexed addressing
modes. That is, the index value is multiplied by 1, 2, 4, or 8 (depending on
whether a byte, word, longword, or quadword is being referenced) as part of
operand evaluation to calculate the effective address of the operand.

In general, the component called INIT refers to a module of that name in
the executive and not to the volume initialization utility. When that utility
program is referenced, it is clearly specified.

Three conventions are observed for lists:

« In lists such as this one, where there is no order or hierarchy, list elements
are indicated by leading bullets (+). Sublists without hierarchy are indicated
by dashes (—).

vii
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« Lists that indicate an ordered set of operations are numbered. Sublists that
indicate an ordered set of operations are lettered.

« Numbered lists with the numbers enclosed in circles indicate a corres-
pondence between the individual list elements and numbered items in
a figure.

Front Cover Illustration

The cover of the Version 3.3 edition of this book displayed a painting by
Hannes Beckmann. For the cover of the present Version 4.4 edition, the au-

‘thor has chosen “Fugue in Red,” by Paul Klee, which like the Beckmann

painting conveys a strong sense of structure.

* “Fugue in Red”” communicates a dynamism, a sense of flow, movement,
and adaptability. The way in which the geometric elements of the painting
repeat, with subtle variations in color and shape, suggests data structures,
whose contents change with the current state of the system and the opera-
tion under way. Like the shapes in “Fugue in Red,” the key structures of VMS
are used again and again to express recurring contrapuntal themes as in a
musical fugue.
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1.1.1

1.1.1.1

System Overview

For the fashion of Minas Tirith was such that it was built on
seven levels, each delved into a hill, and about each was set a
wall, and in each wall was a gate.

J.R.R. Tolkien, The Return of the King

This chapter introduces the basic components of the VAX/VMS operating
system. Special attention is paid to the features of the VAX architecture that
are either exploited by the operating system or exist solely to support an
operating system. In addition, some of the design goals that guided the imple-
mentation of the VMS operating system are discussed.

PROCESS, JOB, AND IMAGE

The fundamental unit in the implementation of scheduling on the VAX/VMS
operating system, the entity that is selected for execution by the scheduler, is
the process. If a process creates subprocesses, the collection of the creator
process, all the subprocesses created by it, and all subprocesses created by its
descendants, is called a job. The programs that are executed in the context of
a process are called images.

Process

A process is fully described by data structures which specify the hardware
and software context, and by a virtual address space description. This infor-
mation is stored in several different places in the process and system address
space. The data structures that contain the various pieces of process context
are pictured in Figure 1-1.

Hardware Context. The hardware context consists of copies of the general
purpose registers, the four per-process stack pointers, the program counter
(PC), the processor status longword (PSL), and the process-specific processor
registers, including the memory management registers and the asynchronous
system trap (AST) level register. The hardware context is stored in a data
structure called the hardware process control block (hardware PCB), which is
used primarily when a process is removed from or placed into execution.

Another part of process context that is related to hardware is four per-
process stacks, one for each of the four access modes. Code executing in the
context of a process uses the stack associated with the process’s current ac-
cess mode.
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This JIB is pointed
to by all other
processes (if any)
in the same job.

Figure 1-1 Data Structures That Describe Process

Hardware context is stored
in hardware PCB.
Software context is spread
around in PCB, PHD, JIB,
and P1 space.

. Virtual address space
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PO and P1 page tables.
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1.1.1.2

1.1.1.3

1.1 Process, Job, and Image

Software Context. Software context consists of all the data required by vari-
ous parts of the operating system to control that portion of common
resources allocated to a given process. This context includes the process soft-
ware priority, its current scheduling state, process privileges and “identi-
fiers,” quotas and limits, and miscellaneous information, such as process
name and process identification.

The information about a process that must be in memory at all times is
stored in a data structure called the software process control block (PCB).
This information includes the software priority of the process, its unique
process identification (PID), and the particular scheduling state that the pro-
cess is in at a given point in time. The software PCB also records some pro-
cess quotas and limits. Other quotas and limits are recorded in the job infor-
mation block (JIB).

The PCB incorporates another data structure called an access rights block
(ARB), which lists the identifiers that the process holds. Identifiers are names
that specify to what groups a process belongs for purposes of determining
access to files and other protected objects. Identifiers are described briefly in
Section 1.4.1.4.

The information about a process that does not have to be permanently
resident (swappable process context) is contained in a data structure called
the process header (PHD). This information is needed when the process is
resident and consists mainly of information used by memory management
when page faults occur. The data in the process header is also used by the
swapper when the process is removed from memory (outswapped) or brought
back into memory (inswapped). The hardware PCB, which contains the hard-
ware context of a process, including its page tables, is a part of the process
header. Some information in the process header is nonpageable and available
to suitably privileged code whenever the process is resident. The process page
tables, however, are only accessible from that process’s context.

Other process-specific information is stored in the P1 portion of the pro-
cess virtual address space (the control region). This includes exception dis-
patching information, Record Management Services (RMS) data tables, and
information about the image that is currently executing. Information that is
stored in P1 space is only accessible when the process is executing (is the
current process), because P1 space is process-specific.

Virtual Address Space Description. The virtual address space of a process is
described by the process PO and P1 page tables, stored in the high address end
of the process header. The process virtual address space is altered when an
image is initially activated, during image execution through selected system
services, and when an image terminates. The process page tables reside in
system virtual address space and are, in turn, described by entries in the
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1.1.2

1.1.3

1.2

1.2.1

system page table. Unlike the other portions of the process header, the pro-
cess page tables are themselves pageable, and they are faulted into the pro-
cess working set only when they are needed.

Image

The programs that execute in the context of a process are called images.
Images usually reside in files that are produced by the VAX/VMS Linker.
When the user initiates image execution (as part of process creation or
through a Digital command language (DCL) command in an interactive or
batch job), a component of the executive called the image activator sets up
the process page tables to point to the appropriate sections of the image file.
The VMS operating system uses the same paging mechanism that imple-
ments its virtual memory support to read image pages into memory as they
are needed. ‘

Job

The collection of subprocesses that have a common root process is called a
job. The concept of a job exists for the purpose of sharing resources. Some
quotas and limits are shared among all processes in the same job. The current
values of these quotas are contained in a data structure called a job informa-
tion block (JIB) (see Figure 1-1) that is shared by all processes in the same job.

FUNCTIONS PROVIDED BY VAX/VMS

The VAX/VMS operating system provides services at many levels so that user
applications may execute easily and effectively. The layered structure of the
VAX/VMS operating system is pictured in Figure 1-2. In general, components
in a given layer can make use of the facilities in all inner layers.

Operating System Kernel

The main topic of this book is the operating system kernel: the I/O subsys-
tem, memory management, the scheduler, and the VAX/VMS system ser-
vices that support and complement these components. The discussion of
these three components and other miscellaneous parts of the operating sys-
tem kernel focuses on the data structures that are manipulated by a given
component. In describing what each major data structure represents and how
that structure is altered by different sequences of events in the system, this
document describes the detailed operations of each major piece of the kernel.
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I/0 Subsystem. The I/O subsystem consists of device drivers and their asso-
ciated data structures; device-independent routines within the executive;
and several system services, the most important of which is the $QIO re-
quest, the eventual I/0 request that is issued by all outer layers of the system.
The I/0 subsystem is described in detail from the point of view of adding a
device driver to a VMS operating system in the manual Writing a Device
Driver for VAX/VMS. Chapters 18 and 19 of this book describe some features
of the I/O subsystem that are not described in that manual.

Memory Management. The main components of the memory management
subsystem are the page fault handler, which implements the virtual memory
support of the VAX/VMS operating system, and the working set swapper,
which allows the system to utilize more fully the amount of physical mem-
ory that is available. The data structures used and manipulated by the pager
and swapper include the page frame number (PFN) database and the page
tables of each process. The PFN database describes each page of physical
memory that is available for paging and swapping. Virtual address space de-
scriptions of each currently resident process are contained in their respective
page tables. The system page table describes the system space portion of vir-
tual address space.

System services are available to allow a user (or the system on behalf of the
user) to create or delete specific portions of virtual address space or map a file
into a specified virtual address range.

Scheduling and Process Control. The third major component of the kernel is
the process scheduler. It selects processes for execution and removes from
execution processes that can no longer execute. The scheduler also handles
clock servicing and includes timer-related system services. System services
are available to allow a process to create or delete other processes. Other
services provide one process the ability to control the execution of another.

Miscellaneous Services. One area of the operating system kernel that is not
pictured in Figure 1-2 involves the many miscellaneous services that are
available in the operating system kernel. Some of these services for such
tasks as logical name creation or string formatting are available to the user in
the form of system services. Others, such as pool manipulation routines and
certain synchronization techniques, are only used by the kernel and privi-
leged utilities. Still others, such as the lock management system services, are
used throughout the system—Dby users’ programs, system services, RMS, the
file system, and privileged utilities.
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Data Management

The VAX/VMS operating system provides data management facilities at two
levels. The record structure that exists within a file is interpreted by the VAX
Record Management Services (RMS), which exists in a layer just outside the
kernel. RMS exists as a series of procedures located in system space, so it is in
some ways just like the rest of the operating system kernel. Most of the
procedures in RMS execute in executive access mode, providing a thin wall of
protection between RMS and the kernel itself.

The placement of files on mass storage volumes is controlled by one of the
disk or tape ancillary control processes (ACP) or by the Files-11 Extended
QIO Processor (XQP). An ACP is implemented as a separate process because
many of its operations must be serialized to avoid synchronous access con-
flicts. ACPs and the Files-11 XQP interact with the kernel both through the
system service vector interface and by the use of utility routines not accessi-
ble to the general user. '

The Files-11 XQP, new with VAX/VMS Version 4, controls the most com-
monly used “on-disk structure.” (The placement of files on a block-struc-
tured medium, such as a disk volume or a TUS5S, is referred to as on-disk
structure.) The XQP is implemented as an extension to the $QIO system
service and runs in process context. A process’s XQP file operations are seri-
alized with those of other processes through lock management system
services.

User Interface

The interface that is presented to the user (as distinct from the application
programmer who is using system services and Run-Time Library procedures)
is a command language interpreter (CLI). The DCL CLI is available on all
VAX/VMS systems. The monitor console routine (MCR) CLI, the command
language used with RSX-11M, is available as an optional software product.
Some of the services performed by a CLI call RMS or the system services
directly; others result in the execution of an external image. These images
are generally no different from user-written applications because their only
interface to the executive is through the system services and RMS calls.

Images Installed with Privilege. Some of the informational utilities and disk
and tape volume manipulation utilities require that selected portions of pro-
tected data structures be read or written in a controlled fashion. Images that
require privilege to perform their function can be installed (made known to
the operating system) by the system manager so that they can perform their
function in an ordinarily nonprivileged process environment. Images that fit
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this description include MAIL, MONITOR, VMOUNT (the volume mount
utility), SET, and SHOW. Appendix A lists those images that are installed
with privilege in a typical VMS system.-

Other Privileged Images. Other images that perform privileged functions are

not installed with privilege because their functions are less controlled and
could destroy the system if executed by naive or malicious users. These im-
ages can only be executed by privileged users. Examples of these images in-
clude SYSGEN (for loading device drivers), INSTALL (which makes images
privileged or shareable), or the images invoked by a CLI to manipulate print
or batch queues. Images that require privilege to execute but are not installed
with privilege in a typical VAX/VMS system are also listed in Appendix A.

Images That Link with SYS$SYSTEM:SYS.STB. Appendix A also lists those
components that are linked with the system symbol table (SYS$SYSTEM:
SYS.STB). These images access known locations in the system image
(SYS.EXE) through global symbols and must be relinked each time the sys-
tem itself is relinked. User applications or special components that include
SYS.STB when they are linked, such as device drivers, must be relinked
whenever a new version of the symbol table is released, usually at each major
release of the VAX/VMS operating system.

Interface among Kernel Subsystems

The coupling among the three major subsystems pictured in Figure 1-2 is
somewhat misleading because there is actually little interaction between the
three components. In addition, each of the three components has its own data
structures for which it is responsible. When one of the other pieces of the
system wishes to access such data structures, it does so through some con-
trolled interface. Figure 1-3 shows the small amount of interaction that oc-
curs between the three major subsystems in the operating system kernel.

I/0O Subsystem Requests. The I/O subsystem makes a request to memory
management to lock down specified pages for a direct I/O request. The pager
or swapper is notified directly when the I/O request that just completed was
initiated by either one of them.

1/0 requests can result in the requesting process being placed in a wait
state until the request completes. This change of state requires that the
scheduler be notified. In addition, I/O completion can also cause a process to
change its scheduling state. Again, the scheduler would be called.

Memory Management Requests. Both the pager and swapper require input
and output operations to fulfill their functions. The pager and swapper use
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special entry points into the I/O system rather than call $QIO. These entry
points queue prebuilt I/O packets directly to the driver, bypassing unneces-
sary protection checks and preventing an irrelevant attempt to lock pages
associated-with these direct I/O requests.

If a process incurs a page fault that results in a read from disk or if a process
requires physical memory and none is available, the process is put into one of
the memory management wait states by the scheduler. When the page read
completes or physical memory becomes available, the process is made com-
putable again.

Scheduler Requests. The scheduler interacts very little with the rest of the
system. It plays a more passive role when cooperation with memory manage-
ment or the I/O subsystem is required. One exception to this passive role is
that the scheduler awakens the swapper when a process that is not currently
memory resident becomes computable.

11
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HARDWARE ASSISTANCE TO THE OPERATING SYSTEM KERNEL

The method of implementing the many services provided by the VAX/VMS
operating system illustrates the close connection between the hardware
design and the operating system. Many of the general features of the VAX
architecture are used to advantage by the VAX/VMS operating system. Other
features of the architecture exist entirely to support an operating system.

VAX Architecture Features Exploited by VMS

Several features of the VAX architecture that are available to all users are
used for specific purposes by the operating system:

+ The general purpose calling mechanism is the primary path into the operat-
ing system from all outer layers of the system. Because all system services
are procedures, they are available to all native mode languages.

+ The memory management protection scheme is used to protect code and

data used by more privileged access modes from modification by less privi-

leged modes. Read-only portions of the executive are protected in the same
manner.

There is implicit protection built into special instructions that can only be

executed from kernel mode. Because only the executive (and suitably privi-

leged process-based code) executes in kernel mode, such instructions as

MTPR, LDPCTX, and HALT are protected from execution by nonprivileged

users.

+ The operating system uses interrupt priority level (IPL) for several purposes.
IPL is elevated so that certain interrupts are blocked. For example, clock
interrupts must be blocked while the system time (stored in a quadword) is
checked because this checking takes more than one instruction. Clock in-
terrupts are blocked to prevent the system time from being updated while it
is being checked. ~

« IPL is also used as a synchronization tool. For example, any routine that
accesses certain systemwide data structures, such as the scheduler data-
base, must raise IPL to 8 (called IPL$ _SYNCH). The assignment of various
hardware and software interrupts to specific IPL values establishes an order
of importance to the hardware and software interrupt services that the VMS
operating system performs.

Several other features of the VAX architecture are used by specific compo-
nents of the operating system and are described in later chapters. They in-
clude the following: '

+ The change mode instructions (cHME and cHMK), which are used to decrease
access mode (to greater privilege) (see Figure 1-4). Note that most excep-
tions and all interrupts also result in changing mode to kernel. Section 1.3.5
presents an introduction to exceptions and interrupts.
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Access mode fields in the PSL are not directly accessible to the programmer or
to the operating system.

A process can reach a
MORE privileged access
mode through the CHMx
instructions. In addition,
most other exceptions and
all interrupts cause access
mode change to kernel.

The only way to reach a
LESS privileged access
mode is through the REI
Instruction.

Kernel

Executive

Supervisor

The boundaries between the access modes are nearly identical to the layer
boundaries pictured in Figure 1-2.
* Nearly all of the system services execute in kernel mode.
* RMS and some system services execute in executive mode.
¢ Command Language Interpreters normally execute in supervisor mode.
* Utilities, application programs, Run-Time Library procedures, and so on
normally execute in user mode. Privileged utilities sometimes execute in
kernel or executive mode. -

Figure 1-4 Methods for Altering Access Mode

* The inclusion of many protection checks and pending interrupt checks in
the single instruction that is the common exception and interrupt exit path,
REI.

* Software interrupts.

* Hardware context and the single instructions (svecTx and Lp pcTx) that save
and restore it. '

* The use of ASTs to obtain and pass information.

VAX Instruction Set

While the VAX instruction set, data types, and addressing modes were de-
signed to be somewhat compatible with the PDP-11, several features that
were missing in the PDP-11 were added to the VAX architecture. True con-
text indexing allows array elements to be addressed by element number, with
the hardware accounting for the size (byte, word, longword, or quadword) of

13
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each element. Short literal addressing was added in recognition of the fact
that the majority of literals that appear in a program are small numbers.

‘Variable length bit fields and character data types were added to serve the

needs of several classes of users, including operating system designers.

The instruction set includes many instructions that are useful to any de-
signer and occur often in the VMS executive. The queue instructions allow
the construction of doubly linked lists as a common dynamic data structure.
Character string instructions are useful when dealing with any data structure
that can be treated as an array of bytes. Bit field instructions allow efficient
operations on flags and masks.

One of the most important features of the VAX architecture is the VAX
Calling Standard. Any procedure that adheres to this standard can be called
from any native language, an advantage for any large application that requires
the use of the features of a wide range of languages. The VMS operating sys-
tem adheres to this standard in its interfaces to the outside world through the
system service interface, RMS entry points, and the Run-Time Library proce-
dures. System services and RMS services are written as procedures that can
be accessed by issuing a cALLx to absolute location SYS$service in the process
P1 virtual address space. Run-Time Library procedures are mapped into a
process’s PO space, instead of being located in system space.

Implementation of VMS Kernel Routines

In Section 1.2.1, the VMS kernel was divided into three functional pieces plus
the system service interface to the rest of the world. Alternatively, the oper-
ating system kernel can be partitioned according to the method used to gain
access to each part. The three classes of routines within the kernel are proce-
dure-based code, exception service routines, and interrupt service routines.
Other systemwide functions, the swapping and modified page writing per-
formed by the swapper, are implemented as a separate process that resides in
system space. Figure 1-5 shows the various entry paths into the operating
system kernel.

Process Context and System State. The first section of this chapter discussed
the pieces of the system that are used to describe a process. Process context
includes a complete address space description, quotas, privileges, scheduling
data, etc. Any portion of the system that executes in the context of a process
has all of these process attributes available.

There is a portion of the kernel, however, that operates outside the context
of a specific process. Most routines that fall into this category are interrupt
service routines, invoked in response to external events, regardless of the
currently executing process. Portions of the initialization sequence also fall
into this category. In any case, there are no process features, such as a kernel
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stack or a page fault handler, available when these routines are executing.
Because of the lack of a process, this system state or interrupt state can be
characterized by the following limited context:

« All stack operations take place on the systemwide interrupt stack.
* The primary indication that the CPU is in this state is contained in the PSL.
The PSL indicates that the interrupt stack is being used, the current access
mode is kernel mode, and the IPL is higher than 2.
The system control block, the data structure that controls the dispatching
of interrupts and exceptions, can be thought of as the secondary structure
that describes system state.
 Code that executes in this so-called system context can only refer to system
virtual addresses. In particular, there is no P1 space available, so the sys-
temwide interrupt stack must be located in system space.
No page faults are allowed. The page fault handler generates a fatal bug-
check if a page fault occurs and the IPL is above IPL 2.
No exceptions are allowed (other than subset instruction emulation excep-
tions). Exceptions such as page faults are associated with a process. The

15
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exception dispatcher generates a fatal bugcheck if an exception occurs

above IPL 2 or while the processor is executing on the interrupt stack.

« ASTs, asynchronous events that allow a process to receive notification
when external events have occurred, are not allowed. (The AST delivery
interrupt is not requested when the processor is in system state and not
granted until IPL drops below 2, an indication that the processor is leaving
system state.)

« No system services are allowed in the system state.

Process-Based Routines. Procedure-based code (RMS services, Files-11 XQP,
and system services) and exception service routines usually execute in the
context of the current process (on the kernel stack when in kernel mode).

The system services are implemented as procedures and are available to
all native mode languages. In addition, the fact that they are procedures
means that there is a call frame on the stack. Thus, a utility subroutine in a
system service can signal an error simply by putting the error status into
RO and issuing a RET instruction. All superfluous information is cleaned off
the stack by the RET instruction. The system service dispatchers (actually the
dispatchers for the CHMK and CHME exceptions) are exception service
routines.

System services must be called from process context. They are not avail-
able from interrupt service routines or other code (such as portions of the
initialization sequence) that execute outside the context of a process. One
reason for requiring process context is that the various services assume that
there is a process whose privileges can be checked and whose quotas can be
charged as part of the normal operation of the service. Some system services
reference locations in P1 space, a portion of address space only available
while executing in process context.

The pager (the page fault exception handler) is an exception service routine
that is invoked in response to a translation-not-valid fault. The pager thus
satisfies page faults in the context of the process that incurred the fault. Be-
cause page faults are associated with a process, the system cannot tolerate
page faults that occur in interrupt service routines or other routines that
execute outside the context of a process. The actual restriction imposed by
the pager is even more stringent. Page faults are not allowed above IPL 2. This
restriction applies to process-based code executing at elevated IPL as well as
to interrupt service code.

Interrupt Service Routines. By their asynchronoﬁs nature, interrupts execute
without the support of process context (on the systemwide interrupt stack):

« 1/O requests are initiated through the $QIO system service, which can be
issued directly by the user or by some intermediary, such as RMS or the
Files-11 XQP, on the user’s behalf. Once an I/O request has been placed into
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a device queue, it remains there until the driver is triggered, usually by an
interrupt generated in the external device.

Two classes of software interrupt service routines exist solely to support
the I/O subsystem. The fork level interrupts allow device drivers to lower
IPL in a controlled fashion. Final processing of I/O requests is also done in a
software interrupt service routine.

* The timer functions in the operating system include support in both the
hardware clock interrupt service routine and a software interrupt service
routine that actually services individual timer requests.

* Another software interrupt performs the rescheduling function, where one
process is removed from execution and another selected and placed into
execution.

Special Processes—Swapper and Null. The swapper and the null processes are
different from any other processes that exist in a VAX/VMS system. The
differences lie not in their operations but in their limited context.

The limited context of either of these processes is partly because these two
processes exist as part of the system image SYS.EXE. They do not have to be
created with the Create Process system service. Specifically, their PCBs and
process headers are assembled (in module PDAT) and linked into the system
image. Other characteristics of these two processes are listed here:

* Their process headers are static. There is no working set list and no process
section table. Neither process supports page faults. All code executed by
either process must be locked into memory in some way. In fact, the code of
both of these processes is part of the nonpaged executive. V

* Both processes execute entirely in kernel mode, thereby eliminating the
need for stacks for the other three access modes.

* Neither process has a P1 space. The kernel stack for either process is lo-
cated in system space.

* The null process does not have a PO space either. The swapper uses an array
allocated from nonpaged pool as its PO page table when it swaps, writes
modified pages, and also during the part of process creation that takes place
in the context of the swapper process.

Despite their limited contexts, both of these processes behave in a normal
fashion in every other way. The swapper and the null processes are selected
for execution by the scheduler just like any other process in the system. The
swapper spends its idle time in the hibernate state until some component in
the system recognizes a need for one of the swapper functions, at which time
it is awakened. The null process is always computable but set to the lowest
software priority in the system (priority 0). All CPU time not used by any
other process in the system will be used by the null process.

17
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Special Subroutines. There are several utility subroutines within the operat-
ing system related to scheduling and resource allocation that are called from
both process-based code, such as system services, and from software interrupt
service routines. These subroutines are constrained to execute with the lim-
ited context of interrupt or system state. An example of such a routine is
SCH$QAST, which is called to queue an AST to a process. It may be invoked
from IPL 4 and IPL 7 interrupt service routines, as well as from various sys-
tem services.

Memory Management and Access Modes

The address translation mechanism is described in the VAX Architecture
Reference Manual. Two side effects of this operation are of special interest to
the VAX/VMS operating system. When a page is not valid, a translation-not-
valid exception is generated that transfers control to an exception service
routine that takes whatever steps are required to make the page valid. This
exception transfers control from a hardware mechanism, address translation,
to a software exception service routine, the page fault handler, and allows the
operating system to gain control on address translation failures to implement
its dynamic mapping of pages while a program is executing.

Before the address translation mechanism checks the valid bit in the page
table entry, a protection check is made to determine whether the requested
access will be granted. The check uses the current access mode in the PSL
(PSL<25:24>), a protection code that is defined for each virtual page, and the
type of access (read, modify, or write) to make its decision. This protection
check allows the operating system to make read-only portions of the execu-
tive inaccessible to anyone (all access modes) for writing, preventing corrup-
tion of operating system code. In addition, privileged data structures can be
protected from even read access by nonprivileged users, preserving system
integrity. ‘

Exceptions, Interrupts, and REI

The VAX exception and interrupt mechanisms are very important to the op-
eration of VMS. Below is a comparison of the exception and interrupt mecha-
nisms, followed by brief descriptions of features of the mechanisms which
are used by VMS.

Comparison of Exceptions and Interrupts. The following list summarizes
some of the characteristics of exceptions and interrupts:

« Interrupts occur asynchronously to the currently executing instruction
stream. They are actually serviced between individual instructions or at
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well-defined points within the execution of a given instruction. Exceptions
occur synchronously as a direct effect of the execution of the current in-
struction.
* Both mechanisms pass control to service routines whose addresses are
stored in the system control block (SCB). These routines perform excep-
tion-specific or interrupt-specific processing.
Exceptions are generally a part of the currently executing process. Their
servicing is an extension of the instruction stream that is currently execut-
ing on behalf of that process. Interrupts are generally systemwide events
that cannot rely on support of a process in their service routines.
Because interrupts are generally systemwide, the systemwide interrupt
stack is usually used to store the PC and PSL of the process that was inter-
rupted. Exceptions are usually serviced on the per-process kernel stack.
Which stack to use is usually determined by control bits in the SCB entry
for each exception or interrupt.
Interrupts cause a PC/PSL pair to be pushed onto the stack. Exceptions
often cause exception-specific parameters to be stored in addition to a
PC/PSL pair. ; ’
* Interrupts cause the IPL to change. Exceptions usually do not have an IPL
change associated with them. (Machine checks and kernel-stack-not-valid
exceptions elevate IPL to 31.)
An interrupt can be blocked by elevating IPL to a value at or above the IPL
associated with the interrupt. Exceptions, on the other hand, cannot be
blocked. However, some exceptions can be disabled (by clearing associated
bits in the PSL). :
When an interrupt or exception occurs, a new PSL is formed that summa-
rizes the new IPL, the current access mode (usually kernel), the stack in use
(interrupt or other), etc. One difference between exceptions and interrupts,
a difference that reflects the fact that interrupts are not related to the inter-
rupted instruction stream, is that the previous access mode field in the new
PSL is set to kernel for interrupts while the previous mode field for excep-
tions reflects the access mode in which the exception occurred.

Other Uses of Exceptions and Interrupts. In addition to the translation-not-
valid fault used by memory management software, the operating system also
uses the CHMK and CHME exceptions as entry paths to the executive. Sys-
tem services that must execute in a more privileged access mode use either
the CHHK or cHNE instruction to gain access mode rights (see Figure 1-4). The
system handles most other exceptions by dispatching to user-defined condi-
tion handlers as described in Chapter 4.

Hardware interrupts temporarily suspend code that is executing so that an
interrupt-specific routine can service the interrupt. Each interrupt has a pri-
ority level, or IPL, associated with it. The CPU raises IPL when it grants the
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interrupt. High-level interrupt service routines thus prevent the recognition
of low-level interrupts. Low-level interrupt service routines can be inter-
rupted by subsequent high-level interrupts. Kernel mode routines can also
block interrupts at certain levels by specifically raising the IPL.

The VAX architecture also defines a series of software interrupt levels that
can be used for a variety of purposes. The VMS operating system uses them
for scheduling, I/O completion routines, and for synchronizing access to cer-
tain classes of data structures. Chapter 6 describes the software interrupt
mechanism and its use.

The REI Instruction. The REI instruction is the common exit path for inter-
rupts and exceptions. Many protection and privilege checks are incorporated
into this instruction. Because most fields in the PSL are not accessible to the
programmer, the RET instruction provides the only means for changing access
mode to a less privileged mode (see Figure 1-4). It is also the only way to reach
compatibility mode. '

Although the IPL field of the PSL is accessible through the PR$_IPL pro-
cessor register, execution of an REI is a common way that IPL is lowered
during normal execution. Because a change in IPL can alter the deliverability
of pending interrupts, many hardware and software interrupts are delivered
after an REI instruction is executed.

Process Structure

The VAX architecture also defines a data structure called a hardware process
control block that contains copies of all a process’s general registers when the
process is not active. When a process is selected for execution, the contents of
this block are copied into the actual registers inside the processor with a
single instruction, LppcTx . The corresponding instruction that saves the con-
tents of the general registers when the process is removed from execution is
SVBCTX. :

OTHER SYSTEM CONCEPTS

This chapter began by discussing the most important concepts in the VMS
operating system, process and image. There are several other fundamental
ideas that should be mentioned before beginning a detailed description of
VMS internals.

Resource Control

The VAX/VMS operating system protects itself and other processes in the
system from careless or malicious users, with hardware and software protec-
tion mechanisms, software privileges, and software quotas and limits.
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Hardware Protection. The memory management protection mechanism that
is related to access mode is used to prevent unauthorized users from modify-
ing (or even reading) privileged data structures. Access mode protection is
alsc used to protect system and user code and other read-only data structures
from being modified by programming errors.

A more subtle but perhaps more important aspect of protection provided
by the memory management architecture is that the process address space of
one process (PO space or P1 space] is not accessible to code running in the
context of another process. When such accessibility is desired to share com-
mon routines or data, the operating system provides a controlled access
through global sections. System virtual address space is addressable by all
processes, although page-by-page protection may deny read or write access to
specific system virtual pages for certain access modes.

Process Privileges. Many operations that are performed by system services
could destroy operating system code or data or corrupt existing files if per-
formed carelessly. Other services allow a process to adversely affect other
processes in the system. The VMS operating system requires that processes
wishing to execute these potentially damaging operations be suitably privi-
leged. Process privileges are assigned when a process is created, either by the
creator or through the user’s in the authorization file.

These privileges are described in the VAX/VMS System Manager’s Refer-
ence Manual and in the VAX/VMS System Services Reference Manual. The
privileges themselves are specific bits in a quadword that is stored in the
beginning of the process header. (The locations and manipulations of the
several process privilege masks that the operating system maintains are dis-
cussed in Chapter 21.) When a VMS system service that requires privilege is
called, the service checks to see whether the associated bit in the process
privilege mask is set.

Quotas and Limits. The VMS operating system also controls allocation of its
systemwide resources, such as nonpaged dynamic memory and page file
space, through the use of quotas and limits. These process attributes are also
assigned when the process is created. By restricting such items as the number
of concurrent I/O requests or pending ASTs, VMS exercises control over the

- resource drain that a single process can exert on system resources, such as

nonpaged dynamic memory. In general, a process cannot perform certain op-
erations (such as queue an AST) unless it has sufficient quota (nonzero
PCB$W_ASTCNT in this case). The locations and values of the various quo-
tas and limits used by the operating system are described in Chapter 20.

User Access Control. The VMS operating system uses user identification

code (UIC) for two different protection purposes. If a process wishes to per-
form some control operation (Suspend, Wake, Delete, etc.) on another
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process, it requires WORLD privilege to affect any process in the system. A
process with GROUP privilege can affect only other processes with the same
group number. A process with neither WORLD nor GROUP privilege can
affect only other processes with the same UIC.

VMS also uses UIC as a basis for protection of various system objects, such
as files, global sections, logical names, and mailboxes. The owner of a file, for
example, specifies what access to the file she grants to herself, to other pro-
cesses in the same group, and to other processes in the system.

A new Version 4 feature called an access control list (ACL) provides more
selective levels of sharing. An ACL lists individual users or groupings of users
who are to be allowed or denied access to a system object. ACLs specify
sharing on the basis of UIC, as well as other groupings, known as identifiers,
that can be associated with a process. As of Version 4.2, ACLs can be speci-
fied for files, directories, devices, global sections, and shareable logical name
tables. : ‘

Other System Primitives

Several other simple tools used by the VMS operating system are mentioned
freely throughout this book and are described in Chapters 2, 3, and 28.

Synchronization. Any multiprogramming system must take measures to pre-
vent simultaneous access to system data structures. The executive uses three
synchronization techniques. By elevating IPL, a subset of interrupts can be
blocked, allowing unrestricted access to systemwide data structures. The
most common synchronization IPL used by the operating system is IPL 8,
called IPL$ _SYNCH.

For some data structures, elevated IPL is either an unnecessary tool or a
potential system degradation. For example, processes executing at or above
IPL 3 cannot be rescheduled (removed from execution). Once a process gains
control of a data structure protected by elevated IPL, it will not allow another
process to execute until it gives up its ownership. In addition, page faults are
not allowed above IPL 2 and so any data structure that exists in pageable
address space cannot be synchronized with elevated IPL.

The VMS executive requires a second synchronization tool to allow syn-
chronized access to pageable data structures. This tool must also allow a
process to be removed from execution while it maintains ownership of the
structure in question. One synchronization tool that fulfills these require-
ments is called a mutual exclusion semaphore (or mutex). Synchronization,
including the use of mutexes, is discussed in Chapter 2.

The VMS executive and other system components, such as the Files-11
XQP, RMS, and the job controller, use a third tool, the lock management
system services, for more flexible sharing of resources among processes. The
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lock management system services provide a waiting mechanism for pro-
cesses whose desired access to a resource is blocked. They also provide notifi-
cation to a process whose use of a resource blocks another process. Most
importantly, the lock management system services provide sharing of clus-
terwide resources. Chapter 13 describes the lock management system ser-
vices.

Dynamic Memory Allocation. The system maintains several dynamic mem-
ory areas from which blocks of memory can be allocated and deallocated.
Nonpaged pool contains those systemwide structures that might be manipu-
lated by (hardware or software| interrupt service routines or process-based
code executing above IPL 2. Paged pool contains systemwide structures that
do not have to be kept memory resident. The process allocation region and
the kernel request packet (KRP) lookaside list, both in process P1 space, are
used for pageable data structures that will not be shared among several pro-
cesses. Dynamic memory allocation and deallocation are discussed in detail
in Chapter 3.

Logical Names. The system uses logical names for many purposes, including
a transparent way of implementing a device-independent I/O system. The use
of logical names as a programming tool is discussed in the VAX/VMS System
Services Reference Manual. The internal operations of the logical name sys-
tem services, as well as the internal organization of the logical name tables,
are described in Chapter 28.

LAYOUT OF VIRTUAL ADDRESS SPACE

This section shows the approximate contents of the three different parts of
virtual address space.

System Virtual Address Space

The layout of system virtual address space is pictured in Figure 1-6. Details
such as the no-access pages at either end of the interrupt stack are omitted to
avoid cluttering the diagram. Table F-2 in Appendix F gives a more complete
description of system space, including these guard pages, system pages allo-
cated by disk drivers, and other details.

This figure was produced from two lists provided by the System Dump
Analyzer (SDA) Utility (the system page table and the contents of all global
data areas in system space) and from the system map SYS$SYSTEM:
SYS.MAP. The relationships between the variable size pieces of system space
and their associated SYSBOOT parameters are given in Appendix F.
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Figure 1-6 Layout of System Virtual Address Space

1.5.2 Control Region (P1 Space)

Figure 1-7 shows the layout of P1 space. This figure was produced mainly
from information contained in module SHELL, which contains a prototype of
a P1 page table that is used whenever a process is created. An SDA listing of
process page tables was used to determine the order and size of the portions of
P1 space not defined in SHELL.
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Some of the pieces of P1 space are created dynamically when the process is
created. These include a P1 map of process header pages, a command lan-
guage interpreter (CLI) if one is being used, a symbol table for that CLI, the
process allocation region, and the process I/O segment. In addition, the Files-
11 XQP and its data areas are mapped at process creation.

The two pieces of P1 space at the lowest virtual addresses (the user stack
and any extra image I/O segment) are created dynamically each time an
image executes and are deleted as part of image rundown. Appendix F con-
tains a description of the sizes of the different pieces of P1 space. Table F-5
gives a complete description of P1 space, including details, such as memory
management page protection and the name of the system component that
maps a given portion.

Program Region (PO Space)

Figure 1-8 shows a typical layout of PO space for both a native mode image
(produced by the VMS linker) and a compatibility mode i image (produced by
the RSX-11M task builder). This figure is much more conceptual than the
previous two illustrations because the layout of PO space depends upon the
image being run. ,

By default, the first page of PO space (0 to 1FF) is not mapped (protection set
to No Access). This no-access page allows easy detection of two common
programming errors, using zero or a small number as the address of a data
location or using such a small number as the destination of a control transfer.
(A link-time request or system service call can alter the protection of virtual
page zero. Note also that page zero is accessible to compatibility mode
images.)

The main native mode image is placed into PO space, startlng at address
200;6. Any shareable images that are position-independent and shared (for
example, LIBRTL) are placed at the end of the main image. The order in
which these shareable images are placed into the image is determined during
image activation.

If the debugger or the traceback facility is required, these images are added
at execution time (even if /DEBUG was selected at link time). This mapping
is described in detail in Chapter 21.
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Synchronization Techniques

“Time,” said George, “why I can give you a definition of time.
It’s what keeps everything from happening at once.”

Ray Cummings, The Man Who Mastered Time*

One of the most important issues in the design of an operating system is
synchronization. Especially in a system that is interrupt driven, certain se-
quences of instructions must be allowed to execute without interruption.
The VMS operating system raises processor interrupt priority level (IPL) to
block interrupts of equal and lower priority during the execution of critical
code paths. '

Any operating system must also take precautions to ensure that shared
data structures are not being simultaneously modified by several routines or
being read by one routine while another routine is modifying the structure.
The VMS executive uses a combination of the following software techniques
and features of the VAX hardware to synchronize access to shared data
structures:

+ Interlocked instructions

+ Elevated IPL

» Serialized access

» Mutual exclusion semaphores, called mutexes
» VAX/VMS lock management system services

OVERVIEW

Synchronization is a term normally used to refer to the simultaneous occur-
rence of two or more events.

In a computer context, however, synchronization is the technique of block-
ing all but one of two or more events when their simultaneous occurrence
might disrupt the proper operation of the system.

One fundamental computer synchronization problem is the requirement
that a thread of execution change two storage locations as a single operation.
If either is changed, but not both, the storage is temporarily inconsistent. If
the thread of execution can be interrupted, after changing the first location

*Copyright © 1957 by Gabrielle Cummings; reprinted by courtesy of Forrest ] Ackerman, 2495 Glen-

dower Ave., Hollywood, CA 90027.
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and before changing the second, by another thread of execution which uses or
changes those locations, then access to those locations is not synchronized
and system disruption can occur.

Another fundamental synchronization problem is the requirement that a
thread of execution read a storage location and, depending on its value, write
a new value into the location. If the thread can be interrupted after the read
and before the write by another thread with the same intent toward that
location, then access to that location is not synchronized and system disrup-
tion can occur. Specifically, the modification of one of the threads can over-
lay the modification of the other. ;

There are a number of situations for which synchronization is an issue.
One example is a single CPU with multiple threads of execution simultane-
ously in progress. Another example is a system in which several independent
CPUs share some storage. This category includes not only multiprocessor
systems but also single CPU systems with intelligent I/O controllers.

Synchronization of memory and disk storage, though conceptually similar,
are different problems requiring different techniques.

When data structures in memory which require synchronized access are
accessed only by a single VAX CPU, VMS typically runs at raised IPL to block
interrupts during the relevant instruction sequences, although it may use
mutexes and locks where appropriate.

If a modification to a data structure accessed only by a single CPU can be
made with one uninterruptible instruction, then IPL need not be raised.
INSQUE and REMQUE are examples of such instructions; each is uninterruptible
and each changes two or more memory locations.

Some types of single processor memory synchronization require specific
techniques:

* A data structure accessed from interrupt service routines is protected by
raising IPL to the highest interrupt level from which the structure is ac-
cessed (see Section 2.2.2).

* A data structure accessed by multiple processes from IPLs below 3 is pro-
tected by mutexes or lock management system services. Section 2.4 dis-
cusses mutexes and Section 2.5 briefly describes the lock management sys-
tem services.

* A process-private data structure accessed from a non-AST thread of execu-
tion and an AST thread of execution must be protected against concurrent
access. Access to the data structure can be synchronized by blocking AST
delivery, either by raising IPL to 2 or through the Set AST Enable
($SETAST) system service. The concept of AST reentrancy and ways of
achieving it are described in the Guide to Creating Modular Procedures on
VAX/VMS.
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When there are independent processors accessing data structures in mem-
ory, synchronization requires memory interlocks. A memory interlock is a
mechanism to provide an atomic read-modify-write sequence to a location in
shared memory. The VAX architecture provides a number of instructions
which interlock memory. These consist of BBcCI, BBSSI, ADAWI, and INSQxI
and REMOxI, the instructions that manipulate the self-relative queues. The
operations of the interlocked instructions are described in detail in the VAX
Architecture Reference Manual.

The following examples show synchronization of independent processors
accessing the same memory:

» The DR32 is a general purpose, intelligent data port that connects a VAX
internal memory bus to a bus accessible to foreign devices. An application
program accesses the DR32 through command and response queues in VAX
memory. Synchronizing access to the queues requires that both the DR32
and the application program use interlocked queue instructions. The user
interface to the DR32 is documented in the VAX/VMS I/O User’s Reference
Manual: Part II.

The CI adapter (for example, CI780) is a microcoded intelligent controller

that connects a VAX to a CI bus and communicates with its counterparts.

on other nodes. The CI port driver communicates with the CI adapter
through command and response queues. Both the CI adapter and the port
driver must use interlocked queue instructions to access the queues.

» VMS systems sharing memory through MA780 controllers communicate
through a data area located in shared memory. The data area describes mail-
boxes, global sections, and common event flag clusters created in the shared
memory. VMS code on each processor executes interlocked instructions to
prevent concurrent access to the data area. User processes accessing a global
section in shared memory must also use interlocked instructions to syn-
chronize their access to data in the global section. Chapter 14 describes
shared memory support. :

» VAX CPUs running asymmetric multiprocessing communicate through a
shared data structure located in nonpaged pool. VMS code on each processor
executes interlocked instructions to prevent concurrent access to the data
structure. Chapter 27 describes asymmetric multiprocessing support.

Another important synchronization issue for VMS involves disk storage.
Data structures on a shared disk (for example, files and records within files
and the actual disk structure) are protected by lock management system ser-
vices. This form of synchronization serves whether the disk is accessed by
multiple processes on a single system or by multiple processes on multiple
nodes of a VAXcluster. Lock management system services are the only clus-
terwide synchronization mechanism (see Section 2.5).
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2.2 Elevated IPL

ELEVATED IPL

The primary purpose for raising IPL is to block interrupts at the selected IPL
value and all lower values of IPL. The operating system uses specific IPL
values to synchronize access to certain structures. For example, by raising
IPL to 23, all device interrupts are blocked, but interval timer interrupts at
IPL 24 can still be granted. '

The IPL, stored in the Processor Status Longword (PSL) register bits
<20:16>, is altered by writing the desired IPL value to the privileged register
PR$_IPL with the MTPR instruction. This change in IPL is usually accom-
plished in the operating system with one of two macros, SETIPL or DSBINT,
whose macro definitions are as follows:

.MACRO SETIPL IPL = #31
MTPR IPL,S#PRS$_IPL
.ENDM SETIPL

.MACRO DSBINT IPL = #31, DST = -(SP)
MFPR  S'#PR$_IPL,DST
MTPR  IPL,S'#PR$S_IPL

.ENDM DSBINT

The SETIPL macro changes IPL to the specified value. If no argument is
present, IPL is elevated to 31. The DSBINT macro first saves the current IPL
before elevating IPL to the specified value. If no alternate destination is speci-
fied, the old IPL is saved on the stack. The default IPL value is 31.

The DSBINT macro is usually used when a later sequence of code must

‘restore the IPL to the saved value (with the ENBINT macro). This macro is

especially useful when the caller’s IPL is unknown. The SETIPL macro is
used when the IPL will later be explicitly lowered with another SETIPL or
simply as a result of executing an REI instruction. That is, the value of the
saved IPL is not important to the routine that is using the SETIPL macro.

The ENBINT macro is the counterpart to the DSBINT macro. It restores
the IPL to the value found in the designated source argument.

.MACRO ENBINT SRC = (SP)+
MTPR SRC,S"#PR$_IPL
-ENDM ~ ENBINT

Occasionally it is necessary to save an IPL value (to be restored later by the
ENBINT macro) without changing the current IPL. The SAVIPL macro per-
forms this function: -

.MACRO SAVIPL DST = -(SP)
MFPR S"#PR$_IPL,DST
.ENDM SAVIPL
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The successful use of IPL as a synchronization tool requires that IPL be
raised (not lowered) to the appropriate synchronization level. Lowering IPL
defeats any attempt at synchronization and also runs the risk of a reserved
operand fault when an REI instruction is later executed. (An REI instruction
that attempts to elevate IPL causes a reserved operand fault.)

Suppose a thread of execution modifying more than one location in a
shared database raises IPL to x to block interrupts from other accessors of the
database. The first thread of execution is interrupted after partially making
its modifications by a second thread running in response to a higher priority
interrupt. The shared database is now in an inconsistent state. If the second
thread were to lower IPL to x in a mistaken attempt at synchronization and
access the database, the second thread could receive incorrect data and/or
corrupt the database. :

Integrity of the database would, however, be maintained if the second
thread of execution were to reschedule itself to run as the result of an inter-
rupt at or below x and access the database from the rescheduled thread.
“Forking” is the primary way in which an interrupt thread of execution re-
schedules itself to run at a lower IPL. Chapter 6 describes forking in more
detail.

Use of IPL$ _SYNCH

IPL 8 (IPL$ _SYNCH) is the IPL at which the software timer routines execute.
These routines service timer queue entries and handle quantum expiration.
(The software timer interrupt is requested and granted at IPL 7, but the inter-
rupt service routine raises IPL and runs primarily at IPL$§_SYNCH. See
Chapter 11 for further details.) IPL 8 is the level to which IPL must be raised
for any routine to access several systemwide data structures, for example, the
scheduler database. By raising IPL to 8, all other routines that might access
the same systemwide data structure are blocked from execution until IPL is
lowered. IPL 8 is also the IPL at which most driver fork processing occurs.

While the processor is executing at IPL 8, certain systemwide events such
as scheduling and I/O postprocessing are blocked. However, other more im-
portant operations, such as hardware interrupt servicing, can continue.

In previous versions of VMS, the value of IPL§_SYNCH was 7. Almost all
device driver fork processing occurred above IPL$§_SYNCH, at IPL 8 and
higher IPLs. Thus the time the system spent at IPL$ _SYNCH did not affect
I/O processing. With VMS V4, the value of IPL§_SYNCH has been changed
to IPL 8. This change was made to enable three executive components to run
at the same IPL: the distributed lock manager, system communications ser-
vices (SCS), and the CI port driver. ,

On a VAXcluster, the lock manager must communicate clusterwide with
its counterparts on other nodes to perform locking. The lock managers com-
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municate using the message services of SCS. SCS is also used heavily by class
and port drivers and runs at the same IPL they do, IPL$_SCS, or 8. The SCS
port drivers must run at IPL 8 because some of them, for example, the UDA
port driver, run at IPL 8 to synchronize access to shared UNIBUS resources
and data structures.

In addition to having to communicate with SCS at IPL$_SCS, the lock
manager has another constraint. Its actions (granting locks, queueing ASTs,
placing processes into wait) result in modifications to the scheduler database,
which is synchronized at IPL§_SYNCH. To simplify the interactions among
the lock manager, SCS, and other threads of execution modifying the sched-
uler database, IPL$_SYNCH and IPL$_SCS were made the same value by
changing the value of IPL$ _SYNCH.

Other IPLs Used for Synchronization

Table 2-1 lists several IPLs that are used for synchronization purposes by the
system. Some of these levels are used to control access to shared data struc-
tures. Others are used to prevent certain events, such as a clock interrupt or
process deletion, from occurring while a block of instructions is executed.

IPL$_POWER. Routines in the operating system raise IPL to IPL$_POWER,
or 31, to block all interrupts, including power failure, an IPL 30 interrupt. IPL
is raised to this level only for a short period of time (usually less than ten
instructions once the system is initialized).

* Device drivers use IPL 31 just before they call IOC$WFIxxCH to prevent a
powerfail interrupt from occurring.

Table 2-1 Common IPL Values Used by VAX/VMS for Synchronization

Value
Name (decimal) . Meaning
IPL$_POWER 31 Disable all interrupts
IPL$ _HWCLK! 24 Block clock and device interrupts
UCB$B_DIPL? 20-23 Block interrupts from specific devices
UCBS$B_FIPL? 8-11 Device driver fork levels
IPL$_SYNCH 8 Synchronize access to certain system
data structures
IPL$ _QUEUEAST 6 ‘ Device driver fork IPL that allows drivers to
elevate IPL to 8
IPL§_ASTDEL 2 Block delivery of ASTs (prevent process
deletion)

'Interval timer interrupts occur at IPL 22 or 24, depending on processor type.
2These symbols are offsets into a device unit control block.
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« The entire bootstrap sequence operates at IPL 31 to put the system into a
known state before allowing interrupts to occut.

* Because the error logger routines can be called from anywhere in the execu-
tive, including fault service routines that execute at IPL 31 (such as ma-
chine check handlers), allocation of an error log buffer can only execute at
IPL 31. A corollary of this requirement demands that the ERRFMT process
execute at IPL 31 when it is altering data structures that describe the state
of the error log buffer. (As Chapter 8 describes, the copy is done at two IPL
levels. The error log buffer status flags and message counts are modified at
IPL 31. Then IPL is lowered to O; the contents of the error log buffer are
copied to the ERRFMT process’s PO space, and the messages are formatted
and written to the error log file.)

IPL$_HWCLK. When IPL is raised to 24, interval timer interrupts are
blocked. On some VAX processors, the interval timer interrupts at IPL 22; on
others it interrupts at IPL 24. See Table 11-2 for a list of processor types and
associated interval timer IPLs. The software timer interrupt service routine
uses IPL 24 when it is comparing two quadword system time values. This IPL
prevents the system time from being updated while it is being compared to
some other time value. (This precaution is required because the VAX archi-
tecture does not contain an uninterruptible compare quadword instruction.)

Device IPL. Device drivers will raise IPL to the level at which the associated
device will interrupt to prevent the same device or other devices from gener-
ating interrupts while device registers are being read or written. This step
usually precedes the further elevation of IPL to 31 just described.

Fork IPL. Fork IPL (a value specific to each device type} is used by the execu-
tive to synchronize access to each unit control block. These blocks are ac-
cessed by device drivers and by procedure-based code, such as the completion
path of the $QIO system service and the Cancel I/O system service.

Device drivers also use their associated fork IPL as a synchronization level
when accessing data structures that control shared resources, such as multi-
unit controllers, datapath registers, or map registers. For this synchronization
to work properly, all devices sharing a given resource must use the same fork
IPL.

The use of fork IPL to synchronize access to unit control blocks works the
same way that elevating IPL to IPL§_SYNCH does. That is, one piece of code
elevates IPL to the specified fork IPL (found at offset UCB$B_FIPL) and
blocks all other potential accesses to the UCB. Fork processing, the tech-
nique whereby device drivers lower IPL below device interrupt level in a
manner consistent with the interrupt nesting scheme, also uses the serializa-
tion technique described in Section 2.3.
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IPL$_QUEUEAST. In previous versions of VMS, IPL$ _SYNCH, the IPL at
which several systemwide databases were synchronized, was 7. Device driv-
ers that needed to execute code at IPL§_SYNCH forked to IPL 6, so that they
could raise IPL to IPL§_SYNCH. IPL 6 was named IPL$_QUEUEAST, since
its primary use as a fork IPL 6 was AST enqueuing. The terminal driver, for
example, might notify a requesting process about unsolicited input or a
CTRL/Y through an AST (see Chapter 7). The mailbox driver might also
queue an AST to notify a requesting process about unsatisfied reads and un-
solicited writes to a mailbox. Queuing an AST to a process requires scheduler
database modifications, which must be made at IPL$_SYNCH.

The IPL 7 interrupt could not be used to achieve the same result because it
is reserved for software timer interrupts. So this synchronization technique
used the first free IPL below 7, the IPL 6 software interrupt called
IPL$ _QUEUEAST.

In VMS V4, the value of IPL§_SYNCH was changed to 8 for the reason
described in Section 2.2.1. As a result of this change, IPL$ _QUEUEAST fork-
ing is generally unnecessary for serializing access to databases synchronized
at IPL§_SYNCH. Fork processes running at IPL 8 could remain at 8; device
interrupt service routines and fork processes running at IPLs above 8 could
fork to 8. However, many instances of IPL§ _QUEUEAST fork processing
remain in VMS V4, unchanged from earlier versions. These result in placing a
somewhat higher priority on I/O processing.

IPL2

IPL 2 is the level at which the software interrupt associated with AST deliv-
ery occurs. When system service procedures raise IPL to 2, they are blocking
the delivery of all ASTs, but particularly the kernel AST that causes process
deletion. In other words, if a process is executing at IPL 2 (or above), that
process cannot be deleted.

This technique is used in several places to prevent process deletion be-
tween the time that some system resource (such as system dynamic memory)
is allocated and the time that ownership of that resource is recorded (such as
the insertion of a data structure into a list). For example, the $QIO system
service executes at IPL 2 from the time that an I/O request packet is allocated
from nonpaged dynamic memory until that packet is queued to a unit control
block or placed into the I/O postprocessing queue.

The memory management subsystem uses IPL 2 to inhibit the special ker-
nel mode AST that is queued on I/O completion. This inhibition is necessary
at times when the memory management subsystem has some knowledge of
the process’s working set and yet the execution of the I/O completion AST
could cause a modification to the working set, thereby invalidating that
knowledge.
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IPL 2 also has significance for an entirely different reason: it is the highest
IPL at which page faults are permitted. If a page fault occurs above IPL 2, a
PGFIPLHI fatal bugcheck is issued. If there is any possibility that a page fault
can occur, because either the code that is executing or the data that it refer-
ences is pageable, then that code cannot execute above IPL 2. The converse of
this constraint is that any code that executes above IPL 2, and all data refer-
enced by such code, must be locked into memory in some way. Appendix B
shows some of the techniques that the VMS executive uses to dynamically
lock code or data into memory so that IPL can be elevated above IPL 2.

SERIALIZED ACCESS

The software interrupt mechanism described in Chapter 6 provides no
method for counting the number of requested software interrupts. The VMS
operating system uses a combination of software interrupts and doubly
linked lists to cause several requests for the same data structure or procedure
to be serialized. The most important example of this serialization in the oper-
ating system is the use of fork processes by device drivers. The I/O post-
processing software interrupt is a second example of serialized access.

Fork Processing

Fork processing is the technique that allows device drivers to lower IPL in a
manner consistent with the interrupt nesting scheme defined by the VAX
architecture. When a device driver receives control in response to a device
interrupt, it performs whatever steps are necessary to service the interrupt at
device IPL. For example, any device registers whose contents would be
destroyed by another interrupt must be read before dismissing the device
interrupt.

Usually, there is some processing that can be deferred. For DMA devices,
an interrupt signifies either completion of the operation or an error. The code
that distinguishes these two cases and performs error processing is usually
lengthy and to execute at device IPL for extended periods of time would slow
down the system. For non-DMA devices that do not interrupt at too rapid a
rate, interrupt processing can be deferred in favor of other more important
device servicing. '

- In either case, the driver signals that it wants to delay further processing
until the IPL in the system drops below a predetermined value, the fork IPL
associated with this driver. This signaling is accomplished by calling a rou-
tine in the executive that saves some minimal context including the address
of the driver routine to be executed. The context is saved in a data structure
called a fork block, shown in Figure 6-2. The fork block is then inserted at the
end of the fork queue for that IPL value. A software interrupt at the appropri-
ate IPL is requested. Chapter 6 describes fork processing in further detail.
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I/0 Postprocessing

Upon completion of an I/O request, there is a series of cleanup steps that
must be performed. The event flag associated with the request must be set. A
special kernel AST that will perform final cleanup in the context of the pro-
cess that initially issued the $QIO call must be queued to the process. This
cleanup must be completed for one I/O request before another is handled. In
other words, I/O postprocessing must be serialized.

This serialization is accomplished by performing the postprocessing opera-
tion as a software interrupt service routine (at IPL 4). When a request is recog-
nized as being complete, the I/O request packet is placed at the tail of the I/O
postprocessing queue (at global listhead IOC$GL_PSBL), and a software in-
terrupt at IPL 4 is requested.

When the device driver recognizes that an I/O request has completed (ei-
ther successfully or unsuccessfully), it calls routine IOC$REQCOM, which
makes the IPL 4 software interrupt request at fork IPL (IPL 8 to IPL 11), so the
postprocessing interrupt is deferred until the IPL drops below 4.

Some I/O requests do not require driver action. When the Queue 1/0O Re-
quest ($QIO) system service or device-specific FDT routines detect that the
request can be completed without driver intervention, or if they detect an
error, they call one of the routines EXE$FINISHIO or EXE$FINISHIOC.
These two routines execute at IPL 2, so the requested software interrupt is
taken immediately. ACPs and Files-11 XQP also place I/O request packets
into the postprocessing queue and request the IPL 4 software interrupt.

MUTUAL EXCLUSION SEMAPHORES (MUTEXES)

The synchronization techniques described so far all execute at elevated IPL,
thus blocking certain operations, such as a rescheduling request, from taking
place. However, in some situations requiring synchronization, elevated IPL is
an unacceptable technique. One reason elevated IPL might be unacceptable is
that the processor would have to remain at an elevated IPL for an indeter-
minately long time because of the structure of the data. For example, associ-
ating to a common event block cluster requires a search of the list of com-
mon event blocks (CEBs) for the specified CEB. This might be a lengthy
operation on a system with many CEBs. .

Furthermore, elevated IPL is unacceptable for synchronizing access to
pageable data. The memory management subsystem does not allow page
faults to occur when IPL is above 2. Thus, any pageable data structure cannot
be protected by elevating IPL to IPL§_SYNCH. For these two reasons, an-
other mechanism is required for controlling access to shared data structures.

The VMS operating system uses mutexes, mutual exclusion semaphores,
for this purpose. Mutexes are essentially flags that indicate whether a given
data structure is being examined or modified by one of a group of cooperating
processes. The implementation allows either multiple readers or one writer
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Table 2-2 List of Data Structures Protected by Mutexes

Data Structure

Logical name table

/O database?

Common event block list

Paged dynamic memory

Global section descriptor list

Shared memory global section descriptor table
Shared memory mailbox descriptor table
Not currently used

Line printer unit control block?

Not currently used

System intruder lists

Object rights block access control list*

Global Name of Mutex!

LNM$AL_MUTEX
IOC$GL_MUTEX
EXE$GL_CEBMTX
EXE$GL_PGDYNMTX
EXE$GL_GSDMTX
EXE$GL_SHMGSMTX
EXE$GL_SHMMBMTX
EXE$GL_ENQMTX
UCBS$L_LP_MUTEX
EXE$GL_ACLMTX
CIA$GL_MUTEX
ORB$L_ACL_MUTEX

'When a process is placed into an MWAIT state waiting for a mutex, the address of the
mutex is placed into the PCB$L_EFWM field of the PCB. The symbolic contents of
PCB$L_EFWM will probably remain the same for new releases, but the numeric contents
change. The numeric values are available from the system map, SYS$SYSTEM: SYS.MAP.

*This mutex is used by the Assign Channel and Allocate Device system services when
searching through the linked list of device data blocks and unit control blocks (UCBs) for a
device. It is also used whenever UCBs are added or deleted, for example, during the creation
of mailboxes and network devices. ‘

3The mutex associated with each line printer unit does not have a fixed location like the
other mutexes. As a field in the unit control block (UCB), its location and value depend on
where the UCB for that unit is allocated.

“The mutex associated with each object rights block (ORB) does not have a fixed location
like the other mutexes. As a field in the object rights block, its location and value depend on
where the ORB is allocated.

of a data structure. Table 2-2 lists those data structures in the system that are
protected by mutexes.

The mutex itself consists of a single longword that contains the number of
owners of the mutex (MTX$W_OWNCNT) in the low-order word and status
flags (MTX$W_STS) in the high-order word (see Figure 2-1). The owner count
begins at —1 so that a mutex with a zero in the low-order word has one
owner. The only flag currently implemented indicates whether a write opera-
tion is either in progress or pending for this mutex (MTX$V_WRT).

31 17 16 15 0

Status Ownership Count

Write-in-Progress or
Write-Pending Flag

Figure 2-1 Format of Mutual Exclusion Semaphore
(MUTEX)
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Locking a Mutex for Read Access

When a process wishes to gain read access to a data structure that is protected
by a mutex, it passes the address of that mutex to a routine called
SCHS$LOCKR (in module MUTEX). If there is no write operation either in
progress or pending, the owner count of this mutex (MTX$W_OWNCNT) is
incremented, the count of mutexes owned by this process (stored at offset
PCB$W_MTXCNT in the software PCB) is also incremented, and control is
passed back to the caller, unless this is the only mutex owned by this process
(mutex count equals 1).

If this mutex is the first the process has locked and if the process is not a
real-time process, its current and base priorities are saved in the PCB at off-
sets PCB$B_PRISAV and PCB$B_PRIBSAV and its priority is elevated to 16.
The process receives a boost to hasten its execution and use of the mutex.
The mutex is owned for as little time as possible to avoid blocking other
processes which require it. The check on the number of owned mutexes pre-
vents a process that gains ownership of two or more mutexes from receiving a
permanent priority elevation to 16.

Routine SCHSLOCKR always returns successfully in the sense that, if the
mutex is currently unavailable, the process is placed into a miscellaneous
wait state (MWAIT) until the mutex is available for the process. When the
process eventually gains ownership of the mutex, control is then passed back
to the process. IPL is set to IPL$ _ASTDEL (2) to prevent process deletion and
suspension while the mutex is owned by this process. This preventative step
must be taken because neither the Delete Process system service nor the
Suspend Process system service checks whether the target process owns any
mutexes. If the deletion or suspension were to succeed, the locked data struc-
ture would be lost to the system.

Locking a Mutex for Write Access

A process wishing to gain write access to a protected data structure passes the
address of the appropriate mutex to a routine called SCH$LOCKW (in mod-
ule MUTEX). This routine returns control to the caller with the mutex
locked for write access if the mutex is currently unowned. In addition, both
mutex counts (MTX$W_OWNCNT and PCB$W_MTXCNT) are incre-
mented, the process software priority is possibly altered, and IPL is set to 2.
An alternate entry point, SCHSLOCKNOWAIT, returns control to the caller
with RO<0> cleared (indicating failure) if the requested mutex is already
owned. For the regular entry point (SCH$LOCKW), if this mutex is owned,
the process is placed into the mutex wait state (MWAIT). However, the write
pending bit is set so that future requests for read access will also be denied. In
a sense, this scheme is placing requests for write access ahead of requests for
read access. However, all that this check really does is prevent a continuous
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stream of read accesses from keeping the mutex locked. When the mutex
count does go to —1 (no owners), it is declared available, and the highest
priority process waiting for the mutex is the one that will get first access to
the mutex, independent of whether that process is requesting a read or a
write access.

Mutex Wait State

When a process is placed into a mutex wait state, its stack is set up so that
the saved PC is the entry point of either the read-lock routine or the write-
lock routine. The PSL is adjusted so that the saved IPL is 2. The address of the
mutex that is being requested is placed into the software PCB at offset
PCB$L_EFWM. (Because the process is not waiting on an event flag, the field
is available for this purpose.] Table 2-2 lists the system global names of
mutexes whose addresses might be placed in PCBSL_EFWM.

Unlocking a Mutex

A process relinquishes ownership of a mutex by passing the address of the
mutex to be released to a routine called SCH§UNLOCK (also in module
MUTEX). This routine decrements the number of mutexes owned by this
process recorded in its PCB. If this process does not own any more mutexes
(PCB$W_MTXCNT contains zero), the saved base and current priorities (in
fields PCB$B_PRIBSAV and PCB$B_PRISAV) are established as the p: 2cess’s
new base and current priorities. If there is a computable resident process with
a higher priority than this process’s restored priority, a rescheduling interrupt
is requested. This situation is known as ““delayed preemption’ of the current
process.

SCH$UNLOCK also decrements the number of owners of this mutex
(MTX$W_OWNCNT). If the owner count of this mutex does not go to —1,
there are other outstanding owners of this mutex, so control is simply passed
back to the caller. ;

If the count does become —1, this value indicates that this mutex is cur-
rently unowned. If the write-in-progress bit is clear, this indicates that there
are no processes waiting on this mutex and control is passed back to the
caller. (A waiting writer would set this bit. A potential reader is only blocked
if there is a current or pending writer.) If there are other processes waiting for
this mutex, SCH$UNLOCK scans the MWAIT queue to locate each process
whose PCB$L_EFWM field contains the address of the unlocked mutex. For
each process SCH$UNLOCK finds, it reports the availability of the mutex by
invoking a scheduler routine. The scheduler routine changes the process’s
state to computable.

If the priority of any of the processes removed from the mutex wait state is
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greater than or equal to the priority of the current process, a rescheduling
pass will occur that will select the highest priority process for execution. As
previously noted, there is no difference between processes waiting for read
access or write access. The criterion that determines who will get first
chance at ownership of the mutex is software priority.

Resource Wait State

The routines that place a process into a resource wait state and make re-
sources available share some code with the mutex locking and unlocking
routines and will be briefly described here. Chapter 10 describes system re-
sources which processes allocate. \

When a process tries to acquire a resource that is unavailable, the resource-
allocating routine (for example, EXESALLOCBUF in the case of nonpaged
pool) dispatches to SCH$RWAIT, passing it the number of the unavailable
resource (in the case of nonpaged pool, RSN$_NPDYNMEM). The resource-
allocating routine must have already pushed a PSL onto the stack and raised
IPL to IPL$ _SYNCH.

SCH$RWAIT (in module MUTEX) stores the resource number (instead of a
mutex address) in PCB$L_EFWM and changes the process’s state to MWAIT.
(See Table 10-2 for a list of the resource names and numbers.) In addition,
SCH$RWAIT sets the bit corresponding to the resource number in the sys-
temwide resource wait mask SCH$GL_RESMASK. SCH$RWAIT then
branches to SCH$WAITL.

SCH$WAITL (in module SYSWAIT) saves the process’s context, inserts its
PCB into the MWAIT queue, and causes a new process to be selected for
execution. The PC and PSL saved in the waiting process’s hardware PCB are
determined by the caller of routine SCH$RWAIT.

When such a resource becomes available, the resource-deallocating routine
(for example, EXESDEANONPAGED) must call SCH$RAVAIL to ensure that
all processes waiting for the resource are made computable. SCH$RAVAIL (in
module MUTEX) clears the bit corresponding to the resource number in the

- resource mask. If the bit was previously clear, there are no waiters and

SCH$RAVAIL returns to its invoker. If the bit was previously set, there are
processes waiting on this resource. The same routine that frees processes
waiting on a mutex is entered at this point. Offset PCB$L_EFWM now con-
tains a resource number instead of a mutex address, but this difference is a
conceptual difference that is invisible to the code that is actually executing.

The MWAIT state queue is scanned for all processes whose PCB$L_EFWM

 field matches the number of the recently freed resource. All such processes

are made computable. If the new priority of any of these processes is larger
than or the same as the priority of the currently executing process, a resched-
uling interrupt is requested. In any event, all processes waiting for the now
available resource will compete for that resource based on software priority.
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VAX/VMS LOCK MANAGEMENT SYSTEM SERVICES

So far, most of the methods of synchronization described in this chapter have
required elevated IPL, execution in kernel access mode, or both. Though
these techniques are powerful and effective in synchronizing access to sys-
tem data structures, there are other system applications in which elevated
IPL or kernel mode access are not really necessary, desirable, or allowed {for
example, RMS).

The VAX/VMS lock management system services (or the lock manager)
provide synchronization tools that can be invoked from all access modes.
Furthermore, the lock manager is the fundamental VAXcluster-wide syn-
chronization primitive. Lock management system services are used by RMS,
the file system, job controller, device allocation, and Mount Utility to pro-
vide clusterwide synchronization. The use of the VAX/VMS lock manage-
ment system services is described fully in the VAX/VMS System Services
Reference Manual; Chapter 13 in this book describes the internal workings
of the lock manager on a nonclustered VMS system.
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Dynamic Memory

In this bright little package, now isn’t it odd?
You’ve a dime’s worth of something known only to God!

Edgar Albert Guest, The Package of Seeds

Some of the data structures described in this book are created when the sys-
tem is initialized; many others are created when they are needed and de-
stroyed when their useful life is finished. To store the data structures, virtual
memory must be allocated and deallocated in an orderly fashion.

The VMS operating system maintains a number of different areas for dy-
namic allocation of storage with different characteristics. This chapter de-
scribes the various areas of dynamic storage, their uses, and the algorithms
for allocation and deallocation of these areas.

DYNAMIC DATA STRUCTURES AND THEIR STORAGE AREAS

Almost all the VMS data structures that are created after system initializa-
tion are volatile, allocated on demand and deallocated when no longer
needed. These data structures have similarities of form (see Section 3.1.4),
although their memory requirements vary.

Memory requirements for dynamic data structures differ in a number of
ways:

* Pageability
Data structures accessed by code running at IPL 2 or below can be page-
able, whereas data structures accessed at higher IPLs cannot.
* Virtual location
Some data structures are local to one process, mapped in its per-process
address space; others must be mapped in system space, accessible to multi-
ple processes and to system context code. ‘
* Protection
Many dynamic data structures are created and modified only by kernel
mode code, but some data structures are accessed by outer modes.

Storage Areas for Dynamic Data Structures

VMS provides different storage areas to meet the memory requirements of
dynamic data structures. There are several “pools” of storage for variable
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Table 3-1 Comparison of Different Pool Areas

Pool Area

Nonpaged pool

LRP lookaside list
IRP lookaside list
SRP lookaside list

Paged pool

Process allocation region

KRP lookaside list

Protection

ERKW

ERKW

ERKW

ERKW

ERKW

UREW

URKW

Synchronization
Technique
Elevated IPL
None required
None required
None required

Mutex

Access mode

None required

Type of Allocation

List Quantum
SYSTEM SPACE

Variable 16 bytes

Fixed @IOC$GL_LRPSIZE
Fixed 208 bytes

Fixed @IOC$GL_SRPSIZE

Variable 16 bytes
PER-PROCESS SPACE
Variable 16 bytes

Fixed CTL$C_KRP_SIZE

Minimum
Request

16 bytes

@IOC$GL_LRPMIN

1+@IOC$GL_SRPSIZE

16 bytes

16 bytes

16 bytes

Nonapplicable

Characteristics

Nonpageable,
extendable

Nonpageable,
extendable

Nonpageable,
extendable

Nonpageable,
extendable

Pageable

Pageable,
extendable
into PO space

Pageable

ATOWapf ortIvuA (]
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length allocation: a nonpageable system space pool, a pageable system space
pool, a pageable per-process space pool, and a nonpageable shared memory
pool. In addition, “lookaside” lists of preformed fixed length packets enable
faster allocation and deallocation of the most frequently used sizes and types
of storage. These storage areas are summarized in Table 3-1 and described in
more detail in later sections of this chapter. One additional storage area, the
shared memory pool, is described in Chapter 14.

The next sections describe the basic methods for allocating and deallocat-
ing variable length storage and fixed length packets.

Used

Beginning of Pool Area
(filled in when system
is initialized)

A

Used

0

Address of First Free Block
(modified by allocation
. and deallocation routines)

Used

l«—) (Zero in pointer
signifies end of list)

Figure 3-1 Layout of Unused Areas in Variable Length
Memory Pools
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Table 3-2 Global Listheads for Each Pool Area
Pool Area Global Address of Pointer

Nonpaged pool EXE$GL_NONPAGED,
EXE$GL_NONPAGED+4,
EXE$GL_NONPAGED+8,
MMGS$GL_NPAGEDYN,
MMG$GL_NPAGNEXT

Large request packet lookaside list IOC$GL_LRPFL,
IOC$GL_LRPBL,
IOC$GL_LRPSPLIT,
MMGS$GL_LRPNEXT

/0 request packet lookaside list IOC$GL_IRPFL,
IOC$GL_IRPBL,
EXE$GL_SPLITADR,
MMGS$GL_IRPNEXT

Use of These Fields

Synchronization IPL for nonpaged pool allocation
Address of next (first) free block

Dummy size of zero for listhead to speed allocation
Address of beginning of nonpaged pool area

- Address of beginning of unexpanded pool area

Address of first free block

Address of last free block

Address of beginning of LRP area

Address of beginning of unexpanded LRP area
Address of first free block

Address of last free block

Address of beginning of IRP area

Address of beginning of unexpanded IRP area

Static or Dynamic?

Dynamic?
Dynamic
Static
Static
Dynamic
Dynamic
Dynamic
Static
Dynamic
Dynamic
Dynamic
Static
Dynamic

Ar1owrap orwnuf (g
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Table3-2 Global Listheads for Each Pool Area (continued)

Pool Area Global Address of Pointer

Small request packet lookaside list IOC$GL_SRPFL,
: IOC$GL_SRPBL,
IOC$GL_SRPSPLIT,
- MMG$GL_SRPNEXT
Paged pool EXE$GL_PAGED,
: EXE$GL_PAGED+4,
MMGS$GL_PAGEDYN
Process quota block lookaside list =~ EXE$GL_PQBFL,
‘ EXE$GL_PQBBL
Process allocation region CTL$GQ_ALLOCREG,
) CTL$GQ_ALLOCREG+4,
CTL$GQ_POALLOC,
‘ CTL$GQ_POALLOC+4
Kernel request packet lookaside list CTL$GL_KRPFL,
CTL$GL_KRPBL,
CTL$GL_KRP

Use of These Fields

Address of first free block
Address of last free block
Address of beginning of SRP area

~ Address of beginning of unexpanded SRP area
~ Address of next (first) free block

Dummy size of zero for listhead to speed allocation
Address of beginning of paged pool area

Address of first free block

Address of last free block

Address of next (first) free block

Dummy size of zero for listhead to speed allocation
Address of next (first) free block

Dummy size of zero for listhead to speed allocation

Address of first free block
Address of last free block
Address of beginning of area

Static or Dynamic?’

Dynamic
Dynamic
Static
Dynamic
Dynamic
Static
Static
Dynamic
Dynamic
Dynamic
Static
Dynamic
Static
Dynamic
Dynamic
Static-

!Static pointers are loaded at initialization time, and their contents do not chang

as pool is allocated, deallocated, and expanded.

>The synchronization IPL is changed to 31 by INIT and by certain device driver initialization routines but is reset to 11 and generally remains at 11.

e during the life of the system. The contents of dynamic pointers change

e
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Variable Length List Allocation Strategy

The variable length pools have a common structure. Each pool has a listhead
which contains the virtual address of the first unused block in the pool. The
first two longwords of each unused block in one of the pool areas are used to
describe the block. As illustrated in Figure 3-1, the first longword in a block
contains the virtual address of the next unused block in the list. The second
longword contains the size in bytes of the unused block. Each successive
unused block is found at a higher virtual address. Thus, each pool area forms
a singly linked memory ordered list. Table 3-2 lists the global names of the
variable length pool listheads.

Each variable length pool has its own set of allocation and deallocation
routines. All the allocation routines for the variable length pools round the
requested size up to the next multiple of 16 bytes to impose a granularity on
both the allocated and unused areas. Because all the pool areas are initially
page aligned, this rounding causes every structure allocated from the pool
areas to be at least octaword aligned.

The various allocation and deallocation routines call the lower-level rou-
tines EXESALLOCATE and EXE$DEALLOCATE, which support the struc-
ture common to the variable length lists. Each routine has two arguments:
the address of the pool listhead and the size of the data structure to be allo-
cated or deallocated. These general purpose routines are also used for several
other pools, including DCL’s symbol table space, the NETACP’s process
space pool, and the global page table. All the allocation and deallocation rou-
tines described in this chapter are in module MEMORYALC.

Allocation of Variable Length Pool. When the allocation routine
EXE$ALLOCATE is called, it searches from the beginning of the list until it
encounters the first unused block large enough to satisfy the request. If the fit
is exact, the allocation routine simply adjusts the previous pointer to point to
the next free block. If the fit is not exact, it subtracts the allocated size from
the original size of the block, puts the new size into the remainder of the
block, and adjusts the previous pointer to point to the remainder of the block.
That is, if the fit is not exact, the low address end of the block is allocated,
and the high address end is placed back on the list. The two possible alloca-
tion situations (exact and inexact fit) are illustrated in Figure 3-2.

Example of Allocation of Variable Length Pool. The first part of Figure 3-2
(Initial Condition) shows a section of paged pool and the pointer
MMGS$GL_PAGEDYN, which points to the beginning of paged pool, and
EXE$GL_PAGED, which points to the first available block of paged pool. In
this example, allocated blocks of memory are indicated only as the total
number of bytes being used, with no indication of the number and size of the
individual data structures within each block.
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Initial Condition 80 Bytes Allocated 48 Bytes Allocated

I:__ - EXESGL_PAGED From listhead From listhead
E— : MMGSGL__PAGEDYN

in Use in Use in Use

»Jf 176 Bytes ,[ 176 Bytes l ,[ 176 Bytes l

144 Bytes in Use
(96 +48 Bytes)

1 in Use 1

224 Bytes in Use J,
A (96+80+48 Bytes) -+

L

48 Bytes
in Use

48 Bytes -~
. 1
in Use

A\
AN}

P 208 Bytes  » ~ 208 Bytes ~ z 208 Bytes -~
’[ in Use T - 1 in Use i in Use 1
J’ > r e e re . rd
Figure 3-2 Examples of Allocation of Variable Length

Pool

Following the allocation of a block of 80 bytes (an exact fit), the structure of
the paged pool looks like the second part of Figure 3-2 (80 Bytes Allocated).
Note that the discrete portions of 96 bytes and 48 bytes in use and the 80
bytes that were allocated are now combined to show simply a 224-byte block
of paged pool in use.

The third part of Figure 3-2 (48 Bytes Allocated) shows the case where a
48-byte block was allocated from the paged pool structure shown in the first
part of the figure. The 48 bytes were taken from the first unused block large
enough to contain it. (Note that allocation is done from the low address end
of the unused block.) Because this allocation was not an exact fit, an unused
block, 32 bytes long, remains.
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Deallocation of Variable Length Pool. When a block is deallocated, it must be
placed back into the list in its proper place, according to its address.
EXE$DEALLOCATE follows the unused area pointers until it encounters an
address larger than the address of the block to be deallocated. If the de-
allocated block is adjacent to another unused block, the two blocks are
merged. into a single unused area.

This merging, or agglomeration, can occur at the end of the preceding un-
used block or at the beginning of the following block (or both). Because merg-
ing occurs automatically as a part of deallocation, there is no need for any
externally triggered cleanup routines.

Three sample deallocation situations, two of which illustrate merging, are
shown in Figure 3-3 and are described in Section 3.1.2.4.

Example of Deallocation of Variable Length Pool. The first part of Figure 3-3
(Initial Condition) shows the structure of an area of paged pool containing
logical name blocks for three logical names: ADAM, GREGORY, and
ROSAMUND. These three logical name blocks are bracketed by two unused
portions of paged pool, one 64 bytes long, the other 176 bytes long.

If the logical name ADAM is deleted, the structure of the pool is altered to
look like the structure shown in the second part of Figure 3-3 (ADAM De-
leted). Because the logical name block was adjacent to the high address end of
an unused block, the blocks are merged. The size of the deallocated block
is simply added to the size of the unused block. (No pointers need to be
adjusted.) ,

If the logical name GREGORY is deleted, the structure of the pool is
altered to look like the structure shown in the third part of Figure 3-3
(GREGORY Deleted). The pointer in the unused block of 64 bytes is altered
to point to the deallocated block; a new pointer and size longword are created
within the deallocated block.

The fourth part of Figure 3-3 [ROSAMUND Deleted) shows the case where
the logical name ROSAMUND is deleted. In this case, the deallocated block
is adjacent to the low address end of an unused block, so the blocks are
merged. The pointer to the next unused block that was previously in the
adjacent block is moved to the beginning of the newly deallocated block. The
following longword is loaded with the size of the merged block (240 bytes).

Fixed Length List Allocation Strategy

The fixed length lists have a common structure. Each is a doubly linked
queue with a listhead which points to the first and last unused block in the
list. A list of fixed length packets available for allocation is known as a
lookaside’ list. Figure 3-4 shows the form of a fixed length list.
Lookaside lists expedite the allocation and deallocation of the most com-
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Figure 3-3 Examples of Deallocation of Variable Length
Pool

monly used sizes and types of storage. In contrast to variable length list allo-
cation, fixed length allocation is very simple. There is no overhead of search-
ing for blocks of free memory of sufficient size to accommodate a specific
request. Instead the appropriate listhead is selected and a packet is allocated
from the front of the list through a simple REMQUE instruction. Deallocation
to the back of the list is done by an 1nsQUE instruction. Examples of alloca-
tion and deallocation are shown in Figure 3-4.
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Figure 3-4 Fixed Length List Allocation and
Deallocation

No additional synchronization of access to a lookaside list is required be-
yond that provided by the queue instructions.
Table 3-2 lists the global names of the fixed length pool listheads.

Dynamic Data Structures

A dynamic data structure, by convention, contains two self-describing fields:

« The size (in bytes) of the data structure in the word at offset 8
« The type code in a byte at offset 10

Data structures with a type code value equal to or larger than 96 also have a
one-byte subtype code at offset 11. The macro $DYNDEF in SYS-
$LIBRARY:LIB.MLB defines the possible values for the type and subtype
fields. The size, type, and subtype fields are defined in the third longword of
the data structure, leaving the first two longwords available to link the data
structure into a list. Figure 3-5 shows the standard dynamic data structure
format.

[SUBTYPE]] TYPE | SIZE “S1ZE

1 7

Long
Figure 3-5 Dynamic Data Structure Format
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The type field enables VMS to distinguish different data structures and to
confirm that a piece of dynamic storage contains the expected data structure
type. When a dynamic data structure is deallocated, the size field specifies
how much dynamic storage is being returned. At deallocation, a positive
value in the type field indicates a structure allocated from local memory, and
a negative indicates a structure allocated from shared memory.

The System Dump Analyzer (SDA) Utility uses the type and size fields to
produce a formatted display of a dynamic data structure and to determine the
portions of variable length pool that are in use.

NONPAGED DYNAMIC MEMORY REGIONS

Nonpaged dynamic memory contains data structures and code used by the
portions of the VMS operating system that are not procedure-based, such as
interrupt service routines and device drivers. These portions of the operating
system can use only system virtual address space and execute at elevated IPL,
requiring nonpaged dynamic memory rather than paged dynamic memory.

Nonpaged dynamic memory, more commonly known as nonpaged pool,
also contains data structures and code that are shared by several processes
and that must not be paged. Nonpageability is dictated by the constraint that
page faults are not permitted above IPL 2.

The protection on nonpaged pool is ERKW, allowing it to be read from
kernel and executive modes but written only from kernel mode.

Nonpaged pool is the most heavily used of the storage areas. It consists of a
variable length list and three lookaside lists. The lookaside lists provide for
the most frequently allocated nonpaged pool data structures. Nonpaged pool
is sometimes allocated explicitly from a lookaside list and sometimes allo-
cated implicitly from a lookaside list as the result of a call to the general
routine that allocates nonpaged pool. Section 3.2.2 discusses allocation in
detail.

Initialization of Nonpaged Pool Regions

The sizes of the variable nonpaged pool and the lookaside lists are deter-
mined by SYSBOOT parameters. Nonpaged pool is potentially extensible
during normal system operation. For each of the four regions of nonpaged
pool there are two SYSBOOT parameters, one to specify the initial size of the
region and another to specify its maximum size.

The size in bytes of the variable length region of nonpaged pool is con-
trolled by the SYSBOOT parameters NPAGEDYN and NPAGEVIR, both of
which are rounded down to an integral number of pages. During system ini-
tialization, sufficient contiguous system page table entries (SPTEs) are allo-
cated for the maximum size of the region, NPAGEVIR. Physical pages of
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memory are allocated for the initial size of the region, NPAGEDYN, and are
mapped using the first portion of allocated SPTEs. The remaining SPTEs are
left invalid. (PTEs are described in Chapter 14.)

During system operation, the failure of an attempt to allocate from the
variable nonpaged pool region results in an attempted expansion of the re-
gion, with physical page(s) allocated to fill in the next invalid SPTE(s). See
Section 3.2.4 for further details of pool expansion. The deallocation merge
strategy described in Section 3.2.3 requires that the newly extended nonpaged
dynamic region be virtually contiguous with the existing part and that the
four regions be adjacent. It is because of this restriction that the maximum
number of SPTEs are allocated contiguously for each region, even if some of
them are initially unused. -

The lookaside lists are allocated during system initialization in the same
manner as the variable length region. A portion of the nonpaged system space
following the main portion of pool is partitioned into three pieces. One piece
is reserved for the IRP lookaside list, one for the LRP list, and one for the SRP
list. Table 3-3 lists the SYSBOOT parameters relevant to each lookaside list.
The three pieces are then structured into a series of elements. Figure 3-6
shows the four regions of nonpaged pool. In each of the lists, the elements are
inserted into a list with the INSQUE instruction, resultmg in a doubly linked
list of fixed-size list elements.

The size of an IRP list element is determined by the symbol
IRP$C_LENGTH; in VMS Version 4, an IRP is 208 bytes.

The size of the elements in the SRP list is contained in the cell
IOC$GL_SRPSIZE, which is defined in module SYSCOMMON. This value
is determined from SYSBOOT parameter SRPSIZE. INIT rounds up SRPSIZE
to a multiple of 16.

The size of the elements in the LRP list is contained in the cell
IOC$GL_LRPSIZE, also defined in module SYSCOMMON. This value is
determined from SYSBOOT ' parameter LRPSIZE. SYSBOOT computes
IOC$GL_LRPSIZE by adding 76 to LRPSIZE and rounding up the sum to a
multiple of 16. The parameter LRPSIZE is intended to be the DECnet buffer
size, exclusive of a 76-byte internal buffer header. (Note that the output of
SHOW MEMORY displays the inclusive packet size.)

Table 3-3 SYSBOOT Parameters Controlling Lookaside List Sizes

List Type Size of Packet - Initial Count Maximum Count
SRP SRPSIZE SRPCOUNT SRPCOUNTV
IRP ' 208 IRPCOUNT IRPCOUNTV
LRP LRPSIZE + 76! LRPCOUNT LRPCOUNTV

The actual packet size is the sum of LRPSIZE and 76, rounded up to a multiple of 16.
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Allocation of Nonpaged Pool

There are a number of routines in module MEMORYALC that allocate
nonpaged pool. Some of these routines, such as EXESALLOCPCB or EXE$AL-
LOCTQE, allocate pool for a particular data structure, filling in its size and
type. Some routines, intended for use only within process context, condition-
ally place the process into resource wait, waiting for resource
RSN$_NPDYNMEM if pool is unavailable. (Chapter 10 discusses process
resource waits.) All of these routines invoke EXESALONONPAGED, the
general nonpaged pool allocation routine.

There are several instances in VMS of explicit allocation from a lookaside
list. When a routine such as the Queue I/O Request ($QIO) system service

.'MMG$GL__NPAGEDYN
Rest of
Nonpaged
Pool ) -~ NEXT —o | .EXE$GL__NONPAGED
SIZE
First
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Block
Room for Expansion of Variable List ““MMGSGL__NPAGNEXT
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Figure 3-6 Nonpaged Pool Regions
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Figure 3-7 Lookaside List Allocation Ranges

needs an I/0 request packet (IRP), it simply issues a REMQUE from the begin-
ning of this list (found through global label IOC$GL_IRPFL). Several other
system routines allocate IRPs this way. Only if the lookaside list is empty
(indicated by the V-bit set in the PSW following a rREMQUE) would the general
nonpaged pool allocation routine have to be called.

Similarly, the Enqueue Lock Request (SENQ) system service allocates pool
for lock blocks by removing an SRP from the lookaside list, located by the
global label IOC$GL_SRPFL. The SYSBOOT parameter SRPSIZE is con-
strained to be at least the size of a lock block. The $ENQ system service must
check, however, whether SRPSIZE is large enough to accommodate a re-

~ source block and, if it is not, call the general nonpaged allocation routine.

Because allocation and deallocation from a lookaside list are so much faster
than the general routines that allow any size block to ‘be allocated or de-
allocated, special checks are built into the general nonpaged pool allocation
routine to determine whether the requested block can be allocated from one
of the lookaside lists. These checks compare the request size to the lists’
upper and lower limits.

Figure 3-7 shows the size ranges for the lookaside lists. The ranges are
defined so that the majority of requests can be satisfied from one of the
lookaside lists.

Requests which must be allocated from the variable list are either

* Larger than an LRP, or
* Larger than an IRP but smaller than the parameter LRPMIN

The symbolic names in the figure are defined as follows:

Symbol Meaning
SRPSIZE IOC$GL_SRPSIZE, the parameter SRPSIZE rounded up to a
multiple of 16

IRPMIN IOC$GL_IRPMIN, the sum of IOC$GL_SRPSIZE and 1

IRPSIZE IRP$C_LENGTH rounded up to a multiple of 16, the
constant 208

LRPMIN IOC$GL_LRPMIN, parameter LRPMIN
LRPSIZE IOC$GL_LRPSIZE, the sum of parameter LRPSIZE and 76
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EXE$ALONONPAGED allocates nonpaged pool by the following steps:

1. It compares the requested size to the ranges just described to determine
which, if any, lookaside list it can use.

2. If none of the lookaside lists is appropriate, the pool must be allocated
from the variable length list.

3. If one of the lookaside lists is appropriate and the list is not empty, the
first packet is removed from the list and returned to the caller.

4. If one of the lookaside lists is appropriate but is empty, an attempt is made
to extend the list (see Section 3.2.4). If the list is extended, the allocation is
attempted again. If the lookaside list cannot be extended, the pool must be
allocated from the variable length list.

5. For variable length list allocation, EXESALONONPAGED rounds the allo-
cation size up to a multiple of 16 and calls the lower-level routine
EXE$ALLOCATE (described in Section 3.1.2).

EXESALONPAGVAR is a separate entry point to EXESALONONPAGED,
used to allocate pool explicitly from the variable length list. This entry point
should be used whenever multiple pieces of pool are allocated as a single
larger piece but deallocated in a piecemeal fashion. See Section 3.2.3 for more
information.

Deallocation of Nonpaged Pool

A consumer of nonpaged pool invokes EXESDEANONPAGED to deallocate
nonpaged pool to any of the four regions. When EXE$SDEANONPAGED is
called, it first checks whether the block was allocated from the main portion
of the pool or from one of the lookaside lists. The lookaside lists are divided
by the contents of the following global locations, beginning with the smaller
addresses:

IOC$GL_LRPSPLIT Boundary between the main part of pool and the
LRP list

EXE$GL._SPLITADR Boundary between the LRP and the IRP list
IOC$GL_SRPSPLIT Boundary between the IRP and the SRP list

These addresses were determined by INIT when the lookaside lists were
initialized. Figure 3-6 shows the relationship of the lookaside lists to the rest
of nonpaged pool.

EXE$DEANONPAGED determines the list to which the piece of pool is
being returned by the following steps:

1. The address of the block being deallocated is compared to the contents of
global location IOC$GL_SRPSPLIT. If the address is greater, the block
came from the SRP list.
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2. If the address was less than the contents of IOC$GL_SRPSPLIT, the ad-
dress is compared to the contents of EXE$GL._SPLITADR. If the address is
greater, the block came from the IRP list.

3. If the address was less than the contents of EXE§GL_SPLITADR, the ad
dress is compared to the contents of IOC$GL_LRPSPLIT. If the address is
greater, the block came from the LRP list.

4. If the address was less than the contents of IOC$GL_LRPSPLIT, the block
came from the main part of pool.

If the block was originally allocated from one of the lookaside lists, it is
returned there by inserting it at the end of the list with an INSQUE instruction.
The ends of the lookaside lists are indicated by the global labels
IOC$GL_SRPBL, IOC$GL_IRPBL, and IOC$GL_LRPBL. Note that by allo-
cating packets from one end of the list and putting them back at the other
end, a transaction history as long as the list itself is maintained. If the block
was originally allocated from the variable length list area, EXESDEANON-
PAGED calls EXE$DEALLOCATE, the lower-level routine described in Sec-
tion 3.1.2.

EXE$DEANONPAGED also calls SCH$RAVAIL to declare the availability
of nonpaged pool for any process that might be waiting for resource
RSN$_NPDYNMEM. The consequences of this declaration are discussed
briefly in Section 3.2.5 and at greater length in Chapter 10.

Deallocating a block back to a list based on the address of the block has an
important implication. Lookaside list corruption will result if a nonpaged
pool consumer deallocates part of a lookaside list packet. That is, VMS treats
all lookaside packets as indivisible. A partial packet deallocated to a
lookaside list eventually will be allocated as a whole packet, resulting in
double use of the same memory. The entry point EXESALONPAGVAR
should be used for allocating nonpaged pool that may be deallocated in a
piecemeal way. EXESALONPAGVAR always allocates from the variable
length list.

Expansion of Nonpaged Pool

Dynamic nonpaged pool expansion is the creation of additional nonpaged
pool as it is needed. At system initialization, SYSBOOT allocates enough
system virtual address space for the maximum size of each nonpaged pool
region, but it only allocates enough physical memory for the initial size of
each region. When an attempt to allocate nonpaged pool is unsuccessful, the
pool can be expanded by allocating more physical memory for it and altering
the system page table accordingly.

When routine EXESALONONPAGED fails to allocate nonpaged pool from
any of the four regions, it attempts to expand nonpaged pool by invoking the
routine EXE$EXTENDPOOL (in module MEMORYALC).

EXE$EXTENDPOOL examines each list {lookaside lists and variable
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list) in turn. If a list is empty and is not at its maximum size,
EXESEXTENDPOOL attempts to allocate a page of physical memory. First a
check is made to see if a physical page can be allocated without reducing the
number of physical pages available to the system below the minimum re-
quired. Expansion of pool must leave sufficient pages to accommodate the
sum of the maximum working set size, the modified list low limit, and the
free list low limit. If a page can be allocated, EXESEXTENDPOOL places its
page frame number (PFN] in the first invalid SPTE for that list, and sets the
valid bit. The new virtual page and any fragment from the previous virtual
page are formatted into packets of the appropriate size and placed on the list.
EXESEXTENDPOOL records the size and address of any fragment left from
the new page.

If EXESEXTENDPOOL is able to expand any of the nonpaged lists, it re-
ports that resource RSN$_NPDYNMEM is available for any waiting
processes. (See Chapter 10 for more information on scheduling and event
reporting.) ,

For proper synchronization of system databases, the resource availability
report and the allocation of physical memory must not be done from a thread
of execution running as the result of an interrupt above IPL$ - SYNCH. For
this reason, EXE$EXTENDPOOL examines the PSL to determine at what IPL
the system is running and whether the system is running on the interrupt
stack. If EXESEXTENDPOOL has been entered from an interrupt service rou-
tine running above IPL$_SYNCH, EXE$EXTENDPOOL creates an IPL 6 fork
process to expand the lists at some later time when IPL drops below 6 and
returns an allocation failure status to its invoker.

Nonpaged pool expansion enables automatic system tuning. The penalty
for setting an inadequate initial allocation size is the increased overhead in
allocating requests that cause expansion. An additional minor physical pen-
alty is that unnecessary PFN database is built for those physical pages that
are subsequently added to nonpaged pool as a result of expansion. The cost is
about 4 percent of the size of the page per added page.

The penalty for a maximum allocation that is too large is one SPTE for
each unused page, or less than 1 percent. If the maximum size of a lookaside
list is too small, system performance may be adversely affected when the
system is prevented from using the lookaside mechanism for pool requests.
If the maximum size of the variable length region is too small, processes
may be placed into the MWAIT state, waiting for nonpaged pool to become

available.

Nonpaged Pool Synchronization

Elevated IPL is used to serialize access to the nonpaged pool variable length
list. The IPL used is that stored in the longword immediately preceding the
pointer to the first unused block in the variable length list (see Table 3-2).
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The allocation routine for the nonpaged pool variable list raises IPL to the
value found here before proceeding. While the system is running, this long-
word usually contains an 11. The value of 11 was chosen because device
drivers running at fork level frequently allocate dynamic storage and IPL 11
represents the highest fork IPL currently used in the operating system. (An
implication of this synchronization IPL value is that device drivers must not
allocate nonpaged pool while executing at device IPL in response to a device
interrupt.)

During initialization, the contents of this longword are set to 31 because
the rest of the code in the system initialization routines (module INIT) exe-
cutes at IPL 31 to block all interrupts. INIT is described in detail in Chapter
25. Changing the contents of this longword avoids lowering IPL as a side
effect of allocating space from nonpaged pool. The value is reset to 11
after INIT has finished its allocation but before INIT passes control to the
scheduler.

The nonpaged pool allocation routines that run in process context raise IPL
to IPLS_SYNCH before invoking EXE$ALONONPAGED. If EXE$ALO-
NONPAGED fails to allocate the pool, these routines test PCB$V_
SSRWAIT in PCB$L_STS. If it is set, they place the process into resource
wait, waiting for RSN$ _NPDYNMEM. They run at IPL§_SYNCH to block
deallocation of pool and the accompanying report of resource availability be-
tween the time of the allocation failure and the time the process is actually
placed into a wait. .

IPL is also a consideration for deallocation of nonpaged pool, but for a dif-
ferent reason. Although nonpaged pool can be allocated from fork processes
running at IPL levels up to IPL 11, it may not be deallocated as a result of an
interrupt above IPL§_SYNCH. The reason for limiting the IPL is that
nonpaged pool is a systemwide resource that processes might be wait-
ing for. EXESDEANONPAGED notifies the scheduler that the resource
RSN$_NPDYNMEM is available. The scheduler in turn checks whether any
processes are waiting for the nonpaged pool resource. All these modifications
to the scheduler database must take place at IPL§_SYNCH, and the interrupt
nesting scheme requires that IPL never be lowered below the IPL value at
which the current interrupt occurred. This rule dictates that all pool be de-
allocated from a thread of execution running as the result of an IPL 8 or lower
interrupt.

Code executing as the result of an interrupt at IPL 9 or above deallo-
cates nonpaged pool through routine COM$DRVDEALMEM (in module
COMDRVSUB). If COM$DRVDEALMEM is called from IPL 8 or below, it
merely deallocates the pool, jumping to EXESDEANONPAGED. If, however,
COMS$DRVDEALMEM is called from above IPL 8, it transforms the block
that is to be deallocated into a fork block (see Figure 6-2), and requests an L
6 software interrupt. (Note that the block to be deallocated must be at least
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24 bytes, large enough for a fork block. If it is not, COM$DRVDEALMEM
issues a nonfatal bugcheck and returns to its invoker.) The code that executes
as the IPL 6 fork process (the saved PC in the fork block) simply issues a Jup
to EXESDEANONPAGED to deallocate the block. Because EXE$DEANON-
PAGED is entered at IPL 6, the synchronized access to the scheduler’s data-
base is preserved. (This technique is similar to the one used by device drivers
that need to interact with the scheduler by declaring ASTs. The attention
AST mechanism is briefly described in Chapter 2 and discussed in greater
detail in Chapter 7.)

By convention, process context code which allocates a nonpaged pool data
structure executes at IPL 2 or above as long as the data structure’s existence
is recorded solely in a temporary process location, such as in a register or on
the stack. Running at IPL 2 blocks AST delivery and prevents the possible
loss of the pool if the process were to be deleted.

Uses of Nonpaged Pool

Nonpaged pool serves many purposes. This section describes typical uses
of the nonpaged pool lists. Note, however, that nondefault choices for
SYSBOOT parameters LRPSIZE, LRPMIN, and SRPSIZE may result in differ-
ent usage.

The variable length list is used for allocating nonpaged pool that does not
fit the allocation constraints of the lookaside lists. Typically, device drivers
and the larger unit control blocks describing I/O device units are allocated
from the variable length list. Also, process control blocks (PCBs), which con-
tain process-related information that must remain resident, are allocated
from the variable length list. Nonpaged pool is also allocated during early
stages of system initialization. SYSBOOT loads several images into nonpaged
variable length pool. These include the system disk driver, terminal driver,
and CPU-dependent routines. The detailed use of nonpaged pool by the ini-
tialization routines is described in Chapter 25.

The LRP lookaside list is typically used by DECnet for receiving messages
from other nodes. On a system connected to a CI bus, CI datagrams, used to
provide best-effort message service among the nodes on the CI, may be allo-
cated from the LRP lookaside list. On a system with a relatively large value
for LRPSIZE, many loaded images, such as device drivers, may be allocated
from the LRP lookaside list rather than from the variable length list.

The IRP lookaside list is typically used for the following data structures:

* I/O and class driver request packets, which describe a particular I/O request
* Job information blocks, which contam the quotas and limits shared by
processes in a job

* Resource blocks, used by the lock management system services
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* Volume control blocks, which describe the state of a mounted disk or tape
volume

« File control blocks, which describe the state of an open file

¢ Unit control blocks, which describe the state of an I/O device unit

* Larger device driver buffered I/O buffers :

+ On a system with a CI bus, CI messages, used to provide highly reliable
communication among the nodes on the CI

The SRP lookaside list is typically used for the following data structures:

 Lock and resource blocks, used by the lock management system services

» Window control blocks, which contain the location of a file’s extents

» Timer queue elements, which describe time-dependent requests such as
Schedule Wakeup ($SCHDWK]) system service requests

* Smaller device driver buffered I/O buffers

* Interrupt dispatch and channel (controller) request blocks, which describe
the state of a device controller

PAGED POOL

Paged dynamic memory contains data structures that are used by multiple
processes but that are not required to be permanently memory resident. Its
protection is ERKW, allowing it to be read from kernel and executive modes
but written only from kernel mode.

During system initialization, SYSBOOT reserves system virtual address
space for paged pool, placing its starting address in MMG$GL_PAGEDYN.
The SYSBOOT parameter PAGEDYN specifies the size of this area in bytes.
Paged pool is created as a set of demand zero pages. System initialization code
running in the context of the swapper process initializes the pool as one
data structure encompassing the entire pool and places its address in
EXE$GL_PAGEDYN. That initialization incurs a page fault and thus re-
quires process context.

Process context kernel mode code calls the routine EXE§ALOPAGED to
allocate paged pool and EXE$DEAPAGED to deallocate paged pool. These
routines (all in module MEMORYALC) call the lower-level variable length
allocation and deallocation routines described in Section 3.1.2. :

If an allocation request cannot be satisfied, EXESALOPAGED returns to its
caller with a failure status. The caller may return an error, for example,
SS$ _INSFMEM, to the user program, or the caller may place the process into
resource wait, waiting for resource RSN$_PGDYNMEM.

Whenever paged pool is deallocated, EXESDEAPAGED calls SCH$RAVAIL
to declare the availability of paged pool for any waiting process. Chapter 10
describes process resource waits.

Paged pool requires little system overhead, one SPTE per page of pool. Be-
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cause paged pool is created as demand zero system page table entries (see
Chapter 14), it expands on demand through page faults.

Because this storage area is pageable, code which accesses it must run at
IPL 2 or below while accessing it. Elevated IPL, therefore, cannot be used for
synchronizing access to the paged pool list or to any data structures allocated
from it. A mutex called EXE$GL_PGDYNMTX serializes access to the paged
pool list. Both EXESALOPAGED and EXE$DEAPAGED lock this mutex for
write access.

By convention, process context code which allocates a paged pool data
structure executes at IPL 2 or above as long as the data structure’s existence
is recorded solely in a temporary process location, such as in a register or on
the stack. Running at IPL 2 blocks AST delivery and prevents the poss1ble
loss of the pool if the process were to be deleted.

The following data structures are located in the paged pool area:

¢ The shareable logical name tables and logical name blocks

» The Files-11 XQP ““I/O buffer cache,” which is used for data such as file
headers, index file bit map blocks, directory data file blocks, and quota file
data blocks

* 'Global section descriptors, whlch are used when a global section is mapped
or unmapped : :

* Mounted volume list entries, which associate a mounted volume name
with its corresponding logical name and unit control block address

* Access control list elements, which specify what access to an object is al-
lowed for different classes of users

¢ Data structures required by the Install Utility to describe known images

Any image that is installed has a known file entry created to describe it.

Some frequently accessed known images also have their image headers per-
manently resident in paged pool. These data structures are described in
more detail in Chapter 21.

* Process quota blocks (PQBs), which are used during process creation tempo-
rarily to store the quotas and limits of the new process

, PQBs, initially allocated from paged pool, are not deallocated back to the
paged pool list. Instead, they are queued to a lookaside list whose listhead is
at global label EXE$GL_PQBFL. Process creation code attempts to allocate a
PQB by removing an element from this queue, as a faster alternative to gen-
eral paged pool allocation.

PROCESS ALLOCATION REGION

The process allocation region contains variable length data structures that
are used only by a single process and are not required to be permanently
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memory resident. Its protection is set.to UREW, allowing executive and ker-
nel modes to write it and any access mode to read it.

The process allocation region consists of a P1 space variable length pool
and, with VMS Version 4, may include a PO space variable length pool as well.
The PO space allocation pool is useful only for image-specific data structures
that do not need to survive image exit. The P1 space pool can be used for both
image-specific data structures and data structures, such as logical name ta-
bles, that must survive the rundown of an image.

During process startup, EXE§PROCSTRT reserves P1 address space for
the process allocation region. SYSBOOT parameter CTLPAGES specifies the
number of pages in the P1 pool. There is no global pointer that locates the
beginning of the process allocation region. The routine EXE$PROCSTRT ini-
tializes the pool as one data structure, encompassing the whole pool, and
places its address in CTL$GQ_ALLOCREG. As pool is allocated and de-
allocated, the contents of CTL$GQ_ALLOCREG are modified to point to the
first available block.

Executive or kernel mode code running in process context calls
EXE$ALOP1PROC or EXESALOP1IMAG to allocate from the process alloca-
tion region and EXE$DEAPI1 to deallocate a data structure to the region.
These routines are in module MEMORYALC. When the data structure must
be allocated from the P1 pool, EXESALOPI1PROC is used. When the data
structure is image-specific, EXESALOPIIMAG is used.

Initially, both these routines call EXESALLOCATE with the address of
CTL$GQ_ALLOCREG. However, if the process allocation region reaches
a threshold of use specified by SYSBOOT parameter CTLIMGLIM,
EXE$ALOPIIMAG cannot allocate from P1 space. If the current image has
not been linked with the option NOPOBUFS, EXE$ALOP1IMAG creates a PO
process allocation region of at least 16 pages using the Expand Region
(SEXPREG) system service; EXE$ALOP1IMAG initializes it as a data
structure encompassing the entire region and places its address in
CTL$GQ_POALLOC. At image rundown, PO space is deleted and
CTL$GQ-_POALLOC is zeroed. If the current image has been linked with
NOPOBUEFS, the allocation fails and status SS$_INSFMEM is returned.

Both EXE§ALOP1IMAG and EXE$ALOP1PROC put the address of the ap-
propriate listhead in a register and call EXE$ALLOCATE to perform the vari-
able length allocation described in Section 3.1.2. The EXE$DEAPI routine
determines whether the block being deallocated is from the PO or P1 space
pool and calls EXESDEALLOCATE with the address of the appropriate
listhead.

There is no locking mechanism currently used for either the process alloca-
tion region or the process logical names found there. However, the allocation
routine executes in kernel mode at IPL 2, effectively blocking any other
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mainline or AST code from executing and perhaps attempting a simultaneous
allocation from the process allocation region.
The following data structures are located in the process allocation region:

« The process-private logical name tables and logical name blocks

* Data structures, called image control blocks, built by the image activator to
describe what images have been activated in the process

* Rights database identifier blocks, which contain RMS context (internal file
and stream identifiers) for the rights database file

A context block in which the Breakthrough ($BRKTHRU) system service
maintains status information as the service asynchronously broadcasts
messages to the terminals specified by the user

There is enough room in the process allocation region for privileged appli-
cation software to allocate reasonably sized process-specific data structures.

KRP LOOKASIDE LIST

VMS Version 4 adds a P1 space lookaside list for process-private kernel mode
data structures that are not required to be permanently memory resident.
The protection on this storage area is URKW, allowing it to be read from any
mode but modified only from kernel mode.

Virtual address space for this list is defined at assembly time of the SHELL
module, which defines the fixed part of P1 space. Space is defined based on
the two globals CTL§C_KRP_COUNT and CTL$C_KRP_SIZE, the number
of the KRP packets to create, and the size of a packet. The EXE§PROCSTRT
routine, in module PROCSTRT, initializes the list, forming packets and in-
serting them in the list at CTL§GL_KRPFL and CTL$GL _KRPBL.

A KRP packet is used as pageable storage, local to a kernel mode subrou-
tine. KRPs should be used only for temporary storage that is deallocated be-
fore the subroutine returns. The most common use of KRPs is to store an
equivalence name returned from a logical name translation. Formerly, space
was allocated on the kernel stack for this purpose, but the VMS Version 4
increase in size of equivalence names to 255 bytes made use of the kernel
stack impractical. '

Allocation and deallocation to this list is through 1NsQUE and REMQUE in-
structions. Both allocation and deallocation are always done from the front of
the list. There is no need for synchronization other than that provided by the
queue instructions. Because KRPs are used only for storage local to the execu-
tion of a procedure, a failure to allocate a KRP is very unexpected and indi-
cates a serious error rather than a temporary resource shortage. Kernel mode
code which is unsuccessful at allocating from this list thus generates the fatal
bugcheck KRPEMPTY.
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4.1

4.1.1

Condition Handling

““Would you tell me, please, which way I ought to go from
here?”

““That depends a good deal on where you want to get to,” said
the Cat.

Lewis Carroll, Alice’s Adventures in Wonderland

The VAX architecture defines a generalized uniform condition handling facil-
ity for two classes of conditions:

* Conditions detected and generated by hardware/microcode are called ex-
ceptions.

+ Conditions detected and generated by software are called software condi-
tions.

The VAX/VMS operating system provides this facility for users and also uses
the facility for its own purposes.

This chapter describes how VMS dispatches on exceptions and software
conditions to user-defined procedures called condition handlers. It also
briefly describes how VMS services exceptions which it handles itself.

OVERVIEW OF CONDITIONS

Overview of Exceptions

~ An exception is the CPU’s response to an anomaly or error it encounters

while executing an instruction, for example, a divisor of zero in a pIvL
instruction. The hardware/microcode responds by changing the flow of in-
struction execution to an exception service routine pointed to by an
anomaly-specific longword vector in the system control block (SCB).

The VAX architecture defines approximately 20 different exceptions, each
with its own SCB vector and exception service routine. The exceptions de-
fined by the VAX architecture can be divided into two categories based on
whether VMS allows user-defined procedures to handle the exception.

VMS does not allow user-defined procedures to handle

* Inner mode exceptions indicating fatal software or hardware errors (for ex-
ample, machine checks)

* Exceptions used by VMS in the course of normal system operations (page
faults, CHMK, CHME, and subset instruction emulation exceptions)

69



Condition Handling

4.1.2

4.2

4.2.1

70

These exceptions are always handled by exception service routines that are
part of VMS.

VMS allows all other exceptions to be handled by a user-supplied proce-
dure, if any is provided. Characteristically these exceptions affect only the
current process. A user-defined procedure to handle an exception is called a
condition handler.

When an exception occurs for which VMS allows condition handling, VMS
performs a search algorithm on a list of possible condition handlers. VMS
calls any condition handlers it finds.

The condition handler can examine the parameters of the exception and
either take some action (possibly to remove or bypass the exception) or resig-
nal it to another condition handler. If the condition handler resignals, VMS
continues its search.

Overview of Software Conditions

A software condition is an error or anomaly detected by an image and treated
in a particular way. When the software detects such an error, it transforms it
into a software condition by calling one of two Run-Time Library procedures.
By calling LIB§SIGNAL (if the image is to continue) or LIB§STOP (if the
image is to be aborted), the same VMS condition handler search used for
exceptions is invoked.

OVERVIEW OF THE VAX CONDITION HANDLING FACILITY

The VAX condition handling facility defines the declaration of a condition
handler, the search for a condition handler, and the responses available to a
condition handler. The condition handling facility provides that software
conditions (errors detected by software rather than by CPU microcode) be
directed to the same condition handlers as exceptions. Thus, application soft-
ware can centralize its handling of errors, both hardware and software.

The term “condition” refers to an exception or software condition on
which VMS dispatches to user-defined condition handlers. VMS calls a condi-
tion handler with an argument, sometimes called a signal or signal name,
which identifies what type of condition occurred.

The VAX/VMS System Services Reference Manual and the VAX/VMS Run-
Time Library Routines Reference Manual describe the declaration and cod-
ing of condition handlers.

Goals of the VAX Condition Handling Facility

A major goal of the VAX condition handling facility is to provide an easy-to-
use, general purpose mechanism with the operating system so that applica-
tion programs and other layered products, such as compilers, can use this



422

4.2 Overview of the VAX Condition Handling Facility

mechanism rather than inventing their own application-specific tools. Other
explicit and implicit goals of the VAX condition handling facility are the
following:

* The condition handling facility should be included in the base system ar-
chitecture so that it is available as a part of the base system and not as part
of some software component. The space reserved for condition handler ad-
dresses in the first longword of the call frame accomplishes this goal.

By including the handler specification in the procedure call frame, condi-
tion handling is made an integral part of a procedure rather than merely a
global facility within a process. Including the handler specification as part
of the call frame contributes to the general goal of modular procedures and
allows condition handlers to be nested. The nested inner handlers can ei-
ther service a detected exception or pass it along to some outer handler in
the calling hierarchy.

* Some languages, such as BASIC and PL/I, have signaling and error handling
as part of the language specification. These languages can use the general
mechanism rather than inventing their own procedures.

There should be little or no cost to procedures that do not establish han-
dlers. Further, a procedure that does establish a handler should incur little
overhead for establishing it, with the expense in time being incurred when
an error actually occurs.

As far as the user or application programmer is concerned, there should be
no dlfference in the appearance of exceptions and software conditions.

Features of the VAX Condition Handling Facility

Some of the features of the VAX condition handling facility show how these
goals were attained. Others show the general desire to produce an easy-to-use

but general condition handling mechanism. Features of the VAX condition

handling facility include the following:

* A condition handler has three options available to it. The handler can fix
the condition (continuing). If the handler cannot fix the condition, it passes
the condition on to the next handler in the calling hierarchy (resignaling).
The handler can alter the flow of control (unwinding the call stack).

* Because a condition handler is itself a procedure, it has its own call frame
with its own slot for a condition handler address. This condition handler
address gives a handler the ability to establish its own handler to field errors
that it might cause. : :

* Space and time overhead was minimized by using only a single longword
per procedure activation for handler address storage. There is no cost in

- time for a procedure that does not establish a handler. A procedure that

does establish a handler can do so with a single Movax instruction. No time
is spent looking for a condition handler until a signal is actually generated.
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» The mechanism is designed to work even if a condition handler is written
in a language that does not produce reentrant code. Thus, if a condition
handler written in FORTRAN generated an error, that error would not be
reported to the same handler.

In fact, the special actions that are taken if multiple signals are active has
a second benefit, namely that no condition handler has to worry about er-
rors that it generates, because a handler can never be called in response to
its own signals. ;

 Uniform dispatching for exceptions and software conditions is accom-
plished by providing the same dispatcher for both. Software conditions are
generated by calling either LIB§SIGNAL or LIB$STOP, procedures in the
Run-Time Library. These procedures jump to SYS§SRCHANDLER, a global
location in the system service vectors. SYSSSRCHANDLER transfers
control to the executive routine EXE$SRCHANDLER (in module
EXCEPTION). Exception service routines also transfer control to
EXE$SRCHANDLER. While the initial execution of these two mechanisms

 differs slightly, reflecting their different initial conditions, they eventually
transfer to the same routine so that the information reported to condition
handlers is independent of the initial detection mechanism.

» By making condition handling a part of a procedure, high-level languages
can establish handlers that can examine a given signal and determine
whether the signal was generated as a part of that language’s support li-
brary. If so, the handler can attempt to fix the error in the manner defined
by the language. If not, the handler passes the signal along to procedures
further up the call stack.

EXCEPTIONS

The primary differences between exceptions and software conditions are the
mechanism that generates them and the initial state of the stack that con-
tains the condition parameters.

Exception Mechanism

Exceptions are anomalies detected by the hardware/microcode. When an ex-
ception is detected, the processor may change access mode and stack. It
pushes the exception PC and PSL (and possible exception-specific parame-
ters) onto the stack on which the exception is to be serviced. After the excep-
tion information has been pushed onto the stack, control is passed to an
exception-specific service routine whose address is stored in a vector in the
SCB. Figure 4-1 shows the SCB and Figure 5-1 shows the format of an SCB
vector.

The stack on which the exception is serviced depends on the access mode
in which the exception occurred, whether the CPU was previously executing
on the interrupt stack and what type of exception occurred.
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Exception Vectors

The System Control Block
Base Register (SCBB)

Processor Fault contains the physical
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aligned System Control
Block (SCB).

Software Interrupt
Vectors

Clock and Console
Vectors

e EXE$GL__SCB

The system virtual address
of the SCB is stored

CPU-Specific ,
peci in global location EXESGL__SCB.

Adapter and
Device Interrupts

Figure 4-1 System Control Block

In general, a VAX CPU uses the low two bits of the SCB vector to deter-
mine on which stack the exception is serviced. Table 4-1 summarizes the
stack choices resulting from the architectural mechanisms and VMS SCB
vector definitions. Its first column lists the exception name. The second col-
umn specifies the access mode in which the exception occurred. The third
column specifies whether the interrupt stack is in use at the time of the
exception. The fourth column shows the stack on which the exception is
serviced.

The exception PC that the processor pushes depends on the nature of the
exception, that is, whether the exception is a fault, trap, or abort:

* An exception that is a fault (see Table 4-2) causes the PC of the faulting
instruction to be pushed onto the stack. When a fault is dismissed with an
REI instruction, the faulting instruction executes again.

* An exception that is a trap (see Table 4-2) pushes the PC of the next instruc-
tion onto the destination stack. An instruction that causes a trap does not
reexecute when the exception is dismissed with an REI instruction.

* An exception that is an abort causes the PC of the next instruction to be
pushed onto the stack. Aborts are not restartable. Exceptions that are aborts
include kernel stack not valid, some machine check codes, and some re-
served operand exceptions.
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Table 4-1 Selection of Exception Stack

Exception Name PSL<PRVMOD> PSL<IS> Stack
Machine check Any Oorl ISP
Kernel stack not valid K 0 ISP
Subset exception (MicroVAX| Any Oorl Same!
Change mode to x Any 0 xSPp?
Change mode to x K 1 Halt?
All others U, S, E 0 KSP
All others K 0 KSP
All others K 1 ISp*

!If the exception was a VAX subset instruction emulation exception, then the current
stack is used. Section 4.3.5 briefly describes these exceptions.

2The stack used is the destination of the CHMx instruction. Note, however, that a CHMx
instruction issued from an inner access mode in an attempt to reach a less privileged (outer)
access mode will not have the desired effect. The mode indicated by the instruction is
minimized with the current access mode to determine the actual access mode that will be
used. The exception is generated through the indicated SCB vector, but the final access
mode is unchanged. In other words, as illustrated in Figure 1-4, the CHMx instructions can
only reach equal or more privileged access modes.

3Execution of a CHMx instruction while the CPU is running on the interrupt stack is
prohibited by the VAX architecture and results in a CPU halt.

4VMS does not expect exceptions to occur when it is operating on the interrupt stack. If
an exception other than subset instruction emulation occurs on the interrupt stack, the
exception dispatcher generates an INVEXCEPTN fatal bugcheck (see Chapter 8).

The VAX exception vectors are listed in Table 4-2. Most of the exceptions
that are listed in this table are handled in a uniform way by the operating
system. The actions that the VMS executive takes in response to these ex-
ceptions are the subject of most of this chapter. Some of the exceptions,
however, result in special action on the part of the operating system. These
exceptions, noted in Table 4-2, are discussed in the next section.

Exceptions That the VMS Executive Treats in a Special Way

Although the operating system provides uniform handling of most excep-
tions generated by users, several possible exceptions are used as entry points
into privileged system procedures. Other exceptions can only be acted upon
by the executive. It makes no sense for these procedures to pass information
about the exceptions along to users’ programs.

+ The machine check exception is a processor-specific condition that may or
may not be recoverable. Machine checks are serviced on the interrupt stack
at IPL 31. The machine check exception service routine generates a fatal
bugcheck in response to a nonrecoverable kernel or executive mode ma-
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Table 4-2 Exception Vectors in the System Control Block

Vector Extra
Offset Exception Name . Parameters Type
4 Machine check! 0 Abort/Fault
8 Kernel stack not valid! 0 Abort
16 Reserved/privileged instruction® 0 Fault
20 Customer reserved instruction 0 Fault
24 Reserved operand 0 Abort/Fault
28 Reserved addressing mode 0 Fault
32 Access violation 2 Fault
36 Translation not valid! 2 Fault -
40 Trace pending 0 Fault
44 BPT instruction 0 Fault
48 Compatibility mode 1 Abort/Fault
52 Arithmetic 1 Fault/Trap
64 CHMK! 1 Trap
68 CHME! 1 Trap
72 - CHMS 1 Trap
76 CHMU 1 Trap
200 Subset instruction emulation’ 10 Trap
204 Suspended instruction emulation! 0 - Trap

These exceptions result in special action on the part of the operating system.

chine check. Nonrecoverable machine checks in supervisor and user modes
are reported through the normal exception dispatch method. Chapter 8 dis-
cusses the machine check exception service routine and the bugcheck
mechanism. ;
A kernel-stack-not-valid exception indicates that the kernel stack was not
valid while the processor was pushing information onto the stack during
the initiation of an exception or interrupt. This exception is serviced on the
interrupt stack at IPL 31. Its exception service routine generates a
KRNLSTAKNYV fatal bugcheck. (See Chapter 8 for more information on
bugchecks.)
A reserved/privileged instruction exception can indicate an attempt to exe-
cute an opcode not supported by the CPU. This can occur, for example,
when a floating-point instruction is attempted on a CPU without
microcode for that type of floating-point format. Software emulation of
floating-point instructions is invoked through a condition handler for this
exception.

Two other opcodes not supported by the CPU are reserved for use by VMS
as bugchecks. The service routine for this exception must therefore test
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whether it was entered as the result of executing one of the bugcheck op-
codes. If one of the bugcheck opcodes was executed, the service routine
transfers control to the bugcheck routine, EXE$BUG_CHECK. The han-
dling of bugchecks is described in Chapter 8.

+ The translation-not-valid exception is a signal that a reference was made to
a virtual address that is not currently mapped to physical memory. This
exception is the entry path into the VMS paging facility. Its service routine,
the page fault handler, is discussed in detail in Chapter 15.

+ The CHMK and CHME exceptions are the mechanisms used by RMS ser-
vices and system services to reach a more privileged access mode. The dis-
patching scheme for these services is described in Chapter 9. These two
exceptions are paths into the operating system that allow nonprivileged
users to reach an inner access mode in a controlled fashion.

+ The VAX subset instruction emulation exceptions assist VMS in emulating
string and decimal instructions not present in MicroVAX hardware. When
the MicroVAX CPU encounters a string or decimal opcode not present in its
instruction set, it evaluates the operands and pushes exception parameters
on the stack describing the opcode and its operands. The CPU then dis-
patches through the SCB to the service routine, VAX$EMULATE (in
module [EMULAT]VAXEMUL). The second emulation vector is used to dis-
patch back into the instruction emulation code at VAX$EMULATE_FPD,
following an exception which the emulation code reflects back to the user.

For more details on these exceptions, see the MicroVAX I CPU Technical
Description. ‘

Other Exceptions

The rest of the exceptions are handled uniformly by their exception service
routines. These exceptions are all reported to condition handlers established
by the user or by the system, rather than resulting in special system action
such as occurs following a change-mode-to-kernel exception or a translation-
not-valid fault (page fault).

For all exceptions that will eventually be reported to condition handlers,
the CPU has pushed a PC/PSL pair onto the destination stack. In addition,
from zero to two exception-specific parameters are pushed onto the destina-
tion stack (see Table 4-2). Finally, the CPU passes control to the exception
service routine whose address VMS placed into the SCB when the system was
initialized.

Initial Action of Exception Service Routines

These exception service routines all perform approximately the same action.
The exception name (of the form SS$_exception-name) and the total number
of exception parameters (from the exception name to the saved PSL inclusive)
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are pushed onto the stack. The destination stack now contains a list, called
the signal array, which is a VAX argument list (see Figure 4-2). The excep-
tions that the operating system handles in this uniform way, their names,
and the total number of signal array elements, are listed in Table 4-3.

After such a service routine has built this array, it jumps to EXE$EXCEP-
TION (in module EXCEPTION). EXE$EXCEPTION tests whether the excep-
tion occurred in process context (see Section 4.7.3.1). If it did not, EXE$-
EXCEPTION generates the fatal bugcheck INVEXCPTN. Otherwise,
EXE$EXCEPTION builds a second argument list, which is called the mecha-
nism array.

The mechanism array, which is pictured in Figure 4-4, serves the following
purposes:

* It records the values of RO and R1 at the time of the exception (the proce-
dure calling standard prohibits their being saved in a procedure entry mask).
» It records the progress made in the search for a condition handler.

All exceptions (except for CHME, CHMS, CHMU, and the subset instruc-
tion emulation exceptions) are initially reported on the kernel stack (as-
suming the processor is not already on the interrupt stack). The exception
reporting mechanism assumes that the kernel stack is valid. The decision
to use the kernel stack was made to avoid the case of attempting to report
an exception on, for example, the user stack, only to find that the user
stack is corrupted in some way (invalid or otherwise inaccessible), result-
ing in another exception. If a kernel-stack-not-valid exception is generated
while reporting an exception, the operating system generates a fatal
bugcheck.

N
N is the number of longwords from
Pushed N .
by software SS$__exception-name to the exception
SS$__exception-name ’ PSL. It ranges from 3 to 5.

From O to 2
Exception-Specific
Parameters (Table 4-2)

A\

“\N\

A\
\\

Arguments are pushed onto the kernel
Pushed stack except for CHMS and CHMU
Exception PC by hardware exceptions where the supervisor or
user stack is used.

Exception PSL

Figure 4-2 Signal Array Built by CPU and Exception
Routines
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Table 4-3 Exceptions That Use the Dispatcher in Module EXCEPTION

Exception Name

Access violation

Arithmetic
exception

AST delivery
stack fault

BPT instruction
Change mode to
supervisor
Change mode to
user
Compatibility
mode
Debug signal
Machine check
Customer
reserved
instruction
Reserved
privileged
instruction

Signal Name
SS$_ACCVIO -

(See Table 4-4)

SS$_ASTFLT

SS$_BREAK
S§S$_CMODSUPR

S§S$_CMODUSER
S§S$_COMPAT

SS$_DEBUG
SS$_MCHECK
§8$_OPCCUS

S$S$_OPCDEC

Dispatch
Notes!

O

@

® ® ® ©

Signal
Array
Size

5

Extra Parameters in
Signal Array®

Signal(2) = Reason mask

Signal(3) = Inaccessible
virtual address

None?

Signal(2) = SP value at fault

Signal(3) = AST parameter of
failed AST

Signal(4) = PC at AST delivery
interrupt?

Signal(5) = PSL at AST delivery
interrupt

Signal(6) = PC to which AST
would have been delivered

Signal(7) = PSL at which AST
would have been delivered

Signal(2) = Change mode code
Signal(2) = Change mode code

Signal(2) = Compatibility
exception code

None®
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Table 4-3 Exceptions That Use the Dispatcher in Module EXCEPTION (continued)

Signal
Dispatch Array Extra Parameters in

Exception Name Signal Name Notes? Size Signal Array?
Page fault SS$_PAGRDERR @b 5 Signal(2) = Reason mask

read error Signal(3) = Inaccessible

virtual address

Reserved SS$_RADRMOD 3

addressing

mode ‘
Reserved operand SS$_ROPRAND 3
System service SS$_SSFAIL @ 4 Signal(2) = System service

failure final status
Trace pending SS$_TBIT 3

'These numbers refer to list items in Section 4.3.5.
2Additional parameters in the signal array are represented in the following way:

Signal(0) = N Number of additional longwords in signal array
Signal(1) Exception name

Signal(2) First additional parameter

Signal(3) Second additional parameter

Signal(N — 1) Exception PC

Signal(N) Exception PSL

3The arithmetic exception has no extra parameters, despite the fact that the hardware pushes an exception
code onto the kernel stack. VMS modifies this hardware code into an exception-specific exception name (see
Table 4-4) of the form Signal(1) = 8 » code + SS$_ ARTRES.

*The AST delivery code exchanges the interrupt PC/PSL pair and the PC/PSL to which the AST would
have been delivered.

SMachine check exceptions that are reported to a process do not have any extra parameters in the signal
array. The machine check parameters have been examined, written to the error log, and discarded by the
machine check handler (see Chapter 8).
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However, the exception must eventually be reported back to the access
mode in which the exception occurred. EXE$EXCEPTION creates space on
the stack of the mode in which the exception occurred. The exception param-
eter lists are then copied to that stack, where they will become the argument
list that is passed to condition handlers.

EXE$EXCEPTION then passes control to routine EXE§SRCHANDLER, in
module EXCEPTION, which locates any condition handlers that have been
established for the access mode of the exception. Its search method and the
list of information passed to condition handlers is described in Section 4.5.

‘More Special Cases in Exception Dispatching

Although the procedure previously described is a reasonable approximation
to the operation of the exception service routines in the operating system,
there are detailed differences that occur in the dispatching of several excep-
tions that deserve special mention. The following notes refer to Table 4-3:

(D User stack overflow is detected by the hardware as an access violation at
the low address end of P1 space. The access violation exception service
routine tests whether the inaccessible virtual address is at the low end of
P1 space. If it is, additional virtual address space is created below the stack
and the exception dismissed. Thus, the user stack expands automatically
and transparently. User and system condition handlers are notified about
such an exception only if the stack expansion is unsuccessful.

(@ There are ten possible arithmetic exceptions that can occur. They are dis-
tinguished in the hardware by different exception parameters. However,
the exception service routine does not simply push a generic exception
name onto the stack, resulting in a four parameter signal array. Rather, the
exception parameter is used by the exception service routine to fashion a
unique exception name for each of the possible arithmetic exceptions. The
exception parameters and their associated signal names are listed in Table
4-4, '

(® There are several conditions listed in Table 4-3 that are detected by soft-
ware rather than by hardware. However, these software conditions are not
generated by LIB§SIGNAL or LIB§STOP. Rather, they are detected by the
executive, and control is passed to the same routines that are used for
dispatching exceptions. The conditions are dispatched through the exe-
cutive because they are typically detected in kernel mode but must be
reported back to some other access mode. The code to accomplish this
access mode switch is contained in EXCEPTION. The conditions that fall
into this category are system service failure, page fault read error, insuffi-
cient stack space while attempting to deliver an asynchronous system trap
(AST), software-detected access violation, and the signal SS$_DEBUG.
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Table 4-4 Signal Names for Arithmetic Exceptions

Code Pushed Resulting Exception

Exception Type by CPU Reported by VMS

TRAPS
Integer overflow! 1 SS$_INTOVF
Integer divide by zero 2 SS$_INTDIV
Floating overflow? 3 SS$_FLTOVE
Floating/Decimal 4 SS$_FLTDIV

divide by zero? .

Floating underflow?’ 5 $S$_FLTUND
Decimal overflow! 6 SS$_DECOVF
Subscript range ; 7 SS$_SUBRNG

FAULTS
Floating overflow 8 SS$_FLTOVF_F
Floating divide by zero 9 - SS$_FLTDIV_F
Floating underflow 10 SS$_FLTUND_F

'Integer overflow enable and decimal overflow enable bits in the PSW can be altered ei-
ther directly or through the procedure entry mask.

2The three floating point traps can only occur on VAX-11/780s earlier than microcode
revision (rev) level 7.

3 The floating underflow enable bit in the PSW can only be altered directly. There is no
corresponding bit in the procedure entry mask.

(@ The SS$_SSFAIL condition is reported when a process has enabled
signaling of system service failures through the Set System Service Fail-
ure Mode ($SETSFM) system service and a system or RMS service
returns unsuccessfully with a status of either STS$K_ERROR or
STS$K_SEVERE. The CHMK and CHME exception service routines,
the “change mode dispatchers,” push information about the error on the
stack of the service execution and transfer control to EXE$SSFAIL (in
module EXCEPTION).

® The SS$_PAGRDERR condition is reported when a process incurs a
page fault for a page on which a read error occurred in response to a
previous fault for the same page. Information about the page fault that
led to the condition is already on the stack. The translation-not-valid
service routine transfers control to EXE$PAGRDERR (in module
EXCEPTION)). :

(©The SS$_ASTELT condition is reported when AST delivery code detects
an inaccessible stack while attempting to deliver an AST to a pro-
cess. The AST delivery interrupt service routine pushes information
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about the error on the AST access mode stack and transfers control to
EXE$ASTFLT (in module EXCEPTION].

(@ Most access violations are exceptions detected by the microcode. In
addition, however, the translation-not-valid exception service rou-
tine can generate an access violation. If it detects a process faulting a
page in the process header of another process, then it transfers to
EXE$ACVIOLAT (in module EXCEPTION), the access violation ex-
ception service routine. (Information about the error is already
on the current stack.) This is a very unusual situation, typically
the result of a software failure in executive or kernel mode code.

(©The signal SS$_DEBUG is generated by either the DCL or MCR com-
mand language interpreter (CLI) in response to a DEBUG command
while an image exists in an interrupted state. The DEBUG command
processor pushes the PC and PSL of the interrupted image, the condition
name (SS$_DEBUG), and the size of the signal array (3) onto the super-
visor stack and jumps to routine EXE$REFLECT (in module
EXCEPTION).

A CLI uses this mechanism for the DEBUG signal rather than simply
calling LIB$SIGNAL, because the DEBUG command is issued from su-
pervisor mode but the condition has to be reported back to user mode.
EXE$REFLECT can accomplish this access mode switch, whereas
LIB$SIGNAL and LIB$STOP have no corresponding function.

(@ The exception dispatching for the CHMS and CHMU exceptions and com-

patibility mode exceptions can be short-circuited by use of the Declare
Change Mode or Compatibility Mode Handler ({DCLCMH) system ser-
vice. The $DCLCMH system service enables a user to establish a per-
process change-mode-to-supervisor, change-mode-to-user, or compatibil-
ity mode handler. This service fills the locations CTL$GL_CMSUPR,
CTL$GL_CMUSER, or CTL$GL_COMPAT, respectively, in the Pl
pointer page with the address of the user-written change mode or compati-
bility handler.

When the exception service routine for the CHMS or CHMU exception
finds nonzero contents in the associated longword in P1 space, it transfers
control to the routine whose address is stored in that location with the
exception stack (supervisor or user) in exactly the same state it was in
following the exception. That is, the operand of the change mode instruc-
tion (the change mode code) is on the top of the stack and the exception PC
and exception PSL occupy the next two longwords.

The DCL command language interpreter uses the $DCLCMH service to
create a special CHMS handler. The use of the CHMS handler is briefly
described in Chapter 23. The job controller uses a CHMU handler for its
processing of error messages.
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4.4 Software Conditions

The exception service routine for compatibility mode exceptions trans-
fers control to the user-declared compatibility mode handler (if one was
declared) with the user stack in the same state it was in before the compat-
ibility mode exception occurred. That is, no parameters are passed to the
compatibility mode handler on the user stack. The compatibility mode
code, exception PC and PSL, and contents of RO through R6 are saved in
the first ten longwords of the compatibility mode context page in P1 space
at global location CTL§AL_CMCNTX.

(® The reserved instruction fault is generated whenever an unrecognized op-
code is detected by the instruction decoder. The same exception is gener-
ated when a privileged instruction is executed from other than kernel
mode.

VMS uses this fault as a path into the operating system crash code called
the bugcheck mechanism. Opcode FF, followed by FE or FD, tells the re-
served instruction exception service routine that the exception is actually
a bugcheck. Control is passed to the bugcheck routine that is described in
Chapter 8.

- SOFTWARE CONDITIONS

One of the goals of the design of the VAX architecture was to have a common
condition handling facility for both exceptions and software conditions. The
dispatching for exceptions (and for the errors described in Section 4.3.5) is
performed by the routines in the executive module EXCEPTION. The Run-
Time Library procedures, LIBSSIGNAL and LIB$STOP, provide a similar ca-
pability to any user of a VAX/VMS system.

Passing Status from a Procedure

There are usually two methods available for a procedure to indicate to its
caller whether it completed successfully. One method is to indicate a return
status in RO. The other is the signaling mechanism. The signaling mecha-
nism employs a call to the Run-Time Library procedure LIB$SIGNAL or
LIB$STOP to initiate a sequence of events exactly like those that occur in
response to an exception. One of the choices in the design of a modular proce-
dure is the method for reporting exceptional conditions back to the caller.

There are two reasons why signaling may be preferable to returning com-
pletion status. In some procedures, such as the mathematics procedures in
the Run-Time Library, RO is already used for another purpose, namely the
return of a function value, and is therefore unavailable for error return status.
In this case, the procedure must use the signaling mechanism to indicate
exceptional conditions, such as an attempt to take the square root of a nega-
tive number. ‘
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The second common use of signaling occurs in an application that is using
an indeterminate number of procedure calls to perform some action, such as
a recursive procedure that parses a command line, where the use of a return
status is often cumbersome and difficult to code. In this case, the VAX signal-
ing mechanism provides a graceful way not only to indicate that an error has
occurred but also to return control (through SUNWIND) to a known alter-
nate return point in the calling hierarchy.

Initial Operation of LIB$SIGNAL and LIB$STOP

A procedure calls LIB§SIGNAL or LIB§STOP with the name of the condition
to be signaled and whatever additional parameters are to be passed to the
condition handlers that were established by the user and the system.
LIB$STOP is an alternate entry point to LIB§SIGNAL. (This chapter refers to
the combined procedures as “LIB$SIGNAL/STOP.”) LIB$SIGNAL and
LIB$STOP differ in whether normal execution may be resumed after the con-
dition handler for the signaled error returns. Use of LIB§SIGNAL enables the
program to continue if the condition handler returns SS$_CONTINUE. Use
of LIB$STOP does not. The two entry points store different values in a stack
flag tested by the code to which a condition handler returns.

The state of the stack following a call to either of these procedures is pic-
tured in Figure 4-3.

Before LIB§SIGNAL/STOP begins its search for condition handlers, it re-
moves the call frame (and possibly the argument list) from the stack. Remov-
ing the call frame causes the stack to appear almost exactly the same to
LIB$SIGNAL/STOP as it does to the routines in EXCEPTION following an
exception (see Figure 4-3). After building the exception argument list,
LIB$SIGNAL/STOP jumps to EXE$SRCHANDLER (in module EXCEP-
TION) to search for condition handlers. (In fact, LIB§SIGNAL/STOP jumps to
SYS$SRCHANDLER in the system services vector pages, and then
SYS$SRCHANDLER jumps to EXE$SRCHANDLER. The indirection gives
the Run-Time Library a constant address to get to the routine in EXCEP-
TION.) The search for condition handlers takes place on the stack of the
caller of LIB§SIGNAL/STOP.

UNIFORM CONDITION DISPATCHING

Once information concerning the condition has been pushed onto the stack,
the differences between exceptions and software conditions are no longer
important. In the following discussion, the operation of condition dispatch-
ing is discussed in general terms and explicit mention of EXCEPTION or
LIB$SIGNAL/STOP is only made where they depart from each other in their
operation.



G8

State of the stack immediately
after the CALLS to LIB$SIGNAL

0 = No condition handler

Register Save | Saved PSW
Mask, etc. @

(If CALLG instead of CALLS,

then the argument list is copied
from elsewhere to the signal
array. The rest of the call frame
is discarded in the same fashion.)

AN

The call frame.is discarded before
handlers are called.

Saved PSW = low 16
bits of PSL in signal array

@ Saved AP—AP

@ Saved FP—FP

@ Saved PC—signal array

M is the size of the
Saved AP Call N "
@ frame for N @ argument list.
LIB$SIGNAL  * N is the size of the
Saved FP @ or LIBSSTOP | yd signal array (N = M+2).
/" Exit from LIB$SIGNAL with_ "
4
Saved PC @ );’\ /, REI and not F:El/,/
. R __—=""" The argument list is
;; 0...3 Stack Alignment AN % \\/, shifted up 8 bytes
Bytes VD NN to make room for the
\\‘90;0 AN PC/PSL pair so
@ M N & \\ that hardware and
AN ((_,,/, N software signal arrays
\\ *’/,)o \\Iook the same.
32-bit Status Code \ ’eo,, N
(Signal Name) \\ ", \\
%,
N s\
Argument fist \\%@, N
> passed to AN O,%
Additional Arguments LIBSSIGNAL \\ o,
(if any) Passed | | oruBssTOP N\ Yo,
;F to LIBSSIGNAL -~ ,>\ 2
or LIB$STOP " N
S

~4—————— Value of SP before ———————»

call and push
of argument list

Figure 4-3 Removal of Call Frame by LIB§SIGNAL/STOP

State of the stack after
LIB$SIGNAL has removed
the call frame

Mechanism array
will go here

Signal/Stop code

1 = LIB$SIGNAL; 2 =LIB$STOP

OL

32-bit Status Code
(Signal Name)

Additional Arguments
(if any) Passed
to LIB$SIGNAL
or LIB$STOP

\YXT

PC of Instruction
Following CALLx

PSL that Existed
Before CALLx

Signal
array
passed to
condition
handlers

Suryoivdsiq uonipuo) WIOiuf) G'p



Condition Handling

2
Address of _
Signal Array
Address of
Mechanism Array
4 =
These two longwords are FP of Establisher Frame
used and modified by
handler search procedure. Depth Argument
Because the VAX calling Saved RO
standard dictates that av Condition handlers can pass
RO and R1 are not saved status back to mainline code
across calls, they must be Saved R1 by modifying saved RO (and R1).
preserved in some other way.
Signal/Stop Code
1 =LIB$SIGNAL; 2 = LIB$STOP.
e <
Software condition gener- N Argument count (N) is the
ated by call to LIB§SIGNAL number of longwords in a signal
or LIB$STOP. The argument . . array (N= 3).
list is passed by call to < Exception or Signal Name
LIB$SIGNAL or LIB$STOP. N
The PC and PSL are added Additional exception parameters
before handlers are called. Pt pushed by hardware or > H .
. 2 Y =~ ardware exception parameters are
See Figure 4-3. adﬁ:g‘;g:;:g‘:meﬂ?;gfgg to pushed initially onto the kernel stack
g or > by hardware and copied to the
. . exception stack by software. The
Exception PC or PC following N
exception name and argument count
call to LIBSSIGNAL or LIBSSTOP are added by software before handlers
are called.
Exception PSL
Value of SP before
exception

Figure 4-4 Signal and Mechanism Arrays

Before the search for a condition handler begins, EXE$SRCHANDLER
builds a second data structure on the stack called the mechanism array. The
address of the mechanism array and the address of the signal array are the two
arguments that are passed to any condition handlers called by
EXE$SRCHANDLER (see Figure 4-4).

4.5.1 Establishing a Condition Handler

VMS provides two different methods for establishing condition handlers:

+ One method uses the stack associated with each access mode. Each proce-
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dure call frame includes a longword to contain the address of a condition
handler associated with that frame. Figure 4-3 illustrates a call frame.

» The second method uses software vectors, set aside in the control region
{P1 space) for each of the four access modes. Vectored handlers do not pos-
sess the modular properties associated with call frame handlers and are
intended primarily for debuggers and performance monitors.

Call frame handlers are established by placing the address of the handler in
the first longword of the currently active call frame. Thus, in assembly lan-
guage, call frame handlers can be established with a single instruction:

MOVAB new-handler, (FP)

Because direct access to the call frame is generally not available to high-
level language programmers, LIBSESTABLISH, the Run-Time Library proce-
dure, can be called in the following way to accomplish the same result:

old-handler = LIB$ESTABLISH (new-handler)

Condition handlers are removed by clearing the first longword of the cur-
rent call frame, as in the following assembly language instruction:

CLRL (FP)

The Run-Time Library procedure LIBSREVERT removes the condition han-
dler established by LIBSESTABLISH.

Software-vectored condition handlers are established and removed with
the Set Exception Vector ($SETEXV) system service, which simply loads the
address of the specified handler into the specified software vector, located in
the P1 pointer page.

The Search for a Condition Handler

At this point in the dispatch sequence, the signal and mechanism arrays have
been set up on the stack of the access mode to which the condition will
be reported. The establisher frame argument in the mechanism array (see
Figure 4-4) will be used by the condition handler search routine
EXE$SRCHANDLER to indicate how far along the search has gone. The
depth argument in the mechanism array not only serves as useful informa-
tion to condition handlers that wish to unwind but also allows the search
procedure to distinguish call frame handlers (nonnegative depth) from soft-
ware-vectored condition handlers (negative depth).

Primary and Secondary Exception Vectors. EXESSRCHANDLER begins the
search for a condition handler with the primary vector of the access mode in
which the exception occurred. If the vector contains the address of a condi-
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tion handler (any nonzero contents), the handler is called with a depth argu-
ment of —2 (third longword in mechanism array, Figure 4-4). If that handler
resignals or if none exists, the same step is performed for the secondary vec-

_tor, with a depth argument of —1.

Call Frame Condition Handlers. If the search is to continue (no handler yet
passed back a status of SS§_CONTINUE), EXE$SRCHANDLER examines
the contents of the current call frame. If the first longword in the current call

frame is nonzero, that handler is called next. If no handler is found there or if

that handler resignals, the previous call frame is examined by using the saved
frame pointer in the current call frame (see Figure 4-5). As each handler is
called, the depth longword in the mechanism array is set to the number of
frames that have already been examined for a handler.

EXE$SRCHANDLER continues the search until some handler passes back
a status code of SS$_CONTINUE or until a saved frame pointer is found
whose value is not within the bounds of that access mode’s stack. An out-of-
range frame pointer might, for example, point to the previous mode stack
following a call to a system service. Also, a saved frame pointer value may be
out of range as a result of stack corruption. A saved frame pointer value of
zero indicates the end of the call frame chain. When EXE$SRCHANDLER
receives a return status of SS§_CONTINUE (any code with the low bit of RO
set will do), it cleans off the stack, restores RO and R1 from the mechanism
array, and dismisses the condition by issuing an RET, using the saved PC and
PSL that formed the last two elements of the signal array.

Note that EXE§SRCHANDLER passes control back with an REI instruc-
tion, even if the condition was caused by a call to LIB§SIGNAL/STOP.
LIB$SIGNAL/STOP discards the call frame set up when it was called.
That is, LIB§SIGNAL/STOP modifies its stack to look just like the stack
used by EXCEPTION (see Figure 4-3).

Last Chance Condition Handler. If all handlers resignal, the search termi-
nates when a saved frame pointer of zero is located. EXESSRCHANDLER
then calls with a depth argument of —3 the handler whose address is stored in
the last chance vector. (This handler is also called in the event that any errors
occur while searching the stack for the existence of condition handlers.) The
usual handler found in the last chance vector is the “catch-all”” condition
handler established as part of image initiation. The action of this system-
supplied handler is described at the end of this chapter.

If the last chance handler returns (its status is ignored) or the last chance
vector is empty, EXESSRCHANDLER indicates that no handler was found.
This notification is performed by a procedure called EXE$EXCMSG (see
Chapter 29) in the executive. Its two input parameters are an ASCII string
containing message text and the argument list that was passed to any condi-
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tion handlers. Following the call to EXE$EXCMSG, EXE$SRCHANDLER
invokes the $EXIT system service with a status indicating either that no

handler was found or that a bad stack was detected while searching for a .

condition handler.

Multiple Active Signals

If an exception occurs in a condition handler or in some procedure called by a
condition handler, a situation called multiple active signals is reached. To
avoid an infinite loop of exceptions, EXE§SRCHANDLER modifies its search
algorithm so that those frames searched while servicing the first condition
are skipped while servicing the second condition.

For this skipping to work correctly, call frames of condition handlers must
be uniquely recognizable. The frames are made unique by always calling the
condition handlers from a standard call site, located in the system service
vector area.

Common Call Site for Condition Handlers. Before the dispatch to the handler
occurs, EXE$SRCHANDLER sets up the stack to contain the signal and
mechanism arrays and the handler argument list (see Figure 4-4). It loads the
handler address into R1 and passes control to the common dispatch site with
the following instruction:

JSB  @#SYS$CALL_HANDL

The code located at SYS$SCALL_HANDL simply calls the procedure whose
address is stored in R1 and returns to its caller with an rsB.

SYS$CALL_HANDL::
CALLG 4(SP),(R1)
RSB

The call instruction leaves the return address SYSSCALL_HANDL + 4,
the address of the rsB instruction, in its call frame. Thus, the unique identify-
ing characteristic of a condition handler is the address SYSSCALL_HANDL
+ 4 in the saved PC of its call frame. This signature is not only used by the
search procedure but also by the Unwind Call Stack (SUNWIND) system
service, as described in the following section.

Example of Multiple Active Signals. The modified search procedure can best
be illustrated through an example as shown in Figures 4-5 and 4-6. Figure 4-5
shows the stack after Procedure C, called from B, which is called from A, has
generated signal S. We are assuming that the primary and secondary condi-
tion handlers (if they exist) have already resignaled. Condition handler CH
also resignaled.




®

Signal and
mechanism
arrays for
signal T
generated by
procedure Y

®

Call frame for
procedure Y

®

Call frame for
procedure X

®

Call frame for
procedure BH

4.5 Uniform Condition Dispatching

O

Signal Array

| 2

Mechanism Array—|
Establisher FP , 4 :j

&

Depth =3

RO

R1

Signal/Stop Code
T

I N

Name of Signal T

L )
2~ Other Parameters -

Exception PC in Y

Exception PSL

A

YH -

Saved FP o

Direction of
stack growth

Return PC in X

XH

|

To call frame for
procedure A
in Figure 4-5

Saved FP o

Return PC in BH

RSM l

Saved FP o

BHH -

Dispatcher Call Site

Saved registers and
- stack alignment

AN

by register save
mask (RSM) in
call frame BH

Return PC from JSB

®

bytes indicated :F

®

To call frame for
procedure C

@ in Figure 4-5

Figure 4-6 Modified Search with Multiple Active

Signals

91



Condition Handling

92

(®Procedure A calls Procedure B, which calls Procedure C.

(@ Procedure C generates signal S.

(® The search procedure modifies the depth argument and establisher frame
argument.

If handler CH resignals, then the depth argument is 1 when BH is called.

(@ The call frame for handler BH is located (at lower virtual addresses) on top
of the signal and mechanism arrays for signal S (see Figure 4-6). (The only
intervening items are the saved registers and stack alignment bytes indi-
cated by the register save mask in the upper word of the second longword
of the call frame for handler BH.) The saved frame pointer in the call frame
for BH points to the frame for Procedure C.

(®)Handler BH now calls Procedure X, which calls Procedure Y (see Figure
4-6).

(®Procedure Y generates signal T. The desired sequence of frames to be
examined is frame Y, frame X, frame BH, and then frame A. Frames B
and C should be skipped because they were examined while servicing
condition S.

(@ EXE$SRCHANDLER proceeds in its normal fashion. The primary and sec-
ondary vectors are examined first (no skipping here). Then frames Y, X, and
BH are examined, resulting in handlers YH, XH, and BHH being called in
turn. Let us assume that all these handlers resignal. After handler BHH
returns to EXE$SRCHANDLER with a code of SS$_RESIGNAL,
EXE$SRCHANDLER notes that this is the frame of a condition handler,
because its saved PC is SYSSCALL_HANDL + 4 (see Figure 4-6).

(® The skipping is accomplished by locating the frame that established this

handler. The address of that frame is located in the mechanism array for
signal S.

To locate the mechanism array for signal S, the value of SP before the
call to BH must be calculated, using the register save mask and stack align-
ment bits in the call frame.

(® One extra longword, the return PC from the JsB to SYS$CALL_HANDL,
must be skipped to locate the argument list (and thus the mechanism
array) for signal S.

@ Because the frame pointed to by the mechanism array element has already
been searched, the next frame examined by the search procedure is the
frame pointed to by the saved frame pointer in the call frame of Procedure
B which, in this case, is the frame for Procedure A. The depths that are
passed to handlers as a result of the modified search are 0 for YH, 1 for XH,
2 for BHH, and 3 for AH.

@ The frame for the search procedure or for any of the handlers YH, XH,
BHH, and AH when they are called is located on top of the signal and
mechanism arrays for signal T (at lower virtual addresses). (One example
is shown in Figure 4-8, which illustrates the operation of SUNWIND.)



4.6

4.6.1

4.6.2

4.6 Condition Handler Action

CONDITION HANDLER ACTION

A condition handler has several options available to it:

* It can fix the condition and allow execution to continue at the interrupted
point in the program.

* It can pass the condition along to another handler by resignaling.

* It can also allow execution to resume at any arbitrary place in the calling
hierarchy by unwinding a number of frames from the call stack.

Continue or Resignal

A handler first determines the nature of the condition by examining the sig-
nal name in the signal array (see Figure 4-4). If the handler determines that it
is not capabl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>