
Distributed Systems

Digital Technical Journal
Digital Equipment Corporation

Number9
June 1989

Cover Design
The diverse resources of a distributed system and their physical
separation are represented on our cover by a city's widespread
and varied geography. just as the areas of a city are made acces
sible by its highway system, so too are the distributed system's
resources interconnected and made accessible by the network
and its services.

The cover was designed by Barbara Grzeslo of the Graphic
Design Department.

Editor
Jane C. Blake

Managing Editor
Richard W. Beane

Production Staff
Production Editor- Helen L. Patterson
Typographer - Rebecca A. Bombach
Designer- Patrick E. Conte
Illustrator- Deborah Keeley

Advisory Board
Samuel H. Fuller, Chairman
Robert M. Glorioso
John W. McCredie
Mahendra R. Patel
F. Grant Saviers
William D. Strecker
Victor A. Vyssotsky

The Digital Technical journal is published by Digital
Equipment Corporation, 146 Main Street, Maynard,
Massachusetts 01754.

Changes of address should be sent to Digital Equipment
Corporation, attention: List Maintenance, 10 Forbes Road,
Northboro, MA 01532. Please include the address label
with changes marked.

Comments on the content of any paper are welcomed.
Write to the editor at Mail Stop MLOl-3jB68 at the
published-by address. Comments can also be sent
on the ENET to RDVA.X::DIAKE or on the ARPANET to
DIAKE%RDVA.X.DEC@DECWRL.

Copyright© 1989 Digital Equipment Corporation.
Copying without fee is permitted provided that such
copies are made for use in educational institutions by
faculty members and are not distributed for commercial
advantage. Abstracting with credit of Digital Equipment
Corporation's authorship is permitted. Requests for other
copies for a fee may be made to Digital Press of Digital
Equipment Corporation. All rights reserved.

The information in this journal is subject to change with
out notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that
may appear in this document.

ISSN 0898-901X

Documentation Number EY-Cl79E-DP

The following are trademarks of Digital Equipment
Corporation: ALL-IN· I, DECjCMS, DECmail, DEC/MMS, DECnet,
DECnet-DOS, DECnet-Rainbow, DECnetjSNA, DECnet-ULTRIX,
DECnet-VAX, DECrouter, DECserver, DECserver 200,
DECserver 500, DELNI, DEQNA, Digital, the Digital logo,
EDT, L AN Bridge, L AN Traffic Monitor, MAilbus, Message
Router, MicroVAX, MicroVAX 11, MicroVAX 3000, PDP-11(70,
RA, RA81, RD53, RD54, RSX, SA482, ThinWire, UlTRIX,
UlTRIX-32m, UlTRIX-32w, VAX, VAX C, VAXcluster, VAX
DECjTest Manager, VAXELN, VAXmate, VAX Notes, VAX SPM,
VAXstation 2000, VAXfVMS, VAX VTX, VAX 8200, VAX 8700,
VAX 8800, VMS, VT, WPS.

DASIC is a trademark of Dartmouth College.

IDM and IDM PROFS are registered trademarks of International
Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Microsoft and MS-DOS are registered trademarks of
Microsoft Corporation.

SAS is a registered trademark of SAS Institute, Inc.

UNIX is a registered trademark of American Telephone
and Telegraph Company.

Book production was done by Digital's Educational Services
Media Communications Group in Bedford, MA.

I Contents

7 Foreword
Butler Lampson

9 Development of the VAX Distributed Name Service
Sally J Martin ,Janet M. McCann, and David R. Oran

Distributed Systems

16 Design and Implementation of the VAX Distributed File Service
William G. Nichols and Joel S. Emer

29 Remote System Management in Network Environments
David M. Griffin and Brad C. Johnson

37 The Evolution of the MAILbus
Peter 0. Mierswa

44 VAXjVMS Services for MS-DOS
Alan Abrahams

51 The WAVE Tools Base for Protocol Testing
Peter G. Viscarola and Jeffrey E. Watkins

61 Peiformance Evaluation of Distributed Applications and Services in the
DECnet Environment
Eugene Finkelstein and Richard A. Grawin

78 Measurement and Analysis Techniques for DEC net Products
Vi jay G. D'Silva and Ruei-Hsin Hsiao

87 Modeling and Analysis of the DECnetjSN A Gateway
John P. Morency, Richard P. Pitkin, Ramasamy Jesuraj, and Ambrose C. Kwong

I Editor's Introduction

Jane C. Blake
Editor

The network produ cts featured i n this issue of the
Digital Technical journal a llow system resources to
be shared throughout the network. Made up of differ
em hardware systems, software systems, and many
applications, the network is perceived by users as
one system - a distributed system. Performance in
this environment is critica l ; therefore this issue also
includes several papers about methods and tools
developed by Digital's engineers to evaluate product
and system performance .

A d istributed system's coherence depends largely
on the ability to identify and locate resou rces. In the
opening paper, janet McCann, Sally Martin, and Dave
Oran describe the VAX Distributed Name Service
product, which provides a globally accessi ble
directory of ne twork resources. The authors give
overviews of the architecture and implementation,
and review the design deci sions made to ensure that
the service is fast, robust, and scales up as the net
work grows.

The files on the network are among its most va lu
able resources. Building on VAX DNS, VAX Distributed
File Service gives users common access to files
located on the network . Wick Nichols and Joe l Emer
discuss DFS design options and performance analyses,
and present detail s of the DFS implementation .

Managing the variety of systems that reside on a
network can be a complex task. However, as Dave
Griffin and Brad Johnson explain, the nenvork itself
can be used to expedite certain system management
activities. They relate how Remote System Manager
facilitates, from a central point, software distribu-

2

tion , file backu p, and system administrative tasks for
numerous clients.

The next paper is about a set of products whose his
tory extends back to the early 1970s. Peter Mierswa
traces the development of the MNLbus family, which
supports message exchange across a multivendor
environment . A significant theme in the produ cts'
history is Digital's early commitment to standards
for the exchange of e lectronic mail and messages.

Alan Abrahams then describes VAXjVMS Services
for MS-DOS This product seamlessly integrates the
remote VAXjVMS file system into the MS-DOS envi
ronment. Alan discusses the file server and disk
server designs, and a service that a l lows personal
computers to be booted over the network.

The next paper is not about a nenvork product
but instead describes a reusable development tool,
ca lled WAVE, for testing sophisticated protOcols.
Peter Viscarola and Jeff Watkins present an overview
of the script language and give an example of a WAVE
based test tool developed for DECnet routing layer
prorocols.

The final three papers address the methods devel
oped for the essential work of eva luating distributed
system product performance. Gene Finkelstein and
Richard Grawin describe a new methodology for
examining system-level performance in the DECnet
environment . With case studies, they demonstrate
the util ity of this approach for product design and
capacity planning. Next Vijay D'Silva and Ruei-Hsin
Hsiao fo cus on the evaluation of individual product
implementations. The authors outline key perfor
mance metrics and then describe the methods applied
in the testing and analysis of the DFS and DNS prod
ucts. In the closing paper, john Morency, Richard
Pitkin, Ramasamy Jesuraj, and Ambrose Kwong
describe a simu lation model of the DECnetjSNA
Gateway product, a model u sed primarily for capac
ity planning. The authors a lso discuss tools u sed to
develop the model and the means ro test its validity.

I thank Mary Ellen Lewandowski of the Networks
and Communications Group for her help in preparing
this issue.

Biographies

Alan Abrahams A principal software engineer, Alan Abrahams is a member of

the Personal Computer Systems Group. He is currently a network architect respon

sible for integrating Microsoft's MS·NET and LANmanager into Digital's Personal

Computer Systems Architecture (PCSA). Since joining Digital in 1981, he has

been involved in the design of Digital's NETBIOS emulation, remote boot of MS-DOS

systems, and the PRO/COmmunications package. Alan also represents Digital on

the x;open PC Interworking Group. He received a B.S. in computational and
statistical science and a B.S. in mathematics from the University of Liverpool.

Vijay G. D'Silva Vijay D'Silva is a senior software engineer who is presently

involved in the performance analysis and modeling of several networking prod·

ucts for the Network Performance and Conformance Engineering Group. Prior to

his work on these future products, he evaluated the performance of the VAX DFS,

VMSjSNA, and VAX FTAM products. Vijay joined Digital in 1986 after receiving a B.S.

in electrical engineering (1984) from the Indian Institute of Technology, Bombay,

India, and an M.S. in computer studies from North Carolina State University. His
interests are in high-speed local area networks and computer systems modeling.

Joel S. Emer Since joining Digital in 1979, Joel Emer, a consulting engineer,

has worked on VAX processor and memory subsystem architecture and performance,
and systems performance analysis. He also led the distributed systems research

team whose work resulted in the DFS product. Joel recently finished work on a
research project at M.l T. where he investigated issues in heterogeneous distrib

uted computing. He holds a Ph.D. in electrical engineering from the University of

Illinois, and B.S. and M.S. degrees in electrical engineering from Purdue Univer
sity. Joel is a member of Tau Beta Pi, Eta Kappa Nu, ACM, and IE EE.

Eugene Finkelstein Formerly on the technical staff at AT&T Bell Laboratories

and a professor at the Electrical Engineering Institute of Communications,

Leningrad, Gene Finkelstein came to Digital in 1987. Currently a consultant to

the Distribmed System Technical Evaluation Group, he provides technical direction

in the areas of testing and performance evaluation of integrated distributed systems.
He is also leading the development of capacity planning guidelines for LAN-based
distributed systems. Gene holds a Ph.D. and an M.S. in electrical engineering from

the Electrical Engineering Institute. A senior member of IEEE, he has published
four books and numerous papers ln the field of communications networks.

Richard A. Grawin Richard Grawin came to Digital in 1987 from a performance
analysis group at AT&T Bell Laboratories. While at Bell Laboratories, he analyzed

the development of a local area circuit switch and participated in architecture

and design trade-off studies. Currently, he is a principal engineer in the Distributed
System Technical Evaluation Group and is the project leader responsible for the
distributed systems capacity planning guidelines. Richard received a B.S. degree

in mathematics from the University of Wisconsin in 1972 and an M.S. in computer
science from Purdue University in 1982. He is a member of the ACM.

I

3

Biographies

4

David M. Griffin Dave Griffin is a principal software engineer working with
the VAX Distributed Name Service engineering team on a new major release of

DNS. Prior to this work, he served as leader of the RSM advanced development

team and project leader for RSM version 2.0. He has recently applied as co-inventor

for a patent on aspects of the RSM design. Dave has also been an information sys

tems consultant to several groups and received the Digital Information Systems

Achievement Award in 1985 for his work on distributed application tools. He is a

member of the ACM.

Ruei-Hsin Hsiao Ruei-Hsin Hsiao is currently leading several projects designed

to evaluate the performance of products under development in the Networks and
Communications Group. Since joining Digital in 1982, he has evaluated the
performance of numerous Digital products, including terminal servers, DECnet

products, Ethernet bridges, communication devices, and the DECnet System Ser

vices product set. Ruei-Hsin is a principal software engineer and holds a 13.S. in

communication engineering from the National Chiao Thng University in Taiwan,

Republic of China, and an M.S. in electrical and computer engineering from the

University of Massachusetts in Amherst.

Ramasamy Jesuraj A principal engineer, Ramasamy Jesuraj joined Digital's

Networks and Communications (NAC) Performance Group in 1986. Currently he
supervises the Mid-range System Performance Analysis Group and is working on

the characterization of clientjserver product performance. Prior to his work in
modeling and characterizing the performance of NAC products, Ramasamy was a

senior engineer at Prime Computers and an assistant professor of computer sci
ence at the State University of New York. He holds a Ph.D. degree in applied

mathematics from McGill University, and an M.S. degree in computer science
from Concordia University, Montreal.

Brad C. Johnson Earning a B.A (Magna Cum Laude, 1984) in computer science

from Rutgers University, Brad johnson recently received an M.S. in applied man
agement from Lesley College. Before coming to Digital in 1986, he worked at Bell
Laboratories and then at Data General where he led a project to develop a file
server for IBM-compatible computers. Now a principal software engineer in the
Distributed Processing Engineering Group, Brad is involved in designing a model
for the next major version of RSM. He previously had project leader responsibilities

for implementing RSM versions 2.0 and 2.1. Brad is a member of IEEE.

Ambrose C. Kwong Ambrose Kwong is a senior software engineer in the Net

work Performance and Conformance Engineering Group. Having previously

worked on the development of the routing conformance test tools and the LL

tester, he is currently developing DNS conformance test tools. He has also been

involved in analyzing and modeling the DECnetjSNA Gateway performance, and

in the performance analysis of the DECserver 100 and 200, and Ethernet terminal
servers. Ambrose earned B.A. and B.S. degrees from the University of Rochester,
and an M.S. from the University of Massachusetts. He is a member of IEEE, ACM,

and Tau Beta Pi.

Sally J. Martin Sally Martin, a senior sofrware engineer, joined Digital in 1980
and began work on advanced development projects related to the design of the
Digital Nerwork Architecture . She also served as a reviewer of the architecture
specification. Now a member of the VAX DNS project team, Sally wrote the initial
versions of the transaction agent and database and was responsible for the DNS
version 1.0 background and advertisement modules. During version 1.0 field test,
she directed the design and operation of the Easynet namespace , the largest name ·
space bu ilt to date using DNS. Sally holds a 13.5. from Michigan State University.

Janet M. McCann janet McCann has worked on the development of the VAX DNS
product for over three years and is now the project leader responsible for imple·
menting DNS version 2.0. Prior to the DNS project, she worked on the base operating
system for the Professional 380 and was project leader for ProjSynergy. Now a
principal sofrware engineer in the Nerworks and Communications Group, janet
came to Digital from Western Electric in 1982. She received a 13.5. in mathematics
from the University of New Hampshire in Durham and an M .S. in computer science
from Boston University.

Peter 0. Mierswa A member of the Mail Interchange Group, Peter Mierswa is
chief designer responsible for the design and implementation of products that meet
X .400 and X . 500 intern ational standards. In previous work, he was project leader
for the DECnet·DOS family of produ cts and headed the team that produ ced the
first rwo releases of DECnet-VAXmate, DECnet·DOS, and DECnet-Rainbow. A consul ·
tant engineer, Peter previously published a paper about the DECnet·DOS system
in the Digital Technical journal. He re ceived a 13.5. (Summa Cum Laude) in com·
purer sciences from S.U.N.Y. at Stony Brook, where the computer science faculty
named him its best graduating student.

John P. Morency john Morency is a consulting engineer currently defining
SNA interconnect capability in the area of on- l ine transaction processing. He has
served as a principal technical contributor to Digital 's 113M Interconnect Program
for the past seven years and has also been actively involved in international stan
dards work for on -line transaction processing. In other positions, john has provided
worldwide technical su pport for DECnet, 113M , and X .25 products . Prior to joining
Digital in 1978, john worked at IBM Corporation and the General Electric Com·
pany. He earned a 13.5. degree (Magna Cum Laude) in mathematics and computer
science from the University of Hew Ham pshire .

William G. Nichols A consu ltant engineer in the Distributed Processing Engi·
neering Group, Wick Nichols is currently working on the development of new
distributed services. Prior to his work on VAX Distributed File Service, he served
as project leader of a grou p that developed DECnet- 10, and as project leader
and supervisor for the DECnet-20 produ ct . Before joining Digital in 1980, Wick
was a system programmer for the Federal Reserve Bank of Boston and for the
British Columbia Telephone Company. He re ceived an A.B. from Harvard Univer
sity in 1973.

I

5

Biographies

6

David R. Oran Dave Oran is a network architect working on the DNA nam ing
service and other advanced facilities for the Digital Network Architecture. He
also was responsible for the SNA Gateway architecture and su pported customers
with large networks . Dave represents Digital on the ANSI and ISO committees for
the OS! network layer and is the ISO project editor for Routing protocols . Before
coming to Digital in 1976, he designed a nationwide network for the largest bank
i•n Mexico and programmed at NASA. Earning a B.A. degree (1970) in English and
physics from Haverford College, Dave is a member of ACM and is general chair·
man of the eleventh Data Commu nications Symposiu m.

Richard P . Pitkin As a principal engineer and project l eader, ruchard Pitkin
was a senior contributor to the DECnetjSNA Gateway and VMS/SNA projects. His
major work was in product development, testing, and performance analysis. Cur
rently, ruchard is a..<;sessing the IEE E 802.5 token ring standard. In previous work,
he was a principal software specialist involved in worldwide technical support
for IDM interconnect products. Before coming to Digital in 1979, ruchard sup
ported large timesharing systems for the State of Massa chusetts . He earned a B s.
degree in mathematics from the l niversity of Massachusetts, Boston.

Peter G. Viscarola Peter Viscarola joined Digital in 1987, first as architect and
later as manager of the Networks and Communications (NAC) Conformance Engi
neering Group. He has represented Digital in the area of data communications
conformance on a number of technical comm ittees, including those at the Cor
poration for Open Systems, ANSI, and ISO . From 1979 u ntil joining NAC, Peter ran
a private consulting practice which specialized in data communications . Peter
also worked at Digital in 1977, when he was hired as an instmctor .in Digital 's
Educational Services Group.

Jeffrey E. Watkins Jeff Watkins is a principal software engineer with the Net·
works and Communications Conformance Engineering Group. He is currently
leader of the software development group that is creating conformance test tools
for OECnet Phase v and OS!. He also represents Digital on the Corporation for
Open Systems Achitecture Committee. Jeff is a co-designer of the WAVE tools base,
as well as a major contributor tO its implementation. He joined Digital in 1980
after earning a D.S. in computer science from the University of I l l inois at Urbana.

I Foreword

Butler W. Lampson

Corporate Consultant Engineer

A distributed system is several computers doing
something together. This idea grew up naturally
together with computer nerworking; it appears as
one of the main goals in the late 1960s plans for the
ARPANET. Bur building a distributed system turned
our to be difficult, and nerworks have been justified
instead by the value of a few very basic applications:
terminal access, file transfer, and electronic mail. As

workstations, personal computers, and local area net
works have become widely avai lable, however, the
value of a distributed system has grown too obvious
to ignore. In the last few years it has been increas
ingly clear that the future of computing l ies here .

Customers benefit from a distributed system over
a central ized one because they can

• Grow a system incremental ly to meet increased
demand, rather than replace it with a larger one

• Interconnect computers so their resources can
be shared- especially the data they store-even
when the computers are physical ly separate,
independently managed, and different internally

• Get service more of the time, even when some
parts of the system are broken

• Pay less for computing cycles in small packages

On the other hand, centralized systems provide a
large number of functions and a high degree of
global coherence: a l l the resources of the system
can be accessed and managed in the same way from
any part of i t . These too are valuable properties. I t is
a major challenge to combine the virtues of both
approaches.

VAX:jV MS clusters offer a l l the benefits of a dis
tributed system as well as the functionaliry and
coherence of a centra l ized VMS system, and they
have been very successful . However, clusters l imit
the number of machines that can be connected (a
few dozen) , and all the machines must run the same
version of VMS and be managed as a unit . By contrast,
a network such as DECner can accommodate thou
sands of machines with many di fferent architectures
and operating systems, and it too has been very suc
cessful. However, a nerwork offers few functions
and little coherence . Users must be registered sepa
rately on each node, files cannot be named and
accessed uni formly throughout the nerwork, each
node must be managed independently, and so forth .

A distributed system, then, is

• A set of hardware, software , and data components,

possibly heterogeneous

• Connected by a nerwork

• Providing a uniform set of services (user registra
tion, time, files, records, printing, program execu
tion, mail , terminals)

• With certain global properties: names, access,
securiry, management and avai labi lity

The coherence that makes it a system rather than a
collection of machines is a result of uniform ser
vices and global properties. The services are avail
able in the same way to every part of the system , and
the properties a l low every part of the system to be
viewed in the same way.

This definition of a distributed system assumes a
single set of interfaces for the standard services and
global properties. For example, every component of
the system can be named, accessed , and managed in
the same way. Further, every component that provides
or consumes a service, such as file storage or print
ing, does so through the same interface. There sti l l
may be severa l implementations of the interfaces for
nam ing, management, files, etc . , and this variery
allows the system to be heterogeneous . In its inter
fact;s. however, the system is homogeneous. It is this
homogeneity that makes it a system with predictable
behavior rather than a collection of componen ts that
can communicate. If more than one interface exists
for the same function, it is unavoidable that the
function will work differently through the different
interfaces . The system will consequently be more

7

I
compl icated and less reliable. Perhaps some compo
nents will not be able to use others at al l because
they have no interface in common.

In reality, of course, there is no absolute distinc
tion berween a system and a collection of compo
nen ts . A system with more different ways of doing
the same thing, whether it is naming, security, file
access, or printing, is less coherent and dependable.
On the other hand, it can stil l do a lot of useful
work. The evils of heterogeneous interfaces can be
mitigated by gateways, components that map from
one interface to another. A gateway is often neces
sary when rwo systems evolve separately and later
must be joined into one . An obvious example is the
conjunction of IBM's System Nerwork Architecture
(SNA) and Digital's DECnet, and indeed there are sev
eral DECnetjSNA gateways .

This issue describes many of the major com
ponents that currently make up Digital's evolving
distribured system product l ine: essential services
such as files, printing, and mai l , and global proper
ties such as naming and management . Except for the
naming service, these components were not devel
oped from scratch bur rather arose from previous
products that were successful in standalone sys
tems . In this way the distributed systems do not have

8

to provide new implementations of all the functions
they offer, but instead can build on existing prod
ucts . In several cases these components act as gate
ways, for example, berween VMS and existing
interfaces in MS-DOS, or berween DECnet and exist
ing mai l , file transfer, or communication interfaces
in SNA. In each case the product is important as a
tool to integrate existing systems into a larger and
more effective whole.

Typically a distributed system involves a number
of mach ines. It can be conf igured in many different
ways. It is built on top of one or more operating sys
tems and one or more implementations of a nerwork
architecture. All in al l, there are a lot more ways for
things to go wrong in a distributed system than in
most centra lized systems. As a result, careful mode l
ing, performance analysis, and testing are essential to
the engineering of a distributed system that works
reliably and predictably. Nearly half of this issue is
devoted to these topics.

The arch itectures, products, and engineering
methods described here are significant steps toward
the goal of coherent systems that encompass the ful l
range of Digital's products. As the company's dis
tributed systems evolve, they will do so from th is
foundation.

Development of the

Sally]. Martin
janet M. McCann

David R. Oran

VAX Distributed Name Service

The VAX Distributed Name Service (DNS) is a global, highly scalable directory sys

tem for computer networks. This robust name service provides fast translation of

network-wide names into the values of attributes stored with the names. The DNS
designers utilized such techniques as partitioning of the namespace and data

replication to ensure service reliability and availability. For improved perfor
mance, DNS implements the client interface by means of a clerk which controls
communication protocols and also maintains a cache.

Networks bring a large and sophisticated set of ser
vices to a diverse and growing user population. For
this population to exploit the network's potential ,
the computing environment must be friendly, easy
to navigate, and productive . One of the main imped
iments to achieving this environment is the increas
ing difficulty of identifying, locating, and accessing
network resources. Much of the power of existing
and future computer networks may go unused sim
p ly because users are either unaware of the faci l ities
avai lable to them or find the methods daunting. The
difficulty can be expected to increase over time for
the following reasons:

• Networks are getting very large . Thousand-node
networks are now common, with mi l lion-node
networks on the horizon for the world's larger
public and private organizations.

• Networks are heterogeneous . More kinds of com
puters are panicipating in networks al l the time
workstations, personal computers, minicomput·
ers, supercomputers, and mainframes. Even more
significant is the loose, heterogeneous composi
tion of a large network that makes central control
and management infeasible.

• Whole new classes of distributed appl ications are
being developed. Appl ications such as network
file systems and network-based electronic mail
systems are already common .

New applications, such as fully distributed data
bases, are being deployed today. Whole new
models of computing in the distributed environ
ment, such as remote procedure cal ls (RPCs), are
being developed to make the construction of
such applications easier.

To a great extent, the difficu lty in accessing net
work resources arises from the lack of a consistent,

Digital Technica/]ournal No. 9 june 1989

globally accessible directory of network resources.
In this paper, we describe a large-scale, production
name service for DECnet networks called the VAX
Distributed Name Service (DNS). We begin with a pre
sentation of the goals of DNS, fol lowed by a discus
s ion of the kinds of names used. In the balance of the
paper, we give an overview of the DNS architecture
and implementation and describe the major issues
designers addressed during product development.

The Genesis and Goals for DNS
DNS is a fundamental pan of the DECnet System Ser
vices (DSS) product set and the Digital Network
Architecture. DNS was under development for over
five years within Digita l . The project included a
significant initial design phase (two years) , a bread
board phase (one year) , a final architectural design
phase (one year) , and a product implementation
phase (one and a half years) . This system was
designed to meet a number of significant technical
goals, as follows :

• Score enough names to allow the system to scale
to networks of at least 100 thousand to 1 mil lion
nodes.

• Be very robust so that the name service is at least
as reliable and available as the resources it is
used to find.

• Be highly self-configuring to limit the amount of
effon necessary to set up the service and keep it
running.

• Be fast , so applications can always use the service
without penalty to locate resources.

• Allow decentralized management to avoid the
inefficiency of centralized management of al l the
resources of a large computer network.

9

Distributed Systems

A Global Name Service

DNS provides a global name service. A global name

is one that can be used anywhere in a network, by

any user, to access a resource in the network. In this

section, we discuss the kinds of names such a net

work name service might support and place DNS in

this context.

Kinds of Network Names

Figure 1 lists the kinds of names a network name ser

vice could support. A descriptive name is a con

struct that names a resource or object by specifying
enough of its attributes to distinguish it from other

objects. A descriptive name can be thought of as a

query of the form "A color printer located near my

office."
Descriptive names are most useful to human users

who are searching the network for a resource that

meets certain user-specified criteria. Descriptive
name services are potentially the most powerful

kind of name services, but they are the most

demanding of computing resources and are difficult

to distribute effectively. The Consultative Committee
on International Telephony and Telegraphy (CCITI')

and the International Standards Organization (ISO)
are developing a standard for a descriptive name ser

vice. The standard is primarily oriented toward

international electronic mail systems and is known

as X.500 .
A primitive name is a string of symbols that identi

fies a single object or resource in the network. A

primitive name is similar to the name of a person or

business. If one knows the name of the resource

sought, the primitive name is an extremely conve

nient identifier to use to locate the resource or to

discover more about it. A principal feature of primi

tive names is that they are unambiguous; no two
objects or resources in a network can have the same

!0

WHAT TH.E R ESOURCE IS CALLED

WHAT THE RESOURCE IS

WHERE THE RESOURCE IS

HOW TO GET TO THE RESOURCE

Figure 1 Kinds of Names in Network
Naming Services

primitive name at the same time. Because of their

simplicity, name services based on primitive names

arc technically easier to design for speed, scalabil
ity, and robustness, which are three of the goals

outlined for VAX DNS. Consequently DNS processes

pr·imitive names.

The third kind of name, an address, is a form of

name that identifies a resource by its location in the
network. For example, in DECnet Phase IV, all

resources are identified by the node on which they

reside. Although the node is named by a string of

characters, in fact this string is a local user conve

nience and simply stands for the address. As a net

work grows, the relationship between the nodes and
the resources residing on them becomes increas

ingly complex and arbitrary. It is unnatural to use

addresses to name resources that are either repli

cated or that are not permanently tied to one loca

tion in the network. Recon.figuring resources as new
nodes are added or old nodes removed invalidates

the names they were using.
A route names a resource by enumerating the path

from the accessing user to the location where the
resource is located. Routes suffer all of the disad

vantages of addresses as names, and other disadvan

tages as well. Route names are dependent on who is

accessing the resource as well as where the resource

is located. Different users must use different names

to access the same resource. Worse, if any portion of

the nerwork is reconfigured, the path to the resource

is affected and its name changes.
For the remainder of this paper, we restrict the

discussion to primitive names, since those are the
names processed by DNS.

Possible Structures for Network Names

Primitive names in a network name service could

have a number of possible structures. The simplest

of these would be a flat namespace in which the
names are simply strings of symbols with no internal
structure. (A namespace is the collection of names

stored within DNS.) Flat names are easy for users to

understand, but the assignment of unique names
becomes increasingly difficult in large networks.

A second possible structure for network names is

a tree. A tree is a type of graph in which each node
has exactly one parent but may have any number of

children. Computer file systems, such as those sup

ported by MS-DOS, VAXfV MS, and CNIX operating sys

tems, use a tree-structured namespace for naming

files. In these systems, the tree is rooted; that is, a

single node is the ancestor of all others. Trees allow
a decentralized method of assigning names and give

users a natural hierarchical scheme for organizing
their network namespace. Trees suffer from a number

No. 9 june 1989 Digital Techntcal]ournal

of deficiencies, however. The most serious is that a
node in the graph can have only one name (because
each node has a single parent).

To avoid the uniqueness limitation of trees, a
third possible structure for network names is that of
a directed graph. In this structure, names consist of
paths from some initial node to the desired terminal
node. Some computer file systems, such as UNIX,
augment the basic tree with a capability called soft
links. Soft links allow users to view the file system
as a directed graph rather than a tree. Once a directed
graph is permitted, it is possible for the graph to
have cycles. Cyclic names are not terribly useful,
hence most name services restrict the graph to be
acyclic. Naming structures based on directed graphs
have two major subtypes. The graph can be either
rooted or unrooted. In a rooted graph, like a rooted
tree, a distinguished node is the ancestor of all others
and is globally known to all users. In an unrooted
graph, no such node exists, and each user must
choose a starting node in the graph from which to
specify names.

DNS provides a rooted, acyclic directed graph as
its naming structure. The underlying physical repre
sentation of the graph is in fact a tree, which allows
simplification of the algorithms that perform dis
tributed maintenance of the graph. The tree is then
augmented with a special form of name, called a
soft link, which allows the users to view the struc
ture as a directed graph.

Architectural Overview

This section describes the architecture of DNS at
a high level. Readers interested in exploring the
design at greater depth may obtain the architecture
specification. 1

Properties of Names

A name is a string of characters that refers to an
object or resource in the network. Names for objects
are recorded in directories, which themselves have
names. Some example names are as follows:

Parts.widgets.left-handed.SMOKESHIITER
USGovernment: Treasury. Bi lis. CurrentSeries
Nodes.%XAA0045D4013C
Engineering.sources. "alL.sources .c"

A directory may contain three types of entries:
object entries, child pointer entries, and soft links.
An object entry consists of the object's name and a
set of attributes for the object. Most prominent of
these attributes is the network address where the
object currently resides. Child pointer entries link
the directories into a rooted tree in which there is a

Digital Tecbnicaljormuu No. 9 june 1989

Development of the VAX Distributed Name Service

single path from the root directory, through a set of
child directories, to the desired named object. A soft
link is a form of alias, or indirect pointer, which
allows a single entry to be reachable by more than
one name. Soft links provide users flexibility by
allowing a namespace to be viewed as a directed
graph rather than as a pure tree. In addition, these
links provide a graceful way tO reorganize a name
space without incurring a massive invalidation of
existing names. A tree of directOries, starting at a
root, is called a namespace. Multiple namespaces
may coexist on the same network, but they are com
pletely disjoint. Figure 2 shows an example portion
of a namespace.

To ensure that the set of directories that make up
a namespace in fact makes a tree at all times, the
name service enforces two directory invariants:

• Each directory has exactly one parent at any
moment.

• No directory is a child of any of its descendants.

The first directory invariant guarantees that the graph
always forms a tree. The second invariant guarantees
that the graph has no loops.

Partitioning and Replication

In a large network, it is infeasible to stare all names
in one central location. Besides being a single point
of failure, a centralized service suffers from poor
performance. First, the cost of accessing the service
from distant part.s of the network is high. Second,
the service provider can quickly become both a pro
cessing and communication bottleneck to the entire
network.

It is necessary not to allow single points of failure
in the name service. The most appropriate tech
nique for achieving this reliability is to replicate the
data in multiple locations. Adding data replication
to a system leads immediately to two crucial deci
sions that guide the architecture. The first is to
determine what the unit of replication should be.
One could decide to replicate each name individu
ally; to replicate the entire database; to replicate
individual nodes; or to tie replication to the parti
tioning in some way. The second issue is the effect
of replication on data consistency. One must decide
if all copies of the data should be kept tightly syn
chronized, as in a classic database system. If so,
what kind of synchronization algorithm is appropri
ate. If the data is not synchronized, what consis
tency semantics should be supported.

For the DNS architecture, designers chose to store
the namespace in a partitioned, partially replicated
database. Database partitioning means that part.s of

1 1

Distributed Systems

E N G I N E E R I N G

VAX

/
/'

-
KEY:

- CHILD PO INTER

- - .. SOFT LINK

/
/

/
/

/

I

\
\
\
I
I

I
I

I

Figure 2 Example of a Namespace

the namespace are stored in different locations. I3y

partially replicated, we mean that part of the name
space may be simultaneously stored in multiple

database locations. The unit of partitioning and repli

cation is the directory. A collection of (copies of)
directories stored on a particular node is called a

clearinghouse. The partitioning is accomplished by

controlling which directories are stored in which

clearinghouses. The replication is accomplished by

storing a directory in more than one clearinghouse.

A copy of a directory stored in a particular clear
inghouse is called a replica. To simplify the algo

rithms for name creation and general namespace

maintenance, one of the replicas of a directory is
designated to be the master replica for that directory.
Creation of new child directories is permitted only
through the master replica for the parent directory.

Creation of object entries and soft link entries, in

addition to any update or deletion, may be directed

tO another kind of replica storing the appropriate

directory, called a secondary replica. A third kind of

replica, the read-only replica, responds only tO

lookup requests and is not permitted to perform

creations, updates, or deletions on behalf of clients.
The name service maintains a distributed data

base on behalf of its clients. However, unlike a typi
cal distributed database, this database provides very

loose consistency guarantees to allow high levels of

1 2

partitioning and replication. A client may receive

different answers depending on which replica of a

directory is queried when updates are being propa

gated through the system.

Update Semantics

The exact update semantics for the namespace must

be specified when the system is designed. The fol
lowing must be decided:

• In the case of creating new names, what forms of
mutual exclusion guarantees are provided. Can
two users each try to create a resource with the

same name and be allowed to succeed.

• Is each update an individual atomic action, or is
some form of multioperation transaction pro
vided as in a conventional database system.

• How are updates by multiple users at different
times and locations serialized, if indeed serializa

tion is supported at all.

DNS does not provide the usual database guarantee

of mutual exclusion for name creation. An update
can succeed if a single updatable replica is avail
able. Instead of providing strong mutual exclusion,

the system supports the notion of safe and unsafe

names. When a user first creates a name, it is unsafe.

Another user could create the same name in another

No. 9 june 1989 Digital Technical journal

replica. While the name is unsafe, the name service
will not necessarily detect this conflict. At some
later time, through the operation of the background
convergence algorithms, the name with the latest
time-stamp becomes safe. All conflicting names dis
appear. Once a name is safe, no user can create the
same name without first deleting the existing one. A
user can request the name service to attempt to
make a name safe at any time.

Updates to attributes of names are time-stamped
and applied such that the one with the latest time
stamp wins. The update algorithms are designed
such that all updates are idempotent and commuta
tive; that is, multiple applications of an update have
the same effect as a single application of the update,
and updates applied in any order have identical
results. These properties allow updates to be intro
duced into the system by users at multiple locations.

Convergence of Replicas

The algorithm for producing convergence among
the replicas of a directory is called the skulker.
Skulkers operate independently on each directory in
a namespace. Successful completion of a skulk oper
ation ensures that all replicas of a directory have
absorbed all updates applied to any replica prior to
the time the skulk started. The more frequently
skulks are run, the more up to date are all replicas of
a directory. Skulks are expensive, however, so there
is a trade-off between resources (network capacity,
processing, memory) and timeliness.

Clients can control the frequency of skulks either
by adjusting the convergence attribute of a direc
tory, or by initiating skulks themselves. The skulker
operates as follows:

1. All updates made to the master replica and any
secondary replicas since the last skulk are gath
ered and stored in the clearinghouse where the
skulker is running.

2 . Each of the gathered updates is then dissemi
nated to all replicas of the directory.

3. Each replica is informed of the time-stamp of the
latest update that all of them are guaranteed to
have seen.

Since skulks are expensive, DNS provides a mech
anism cal led propagation for rapid convergence in
common error-free cases. When a user makes an
update to a directory with high convergence, DNS
makes one attempt to propagate the changes to all
available replicas.

State Growth and Scalability

A network's growth should not be constrained by
the ability of the name service to continue growing;

Digital Technical]ournal No. 9 june 1989

Development of the VAX Distributed Name Service

therefore the name service must be highly scalable.
In practice this means designers must avoid data
storage techniques in which the amount of process
ing and storage grows too rapidly as the size of the
namespace grows. It is essential to avoid algorithms
or data structures that grow faster than linearly, and
desirable for all processing and storage overhead to
grow no faster than logarithmically.

By naming the clearinghouses, DNS can avoid the
linear growth of state information which might occur
at the root of the namespace to record the identity
and location of all clearinghouses.

Clearinghouses have names so users may conve
niently refer to them and so the name service can
find clearinghouses by looking up their names in
the namespace.

The naming of clearinghouses follows a set of
rigid rules. Under these rules, a name lookup cannot
fail with the error that the clearinghouse in which
the directory storing the object entry could not be
found. Specifically, the name service ensures that the
following clearinghouse invariants are never vio
lated during the normal operation of a names pace :

• A clearinghouse must either store the root of the
namespace or store at least one directory whose
name is closer to the root than the name of the
directory in which the clearinghouse is registered.

• Each directory other than the root directory of
the namespace must be replicated in at least one
clearinghouse whose name is closer to the root
than the directory's name.

The first clearinghouse invariant guarantees that
the root of the names pace is reachable by starting at
any clearinghouse. The second guarantees that every
directory is reachable from the root without having
to look up a clearinghouse which in turn would
require looking up the subject directory.

Attributes Stored with a Name

Each entry in a namespace contains a set of attrib
utes. These attributes can be used to store a variety
of information that assists in locating and accessing
a resource. Particularly useful information to store
is the network address of a computer that contains
the named resource. Also useful are various local
naming and addressing components which are
needed to access the resource once its location in
the network is known.

Attributes are identified by strings called attribute
names and are of two types . Single-valued attributes
hold a single value at a time, and set-valued attributes
can hold an arbitrary number of values at a time.
Updates are applied to individual values of attributes,
and attributes can be freely created and deleted by
means of the update mechanism.

13

Distributed Systems

Implementation -A ClientjServer
Model

This section discusses the implementation of the

Distributed Name Service Architecture on a VA.,'XfVMS
system.

Clients of the name service are programs that cre
ate, delete, retrieve, and modify information main

tained by the name service. Clients access the name

service through the diem interface which is imple

mented by the clerk on the local node. T he design

of the clerk and the server are the subjects of this

section.

Clerks are the components of the name service

that reside on every node in the network. Clerks
receive requests from clients tO access the name ser

vice and determine the appropriate server to pro
cess the request. T he clerk invokes the clerk-server

protOcol to communicate with as many servers as

necessary tO satisfy the request. It maintains a cache

of the location of recently accessed directories and
clearinghouses tO improve performance.

The server itself processes requests received

through the clerk-server protocol. If the server does

not have the necessary information to service a

request, it directs the clerk to another server that is

more likely tO have the information.

Design of the Clerk

The initial rel ease of DNS was implemented on the

VMS operating system. T his section describes the
clerk implementation.

To access the name server, a node requires the

clerk, the advertisement-solicitation process, and

the location of at least one name server.
The advertisement process is responsible for initial

izing the clerk's cache and periodically updating it.

On startup, the advertiser creates a global section,
which serves as the cache, and loads a configuration

file into the cache. T his file contains a list of name
spaces and name servers tO insert into the cache. The

first namespace in the file is the default namcspace
for the node. The configuration file is the only way

to initialize the cache on a wide area network (WAN)
and is the management interface to the clerk.

The advertiser runs as a detached process. It lis

tens on the Ethernet for advertisements from name

servers. Advertisements comain the same type of

information as the configuration file and are loaded

into the clerk's cache. Advertisements provide the
clerk with additional servers paired with their most

recent addresses.
The clerk is written as a sharable image. It uses

the cache created by the advertiser tO locate servers
and process client requests. In addition to the data

loaded into the cache by the advertiser, the clerk

1 4

adds data to the cache as the result of contacting a
name server. 1\vo types of information are cached:
the names and locations of servers, and the names

and locations of directories. This information enables
the clerk to have up-to-date addressing data for con

tacting servers. Further , if the location of directories
is known, the number of servers contacted can be

reduced.
Since the cache is shared by multiple applica

tions, it must be protected from both unintended
updates and uncontrolled concurrent updates. The

clerk prevents unintended updates by creating the

cache in kernel mode, thus preventing access by
less-privi leged users. The clerk is a user-written sys
tem service, so it can raise its privileges and access
the cache on behalf of less privileged clients. T he
clerk uses a simple binary semaphore to protect the
cache from concurrent updates . T he semaphore is
stored in the cache .

The clerk also maintains a per-client DEC net logical
link cache. Because of access control considerations,
logical links cannot be shared by multiple clients.
Since logical link establishment is expensive , a cache

is needed to improve response time for successive
requests to a server. The server disconnects idle

links every 10 minutes. Either the server or clerk
wil l disconnect links if resources are needed.

Design of the Server

Like the clerk, the initial release of the server was

implemented for VMS systems. A server consists of

the clerk, advertisement-solicitation, the transaction
agent, and background processes.

The transaction agem is responsible for servicing
clerk requests. T he agem implements the clerk
server protocol and portions of the directory
maintenance protocol. Some operations require the
transaction agent to communicate with other trans
action agents. This communication is effected through
the clerk; therefore the transaction agent is a client
of the clerk.

The background process implements the directory
maintenance protocol and the update-propagation
protocol. The background also communicates with
other nodes through the clerk. Work is generated for
the background process in three ways. First, requests
from other background processes must be serviced.
These are received by network connections. Second,

requests are received from the transaction agent.
Third, at least every 12 hours a timer goes off and
the background scans the database for directories

that need to be skulked.
The transaction agent and the background process

have similar designs. The sections following describe

the several design features these processes have in
common.

No. 9 june 1989 Digital Technical]ournol

Multithreading Both processes perform operations
that access the disk or request i nformation from
other name servers. During this time the process is
id le . To improve throughput, we needed to make
use of this idle time and process multiple requests
simultaneously. To accomplish this, we used asyn
chronous system traps (ASTs) .

Both processes stan running in user mode . They
create the mailboxes necessary to communicate with
management, issue an asynchronous read request, and
wait. The user issues a stan command to the man
agement program which sends the request to the
server. This causes the mailbox read to complete
and to run an AST. The AST routine dec lares the pro
cess to be a network object and issues a read to the
network. Then the routine reissues a read to the mail
box. 1\vo threads of execution, that is, two ASTs, are
now outstanding. For each new network connection,
another thread is staned to process its transactions.

A process known as forking is available to suppon
asynchronous disk 1/0 and c lerk requests. Forking
allows a thread to suspend execution until some
asynchronous activity completes, thus a llowing
other threads to run .

Database Both the transaction agent and back
ground process were designed to be independent
of the choice of data access routines. We wanted to
be able to make changes if necessary in the future.
After examining several techniques , we chose to
use Record Management Services (RMS) i ndexed
sequential fi les.

The name server requirements did not always
match up with RMS features. First, RMS key sizes are
a maximum of 255 bytes in length. Name server keys
vary in length up to a maximum greater than 255
bytes . Therefore, we had to al low dupl icates; and if
a key is greater than 255 bytes, the name server per
forms its own sequential lookup to find the correct
record .

Locking turned out to be our biggest problem.
RMS provides extensive record locking capabilities
for shared files. We relied on these capabil ities to
control concurrent access to the database by the
transaction agent and background process. How
ever, RMS does not recognize multiple threads of
execution within the same process. If one thread
locks a record for update and another thread
attempts to access the same record on a different
stream, the second request is rejected. Thus, the
server restricts the operation of threads performing
database updates. Once a thread locks a record for
update, it cannot give up control to another thread
unti l it unlocks the record .

Digital Tecbnical]ournal No. 9 june 1989

Development of the VAX Distributed Name Service

Design of Management

Management of the name server is handled by two
modules. Together these modules manage both the
name server and the names pace. Management of the
name server involves staning and stopping name
servers and clearinghouses, and monitoring coun
ters. These functions are parsed by the management
control program and then sent to the management
l istener where the functions are performed . The two
functions were separated to allow for remote manage
ment in a later release. Management of a names pace
required a human interface to the c lerk. The man
agement control program provides this interface . A
Network Control Program (NCP) -style command l ine
interface was chosen.

A permanent global section is created by the man
agement processes to maintain nonvolatile data . This
includes the mapping from clearinghouse names to
file names and the time-stamp generated loca lly.
Since the transaction agent and background process
also need access to this data, a shared global section
is created. In addition, this section is used to main
tain counters for the server. Counters are incre
mented by the transaction agent and background
and are displayed by management commands.

Summary
Currently, DNS is in use throughout Digital and at
many customer sites . I ts use is expanded daily. DNS
has proven to be robust in a network of many thou
sands of nodes. It successful ly suppons VAX Distrib
uted File Service and VAX Remote System Manager,
also described in this issue .

Acknowledgments
The authors wish to acknowledge the DNS develop
ment team who worked hard to release a version 1 .0
product of qualiry. Team members include Larry
Augustus , Claudia Peters, Arun Sastry, and Paul
Pederson . In addition we would l ike to thank the
DECnet-VAX group for its help , in panicular, Paul
Beck and Tom Harding. Thanks are also due to Wick
Nichols for his careful review of this paper.

Reference
1 . DNA Naming Service Functional Specification

(Maynard : Digital Equipment Corporation, Order
No. EK-DNANS-FS-00 1 , 1988).

1 5

WiUiam G. Nichols I
]oel S. Emer

Design and Implementation of
the VAX Distributed File Service

The VA X Distributed File SeJVice (DFS) pro vides fast, remote file access for VA XjVMS

systems. DFS appears to be a local file service and thus requires no changes either

to applications or to user commands. The DFS designers first examined the VMS

file system to determine what type of service- disk, file, or record- would best

achieve their goals. Having determined that a file semice would meet the goals,
they used a queuing network model to assess program response time and

throughput for users in a multiple workstation environment. This model was

used to assess a number of design alternatives. The resulting implementation is

well integrated into the VMS operating system and consists of device drivers and a

server process. This paper presents the design options, the model and the DFS

implementation.

The VAX Distributed File Service (DFS) is one of the

DECnet System Services (DSS) family of products. DSS

products use network servers to provide services and

functions that are often typical of a non-networked

operating system. Use of these distributed services

allows many client computers, and thus many users,
tO share resources and to work together effectively.

Specifically, DFS addresses two needs that arise

when many users share a distributed computing

environment. First, users in this environment need

common access to files. Second, managing this envi

ronment can be simplified if many users' files are

collected onto a common set of disks. There, the

fi les can be managed by a common operations staff.

DFS extends the local file system on a VAX/VMS sys

tem to include these common file stOres.
The design of DFS was driven by three major goals.

First, it should have high performance. Users should
not easily perceive differences in the speed of their

applications when they move files from local to

remote devices. Second, the service should be trans
parent. User commands and applications should

work in the same way whether they are accessing

local or remote files. Thus, the existing program

ming interface and file system semantics should be

preserved. When it is impossible to preserve exist
ing semantics, the new semantic should avoid unex

pected updates and other unpredictable results.

The third goal was that the service should scale

up to handle large networks. Scaling encompasses
three characteristics : large geographic extent, large

numbers of active clients, and very large numbers of

16

potential clients . To allow scaling, a file service has
to work on either a local area network (LAN) or a

wide area network (WAN). Successful scaling also

implies that transparency should be unchanged as a

network grows from two nodes to 100,000 nodes.
Funhermore, performance should not be impaired
by factors unrelated to nodes actively using the ser

vice, e .g . , the number of potential user nodes, remote

network panitions, or node fai lures.

This paper describes how engineers in the Dis

tributed Processing Engineering Group designed

and implemented DFS to meet these goals. The first

section presents some options we considered in the
initial design stage. The second section describes
some of the performance analysis used to arrive at

the current design and the third offers details of the

implementation of the DFS design.

Design Options
To distribute any service, one must build software

for the client system, where the application runs,
and for the server system, where the service is pro

vided. One can divide the overall service functional

ity between the client and server in many different

ways. However, when dividing an existing service

such as a file system, it is frequently best to choose
an existing, stable interface rather than design a

new one.

The existing VMS file system is implemented in

three layers. At the lowest layer, the disk subsystem
reads and writes blocks of data to a disk. At this
level, the disk is viewed as a single array of fixed-

No. 9 june 1989 Digital Tecbnicaljournal

Design and Implementation of the VAX Distributed File Service

size blocks. At the middle layer, the file subsystem
(FI LES- 1 1) organizes the disk blocks into files and
file directOries. At this level, the disk is viewed as a

set of arrays of fixed-size blocks, one array for each
file. At the highest level, Record Management Ser

vices (RMS) operates on structures within a file. At
this level, the disk is v iewed as potentially more

complex arrangements of records within files.

The interfaces between these layers are well

defined and thus make convenient points at which

to divide the overall file system between client and
server. The layers above the split remain with the

cl ient; those below are moved to the server along

with the disk they control. Given the three layers in

the VMS fi.le system, the natural distributed service

types are therefore a disk service, a file service, and

a record service. A disk service sends disk names and

disk blocks between client and server; a file service
sends file names and file blocks; and a record ser

vice sends file names, record descriptions, and
records. References 1 and 2 have examples of a disk

service and a record service, respectively.

There are many characteristics to consider when

choosing among these three types of distributed ser
vice. Based on our primary goals - performance,

transparency, and scaling - we chose to implement

a file service. We now outline the reasons for this
decision.

Many facrors govern the performance of a storage

service . However, even some of the most elementary

analysis shows distinctions between the three ser
vice types.

Our analysis has shown that in small networks

with little sharing, the disk service has a perfor
mance advantage over a file service. In this environ

ment the record service offers considerably less
performance. These differences arise primarily

because the basic operations for the three types

of service are of different complexities. In fact,
they impose increasing computational load at the
server as one moves from the disk service through

the file service to the record service. More detailed
analysis of the performance contrasts, including
factors such as communication load, can be found i n
references 3 and 4.

Distinctions between the services with respect to
both performance and transparency can be seen
when file sharing is considered. The VMS file system

semantics demand that shared access to files and

records within files be coordinated. If the server

does nor provide this coordination implicitly, then

the clients must coordinate their access to the
shared data explicitly. This coord ination usually
involves extra communication that can degrade per-

Digital Technical journal No. 9 june 1989

formance, especially when there is significant con

tention for the data. Alternatively, the service might
disallow shared access, thus reducing the communi
cation overhead , but also reducing transparency.

The performance impact of sharing decreases as
one successively considers a disk, file, and record

service. With a disk service , many accesses require

explicit coordination. For example, clients must

coordinate accesses to the directories and al location

tables that make up the file structure on a disk. This

coordination occurs frequently, because file struc
ture i nformation is shared even when no users are

sharing files. Only by hav ing a read-only file system

can these costs be eliminated.

A distributed file service does not require that the

clients explicitly coordinate access to the file struc

ture on a disk. The clients send file-level requests to
the server. The server then serializes the requests

and handles any interlocking within itself. This

implicit coordination saves coordination communi

cation over that requ ired by a disk service. To allow
sharing of records within a file, a file service requires

the clients to coordi nate explicitly. Finally, a dis
tributed record service does not require explicit

coordination for accesses ro either file or record

structures. Thus, such a service performs well when

there is significant record sharing.

The mechanisms for coordinating sharing also

have an effect on the abi l i ty to scale the service. A

service with implicit coordination scales very well.
The scaling is primarily limited by the ability of the

server to handle the active cl ients' load. The situa

tion is more complex when explicit coordination is

required.

There are two basic schemes for handling explicit
coordination: centralized and decentralized. In cen

tralized schemes, all clients coordinate through a

single coordinator. As with implicit coordination,

the ability to scale is limited by the abi l ity to handle

the active clients' requests. Centralized coordina
tion, however, requires more communication than

impl icit coord ination because distinct messages are
required. As the network is scaled up to a WAN , per
formance is degraded even more than in a LAN . The
higher message latencies typical in a WAN make

delays resulting from these extra messages even
more significant.

In decentralized schemes, the coordination infor

mation is distributed among the participants. Decen

tralized schemes tend to be complex, because such

schemes need protocols for joining and leaving the

set of active cl ients, for locating the coordinating

information, and for rationalizing the distributed
state when nodes crash or are booted. These protocols

17

Distributed Syste ms

add more messages, which impair performance, espe
cially in a WAN . In fact, the performance of these
protocols depends not only on the number of active
clients, but in part on the number of potential
cl ients as wel l . Thus, decentralized schemes scale
less well than centra lized schemes.

Actually, there is an alternat ive to the type of file
service described above . This alternative does not
keep state i nformation about requests or open files
in the server. In the event of a server crash, this
absence of state information can be usefu l . It a l lows
servers to recover simply and allows clients to con
tinue processing without interruption once the
server recovers. Unfortunately, without additional
coordination, this absence of state information also
prohibits the kind of sequencing guarantees and file
sharing integrity required by the VMS system . If we
add a central ized coordinator, then this alternative
type is no longer stateless. In addition, it then has
extra message costs over a file service with implicit
coordination. If we use decentralized coordination,
scaling becomes a problem again . Thus, we will not
consider such a service further.

There are other factors that affect the ability of a
service to scale and that show contrasts among the
various service types. File security is one such fac
tor. Security is a particular concern for larger net
works in which different machines are l ikely to be
operated by different (mutually suspicious) organi
zations. In each type of service, the cl ient operating
system can use network security techniques to
authenticate its identity and the identities of its
users.' Once these identities have been establ ished,
the c l ient is responsible for associating each request
with the user who made the request. Even given
such authenticated requests, the different types of
service provide different levels of protection for the
data they hold .

A disk server can on ly police access to whole
disks . Thus, once it a llows a cl ient access to the
disk, that client has access to everything on it . This
implies that a disk server trusts its cl ients' operating
systems tO protect not only the contents of files from
i llegitimate access, but also the file structures that
define the files. Such protection might be insuffi
cient in cases where an organization has some dis
trust of the operating systems of potential clients .

A file server can police access a t the file level and
is in complete control of the file structures on its
disks. With this information, the file server can check
a user's authority tO access individual files. Such
control is sufficient so long as one trusts the clients
to properly manipulate the contents of each individ
ua l file. Finally, a record server can increase the

18

protection provided by a file server to include both
the file and the individual records within the fil e .

Another scaling factor to consider is the restric
tions on software evolution i mposed by interopera
tion between computers. Operating system software
in a large network wil l necessarily evolve unevenly,
and more than one operating system version will be
in use at any one time . These software versions may
differ along two dimensions: in the interpretation of
common data structures and in the features each
version offers to appl ications.

A distributed disk service does not support
uneven evolution very wel l . Consider the case in
which cl ients that are running different versions of
the operating system access a single disk server.
Each client may have a different expectation of the
fi le structure on the disk or of the coordination pro
tocol between the cl ients.

The problem of uneven software evolution is
more tractable in file and record services. In a file
service, only the server operating system reads or
writes the fi le structure or al location tables on the
disk . Therefore the server can guarantee the integrity
of its directory and file structures without regard to
the client's version . A record server can protect its
directory and fi le structures and can also guarantee
integrity of the record structures within files.

Another aspect of software evolution is the evolu
tion of the service itself. New versions of either
cl ients or servers can introduce new functions. If a
new client communicates with an old server, or vice
versa, there can be a mismatch in the l ist of func
tions supported. A distributed service must be able
to adapt to these mismatches.

Here the disk service has the advantage of having
the simplest protocol and therefore the one least
l ikely to be augmented over time . The advantage
of simplicity extends to the file service, which is
simpler than the record service.

I mplementation considerations affect the abil ity
of the three service types to fit transparently into a
VMS system. The three types differ in their abil i ty to
support existing user commands and applications.
The record service fits least well , since i t is only
available to those programs that use RMS to access
fi les. A fi le service is better, because it handles any
applications that either use RMS or access files using
the fi le system interface . A disk service also sup
ports those system programs, such as BACKUP, that
sometimes view a disk as an array of blocks rather
than as a set of files.

Each of the service types could meet our goals to
some degree. In most cases, we found a gradient from
disk service through fi le service to record service,

No. 9 june 1989 Digital Teclmicaljourrnll

Design and Implementation of the VAX Distributed File Seroice

with each goal being met in greater or lesser degree
as one moves along the gradient. For example perfor

mance and transparency were best in disk and file

services; scaling and security were best in file and
record services.

We decided to implement a file service, because

it met most of our goals without seriously compro

mising any of them. As noted above, a file service

does require that the clients cooperate with one
another if they are to update files simultaneously.

We noted that many applications did not require
simultaneous update, so we deferred this capability

to a future release. At present, shared access is disal
lowed tO prevent unexpected updates. Our experi
ence since releasing DFS makes us believe that we

were justified in making this decision.

Peiformance
As part of the DFS design, a detailed analysis of sev

eral design alternatives was undertaken. This analy

sis allowed us to study the practical ity of remote
data access by assessing i ts performance. It also
allowed us to make informed selections among the

design alternatives. These selections were based on
issues such as design complexity and relative per

formance. In this section, we first discuss the met

rics used in the performance analysis and then
describe the model we developed. The section con
cludes with examples of how performance results

obtained from the model influenced our final

implementation of DFS .

P�fonnance Anarys�
In the DFS analysis, we assessed performance by

using a metric that reflects a user's primary percep
tion of the performance of the system; that is, how

long does it take for a job tO complete. Thus, response
time was our most important metric in assessing

performance. At the same time , other measures were
also useful, such as the utilization of the various

resources. Such metrics provide a quantitative
explanation of the performance, for example , by
showing the locat ion of bottlenecks.

Many performance characterizations are based on
response-time or elapsed-time measurements of a
single user making requests to a service. Although
the performance for a single user is an important
measure, it can be a misl eading characterization.

For a file service, the server is a shared resource that
is accessed by mu ltiple clients. The effect of queu

ing for the various resources at the server can have a

significant effect on the performance seen by users
of the server. Thus, an assessment of the perfor

mance of the system under load is needed to provide

complete characterization of the system.

Digital Tecbnical]ournal No. 9 june 1989

Finally, we also wanted to estimate how many

users can be supported with satisfactory response

times. For this analysis, we compared the response

time given by the distributed file service to the
response time offered by a local disk. Just as per
formance degrades as the number of users increases

in a multiuser t imesharing system, file service per

formance degrades with an increase in the number
of users. This degradation results from contention

for the disk and server CPU. The file service also

suffers due tO latency in the network. To account for

these factOrs, we accept a response-time increase of

25 percent over that of a single workstation with a
local disk.

Peifonnance Analys� Model
For contrasting design alternatives, It 1s too time
consuming to build many systems with di fferent

designs. Even for a given design, large multiple
client testing is very time consuming. Therefore, we

developed a queu ing network model tO assess the

performance of the file service design alternatives

quickly and quantitatively. The model represents a

distributed system comprising the file server and

multiple single-user workstations as client machines.
Since we were primarily interested in the per
formance of the file server, the queu ing network

model and the workload we describe here represent

multiple clients making requests only to a single
DFS server.

Some important characteristics of the DFS commu

nication mechanism affect the model of the system.

The DFS protOcols are connection-oriented, with
long-living connections between client and server

machines. Also, these protOcols generally have a

strict request-response nature, so that at any time a

client will usually have only one outstanding request
to a server. As a result, the number of requests out
standing in the overall system (that is, requests

being processed at the server or being processed or

generated at the client) corresponds tO the number
of single-user client workstations in the system.
Because of this characteristic, it is convenient to use

a closed queu ing network model tO represent a dis
tributed system in which multiple clients request

service from a DFS server. In this model , the number
of customers in the queuing network corresponds to

the number of workstations.
Client requests to the server may experience

queu ing at each of the individual resources at the

server node. The delays caused by queuing reduce
the system performance as seen by the user. There

fore, we represent the secver in substantial detail;

each service center that represents a resource at the
server also has a queue for requests that may await

19

Distributed Systems

service at that resource. The server resources being
modeled are

• The network interface (The transmit and receive

portions are each modeled separately.)

• The CPU

• The disk subsystem at the server

Since no queuing occurs at the client, the various
segments of processing taking place at the client are
represented as delay servers, i.e. , service centers
with no associated queue. A simple view of the dis

tributed system is shown in Figure 1 .

A particular system design and workload may be

modeled by substituting the appropriate parameters

into the model. For determining many of the system
design parameters, we used a protOtype file service

that was developed in corporate research .r'

The prototype had already demonstrated the fea

sibility of a VMS file service and some of i ts perfor-

mance potential. This prototype itself represented

only one design alternative. To estimate the per

formance of the other design alternatives , we used

the prototype to provide parameters for our models.

All the models have the same set of service centers,

but the centers are distributed differently in the var

ious models. Therefore, we measured the time taken

to execute the parts of the prototype that corre

spond to the service centers in our model. We could

then analyze the models with real parameters to pre

dict the performance of various design alternatives .

We constructed an artificial workload to drive our

model. The workload was based on our understand

ing of typical user behavior and was also derived

from measurements of typical timesharing environ

ments. 7·8 A user at a client workstation was considered

to invoke program images repeatedly. The programs

invoked by the user require access to some number

of files. The programs alternate between performing

DFS CLIENTS

r - - - - - - - - -,

REQU ESTS

I
I
I
I
I
I DISK 2

I

DEONA IN SERVER
CPU

D ISK 3

DEONA OUT

_j

Figure 1 Simple System Queuing Model

RESPONSES

20 No. 9 june 1989 DigiUll Tecbnicaljounull

Design and Implementation of the VAX Distributed File Service

local computation and doing system service opera
tions for access to these files. These files are assumed
to be stored at the file server.

The amount of data transferred and the processing
done at the server for each request depends on the
type of the request. The model distinguishes two
types of request: control operations and data access
operations. Control operations are operations such
as open and close file which have a high computa
tional component. On the other hand, data access
operations are simple reads and writes. Data access
operations usually have low computational require
ments but require larger data transfers .

In between the program invocations, we assumed
that the user spends a certain amount of time think
ing or doing processing unrelated to our investi
gation. All processing at the client is represented in
the model as delay servers with the appropriate
branching probabilities.

To make the modeling traceable, we assumed chat
the service time at each service center is exponen
tially distributed. Since we were interested primar
i ly in a fi le server's mean performance, this was an
acceptable assumpcion.9 Even given this assump
tion, the model had to distinguish control and data
access operations .

Unfortunately, these two classes of operations
have different service times at the various service
centers. This difference means that the queuing
network model does not satisfy the requirements for
a produce-form solution and may not be solved
exactly. 10 We used a simple approximate-solution
technique to solve this closed que u ing network
model . This technique is an extension of the basic
multiclass mean value analysis cechnique. 1 1 . 1 2 The
model characteristics, parameters, and the solu
tion technique are described in greater detail in
reference:'

Performance Results and
Design Alternatives

The queuing model described above was used to
extrapolate the measurements of our prototype
distributed file service into predictions of the per
formance of various file server designs.

The performance measurements of interest were

• Program response time (time to execute a pro
gram , including remote data accesses)

• Program throughput (total number of programs
executed per unit time)

• Utilization of the service centers at the server
node

• Aggregate bandwidth that is used on the Ethernet

Digital Tecbnical]ournm No. 9 june 1989

Vi
0
z
0
(.) UJ
(/) ::::i :::!
�
UJ
�
i=
UJ
(/)
z
0
0..
(/)
UJ
a:

8000 A B c

STANDALONE
6000 WORKSTATION

RESPONSE T IME
DEGRADED

- �s:: J _ _

4000

2000 L------L----�------�-----L----�
0 20 40 60 80 1 00

USER POPULATION (WORKSTATIONS)

KEY:

A - BASELINE CONFIGURATION

B - DATA CAC H E I NCLUDED

C - SAM E AS B , PLUS KERNEL-BASED SERVICE

D - SAM E AS C. PLUS FILE-OPEN CACHING

E - SAME AS D, PLUS GATHER-TRANSMIT

Figure 2 Program Response Time

Each performance measurement was calcu lated as a
function of the number of client workstations.

We first considered the performance of a hypo
thetical configuration that we call ed the basel ine
system. The basel ine system was a naive server
implementation . The server in the basel ine configu
ration consisted of a single MicroVAX I I CPU as the
server processor, a DEQNA interconnect as the nee
work interface to the Ethernet, and three RD53 disk
drives . The clients were single-user MicroVAX II
workstations. We chose this configuration because
at the time it was representative of a moderately
priced system .

The implementation o f the server i n the baseline
configuration assumed that (1) the processing of
requests at the server was done in a normal user pro
cess, (2) fi le blocks were not cached or prefetched,
and (3) each request or response message was
copied exactly once by the server processor. These
copies were in host memory between server mes
sage buffers and network packet buffers .

Examination of the analysis of the baseline system
shows the type of results the model can generate.
Curve A in Figure 2 shows the user response time as

21

Distributed Systems

0
z
0
()
w
({)
(jJ
w
"
<(
�
:2
<(
a:
"
0
a:
�
f-
::::l
(l_
I
"
::::l
0
a:
I
f-

6

4

2

USER POPULATION (WORKSTATIONS)

KEY:

A - BAS E L I N E CONFIGURATION

B - DATA CACHE INCLUDED

C - SAME AS B. PLUS K E R N EL-BASED SERVICE

D - SAME AS C. PLUS FILE-OPEN CAC H I N G

E - SA ME AS D . PLUS GATHER-TRANSMIT

Figure 3 Program Throughput

E

D

c

B

A

a function of the number of workstations in the base
J,ine configuration of a file service . The program
throughput for the baseline configuration is shown as
curve A in Figure 3. The flattening of the curve indi
cates that some resource is being saturated . Finally,
Figure 4 shows the uti l izat ion of the various service
centers at the file server node . This figure shows
that the disk subsystem is the bottleneck and is
being saturated. As a matter of interest, if the Ethernet
controller util izations are converted into through
put , the Ethernet throughput for the basel ine con
figuration reaches 1 .4 megabits (Mb) per second .

To estimate capacities, we compare the baseline
response t imes to that of a standalone workstation.
The response time of a standalone workstation is
indicated by the horizontal solid l ine in Figure 2 . A
standalone workstation response time degraded by
25 percent is indicated by the horizontal dashed
l ine in Figure 2. The intersection of the dashed l ine
and the basel ine system response time curve indi
cates the number of users that can be supported
with the higher average response time. Applying
this criterion to the baseline configuration, the
model indicates that the file service can support
approximately 10 users.

22

The basel ine system did not exhibit sa,tisfactory
performance . We predicted that a naively imple
mented server would provide a maximum through
put of 1 .8 program images per second . Moreover,
the disks would saturate with just over 40 user work
stations. This base line system a'lso wou ld not sup
port many users with an acceptable response t ime.
In fact, the operating point wou ld be beyond the
knee of the curve, i . e . , the bottleneck resource was
becoming saturated . Thus, this configuration wou ld
not al low for expansion or variance in the user
behavior; nor wou ld i t support the transient
demands that users might place on the system.

Fortu nately, however, a number of design alterna
tives can be considered to a l leviate the saturation of
the bottleneck resource and thus improve perfor
mance . The performance enhancements we consid
ered, and which are described in more detail below,
were as fol lows:

• Save frequently reused information (cachi ng)

• Avoid context switches and dispatches across
interfaces or protection boundaries that require
large amounts of CPU time

• Save data copies

Because the disk was shown to be the bottleneck,
an obvious step to improve system performance was
to consider in-memory caching of data at the server.
Caching data blocks has the dual benefit of saving
disk and CPU ut i l ization. Disk util ization is reduced
because cache hits do not require disk access. Simi
larly, the large amount of CPU uti l ization imposed
by a disk access system service is saved on cache hits .

For caching file data , we assumed a 90 percent
cache hit rate . Other implementations of caching
have predicted such cache hit rates for write-behind
caches.8 We assumed that the cache hit rate is inde
pendent of the number of users. Therefore , there
may be a need to adjust the cache s ize to achieve the
assumed hit rate .

The response-time results with caching are shown
as curve B in Figure 2 . We see that the response t ime
is considerably reduced . There are two reasons for
the substantial improvement in response time: the
reduction in the disk service time, and the improve
ment in the CPU service time. Util ization plots show
that caching results i n a considerable reduction in
disk subsystem utilization . Furthermore, the bottle
neck switches from the disk to the CPU .

With the bottleneck now the CPU, we looked at
ways to reduce CPU overhead . Significant CPU time
was used to pass requests for service at the server
between the kernel and a server process. Thus, ro
further improve performance , we considered moving

No. 9 june 1989 Digital Tecbnicaljo·urnal

Design and Implementation of the VAX Distributed File Service

the processing of some requests into the kernel. For

this alternative, we assumed that all data access

requests were handled entirely in the kernel.

Because of the complexity of performing fil e-open

operations in the kernel, however, control opera

tions on the file service were still sent to a server

process.

Curve C in Figure 2 shows the effect of including

a kernel-based request service and caching. This

enhancement shows a significant improvement over

the baseline configuration with caching alone; the

resource utilizations are much better balanced.

With this design the server can support a substantial

number of users. Curve C in Figure 3 shows the

effect of CPU saturation on the program throughput

for the file service.

Even with kernel-based request handling, the file

service is still hampered by CPU saturation. This

high CPU utilization is large ly due to the control

operations performed at the server. Therefore, we

considered the benefits of caching file-open opera

tions at the server. Note that if a server process is

caching file -opens, the ability of other users on the

server node to access files may be affected. Thus, a

file service with fil e-open caching may need to be

located on a dedicated server node.

Although we did not have any quantitative anal

ysis of the potential efficiency of such a caching

strategy, we conservatively estimated a 50 percent

hit rate. We believed file-open caching could be this

effective for two reasons. There is a high probability

that multiple users will use the same set of files,

such as system files. There is also the probability

that users tend to exhibit a certain amount of local

ity in the files that they access over short periods

of time.
In curve D in Figure 2 , we see that file-open

caching does indeed significantly improve the per

formance of the file service. At low loads, a major

reduction in response time is achieved by the

reduced probability of a disk visit for file-opens. At

higher loads, the substantial improvement results

from the reduction in the service demand caused by
file-opens at the CPU, which is the bottleneck
resource.

The design enhancements just described addressed

performance losses that were fixed on a per-request

basis. However, with the CPU the bottleneck, exami

nation of the components of the CPU time showed

significant incremental costs associated with data

movement. One such cost is the time for copying

information from one memory location to another.

Some copying is done to gather requests and

responses for transmission as a network message.

Often there is more copying to append network

Digital Tecbnica/jounr.al No. 9 june 1989

message headers and segment the data into individ

ual packets for transmission on the network.

The time spent copying data can be reduced by

various schemes. These include passing descriptors

for segmented components of a message , or taking
advantage of the ability of the network interface

hardware to gather together (using gather-transmit)

the segmented components of a packet.

The response times achieved when a gather-trans

mit interface is used are shown in curve E in Figure 2.
This alternative reduces the CPU utilization (by elimi

nating data copies) and as a consequence reduces
the response time.

The DFS implementation includes data caching

and kernel service for read and write requests. DFS
did not include open-file caching so that applica

tions coresident with the server can access the files.

However, to save CPU time on file-opens, DFS does

cache certain information to make file-opens faster.

This is described in more detail in the next section.
Finally, current implementation constraints forced

us to defer using gather-transmit.

Tbe DFS Implementation

In the section Design Options we gave a brief descrip

tion of the three layers of the standard VAXfVMS
file system: RMS, the FILES- 1 1 file subsystem, and the

1 00

- - · - · - ·
. - - -

80

;:::- I
z
� I
ffi so I
a_
z
0
�
N
_j
f=
:::l

40

/
/

20
- - -

- - - - - - - - - - - -

20 40 60 80

USER POPU LATION (WORKSTATIONS)

KEY

-·- DISK

- C PU

-- DEONA

Figure 4 Server Resource Utilization with

Baseline File Server

1 00

23

Distributed Systems

THE DFS
SPLIT

APPL ICATION
PROCESS

OPERATING
SYSTEM �------""...._ __ y ___._._ PROTECTION
BOU N DARY

Figure 5 Standard VMS File Access

disk subsystem . In this overview we first add some
deta i l about the interface between RMS and the fi le
subsystem . We then show how DFS fits into that
interface . To show this, we follow the flow of con
trol from the appl ication on the cl ient CPU through
the two parts of the DFS server and then back to the
application .

Most applications cal l RMS when they need to
access a fi le . RMS runs as part of the application pro
cess, as if it were a subroutine package_ RMS man
ages records within files, and rel ies on the file
subsystem to manage the files and to read or write
blocks of fi le data. An appl ication can also bypass
RMS to use the fi le subsystem directly. Since RMS is
essentially a subroutine package, the fi le subsystem
sees no difference between RMS requests and direct
application requests.

Appl ication ca l ls for fi le subsystem operations use
a special system service, called a QIO, to cross the
operating system protection boundary. When an
application issues a QIO request, the VMS system
collects al l necessary information about the request
into a packet. Then, if the system finds that the
requested device is busy, it can queue the packet
and come back to it later when the device is avai l
able. As processing goes along, intermediate status

24

is stored in the packet . When the request is com
plete, the system returns the status from the packet
to the application.

QIO requests for a file-structured device are sent
to the disk driver. The disk driver separates requests
for reads and writes from requests for control opera
tions (such as open, c lose , extend fi le, and truncate
file) . For read and write requests, the driver trans
lates fi le block addresses to disk block addresses
and then sends them directly to the disk. The driver
sends control operation requests to the FILES- 1 1
XQP, which executes them. The XQP is a subroutine
l ibrary that runs as pan of the application's process,
but has no direct contact with the application or
with RMS .

Figure 5 shows a simplified block diagram of the
standard VMS fi le access control paths. Modules
below the protection boundary (the wavy l ine) run
in operating system context while modules above it
run in process context. The application image, RMS,
and the FILES- 1 1 XQP all run as pan of the applica
tion 's process; thus in the diagram, they are con
tained in the process's box . Two l ines of control
descend from the application image, a thick l ine to
show the normal path through RMS and a thin l ine to
show the optional path d irect to the d isk driver. The
disk driver calls the XQP for control operations .

DFS provides a new VMS device driver package,
just as one would for a new type of file-structured
device such as a disk. This driver, cal led the DFS
client device, is insta lled on the DFS cl ient system .
Its device name is DFSC .

The DFS cl ient device forwards any requests it
receives to its counterpart on the DFS server system,
as shown in Figure 6. In the diagram, the XQP on
the client and RMS on the server are shown with
dashed- l ine borders . This indicates that these nor
mal pans of a VMS process are not used in the DFS
flow of contro l .

When an appl ication issues a QIO to the DFS client
device, DFS translates the QIO arguments into a DFS
request and sends the message to the DFS server. The
server then unpacks the arguments into a QIO again
and issues the QIO on the server system . As on a
single system, reads and writes go directly to the
disk driver; all other QIOs go to the FILES- 1 1 XQP in
the DFS server process. When the XQP or d isk driver
responds tO a request, DFS forwards the response
back to the c l ient system . There DFS translates the
response into the QIO format and returns it tO the
application. Thus the appl ication can operate exactly
as it did when its fi l e system was loca l .

Setting Up a Connection
Now let us examine the operation of DFS a l ittle
more close ly. We stan with a system manager who is

No. 9 june 1989 Digital Tecbnica/journal

Design and Implementation of the VAX Distributed File Service

about to make a disk's file system avai lable for
access from other systems. The disk is mounted and
avai lable on a VMS system that has the DFS server
installed and started.

The system manager tells the DFS server to add an
access point . An access point is a directory on a disk
volume and a global name for that directory. The
server records the local and global names for the
access point and then registers the global name with
the VAX Distributed Name Service (DNS) . 1 3 The reg
istration also includes the network address of the
node on which the DFS server is running. DNS makes
the access point name available to all other nodes in
the network.

A user on a client system who wishes to access the
files in the access point mounts the access point on
the cl ient system. In response to the mount com
mand, DFS creates a new device on the client system
associated with that access point .

DFS CLI ENT

APPLICATION
PROCESS

I APPLICATION I I MAGE

� , - --, I XOP I
L _ _j

I I I DFS CLI ENT DFS FILE
DRIVER CAC H E

I DFS COMM I DRIVER

I DECnet I

N ETWORK

The DFS mount uti l ity asks DNS for the network
address associated with the access point. The utility
then makes a DECnet connection to the DFS server on
the indicated node . The DFS client passes the access
point name to the DFS server, so the server knows
which of possibly many access points the client is
mounting.

Assuming no errors, the access point now appears
as a VMS device cal led DFSCn , where n is a sequence
number. This device appears to the system and to al l
applications on the system to be a normal file struc
tured device, just like a disk driver. When an appli
cation issues a QIO to the DFSC device driver, the
driver builds a request message and sends it to the
DFS server associated with that DFSC device . DFS uses
a custom communication layer to handle requests
and responses . We describe this layer in the section
DFS Communication.

DFS SERVER

DFS SERVER
ACP PROCESS

I DFS SERVER ACP I IMAGE

, - -,
I RMS I
L _ _j

I FILES-1 1 I XOP

+
OPERATING

DFS SERVER � SYSTEM
DRIVER PROTECTION

BOUNDARY

I DFS COMM I I DISK � DRIVER DRIVER

I DEC net I
DISK

Figure 6 DFS File Access

Digital Technical journal No. 9 june 1989 25

Distributed Systems

Failures

Networks exacerbate existing fai lu re modes i n a file
system and introduce new ones. It is qu ite possible
for an operating system to lose communication with
a d isk, whether the disk is local or remote . If a local
disk goes off- l ine, the VMS system leaves the files
open and waits for the disk to come back on-l ine
unless the operator tells it to stop wait ing. This is

safe , because users cannot modify the disk while it
is off-l ine.

In a network system, however, it is possible to lose
communication between a server and a subset of its
clients. In this case, some clients can modify or even
delete files during the time that other cl ients find
the d isk to be off- l ine . Therefore, the DFS behavior
cannot be the same as the local behavior.

DFS takes a conservative approach to this prob
lem . If the commun ication with the server fai ls for
any reason, the DFS cl ient driver reports a disk off
l i ne error to every appl ication that has any files
open on that connection. The DFS client does not
attempt to keep the files open , s ince they could be
modified by other cl ients.

If an application tries to open a file after the con
nection has broken, the DFSC driver tries to connect
to the server again. If the connection attempt fai ls or
if the server does not respond in one minut e , the
driver reports a disk off-l i ne error again . Eventually,
one of these open attempts succeeds, and DFS car
ries on as usual .

If the DFS server detects that a cl ient has become
unreachable, it closes aU files currently open for
that client. This is necessary in order to match the
client's behavior in this case .

The DFS Seroer

The DFS server is implemented in rwo parts: as a
driver in the kernel and as a server process in t he
form of an ancil lary control process (ACP) . I ncom
ing request messages go through the DECnet driver
(NETDRJVER) , then tO the DFS communication driver,
and finalJy to the DFS server driver, whi le sti l l at fork
(interrupt) leve l . (See Figure 6.) The DFS server
driver handles read and write requests itself and for
wards al l control operations tO the server process.

This design was i nfluenced by our prototype and
mode l ing work, which had shown that server per
formance was significantly improved by i mplement
ing data access operations in the kernel . We also
found that i mplementing the control operations in
the kernel offered insufficient benefit to justify the
significant implementation investment required .

The DFS Seroer Driver The server driver rece ives
all incoming requests. It sends the control operation

26

requests to the server process and handles the data
access requests i tse.Jf. Our mode l ing showed t hat
data caching increased performance significantly.
Therefore , the DFS server driver implements a
data cache.

If an incoming request is a read operation, the
driver first checks its cache tO see if the requested
file blocks are ava i lable without accessing the disk.
If so, the driver sends the data to the c lient i mmedi
ately and dism isses the request. If not, the driver
allocates the least recently used buffer from the
cache tO hold the data to be read from disk and for
wards the request to the disk driver.

If the request is a write operation, the DFS driver
checks to see if the requested fi le blocks are already
i n the cache . If so, it copies the new data from the
request message i nto those cache blocks. If not , it
a l locates the least recently used cache block and
copies the data there . The cache is write-through:
the DFS driver a lways writes data to disk before
respondi ng to the c l ient.

To make a disk access request from the kernel, the
driver must translate the virtual bl ock numbers
from the request i nto the logical block numbers the
disk driver expects. (Virtual blocks are addressed
by offset i nto a file ; logical b locks are addressed by
offset into a d isk. Both names refer to the same
5 1 2 -byte b locks of data.) The DFS driver then bui lds
a VMS i n ternal I/0 request packet and forwards i t
directly t o the disk driver. When the disk driver
calls the DFS driver back to signal 1/0 completion,
the DFS driver bui lds a DFS response message and
returns it to the cl ient.

As long as a fi le is open , the cached data is valid
because DFS does not allow write-sharing. Once the
file is closed, however, other applications on the
server system can modify the file and thus inva l idate
the cache . When the server process opens a fi le, i t
calls the DFS driver to check the revision number
saved with the cache against the revision nu mber
stored in the fi le header on disk. If the rwo numbers
are the same , then the cac he is valid and can be used
in the new session. If the numbers are different,
then the disk copy has been modified and the driver
marks the cached data i nval id .

The DFS Seroer Process If the request from the
client is for a control operation, the DFS server

driver puts the request on a work queue and wakes
the DFS server process.

There is only one DFS server process on any one
computer. This process is multithreaded, so it can
handle many clients at once . The alternatives to a
single process are one server process per open fi le
or one per client user. The use of a s ingle process

No. 9 june 1989 Digital Tecbnical]ournal

Design and Implementation of the VAX Distributed File Service

reduces resource requirements . A single process
uses less memory than several processes, and under
load, the number of context switches can be
reduced . Moreover, request latency is reduced
because a single server process is always available
and thus the client never has to wait for a process
creation .

The single multithreaded server did not, however,
lend itself completely to the transparency desired.
The goal was to provide exactly the same security
semantics as the VMS system provides to a local user.
However, a single multithreaded server has diffi
culty representing multiple users with different
identities. The server must run with privileges suffi
cient to allow it access to any file a user might legit
imately access. Yet the server must somehow check
protection on each file on behalf of the client user.

Exact VMS security semantics are difficult to guar
antee if protection checks and file-opens are done
separately. Therefore the DFS server impersonates
a local user for each client user. When an applica
tion opens a file, the DFS client sends the user's
name to the server . The server already knows the
client node name as a resul t of the DECnet connec
tion. The server uses the system proxy file to map
this node: :username pair into a local user name. The
server then reads this local user's authorization data
from the system authorization files and builds a
"persona block" for the client user.

Before the DFS server process issues a QIO on
behalf of a client , it copies the authorization data
from the client user's persona block into its own
process control block. Thus the server impersonates
the user for protection checking purposes and uses
the standard VMS protection checking mechanisms.
Thus, the security semantics will be those that
would have been applied had the local user run the
application.

Our model showed that the time spent opening
files had a noticeable effect on overall performance.
Therefore, the DFS server caches these persona
blocks. This caching reduces the number of times
the server incurs the overhead associated with read
ing the three authorization files . DFS frequently
purges persona blocks so that authorization changes
will become effective in a timely manner.

DFS Communication
DFS is layered on a general request-response match
ing and session maintenance service called RR. This
formal separation between RR and the other compo
nents of DFS makes the implementation easier and
less prone to faults.

The resulting module is extensible and fully iso
lates the rest of DFS from its underlying transpon. RR

Digital Technical journal No. 9 june 1989

has a number of characteristics that make it particu
larly appropriate for DFS. We describe these charac
teristics in this section.

RR suppons sessions to allow each request to be
associated with a particular context . DFS uses a sepa
rate session for each open file . The sessions provide
convenient handles for directing the requests and
responses to the appropriate server thread and
client process .

Each RR session can have multiple requests out
standing simultaneously. DFS uses this feature to sup
port asynchronous 1/0. Funhermore, the responses
need not come in the same order that the requests
are made. DFS uses these out-of-order responses to
take ful l advantage of cache hits on read requests.
Using the cache, the server can respond to any
request as soon as it has the data . Of course , the DFS
client repons the 1/0 completions to the applica
tion in the same order as the disk driver would.

The RR protocol is layered on DECnet. We found
that the performance improvements to be gained by
using a custom, LAN-only protocol were small . The
gain was not sufficient to offset the advantages
of using an established protocol. These advantages
included the ability to scale the system by using
WANs and to take advantage of the considerable
experience our customers have in designing,
installing and managing DECnet networks .

RR maps all RR sessions between a given pair
of nodes onto a single underlying virtual circuit.
RR's application interface gives no indication of the
state or semantics of the underlying vinual circuits.
Therefore the mapping from RR sessions to virtual
circuits can be changed if that becomes desirable .

There are a number o f trade-offs t o be made when
a single virtual circuit is used between each pair of
nodes. On the positive side, a single circuit uses Jess
memory and CPU time than does a circuit per open
file . The single circuit also requires fewer messages
to open a file , since the circuit itself only has to be
opened for the first fi le . Using a single circuit also
saves CPU time and message exchanges required to
test for broken circuits. If a remote node becomes
unavailable, we know that it will be unavailable for
all files . There is no point in testing it anew for each
open file .

There is also a negative side to multiplexing RR
sessions on a single virtual circuit. The flow control
in that single circuit is imposed unfairly. If one ses
sion sends too many messages for the network to
handle, the virtual circuit and thus all sessions on it
will be stopped until the congestion clears. This has
not as yet proved to be a problem in practice, pos
sibly because the request-response nature of DFS
traffic has some implied flow control.

27

Distributed Systems

RR notifies i ts ca ller when the virtual circuit
underlying a session fails (because of a failure in
either the communication channel or the remote
node). Again the session provides a convenient handle
for directing this notification.

Finally, to conserve resources RR shuts down
unused virtual circuits. If no sessions are open on a
circuit (no files are open on it) , then RR closes the
circuit . Closing the circuit removes all related state
information from the server side , but not from the
client side . Thus the server is free to support more
clients , and the client has enough information to
reconnect the virtual circuit when an appl ication
opens another fi le .

Conclusion
DFS makes remote disks appear local to both users
and applications. It supports this i l lusion by offer
ing quick access to files, by using the same inter
faces as the familiar local file system, and by being
faithful to VMS file system semantics.

DFS can scale up to very large networks, because
i t is layered on DECnet and because only one client
and one server are involved in any exchange. No
other nodes need be advised or consulted, and thus
network size is irrelevant to the DFS algorithms . Lay
ering DFS on DECnet also gives flexibil ity, builds on
customers' experience with DECnet, and allows easy
integration into installed networks .

DFS is one of the initial oss products that improves
the way the VAX/VMS system is used in networks. DFS
now works with DNS to make access point names
global and will work with other products in the DSS
family as they emerge. Together these products will
simpl ify distributed access to network resources.

Acknowledgments
A large number of people contributed to DFS .
The authors would especially l ike to acknowledge
the significant contributions of Dennis Phill ips,
Danny Cobb, Julie Corenzwit, Pete Caswell , Carrie
O'Connell , and Henk Tinkelenberg of the DFS devel
opment team. K. K . Ramakrishnan's modeling efforts
provided invaluable guidance to the development
effort. Finally, we would l ike to acknowledge the
Eastern Research Lab research team, whose proto
type was a model for the DFS design .

References
1 . N. Kronenberg, H . Levy, and W Strecker,

"VAXclusters: A Closely-coupled Distributed Sys
tem," A CM Transactions on Computer Systems,
vol . 4 no. 2 (May 1986) : 1 30-146.

28

2. DNA Data Access Protocol (DAP) Functional

Specification, Version 5.6.0 (Maynard: Digital Equip
ment Corporation, Order No. AA-K177A-TK, 1980) .

3. R. Weber and W Nichols, "Multiple Processor
Coordinated File Access in VMS Systems," Build
ing Blocks for Storage Systems - Tutorial Notes

for the Ninth IEEE Symposium on Mass Storage
Systems (October 1988) : 209-218.

4 . K. Ramakrishnan and]. Emer, " Performance Anal
ysis of Mass Storage Service Alternatives for Distrib
u ted Systems," IEEE Transactions on Software
Engineering , vol . 1 5 no. 2 (1 989) .

5. A. Birrel l , "Secure Communication Using RPC,"
A CM Transactions on Computer Systems, vol. 3
no. 1 (February 1985) : 1 -14 .

6. K. Ramakrishnan and J. Emer, "A Model of File
Server Performance for a Heterogeneous Distrib
uted System," Proceedings of the A CM SIGCOMM

'86 Symposium (August 1986) : 338-347.

7. R. Jain and R. Turner, "Workload Characterization
Using Image Accounting," Proceedings of the
Computer Performance Evaluation Users Group

18th Meeting (October 1982) : 1 1 1 -1 20 .

8.] . Ousterhout , e t a l . , " A Trace-driven Analysis of
the UNIX 4 . 2 BSD File System ," Proceedings of
the lOth A CM Symposium on Operating Systems

Principles (December 1985) .

9. E . Lazowska,] . Zahorjan, D . Cheriton, and W
Zwaenepoel , "File Access Performance of Diskless
Workstations," A CM Transactions on Computer

Systems, vol . 4 no. 3 (August 1986) .

10. F. Baskett, M . Chandy, R. Muntz , and F. Palacios,
"Open, Closed, and Mixed Networks of Queues
with Different Classes of Customers," journal
of the Association for Computing Machinery,

vol . 22 no. 2 (April 1975) : 248-260.

1 1 . S. Bruell and G. Balbo, "Computational Algo
rithms for Closed Queuing Networks," Operating
and Programming Systems Series, (New York:
Elsevier North-Holland , 1980) .

1 2 . M . Reiser, "A Queui ng Network Analysis of
Computer Communications Networks with
Window Flow Control ," IEEE Transactions on
Communications, COM-27 no. 8 (August 1979) :
1 199-1209.

13 . S . Martin, J. McCann , and D. Oran, "Development
of the VAX Distributed Name Service," Digital

Technicaljournal (June 1989 , this issue) : 9-15 .

No. 9 june 1989 Digital Technicaljourrnll

David M. Griffin I
Brad C.]obnson

Remote System Management
in Network Environments

The introduction of the DEC net System Services product set opened new possibili

ties for the management of systems. One of the products in this set is the Remote

System Manager (RSM) software, which allows managers and operations staff to

support numbers of systems from a central point on the network. Based on a

client-server model, RSM is designed to provide such useful Junctions as software

distribution,Jile backup and restoration, and client administration. Each of these

services uses common RSM facilities and tools that exist in the operating system

environment- either VMS or ULTRIX.

The proliferation of computer systems, in particular
workstations and personal computers, has encouraged
the rapid growth of nerworks and has consequently
magnified the importance of system management.
The nerwork itself presents an opportunity for man
aging these systems. The Remote System Manager
(RSM) sofrware , a member of the DECnet System Ser
vices (DSS) product set, uses this opportunity to
provide centralized management of common system
management activities.

This paper presents an overview of system man
agement in a nerwork environment and the effect of
DSS in this environment. We then describe how RSM
in particular addresses the problems and challenges
presented by a nerwork environment.

Distributed System Management
System management is generally defined as a set of
tasks that a human must perform because the com
puter cannot do them. Many of these tasks involve
resource management, for example, managing user
directories in relation to the availability of disk
drives, and information management, such as inform
ing the system of a new user's identity and rights.

Nerworks create a need for a new perspective on
system management. The system manager is now
faced with managing dozens or even hundreds of
systems. Many of these systems are small work
stations, but all of them use the same sofrware found
on larger VAX computers, and all of them generate
similar system management requirements. Further,
workstations provide an opportunity to tai lor the
sofrware environment to the job the user must
perform. For example, a particular computer-aided
design sofrware package can be tai lored to the
needs of a circuit board designer. Therefore the sys-

Digital Tecbnical]aurnal No. 9 june 1989

tern manager's task is complicated by the need to
manage multiple systems running different versions
of applications, and in many cases, different operat
ing systems.

System management of one system or a thousand
is best approached as a combination of strategic
resource planning and tactical operations .

The DECnet System Services product set al lows
resources that would normally be confined to a single
system or VAXcluster system to be shared by multi
ple systems in a nerwork. The management impl ica
tions of shared systems are profound: nerworked
resources can now be managed in a manner simi lar
to managing a single system, thus reducing the over
all system management load. The deployment of
nerwork resources shou ld be planned accordingly.

• Expensive output devices, such as laser primers,
plotters, etc . , can be placed close to the users or
in areas away from the secured main computer
room . Distributed queues allow multiple systems
to share a single primer or a central site to print
reports on remote primers.

• Workstation mass storage is often limited because
the cost per megabyte for workstation disks is
greater than the costs of large, mass storage
devices (such as Digital's SA482 storage array) .
VAX Distributed File Service (DFS) permits high
performance access to data residing on secure,
cost-effective media and allows the media to be
managed as a single disk volume. 1

• Data that would normaliy have to be replicated
berween computer systems can now be shared
using DFS . Data sharing reduces mass storage
demands across the distributed system, and the

29

Distributed Systems

management of mass storage can be concentrated
to a smaller number of systems.

• Local data can be backed up over the network
with RSM to systems with high-speed tape drives
or large-capacity disk drives . This procedure can
eliminate the need for local backup devices,
such as cartridge tape drives, and can reduce the
hardware costs for backup across the distributed
system.

• Network installation of operating systems and
appl ications can eliminate the need for loca l
load devices, such as floppy disks or cartridge
tape drives. Further, these instal lations el iminate
the need for local management expertise.

When considering how to manage a number of
workstations in a local area network (LAN), one should
consider first the option of a local area VA.Xcluster
(LAVe) system. LAVe provides a tightly integrated
management environment. Users of the cluster share
operating system software, appl ications, file sys
tems, and single security domain.2 Management of a
VAXcluster system is essentially the same as manag
ing a single timesharing system, which makes it very
attractive in a number of environments.

The strengths of the local area VAXcluster can also
be its weaknesses. In a shared software environment,
aU workstations in a cluster must run the same ver
sions and upgrade at the same time. In a common
security environment, a privileged user on one
workstation is privileged on all of them.

LAVe i s a lso bound to the LAN topology, although
extended LANs al low LAVe to operate beyond the
default Ethernet topology.3 When organizations span
a larger geographic area, however, a wide area
network (WAN) may be necessary. The VA.Xcluster
communication protocols do not operate in a WAN
topology. The DSS products are optimized to run in
a LAN, and because they are layered on DECnet soft
ware , they all have wide area capabi lit ies as wel l .
Table 1 compares tile DSS and LAVe environments.

Table 1 Comparison of DSS and LAVe
Environments

DECnet System Services

System software type
and version can vary
from system to system

Multiple security and
privilege domain

Available on local and
wide area networks

30

Local Area VAXcluster

System software type
and version is common
to all users

Single security and
privilege domains

Available on local area
networks only

Definition of Remote System
Management Tasks
When the RSM engineering team examined system
usage in networks, it found that organizations were
usually composed of distinct groups of users who
share a common environment. For example, all
members of a group would use the same version of
an appl ication or util i ty . These computer users gen
erally did not want to perform system management
tasks . As a result many tasks were done irregularly or
not at a l l , including data backup tasks . Because data
is an asset that must be protected , many system
management groups were made responsible for
maintaining the workstations. To meet this responsi
bil ity, system managers often found themselves l it
erally running from one system to the next,
instal l ing software from floppy disks or backing up
fi les to tape cartridges.

We also examined the variety of tasks a system
manager performs and the t ime it takes to perform
them. These tasks include

• Software installation of operating systems and
appl ications (for example, Digital layered
products)

• File backup to tape or disk

• Adm inistrative functions, including user account
maintenance , quota modification, and security
access control and privilege maintenance

• System tuning and general maintenance (for
example, queues maintenance)

• System monitoring

We decided to provide a product that supported
the tasks of software instal lation and file system
backup because they consumed a large portion of the
system manager's t ime . In addition, the tasks could
be structured so that differences between systems
could be handled by the RSM software and hidden
from the system manager.

Significant Design Decisions
and RSM Overview
Like the other DSS products - DFS, Distributed
Name Service (DNS) , and Distributed Queue Service
(DQS) - RSM is a new product. No other Digital
layered product can be considered a predecessor.
Furthermore, few products in the market directly
compete with the RSM functional ity. Therefore a
number of fundamental product decisions had to be
made, without the benefit of comparison, to design
a usable and salable application.

No. 9 june 1989 Digital TecbnicaljounJal

Remote System Management in Network Environments

The following are the RSM goals that reflect these
decisions:

• The overall goal was to provide useful functions
that wou ld allow for the efficient management of
systems in a distributed environment; each type of
function would be provided by a separate service .

• The services of RSM would provide centralized
control .

• The services of RSM would use a server-to-client
model . (The terms client and server with reference
to RSM are used in a somewhat unique way. I n
RSM a client is a system that receives management
services; a server provides management services .)

• All RSM services would use tools that exist in the
operating system environment in which they
execute. (We would not reinvent or redevelop
these tools.)

• Each service would use common RSM facilities.

• Each service would develop or use unique func
tionality that would help that service be more
usefu l .

• Each service would provide client support in
both the VAX.jVMS and ULTRIX environments, as
applicable.

Before describing the design goals in more detai l ,
we should note that a fundamental goal was com
mon to all of the DSS products. Because these were
introductory products , we chose not to perfect the
first release of the product. Rather, our goal was to
bring each product to market in a timely fashion so
we could learn more about the market and customer
requirements from firsthand experience.

As stated previously, the overall goal of RSM was
to provide management functions that are useful in
a distributed environment. A useful function is char
acterized as one that is commonly used in managing
a single system and that can be applied to many sys
tems within a network. Currently, RSM is composed
of four loosely coupled functions or services:

• Basic operation services , DOS

• Software distribution services, sos

• Backup and restore services, BRS

• Client administrative services, CAS

In line with our design decisions, these services use
common RSM facil ities (DOS) . Each provides separate
functionality, and each has unique characteristics
that are important to each service . The SDS, DOS, and
DRS services are described in the section Compo
nents of the RSM Software.

Digital Technical journal No. 9 june 1989

RSM provides centralized management in a server
to-client model ; that is, there is one server, called
the RSM management server, for some number of
RSM clients. The management server controls the
actions on the clients . In fact, there are three types
of RSM servers :

• Management server

• Library server

• Target server

A management server provides the RSM user inter
face and the mechanism for connecting to the avail
able RSM services. A management server also contains
a l ibrary and a target server. The l ibrary server is
specific to SDS and is used for maintaining the soft
ware which SDS can distribute. The target server is
specific to DRS and is used for maintaining backup
save-sets. The l ibrary and target servers are described
in the sections Software Distribution Services, and
Backup and Restore Services, respective ly.

Any system on the network can be an RSM client,
including the management server. The only restric
tions are that the client must be able to communi
cate to the server using DECnet, and the client must
run either VAX/VMS or ULTRlX software. In the RSM
model, c lient systems are passive ; that is, they do
not initiate any actions without explicit direction
from an RSM management server.

Another characteristic of the RSM model is that
each client system being serviced bears most of the
required processing overhead. This reduces the risk
of the management server becoming a CPU bottle
neck and increases the abil ity of the server to service
more client systems. That is, distributed processing
in a network context provides true paral lelism
multiple , autonomous systems work to complete
tasks simultaneously. The RSM model attempts to
capitalize on this aspect of the network by letting
the client that is being serviced do most of the work.

To support this server-to-client model , a com
mand execution agent (CEA) module exists on every
RSM client. This module is part of the RSM client
software . The purpose of this module is to accept
management directives from one of the services and
execute them on the client system . The manage
ment server is needed to initiate the operation, pos
sibly supply some additional information (such as
an application name for an SDS installation) , and to
update databases and log fi les once the task has
completed.

Another goal was to reduce devdopment time by
taking advantage of stable technologies. Designers
chose to use existing facil ities or tools whenever pos
sible for RSM services. Although this strategy p laces
l imitations on the services, we considered the strategy

3 1

Distributed Systems

worthwhile to meet our time-to-market goals. The
use of existing faci l it ies allowed us more t ime to
address other basic distributed appl ication issues
such as logging, recovery, synchronization, and data
access. Furthermore, this removed the need for the
RSM manager to learn new tools - the tools that
were currently used to manage a system locally
would be used to manage systems remotely.

Specifically, RSM uses the fol lowing facil ities and
tools:

• VMS batch queues - for schedul ing asynchronous
RSM operations on the management server

• VMS BACKUP - for both software distribution and
file system backupjrestore when RSM interacts
with VMS cl ients

• The VMSINSTAL software instal lation u ti l i ty - to
install appl ications on VMS clients

• The VA.XELN operating system- to provide a mem
ory-resident environment for instal l ing the VMS
operating system over a network connection

• VAX DNS -to srore network-wide information about
RSM cl ients and RSM servers

• The ULTRIX tar, dump, and restore util ities - for
file system backupjresrore for ULTRIX cl ients

• The ULTRIX setl.d uti l ity - for ULTRIX appl ication
installation

One aspect of RSM that designers found difficu It
to quantify is the size of its management domain ,
that i s , the number of cl ients a single RSM server can
effectively service . Because of the dynamic charac
teristics of the operations that RSM performs, deter
mination of this client-to-server ratio depends on the
custOmer's particular environment. RSM operations,
such as software instal lation and backup and
restore, often involve the transfer of large amounts
of data over the network. Thus the amount of con
tention for network bandwidth in the customer's
environment is the pri mary factor in determining
how many systems can be supported by an RSM
server. RSM version 2.0 recommends a cl ient-to
server ratio of 45 to 1 . However , experience has
shown that some environments can operate at a 1 50
to 1 ratio, whereas other environments may require
a 10 tO 1 ratio.

Components of the RSM Software
Basic Operational Services
To the RSM user, OOS provides a means of maintain
ing information about cl ients and RSM servers . Inter
nally, OOS provides the basic user-interface services:
the command-line interface , the menu interface,

32

indirect command file execution, and miscella
neous routines shared by the other components.

RSM takes advantage of the namespace provided
by DNS to store information about RSM cl ients and
servers 4 DNS also provides RSM with a powerful
abstraction call ed groups, which makes the manage
ment of large numbers of systems more tractable.
Groups in DNS and RSM are collections of object
names. In RSM, groups can contain names of RSM
clients, RSM servers, and other groups, thus forming
a basis for hierarchical group naming schemes. In
almost all cases in which a client or server name can
be specified in RSM, a group name can be substi
tuted . RSM expands the group to the unique set of
names in the group (permitting group memberships
to overlap) and filters out objects that would not
make sense to the command. (For example, server
names are omitted when the context impl ies client
names .) RSM uses the group faci l i ty as a shorthand,
or macroexpansion, faci l i ty; separate commands are
internally generated from the user's external com
mand so that the operation for each member of the
group can fai l or succeed on its own merit.

Software Distribution Services
SDS provides system managers the functionality to
install appl ications and operating systems, from a
centralized server, onto another system in the net
work . sos supports two of our earlier mentioned
goals in that it performs a primary system manage
ment function, and it also scales wel l in a network
environment. Instal lation of an application can con
sume one to two hours of a system manager's time.
An operating system installation can take as long as
eight hours. As discussed below, the RSM manager
must invest a comparable amount of t ime to install
the initial copy of the software in the SDS l ibrary
server, but al l subsequent instal lations require only
a fraction of that time.

The server is responsible for in itiating and track
ing requests, and the cl ients are the recipients
of these requests. SDS can be further broken down
into three components : the management server, the
l ibrary server, and the c l ient . The management
server provides the SDS user interface and is the stOr
age place for SDS files (such as the SDS databases,
SDS executables, and log files) . The second compo
nent , the l ibrary server, is a file hierarchy for storing
copies of software for subsequent network installa
tions. Before software can be installed using SDS, a
copy of the software must exist in the SDS l ibrary.
The l ibrary server is a passive system and is merely a
repository for software . All processes that comrol
the copying of files in or out of the library server are
initiated on the management server. By default, the

No. 9 june 1989 Digital Tecbnica/]ournal

Remote System Management in Network Environments

management server is also a l ibrary server. However,
the RSM manager has the option of insta l ling the RSM
server software on other VAXjVMS systems to config
ure additional SDS l ibrary servers. This option a l lows
the RSM manager to determine which system is best
su ited for the centralized initiation of requests and
which system is best suited for storing copies of
software. Finally, the third component of SDS is the
client. To supply management services to another
system on the network (an RSM cl ient) , the RSM
client software must be insta l led on that client sys
tem . To do this, the system manager can use SDS
itself. Once the RSM server kit has been completely
instal led, the RSM manager can use the SDS compo
nent to initiate the installation of the RSM client kit
on the appropriate client systems.

SDS Concepts One of the primary functions of SDS
is to duplicate the installation of software on many
systems in the network, exactly as the instal lation
was performed on the original (source) system .

To take advantage of cloning, a master copy of
some software must exist in the SDS l ibrary. First, the
RSM system manager must create a copy of the soft
ware. For an operating system , this means using the
standard VMS or ULTRIX installation procedures tO
create a VMS or LTRIX system . For a layered prod
uct, this means using an RSM procedure called
TRIALINSTALL, which will invoke either VMSINSTAL
or setld for VMS and ULTRIX systems respectively.
Then this copy must be copied into a sos library
server. Once there, it is available to be c loned onto
other RSM client systems.

Creating this copy takes as long as a normal instal
lation of the application , mainly because the RSM
manager is actually insta l l ing the application on the
designated system . However, once the appl ication
has been copied into an SDS l ibrary server, subse
quent installations only require the RSM manager to
initiate the appropriate SDS installation request on
the management server. Therefore , although the

RSM manager is required to insta l l the software once
before copying it into an SDS l ibrary, a l l subsequent
installations only require the manager to initiate the
task. SDS assumes the responsibil i ty of instal l ing the
software on one or more c lients and reporting the
status back to the manager.

SDS expands on this basic capability by employing
groups and appl ication sets . The support for groups
is provided by BOS, and the support for application
sets is provided by SDS. Similar to a group , applica
tion set members are either other appl ication sets or
a single application name . By combining both groups
and application sets, the RSM manager can enter a
single com mand that represents the installation of
many applications on many clients. Figure 1 shows
an example of how these set mechanisms are used.
One sos command initiates an installation of all of
the applications that are members of the application
set Languages to all of the RSM client systems that
are members of the group Areal .

SDS Process Row All sos commands can be clas
sified as either synchronous or asynchronous . The
synchronous commands are specific actions on the
SDS databases (such as create, modify, and view) ,
whereas the asynchronous commands allow the RSM
manager to copy software into an SDS l ibrary or ini
tiate installation requests onto RSM client systems.
To explain the process flow of a typical SDS request,
we present an overview of both synchronous and
asynchronous requests in this section .

Al l synchronous requests are handled directly on
the management server by the SDS user interface .
The user interface performs syntax checking, sup
plies any appropriate default va lues and token inter
pretations, and then executes the specified request.

All (successfu l) asynchronous requests go through
the same data path as synchronous requests. Addi
tionally , after an asynchronous request is processed
by the user interface, a client-system-specific work

D I STR I BUTE > I n s t a l l App l i cat io n Languages Area 1

The app l i ca t i on s e t Language s
con t a i ns :

The group Area 1 con ta i n s :

c
FORTRAN

PASCAL

Figure 1 Using Set Mechanisms

Node_ 1
Node_2

Node_n

Digital Tecbnical]ounull No. 9 june 1989 33

Distributed Systems

RSM DATABASE

RSM
SERVER

Figure 2 RSM Configured in a Wide Area Network

file is created. If there is no background job cur
rently working on other requestS for the specified
RSM client system , then a VMS batch job is created to
handle the work fi le . Otherwise the work file is
updated and the currently running job handles this
request. It is the responsibil ity of this batch job to
execute the asynchronous request. If the request is to
insta ll an operating system, the job uses the DECnet
Ethernet boot facil ity to initiate the installation on
the RSM client system . For all other asynchronous
requests, the job contacts the RSM cl ient software
and passes down the appropriate control informa
tion; the client system then executes al l appropriate
actions. In all instances, once the request has been
completed, it contacts the server to report its status
along with status information.

Backup and Restore Services

Ensuring the integrity and recoverabiliry of data is a
prime responsibility of system managers. Data created
by computer system users is an asset for a company
and shou ld be protected as such . Since data is often
modified on a daily basis, protection of that data
requires that the data be conrinually duplicated and
stored outside the system. In the past this process
has typically been done by backing up disks tO local
tape drives or floppy disk drives.

DRS provides the abil ity to backup and restore files
(file systems) over a DECnet network for both VMS
and ULTRIX client systems. The BRS software uses the
backup uti l ity on VMS clients and either the dump
or tar uti l ities (depending on the type of backup

34

being performed) for ULTRIX cl ients . A schedu ling
and tracking system located on the RSM manage
ment server supports the actual process of backing
up the files.

The design for the BRS subsystem is shown in
Figure 2 . BRS has six components: the user inter
face, the database server, the backup sched uler, the
backup initiator, the restore initiator, and the com
mand execution agents (CEA) .

The user interface is activated by the DOS subsys
tem and parses DCL commands issued by the user.
Commands are ava ilable to add , modify, and delete
schedule entries; display schedule entries, history
records, and scheduler status; and initiate ad hoc
backup or restore operations.

The user interface communicates with the database
server which manages two R.J\1S- indexed sequential
fi les: the schedule file and the history fi le .

The schedule file contains basic information
the date a backup shou ld occur and what data is to
be backed up . Entries in the schedule database are
organized by client name and a user-specified
"backup type." This organization allows the man
ager to name and schedule different backups for any
one c lient. (For example, one backup entry could
be constructed to back up critical project files
located on a system on a daily basis; whereas
another entry would back up noncritical files over
weekends.)

The history fi le contains an entry for each backup
operation attempted by BRS. Within the history record
are recorded the status of the backup and pointers

No. 9 june 1989 DigiUll Tecbnicaljournal

Remote System Management in Network Environments

tO the appropriate log, l isting, and save-sets (files
where backup data is actually stored) . HistOry
records are used by RSM when performing a restore
operation. By specifying a particular history entry,
RSM knows from where tO retrieve the save-set and
where to rescore i t .

The DRS scheduler is a process that resides on an
RSM management server. The scheduler periodically
scans the schedule file and determines if any client
system needs to be backed up. When the scheduler
determines that a backup should be scheduled, it
creates a histOry record for the backup attempt. It
then submits a batch job on the target server which
wil l actually control the backup process.

A batch job on the target server runs the backup
initiatOr program. The backup initiator secures
resources for the backup save-sets, which can reside
on a local disk or be directed to magnetic tape. I t
then initiates a connection to the RSM CEA on the
client system. The initiator instructs the CEA to run
the appropriate backup uti lity and supplies it with
the l ist of files/directories to be backed up. The
save-set data and logging i nformation generated by
the backup utility are passed to the CEA which mul
tiplexes the information over the DECnet connec
tion to the backup initiatOr process on the target
server. The initiator, i n turn , unpackages the data
and writes it tO the appropriate files or devices. BRS
uses checksums tO assure data integrity over the net
work connection .

Once the backup is completed, the associated
history record is updated to reflect a successful (or
failed) backup. If specified in the schedule record,
mail is sent to the appropriate parties indicating the
status of the backup .

A similar process is used to restore fi les. However,
by using information gleaned from the user-specified
history record , the user interface bypasses the sched
uler process and submits a batch job for the restore
initiator on the target server. The restore in itiator
then obtains access to the save-set data by directly
accessing the files or requesting that a particular tape
be mounted. The i nitiator then contacts the appro
priate client system's CEA and constructs a restore
command which is executed on the client system .

Implementation Techniques

RSM was written primarily in the VAX C language. The
development team used DEC/CMS (Code Manage
ment System) and DEC/MMS (Module Management
System) software as the configuration management
tools. The CMS l ibraries supporting the project were
stored on a large VAXcluster system shared by other
DSS development projects.

Digital Technical]ournal No. 9 june 1989

Project engineers performed a large portion of the
development process (editing, compiling, and unit
testing) on their individual workstations. DFS was
used to provide access to the CMS libraries and other
development resources on the workstations. When a
developer was satisfied with a particular module, it
was checked into the CMS l ibrary.

A regu larly scheduled batch job on the VAXcluster
system ran each evening and rebuilt the RSM soft
ware and produced an installation kit. Logs of vari
ous parts of the build procedure were mai led to the
appropriate developers. If a k it was successfully
created, the build procedure would automatically
hand the kit over to the automated test suite which
would insta ll the kit on the RSM test server. A series of
tests was then coordinated using the DTM (VAX DEC/
Test Manager) product. The tests were performed
on the kit, and the results were ready for review
when the developers arrived the next morning.

The test environment for RSM was somewhat
unique. RSM supports several releases of two operat
ing systems. In the SDS initial system load feature,
RSM has a number of hardware dependencies that
require " matrix testing." In matrix testing the same
tests are performed on different combinations of
hardware and operating system software to assure
that changes or new development has not intro
duced problems not covered by the unit testing.
Once again, the DFS product was pressed into ser
vice, allowing the test suite to be shared between
different servers.

Many RSM operations can take a significant
amount of time tO complete. For example, insta l l ing
an operating system can take 30 to 40 minutes. To
allow the nightly test suite to check many of the
database aspects of the product in a relatively short
amount of time, run-time switches are employed to
avoid the time-consuming parts of the operations.

Summary

One of the most important aspects of a growing
network is system management, which i ncludes
management of the network itself and the resources
available on the network . The DECnet System Ser
vices product set allows these resources to be
effectively shared and controlled by using the net
work. Complementing the DFS and the DQS products
in a distributed environment, RSM provides centra l
ized management of common system management
activities.

In designing and developing RSM, we learned a
great deal about providing services i n a distributed
environment and the numerous ways in which net
works and systems can be managed. We believe we

35

Distributed Systems

have designed management services that are useful
in a growing and heterogeneous network environ
ment. The availabil ity and flexibility of these ser
vices a llow the customer tO determine the most
effective way to use a particular service .

Networks are growing i n size as wel l as in the vari
ety of systems they support. The abi l ity for distrib
uted products tO operate effectively in a network
environment comprising hundreds or thousands of
systems wi l l be a requirement i nstead of a desirable
feature . Moreover , network products will have to
provide services for many types of systems as more
organizations adopt multivendor hardware solu
tions. These and other factors serve as guides to the
process of bui lding future distributed system man
agement products.

Acknowledgments

The authors would like to acknowledge the engi
neers and writers who have contributed to the RSM
projects: Barbara Benton, Diana Bergman , Terri
Buckley, jon Campbel l , Alex Chen, Ron Jansen , J im
Lemmon, Mary El len Lewandowski, B i J I Parke , Mike

36

Reilly, Rich Rosenbaum, Dexter Sealy, Jim Shelhamer,
Owen TaJlman, Peter Wiitanen, and Roger Zee .

A special note of thanks to the internal MIS com
munity and Digital 's EasyNet users who pioneered
many of the techniques and tools used within RSM
and who provided extensive feedback and testing of
the product.

References

1 . W Nichols and J . Emer, " Design and Implementa
tion of the VAX Distributed File Service, " Digital

Technical journal Oune 1989, this issue) : 1 6-28.

2 . M. Fox and J. Ywoskus, " Local Area VAXcluster
Systems," Digital Technical journal (September
1987) : 56-68

3. W Hawe, M. Kempf, and A. Kirby, "The Extended
Local Area Network Architecture and LANDridge
100," Digital Technical journal (September
1986) : 54-72 .

4 . S. Martin,). McCann, and D. Oran, " Development
of the VAX Distributed Name Service," Digital

Technicaljournal (June 1989, this issue) : 9- 1 5 .

No. 9 june 1989 Digital Tecbnicaljournal

Peter 0. Mierswa I

The Evolution of the MAILbus

The MA!Lbus product family provides facilities for creating, transmitting, receiving,
and managing messages in a multiple vendor network environment. Messages

can consist of combinations of text, data, and arbitrary files and can be exchanged

among people or applications in various computing environments, including the

DEC net network, X. 400-conformant messaging systems, IBM Professional Office
Systems, and IBM Systems Network Architecture Distribution Services systems.

This paper presents the development history of theM AILbus product family and the

design decisions that have tnade possible the provision of the MAILbus communi

cation services in a changing heterogeneous network environment.

The MAILbus family inc ludes a number of products
that provide both basic message handling and direc
tory services. Together these services offer a single
distributed e lectronic mail and messaging applica
tion across a broad range of hardware and software
systems.

With an electronic mail presentation application,
such as ALL-IN- I software , the MAILbus product fam
ily can act as a messaging backbone that allows the
Digital end user to exchange messages and docu
ments with users in other environments. Funher,
MAILbus products support the exchange of messages
and documents between the non-MAILbus environ
ments across the MAILbus backbone .

The basic message handling and directory services
are provided by the VAX Message Router product.
Included in the Message Router are a DECnet network
wide , store-and-forward message transfer service and
a descriptive directory service . The message transfer
service is an application-independent mechanism
that rel iably re lays messages from an application on
one computer system in a network to another, with
out requiring a direct end-to-end connection during
the relay. This transfer is accomplished by record
ing the message in reliable storage at points along
its path. This service supportS both electronic mail
and nonmail applications. A programming i nterface
is also available that enables customers to write
Message Router applications. The descriptive direc
tory service provides access to directory entries,
such as those that describe computer system users,
even when given possibly incomplete descriptive
information. The information contained in such
entries includes the computer system users' names,
organizations, locations, and electronic mail
addresses.

As shown in Figure 1 , the Message Router gateways
offer access to numerous messaging applications.

Digital Tecbntcal]ournal No. 9 june 1989

The VAX Message Router VMSmail Gateway provides
Message Router applications with access to the VMS
Mail util ity.

The VAX Message Router X.400 Gateway provides
access from Message Router applications to applica
tions running on computers that conform to the
Consultative Committee on International Telephony
and Telegraphy (CCITI) X .400 Recommendations for
message handling systems.

The VAX Message Router;s Gateway provides access
from Message Router applications to IBM Systems
Network Architecture (SNA) Distribution Services
(SNAOS) . The VAX Message Router;P Gateway provides
access from Message Router applications to the IBM
Professional Office System (PROFS) within an SNA
environment.

The VAX Message Router Telex Gateway provides
access from Message Router applications to public
Telex networks.

The ULTRIX Mail Connection provides access from
Message Router applications to all ULTRIX mai l
domains.

The MAILbus product is a single message-handling
system which supports a feature-rich message
exchange for multiple applications across a large
number of different hardware and software systems
in very large networks. This ability is the result of a
number of design decisions including

• The separation of the system into message
transfer and user-agent layers

• The encoding of messages in a standard but
extensible manner

• An exposed interface between the user-agent
layer and the transfer layer

• Comprehensive management services

• A network-wide directory service

37

Distributed Systems

Some of these characteristics were selected as a
d irect result of national and international standards
development, and some are the result of Digital
design and product work. Much of Digital's messaging
system product development work has been influ
enced by the company's experience with messaging
systems used in its own business environment.

Early Digital Messaging Projects
and Products

A number of years before the early standards bodies
published their first reports, the corporate operations
groups that supported Digital 's senior managers and
administrators began to consider the problem of
mail and messaging systems. The group wanted to
improve communications between senior managers .

In 1974 a centralized, single-system message
switch was implemented at Digital's headquarters in
Maynard, Massachusetts. Originally called DECnet,
the system was renamed the Corporate Message
Switch (CMS) . Initially messages could be delivered
between 81 hardcopy terminals in New England;
Chicago, Ill inois; and Kanata, Canada . Over time, the
system grew to support over 300 terminals in the
U.S. , Canada, and Europe .

In 1979 the service changed to a new, redesigned
switch called the Record Communications System
(RCS) . RCS grew to support multiple switches and
over 500 terminals in the U.S . , Canada, Europe, and
the Far East. Daily traffic reached a peak in 1983 .

In January 1978 the Digital Telecommunications
Group installed a pilot, single-system, personal

mailbox electronic mail system (EMS) . The system
ran on a PDP- 1 1 /70 system using an application devel
oped by the CCA (Computer Corporation of America) ,
called COMET. The COMET application was very dif
ferent from the services provided by CMS and RCS.
The RCS service provided only paper copies of mes
sages sent. The COMET application gave users the
capability to compose, edit, send, read, forward,
answer, file , retrieve , and delete messages. The pilot
began with 40 users and grew to support 650 within
a year. The pilot program was concluded with com
plete support from Digital's senior management com
mittee to proceed to develop a production system .

The most serious problem facing the Digital inter
nal production system that supplied electronic mail
services was the anticipated growth in user accounts.
It was recognized that the COMET system could not
meet this need as it was . Proposals from CCA were
considered for changes in the system. However, at
the same time as the EMS pi lot system was being
introduced, another group within Digital , the Labo
ratory Data Products Group, had developed and put
into production an electronic mail system for i ts
own use. After analysis of the two projects, it was
conc luded that the internally developed product
could be expanded tO become the corporate pro
duction system . In 1979 a multinode EMS system,
built from the LOP project, was introduced . By 198 1
the system was supporting 10,000 subscribers on
15 nodes in the U.S. and Europe .

The CMS, RCS , and EMS systems were deve loped
and implemented to support the management and

USER AGENTS

MR/P

MR

KEY:

MR - MESSAGE ROUTER

UA - USER AG ENT

M R/S

MR

UMC - U LTRIX MAIL CONNECTION

MESSAGE
TRANSFER
SERVICES

UMC MR
VMSmail

MR MR

BASE NETWORK

Figure 1 Overview of MA/Lbus Connections

M R M R
TELEX X.400

MR MR

38 No. 9 june 1989 Digital Tecbllicaljournal

administration of the corporation . As such, strict
requirements governed reliability and performance ,
and the services were generally restricted to a small
number of senior managers within the corporation.
However, all employees had a need for fast , effec
tive communication. In the late 1970s, the Digital
internal computer network, based on DECnet soft
ware , was informally growing to include more and
more engineering facilities. Electronic mail systems,
which were based on the VMS Mail protocol and pro
vided end-to-end text message del ivery, were being
introduced by engineers to meet their own commu
nication needs . Although these mail systems and the
network on which they ran were managed in an
ad hoc manner, they provided a vital service . By
1982 these systems were supponing 20,000 users
on more than 1 ,000 systems. In 1981 the EMS sys
tem and the VMS Mail systems were linked with a
gateway.

By 1981 it had become painfully clear that there
were serious growth problems in Digital's internal
electronic mail systems. As more and more managers
saw the benefits of electronic mai l , the demand for
EMS accounts increased. With more users panicipat
ing, each user spent more time and more resources
using the systems. The message traffic , as a result,
was increasing rapidly. In addition to message traffic,
the EMS system maintained a central directory node
which updated each EMS node whenever details
changed in subscriber or distribution lists. With the
growth in EMS usage, this directory traffic was con
tributing substantially to the network traffic prob
lem. With the introduction of the gateway between
the VMS Mail systems and the EMS and RCS systems,
requests for accounts and traffic growth increased
unpredictably.

The problem was now a complex one . Different
internal organizations had varying requirements and
varying panial solutions, yet all had legitimate busi
ness reasons for wanting to communicate with each
other. Traffic and use were growing enormously,
and new requirements were recognized for elec
tronic mail services, such as transfer of compound
documents. A solution was needed.

Development of the Message Handling
System Model

During the 1970s a product development group
within Digital had been following the computer
industry's standards development for handling and
transmitting electronic messages. lWo standards
bodies were of panicular interest: the International
Federation of Information Processing (IFIP) and the
U.S. National Bureau of Standards (NBS) .

Digital Tecbnicaljournal No. 9 june 1989

The Evolution of the MAIL bus

Figure 2 Message Handling System Model

The IFIP working group 6 .5 produced a model for
a computer-based mail environment. The model
described a computer-based mail environment as
one implemented using two logically distinct sub
systems: message transfer agents (MTAs) and user
agents (UAs). (See Figure 2 .) Message transfer agents
would cooperate to accept, transfer, and del iver
messages on behalf of the user agents. All messages
would have a well-defined format. User agents
would interact with the end user to create and sub
mit new messages and accept and display received
messages.

At about the same time, the NBS was working to
produce a replacement for RFC 733 , the then cur
rent standard for text messages on the ARPA network.
A draft repon was produced in 1980 and the final
repon published as Federal Information Processing
Standard (FIPS) 98, "Message Format for Computer
Based Message Systems," in March 1983 . This repon
specified that messages consist of two parts, the
envelope and the content. These terms are taken
directly from the postal system. As in the postal sys
tem, the envelope bears only the information
required to deliver the message to its intended
recipient. The content of the message is the informa
tion being conveyed to the recipient. (See Figure 3 .)
In addition to specifying the split of messages into
two parts, the NBS repon specified an encoding
technique for the message . In the type-length-value
(TI.V) encoding specified, each data item is preceded
by a code that specifies its type and a field that gives
its length. Data items can contain simple data of a
number of different data types or data items con
structed from more than one simple item. Thus
users can construct complex messages containing
multiple documents which include different types
of data or even other messages.

Together, these early standards specified a model
in which the MTAs could be built without any

39

Distributed Systems

TO:
FROM:
M ESSAGE IDENTIF IER :
CONTENT TYPE �I

+

TO:
FROM: HEADING
SUBJ ECT:

r - - - - - - - - -- - - - - -
SIR,

BODY

CONTENT

MESSAGE

Figure 3 Basic Message Structure

knowledge or regard for the meaning or format of
message contents. Since the content of a message
was encoded with TLV encoding, the MTA had only
to ensure that it passed on the content exactly as it
received it. All the i nformation required to deliver
the message is contained in the envelope. It was
now possible to build a single, message-transfer sys
tem tO support any number of different applica
tions. In addition, the use of a TLV encoding for the
message made it possible to extend over time the
MTA and UA services without disrupting service by
including new coded i tems to support new services.
If an old product were to encounter a new coded
item, the product could use the item's length to
skip easily to the next item in the message .

The First Message Router Products
In 1982 Digital recognized the need tO conform to
international standards and , along with a number of
other vendors , committed to support NBS-formatted
messages. later in the year, the development group
that had been following the work of the various stan
dards bodies completed and shipped the first standard
conformant messaging system product - DECmai1
with the multinode option . This product provided
the DECmail user agent with a message transfer sys
tem that conformed tO the NDS message format. This
first release would later be called the Message Router.

The release of this product coincided with the
real ization by the Digital i nternal operations group
that the existing EMS, RCS, and VMS Mail systems
were not solving the corporation's communication
problems. After careful study it became clear that a

40

product set based upon the emerging industry stan
dards would be the ideal solution to the problems of
Digita l 's internal users.

In 1982 the Digital Telecommunications Group
began a pilot project to implement a corporate-wide,
message handl ing system based upon the DECmai1
multinode option software . In 1983 the VAX Message
Router was shipped as a separate product, and a
VMSmail Gateway was added . At this time , it was
clear that the pilot project was successful and ful l
implementation within Digital was begun . Soon,
ful l office automation services were added to the
electronic mail service with the release of ALL-IN-1
version 2. This product was the beginning of a com
mon approach within Digital between product
engineering and internal services for the delivery of
electronic messaging services.

Message Router Transfer Service
The Message Router Transfer Service provides the
message transfer agent function of the message han
dling systems mode l . Its function is to transfer a
message from an originating user agent to a recipi
ent user agent. The Message Router provides a store
and-forward delivery system i n which the message
is written to reliable storage devices at each step
along its path before the previous system discards
its copy of the message . This technique provides
both a high degree of reliabiliry and is not signifi
cantly affected by temporary failures of any system
or communications path.

To support both different mail user agents for dif
ferent environments and message transfer services
for nonmail applications, the message format cho
sen was the NBS format. In this format the message is
spli t into two parts - the envelope and the content.
In a manner similar to a postal service, the Message
Router uses the information on the envelope to
deliver the message but does not look at the content.
In this way, the Message Router can act as the store
and-forward transfer service for any application.

The envelope contains data items that support a
number of services. The NBS encoding used is the
TLV 'form noted above . Using this encoding scheme,
an appl ication can include only those data items
that suit its needs. Further, the scheme easily sup
ports the addition of new services over time, since a
data item can easily be skipped by a message handler
if its rype is not known.

Both the definition of the basic services and mes
sage format were specified by the early standards.
However, the early standards did not address either
the mechanism for addressing and del ivering mes
sages, or the communications method by which
MTAs exchange messages.

No. 9 june 1989 Digital Tecbnicaljounull

DECnet task-to-task communication was chosen as
the transport mechanism for MTA·tO·MTA message
transfer. This choice wou ld clearly provide intercon
nection over a wide variety of communications media
and would require only a single service interface .

The choice of an addressing and delivery mecha
nism was a much more difficult problem. The address
must be meaningful to the end users, and also contain
information sufficient to route the message from
source to destination in both small and large net·
works. Moreover, the address must be a means for
messages to be exchanged with other electronic
mail systems that use their own various addressing
schemes.

The address format and routing algorithm chosen
is quite simple, but it is powerful enough to meet
the requirements. An address is composed of a num
ber of terms. All terms are syntactically equivalent.
Each MTA retains a local database indexed by term
name . The database can contain the following entries:

• Mailbox name - The name associated with a user
agent at the local node

• Replacement terms - Names replaced by zero or
more other names

• Node names - Names of remote systems contain·
ing other MTAS

The algorithm used by Message Router when pro
cessing a recipient's address is as follows:

I . Look up the next term in the local database .

2 . If this term matches a locally resident user agent,
deliver the message . Processing is complete.

3. If this term matches a replacement term, make
the specified change to the address and go back
to step I . Otherwise go to step 4 .

4 . If this term matches a node name term, pass the
message to the MTA at that node . Remove the cur
rent term from the address before the message is
passed on. Processing is now complete.

5. Report that the message could not be delivered.

When the Message Router was first released, most
DECnet networks were quite small, and this algorithm
was very successful . However, our own experience
with our internal network showed us that in large
networks, static routing databases were d ifficul t to
manage . To overcome this problem, Message Rou ter
was updated to allow a message to be forwarded
in step 4 if the term name matched any DECnet
node name .

This updated algorithm can be used with very low
management cost by storing only local user agent
names in the transfer service database . Message

Digital Tecbnical]vurnal No. 9 june 1989

The Evolution of the MA/Lbus

addresses then contain only node names and user
agent names, such as "John Smith at AI at Bostn l ."
In this case the local transfer service database con
tains only one entry, Al , the name of the mailbox
associated with the local user agent (ALL-IN- I) .

Additional management can provide additional
services if required. These services include routing
tables to simplify addressing and management
in large domains, and alias names for nodes and
user agentS.

Note that the transfer service uses up terms in the
address one at a time until a user agent name is found.
Thus it is possible to include terms in the address
that the transfer service never sees because these
terms follow the user agent name. For example, in
the address "John Smith at AI at BOSTON," BOSTON is
the name of a node , AI is the name of a user agent,
and John Smith is a term not seen by the transfer ser
vice. However, the term John Smith can be used by
the user agent for itS own purposes, in this case to
identify the particular user of the user agent.

Programmer 's Interface

The original Message Router product, the DECmail
User Agent, the VMSmail Message Router Gateway,
and ALL-IN- 1 software provided a ful l range of elec
tronic mail services as specified by the FIPS 98
report. However, two factors led to unnecessarily
high engineering costS to initially develop and
debug code and to perform interworking testS . First,
the contents of the encoded message can become
complex; second, each of these early productS was
developed separately.

Designers recognized that the same problems
would be experienced in the future development of
user agents, gateways to other electronic mail sys
tems, and nonelectronic mail applications. As a
resu lt, a formal library of interface routines was
implemented for the 1985 release of the VAX Mes
sage Router product. The Message Router interface
routines (MRIF) acted as the exposed interface
between the MTA and the UA and provided the fol
lowing services: assembling and disassembling mes
sages, posting messages to the MTA, and fetching
messages from the MTA. A new product, the Message
Router Programmer's Kit, provided these routines to
customers to allow them to build their own mail
user agents, gateways to other mail systems, and
nonmail applications.

MRIF allows applications to specify the data items
in the envelope required by the transfer service to
deliver the message to the proper recipient. Further,
applications can specify in the content the data
items that support the services of mail user agents
or nonmail applications.

41

Distributed Systems

For nonmail applications, the message content is
arbitrary, and MRIF al lows such contents to be
assembled and disassembled .

For mail user agents, MRIF supports the specifica
tion of data items that provide electronic mail ser
vices such as multiple recipients for a single message ,
multiple message parts of various formats, and noti
fication to the sender of receipt or nonreceipt of a
message .

CCIITX.400

In 1980 the cenT began a four-year study of mes
sage handl ing systems . They were strongly influenced
by the NBS and IFIP work bur had an additiona l goa l :
the specification of a complete message handl ing
system which included the interworking between
the message handl ing system and public data net
works . I n 1984 CCITI published the X.400 series of
Recommendations. The X .400 Recommendations
included the model of messaging systems in which
the services of the message transfer agent are distinct
from the services of the user agent, as originally
described by IFIP working group 6.5. The Recom
mendations also included a definition of message
encoding very similar to the NBS standard . In addi
tion, the X.400 Recommendations i ncluded the defi
nition of the means by which MTAs communicate
and the method by which messages are addressed
and del ivered world-wide .

Message Router X400 Gateway

Following the publ ication of the CCITT 1984 X.400
Recommendations, we recognized that our support
of the NBS standard in hopes of a world-wide multi
vendor messaging network were roo early. Few ven
dors other than D igital implemented the NBS
standard. However, our goal of supporting a world
wide messaging system remained clear. We decided
to lead the way by bui lding the first X.400 -confor
mant messaging system.

I f we were to bui ld a new Message Romer that
conformed to the X .400 Recommendations, the cost
wou ld be high, the t ime to market wou ld be long,
and some compatibil ity problems cou ld arise with
the software our customers were currently using. I n
addi tion , since there were as yet no other X .400
implementations, i t was not clear that such a cost
was justified. However, since the messaging services
specified by X.400 are almost identical to the mes
saging services specified by the earlier standards
p lus some extensions, we decided to build a trans
lating gateway between Message Router applications
and X .400-conformant appl ications. The gateway
need only reformat the service elements and map
addresses between the two systems. Using this

42

approach , it was possible for a smal l team of engi
neers to complete the first release of the Message
Router X .400 Gateway in a very short t ime .

Today's Message Router
With the release of the first Message Router X.400
Gateway, the benefit of interconnecting al l the
d iverse computer systems at a customer's site using
electronic messaging became even more apparent.
At this same t ime, Digital 's own i nternal DECnet
network had grown to tens of thousands of nodes. I t
was clear to the Message Router engineering team
that we had to stop thinki ng of the Message Router
as a product i nsta l led on network nodes and start
thinking of it as a d istributed network application
the MAilbus.

The services of the VAX Message Router version 2
product were excel lent in small homogeneous net
works, but suffered from problems in large mixed sys
tem networks. The two most serious problems were
management and addressing complexities . These
problems have been solved by the services offered
by the current releases of the MAilbus products .

1lfanagement Service

The first problem encountered in a large heteroge
neous network is the i nstallation and configuration
of nu merous components which together provide
the message handling, directory, and gateway ser
vices required. Each component offers a number of
configuration options to support the various config
urations within each customer site . To make the
i nstaller's job as easy as possible, all MAilbus com
ponents are shipped with a default configurat ion
suitable for most customers. Following insta llation,
the configuration procedure asks a few simple ques
tions and performs the functions necessary to make
the component both operational at the local node
and a part of the distributed application .

On those occasions when problems occur, such
as running out of disk space, the problem must be
detected as soon as possible and the solution must
be easy to implement. This is an especially difficu l t
problem for the transfer service . S ince i t runs in the
background, problems in the transfer service often
are not detected until long after they occur. In a large
network, a smal l problem i n the transfer service on
one system can become a large problem quite
quickly. To solve this problem, we chose to retain the
extensive error-logging faci l ities of each component
and to add to each component a service that posts an
exception report ro a central node whenever a poten
tial problem or serious error occurs. Each exception
report inc ludes text describing the problem , gives
details of the problem, and refers the reader to a

No. 9 june 1989 Digital Technical journal

document with detailed instructions for solving the
problem. In a large network, groups of nodes can
each send exception reports to their own central
nodes so that the management of the entire network
can be split up into smaller management domains.

Regularly encountered is the problem of manag
ing the data required to control each end user's use
of the messaging system. A typical MAILbus backbone
would contain a number of MTAs, each responsible
for a number of end users, and a number of gate
ways, each able to service any user at any MTA. We
therefore had to examine how we could make the
gateway services available globally, retain some
form of access control, and allow the minimum
management overhead. Any technique that required
a manager to enter management data once at the
MTA and once at each gateway was too costly for the
manager and was prone to errors and inconsisten
cies. We decided to provide a network-wide end
user directory in which the information required by
the gateways was entered once and then made avail
able automatically and globally. This directory ser
vice could also supply lookup services for end users
who needed information about other users in the
network.

Directory Service
The Message Router Directory Service within the
MAILbus provides the services required by both the
gateway and the end users. Included are the address
ing and management i nformation necessary for the
gateway and a descriptive directory service for end
users through their user agents . Entries in the direc
tory service contain a number of different attributes
about each user, such as name, job title, work loca
tion, and electronic mail addresses.

One of the most important features of the MAILbus
the abi l i ty to exchange messages free ly between
different messaging systems - is made possible by
the storage of multiple mail addresses for each user
in the directory service. For example , an IBM PROFS
user can address a message to an ULTRIX mail user as
if that person were another IBM PROFS user. When
this message arrives at the VAX Message Router /P
Gateway, the gateway looks up the IBM PROFS
address in the directory service and finds that the
user is actually an ULTRIX user and forwards the
message through the ULTRIX mail connection gate
way w be delivered to the ULTRIX user.

User agents, such as ALL-IN- 1 , use the same service
to find the mail addresses of message recipients.
Searches in the directory can be made on Boolean
expressions formed on values of the attributes. For
example, one can easily look for the manager in the
sales department whose first name is joe , or for all
the engineers who work in a particular bui lding. In

Digital Tecbnical]ournm No. 9 june 1989

The Evolution of the MAIL bus

addition, multiple values can be entered for many
attributes, allowing searches on different values for
the same end user to succeed, such as the use of
maiden name, nickname, or easily misspelled names .

The design team members responsible for the
directory service was faced with a difficult choice.
They u nderstood the requirements well and were
committed to support the use of international stan
dards, but the directory standards work at the time
was in a very early stage and was changing often .
The decision was made to use as much of the emerg
ing standards work as possible, but not to compro
mise meeting the product requirements. As a result,
the Message Router Directory Service provides swrage
and search services that are very similar to the CCITT
X .500 directory service Recommendations, but use a
different distribution and replication mechanism.

The distribution and replication mechanism had
to provide good search performance, robustness,
support for large numbers of users and network
nodes, and ease of management. The solution that
was chosen implements a single database stored
across all the nodes in the network . Each node stores
locally all the information associated with local
users. A small number of nodes in the network are
designated as world search nodes. World search
nodes hold a copy of all objects from all other nodes .

Searches for local users involve only a local data·
base search and are quite fast. Network-wide searches
need only i nvolve a single world search node -
either the local node if it is a world search node, or a
single remote node . If one world search node is
unavailable, any other will do. Management of the
database involves simply updating local users' data·
base entries. The directory automatically sends
updates to all world search nodes when they occur.

Conclusion
The support of international standards for the
exchange of electronic mail and messages provides
the assurance that implementations can interwork.
However, the successful implementation of a stan
dard conformant product on a large scale requires
careful design and planning to ensure that problems
of management and scale are properly handled.

General References

D. Whitten, "The Evolution of a Corporate Electronic
Mail Network," Proceedings of the International
Communications Association 38th Annual Confer

ence and Exposition (May i985) .
CCITT Vlllth Plenary Assembly, " Data Communica
tions Networks, Message Handling Systems, Recom
mendations X.400 to x.430," CCITT Red Book , Vol .
VIII (Geneva: CCITT, 1985) .

43

Alan Abrahams I

VAX/VMS Services for MS-DOS

VAXjVMS Services for MS-DOS is a distributed application which provides file and
disk services to personal computers from a VAXjVMS system. Using a server
based model, the product's heterogeneous file system seamlessly integrates the

remote file system into the MS-DOS environment. The file server allows simulta

neous access to shared data on the VAX system. The disk server provides a logical
block service that maps MS-DOS disk access requests into a ViWS container file.

One of the challenges for product developers was the design of a remote boot ser

vice, which allows any personal computer to be booted over the network by
means of the disk server.

VAXjVMS Services for MS-DOS allows personal com
puters (PCs) to share resources located on one or
more VAXfVMS systems. The product uses a client/
server model to access the resources on the VAX sys
tem . The system providing the resources is referred
to as the server; the PC requesting the resources is
referred to as the client. The two classes of server,
which this paper describes, are the file server and
disk server.

The file server provides both file and printer ser
vices. File services allow access to the VMS file sys
tem from the PC; printer services allow access to
VMS printer queues from the PC . The disk server
provides access to a section of a VMS disk that has
been formatted as an MS-DOS disk drive. This disk
section is called a virtual disk file .

The primary goals of the PC integration project
were as follows:

• Integrate PCs into the VAXjVMS environment in a
manner that allows the resources offered by the
server to appear as local MS-DOS disk drives and
printers on the PC . PC applications can therefore
utilize the VAX file system, virtual disk drives,
and printers attached to a VAX system as if these
resources were available on the PC itself.

• Uti l ize DECnet software to provide both local
area network (LAN) and wide area network (WAN)
access to the server. Thus any PC can access any
server on the network without the use of a gateway.
Most competitive products are either restricted
to LAN access or require the use of a gateway on a
local server to access a remote server over a WAN.
The elimination of the gateway significantly
improves performance over a WAN and simpl ifies
connection management since all nodes on the
network are visible to the PC .

44

One of the fundamental decisions made toward
achieving these goals was to util ize the Microsoft
NetworksjOpenNET (MS-NET) Architecture. This
architecture, described in the fol lowing section,
provides a high level of integration with MS-DOS.
Further, i t supports a generic transport interface
that aJlows an original equipment manufacturer
(OEM) to customize MS-NET for different target net
work environments.

Architecture
The Microsoft NetworksjOpenNET Architecture
defines

• The application programming interface (API)
used by the MS-NET Redirector to communicate
with the network transport supplied by the OEM

• The communication protocol used by the Redi
rector to communicate with an MS-NET server

• The management API used by the Redirector for
maintaining connections tO remote resources

Figure 1 is a block diagram of the file and print
redirection subsystem on the client.

An, application executing on a PC makes MS-DOS
system calls to access files and printers. The system
calls are passed by MS-DOS to the Redirector and
transmitted across the network to the file server.
The server performs the requested function and
returns a response to the Redirector which in turn
completes the system call by returning a response
to the application .

Described below are the steps taken to connect to
the file server and to access the service .

1 . To access a resource on a server, an application
calls the Redirector API to request a connection

No. 9 june 1989 Digital Tecbnicaljourna/

VAXjVMS Services for MS-DOS

PERSONAL COMPUTER VAXNMS SERVER

APPLICATION
MANAGEMENT
U T I LITIES

DOS FILE SYSTEM
CALLS

MS-DOS

KEY:

REDIR ECTOR
API

SMB
VMS
FILE SERVER

DECnet-VAX

DDCMP - DIGITAL DATA COM M U N ICATION MESSAGE PROTOCOL

NETBIOS - N ETWORK BASIC I N PUT/OUTPUT SYSTEM

NSP - NETWORK SERVICES PROTOCOL

SMB - SERVER MESSAGE BLOCK

Figure 1 File Server Architecture

tO the server controlling the resource. Typica lly
the call is done by means of the user interface
(UI) utility, USE .

2 . The Redirector calls the network basic input-out
put system (NETBIOS) to create a virtual circuit
tO the server. NETBIOS is a standard API used on
PCs for interfacing to communications networks.

Digital supplies a NETBIOS mapping to DECnet
DOS software. This mapping al lows network
appl ications written to the NETBIOS interface to
perform nontransparent task-to-task communica
tion through DECnet to any other DECnet node in
the network .

3. On successful completion of this cal l , the Rect i
rector creates a disk or printer device which is
redirected to the remote network resource .

4 . An application may access the resource by mak
ing the s tandard DOS system ca l ls that specify the
redirected disk drive or printer.

5. The Redirector uses the server message block
(SM O) protocol to export the local file and print
system calls to the server. SMB is a request;

Digital Tecb11ical]ournal No. 9 june 1989

response protOcol; therefore , a l l requests are ini
tiated by the client, and each request receives a
single response .

File redirection exports fi le system access requests
tO a server. The server then maps the DOS file system
directly to the native file system on the server. In
the VMS system, this file system is ODS2 .

In addition to file and print redirection, the basic
MS-NET architecture has been extended to include
disk redirection tO a virtual disk . These architectural
extensions are proprietary to Digital and were pro
vided to faci l itate the remote boot feature described
later in this paper.

Disk redirection exports the logical block r;o
requests to the server. In this model, the file system
continues to run on the client whi le the disk server
maps the cl ient's disk 1/0 requests to a section of a
VMS disk that has an MS-DOS structure. On a VMS
disk, the MS-DOS virtual disk is mapped tO a 5 I2-byte,
fixed-length sequential file, referred tO as the vir
tual disk fi le .

Figure 2 is a block diagram of the disk red irection
subsystem on the client. In disk redirection, a block
device driver emulates between four and eight logical

45

Distributed Systems

PERSONAL COMPUTER VAX/VMS SERVER

APPLICATION MANAGEMENT
UTILITIES

DOS FILE SYSTEM
CALLS

MS-DOS

KEY:

DAD - DISK ACCESS DEVICE

LAD - LOCAL AREA D I S K

LAST - LOCAL A R E A SYSTEM TRANSPORT

MANAG EM E N T
API

Figure 2 Disk Server Architecture

disk drives (user configurable) . The driver may be
accessed by the standard MS-DOS file system calls or
by calls directly tO the block device driver inter
face. Extended functions in the block device driver
interface are provided for managing the connections
tO a virtual disk.

The block device driver communicates with the
virtual drive by making BIOS INT 13H calls to the
local area disk (LAD) handler. The LAD INT 1 3 H
handler performs the actual communication with
the disk server. LAD uses the local area system trans
port (LAST) tO communicate by means of a virtual
circuit tO the disk server.

File Server

The highest leve l of integration between an MS-DOS
client and the VMS system is provided by the file
server. Integration is highest because both systems
share a common file and print system.

The file server was designed to run as a single
detached process (rather than tO run one process
per client) . This design reduces the VMS scheduling
overhead and resource consumption when large
numbers of PCs are connected to a server. The file
server process is normally run as part of the system

46

startup procedure and declares itself as DECnet
object 64 .

All incoming connections tO the file server are
passed by the VMS system tO the file server process.
The fi le server runs in user mode and is multi
threaded. All 1/0 functions performed by the server
and most system calls are nonblocking. Thus multi
ple clients can be supported without any one client
blocking requests made by others.

The sections following present details of the file
server design, that is, mapping, access to services,
security, and byte range locking.

File System Mapping

To make the VMS file system appear to the client
as an MS-DOS file system, we needed tO define a
mapping between the two systems. This mapping
must be symmetric because it determines both how
an MS-DOS file is represented tO VMS and how a VMS
file is represented to MS-DOS. In choosing a file
mapping, the fol lowing main problems had to be
overcome :

• MS-DOS files have no system-defined internal for
mat, except that known tO the application which
maintains the file . The record management

No. 9 june 1989 Digtud TecbnicalJounud

services (RMS) file type that most closely corre
sponds to an MS-DOS file is stream format.

• The character set allowed for MS-DOS fi le names
is much richer than that allowed by the VMS sys
tem. Thus some mechanism had to be found to
represent an MS-DOS file name in the restricted
character set allowed by the VMS file system.

• MS-DOS file attributes have no direct counterpart
on the VMS system. These are the system, hidden,
and archive attributes.

The following general rules were chosen:

• An MS-DOS file can be represented on VMS as
either an RMS stream file or optionally an RMS
512 -byte, fixed-length sequential file. The default
representation is a stream file ; the sequential
representation was introduced to facilitate data
sharing between applications, such as WPS,

which run both on the PC and on the VMS system.
The stream representation was chosen as the
default because (1) it is the RMS file type that
most closely corresponds to an MS-DOS file, and
(2) stream file format allows ASCII text files cre
ated on an MS-DOS system to be edited using VMS
standard EDT and TPU text editors.

• MS-DOS file names are mapped to VMS fi le names
by convening characters that are il legal in a VMS
file name to _ _xx, where XX is the two-digit hex
adecimal code for the i llegal character. If two
underscores occur together, the second under
score is also converted using this algorithm.

• VMS files with names or extensions that are larger
than those handled by MS-DOS are invisible to the
client. That is, an MS-DOS directory listing shows
only those files that have names and extensions
compatible with the MS-DOS file system.

• Those MS-DOS file attributes that do not corre
spond to VMS file attributes, i . e . , hidden, system,
and archive , are mapped to an application access
control list entry (ACE) stored in the file's access
control list (ACL) .

• VMS sequential, relative, and indexed files are
converted to byte streams when read by MS-DOS.
The file server performs this conversion accord
ing to the record attributes associated with the
file. Thus MS-DOS may read any VMS fi le organiza
tion. However, in general , only sequential vari
able files with ASCII text contain data that can be
used by a PC . Access to sequential , relative, and
indexed files (with the exception of the 512-
byte , fixed-length sequential file type) is limited
to read only.

Digital Tecbnical]ournm No. 9 june 1989

VAXjVMS Services for MS-DOS

Access to Services
Whenever a client connects tO a fi le server, the
client specifies a service name - an ASCII text string
of 1 to 25 characters. A service is an access point to the
resource being offered by the server. A list of available
services is scored in the file server's service data
base . In addition, the fil e server uses the user autho
rization file (UAF) as a secondary service database to
al low users tO connect to their personal accounts.

Services entered in the service database have
an associated set of attributes, which are listed in
Table 1 .

Table 1 Service Attributes

Attribute Description

Root directory Top-level directory that a client can
access through the service

Service type System, application, or common;
specifies type of security applied,
that is, the level of access to the
service

RMS protection Default protection mask used when
files are created

File type Stream, or 512-byte fixed-length
sequential file

Queue Name of the VMS print queue to be
used

Form Name of a form entered as a prefix
on print jobs

Access to services within the service database is
controlled by access control lists. Specific users may
be granted the use of a service , or a service may be
made generally avai lable . When a service is created,
the service type attribute must be specified . The fi le
server uses this attribute to determine how access
control to the fi les within the service is performed .

Security

MS-DOS has no inherent security scheme for file
access. Thus to protect files stored on a server from
unauthorized PC access, we had to define a scheme
that authenticates users when they connect tO ser
vices on a file server. One approach considered was
tO pass the authentication information ro the server
in the DECnet connect message . However, DECnet
VA.X software does not pass this information to
objects, such as the file server, which service their
own inbound connections.

The fallback approach was tO extend the use of
the SMB TREE connect message to pass the authenti
cation information to the server when the Redirec
ror requests a service connection. This message

47

Distributed Systems

already contained a field for passing password infor
mation. Therefore , we could extend the message by
encoding the username in the service name field.
The composite service name is formed by concate
nating the actual service name with the username,
using the percent sign (%) as a separator. When no
username is found in the service name field of the
TREE connect message, the file server determines if a
guest account has been specified by the system
manager. The server then uses the guest account to
determine access privileges.

Once the file server has authenticated the user
name/password pair against the UAF, it extracts the
associated access privileges from the UAF and rights
l ist databases. The server then uses this information
together with the access control information in the
file server service database to determine access priv
ileges to files in a service .

Before the scheme was complete, it was necessary
to solve one more problem which related to the con
flict between system manager and user privileges.
One use of the file server is to store appl ication soft
ware in a central service. This software must be
accessible by many users who have diverse access
privileges. These privileges may often conflict with
those of the system manager who loaded the appli
cation software to the server and who is thus the
owner of the fi les.

To overcome this problem, the file server uses two
types of security: share-level and user-level security.
The algorithm applied is based on the service type
attribute specified when the service is created.

Share-level security is applied to system and
application service types. These services typically
contain system and application software loaded by
the system manager which must be accessible to
many users who have diverse access privileges.
Access to these services is controlled by two identi
fiers referred to as PCFSSREAD and PCFSSUPDATE . The
PCFSSREAD identifier grants read access, and the
PCFSS UPDATE identifier grants write access. These
identifiers are attached to the root directory of the
service as default ACE entries. They are propagated
to all files created within the service. The server
automatically gives either the PCFSSREAD or the
PCFSSUPDATE identifier to a user. The determination
as to which identifier is assigned is based on the
access control l ist defined for the user in the service
database.

User-level security allows users access to the
common service type and to user accounts from the
UAF. This level is the standard VMS security algorithm
based on the identity of the user accessing the file .

The process by which the server determines
access to a file is described as follows :

48

• When a user connects to a service, the file server
authenticates the user. Every service connection
request must explicitly specify a username and
password that corresponds to a UAF entry, or the
system manager must have given the file server a
default account to use when no explicit authenti
cation information is given.

• On successful ly authenticating a user, the file
server extracts the user's default privileges, user
identification code (UIC) , and rights-list entries
from the UAF and rights-list databases.

• If the user is allowed only read access to the ser
vice, the server gives the user the PCFSSREAD
identifier. If the user is allowed write access, the
server gives the PCFSSUPDATE identifier.

When the user accesses a fi le in the service , the
file server uses the SCHKPRO system service to
determine whether the user has sufficient privileges
to perform the requested operation .

Byte Range Locking

The MS-NET architecture allows files stored on a
server to be simultaneously accessed by multiple
PCs. Updates to files are coordinated by the MS-DOS
byte range locking calls. This approach contrasts
with that of RMS, which coordinates shared file
updates using record locking. The fol lowing exam
ple i l lustrates how two programs on different PCs
might attempt to lock the same byte range .

Program A locks bytes 20 to 50 in a file , and pro
gram B locks bytes 0 to 21 . Both programs are
attempting to lock bytes 20 and 21 in the fi le,
which produces a lock conflict . The lock manager
must be able to detect this conflict and reject pro
gram B's attempt. For the VMS lock manager to rep
resent these locks, the resource being locked must
be identified by a unique name. I n the example
above , the VMS lock manager would not be able to
detect an overlap of lock ranges if the byte range
was encoded into the resource name .

Since byte range locks cannOt be represented
by the VMS lock manager, the file server maintains
its own lock database and arbitrates access to
shared files.

In VAXcluster configurations, there may be multi
ple file servers offering a rooted directory tree on a
shared drive . Therefore an interlock mechanism
must be provided tO coordinate access from the dif
ferent file servers. The file server uses the VMS lock
manager to coordinate access to these files by tak
ing out a private exclusive lock on a file when an
application opens the fi le. If the lock is granted, the
file server becomes the lock master. If the lock
is not granted, the file server determines the lock

No. 9 june 1989 Digital Technical journal

master and reroutes all access requests for the file
over a DECnet virtual circuit to the lock master. In
this way, only one file server controls access to the file.

Disk Server
The disk server provides low-level redirection at the
physical device level . Primarily this server assists in
the remote boot of PCs, which is described below in
the section Remote Boot. On the VMS system, the
disk server is implemented as two device drivers
and a control process that coordinates cluster-wide
access to virtual disks. Virtual disks may be shared
by many users reading data, but virtual disks are
limited to exclusive access by a single user who
reads and writes data.

Device Drivers

The two device drivers are LASTDRIVER, which pro
vides the communications transport, and LADDRIVER,
which implements the local area disk protocol . The
LAST transport is specifically designed to operate on
a LAN, such as Ethernet, where the physical trans
mission medium is highly reliable . LAST protocol
packets received by the Ethernet driver on the VAX
system are passed directly to LASTDRJVER using the
ALTSTART interface. LASTDRIVER uses a callback
mechanism to pass data to LADDRIVER, which uses
the ALTSTART interface to pass 1/0 requests directly
to the disk driver.

When a virtual disk file is mounted, the fi le is
opened by a detached process (LADSKERNAL) and
handed off to LADDRIVER. Each virtual disk file
is fully mapped, so there are no window turns.
LADDRIVER maintains a write-through cache in non
paged dynamic memory. High hit rates on this cache
decrease the amount of disk 1/0 performed and
improve the response time for servicing MS·DOS
block 1/0 requests. To further minimize the amount
of disk 1/0, the LAD transaction size can be con
trolled from the client. (LAD transaction size deter
mines the multiblocking of read and write requests .)

For high availabi lity of virtual disk services in a
VAXcluster environment, the disk server software
may be run on a ll nodes in the cluster. A virtual disk
service can be mounted on multiple nodes in the
cluster. To interlock the mount requests, the
LADSKERNAL programs on each cluster node use the
VMS lock manager. If write access to the virtual disk
service is permitted, the first mount request for the
virtual disk results in an exclusive lock being
granted to the node issuing the request. Subsequent
mount requests from other nodes result in the lock
being queued. The mount requests from these other
nodes go into a pending state. If the lock is released
by the first node, the lock is granted to one of the

Digital Teclmicaljournal No. 9 june 1989

VAXjVMS Services for MS-DOS

other nodes and the disk is automatically remounted.
This technique al lows automatic re-offering of the
disk service to occur when the current server node
becomes unavailable . In the case of read access to
the virtual disk, all nodes may concurrently access
the virtual disk file; thus the service may be simulta
neously mounted on each server node.

Disk Service Connections

When the client system connects to a virtual disk
service , the location of the virtual disk service is
determined dynamically by a solicit-response proto·
col. This protocol is part of the LAST transport . The
client node sends a solicit message and gathers
responses from all nodes offering the service . These
responses are filtered according to any selection
criteria that were given by the client and the rating
(highest) of the service making the connection. The
system manager assigns each service a rating when
it is mounted. This rating predisposes clients to
specific servers when multiple servers are offering
the same service .

Remote Boot

One of the most challenging aspects of the PC inte·
gration program was the provision of a remote boot
capability for MS-DOS. In organizations where there
are large numbers of PCs, remote boot allows the
system manager to maintain the end ,user's PC envi
ronment from a centralized boot service. Our prin
cipal goal , then, in developing remote boot was to
provide the ability to boot any vendor's PC over the
network . Since each PC vendor distributes its own
variant of MS·DOS, it followed that if we achieved
this goal , then no modifications to the operating sys
tem would be required.

Our initial implementation was designed to sup
port the VAXmate product and PCs equipped with
the Digital Ethernet PC Network Adapter (DEPCA) .
In both cases the maintenance operation protocol
(MOP) boot code exists in read-only memory (ROM) .

The PC triggers the remote boot process by issuing a
MOP system boot request which is serviced by a VAX
boot server process . The boot server downloads a
network loader program to the PC. The network
loader is an Intel assembler program encapsulated
in an RSX task image wrapper. The loader's function
is to load DOS from the network . The network loader
is a permanently resident part which contains the
random-access memory (RAM) data link, the LAST
transport, the LAD software , and a transient control
program to drive the load process.

Since MS-DOS can only be booted from drives A or
C, we had to provide a low-level disk emu lation by
means of INT 1 3 H that would emulate drive A during

49

Distributed Systems

the boot process. This emulation is the function of
the LAD/LAST software in the network loader.

Once the network loader is resident in the PC, it
must relocate its permanent pan into an area that
will not be overwritten by MS-DOS while the PC is
running. On a VAXmate system , the loader achieves
this relocation by copying the code into the 1 28-
kilobit (Kb) network RAM . On a PC , the size of phys
ical memory is reduced by the size of the
permanently resident code (approximately 17Kb) ,
and then the code is relocated to high memory just
below the 640Kb boundary. The network loader
must next find the name of the boot disk service for
the PC . This name is determined by convening the
48-bit Ethernet hardware address (which is guaran
teed to be unique) to its ASCII representation, e .g . ,
08-00-2B-08-41 -3C. This name is then used to con
nect to a vinual disk which has been formatted as an
MS-DOS bootable floppy disk.

The network loader reads the DECnet-DOS data
base from which it gets the data link configuration
parameters . If no database exists, the system
defaults are used.

Finally, the loader reads the boot block from the
vinual disk and transfers control .o the bootstrap
loader contained in the boot block. The bootstrap
loader uses the BIOS !NT 1 3 H calls to read MS-DOS
from the boot device. These calls are intercepted by
the LAD !NT 13H handler. Thus access to the vinual
disk is transparent to the bootstrap loader. The last
step in the process is to restOre the real drive A, since
at this point drive A is mapped to the vinual disk.

Performance
This section describes several techniques imple
mented tO enhance the performance of both the file
and disk server. These techniques were required to
provide service response times simi lar to those seen
when an application is running from a local hard
disk on the PC .

One of the major differences between the MS-DOS
and VMS systems is the manner in which file header
information is stored on both systems. DOS stores
the header information in the directOry, whereas the
VMS system stores this information in the file
header. Thus DOS has access to this information as
soon as the directory is read into memory. On the
VMS system , however, additional 1/0 must be per
formed to read the fi le headers. Thus a DOS direc
tory command generates high overhead on a VMS
system . The file server therefore had tO minimize
system overhead when enumerating directory entries
and also make directOry operations nonblocking to
other PCs using the file server. To accomplish this,
the file server makes QIO calls to XQP rather than

so

using the SPARSE and SSEARCH functions in R.MS. This
technique also aiJows the file server to obtain the
file header information used by the SCHKPRO sys
tem service when determining the user's access
rights to a file.

A second technique which improves fi le access
speed is the provision of a read-ahead cache in the
file server. Many PC applications process files sequen
tially; the file server automatically detects this
access mode and uses a double-buffered prefetch
algorithm to read data from the file before it has
been requested by the client . This prefetch resu lts
in fewer 1/0 requests since the file server prefetches
the maximum amount of data that can be returned
to the client in one message (8Kb) . The algorithm
also increases data throughput speeds since the next
read request from the client can normally be satis
fied with data already in memory.

The disk server i s not cognizant of the fi le system
on the vinual disk and attempts to reduce disk IjO
by using a write-through cache. Like the file server,
the disk server prefetches data into the cache. Data
is purged from the cache based on a least-recently
used algorithm. Since the disk server is imple
mented as a VMS device driver and the cache is
stored in nonpaged dynamic memory, the response
to client I/0 requests is fast.

Overall client performance can be improved by
judicious use of the file and disk server in a hybrid
combination. In many instances applications can be
shared for read-only access by multiple cl ients
through the disk server. Moreover, the data on
which the application is operating can be shared for
read-write access through the file server. This pani
tioning can also result in higher numbers of PCs
being supponed by the server, since the disk server
overhead is much lower than the file server.

References
DECnet-DOS Programmers Reference Manual

(Maynard: Digital Equ ipment Corporation, Order No.
AA-EI346C-TV, April 1 988) .

IBM PC Network, PC Adapter Manual (Boca Raton :
113M Corporation, Reference No. 6322505 , Septem
ber 1984) .

IBM Personal Computer Seminar Proceedings, vol.
2, no . 8 (October 1984) .

IBM Token-Ring Network, PC Adapter Manual

(Research Triangle Park: 113M Corporation, Reference
No. 69X7830, June 1986) .

P. Mierswa , D. MittOn, and M. Spence, "The DECnet
DOS System," Digital Technical journal (September
1986) : 108- 1 16.

No. 9 june 1989 Digital Tecbnicaljounud

The WAVE Tools Base
for Protocol Testing

Peter G. Viscarola I
jeffrey E. Watkins

One goal of data communications protocol testing is to ensure that the protocols

that are implemented adhere to the relevant standards. Reaching this goal is often

time-consuming and difficult. To help simplify this particular type of testing,

called protocol conformance testing, Digital's Networks and Communications

(NAC) Conformance Engineering Group has developed the WAVE tools base. This

unique tool forms a reusable platform that can be used at almost any protocol

layer. The WAVE tools base implements a programming language specifically

designed to make developing protocol tests and pmtotypes easy. Examples of the

WAVE design features presented here are derived from the group 's experiences in

developing a conformance test suite for the DEC net Phase V network routing layer.

The WAVE tools base and the WAVE testing language
were designed and developed to help solve the

unique problems inherent in data communications
protocol testing. The reusable framework provided

by WAVE allows tool developers to build protocol
tests quickly.

Testing Sophisticated Protocols
Developers of sophisticated distributed applications

face the problem of how to test their protocol

implementation to ensure it is operating in accor

dance with applicable standards. One method of
testing employed by developers runs an implemen

tation against a copy of itself. This method does not
test the correctness of the protocol itself, however,

and may result in an implementation that communi
cates with itself but not with implementations

developed elsewhere. Most developers recognize

the pitfalls of this rype of testing. As a resu lt, they
often create crude test programs which allow them
to exercise complete control of the messages sent.

Test programs are essentially debugging aids
which are written quickly and are often discarded
when development is completed. The developer
does not spend time adding features to the test pro

gram that wou ld be considered essential in a
product qualiry cool. Test programs display the fol
lowing characteristics:

• A user interface that suits the developer at the

time the tool is created. This interface is not nec
essarily easy to use, and there is no consistency in

the sryle of interface presented by different tools.

Digital Technicaljournal No. 9 june 1989

• Suitability for only one particular purpose. These

tools usually cannot be easily modified to per
form other testing functions or to accommodate

changes required by a new version of the proto

col specification.

• A tendency to fail when used in environments

that the developer did not explicitly foresee.

• A pauciry of documentation and support.

We saw a definite need in the software develop

ment community for a testing tool that embodied the

product qualities of ease of use, extensibiliry, robust

ness, and documentation and support. There was

also a need within our own group, NAC Conformance

Engineering, for such a tool. Our group is responsi

ble for developing conformance testing methodolo
gies and tools tO test Digital 's networking products.

We saw a large number of products that required

testing, and we needed a quick way to build qualiry

conformance test tools for these products.
From our past experience in developing test

tools, we knew that over half of the overal l develop
ment time is spent creating the test tool environ

ment. This environment consists of a language in
which to express test cases (scripts) , a compiler for
this language , and an interpreter to execute com

piled test cases. If we could create a reusable envi
ronment, the development time required for each

individual tool would be significantly reduced.
The WAVE tools base is the reusable environment

that we created. WAVE is not a tool itself, but a frame

work on which to build a test tool for a specific
protocol.

51

Distributed Systems

Goals of the WAVE Design

When we began to consider the fu nctional require
ments for our reusable test tool platform, we quickly
arrived at the following m inimum requirements:

• The script language needed to be simple to learn
and easy to use, and tO appear famil iar to even
entry-level software engineers. This would reduce
the "lead time" necessary for engineers to learn
the language and would help the language
become easily accepted by the software develop
ment community.

• The language had to provide direct access, by
fie ld name , to any field within a protocol data
unit (PDU) . Fie lds could not be restricted as to
length or starting position within a PDU, since
fields do not necessarily start on an even byte
boundary. Also, the language had to allow the
developer to define both the starting location and
the length of a field within a PDU dynamically
during script execution. Together, these requ ire
ments wou ld al low the script language to sup
port a l l common data communications protOcols
between ISO l ayers 2 and 4 , and even many proto
cols at layers 5 through 7.

• The tester system needed to support easy access
to, and control of, multiple separate timers. These
timers would be used to measure time intervals
between message exchanges, or tO time the exe
cution of an individual test. The minimum
required timer granulariry was 10 mil liseconds
(ms). It was necessary that t imers coun t up (i .e . ,
measure elapsed time) or count down from a pre
determined va lue (as in waiting for an interval
to pass before proceeding to another action) .
Another need was the ability to pause timers while
they were running and later to continue their
execution. Finally, and perhaps most important, i t
was highly desirable tO be able to update timers
in real time. This feature wou ld allow the va lue
in a timer to be examined and perhaps changed
at any time, even whi le the timer was running.

• The tester system had to al low portabi l iry of test
scripts among many different platforms. We
anticipated a need to have the tester system run
on several different operating systems, including

SCRIPT
SOU RCE
FILE

WAVE
COM PILER ON
VAX/VMS

VAXjVMS, ULTRIX, and perhaps even MS-DOS. Test
scripts that are operating-system-independent can
therefore be run on any of the various platforms
without change.

• The tester system had to support the autOmatic
logging of PDUs exchanged between it and the
implementation being tested. This logging facil ity
was required both for debugging of test scripts
and for providing details of the observed proto
col behavior to the implementors.

• Other requirements included support for rypical
integer arithmetic and logical operations, and a
flexible means to interface a test script to the
u nderlying protocol service.

Our initial inclination was to see if we cou ld find an
existing language for protocol testing that would sat
isfy our requirements. We therefore began to search
through the l i terature (including journal articles,
technical papers, and ISO standards) . Much to our
surprise, no satisfactory language seemed to exist . 1

We next considered meeting our requirements by
developing a c lever set of macros, or subroutines,
in a general-purpose programming language. We
attempted some exploratory work in this area and
were unsuccessful each t ime. The very attributes of
general-purpose programming languages made them
more difficu lt to learn and use than we needed . We
found it extremely cumbersome to use most of these
languages to describe PDU fields of arbitrary length.
Even the BLISS language, which has a powerfu l field
ing facil ity, allows only fields of up to one "ful lword"
in length. (This machine-dependent value is 32 bits
on a VAX system .) Fields longer than this must be
referred to by pointers to their starting addresses . Ref
erences to these fields for the purposes of comparison
or assignment requ ire the user to know and supply
the fie ld length, which was certainly not desirable.

When our attempts to use an existing program
ming language fai led, we allowed ourselves the
freedom to design our own language for use as part
of the tools platform. We wanted tO achieve porta
bi lity of test scripts among operating systems while
retaining some amount of run-time efficiency. Taking
a cue from the old BASIC "compi lers," we developed
a compi ler that read a script source fi le and created
an operating-system-independent binary object file

SCRIPT
OBJECT
F I L E

WAVE
I N TERPRETER ON
TA RGET 0/S

Figure 1 Basic WAVE Script Flow

52 No. 9 june 1989 Digital Tecbnicaljournal

contatn tng pseudo code. The script object file
cou ld then be executed by a WAVE interpreter run
ning on the target operating system. The flow is
depicted in Figure 1 .

This interpretive approach also allowed us to sup
port fields easily within PO Us with starting locations
andjor lengths that were determined (or changed)
dynamically during execution.2 The interpreter could
easily keep track of the changing field definitions
and use the appropriate one when the field was ref
erenced. More details on how we implemented
fields appears in the section Storage Declaration and
Field Handling.

To provide an interface to the underlying proto
col layer, and to accomplish those things that might
prove difficul t or time-consu ming to do in WAVE
script language , we developed the concept of
"external routines ." These subroutines are written
in any language supported by the target operating
system . The fi les containing the external routines
are compiled on the target operating system . The
resu lting object files are then linked into an exe
cutable image (for example, on VMS the image is
l inked "/sharable") . The abil ity to develop many
different sets of external routines (along with, of
course, the generality of the WAVE language) makes
WAVE a reusable tools platform and not just a tOol for
use with one protOcol . External routines provide
the mechanism by which a tool developer "cus
tomizes" WAVE with an interface to the underlying
protocol service . (See Figure 2 .) Furthermore, by
implementing the necessary set of external routines
on each target system (using whatever system
dependent services are required) a single script
object file can be executed on any of those systems
without modification .

To al low the val idation of test results and to serve
as a permanent record of an implementation's test
responses, we saw the need for a log of the PDUs
exchanged during a test. This capabi lity was
included in the design of the WAVE interpreter. The
interpreter autOmatically writes records containing
PDUs to a log file during test execution . These
records are time-stamped and marked tO indicate
the source from which the PDU was received. If an
implementation fa ils a particular test, the PDU log
often provides useful information for determining
the reason for fai lure.

Overview of the WAVE Script Language

To meet our design requirements, we needed a lan
guage that was simple to learn, easy to use, and
familiar looking to most programmers. The language
also needed to have very powerful fie ld-handl ing
capabil ities .

Digital Technica/journm No. 9 june 1989

The WAVE Tools Base for Protocol Testing

I M PLEMENTATION
U N DER TEST

LOWER LAYER SERVICE PROV I D E R

Figure 2 WAVE External Routines

To achieve these goals we decided tO implement a
minimum number of simple control structures that
would be fami liar to all programmers. We started by
designing a block-structured if-then-else statement
of the form :

i f COND I T I ON t hen
< s ta t emen t s >

e l se
< s ta t emen t s >

end i f

To this we added an indefinite loop capability , as
follows:

loop
< s tateme n t s >

end l oop

For completeness, we also included a simple
"gota" statement. The only other control structure
we included was a rudimentary subroutine capabil
ity modeled (again) on that provided by BASIC.

This facil ity was implemented as fol lows :

gosub LABEL

LABEL : < s t a t emen t s >
r e t u r n

Assignment, logical , and arithmetic statements
l ikewise appear in fami l iar forms. These features as
wel l as those described above are best i l lustrated by
a sample program segment:

MAx_WA I LT I MER z MAx_WA I T • 1 0 0
l oop

gosub CHECK_ESHELLD
if not GOT_ESHELLD then

ex i t l oop
e l s e

i f (RBUFF . V$ F_PROT I D eql 130) and
(RBUFF . VSF _TYPE eql 2) then

GOT _ESHELLD = TRUE
end i f

end i f
end loo p

53

Distributed Systems

All these simple and fami liar language elements
help make WAVE simple to learn and easy to use.
They also provide al l program control abilities nec
essary to write sophisticated test scripts.

One facility not often found in simple program
ming languages is macro support. In WAVE, we
implemented an extremely powerful keyword
macro facil ity, including a ful l complement of con
ditional and lexical operations. Macros can be used
by a sophisticated programmer to combine the ele
ments of the WAVE language, and perhaps the calls to
external routines, to create complex new faci lities.
In practical appl ication, we have often used the
macro facility to hide the details of external routine
calling from the script developer. The use of macros
allows test scripts to remain independent of the
number and order of external routine parameters .
Subsequent changes to the cal l ing sequence of an
external routine do not require modification of the
test script; only the macro need be updated . Macros
also ease external routine calls by providing appro
priate defau lts for external routine parameters.

Storage Declaration and Field Handling

We designed an extremely simple sort of storage
mechanism for variables and PDUs. Since we were
developing a language specific to protocol testing,
we could not foresee any need for tloating point
arithmetic . (Only integer operations are supported.)
Hence we developed only two types of storage
declarations, as shown in the fol lowing examples:

var i a b l e DEV I CE (4)
bu f f er RBUFF (1 60 0)

The "variable" statement reserves 4 octets of storage
and assigns to it the name DEVICE . Variables may be
used as they are in most programming languages: as
counters, holders of intermediate results , or for con
trol information . The "buffer" statement functions
identically to the "variable" statement, setting aside
1600 octets of storage for RDUFF. The only difference
between variables and buffers is that buffers may be
used with fields.

The heart of the WAVE system consists of the field
manipulation capabi lities that are built into the lan
guage . WAVE fields are used to address particular
segments of a WAVE buffer. Buffers are typically used
as storage locations for protocol messages. Any field
may be used with any buffer (i .e . , fields are not
unique to a single buffer) .

The field fac ility allows any contiguous set of bits
within a PDU to be accessed, irrespective of its
length or alignment. Fields are used to refer to loca
tions within particular buffers by concatenating the

54

field name to the buffer name, separating the two by
a dot. For example,

RBUFF . V$F_PROT ! D

refers to the fie ld v s F _PROTID within buffer RBUFF.
Fields are declared using the "field" statement.

The name of the field is provided, along with the
offset in octets andjor bits from the beginning of a
buffer to the start of the field. The length of the field
in octets andjor bits is also provided . The syntax for
this statement is illustrated by the following example
taken from the definition of fields for the ISO 9542
protocol:

f i e l d VSF_TYPE (R DC$G_BASE + 4 , 0 : 0 , 5)
f i e l d VSF_TYPE_RESV (R OC$G_BASE + 4 , 5 : 0 , 3)

The field VSLTYPE contains the PDU-type identifier.
This fie ld starts at the octet offset defined by the
expression ROCSG_DASE + 4 and bit offset 0. The
fie ld is 0 octets, 5 bits long. The field that follows it ,
VSLITPE_RESV, contains reserved bits that make up
the remainder of the octet. As al luded to in the
example, any of the four parameters of a field decla
ration can contain expressions.

Support for dynamic field declaration was imple
mented through a few variations on the field declara
tion scheme just described. First, field declarations
may include variables (either alone or as part of an
expression) as shown in the foJlowing:

f i e l d DATA (4 : DATA_LE�GTH)

Field statements may also include implicit refer
ences tO other fields in the same buffer that is being
referenced . This is accomplished as follows:

f i e l d VS F_E_SRCLE� (RDCSG_V_SOURCE_POS : 1)
f i e l d V$F_E_SRCADDR (ROCSG_V_SOURCE_POS + 1

. VS F_E_SRCLE�)

In the above example, the field named
VS LL.SRCADDR starts at the octet defined by the
expression, and extends for the number of octets
contained in the field VSLL.SRCLEN . This facility
was deve loped specifica lly for defining interdepen
dent fields within a PDU . Such fields are common at
all protocol levels.

Embedded field references were the last types
of field support that we implemented . Embedded
field references al low a user to refer tO any bit
within a buffer simply by describing its location, as
with a field declaration. For example,

HOLD I �G • RBUFF . (ROCSG_BASE + S : 2)

Here , the two octets of RDUFF starting at the offset
defined by the expression are assigned to the vari
able HOLDI NG.

No. 9 june 1989 Digital Tecbnical]ournal

Timers

By choosing to implement an interpreter, we easily
achieved our goal of implementing real-time timers
(i .e . , timers that can be interrogated or modified
even while they are running) . Timers are declared
as shown in the following example:

t imer T 1
t imer MAX_WA I T_T I MER

WAVE timers have a fixed size of four octets . The
operation of timers is controlled via the WAVE
timeoper statement. This statement allows timers to
be started (either counting up or counting down) ,
stopped, or waited on. The value i n the timers is
updated dynamically and may be used in any state
ment in which a variable is legal .

Literals and Translation Types

Another unique set of features of the WAVE language
comprises the faci lities provided for the specifica
tion and printing of literal data . Of course , standard
ASCII text enclosed in quotation marks is supported
as in most every programming language. However,
when one thinks of PDUs, one often thinks of the
data contained in a particular field of the PDU in a
particular form. For example, the data field of a PDU
is usually expressed as a series of hex bytes. The
length field, however, makes more sense as a single
byte expressed in the decimal radix. A pair of flag bits
might most easily be understood when expressed in
binary. WAVE allows you to have your choice i n these
matters .

Literals are expressed within single quotation
marks . They are preceded by a translation-type
specifier which indicates the radix and the unit of
size of each of the elements of the literal . Individual
elements of the literal string are separated by com
mas. An example will make the concept clear.

MESSAGE . VSF _LENGTH a X db ' 1 8 '
MESSAGE . VSF _E_SRCADDR a Xhb ' 49 , 0 1 , AA , BB , CC'
MESSAGE . VSF _ TYPERESV3 • Xbb ' 1 1 1 '

In the buffer MESSAGE, the field VSLLENGTH is
set equal to the decimal (byte) value I8. That this lit
eral is expressed in the decimal radix, and is one byte
in length is indicated by the translation type "db."
Likewise, the VSLLSRCADDR field is filled with the
hex bytes 49,0I ,M,BB,CC. The field VSLTYPERESV3
is set equal to the binary (byte) value I l l . In each of
these examples, the radix and the unit of size of each
literal element is denoted by the translation type.

WAVE supports binary, octal, decimal , and hexa
decimal radices. Sizes of I byte, I word, and 1 long
word per literal element are supported.

Digital Tecbnicaljournal No. 9 june 1989

The WAVE Tools Base for Protocol Testing

We also used these same translation types for out
pur display translation . Therefore , when the follow
ing statements

MESSAGE . V$ F_LENGTH = Xdb ' 1 8'
pu t (terminal) MESSAGE . V SF_LENGTH : db

are executed, the value I8 is displayed. By just chang
ing the translation-type to hexadecimal, as follows :

pu t (term i na l) MESSAGE . V $F_LENGTH : hb

the output becomes 1 2 .
The consistent use of a translation-type specifier

and the ability to assign or display values of PDU
fields in any common radix and in any common
unit, make field usage easy and less prone to error.

A WAVE-based Tool for the
DECnet Routing Layer

In this section we provide an example of an actual
WAVE-based tool. We show how the aspects of WAVE
are exploited in creating a tool . The example we
chose is a conformance test tool for the DECnet
Phase v network routing layer protocols.

Our example focuses on the testing of the ISO 9542
protocol. This protOcol is one of several used in the
routing layer (ISO layer 3) of DECnet Phase v imple
mentations. We further narrow our focus by consid
ering only that portion of the routing tester used for
testing on local area networks (LANs) .

The developer of a typical WAVE-based tool creates
the following components:

• External routines for accessing the underlying
protocol layer

• External routines to extend the capabilities of the
WAVE language

• Macros for calling external routines

• Field definitions for protocol messages

• External routine error return codes

The tool developer is required to supply only the
first component, external routines for layer access .
All other components are optional . The test tool we
developed for routing contains all of these optional
components . Their inclusion in the cool consider
ably eases development of test scripts for the rout
ing protocols.

External Routines for Layer Access

The routing tester uses the services of the data link
layer to send routing layer PDUs to the implementation
under test (JUT) . In Figure 3 we see the configuration

55

Distributed Systems

ROUTING
LAYER

WAVE PDl:ls IMPLEMENTATION

vided by the tester, for transmitting and receiving
protocol messages.

I NTERPRETER UNDER TEST For CSMA/CD data links, the following external
routines were defined:

t
EXTERNAL

• LLSOPEN_CSMA () - Open a channel on the
CSMA/CD control ler.

ROUTINES FOR • LLSCLOSLCSMA () - Close a previously opened
CSMA/CD channel .

DATA L I N K ACCESS

t
DATA L INK LAYER

• LLSTRANSMIT_WAIT_CSMA () - Transmit a packet
on the CSMA/CD channel . The 1/0 operation com
pletes synchronously; i . e . , it returns to the cal ler
only when the packet has been transmitted .

Figure 3 Routing Tester Configuration
• LLSRECEIVE_WAJT_CSMA () - Receive a packet

on the CSMA/CD channel . The 1/0 operation com
pletes synchronously. An optional timeout parame
ter is provided to terminate the operation if no
packet is received in the time period.

employed by the routing tester. WAVE external rou
tines (written in the BLISS programming language)
interface the WAVE interpreter to the data l ink layer
service . Routing layer PDUs are exchanged between
the test script and the HJT during test script exe
cution. The test script calls external routines, pro-

These external routines interface the WAVE script
(by means of the WAVE interpreter) to the device
driver that actually performs the transmit and receive
operations.

MACRO : LL MTRANSMI T_WA I T_CSMA

Transm i t a mes sage on the spec i f i ed c sma/cd channe l . Sync hronous
comp l e t ion .

I npu t s :
bu f f
mesg_ l ength
channel

Output s :
s ta t u s

Defau l t s :
channel
s t a t u s

S t o rage l o ca t i on conta i n i ng a me s sage t o t ransm i t .
Leng t h o f the mes sage t o be t ransm i t t ed .
Channe l numbe r a s s i gned to t h i s open r eque s t .

S t a t u s r e t u r n from the externa l rou t i ne cal l .

(macro supp l i ed var i ab l e)

lmacro LL $MHRANSM I LWA I LCSMA < bu f f , mesg_ l e ng t h ,
channel • 1 , s ta t u s • LL $G_STAT >

I i fnact buff
lerror ' Macro parame ter "bu f f" mus t" be supp l i e d '

lend i f
l i fnact mesg_ l ength

#error ' Macro parame ter "mesg_ l ength" mu s t be supp l i e d '
lend i f

external LL $TRANSM I T_WA I T_CSMA (bu f f , mesg- l eng t h , channe l , s t a t u s)

lendmacro

Figure 4 External Routine Call Macro

56 No. 9 june 1989 Digital Technical journal

External Routines for Extended
Capabilities

The routing tool takes advantage of the external rou
tine capabilities of WAVE to add extensions to the
WAVE language . The WAVE language does not provide
any built-in capabilities for printing the error mes
sage text associated with error codes returned by
external routines. This capability is provided by the
following external routine :

LL SGET_MESSAGE ()
This routine, written in BLISS, accepts a parameter
containing the error code returned by an external
routine cal l . It then calls a VAXjVMS system service
which associates the error code with the error mes
sage text. This text is returned to the cal ling script.

External Routine Call Macros

The routing tool provides WAVE language macros
that simplify the calling of external routines

LENGTH
(IN OCTETS)

ES-IS PROTOCOL IDENTIFIER

LENGTH INDICATOR

VERSION/PROTOCOL ID EXTENSION

0

R I R I R I TYPE

HOLDING TIME 2

CHECKSUM 2

N U M BER OF SOURCE ADDRESSES

SOURCE ADDRESS LENGTH

SOURCE ADDRESS � 20

SOURCE ADDRESS LENGTH

SOURCE ADDRESS � 20

OPTIONS VARIABLE

Figure 5 Format of the End System Hello PDU

Digital Tecbnicaljvurnal No. 9 june 1989

The WAVE Tools Base for Protocol Testing

by providing default values for external rou
tine parameters. Figure 4 shows the macro
LUMSTRANSMIT_WAIT_CSMA which is used to call
the LUTRANSMJT_ WAIT _CSMA external routine.

In this macro definition we see that a default
value is provided for the channel parameter as well
as the status parameter. Required parameters are
also checked using a macro lexical function . If a
required parameter is not present in the macro call ,
a compilation error i s generated.

Protocol Field Definitions

The routing tool provides WAVE language field defi
nitions for the fields of each routing PDU. Figure 5
depicts the format of the End System Hello PDU.
Figure 6 shows some of the field definitions pro
vided for this PDU.

In the fields for this PDU, we see the flexibility of

the field declaration statement put to use in defin
ing the ViL.HOLDINGTIME field. The starting posi
tion of this field is determined by the expression
ROCSG_BASE + 5.

Error Return Codes

The routing tool provides WAVE language constant
declarations which the script developer can use for
checking the return status from external routine
calls. The following example shows some of the
constants that are defined for routing.

! F i l e : ERROR V02 . 1 0
! Crea t ed : 25- NOV- 1 988 1 4 : 26

con5tan t ROCLNORMAL •
con5 t�nt ROC $_BUFOVR
constant ROC S _ I NVCHN
constan t ROC $_ T I MOUT •

Xhl ' 080380 1 9 '
Xhl ' 08038024 '
Xhl ' 08038064 '
Xhl ' 080380F4 '

The script developer uses the include file capability
of the WAVE compiler to make these constant defini
tions available to the script. Note that the error
return codes fol low the standard VAXjVMS conven
tion for system error codes.

Sample Routing Test Script

In this section we present a sample routing test
script for the ISO 9542 protocol . This script is shown
in Figure 7 . The purpose of the test script is to verify
that the IUT sends a valid End System Hello PDU. The
End System Hello (ES Hello) message is transmitted
periodically by DECnet Phase V "endnodes" to inform
"routers" of their existence . On a LAN this message
is sent to a special address, called a multicast
address, which addresses all routers on the LAN.

The script begins by using the include file capa
bility of the WAVE compiler to read in error code

57

Distributed Systems

F i e l d s for I SO 9542 - End Sys t em Hel l o PDU

f i e l d
f i e l d
f i e l d
f i e l d
f i e l d
f i e l d
f i e l d
f i e l d
f i e l d
f i e l d

VSF _PROT I D
VSF_LENGTH
VSF_VERS I ON
VSF_L ! FERESV
VS F_TYPE
VS F_TYPERESV3
VS F_HOLD I NGT I ME
VS F_D_CHECKSUM

VSF_D_CHECKSUM_LOW
VSF_D_CHECKSUM_H ! GH

(ROC SG_BASE • 0
(ROC SG_BASE • 1
(ROC SG_BASE • 2
(RDC SG_BASE • 3
(ROCSG_BASE • 4 , 0
(RDC SG_BASE • 4 , 5
(ROC SG_BASE • 5
(ROCSG_EASE • 7
(RDC SG_EASE • 7
(ROC SG_EASE • 8

1)
1)
1)
1)
: 0 , 5)
: 0 , 3)
2)
2)
1)
1)

Figure 6 Fields for the End System Hello PDU

values, PDU field declarations, and macros for ca l l ing
external routines. Next are storage declarations.

The executable portion of the script starts with
the "begin" statement. The script first opens a chan
nel on the device that wil l be used to receive mes
sages transmitted on the LAN. With the channel
successfu l ly open, a timer limiting the total run-time
is started.

t imeoper (s tar t_down , MAX_WA ! T_T ! MER)

The statement immediate ly preceding " timeoper"
i l lustrates a capabil ity of WAVE that we have not pre
viously discussed. The statement

cond i t oper (c rea t � , t imex p , MAX_WA ! T_HANDLER)

establishes MAJLWAIT_HANDLER as a WAVE condition
handler routine 5 WAVE condition handlers process
asynchronous conditions that may occur during
script execution . In the sample script, the routine
MAX_WAIT_HANDLER is used to handle the WAVE
timer expiration condition "timexp." This routine is
ca l led by the interpreter when a timer expires
(counts down to zero) . The statements that make u p
the handler are found at the end of Figure 7 .

MAX_WA ! T_HANDLER :
put (termina l) "Te s t t imer expi red" : as c i i
s t op (i nconc l u s i ve)
return

The code fragment above shows the action taken
by the script on timer expiration: An error message
is displayed and script execution is terminated . The
"return" statement is always the last statement in a
condition handler routine or subroutine .

With the timeout condition handler established
and the test timer started, the script proceeds to the
main body of the test. There, an external routine is
cal led (via a macro) . This external routine attempts
to receive a message transmitted on the LAN.

58

LLSMSRECE I VE_WA ! T_CSMA < buf f • REUFF ,
mesg_ l �ngth • RLENGTH ,
t imc_ou t • MAX_WA I T ,
s ta t u !! • STAT >

I f a message is successfu lly received, the script
checks to ensure that it is the type of message
expected by cal l ing the subroutine CHECILESHELLO.

gosub CHECK_ESHELLO

If the subroutine indicates that an ES Hello was
received, the test is completed by performing fur
ther checks on the val idity of the PDU format . If the
script does not receive a correct message , it contin
ues in the loop where it attempts to receive another
message from the LAN. If the message being sought
never arrives, the test timer MAJCWAIT_TIMER will
expire, causing the timeout condition handler to
execute, as previously described.

Summary
The design of the WAVE tools base solves the unique
problems of testing sophisticated protocols. The
tool developer can quickly create a product quality
test tool by adding a few simple components to the
framework provided by WAVE . NAC Conformance
Engineering Group has found WAVE to be the key
element of its success in building conformance test
tools for DECnet Phase V protocols and related dis
tributed applications.

Acknowledgments
We would l ike to express our appreciation to the
past and present members of the NAC Conformance
Engineering Group who helped design and i mple
ment WAVE, making it the excel lent tool i t is today.
Further, we would l ike to thank our managers past
and present, Jane Morency and Paul Keresey, who had

No. 9 june 1989 Digital Tecbnica/journal

The WAVE Tools Base for Protocol Testing

l i nc l ude ' e r r o r . i n c '
' i nc l ude ' mes sage . i n c '
l i nc l ude ' macro . i nc '

I nc l ude external rou t i ne e r ror codes
I nc l ude PDU mes s age f i e l d def i n i t i o n s
I nc l ude external rou t i ne cal l mac ros

var i ab l e STAT(4)
var i ab l e RLENGTH(2)
var i ab l e GOT_802_ I S0(2)
buffer REUFF(1 60 0)

var i ab l e CHAN(2)
var i ab l e MAX_WA I T(2)
var i ab l e GOT_ESHELL0(2)
t imer MAX_WA I T_T I MER

var i able DEV I CE(4)
var i able GOT_ETHER(2)

beg i n
DEV I CE = "XQAO"
LLM0PEN_CSMA < dev i c e_name = DEVI CE , s t a t u s = STAT >
i f not STAT then

LLMPR I NT _MESSAGE < code = STAT >
s t op(fai l 3)

end i f

MALWA I T = ROC$K_Po l l ESHe l l oRate • ROC $K_Ho l d i ngMu l t i p l i e r
MALWA I LT I MER = MALWA I T • 1 0 0
cond i t oper(crea t e , t i mexp , MAX_WA I T_HANDLER)
t imeoper(s tar t _down , MAX_WA I T_T I MER)

l oop
LLMRECE I VE_WA I T_CSMA < bu f f = REUFF , mesg_ l eng t h = RLENGTH ,

t ime_ou t = MAX_WA I T , s t a t u s = STAT >
i f not STAT then

LLMPR I NT _MESSAGE < code = STAT >
s t op(i nconc l u s i ve)

end i f

gosub CHECK_ESHELLO
i f GOT_ESHELLO then

t imeoper(s t op , MAX_WA I T_T I MER)
i f (REUFF . LL$F_DEST I NAT I ON eq l Xhb ' 09 , 0 0 , 2E , 00 , 0 0 , 05 ') and

(REUFF . V$F_VERS I ON eql 1) and (REUFF . V$F_D_CHECKSUM eql 0) then
exi t l oop

e l s e
s t op(fai l 1)

end i f
end i f

end l oop

LLMCLOSE_CSMA < >
s t op(pas s)

Rou t i ne : CHECK_ESHELLO

CHECK_ESHELLO :
GOT _ESHELLO = FALSE
RTGMCHECK_802_ I SO < buff = REUFF , snap = GOL80 2_ I SO >
i f GOT_80 2_ I SO then

if (REUFF . V$F_PROT I D eq l ROC $K_V_ES I SProtoco l i dent i f i e r) and
(REUFF . V$F_TYPE eql 2) then

GOT _ESHELLO = TRUE
end i f

end i f
r e t u r n

! Rout i ne : MAX_WA I T_HANDLER

MAX_WA I T_HANDLER :

end

put (term i nal) "Te s t t i mer expi red" : a sc i i
s top(i nc onc l u s i ve)
r e t u r n

Figure 7 Sample Routing Test Script

Digital Technical journal No. 9 june 1989 59

Distributed Systems

the confidence and foresight to give us the space
and time we needed to try our ideas and invent some
thing very unique .

Notes

1 . The Tree and Tabular Combined Notation (TICN) ,
which is today described in ISO DP 9646-3 , was
still in its infancy at the time and was not targeted
to be machine processable . TICN is starting to be
used today within ISO as a standard test notation ,
but it is neither easy to learn , easy tO use , famil iar
looking, nor sufficiently flexible for our needs.
TICN is also primarily an abstract description

60

language, whereas WAVE is an executable program
ming language. Hence, current work on TICN
does not eliminate the need for WAVE.

2. Although dynamic fielding would certainly be
possible in a fu l ly compi led language, the
required code generation and run-time support
would be very difficul t to implement. The choice
of an interpretive approach made implementing
this facility quite straightforward.

3. WAVE condition handler routines provide an asyn
chronous event handling capabi l.ity. They should
not be confused with condition handlers of the
VAXfVMS operating system.

No. 9 june 1989 Digital Technicaljournal

Eugene Finkelstein I
Richard A. Grawin

Performance Evaluation of
Distributed Applications and
Services in the DECnet Environment

Performance evaluation is critical in the design of distributed systems as well as

for purposes of capacity planning. The Distributed System Technical Evaluation
Group has developed a methodology for distributed system performance evalua

tion at the system level and has applied it in the DEC net environment. The core of
the methodology is the systematic use of an empiricaljanalytical approach in

which measurements and modeling are closely coupled. This paper focuses on the
empirical component and provides details on experiment complexity reduction,
an instrumented test-bed, and tools for data collection, reduction, and analysis.

The case studies of VAX DNS, VAX DFS, and RSM, from which the methodology

evolved, present performance evaluation results of product qualification testing.

VAXjVMS Mail and VAXjVMS Copy case studies, to which the methodology was
applied, include network file transfer performance and capacity planning data.

The growing demand for distributed computing has
resulted in the emergence of large-scale, network
based distributed systems. These distributed envi
ronments offer customers the opportunity to
combine and share limited resources for cost-effective
operation.

Within the same configuration, various products
must coexist without excessively interfering with
one another and perform in a way transparent to the
user. However, even when different products inter
operate successfully within a certain configuration,
the entire distributed system behavior under variable
loads is still an issue . Therefore, the ability to evalu
ate distributed system bounds and bottlenecks with
respect to alternative configurations and workloads
is needed . 1 '2

In this paper, we present the methods and tools
being developed and used by the Distributed Systems
Technical Evaluation Group (DSTEG) in assessing
the performance of DECnet-based distributed sys
tems. Performance evaluation relative to product
interoperability testing is one of the areas where the
methodology may be applied. Here, we add new
products to a distributed system test-bed and exam
ine their impact on the performance of that system .
Distributed system performance evaluation for the
purposes of system design and capacity planning is
another area where we are currently using the meth-

Digital Tecbnicaljournal No. 9 june 1989

odology. Here, we look at the means used to fore
cast the behavior of a distributed system under a
variety of workloads, with configuration changes, or
given hardware and software component additions
or replacements. Both kinds of measurement studies
have evolved the methods and tools described in
this paper.

Our methodology is a unique merger of empirical
and analytical techniques. Although we demonstrate
how modeling and measurements are closely coupled
in our approach, this paper focuses on the empirical
component. This component includes a complexity
reduction of experimental design, a controlled exper
iment environment, and data collection and analysis
tools. Following the discussion of the methodology
are case studies. The Distributed Name Service
(DNS) , the Distributed File Service (DFS) , and the
Remote System Manager (RSM) studies, from which
the methodology and experiment environment have
evolved, i l lustrate some performance results rela
tive to the qualification testing of these products in
the distributed system environment. More recent
evaluations of local area network (LAN)-based dis
tributed system performance use VAXjVMS Mail and
Copy utilities as the workload. These evaluations
demonstrate the successfu l use of the methodology.
Finally, we deliberate upon the possible uses of the
findings given in this paper.

61

Distributed Systems

r
I

ANALYTICAL COM PONENT

- - - ...,

I
I
I
I
L

r
I

L DISTRIBUTED
WORKLOAD SYSTEM
MODEL QUEUING

I MODEL

- - · - - - - - - - - - -
- - - - - - - - - - - - -

SMALL SCALE DATA

I
I
I
I
I
I

....J
- - - - - - - - - - 1- - - ,

I
PERFORMANCE I

WORKLOAD � DISTR I BUTED r- ACQUISITION - DATABASE - ANALYSIS

+ GEN ERATOR
I
I SYSTEM TOOLS TOOLS

I
L

EMPIR ICAL COMPON ENT I
_ _ _ j

Figure I Distributed System Performance Evaluation Approach

Methodology

A distributed system performance evaluation meth
odology has been developed which relies on closely
coupled empirical and analytical components. To
encompass the wide scope of the problem and to
provide accurate forecasting capabilities , modeling
augments the measurement capabilities. In this sec
tion, we describe the dynamic interaction between
measurements and modeling in the course of dis
tributed system performance analysis. However, the
focus of our discussion is the empirical component.
We describe the means of complexity reduction, the
test-bed features and tool capabilities, and specifics
of the experimental design and data collection,
reduction, and analysis.

The methodology can be applied to performance
eva luation relative to product interoperabil ity, per
formance sensitivity to dependent parameters, bottle
neck analysis, boundary condition (failure) detection,
and system design alternative selection .

The key performance metrics examined are user
perceived delays and network and nodal resource
utilization . These user response times are decom
posed when appropriate. For example, times related
to DECnet session establishment and duration are
obtained when session-oriented applications are
eva luated . The primary resources monitored are the
Ethernet bus, CPUs, disks, and memory. Component
throughput levels and service times are obtained in
product or application performance evaluations.
Effective (data related) network util ization is exam
ined through analysis of DECnet statistics. One goal

62

in evaluating these metrics is to understand the
trade-offs in minimizing user delays while maximiz
ing shared resource util izations.

Combined EmpiricaljAnalytical Approach

The components of the distributed system perfor
mance evaluation methodology are i l lustrated in
Figure 1. A dynamic interaction between an analyti
cal model and the experimental test-bed is the core
of this methodology. First, the fundamental ingredi
ents of the small-scale distributed system (realizable
in a laboratory) are measured and understood . Then,
the corresponding queuing models are constructed
and validated. Finally, these models are expanded to
evaluate large-scale distributed systems for which
performance evaluation of the entire system by
measurements is infeasible. Use of the learning,
constantly updated model significantly enhances per
formance evaluation capabilities offered by the
combined empiricaljanalytical approach.

The empirical component requires workload gen
eration capabilities and an instrumented test-bed
capable of collecting the appropriate performance
data . A data referencing and archival system and a
set of performance analysis tools are used to expedite
the analysis phase . The supponing tools and test
bed features have evolved through a series of case
studies. Measurements take place within case stud
ies nOt only to empirical ly evaluate distributed sys
tem performance characteristics but also to help
construct, parameterize, and val idate distributed
system models. This feedback from the empirical to

No. 9 june 1989 Digital Technicaljournal

Performance Evaluation of Distributed Applications and Services

the analytical component of this methodology is
depicted in Figure 1 .

The modeling component of this methodology,
not detailed in this paper, is driven by distributed
system performance evaluation needs. Modeling
requires the abstraction of both the distributed sys
tem and the workload being investigated. Both the
system and the workload can be simplified in the
distributed system models. This simplification and
an efficient solution algorithm based on approxima
tion techniques allow evaluation of very large dis
tributed systems in a timely manner.3 In conjunction
with the analytical modeling, complexity reduction
techniques allow for the development of effective
methods of distributed system performance evalua
tion. These techniques, described in the following
section, significantly reduce the time needed to
accomplish the evaluation .

Complexity Reduction

With the large number of hardware and software
products, applications, and associated parameters of
interest, a distributed system performance study
can potentially require a very large experiment set.
The methodology attempts to reduce the number
of experiments by making use of commonal ities
between applications or products and of experi
ment design decomposition techniques.

As it follows from information theory, when deal
ing with two events with some similarities, it should
take less effon to learn about one of them by using
the knowledge already acquired about the other
one." In moving from one study to a subsequent one,
any commonality between the two can be exploited,
and hence, redundant or unnecessary experiments
can be eliminated. For example, in evaluating two
distributed system products with similar resource
demands, one would be able to predict critical
workload levels associated with the second product
after empirically determining them for the first.

PROJECT
R EQUIREM ENTS

Experiment design decomposition provides
another way of reducing the experiment set when
many parameters are involved . s By understanding
which variables of interest are dependent and inde
pendent (onhogonal) , one can decompose the set
of experiments to mutually exclusive subsets. One
can then make decisions within experiment subsets
about reducing the number of necessary experiments.

For example, the number of experiments needed
in evaluating distributed system performance can
increase combinatorially with respect to the num
ber of initiator/target node types. Evaluating the dis
tributed application performance for two node
types implies four different initiator - target combi
nations . One approach to minimizing the number of
experiments is to choose the best-case and worst
case node pairs and evaluate them, knowing that the
other cases fal l in between . Another approach is to
measure performance for several node types and
predict the performance for others by modeling.
Similarly for application parametric analysis, one
may have to rank the parameters and choose to eval
uate the application's performance with respect to
the most significant parameters or choose to evalu
ate performance under reasonable upper and lower
parameter settings only.

Evaluation Process

The operational process put in place to evaluate dis
tributed system performance is shown in Figure 2 .
Market driven performance issues and evaluation
needs define why the study should be undenaken .
Market concerns and needs are mapped, through the
design center, into specific project requirements .
The design center describes a distributed system
environment - products, systems, and workloads -
representative of a panicular class of network users .
This mapping keeps the study relevant for a class of
Digital customers rather than specific to any single
customer.

Figure 2 Distributed System Performance Evaluation Process

Digital Technicaljournal No. 9 june 1989 63

Distributed Systems

The project plan explains how the project
requirements wi ll be met and details proposed
strategies (measurements and models) , experiment
designs, resource needs, and schedules. Experiment
andjor model execution and analysis then take
place. A key element of the process is the feedback
loop from the analysis phase back to the planning
phase . Performance studies are very unpredictable,
and through the feedback loop, unnecessary experi
ments can be eliminated and new experiments can
be defined .

Finally, a report is generated that provides data
and answers questions posed by the project require
ments. Based on the findings, recommendations can
be made relative to the products and configurations
investigated . As depicted in Figure 2 , this informa
tion can also bring about modifications to the design
center.

Experiment Environment

Instrumented Test-bed The laboratory currently
facilitates both interoperability and detailed perfor
mance analysis. Depicted in Figure 3, the test-bed is

PRINTER
WORK GROUP

-
TERM I NAL
SERVERS -

currently a local LAN environment which will
evolve towards the extended LAN (XLAN) and wide
area network (WAN) environments. The following
test-bed features exist:

• A very heterogeneous distributed system with sev
eral classes of systems under test (SUTs) : Ethernet
and asynchronously connected standalone systems
running VMS and ULTRJX , VAXcluster and Local
Area VAXcluster (LAVe) members running VMS,
and personal computers running MS-DOS. Several
systems of the same type are clones of one another
to allow exact comparative analysis between
systems and to reduce the test-bed system man
agement overhead . Network-related components
include terminal servers, printers, bridges, and
routers .

• A workload generator which provides terminal
user emulation at the interactive command level ;
semiautomatic and interactive script generation
capabilities; event arrival definitions for expo
nential , uniform, normal , constant, or general
distributions; and user-perceived task comple
tion time measurements.

TEST DRIVER

BACKBONE
ETHERNET

VAXcluster
WORK GROUP

LAVC
WORK GROUP

PERSONAL
COMPUTER
WORK GROUP

VMS AND ULTRIX ASYNCHRONOUS
WORKSTATIONS DECnet

WORK GROUP

KEY:

RTE - R EMOTE TERMINAL EMULATOR

TCC - TEST CONTROL CENTER

NTS - N ETWORK T IME SYNCHRONIZER

DELNI - LOCAL NETWORK INTERCONN ECT

DEMPR - M ULTIPORT REPEATER

LAVC - LOCAL AREA VAXcluster

Figure 3 Heterogeneous Distributed System Test-bed

64 No. 9 june 1989 Digital Technica/journm

Performance Evaluation of Distributed Applications and Services

• A test control program that runs environment
verification and initial ization procedures at the
beginning of an experiment and clean-up proce
dures at the end.

• Flexibil ity built into the hardware configuration
and the test driver to allow easy redefinition of
the set of active SUTs .

• A multiwindowed control console that cen
tral izes control over experiment execution,
including workload generation and data collec
tion tools, and provides real-time monitoring
of the progress of an experiment. Nonintrusive
control of the test driver and network monitoring
systems is accomplished over a LAN isolated from
the SUTs.

• A utility to synchronize the time on all nodes and
data collection systems.

• A performance measurement tool set that moni
tors CPU, disk, memory, and network resources.

Data Collection Time-stamped and sampled data
are collected from all SUTs and the Ethernet . On all
VMS systems, VAXjVMS System Performance Monitor
(SPM) collectS data on CPU, disk, memory, lock, and
other nodal resource usage for both the whole system
and on a per-process basis 6 The VAXjVMS Account
ing utility provides image and process data at each
node. Network Control Program (NCP) counters are
used to quantify the amount of network r;o sent and
received by the active nodes and to indicate network
error conditions. Disk and file system activities are
monitored by a prototype measurement tool.

Two monitors are used on the Ethernet bus. The
LAN Traffic Monitor (LTM) provides statistics of Ether
net data link protocol and packet size distributions,
utilization and throughput, and top network traffic
sources 7 A second prototype monitoring tool pro
vides Ethernet and DECnet information including
data link, network, and transport layer packet
countS. DECnet session layer data packet size and
message size distributions are also obtained. Addi
tional DECnet session level data available is source
and target node identification , session establishment
and termination time-stamps, DECnet session object
number, and control and data packet and byte counts
associated with each session.

Experiment Design

Some experimentS are designed to provide an
understanding of the performance impact (inter
operabil ity) of a newly introduced product. Other
experiments address specific distributed system

Digital Teclmicaljournal No. 9 june 1989

configuration, product, or application performance
issues. The issues must be specific, since an exhaus
tive performance evaluation over mu ltiple hardware
platforms and multiple application parameters resultS
in an excessively large experiment set. One means
of limiting the experiment design space is to work
within the hardware, software , and workload con
straintS of a defined design center, described in the
earlier section Evaluation Process.

Product interoperabil ity investigation is a two
stage process . In the first stage , the product under
test is evaluated in a controlled, isolated environ
ment. No other productS are running in the dis
tributed system . This forms a "base experiment ."
This experiment determines the readiness of the
product to enter the second stage . In the second
stage , the product is evaluated in a controlled,
mixed environment. Users are exercising other dis
tributed services and applications along with the
product under test.

Each experiment is made up of test scripts which
emulate users doing a predetermined amount of
work. These network-oriented workloads include
VMS Mail , Copy, and Set Host uti l ities as well as VAX
Notes, VAX VTX, VMS File Services for MS-DOS, VAX
DFS, VAX DNS, VAX DQS, and VAX RSM layered prod
ucts. Users are categorized as performing a particu
lar type of work . For example, some users may be
defined as clerical , some as engineers, and others as
system managers. Each type of user can be expected
to have activities that are representative of the type
of work the user is defined to do. Each user is
assigned a script which is of the proper category and
which contains functions associated with that type
of user. Again, much of this workload is defined
from design center specifications.

Key metrics associated with the product's perfor
mance and with distributed system performance are
chosen for review. Typical metrics are nodal metrics
such as CPU, memory, and disk usage for each SUT
and network metrics such as Ethernet protocol dis
tribution and throughput levels. The metrics quan
tify how well the product under test performs in the
distributed system.

Differences in the values of these metrics before
and after introducing the product under test yield
the effect of adding that product to the distributed
system. These differences are analyzed further to
determine the effect on other network configurations .

Within the combined empiricaljanalytical ap
proach to distributed systems performance evalu
ation, experimentS are designed to (1) produce
direct, empirical proof of distributed system perfor
mance, (2) contribute to the distributed system

65

Distributed Systems

model parameters, and (3) validate the modeling
effort. The following general kinds of experiments
are run:

• No users are active. This experiment quantifies
the quiescent system activities, e .g . , DECnet and
LAVe protocol activities and VMS background
activities. It is also used to quantify the intrusive
ness of data collection tools.

• A single active user repetitively performs a single
task or application . This workload can quantify
the optimal user-perceived performance when
no contention for resources is taking place. The
workload also quantifies the user's per-application
resource usage (CPU, disk, memory, Ethernet) for
bottleneck analysis and model service time pur
poses. This simple workload is useful in applica
tion parametric behavior evaluation.

• Multiple active users repetitively perform a
single application or a mixed workload . This
experiment is run to empirically determine if
user-perceived performance and resource usage
is l inear with respect to the number of active
users. The experiment can also be used to inves
tigate task or application boundary conditions,
effects on bottleneck devices, and fai lure modes
with respect to the workload . Finally, it can
validate the output of a corresponding queuing
network model .

Data Reduction and Analysis

Lots of data is collected from multiple tools on mul
tiple systems during an experiment. This data needs
to be reduced, merged, and analyzed in a timely
manner. A set of VAXfVMS command files has been
written to automate the data reduction and analysis
process as much as possible . These command files
first call upon programs to generate ASCII report
fi les from binary data files. Secondly, the command
files cal l upon SAS statistical analysis routines to
reduce and analyze the data . The SAS routines gener
ate both report files and data sets used in further
analysis.

A first step in data reduction is to analyze the data
for a selected subset of the SUTs. SAS routines then
reduce this data by extracting from several files two
set of data: (1) the key performance variables, and
(2) the appropriate samples based on a time window
of interest. These key metrics relate to user-perceived
completion times, DECnet session times, and CPU,
disk, memory, and Ethernet resource usage. The out
come of all the data reduction is an experiment
summary file automatically generated after each
experiment run. These summary reportS allow the

66

analyst to quickly determine if experiments ran suc
cessful ly and whether or not any performance
trends are evident across experiments.

The most time-consuming part of a study is typi
cally the analysis phase. The experiment summary
and the SAS analysis routines help minimize this
time . Routines report the minimum, maximum, aver
age, and variance of the key performance metrics.
Associated with this, peak periods of resource usage
can be located for transient analysis. For bottleneck
analysis, several data sets are merged to derive
aggregate per-application resource service times.H

Device visit counts, service t imes, and network
transfer size statistics are obtained for model input.

Case Studies -Evolving the Methodology
We brietly discuss the results of our performance
evaluation with respect to qualification testing of
three products - DNS, DFS, and RSM. These studies
helped evolve the methodology and its associated
experiment environment and tool set . Experiment
designs and results are summarized to demonstrate
the divergent kinds of experiments performed and
data examined in analyzing these various products.
Actual performance numbers associated with DNS
and OFS have not been included since more recent
findings are given in this issue of the Digital

Technical journal. 9 From these studies, we saw the
need for a methodology, an experiment environ
ment, and a data collection and analysis tool set that
are flexible enough for effective use across different
kinds of studies.

Distributed Name Service

Our main goal was to ensure that ONS version 1 .0
was a quality product ready for customer release.
We evaluated its functional i ty , manageabil ity, reli
abi l ity , performance, and documentation. Measured
performance was compared with product require
ments provided by the DNS Development Group.
The ONS use of distributed system resources with
multiple ONS servers and clients active was also
quantified .

Three different test environments were used during
the ONS study.

• A minimal configuration consisted of two
MicroVAX systems connected by means of
ThinWire Ethernet. Both systems ran VMS and both
were used as ONS servers and clients . A flat DNS
namespace with two clearinghouses in the root
directory was defined . This simple configuration
was useful in fam iliarizing ourselves with DNS
and performing easily controlled experiments.

No. 9 june 1989 Digital Technical journal

Performance Evaluation of Distributed Applications and Services

• A more complicated configuration consisted of
13 MicroVAX systems connected by a ThinWire
Ethernet. Eleven of the systems ran the VMS oper
ating system and were configured as both DNS
servers and clients. The two remaining systems
ran ULTRIX and DNS client software . A hierarchi
cal DNS namespace was defined which contained
1 1 clearinghouses. Convergence parameters of
all namespace directories were set to high. This
ONS configuration was highly distributed and was
used to stress the distributed properties of DNS,
such as name server replication. 10

• Thirdly, tests were run using a VAXcluster sys
tem. The cluster consisted of a VAX- 1 1 /785 sys
tem and a VAX 8600 as the DNS server, and two
MicroVAX I I systems as DNS clients - one run
ning VMS and the other running ULTRIX. Here,
timing tests were conducted by using the VMS
name service clerk jacket routines to determine
the response times of a subset of DNS functions.
Random requests were made for each cal l , using
namespace directories from 1 to 10 levels deep.
We found that the response times were within
the stated performance goals of DNS version 1 .0.

For most of the evaluation, a test script was used
which was designed to exercise the DNS transaction
agent and background process. This script per
formed create, modify, and read operations within
each namespace. We ran the script on both VMS and
ULTRIX clients with the three configurations iso
lated and connected .

The DNS study demonstrated a need to design a
flexible, heterogeneous test-bed where different
groups of systems could easily be isolated from one
another or combined to form a single test environ
ment. Evaluation of DNS background activities that
propagate throughout the distributed system demon
strated the need for capabilities such as system time
synchronization and enhanced Ethernet (DECnet)
monitoring.

Distributed File Service

The goal of DFS version 1 .0 testing was to determine
how DFS performed as the number of active DFS
clients increased. The workload chosen was a fi le
copy operation that placed a steady load on the DFS
server. Experiments were conducted using two
types of servers - a MicroVAX 3500 system and a
MicroVAX II System 5 . These are two of the smallest
VAX systems to support RA disk drives and were cho
sen to demonstrate low-end DFS server capacities. Up
tO 22 MicroVAX II systems were used as DFS clients.

The experiment set involved four variables: DFS
server type , file size, number of copy transactions

Digital Technical journal No. 9 june 1989

per experiment, and number of active DFS clients. A
power metric was defined to quantify the DFS server
capabil ities: Power = data rate X transaction rate .

This single metric is useful in comparing the
effective work done by the DFS server when han
dling different file sizes. La,rge file transfers cause a
higher data rate but a lower transaction rate, whereas
small file transfers cause the opposite effects.

In the low-end server configurations studied, the
results indicated that the DFS server CPU was the bot
tleneck. Again, measured results are not presented
here; more recent findings on DFS performance are
provided elsewhere in this issue 9

Besides the DFS performance evaluation results,
this study gave us experience in selection of param
eters, experiment design, and control of a moder
ately sized test-bed . The power metric defined and
used in this study may prove useful in characterizing
performance for many distributed system products
and services .

Remote System Manager

We investigated the manageability, security, inter
operability, and performance characteristics of RSM
version 2.0 - " Testing was performed in a configura
tion specific tO the expanded capabilities of RSM
version 2.0. This configuration included a VAXstation
2000 workstation and an ULTRIX node as RSM clients,
and a MicroVAX II system, a VAXcluster system , and
an LAVe boot member as RSM servers. A small WAN
was also used during the RSM evaluation.

Our performance analysis of RSM measured its sys
tem backup and initial system load (ISL) functions.
The goal was tO determine the performance effects
of an increasing number of RSM backups and ISLs on
distributed system performance. SPM monitOred the
RSM server resource usage and LTM monitOred the
Ethernet. These experiments were run with RSM ver
sion 2 .0, VMS version 4 .6, ULTRIX version 2 .0, and
DNS version 1 .0.

The fol lowing conclusions were reached on RSM
version 2 .0 performance:

• When multiple client backups to a RSM server are
performed, the bottleneck is typically the disk on
the server.

• ISLs place a heavier load on the server CPU than
do backups.

• An ULTRIX ISL is faster and takes up less CPU on
the server than a VMS ISL. With a VAXstation 2000
workstation as the RSM server, an ISL of a 74,000
block ULTRIX VAXstation II system takes 26:36
minutes; whereas an ISL of a 53 ,298 block VMS
VAXstation II system takes 40:25 minutes.

67

Distributed Systems

• The RSM server CPU time and the Ethernet uti l iza
tion increase linearly with the number of clients
being simu l taneously loaded. However, the tOtal
e lapsed time associated with multiple ISLs only
increases marginally.

Also, the increase in elapsed time is less than
the increase in RSM server CPU time . With a
VAXstation 3000 as the RSM server, loading two
VMS VAXstation II clients takes only 3 minutes
more of elapsed time over the 40 :25 minutes to
load a single client. At the same time, the RSM
server CPU time increased from 6.5 tO 13 minutes.

The RSM study demonstrated the need to quantify or
at least understand the product's resource usage of
all potential bottleneck components. The marginal
elapsed time increase when loading multiple RSM
cl ients implies that there is a significant amount of
concurrent activity taking place on both systems and
on the network during an ISL. Understanding how to
measure and characterize distributed system con
currency has become an imponant factor in our
methodology. Final ly, the need to understand ULTRlX
system behavior with respect ro distributed system
products was also evident from this study.

Studies Implementing the Methodology
VAXjVMS Mail and VAXjVMS Copy

Using the methodology described in this paper, two
studies were conducted tO examine the performance
of network transfers using the VAX/VMS Mail and
VAX/VMS Copy uti lities. The mail evaluation was a
pilot study in implementing the methodology. One
goal of the study was tO test and improve the meth
odology and rool set. A second goal was to evaluate
the performance of the VAX/VMS Mail utility with
respect to different sender and receiver node types,
file sizes, and mail load levels.

In our evaluation of the VAX/VMS Copy utility in
the LAN environment, we built upon the mail study
findings. Besides assessing the performance charac
teristics of VAX/VMS Copy, we also

• Examined block versus record modes of network
file transfer

• I nvestigated the methodology of capitalizing on
similarities between applications of interest to
understand how this ability can improve the
experimental process

• Determined the adequacies of the measurement
tools used in capturing performance data for
input into a distributed systems model ing effon

Experiments were designed to scale the mail and
copy workloads. Application performance under

68

light and heavy loads, including appl ication fai l ure,
was analyzed. Parameters investigated included trans
fer size, number of destinations, number of active
users, and workstation and diskless LAVe satellite
node types. Performance metrics of interest were
user-perceived completion times , resource utiliza
tion and throughput levels, and DECnet session char
acteristics - connection and duration timings and
transfer byte and frame counts.

Both studies used a LAN test-bed consisting of
VAXstation II standalone workstations and VAXstation II
LAVe satel l ites . The LAVe boot member was a
MicroVAX/KDA with a single RA81 disk . Al l systems
were running VMS version 4 .7 with default system
and user parameters and quota settings maintained.

Mail and Copy Design Differences Although these
two appl ications are at times used interchangeably
to transfer files across DECnet-based networks , their
differences in design and implementation quite
strongly affect their performance and resource
demands. Copy relies on VMS Record Management
Services (RMS) to interface to the network (trans
parent DECnet) , whereas mai l places the related sys
tem cal ls to the VMS QIO interface (nontransparent
DECnet) . This intuitively tel ls us that mail may
reduce some network interfacing costs in establ ish
ing DECnet sessions and performing network ljO .
However, the measurement results demonstrate that
the access, authentification , and user environment
in itialization differences outweigh the interface
differences in affecting session connect times. On
the receiving node, the file access listener (FAL)
associated with copy must deal with user, directory,
and file permissions more often than does mai l . The
measurements suppon this fact with longer initial
connect times for copy.

Copy by means of the data access protocol (DAP)
and mail by means of the Mail- 1 1 protocol can send
a fi le in either block mode or record mode. For block
mode transfers, the largest Ethernet frame size seen
is typical ly either 576 or 1498 bytes (the DECnet
negotiated segment size) , depending on whether or
not the two nodes are adjacent. For record mode
transfers, the largest Ethernet frame size is the smaller
of the DECnet segment size or the file's record
length. The maximum acceptable record lengths
are 512 bytes for mail and 4 156 bytes for copy.

Both appl ications attempt to use block mode
whenever they can. Mail uses record mode when
transferring a sequential file with stream record for
mat . Copy uses record mode when a file append
operation is taking place. Both copy and mail use
record mode when nodes with different operating
systems (e .g. , MS-DOS) or file systems are communi-

No. 9 june 1989 Digital Tecbnical]ournal

Performance Evaluation of Distributed Applications and Services

eating. However, DECnet-ULTRJX supports block
mode DAP transfers between ULTRJX and VMS sys
tems. With only VMS systems in the test-bed, block
mode (by means of copy) and record mode (by means
of mail) were compared using stream-formatted
files. Three different stream files were used:

• 200-by-50 file, or 200 bytes per record times 50
records

• 10-by- 1000 file, or 10 bytes per record times
1000 records

• 10-by- 1 file, or 10 bytes per record times
record

For the 200-by-50 and 10-by-1000 file transfers,
copy's block mode transfer used the same number of
large frames (2 at 1249 to 1280 bytes and 5 at 1473
ro 1504 bytes) on both files; whereas mail's record
mode transfer generated frames associated with the
file's record length (50 at 225 to 256 bytes for the
200-by-50 file, 1007 at 33 to 64 bytes for the 10-by-
1000 fi le) .

Under light node and network loads, the major
factor relating to the completion time differences
between copy and mail was the DECnet session time.
For large (lOK byte) files, these session time differ
ences can be attributed to block versus record mode
fi le transfer times. For small (10 byte) files, the
larger mail session times result from the additional

mail appl ication processing and disk 1/0 subse
quent to the message reception and prior ro the ses
sion termination.

With page faults, direct 1/0, and buffered 1/0 levels
for mai l being 2 to 4 times those of similar copy
executions, one expects to see those kinds of ratios
in CPU service demands . This is indeed the case when
one compares the CPU seconds measured by VMS
accounting data for the copy and mail images. The
larger mail paging rates and associated disk demands
make mail's performance more dependent than
copy upon disk load levels. The effects of these disk
demand differences are accentuated when compar
ing mai l and copy performance on diskless LAVe
satellites .

User-perceived Performance and Delay Decompo
sition Figure 4 depicts the mail completion times
for workstation and diskless LAVe satell ite users.
This figure demonstrates that sender and receiver
node types can significantly affect distributed sys
tem performance . For all load levels, mail destined
for the LAVe takes longer than mail destined for
workstations. Also, with the low-end system LAVe
used in this study, completion times of LAVe-des
tined mail grow significantly with incremental
increases in the number of active users.

Digital TecbnicaljountaJ No. 9 june 1989

(ii 1 00 0
z
0 (.) w
�
w :;';
f=
z
0 f= w ...J a. :;';
0 (.)

90
80
70
60
50
40

s-s
30
20
1 0

0
0 5

KEY:

1 0 1 5 20

ACTIVE MAIL CHANNELS
SENDING 1 0K BYTE FILE

L - DISKLESS LAVC SATELLITE VAXslation I I

S - STANDALONE VAXstation I I

25

Figure 4 Mail Completion Time versus Load

30

As shown in Figures 5 and 6 , the total elapsed
time of DECnet session-oriented applications can
be broken down into four components: (1) applica
tion start-up time , (2) DECnet session connect (link
establishment) time , (3) DECnet session duration
(includes file transfer) time, and (4) application
run-down time . For single l ine commands like VMS
Copy, users perceive only the total task completion
times. For interactive VMS Mai l , users can actually
perceive all four of these delay components. The
load on the source node most affects stan-up and
run-down times, whereas the load on the target node
most affects session connect time . The file transfer
pan of the session duration time is affected by the
loads on the Ethernet and on both sender and
receiver nodes. Therefore , the file transfer is the most
difficult element to model accurately. Only the file
transfer time is significantly affected by network load .

For mail , the stan-up times are approximately
1 .4 seconds on a l ightly loaded VAXstation stand
alone system. For a diskless LAVe satel lite, these

stan-up times increase to 3.3 seconds. The large
page fault and disk 1/0 activities associated with
mail start-up contribute to the longer diskless LAVe
satel lite stan-up time .

For copy, the stan-up times are approximately
0.4 seconds on a lightly loaded VAXstation standalone
system . For a diskless LAVe satellite , these stan-up
times increase to 1 .4 seconds. The DCL parsing of the
copy command line can require considerable pro
cessing and is included in the copy stan-up times.

DECnet session connect times, given in Table 1 ,
depend upon initial versus subsequent logical l ink
establishments to the same destination user. The
initial session connections take much longer than

69

Distributed Systems

STARTUP

CONNECT

ELAPSED
TIME

SENDING NODE

- $ MAIL [CR]
0.82 (0.5 TYPING)

- MAIL > SEND MAI L.TXT [CRJ
(1 . 2 TYPING)

3.75 MAIL.EXE

6.98

TO: @MAIL. DIS {CR]
(1 .0 TYPING)

MAIL.EXE

SESS,ON { 5'S

SUBJ: VAXRTE TESTING [CR]
(1 .3 TYPING)

MAI L.EXE

RUN-DOWN { 0.58
0.42

_ MAIL > EXIT {CR]
_ $ (0.4 TYPING)

1 8.3 � TASK COMPLETION TIME

CPU SECONDS:

MAILEXE � 1 .67

NOTES $ = DCL PROMPT

CONN INIT

ELAPSED
TIME

RECEIVING NODE

N ETACP CREATES
SERVER PROCESS

LOGINOUT.EXE _ 1 .92
2.2

SET.EXE _ 0.44
0.73

NETSERVER.EXE_ 0 . 1 5
0.50
0.80

CONN CONFIRM

MAILEXE 5.75
(6.92)

DISCONNECT 0.37
0.87

SET.EXE _ 0.41
0.68

NETSERVER.EXE
(SETS 5 M I N UTE TIMER.
PROCESS STATE � LEF)

CPU SECONDS:

LOGI NOUTEXE = 0.80
SETEXE = 0.04
NETSERVER.EX E = 0.06
MAIL EXE • 1 .27
SETEXE = 007

TYPING RATE � 10 CHARACTERS/SECOND

Figure 5 VAXstation-to- VAXstation Initial Mail of 200-by-50 File (All Time in Seconds)

subsequent ones to the same destination due to the
receiver node's need first to create a network server
process , and second, to run the user's authorization
and initialization procedures.

Table 2 presents the delay decomposition under
various loads for the transfer of a large record
oriented file by means of mail and copy. For mai l ,
connect times (even for the given subsequent aver
age) increase faster than session duration times.
Delays for LAVe-destined mail increase faster than
mail destined for workstations. Copy session estab
lishments take about twice as long to the LAVe as to
a standalone workstation. For the copy load levels
used, a resource bottleneck did not occur; there
fore, delays associated with the copy transfers do
not degrade.

70

Resource Usage The per-application overhead fig
ures for mail and copy are given in Tables 3 and 4 .
The CPU and disk service times given in seconds are
derived using the Utilization Law 8 These times can
be used in bottleneck analysis and in modeling each
application. Quantifying the number of I/O opera
tions per application - direct 1/0, buffered 1/0, total
disk 1/0, and disk 1/0 relating to paging-along with
the total number of page fau ltS is useful in building
more detailed models of each application.

For both the mail uti l i ty and the copy util ity, the
CPU time taken to send or receive files is not signifi
cantly affected by message length unless many
records (more than 1 ,000) or blocks are transferred .
Standalone systems require approximately half the
CPU service time to mail or copy files than do LAVe

No. 9 june 1989 Digital Technical journal

Performance Evaluation of Distributed Applications and Services

STARTUP

CONNECT

ELAPSED

TIME

! 4.40 0.23
8.80

SENDING NODE

- $ COPY . . . [CR] (4.0 TYPING)

- COPY.EXE STARTS

COPY.EXE

SESSION 1 .35 { 0.04 _ COPY.EXE EXITS
RUN-DOWN 2.37 _ $ 1 7 . 1 7 = TASK COMPLETION TIME

CPU SECONDS:

COPY.EXE = 0.55
NOTES: $ = DCL PROMPT

TYPING RATE = 10 CHARACTERS/SECOND

ELAPSED

TIME

RECEIVING NODE

N ETACP CR EATES

SERVER PROCESS

CONN INIT 0.30
LOGINOUT.EXE _ 2.28 2.67

SET. EXE_ 0.72 1 .1 1
SET. E X E _ 0.46 1 .20

N ETSERVER .EXE_ 0.19 0.28
CONN CONFIRM FAL.EXE 1 .45
DISCONN ECT 0.69

SET.EXE_ 0.37
NETSERVER.EXE

(SETS 5 MINUTE TIMER,
PROCESS STATE = LEF)

CPU SECONDS:

0.67
LOGINOUT.EXE = 0.79
SET.EXE - 0. 1 2
NETSERVER.EXE - 0.05
FAL.EXE = 0.41
SET.EXE = 0.08

Figure 6 VAXstation-to- VAXstation Initial Copy of 200-by-50 File (All Time in Seconds)

satellites . Much of the mail CPU overhead is due to
the high page-fault rates on both the sender and
receiver. The buffered 1/0 counts directly correlate
to the number of records (packets) transferred across
the network, whereas the direct 1/0 and disk I/O
counts are independent of it. The additive effect
that active LAVe satellites have on boot member
resource usage is apparent from the given boot
member receiving costs.

Table 5 provides a breakdown of file system activity
for the start-up, connect, session, and run-down
phases of each application. For mai l , the numbers of
needed files, libraries, images, etc. (i .e . , the working
set) directly influence application start-up and run
down times. On the receiving node, a large portion
of the disk I/0 can be attributed to paging related to
files associated with user authorization. Also, the
mail program on the target node writes the message

Table 1 DECnet Session Connect Times under Light Load (All times in seconds)

VMS Copy VMS Mail

VAXstation to VAXstation
VAXstation to LAVe Alias
Diskless LAVe to VAXstation
Diskless LAVe to LAVe Alias

Initial
8.79
9.94
8.75

1 0. 1 7

Digital Technical journal No. 9 june 1989

Subsequent
0.50
0.95
0.50
0.94

Initial
6.98
8.34
6.87
NA

Subsequent
1 .37
2.02
1 .39
NA

71

Distributed Systems

Table 2 Delays under Various Loads for 10-by-1000 File Transfer*

Copy, 10-by-1000

No. of users (N): N=1 N = 4 N = 8

VAXstation to VAXstation
Task 8.71 9.36 9.52
Connect 0.52 0.71 0.68
Session 1 .30 1 .60 1 .52

VAXstation to LAVe Alias
Task 9.49 9.40 1 0.01
Connect 0.98 1 .00 1 . 1 6
Session 1 .64 1 .40 1 .60

Diskless LAVe to VAXstation
Task 9.24 9.54 9.82
Connect 0.50 0.57 0.60
Session 1 .35 1 .45 1 .63

Diskless LAVe to LAVe Alias
Task 1 0.08 1 0.05 NA
Connect 0.94 1 .00 NA
Session 1 .73 1 .50 NA

Notes:
*All times are in seconds and are averages excluding in itial activations.
1 user = 1 user at source sending to target.
4 users = 4 users at source sending to target.
8 users = 2 nodes with 4 users each.

Mail, 10-by-1000

N = 1 N = 4 N = 8

1 6.48 26.67 45.28
1 .37 3 . 1 8 5.65
9.66 1 4.01 23.94

1 9.69 34. 1 4 52.82
2.08 5.37 4.71

1 2.20 1 9.23 27.99

1 9. 1 6 33.70 42.22
1 .35 2.25 6.42

1 0.65 1 6. 1 9 22.71

22. 1 3 4 1 .76 NA
NA NA NA
NA NA NA

Transfers between VAXstation I I and LAVe systems: 4 VAXstation I I systems to LAVe alias, and 4 d iskless LAVe
systems to VAXstation I I system

Table 3 Mail Resource Usage per Application (Excludes the initial application activation)

Page
Fault Disk

Experiment CPU Time Page Direct Buffered Disk Disk Time
Description (Seconds) Faults 1/0 1/0 1/0 1/0 (Sec)

Sending Costs:

VAXstation I I to VAXstation I I
Mail 200-by-50 3.46 355.5 30.7 1 36.4 85.8 5 1 .5 2 .67
Mail 1 0-by-1 000 7 . 1 1 462 .5 31 . 1 1 082.0 90.6 5 1 .7 2.85
Mail 1 0-by-1 3. 1 9 453.6 30.0 87.5 85.7 59.1 2 .75

Diskless LAVe Satellite to VAXstation I I
Mail 200-by-50 5.57 443.5 26.7 1 57 . 1 99.2 60.5 4 . 1 2
Mail 1 0-by-1 000 9 .22 435.2 26.3 1 090.1 96.5 54.0 4.00
Mail 1 0-by-1 5 . 1 8 432 . 1 25.5 1 08.5 94.7 63.7 3.94

Receiving Costs:

VAXstation I I to VAXstation I I
Mail 200-by-50 3.03 500.9 79.0 1 33.0 1 27.9 39.6 4.34
Mail 1 0-by-1 000 6.53 489.1 81 .2 1 076.7 1 28.7 31 . 1 4.39
Mail 1 0-by-1 2.47 495.0 57. 1 73.1 1 0 1 .4 37.8 2.94

VAXstation I I to LAVe Boot
Mail 200-by-50 4.98 634.7 94.8 1 62.5 1 1 9.2 42.2 3.31
Mail 1 0-by-1 000 8 .65 61 9.8 99.5 1 1 21 .0 1 1 9.4 27.8 3.97
Mail 1 0-by-1 4.34 607.5 74.2 1 03.6 97.4 37.0 2.74

Diskless LAVe Satellite to LAVe Boot
Mail 200-by-50 6.71 655.4 98.1 1 63.7 225.8 84.6 6.49
Mail 1 0-by-1 000 1 0.61 637.9 1 00.8 1 1 1 6.6 225.7 74. 1 6.65
Mail 1 0-by-1 5.94 61 4.7 75.2 1 04.0 1 93.5 89.2 5 . 1 8

72 No. 9 june 1989 Digital Tecbnicaljournal

Performance Evaluation of Distributed Applications and Services

Table 4 Copy Resource Usage per Application (Excludes initial application activation)

Experiment
Description

Sending Costs:

CPU Time
(Seconds)

VAXstation II to VAXstation I I
Copy 200-by-50 0.89
Copy 1 0-by-1 000 0.85
Copy 1 0-by-1 0.65

Diskless LAVe Satellite to VAXstation I I
Copy 200-by-50 1 .57
Copy 1 0-by-1 000 1 .67
Copy 1 0-by-1 1 .35

Receiving Costs:
VAXstation II to VAXstation I I
Copy 200-by-50 1 .72
Copy 1 0-by-1 000 1 . 78
Copy 1 0-by-1 1 .49

VAXstation II to LAVe Boot
Copy 200-by-50 2.33
Copy 1 0-by-1 000 2.31
Copy 1 0-by-1 2.09

Diskless LAVe Satellite to LAVe Boot
Copy 200-by-50 2.57
Copy 1 0-by-1 000 2.56
Copy 1 0-by-1 2.30

Page
Faults

1 23.2
1 33.0

78.6

1 1 4.0
1 1 3.3
1 01 . 1

2 1 4. 1
21 5 .0
1 64.4

234.1
235.2
204.6

248 . 1
243.2
1 99.7

to a temporary fi le (mail . txt) , reads mai l . txt, and
writes it to a permanent mailnnn .mai file .

For copy, the disk 1/0 is minimal on the sending
node. On the receiving node, a large portion of the
disk 1/0 can again be attributed to paging related to
files associated with user authorization .

The network activity levels associated with the
mail experiments are shown in Figure 7. The median
is a more stable indicator of the trend of the Ethernet
utilization when most of the data is close to zero.
The effects of increased mail load on Ethernet uti
lization are negligible for standalone-only traffic but
steadily increase when LAVe satellites are active . A
major portion of this util ization is due to the maxi
mum length Ethernet packets seen i n the protocol
exchanges between the LAVe boot member and its
sate llites. Again, a large portion of these exchanges
is due to the large amount of mail paging.

Boundary Conditions The initial mail workload
used was stressfu l , with all users starting simul
taneously. This arbitrary design tended to cause
VAX:jVMS Mail failures (incomplete mail attempts)
much earlier i n the experiment set than was
expected . Subsequent experiments with staggered

Digital Technicaljournal No. 9 june 1989

Direct
1/0

2.5
2.3
2.0

4.6
4.2
4.0

22.9
22.3
21 .0

26.0
25.6
25.9

25.8
25.7
25.2

Buffered
1/0

37.8
38.2
35.4

39.1
39.0
35.8

60.2
60.0
57.4

70.2
69.4
67.7

69.2
69.4
67.1

Disk
1/0

7.0
1 0.3

7 . 1

1 4.0
1 5. 1
1 3.6

48.2
47.7
45.6

42.3
37.4
37.8

62.7
61 .6
64.2

Page
Fault
Disk
1/0

2.2
2.7
2.7

3.9
4.2
4.5

1 4.9
1 3.4
1 7.8

1 5.3
1 3.2
1 6.6

21 .8
23.0
21 .7

Disk
Time
(Sec)

0 . 1 5
0.22
0. 1 3

0.52
0.52
0.47

1 .37
1 .32
1 .23

1 .50
1 .35
1 .40

1 .93
2.06
1 .87

Table 5 Disk Measurements for Initial Transfer
of 200-by-50 File

Time
Window

Copy Sender

Start-up
Connect
Session
Run-down

Copy Receiver

Connect
Session
Run-down

Mail Sender

Start-up
Connect
Session
Run-down

Mail Receiver

Connect
Session
Run-down

Disk
Reads

5
0
7
0

62
5
1

26
0
6
1

73
45

7

Disk
Writes

0
0
0
1

8
4
0

0
0
0
1

6
33

8

73

Distributed Systems

f='
z
w
u

ffi 1 5
(}._

z
0

� 1 0 N
_J
f=
::::l
f
w
z
a:
w
I
f-
w

5

-- --

z
<(

;-.-! •
0 L-----�----�----�-----L--__ _L ____ __J

0
w
L

0 5 1 0 1 5 20 25 30

ACTIVE MAIL CHANNELS

KEY:

- SUCCESSFUL EXPERIM ENTS WITH LAVC ONLY

- - COM BINED SUCCESSFUL EXPER IM ENTS. LAVC AND
STANDALONE SYSTEMS

• • • • SUCCESSFUL EXPERIMENTS WITH
STANDALONE SYSTEMS ONLY

Figure 7 Median Ethernet Utilization

versus Mail Load

initial mail activations produced fa ilures further
into an experiment run but did not extend the dis
tributed system's workload capacity.

Within the experiments, mail failures occurred
for both standalone systems and LAVe satel lites when
they were attempting to send mail and receive mail
from six or more sources at the same time . Also,
fai lures experienced by LAVe-to-LAVe mail took
place at a much lower offered load than with the
other node types.

VAXjVMS Mail uses the Mai l - 1 1 appl ication layer
protocol on top of the supporting DECnet protocols.
Mail- 1 1 is a masterjs lave protocol that a l lows the
source and destination to exchange configuration,
message format, and other mail appl ication informa
tion along with the actual mail messages. Mail- 1 1
does not implement any timers but relies on NCP
session establishment timers: incoming (45 seconds)
and outgoing (60 seconds) .

Mail channel establishments were timed using an
internally developed network monitor and were
observed to be as large as 35 to 45 seconds in exper
iments with heavy loads. These maximum connect
times were an order of magnitude larger than the
average connect times measured in the same experi
ment. This variabil ity makes one suspicious of NCP
timeouts occurring.

Figure 8 is the SPM measurement of the LAVe boot
member disk rate before and during the time of fail-

74

ure. l t is quite evident that the RA8 1 on the LAVe
boot member has exceeded its estimated capacity,
and that excessive queuing time for disk 1/0 may
have caused protocol timeouts to occur. Here, the
frequent sam piing of SPM data provided some insights
into the transient demands on a critical resource
during application failure .

Bottleneck A nalysis The aggregate resource
demands for an application as discussed in the pre
vious section are easily obtainable . Although too
gross for input into models, this information can be
used for capacity p lanning purposes. A simple
approach, cal led asymptOtic bounds analysis, can
be used for two purposes: to investigate the influ
ences of bottleneck devices, and to determine a user
or job threshold above which performance will
degrade.H

The following assumptions are made in using
asymptotic analysis:

• Each system (sender and receiver) is doing no
other work than the application of interest.

0
z

50.0

45.0

40.0

35.0

0 30.0 u w (f)
a: w (}._

g
iii 20.0
0

1 5.0

1 0.0

5.0

INITIAL
MAIL

f41----- PREFAILURE -----.•�I"'"•.PPOST-FAILURE•

MAIL

1 0:53 1 0:54

FAILS

ESTIMATED
CAPACITY OF
RA81 = 25 TO 30
1/0 PER SECOND - t - -

1 0:55

TIME OF DAY: H H : M M (EACH COLUM N = 3 SECONDS)

Figure 8 LAVe Boot Member Disk ljO per

Second during Mail Failure

No. 9 june 1989 Digital Technicaljounull

Performance Evaluation of Distributed Applications and Services

• Simultaneous resource possession does not take
place. (A pessimistic assumption.)

• Service times are load independent. (An optimis
tic assumption.)

The following definitions are associated with

asymptotic analysis:

• D is the sum of all resource service times in
seconds associated with one activation of the
application .

• Dmax is the maximum service time i n seconds
associated with any one resource. The inverse of

D,na.x is, then, the throughput limit in applica
tions per second.

• Z is the average think time in seconds.

• N is the number of users in the system .

The bounds o n application throughput crossover
from a light load bound to a heavy load bound at a
critical user population level N' = (D + Z) 1 Dmax.

For N greater than N', the heavy load bound applies
and performance degradation is more probable.

Tables 6 and 7 present the results of applying
asymptotic analysis to the mail and copy resource
usage data. The tables present the throughput limits
for each initiator/target node type and the user

thresholds for three different " think times," i . e . , job
arrival rate and values. Here, the following defini
tions of total resource demands are used.

For standalones:

D = CPUsrc + DISKsrc + ENET + CPUc�est + DISKdest

For diskless LAVe satellites:

D = CPUsrc + CPUbm + DISKbm + ENET + CPUc�est + DISKt�est

For mail, the sending CPU is the bottleneck when
the target is a VAXstation standalone system, whereas
the receiving CPU is the bottleneck when the target
is the LAVe. For copy, the bottleneck device happens
to be the destination node CPU in all cases. These
bottlenecks are determined, of course, by looking at
device service demands associated with one com
plete application activation. Previously, we hypoth
esized that the LAVe boot member disk was a
bottleneck which resulted in mail application failure.
The disk r;o measurements in Table 5 also give evi
dence that, during the session establishment phase
of mail , the disk on the receiver and not the CPU is
probably the bottleneck. Determining resource usage
during critical phases of an application may be more

Digital Tecbnicaljournal No. 9 june 1989

meaningful than looking at resource usage over the
entire application .

The population threshold differences between
mail and copy demonstrate the efficiency of the
copy operation over mail . The threshold numbers
reflect the sensitivity copy performance has to
receiver node type. Mail is somewhat less sensitive
to receiver type, but like copy, supports the minimal
user population when intra-LAVe transfers occur.
Knowing this service demand information about
multiple applications, network planners can fore
cast population thresholds associated with mixed
workloads composed of these applications.

Summary
The empirical approach discussed in this paper has
proven viable for both product interoperability and
detailed distributed system performance evaluation .
Use of the commonality between products and the
applied task decomposition techniques reduced the
complexity of the experimental design to a reason
able level . The test-bed and instrumentation demon
strated a great deal of flexibility and capability.
They can be easily expanded to investigate the
performance of applications and services other than

those addressed in the case studies. The tools
employed for data acquisition, reduction, and analy

sis allowed observation of trends of distributed sys
tem behavior and quantitative characterization of
end user and resource usage parameters. Addition
ally, they provided sufficient information for queu
ing model parameterization and validation.

Combined with appropriate modeling techniques,
the experimental approach provides a powerful
vehicle for the performance evaluation of the wide
range of heterogeneous distributed systems cover
ing LANs, XLANs, and even WANs . The knowledge
gained in using this methodology can help to
develop such systems and plan their growth . The
i nteroperability testing of DNS, DFS, and RSM demon
strated that these products affect the performance
of the network at tolerable levels and meet product
performance specifications. A decomposition of net
work transfers by VAXfVMS Mail and VAXfVMS Copy
quantified how these two popular distributed appli
cations differ in delay and resource usage and how
these differences can affect capacity planning.

Acknowledgments
The authors wish to a-cknowledge the efforts of
Wally Hager and Joe Shih who managed this work
and of our colleagues who contributed to the plan
ning, execution, analysis, and support of the case
study activities.

75

Distributed Systems

Table 6 Asymptotic Bounds on VAX{VMS Mail Performance

Application
Description

VAXstation to VAXstation
Mail 200-by-50
Mail 1 0-by-1 000
Mail 1 0-by-1

VAXstation to LAVe Alias
Mail 200-by-50
Mail 1 0-by-1 000
Mail 1 0-by-1

Diskless LAVe to VAXstation
Mail 200-by-50
Mail 1 0-by-1 000
Mail 1 0-by-1

Diskless LAVe to LAVe Alias
Mail 200-by-50
Mail 1 0-by-1 000
Mail 1 0-by-1

Total
Service
Demand
D (sec)

1 3.6
20.98
1 1 .45

1 4 .94
23. 1 8
1 3 . 1 3

1 7.53
24.55
1 4 .91

1 9.82
27.72
1 7.41

Bottleneck
Service
Demand
Dmax (sec)

4.34
7 . 1 1
3 . 1 9

4.98
8.65
4 .34

5.57
9.22
5.1 8

6.71
1 0.61

5.94

Application
Throughput User Population Threshold N*
Limit For Think Times (Z = sec)
(Mail/sec) Z = O Z = 60 Z = 1 20

0.23 3 . 1 1 7.0 30.8
0 . 1 4 3.0 1 1 .4 1 9.8
0.31 3.6 22.4 41 .2

0.20 3 .0 1 5.0 27.1
0 . 1 2 2.7 9.6 1 6.6
0.23 3.0 1 6.9 30.7

0 .1 8 3 . 1 1 3.9 24.7
0 . 1 1 2.7 9.2 1 5.7
0. 1 9 2.9 1 4.5 26.0

0 . 1 5 3.0 1 1 .9 20.8
0.09 2.6 8.3 1 3.9
0 . 1 7 2.9 1 3.0 23.1

Table 7 Asymptotic Bounds on VAX{VMS Copy Performance

Application
Description

VAXstation to VAXstation
Copy 200-by-50
Copy 1 0-by-1 000
Copy 1 0-by-1

VAXstation to LAVe Alias
Copy 200-by-50
Copy 1 0-by-1 000
Copy 1 0-by-1

Diskless LAVe to VAXstation
Copy 200-by-50
Copy 1 0-by-1 000
Copy 1 0-by-1

Diskless LAVe to LAVe Alias
Copy 200-by-50
Copy 1 0-by-1 000
Copy 1 0-by-1

References

Total Bottleneck
Service Service
Demand Demand
D (sec) Dmax (sec)

4. 1 5 1 .72
4 . 1 9 1 .78
3.52 1 .49

4.96 2.33
4.79 2.31
4.33 2.09

5.65 1 .73
5.83 1 . 74
4.70 1 .4

6.36 2.57
6.82 2.56
6 .35 2.30

1 . L . K.leinrock, "Performance Eva luation of Dis
tributed Computer Communications Systems"
(Technical Report, UCLA Computer Science
Department, April 1988) .

2 . S . Lavenberg, Computer Performance Modeling
Handbook (New York: Academic Press, 1983) .

3 . E . Pinsky, "A Polynomial-time Algori thm for the
Approximate Analysis of Large BCMP Networks"

76

Application
Throughput User Population Threshold N*
Limit For Think Times (Z = sec)
(Mail/sec) Z = O Z = 60 Z = 1 20

0.58 2.4 37.3 72.2
0.56 2.4 36. 1 69.8
0.67 2.4 42.6 82.9

0.43 2. 1 27.9 53.6
0.43 2 . 1 28.0 54.0
0.49 2 . 1 30.8 59.5

0.58 3.3 38.0 72.6
0.57 3.4 37.8 72.3
0.71 3.4 46.2 89.1

0.39 2.5 25.8 49.2
0.39 2.7 26. 1 49.5
0.43 2.8 28.8 54.9

(Technical Report, Computer Science Depart
ment, Boston University, March 1988) .

4 . C . Shannon, "A Mathematical Theory of Com
munication," Bell System Technical journal,

vol . 27 Ouly 1 94 8) : 3 79-4 2 3 .

5 . G . Taguchi , System o f Experimental Design,
vols. 1 and 2 (White Plains: UNIPUB/Kraus Inter
national Publications, 1987) .

No. 9 june 1989 Digital Tecbnicaljournal

Performance Evaluation of Distributed Applications and Services

6. Guide to VAX SPM (Maynard : Digital Equipment
Corporation , Order No . AA-G l39A-TE , 1986) .

7 . LAN Traffic Monitor User's Guide (Maynard :
Digital Equipment Cqrporation, Order No.
AA-JP16A-TE , June 1987) .

8 . E. Lazowska, et a! . , Quantitative System Per
formance: Computer System A nalysis Using

Queueing Network Models (Englewood Cliffs :
Prentice-Hall , 1984) .

Digital Tecbnicaljounull No. 9 june 1989

9 . V . D'Silva and R. Hsiao, "Measurement and Analy
sis Techniques for DECnet Products ," Digital
Technical journal Qune 1989 , this issue) : 78-86.

10 . S. Martin,). McCann, and D. Oran, "Development
of the VAX Distributed Name Service," Digital
Technical journal Qune 1989, this issue) : 9-1 5 .

1 1 . D . Griffin and B. Johnson, "Remote System
Management in Network Environments,"
Digital Technical journal Qune 1989, this
issue) : 29-36.

77

Vijay G. D 'SUva I
Ruei-Hsin Hsiao

Measurement and Analysis
Techniques for DEC net Products

The Network Pe?formance and Conformance Engineering Group is actively

involved in the stages of product design, development, and implementation.

Specifically to evaluate an implementation, analysts first define metrics that

effectively reflect a product 's performance. They use and sometimes develop soft·
ware tools for testing, and the results are then generalized and extended using a
wide van·ety of analytical techniques. Two cases serve to demonstrate the utility

of their approach: the performance evaluations of VAX Distributed File Service

and those of VAX Distributed Name Service software. The various factors affect·

ing performance of these cases were identified, and these findings led to
increased product pe?formance.

I ncreasingly in today's market, performance deter·
mines a product's acceptance. Therefore performance
analysis and modeling now play a prominent role in
system design and deve lopment . This paper pre
sents some commonly used measurement and analy

sis methods and their application tO two of Digital's
networking products : VAX Distributed File Service
(DFS) and VAX Distributed Name Service (DNS) .

Performance evaluation and analysis techniques
can be applied during the three stages of a product's
development: (1) the design stage, (2) the develop
ment process, and (3) the finished product. Analy
sis and simulation in the design stage can detect
potential problems and correct them early in the
cycle . During the development process, testing can
identify which of several alternative code segments
tO adopt for best performance. Finally, testing and
analysis of the finished product involves bench
marking the product . This stage is essential for
capacity planning and aids in the design of the next
generation of products.

The performance eva luation group within Network
Performance and Conformance Engineering (NPACE)
is actively involved in al l three of these stages. This
paper concentrates on testing the finished product
and presents a methodology with which software
products can be made more efficient and competi
tive using a simpl ified and systematic approach.

The fol lowing section discusses the metrics that
characterize a product's performance. We then
describe test methods and analysis techniques and
their applications in testing specific products. The

78

later sections present the two case studies of DFS and
DNS and describe the measurement and ana lysis of
these products.

Peiformance Metrics

When evaluating a product, the analyst must choose
metrics that effectively and appropriately reflect the
product's performance. The performance metrics can
often be applied to a class of products even though
individual test methods may differ. The job of the
performance analyst is to identify those metrics that
most effectively and succinctly characterize the
system's behavior. Each of these metrics is in turn
affected by several factors, and an n- dimensional
matrix would be necessary tO demonstrate this. The
performance analyst must concentrate on those fac
tors that have the maximum impact on the system.

Performance metrics can be broadly classified
into two categories: those that apply to performance
perceived directly by an individual user, and those
that apply to system performance .

L atency

Latency is simply the time taken tO complete an
operation . For example, an analysis of VAX FTAM,
Digital 's implementation of the Open System Inter
connect (OSI) File Transfer, Access and Management
protocol , revealed that response time depended
heavily on the record size in one of the three fi le
types supported . With this information, we were able
to derive equations for the latency in terms of the
fi le size and record size . These results are being

No. 9 june 1989 Digital Technical journal

Measurement and Analysis Techniques for DEC net Products

used in the field to configure systems. The response
time consists of the execution time for the operation
and queuing delays due to other processes on the
system. Separating these delays from the execution
time often facilitates analysis.

Throughput

Throughput is the number of operations that can
be processed per unit of time. For data transfer
operations, which form the bu lk of the Network and
Communications (NAC) Group's product set, the
throughput is often the amount of user data (not
including protocol overhead) transferred per sec
ond. The response time for those operations is easily
calcu lated from the stan-up time and the steady
state throughput.

CPU Utilization

Considered vital in determining the efficiency of
the software and the drain on CPU resources, CPU
utilization is a measure of the time that the loca l or
remote CPU is busy. Conventional CPU measurement
is accomplished by attributing each time slice to a
panicu lar process. This method has the disadvan
tage of not accounting for interrupt-level routines,
other referenced processes, and the schedul ing
overhead itself. To factor these effects into our cal
cu lations, we decided to write a software program
that measures the amount of CPU time not used by
the product. We were surprised to find that often
the CPU load was much higher than we previously
thought. This method of measurement has become
the standard within NPACE.

Line Utilization

Primarily of use when dealing with point-to-point
links, the l ine utilization is a measure of the per
centage of time that a l ine is busy transferring data.
In several tests we measured the maximum capaciry
of the DECserver 200, an Ethernet terminal server
for as many as eight terminals. We found that a l l
eight terminal l ines could be as much as 91 percent
uti l ized without loss of data. This measurement
underscored the performance of the DECserver 200
product and, more imponantly, defined a theoreti
ca l l imit for its throughput.

Measurements and Analysis Methods
Much of the measurement at NPACE occurs at the
Digital command language (DCL) interface. The rea
son for this is twofold : the results from such mea
surement are reproducible by the rypical user, and
the measurements also reflect the delays experi
enced by the user. To bypass the random effect of
other processes using the same resources, perfor-

Digital Tecbnicaljournm No. 9 june 1989

mance testing is invariably conducted on standalone
machines and private networks, i . e . , resources dedi
cated to the current measurement.

Performance tools can be divided into general
purpose , reusable tools and special-purpose test
programs. The general-purpose tools are software
performance monitors (VAX SPM and VAX PCA) and
hardware monitors, such as logic analyzers, data
scopes, and Ethernet monitors . Depending on a prod
uct's functional ity and the type of results required,
specific tools often have to be deve loped. For exam
ple, the LAT protocol allows packets from different
sessions to be combined into a single packet. Dur
ing the evaluation of the DECserver 500, an Ethernet
terminal server, it was impossible to analytically
predict the effect of heavy loads on the unit . A test
program to simulate as many as 128 terminals acting
in conjunction had to be written to faci l i tate our
analysis.

Like performance tools, analysis methods are
chosen depending on the rationale behind the per
formance evaluation process. In some cases, the
performance evaluation merely determines bench
marks, which are sets of numbers that effectively
describe the performance of the product. In these
cases simple equations that define the CPU load and
response time for different configurations are suffi
cient. I n other cases the performance evaluation
focuses on problem areas in the protorype. In these
cases the goal is to avoid problems early in the
design phase by performing a detailed analysis
along with a series of tests.

Time-stamping individual events helps break
down a delay or a response time into its compo
nents, and this method is used extensively. In the
evaluation of the LAN Bridge 100, Digital's high
performance Ethernet bridge, we employed two
major performance metrics:

• The double-side packet discard rate - the rate at
which the bridge can process packets that it does
not have to forward

• The single-side packet forward rate - the rate at
which the bridge can process packets that it does

have to forward

We used an Ethernet monitor and logic analyzer to
trace the instructions executed in the critical code
path and time-stamped the major events in each
hardware component. This analysis identified the
exact location of the performance bottlenecks and
determined the maximum capaciry of the LAN
Bridge 100 product. When the next version of the
bridge was designed, more powerful hardware was
appropriately chosen, effectively reducing the
response time.

79

Distributed Systems

MicroVAX SYSTEMS WITH CHECKSUMMING ENABLED

700

600
Cii
� 500
w
� i= 400

0 � 300
a_
:5 200 w

5000 1 0000 1 5000

R ECORD SIZE (BYTES)

KEY:

o DECnet

o DFS WITH CHECKS

X OFS, NO CHECKS

o LAVe

+ LOCAL RD53

L>. LOCAL RA81

20000

Figure 1 Comparison of DECnet-DAP, DFS,

LAVe, and Local Access for Read

Parametric analysis is used to detect a product's
sensitivity to packet sizes, buffer sizes, and number
of buffers . By continually varying different parame
ters, we can derive an n- dimensional graph of the
response time and other parameters . Bottleneck
analysis techniques are used to approximate the
total capacity of a system with asynchronously exe
cuting threads. These techniques are also used
extensively as wil l be shown later in the section
Case Study: Distributed Name Service.

Finally, simulation can save much time and devel
opmental effort when direct examination of the
interaction of different components is not practical .
By using simulation, we are able to predict a system's
performance in a given situation without having to
use resources and time in actual measurement.

Case Study: Distributed File Service
VAX DFS is layered software that implements a client
server model . 1 For most operations, the location of a
file, whether local or remote, is almost transparent
to the user. Thus, with a few exceptions, the only
difference between local and remote files is the
speed with which the user can access and manipu
late the fi le.

To enhance the performance of the DFS server,
two methods were used: (1) caching on the server,
and (2) interrupt stack execution of frequent opera-

80

tions. (For a detailed description of DFS, see refer
ence 1 .) Briefly, the server cache stores the most
recently requested blocks i n buffers of 16 blocks
each; interrupt stack execution means the requests
can be processed as they arrive and do not have to
wait until the server processor schedules them 2

Both approaches have performance implications
that are particularly evident under certain situa
tions. These implications are discussed in the sec
tion Performance Analysis of DFS.

To evaluate such a system, we decided that the
logical place to start was the single-server, single
cl ient case. The aim was twofold: first, to compare
DFS to other methods of access running on the VMS
operating system; and second, to analyze a multi
client system so that the performance bounds of a
DFS system could be predicted.

Comparative Measurements

To measure the single-client case, we considered
several different types of tests, which are described
in subsequent sections . In a real-life situation, it is
l ikely that machines act as both servers and clients,
depending on the setup. To represent Digital 's wide
range of computers, we also decided to repeat the
complete set of tests between MicroVAX II and
VAX 8800 systems. In choosing the operations to mea
sure , we decided on the DCL-level copy operation
and the file access routines create, openjclose, and
delete . These operations are executed frequently by
the typical user. However, in most cases the vehicle
by which files are accessed by higher level programs
is Record Management Services (R.i\15) . To evaluate
the effect of using DFS with RMS, we measured
sequential fi le access as well as randomly accessed
index files. Since caching was i mplemented on the
server, a tool was also written to issue repeated
reads to the same data, causing a consistent cache
hit with no disk access.

When files are read sequentially by RMS, disk
accesses are minimized by reading large buffers
(specified by the multiblock count) into the inter
nal buffers of RMS. Thus for small records , most of
the reads are internally satisfied and only the occa
sional read necessitates a disk access. For index files,
the performance is based on the order in which
records are accessed . To find a record, it may be
necessary to read several buckets before a particular
key (and record) is found .

Extensive results representing various situations
were obtained from these measurements. Figure 1
shows a comparison of DFS, local area VA.Xcluster
(LAVe) , DECnet-DAP and local access in which the
operation is the RMS primitive, syssread . In compar
i ng these access methods, we noticed the degree to
which performance is related to closeness of sys-

No. 9 june 1989 Digital Tecbntcaljourrud

Measurement and Analysis Techniques for DEC net Products

tern coupling. As we progressed from loosely cou
pled to tightly coupled systems, our tests revealed
an improvement in performance proceeding from
DECnet-DAP, to DFS, to LAVe, to local disk access.

Performance A nalysis of DFS

A model of a DFS server being accessed by several
clients enabled us to predict how an installed DFS
system would behave in a given user environment. A
series of measurements with a single client was con
ducted to determine the input parameters to the
model. To obtain analytical results, the model was
reduced to its main components. (See Figure 2 .)

The following assumptions were made:

• Each client process can have only one outstand
ing request at a time. In this way the total number
of requests in the system is equal to the number
of clients.

• The time elapsed between a client's receiving a
response and issuing its next request is indepen
dent of the number of users, i .e . , the client
behavior can be modeled as "think" time.

• The server consists of two components : a proces
sor and a disk subsystem. The CPU time is the
server response time when a cache hit occurs.
The disk time is the time needed by a disk to ser
vice a request.

• The model represents a system in which data on
the server is accessed by the clients, and the flow
of user data is predominantly from the server to
the clients. We also assumed that control opera
tions such as file open, close, delete, and extend
do not appreciably affect the performance of the
data access operations .

Input Parameters The CPU time used is directly
related to the amount of data being transferred . The
disk service time consists of a seek time, a rotational
delay, and a data access time . The seek time depends
on the type of access . For a single process that sequen-

D I S K
SUBSYSTEM

CACHE H I T

tially reads data, the seek time is small because the
data within a file is assumed to be contiguous. When
several processes access data on the same disk, the
seek time is higher since the head must move about
the disk to access different fi les . We measured the
average server CPU time per operation and the indi
vidual response times of the server and client.

From our measurements, we noticed that a cache
miss almost always resulted in an extra 20 millisec
onds (ms) in the response time. To explain this, we
considered that the RA-series disks rotate at 3600 rpm
(16.67 ms per revolution) , and the RA81 , in panicu
lar, stores approximately three 16-block buffers per
track. In the case of a single contiguous file being
read 16 blocks at a time, each read eventually has to
be synchronized with the revolution of the disk.
Moreover, after every three reads, a single-track seek
is necessary. This explanation coincides with the
20-ms delay that was measured . When several files
are being simultaneously accessed on the disk, the
head is required to seek the next request. (The aver
age RA81 seek time is 28 ms .) This seek could over
lap with the rotational delay and result in a total
access time of approximately 45 ms.

Analytical Results Mean value analysis provides a
way of examining the delays that the average request
is expected to encounter. This analysis does not
involve itself in the distributions of the individual
delays, which may frequently be theoretically
impossible to derive. Using this approach, we
attempted to formulate an equation for the delay
experienced by a single request .

In a system that has Ndfs client processes, an aver
age server CPU time of T.pu, and an average of N,p,
requests waiting for the CPU, the time in and wait
ing for the server CPU, T,..c, is

Similarly, the time spent in and waiting for the
disk subsystem, Tu·d, is

T,." = N" X T" + T"

PROCESSOR

CLI ENT
THINK TIME

Figure 2 Model of the DFS System

Digital TecbnicaljournaJ No. 9 june 1989 81

Distributed Systems

The total round trip time for the average request
is given by

Tc, + Twc + Pm X Tux� .

Therefore, if we look at the system from the point
of view of one of the clients, we expect Ncpu and Net
to be

N,pu = (Netfs - 1) X T wc/(Tc, + T.vc + p, X Twct)
Net = (Netfs - 1) X Twa/ (T., + Tux + Pm X T.vc�)

where p, is the probability that a cache miss occurs.
This result could also be obtained from Litt le's Law
if we consider that the effective traffic seen by the
current request is that imposed by the other request.3

N = X T

where A = (Netfs - 1)/ (T., + T we + p, X Twet) , the
arrival rate of the other requests to the resource, and
T, the service time of the resource.

Likewise, the time for the server to satisfy the
request wou ld thus be

Tsen"-"' = TW<- + p, X Twa

These equations are of special interest when we
consider the following cases:

Case 1 : p, = 0, Nafs = 1. In case 1 a single client
repeatedly accesses a l imited amount of data (cache
hits) . The equations above reduce to

Case 2: Pm = 1 , Netfs = 1 . In case 2 a single client
always requests new data (cache misses) . The equa
tions above now reduce to

Case 3: Pm = 0, Nctfs > > 1 . In case 3 several clients
bottleneck the server, and the cache is always hit .
The time in the server is now given by

This result can also be obtained from a fluid
approximation of the system, with the assumption
that the CPU is always fully util ized and every request
is either in the queue for the CPU or in service.

Simulation Results and Validation To give our
selves a greater amount of flexibil ity and deta i l , we
wrote a simulation model of the DFS system, shown
in Figure 2 . A modification in the model accounted
for post-I/O processing and disk service times on
shared disks. To validate the model , a program that
sequentially reads data from a large file ran from
one to six processes, and the throughput gained was
measured. This measurement was compared to the
throughput predicted by the simulation model for

82

two cases: when all different files were resident on a
single disk, and when the data was equally shared
among four disks . As Figure 3 indicates, the simu
lated throughput was within 10 percent of that mea
sured for al l cases.

For a single user the throughput of the system
is 1 .05 megabits (Mb) per second . For several
users, the maximum throughput measured with a
MicroVAX II server was found to be 2.6Mb per
second. These resu lts were also confirmed using a
program that consistently reads data directly from
the cache . Since the server CPU was being ful ly uti
l ized at this point, increasing the capacity of any of
the other components wou ld not have improved
performance. However, the easy-to-use technique of
bottleneck analysis described below allowed us to
arrive at the same result with l ittle or no effort.

Bottleneck Analysis When configuring large sys
tems in which the type of traffic is known, bottle
neck analysis gives a good est imate of the system 's
maximum capacity. Associating a service time with
each component and assuming complete asynchro
nic ity of the operations, we used this method to
predict the throughput for different configurations.
This ana lysis assumes that the slowest component,
i . e . , the bottleneck, invariably determines the maxi
mum throughput of the whole system in the same
way that fewer lanes on a highway determines how
many drivers using that road get to work on time.

0 3.50
z
0

3.00 (.) UJ
(f)
a: 2.50
UJ
Cl.
.0 2.00
�
1- 1 .50 ::::>
Cl.
I 1 .00 (.')
:J
0
a: 0.50 I
1-

0
0 2 4

NUMBER OF U S E R S

KEY:

o S I M U LAT ED R EA D, 4 DISKS

o MEASURED READ. 4 DISKS

b. S I M U LATED READ, 1 DISK

+ MEASURED READ, 1 DISK

6

Figure 3 Simulated versus Measured Results
of ljO Processing

8

No. 9 june 1989 Digital Technical journal

Measurement and Analysis Techniques for DEC net Products

Ta ble 1 Service Times of DFS Components

Service
Resource Time

Server CPU , M icroVAX I I 4.9 + 1 .26 x blocks ms

Server CPU, VAX 8700 1 .4 + 0.28 x blocks ms

Disk time for contiguous data 20 ms

Disk time for noncontig uous 44 ms
data

Effective network service time 1 .08 x blocks ms

Client CPU, MicroVAX I I 6.2 + 1 .26 x blocks ms
(continuous read)

Client CPU, VAX 8700 1 .4 + 0.28 x blocks ms
(continuous read)

Table 1 l ists the service time for each component of
a DFS system . We assume that the most frequent
operation is the read primitive.

The maximum throughput that a system of several
clients and a single server can thus process is given by

T = 1jmax (Tcp11 , p, X Td/D, T.u:r , Tel/C)

where D is the number of DFS disks serviced by the
CPU, T""' is the effective time to transfer the data
across the network, and C is the number of c lients
that use the DFS server.

In the case of users on C -client CPUs accessing
noncontiguous data on a MicroVAX I I server with an
RA81 disk, an average read size of 6 blocks, and Pm
equals 0.25, the throughput is thus

1jmax (4 .9 + 1 . 26 X 6, 0.25 X 4 4 , 1 .08 X 6,
(6.2 + 1 . 26 X 6)/C)

That is, for 73 operations per second, n equals 1 ;
and for 80 operations per second, C is greater than 1 .

Sample Workload Characterization

Approaching the problem from a different perspec
tive, we examined installed DFS systems to obtain
information about real-life workloads. The VAXcluster
system ca l led Server 1 is a DFS server acting primar
ily as a database for product save-sets, documenta
tion, and other such reference data. The cluster
cal led Server 2 is simi larly used, though with a
greater developmental and engi neering bias . The
statistics obtained are shown in Table 2 .

Considering a file read sequentia lly n blocks at a
time, the cache miss ratio is nj16. Thus an average
read size of 3 . 4 b locks wou ld imply a cache miss
ratio of 21 percent. This coincides remarkably with
the Server 1 system's measured cache hit ratio of
23 percent . For the Server 2 cluster, the predicted
and measured values are 84 percent and 86 percent,

Digital Teclmicaljournal No. 9 june 1989

Table 2 Workload Statistics for Two Servers

Server 1 Server 2
Cluster Cluster

Approximate number 20,591 K 81 6K
of operations

Probabil ity of persona 0.2% 0.5%
cache miss

Probabil ity of data 23.0% 86.0%
cache miss (for read)

Average read size 3.4 blocks 1 3.5 blocks
(approximate)

Average write size -1 6.0 blocks -1 6.0 blocks
(approximate)

Readfwrite ratio 20: 1 1 1 : 1

respectively. We thus concluded that in both systems,
files are very seldom already in the cache when ini
tial ly requested by a user, and the major benefit of
caching is that small access sizes do not necessarily
result in disk accesses .

On the DFS server, the persona cache keeps track
of user authorization i nformation. The persona
cache and its impl ications have been omitted in this
paper precisely because this cache is so effective
that a cache hit almost always occurs. 1

Case Study: Distributed Name Service

A name service maps a name of an individual , group,
organization, faci lity, or resource into a set of labeled
properties, each of which is stored as a string of
characters. The major purpose of a name service is
to enhance the logical organization of large net
works by al lowing the names of network applica
tions, systems, and other network-accessible objects
to be independent of their physical location in the
network.

VAX DNS is Digital 's implementation of the Digital
Network Architecture (DNA) naming service.' The
service is implemented as a c lient-server model in
which the node running DNS acts as the server.
Figure 4 shows

.
the relationship between two name

servers·and a cl ient.
A cl ient accesses DNS through a naming service

module ca lled the clerk. The clerk communicates
with as many name servers as necessary to find one
that satisfies a request.

Each name stored in a name server refers to a
single, unique network-access ible object . The trans
action agent module on a name server performs DNS
transactions requested by clerks. A typical DNS
transaction requested by a clerk would be reading
the attributes associated with an object. In this
case, upon receiving the request from a clerk, the

83

Distributed Systems

CLIENT

I C L E R K I

I TRANSACTION
I AGENT
I

NAME SERVER 1

I TRANSACTION I I
AGENT

NAME SERVER 2

Figure 4 Distributed Name Service

transaction agent searches the name server c learing
house for the attributes associated with the object,
and sends the information tO the clerk.

The goals of the DNS performance evaluation were
to characterize its behavior, identify the bottleneck,
and find ways to improve DNS performance.

The performance metrics of DNS include

• Response time (latency) per DNS transaction
requested by clerks

• Name server and clerk CPU time per DNS
transaction

• Name server capacity

• Line utilization

We examined three aspects of the name server's
performance:

• DNS performance in a local area network (LAN)

• DNS operations in a wide area network (WAN)

• Program counter (PC) histogram and Ethernet
packet trace

DNS Performance in a Local Area Network

The most commonly executed DNS transactions are
read, add, and remove attributes of objects. Of these
three, read transactions are used most frequently. In
practice, an application program usually requests a
specific attribute of an object (such as the DECnet
node address of a particular DFS volume mounted on
a DFS server) . During a read attribute operation, the
clerk chooses the name server from the clerk cache,
issues the request to that name server, and waits for
the reply. On receiving a request, the name server
searches the clearinghouse for the object and returns
the attribute requested.

84

Clerk Operation The actual creation of the request
packet and its transmission takes 31 ms; this is the
overhead that will be experienced for all requests.
However, when the clerk first receives a request from
an application program, an additional 30 to 40 ms is
involved in building the DNS context, initializing
associated data structures, and choosing a name
server from its cache.

Server Operation The clearinghouse is srored on
disk and is accessed by means of Rl\15. RMS maintains
its own cache, and the response time is 25 ms when
the data is in the cache. Sometimes, however, the data
may not be in the cache, and a disk access is neces
sary. This step involves another 6 ms of CPU time
and adds 42 ms (for an RA81 disk) or 62 ms (for an
RD54 disk) to the response time.

The RMS cache hit and cache miss ratios are deter
mined by the number of RMS buffers, the number of
index buckets, and the number of data buckets. The
number of data buckets is determined by the num
ber of DNS objects in the clearinghouse, the size of
each DNS object, and the bucket fill rate.' To reduce
the number of disk 1/0 operations per DNS transac
tion, we recommended that the number of Rl\15

buffers should be greater than the number of index
buckets. In that way Rl\15 can cache all the index
buckets in the RMS buffers. The cache hit ratio for
data buckets is then

Cache-hit
ratio

(Number of RMS buffers -
number of index buckets)
Number of data buckets

The name server's average response time directly
depends on the cache-hit ratio.

Communications Load The response times given
above are for requests that use an existing logical
link between the clerk and the server. However, log
ical l inks may not necessari ly exist; and in the
absence of a logical l ink, one must be created. This
additional task affects the performance of DNS, both
in terms of the response time and the CPU loads on
the two systems. The establishment and disconnec
tion of a logical l ink takes 88 ms and uses up 60 ms
and 68 ms of CPU time , respectively, on the clerk
and server. If a logical link had to be created for every
request, the maximum throughput of DNS would
drop from 33 to only 10 transactions per second.

The DECnet session overhead could be avoided by
caching at least one logical link on the name server
for every clerk. However, that operation depletes
VMS system pool space, and the performance costs
are prohibitive when the name server has to serve a
large number of clerks. Another approach uses a
datagram service for DNS operations within a local

No. 9 june 1989 Digital Tecbnicaljournal

Measurement and Analysis Techniques for DEC net Products

area network . With this approach , however, issues
such as authentication have to be resolved so that
unauthorized access to the DNS clearinghouse can
be prevented. The session layer (DECnet logical l ink)
overhead is a major concern in most client-server
implementations (such as file services, remote pro
cedure calls, and name services) ; and for many
c lient-server implementations that are LAN-based, a
datagram-based service could provide better perfor
mance than a connection-based service.

DNS Operations in a Wide Area Network

If a clerk is trying to communicate with a name
server that is not on the same LAN, the message that
contains the DNS request is forwarded by routers
to the name server. Both the router processing and
data transmission add latency to the response time.
Figure 5 shows a rypical configuration for this case .
A DECrouter 2000 introduces about 1 ms latency for
every message it routes. The latency caused by the
transmission on the low-speed l ine depends on the
amount of data exchanged and the speed of the line .
When the same read-attributes DNS transaction is
performed over a WAN , we observed an extra latency
of 50 ms at a l ine speed of 64 k ilobits (Kb) per sec
ond. The extra latency reduces to 16 ms as the l ine
speed is increased to 256 Kb per second .

Program Counter Histogram and
Ethernet Packet Trace

An Ethernet monitor was used to trace and time-stamp
al l the packets for a DNS transaction . VAX Software
Performance MonitOr (SPM) generated a system-wide
PC histogram on the name server. Figure 6 shows the
Ethernet packet traces for a read-attributes trans
action. The trace indicates that the response time of
the name server is 24 .8 ms, excluding disk 1/0 and
the establishment of DECnet session.

ETHERNET

ETHERNET

Figure 5

DECrouter 2000

SYNCHRONOUS
COM M U NICATION
L INE

DECrouter 2000

DNS Operation over a Wide
Area Network

Digital Tecl.mical]ourrud No. 9 june 1989

TIME DNS CLERK NAME SERVER

CONNECT IN ITIATE (92 BYTES)
0 00 MS

CONNECT I N ITIATE ACK (64 BYTES)
5.30 MS

DNS REQUEST (1 79 BYTES)
48.20 MS

DNS RESPONSE (1 84 BYTES)
73.03 MS

(OTHER DNS
TRANSACTIONS)

DISCON N ECT REQUEST (64 BYTES)

3.87 MS {
DISCONNECT CON FIRM (64 BYTES)

Figure 6 Message Trace for a DNS Operation

The server CPU times spent in each major module
for read-attribute transactions are summarized in
Figure 7. It was found that most of the name server
time is spent in system modules (76 percent) . Only
24 percent of the CPU overhead is in the process
space (PO and Pl space) .

DNS Server under Severe Load

On a rare occasion the name server may be besieged
by requests, for example, after a power outage when
several workstations reboot and try to execute a
name service lookup simu l taneously. Under such
conditions the name server may not be able tO satisfy
every request before the client times out. Each
workstation then has the following options:

A. To try a few times and cease

B. To persistently retry until successful

C. To retry with backoff

This scenario was created with 460 client processes
on 46 machines and a MicroVAX II name server.
Using algorithm A , only a few clients managed to
access the server due to intense congestion at the
server. Algorithm B could cause severe thrashing if
the network parameters are not set up carefully. The
backoff a lgorithm efficiently eliminated the conges
tion on the server by delaying the requests . Use of
this algorithm thus resu lts in the best throughput
and stil l completes the request from every client
program .

85

Distributed Systems

25

(f)
20 w --'

(l_
::;;;
< (f)
lJ._ 1 5 0
f-
z
w
0
0:

1 0 w
(l_

5

RMS POOL PO/P1 SPACE

EXCEPTION WOR KING

EVENT
FLAGS
AND
ASTs

1/0 ROUTINE XODRIVER INTERRUPT OTHERS
SET
MANAGEMENT

R EAD ATTRIBUTES BY MODULE NAME

Figure 7 Name Server CPU Usage for a Read-attribute Transaction

Conclusions
The analysis and evaluation of computer network
performance has become an important and demand
ing field . Performance is the primary consideration
in evaluating computer networks and requires an
in-depth understanding of computer systems and
network mechanisms. The present complexity of
network performance measurement, analysis, and
evaluation methods is a result of the increase in the
number of different computer systems and networks .
Employing some commonly used performance eval
uation techniques and tools, we were able to effec
tively characterize the performance of two network
products, DFS and DNS, and present the trade-offs
involved when using them. Similar performance
evaluation methods can be applied to other net
working products in different environments.

Acknowledgments
The authors wish to acknowledge Ray Kao and
Darwen Rau of NPACE Performance Group who con
tributed to the performance evaluation of DNS and
DFS. Special thanks to Dah-Ming Chiu who reviewed

86

this paper and provided valuable insight and infor
mation in the section DNS Server under Server Load.
We are also grateful tO Dinesh Mirchandani , Janet
McCann, and Danny Cobb for critiquing this paper
and thus helping to clarify it .

References
1 . W Nichols and J. Emer, " Design and Implemen

tation of the VAX Distributed File Service," Digital
Technical journal Qune 1989, this issue) : 16-28.

2. L. Kenah and S. Bate, VAX/VMS Internals and

Data Structm·es (Bedford : Digital Press, 1984) .

3 . L . Kleinrock, Queueing Systems, Volume 1: Theory

(New York: John Wiley & Sons, Inc . , 1975) .

4 . S. Martin, J. McCann, and D. Oran, "Development
of the VAX Distributed Name Service ," Digital
Technicaljournal (June 1989, this issue) : 9-1 5 .

5 . VMS Man ual Set, Programming, Volume 6A File
System, Guide to File Applications (Maynard:
D igital Equipment Corporation, Order No.
AA-LA78A-TE, April 1988) .

No. 9 june 1989 Digital Tecbnica/journal

John P. Morency
Richard P. Pitkin

Ramasamy]esuraj
Ambrose C. Kwong

Modeling and Analysis of
the DECnet/SNA Gateway

The DECnetjSNA Gateway links the DECnet and SNA environments to provide a

rich range of services to users. To simulate arbitrary session mixes over this gate

way, the Network and Communications Group developed a programmed model

primarily as a tool for capacity planning. Designers chose to develop a simulation

model-- as opposed to a queuing model - to support the DECnetjSNA terminal

emulator, the data transfer facility, and remote job entry. Special tools and tech

niques were created during development to ensure consistent and efficient collec

tion and reporting of experiment results. Validation of the model reveals the

model's accuracy; a margin of less than 10 percent is shown between measured

results and model output.

Local area networks (LANs) have made distributed
computing a reality. For distributed computing to
truly be effective , however, connectivity to diverse
data resources is required. Very often these data
resources reside within an IBM Systems Network
Architecture (SNA) network. Because SNA is gener
ally not the networking architecture utilized within
the LAN environment, communications gateways
must provide protocol mapping between the LAN
and SNA environments.

This paper describes a simulation model of the
DECnetfSNA Gateway developed by the Network and
Communications Group within Digital Equipment
Corporation . The generic nature of Digital Network
Architecture (DNA) to SNA interconnection and the
associated performance issues are described first.
Next, the goals and objectives of the DECnet;SNA
Gateway model are presented, followed by an
in-depth description of the model .

We also describe some of the tools the team devel
oped to validate the model effectively and the prob
lems associated with validating a model of this
nature. We conclude with a discussion of the valida
tion of the model and its appl icability to various types
of workloads.

The DECnetjSNA Gateway Product
The DECnetfSNA Gateway is a combined hardware
and software system with communications links to
the DECnet and SNA environments. The system is com
plemented by client products, called access routines,
which reside within the DECnet environment and the
SNA host environment. In the DECnet environment,

Digital Tecl:mtcal]aurnal No. 9 june 1989

these access routines reside on VAX/VMS, ULTRIX, or
MS·DOS systems. In the SNA environment, the access
routines reside on MVS, VM or DOSfVSE systems.

Capabilities provided by the DECnet/SNA Gateway
in conjunction with the access routines include

• Digital Vf-class terminal access to an SNA host

• IBM 3270 terminal access to a DECnet host

• Bidirectional file transfer services in which the
transfer can be initiated from either the DECnet or
the SNA side of the system

• Bidirectional mail services

The design of both the gateway and the associated
products is sufficiently modular to allow any com
bination of layered functions to proceed in parallel
across the gateway. Thus a rich range of services is
available to users in either network.

The structure of the combined DECnet;SNA envi·
ronment is shown in Figure 1 . 1

The Need for a Gateway Model

The diversity of concurrent functions possible across
a gateway prompted us to develop a programmed
model to simulate arbitrary session mixes. The model
would be an automated tool to aid customers in the
capacity planning process. Moreover, we soon dis
covered that new gateway designs could be rapidly
analyzed and tested for feasibility by a "what-if"
analysis tool such as the model we planned.

An additional benefit derived from developing
the model is the insight it gave us into the internal

87

Distributed Systems

TERMINAL TERMINAL PRINTERS

I B M MAINFRAME
SYSTEM (MVS ,
VM , OR DOS/VSE)

Figure 1 DECnetjSNA Physical Configuration Overview

properties of DECnet and SNA networks. Our develop
ment approach was top-down and evolutionary; that
is, we designed the simu lation to accurately reflect
the behavior of the products with respect to overall
gateway performance . By studying the performance
behavior of one product at a time, we more clearly
understOod the properties in the two architectures
that affected the desired level of interoperability.
These products are described in the next section.

DECnetjSNA Products Supported
by the Model

DECnetjSNA 3270 Terminal Emulator

The DECnetjSNA 3270 Terminal Emulator (TE) runs
on a DECnet host, typically a VAX,IVMS system. The
TE al lows a Digital VT-series terminal . which is gen
erally asynchronous, to emulate an IBM 3 178/3278
device using the 3270 base data stream. The TE code
uses internal routines tO support the gateway access
protOcol (GAP) to the gateway access server (GAS)
process within the gateway. 1 This relationship is
illustrated in Figure 2.

To effectively perform its function, the TE image
itself processes all keystrokes entered directly by the
end user. The TE therefore functions much as would
a 3270 cluster control unit on behalf of an attached
control unit terminal (CUT) display. In addition, tO
maintain timely state synchronization, the TE image
also supports both the SNA data flow control and

88

transmtsston control layers. This implementation
structure results in a highly reliable emulation which
completely supports the GAP protocol for access to
lower-level services within the gateway.

Data Transfer Facility

One of the major strengths of DECnet software is the
interactive fi le transfer capability supported by the
data access protocol (DAP) . This capability can be
easily seen on most DECnet systems by suitable vari
ants of a COPY command .

The DECnetjSNA data transfer facility (DTF)
extends that copy capabil ity to include catalogued
data sets within an SNA environment. This extended
capability is provided by a DAP server process which
appears as a normal DECnet network server. The
actual mechanism encapsulates DAP in an SNA logical
unit type 0 session attached to the "real" DAP server
process which resides on an MVS host. (The "real"
DAP server is a Digital-supplied component on the
MVS system .)

The initiatOr of the COPY command in this context
is termed the DTF client; the process that provides
the look-alike DAP service server functions is termed
the DTF server. It is the DTF server that maintains the
SNA session with a cooperating task on the MVS host
for the purposes of effecting the end-to-end transfer
as seen by the end user. The DTF server process is
also a GAP protocol client. The overall DTF structure

No. 9 june 1989 Digital Tecbnicaljounull

�
�----

V

-

T

,

xx

_

x ____ �l
I

TERMINAL EMULATOR CODE:

• SCREEN MANAGEMENT MODULES • DATA BUFFERS • SNA LU2 HALF-SESSION ROUTINES • BASIC APPLICATION INTERFACE

I
GATEWAY ACCESS PROTOCOL

GATEWAY ACCESS SERVER

Figure 2 DECnetjSNA Terminal Emulator

Overview

is i l lustrated in Figure 3 . Transfers from the IBM side
are structured simi larly and supported by ISPF panel
requests.

Remote job Entry

A5 its name implies, DECnetjSNA remote job entry
(RJE) allows an end user to submit job control
language (JCL) formatted fi les as units of work to a
job entry subsystem (JES) within the SNA network.
This same facil ity allows that end user to receive
either printed or punched output from the SNA host
when a submitted job has completed. Inbound reader
streams (to an SNA host) and outbound printer or
punch streams (from an IBM host) are both trans
ferred by means of the DAP protocol from the
DECnetjSNA Gateway to the JES subsystem . (In the
gateway, fu l l protocol conversion exists to and from
an SNA logical unit type 1 data stream.) Figure 4
i l lustrates this process.

In contrast to the TE and DTF, RJE supportS an
application- layer protocol conversion paradigm in
the gateway.

Gateway Model
In this section we discuss the logical structure of
the gateway model . Details of this structure, perfor-

Digital Tecbnicaljournal No. 9 june 1989

Modeling and Analysis of the DECnetjSNA Gateway

mance statistics required , and objectives established
for the model follow in subsequent sections.

In our approach to structuring the model , we chose
to group multiple servers logical ly and tO focus on
the characteristics of the larger server. Specifically,
we modeled the end users, the VAX/VMS systems,
and the Ethernet as constituting the DECnet server;
and we modeled

.
the front end, mainframe host, and

target applications as representing the SNA server.
Our reason for this decision can be seen by examin
ing Figures 1 and 5 .

A5 shown in Figure 1 , numerous components must
be considered. These include the DECnet node, the
Ethernet, the DECnetjSNA Gateway, the synchronous
data link control (SDLC) l ine , the 3725 front-end
processor, and finally the mainframe (in our experi
ments, a 4381-Pl3 system running the MVSjXA oper
ating system) .

We can look at this same physical configuration
from a queuing system standpoint, as diagrammed
in Figure 5 . Figure 5 represents each of the physical
entities as logical servers and also indicates the units
of data passed between the servers . For example, an
inbound flow (i .e . , from the gateway to the IBM
front end) can be modeled as fol lows . End users at a
DECnet node use a product to transmit DECnet pack
ets to the gateway over the Ethernet. An actual SNA

VMS

COPY COMMAND USING RMS

SNADTF$FAL (NORMAL DAP SERVER)

KEY:

ISPF - INTERACTIVE SYSTEM PRODUCTIVITY FACI LITY

RMS - REMOTE MANAGEMENT SYSTEM

TSO - TIMESHARING OPTION

Figure 3 Data Transfer Facility Overview

89

Distributed Systems

DEC net JCL-FORMATTED
OUTPUT FROM

SYSTEM INPUT FILES
PRINT/PUNCH
STREAMS

USER JOB WORKSTATION DEC net
R EMOTE FILE INTERFACE OPERATOR ACCESS (DAP)

DECnet N ETWORK

RJE I I SERVER

DECnet

SNA/SDLC SYSTEM

DATA LINK CONTA I NING

CONTROL GATEWAY

SNA

IBM
MAINFRAME
SYSTEM
(MVS, J ES)

Figure 4 DECnetjSNA Remote job Entry Overview

request/response unit (RU) is encapsulated within
a DECnet message . ' The gateway then removes all
DECnet enveloping, adds the necessary path control
and SDLC headers, and transmitS SDLC information
frames (I-frames) over the physical l ine to the front
end processor in the SNA network. The SNA network
then delivers the RU to the mainframe application .
Data flowing in the opposite direction follows the
reverse path.

Given that each logical server could have its own
discrete model associated with it, validating such a
model would be an extremely time-consuming task.

90

Thus the final queuing network was represented
by the DECnet server, the DECnetjSNA Gateway
server (composed of the gateway CPU server and the
SDLC l ine server) , and the SNA server in tandem. The
DECnet server and SNA server propenies were ana
lyzed in the context of panicular products relative to
their packet arrivaljdepanure propenies. Thus, the
DECnetjSNA server analysis is essentially a processor
simulation for the CPU in tandem with a l ine simula
tion for the associated SDLC l ine(s) . This simplified
relationship is shown in Figure 6. Details of these
analyses are presented in the following section .

No. 9 june 1989 Digital Technical journal

USERS

L..-------' PACKET, RU

PACKET

PACKET

FRAME

FRAME

FRAME, RU

1/0
DEVICES

APPLICATION
/-------1 1/0

Figure 5 Queuing View of Model Environment

Processor and Line Server Simulation

I n this section we cover the interaction between the
two major functions provided by the gateway CPU.
One function of the gateway CPU is to handle the
real-time functions of the SDLC lines . The second
function is to pass or modify data into and out of
the SNA network. We discuss here the internal soft
ware componentS and interdependencies that were
required to develop the simulation model of the
gateway.

The DECnetjSNA Gateway supportS three i nternal
software servers - the GAS and RJE server processes,
already discussed, and a host command faci lity (HCF)
server process. The HCF server allows IBM 3270 ter
minals to function as command terminals when
accessing a VA.XjVMS host. Each of these software

Digital Technical journal No. 9 june 1989

Modeling and Analysis of the DECnetjSNA Gateway

servers involved understanding the CPU utilization
characteristics, with a l imited multitasking environ
ment in mind .

To keep the initial version of the model simple,
we chose to model only the GAS and RJE servers .

The gateway CPU has been modeled as a single
server providing service for three priority classes. In
order of priority, these are

1 . SDLC polling

2. GAS sessions

3. RJE sessions

Arrivals within a priority class are serviced on a
first-come, first-served basis. The service discipline
across the priority classes is preemptive resume.
Since there can be at most one poll ing message per
l ine in the system at any given time, a queue for that
priority class is not needed. Although the multiple
l ines do require some coordinating mechanisms,
each of the other two priority classes (GAS and RJE)
has an associated queue. The model is flexible and
allows the CPU service time distribution for any ses
sion to be exponential (the default) , deterministic,
or u niform. For validation purposes, we modeled
the CPU as an exponential server.

The SDLC line is modeled as an alternating server
servicing two queues; one is outbound (IBM to gate
way) , and the other is inbound (gateway to IBM) .
The number of frames served at any visit to a queue
simulates the implementation. The time at which
the server visitS these queues depends upon the poll
i ng rate, the poll ing service time, and the amount
of traffic. The service time distribution here is

DECnet SERVER

I GATEWAY CPU I SERVER

I SDLC LINE I SERVER

DECnet/SNA GATEWAY
SERVER

SNA SERVER

Figure 6 Model Environment, Simplified View

91

Distributed Systems

deterministic, in the sense that it is a l inear function
of the size of the frame to be transmitted.

The pol l ing process is modeled in two sta tes . The
first state models the action of the IBM front end when
no data (i . e . , l -frames) is transmitted or received. I n
this state polls are sent t o the gateway a t periodical
times (that is, deterministic rate) . The second state
models the action of the front end when data has
been received from the gateway. In this state, the
front end almost immediately polls the gateway
again regardless of the deterministic rate . We also
took into consideration the fact that the time to
transmit a number of I-frames may overlap the peri
odical poll time, hence no poll could be sent. These
situations are simulated in the gateway model as
part of the l ine server.

The gateway CPU time needed to service a poll is
modeled separately from the main CPU service. The
separate models were created because gateway CPU
time occurs at a rate determined by a front-end
parameter (specifically, the advanced communica
tion functionjnetwork control program [ACF/NCP]
line-pause value) . Further it exhibits particular
properties based upon whether a productive or non
productive poll occurred, as well as on how system
scheduling properties can affect the effective
throughput per pol l .

The processor server simulation required addi
tional analysis. Two major types of data flow needed
to be considered in the simulation . One flow ana
lyzed was the bu l k data paradigm . This paradigm
describes both the DTF and RJE products. In this
paradigm data messages can arrive at the gateway as
fast as the associated system can send them. To under
stand the effects of this type of session, we needed
to saturate either the SDLC l ine or the gateway pro
cessor. Once this was done, the characteristics of
the CPU server and l ine server in the gateway model
were understood and the model developed.

The second type of data flow considered for the
simulation was the interactive paradigm, as exhib
ited by the 3270 terminal emulator. In this paradigm,
messages arrive at the gateway based nominally on
the think time and processing time at the Digital sys
tem and the processing time at the IBM mainframe
system. See the DECnet and SNA servers i n Figure 6.
The arrival rate at the gateway (hence the CPU and
line server work) therefore is a function of both these
additional system characteristics. For the interactive
paradigm, these servers and their characteristics
have been included in the model . Additionally
response time as seen by the user is factored into the
overall model 's output . For those users of the model
who do not know all the details for the DECnet and
SNA servers, a set of heuristics has been employed to
reflect a common set of defaults .

92

Performance Statistics

In a queuing model , the statistics of interest gener
ally include server util ization , mean waiting time ,
and mean queue lengths . In the context of our
work, the major servers of interest were the gateway
CPU and the SDLC l ine . However, users of this partic
u lar model wanted to understand not only overal l
processor and circuit utilization, but also the uti
lizations attributable to individual sessions and the
average session throughput across the gateway. Our
model provides these performance statistics as well
as the response times for the 3270 terminal emula
tor sessions.

Queuing versus Simulation Model

A major issue which arose when we began this work
was whether the desired information cou ld be sup
plied by a closed-form queuing model or by a simula
tion mode l . A solution using a closed-form queuing
model is possible provided that enough is known
about the DECnet and SNA servers in the general
model . (See Figure 5 .) However, we soon discovered
a tractable solution is difficult to achieve. I n this
section, we discuss some of the reasons why we
chose to develop a simulation model .

The management of polling for data-l ink-level I/0
presented more than a few complications. I n partic
u lar, the number of frames transmitted on the SDLC
l ine on a poll cycle could vary depending upon
whether the frame direction was inbound or out
bound. Given this discontinuous behavior, a closed
form queuing formula could not be deve loped. The
details in the message flow can be best i l lustrated by
an example, which is provided below.

Assume that at the t ime the SDLC server startS ser
vicing the inbound queue (i . e . , when a poll arrives
at the gateway) , more than seven I -frames are waiting
for service. According to modulo-8 SDLC protocol ,
only the first seven can be serviced a t that particular
time . The remaining frames have to wait for service
at the next poll frame arrival . A similar scenario is
followed for servicing the outbound direction .

Cor.sider now the case in which service initiation
begins and only four I -frames are waiting. In addi
tion, new packets may be en route at the upper layers
and could be eligible for service before completion
of the current poll ing cycle. Due to the schedu ling
properties of the DECnetjSNA Gateway, however, only
those four which are waiting would be serviced
within that particular poll cycle. (Poll queue ser
vice is preemptive of user processing that would
resul t in new queue entries.) All new arrivals there
fore must wait u ntil the start of the next cycle . (The
above flow is not followed when the ACF/NCP dat
mode parameter has a value of ful l .)

No. 9 june 1989 Digital Techntcaljournal

This is not the procedure followed for the out
bound flow from the IBM front end. New frames that
arrive during a cycle are transmitted until the total
number of frames transmitted is seven or until no
more frames are to be transmitted, whichever occurs
first. This approach is a function of the schedul ing
properties of the ACF/NCP software in the IBM front
end . As such, this service represents a hybrid of the
limited and gated service disciplines.

In addition to scheduling properties, other aurib
utes of both the data link and higher levels affect the
!-frame behavior. These attributes include the RU
size of the session, ! -frame message size (as speci
fied by the ACF/NCP PU maxdata size) , polling rate,
pacing window size , and session paradigm (that is,
either interactive or bulk transfer) . Al l affect the
steady-state RU rate, and so !-frame rate, as measured
on the SDLC line . Consequently, our abi lity to
tractably model data-l ink behavior in a closed-form
model was diminished by the myriad of relevant
variables.

In addition, session-level activity across the various
server processes within the gateway for different
session paradigms introduces more variables. More
over, three server types - GAS , RJE , and HCF -
operating at different priority levels affect both
arrival rates and service times , particularly when all
three server processes are concurrently active .

For these reasons, we chose a simu lation over an
analytical approach as the most realistic means of
modeling actual behavior. However, even simula
tion modeling does not eliminate all variabil ity . For
example, gateway server processes behaved quite
well for bulk transfers . However, for interactive traf
fic involving the 3270 terminal emulator, we had to
account for the behavior of each component in the
path rather than amalgamate multiple physical com
ponents into one virtual component. Thus, the end
to-end response time was critica l in determining
average arrival rates through the gateway. We could
not assume a steady-state Poisson rate, as we could
for bulk transfer.

Input to the Model

A major objective of the project was to build a
model that was easy to use. Our goal was to require
as little performance expertise as possible of the
model user. The user therefore would need to know
little more than how to install the product. Typi
ca lly, the user would have to know the proper vir
tual terminal access method (VTAM) and ACF jNCP
parameters as wel l as those parameters required by
the target appl ication subsystem on the SNA host .

Specific inputs to the model are as follows . The
model is driven by a sequential file in which three

Digital Tecbnical]ounud No. 9 june 1989

Modeling and A nalysis of the DECnetjSNA Gateway

major record types are present. The first record type
describes general characteristics of the gateway as a
whole and contains attributes such as DECnet buffer
sizes and gateway CPU power. The second record
type describes characteristics of the SDLC l ines sup
ported by the gateway to be modeled. These charac
teristics include associated speeds, polling rates,
error rates, and segment sizes. The third record type
describes the characteristics of each session in the
modeled workload . These session characteristics
include the associated SDLC line (from the second
record type) over which this session traffic flows,
the product that made use of the session, inbound
and outbound RU sizes, and pacing window sizes .

Our principal objective is to allow the end user to
define a static "snapshot" of the gateway's physical
configuration and of the session workload . The
model wil l then dynamica l ly determine how well the
gateway will support this workload on the defined
configuration. The user has the freedom to either
specify session arrival rates or accept the defau lt . I f
the user chooses the default, intelligent heuristics
within the model determine arrival rates.

Standard error and consistency checking is also
performed within the model to ensure that a sup
plied workload mix can be executed .

Both algorithmic and ru le-of-thumb techniques
were used to determine overal l workload feasibil ity .

We were able to provide particularly useful heuris
tics for obtaining data on CPU service time for a
given session type . As a result of extensive internal
measurement and careful curve fitting, we were
able to derive linear equations of the form A + B X X,
where A is the base CPU uti l ization for a given RU, B
is the CPU util ization per byte of RU processing, and
X is the number of bytes in a given RU. Both A and B
were measured in mill iseconds. Val idation testing
has shown that for both the GAS and RJE servers , this
form of equation is accurate to within 10 percent.

In addition to CPU service time , the model also
determines effective arrival rates as a function of
product type . An objective for the original design
was to provide a "value-added" function that facil i
tated determination of arrival rates. With this func
tion, most users of the model need not perform
extensive arrival rate experiments and measure
ments to obtain meaningful data. In past work in
modeling, performance engineering experience was
required to obtain arrival rates, thus reducing the
number of people who could obtain useful informa
tion from the model .

For bulk transfer sessions, a n effective arrival rate
is simulated using the internal buffer management
algorithm in the gateway; for interactive traffic , the
end-to-end traffic is totally simulated (assuming

93

Distributed Systems

-
TRACE
DATA

IBM

T IME

T IME

T IME

T I M E

T IME

T IME

POST
PROCESS

TRACE OUTPUT:

xxxxxxxxxx

HISTOGRAM
OUTPUT

DEC

T I M E

T IME

xxxxxxxxxxxxx TIME

xxxxxxxxxx T I M E

T IME

xxxxxxxxxxxx
xxxxxxxxxx

TIME

Figure 7 Histogram Representation of Frames

certain service time heuristics in some of the end-to
end path components such as the front-end proces
sor) . The section Validation of the Model presents
actual output of the model and samples.

The model has been extensively tested against the
TE, DTF, RJE, and DISOSS document exchange facility
(DDXF) products for both single and multisession
cases. For each product, more than 40 sets of mea
surements were performed to ensure overal l consis
tency between measured and actual resu lts. "Mixed
server" experiments (with concurrent GAS and RJE
activity) were also carried out . The error deviation
between measured and actual results was generally
10 percent.

The following section further describes the tools
used for load generation and measurement valida
tion, and the test suites used .

Tools and Measurement Methodology
This section describes the tools and techniques we
developed to deal with the operational issues which
arose during the development of the model .

Histogram of Trace Data

During the initial measurement work, the results of
experiments on the DDXF product were not consis
tent. This inconsistency highl ighted our overal l prob
lem of being unable to identify the exact message
flow patterns that result from a given experiment.

94

Test results were consistent for small subsets of
experiments in which parameters were clustered
together, but not for the entire body of experiments .
Therefore , we could not validate the model for the
experimental data across all experiments and attain
our goal of 10 percent error margin between pre
dicted and actual results. We decided that a histogram
showing the size and pattern of messages would
help us determine where the differences between
the model predictions and the product tests existed.

To produce the histogram, we began with the
gateway product. The gateway produces a trace of
SDLC frames received from and transmitted to the 113M
host. This trace is performed by a network appl ica
tion that creates a binary file of the data collected.

The trace was enhanced to include time stamps
on each data message received by and transmitted
from the gateway system . This additional informa
tion in the binary file allowed us to represent the
trace data as a scaled line in a relative time position.
The sample output represented in Figure 7 shows the
times l isted down both sides of the page. The data
messages starting on the left are from the front-end
processor (SDLC primary station) ; right-justified data
messages are from the gateway (the SDLC secondary
station) . This output provided a visual representation
of the pattern and size of messages for a given exper
iment. For example , it showed that for a 1024-byte
RU sent to the IBM front-end processor using an SDLC
frame size of 521 bytes, two frames would be trans
mitted. Whereas for a 1024-byte RU sent from the
IBM front-end processor using 521 byte frames, three
frames would be sent. This implementation detail of
the front end seriously affected our interpretation of
the circuit counters.

The histogram report also confirmed what patterns
were being established for a set of experimental
parameters. The histogram reports demonstrated
that the front end , after receiving data from the sec
ondary station, quickly polled this station again. We
used the histogram tool to obtain reports on mes
sages flows for a number of products. We were thus
able to understand precisely the effects of parame
ter changes and to represent accurately the critical
areas of processing in the model .

Remote Terminal Emulator
Testing Environment

After conducting a number of tests by hand, we deter
mined that a consistent and automated test environ
ment was needed. The same type of data was needed
from each of the tests.

• For the gateway, we required SDLC circuit coun
ters and CPU utilization.

No. 9 june 1989 Digital Tecbnicaljournal

• For the system under test (SUT) , with which the
access product was run , we needed the DECnet
counters and VAX CPU uti lization measures.

The test environment would also have to accom
modate another goal of the project which was to run
a heterogeneous mix of products simultaneously.
Also, because the different products had different
stanup times, interactive control was needed. With
such control, we could coordinate experimental
sample collection after a steady-state data flow was
established.

With these requisites in mind , we chose to
develop scripts using an internal remote terminal
emulator (RTE) . The RTE provides consistent con
trol as a pseudo-interactive user. Figure 8 is an over
view of the major components. The auxiliary VAX
system is needed to col lect the SNAP CPU uti l ization
data from the gateway. 1 This data is transponed by
DECnet, and if sent to the system u nder test, the
DECnet counters in the system under test do not rep
resent solely the data that was specific to the
product's steady-state data flow. The RTE also allows
multiple systems to be used when multiple sessions
are required; at the same time , the RTE is a single
point of coordination for us.

The scripts needed for each product were written
to interface with the common collection scripts.
Thus scripts could be mixed and matched as
required. Scripts were coordinated so that the stanup
time for each product was taken into account. Fur
ther, the scripts were constructed so that the major
parameters for test, such as l ine name and RU size,
cou ld be passed through the RTE to the product
being tested to create the test.

SNAP Server and Computation
of CPU Utilization Time
As noted in the section above , the SNAP replacement
tool that collects gateway CPU data saves the values
in a fi le. A sample is received every second . The
sample provides the number of kernel mode ticks
(samples taken when in the base operating system) ,
user mode ticks (samples taken when in a user
task) , and null ticks (samples taken when the CPU is
idle) . One tick equals one-sixtieth of a second . I f
K, U, and N represent the number of kernel mode,
user mode, and null ticks, respectively, then the
percentage of CPU utilization is given by

((K + U)j(K + U + N)) X 100

Gateway CPU util ization obtained this way consists
of three components:

• RU processing

• Poll servicing

• SNAP server processing

Digital Tecbnicaljounud No. 9 june 1989

Modeling and A nalysis of the DECnetjSNA Gateway

To calculate CPU utilization for processing the
RUs, one must know the overhead for servicing the
polls and the SNAP server util ization . We obtained
these numbers through a set of tests that measured
the CPU utilization of SNAP first with no other pro
cess running, then with the l ine being polled with
SNAP. Together these tests resulted in the estimates
of the overhead numbers that we used in subse
quent analysis . The overhead can then be subtracted
from the total CPU utilization to obtain the CPU utili
zation for processing the RUs.

The CPU service time per RU can be calculated by
dividing this RU-specific CPU utilization by the arrival
rate as determined by the circuit counters. The
arrival rate is the average number of RCs per second,
which we discuss funher in the next section.

SDLC Counters and Arrival Rate
The SDLC counters for the gateway contain elapsed
time , poll count, and error count. They also contain
separate byte and frame counts for inbound and out
bound messages . The arrival rate (RUs per second)
can be calculated from the SDLC counters. The cal
culation is based on the fact that, under steady-state
data flow conditions, throughput is the same as
arrival rate.

To begin with, let us assume that for all the ses
sions in the same direction, the RU sizes are the same
and the pacing window sizes are the same . Then, for

Figure 8 Overview of the Logical Testing

Environment

95

Distributed Systems

unidirectional traffic, that is, data frames in one
direction only, the arrival rate is given by the total
data frames in direction of data divided by the num
ber of segments per RU times the elapsed time in
seconds.

In calculating arrival rate, we again assume that
the RU size and the pacing window size are the same
for all sessions in the same direction. When data is
flowing in both directions, the calculation of the
arrival rate is more complicated.

We have derived equations that allow us to calcu
late the arrival rate from the experimental data
when homogeneous sessions are transmitting data in
both inbound and outbound directions. The equa
tions become geometric series that converge. The
derivation of these equations is beyond the scope of
this paper, but has been used to val idate the cor
rectness of the model .

I f the sessions are not homogeneous, i t wi ll be dif
ficult to compute the arrival rate from experimental
data. However, the model (being a simulation) can
be used to project this arrival rate and hence the
throughput .

CATCH2
During work on the SNA gateway model , we were
interested in the elapsed time taken by a message to
travel through the gateway. The main flow of data is
from the VAX to the IDM system , or from the II3M to
the VAX system. Information about elapsed t ime is
critical to understanding how well the gateway per
forms. We were also interested because we desired
an independent method to validate the information
gathered for the model . For the simulation to be suc
cessful with low data rates, we needed to know the
elapsed time through the gateway with a resolution
to parts of mi l l iseconds. Without this level of infor
mation, errors generated when large numbers of ses
sions and fast lines are simulated could produce
accumulated errors that would exceed our error
margins.

In addition, queuing delays in the gateway could
only be inferred from the measurements taken. We
had already done work to time-stamp messages on
the I BM l ine using a modified SNA trace routine, as
noted above . However, the system clock in the gate
way was accurate to only 16 mill iseconds. Further,
SNA trace measurementS are intrusive; that is, as the
SDLC l ine 1/0 rate goes up, the Ethernet traffic also
increases and can more than double .

In summary, we obtained measurementS on mes
sage traffic accurate w only about 1 millisecond by
using statistica l methods with the SNAP results . The
methods being used to measure elapsed time through
the gateway needed to be validated . In addition, we
needed a greater understanding of the entire message

96

flow, and we desired timing data measured w the
level of 1 mi l l isecond or less. Therefore a program,
CATCH2, was written to supply this information.

The CATCH 2 program has two functions:

• To monitor the l ines and record messages on the
disk

• To analyze the recorded data and display it for
human interpretation

The problem was to capture messages from two
different devices, t ime-stamp both sets of messages
from a common clock, and record the messages and
times in a single fi le for analysis. Figure 9 shows the
hardware configuration and logical connections that
were required for the solution.

The VAX CPU microsecond counter could measure
the time in less than mi l l iseconds. Experiments
showed that the standard QIO driver could obtain
reasonably accurate measurements by t ime-stamp
ing messages as close as possible to interrupt level .
We obtained the source code for the UNA and DMB32
drivers. The drivers were modified to use a VAX 8200
system to time-stamp messages at VMS fork level . At
this level, individual messages were accessible to
the driver code .

The problem of timing messages breaks down to
two physical connections and a smal l set of software
parameters. Given that we want to time messages
sent from a VAX system on the Ethernet, through the
gateway, to the IBM front-end processor, the steps
are as fol lows :

• Set the UNA controller tO the same address as the
gateway. This setting allows the 8200 UNA to
receive the same messages as the gateway.

• Monitor the receive side of the l ine into the II3M
front end . The monitor connection is attached by
a modified cable to a DMB32 controller on the
tracing VAX system; modem signals to the DMB32
allow for message reception. (Data terminal ready
is strapped to data set ready.)

Additionally, the DMB32 l ine must have the same
SDLC hardware address as the gateway l ine .

This method could b e extended t o measure
elapsed time through other systems such as routers.
Any configuration in which messages are transferred
through a system could be measured using this base
technology.

Validation of the Model
The valid ity of the model is determined by compar
ing model results w some known resultS obtained by
laboratory testS or real-world configurations using the
same parameters.

No. 9 june 1989 Digital Tecbnicaljournal

DECnetfSNA
PRODUCT
BEING TESTED

ETH E R N ET

DECnet/SNA
GATEWAY

t l

MODIF I E D CABLE

-

I BM SYSTEM

Modeling and Analysis of the DECnetjSNA Gateway

D E U N A
CONTROLLER

DMB32
CONTROLLER

VAX SYSTEM R U N N I N G CATCH2

Figure 9 Overview of CATCH2 Logical Environment

Validation, in general , is a time-consuming and
technically difficu lt task. The difficu lties are often
caused by the l imitations and avai labil ity of the
hardware . In the extreme case, the product to be
modeled may sti ll be in the design or development
stage . In other cases, the amount of hardware
required is not avai lable; for example, it wou ld be
difficult, if not impossible , tO set up a 1 ,000-node
network tO measure its performance .

For the validation of the DECnetjSNA gateway sim
ulation model , we had two hardware l im itations: the
number of SDLC lines available (especially l ines with
speeds higher than or equal tO 56 kilobi ts (Kb) per
second) ; and the number and power of VAX CPUs
available to act both as hosts and as remote terminal
emulators tO emulate multiple concurrent sessions
under control led conditions.

For these reasons, the maximum number of concur
rent sessions in the validation were limited ro four.
Though this may appear ro be a severe l imitation , in

Digital Teclmicaljournal No. 9 june 1989

practice it is not. The l ines become saturated by four
sessions with bulk data transfer.

Performance Metrics for Validation

From the experimental resu lts, the performance
metrics that can be easily computed are

• The uti l ization of the gateway CPU

• The util ization of the l ine

• Steady-state throughput of the gateway

The values of these statistics from the model out
put are compared to the values derived from experi
ments. The arrival rate and gateway CPU service time
are input ro the model along with other configura
tion parameters. These parameters include l ine
speed, frame size , pause between polls, number of
sessions, session type , RU size , and pacing value.
These parameter values are taken directly from the
parameters used in corresponding experiments.

97

Distributed Systems

Experimental versus Model Results

For the validation of the model , the calculated values
of gateway CPU utilization and SDLC line util ization
from measured results were compared to the values
output from the model . Our goal was a margin of
Jess than lO percent difference between the two
results , as mentioned above. Three categories were
va l idated : bulk transferjbatch job (RJE and DTF) ,
interactive data (the TE) , and a mix of these appl ica
tions. The resu Its from the RJ E and DTF validation are
presented here in order to give the reader some feel
for the relative accuracy of the model and to i l lus
trate some performance propenies of the DECnetj
SNA Gateway itself.

Remote job Entry Results A DECnetjSNA VMS RJE
session is serviced by the RJE server in the gateway.
This bulk data server provides the full functional
transformation of data from IBM format to the DNA
format. Since the RJE server in the gateway has to
perform a fu ll level-two through level-seven proto
col conversion, its operation is CPU intensive. There
fore , we expected to find that the gateway was a
bottleneck in most circumstances. As such, the

Table 1 RJE Validation Results for Print Stream

Record Percent Gateway CPU Utilization
Size

(Bytes) Experiment Simulation Error

40 76.21 75.66 0.72
80 67.43 66.05 2.04

1 32 71 .53 69.96 2 . 1 9

Table 2 RJE Validation Results for Punch Stream

Record Percent Gateway CPU Utilization
Size

(Bytes) Experiment Simulation Error

40 72.74 72.28 0 .63
80 75.06 73.79 1 .69

Table 3 RJE Validation Results for Reader Stream

Record Percent Gateway CPU Utilization
Size

(Bytes) Experiment Simulation Error

80 54.67 53.31 1 .28
1 32 56.51 55.51 1 .77

98

throughput of the gateway remains relative ly con
stant with different numbers of concurrent active
streams. However, the time for finishing individual
jobs will be l onger when a larger number of concur
rent streams are active.

Tables 1 through 3 compare the experimental
results to the actual results for single RJE sessions
supporting print, punch, and reader streams. In the
actual experiments, we used a MicroServer Gateway
with a line speed of 128K bits per second to connect
to the 113M system. Record sizes for all three streams
were varied between 40 and 132 bytes. MicroVAX II
systems were used as DECnet hosts for the input
and output transfers . As can be seen , the deviation
between predicted and actual results was quite low.
In addition, the results reflect the relatively high
levels of gateway processor util ization attributable
to performing the fu ll protocol conversion of the
RJE logical unit rype 1 protocols to the DECnet data
access protocol .

DTF Results To validate the bulk data transfer rate
in the model using the GAS, we used the DECnetjSNA
VMS data transfer faciliry. DTF provides steady-state

Percent Line Utilization

Experiment Simulation Error

32.78 33.76 2.99
32.96 33.48 1 .58
40.39 40.73 0.84

Percent Line Utilization

Experiment Simulation Error

32.41 33.4 3.37
39.31 39.89 1 .48

Percent Line Utilization

Experiment Simulation Error

35.33 35.73 1 . 1 3
36.90 37.59 1 .87

No. 9 june 1989 Digital Tecbnlcal]ournal

Moaeling and Analysis of the DECnetjSNA Gateway

Table 4 DTF Multisession Validation Results for DECnet Hosts Transmitting to an IBM System

RU
Size

1 024
2048
4096

Percent Gateway CPU Utilization

Experiment Simulation Error

1 1 .20 1 0 .96 2 . 1 4
1 2.77 1 2.42 2.74

9.81 9.73 0.81

Percent Line Utilization

Experiment Simulation Error

89. 1 0 88.85 0.28
97.40 92.76 4.76
92.53 93. 1 4 0.66

Table S DTF Multisession Validation Results for an IBM System Transmitting to DECnet Hosts

RU
Percent Gateway CPU Utilization

Size
Experiment Simulation Error

1 024 1 1 .24 1 0.70 4.86
2048 1 0.69 1 0.08 5.70
4096 8.23 7.78 5.46

data traffic. For this product, the gateway CPU is
generally not the bottleneck. Depending on the line
speed and the avai lability of VAX CPU support to the
concurrent sessions, either the SDLC line or the VAX
host(s) becomes the bottleneck. For the validation,
enough VAX CPUs were used so that the VAX host(s)
never became the bottleneck. Thus, the SDLC line is
the only resource that can be the bottleneck in the
experiment, if at all . This fact is amply il lustrated in
the four session results for DTF shown in Tables 4
and 5 . In these scenarios, four MicroVAX II DECnet
hosts make use of inbound and outbound DTF sessions
to an IBM mainframe over a 128K-bits-per-second
circuit with different RU sizes. Note that the use of
large packet sizes results in gateway operation that
provides high line utilization, yet at the same time
low overall usage of the gateway CPU. (The DTF
model , unl ike RJE , does not perform full protocol
conversion within the gateway.)

Applicability to Mixed Applications The model
simulates operation of three products: DTF, RJE , and
TE. In addition, the model handles mixed RU sizes
and a mix of any or all of these session types con
currently. Val idation of mixed RU sizes and mixed
applications is currently in progress.

Summary

A large number of parameters are involved in evalu
ating the performance of the DECnetjSNA Gateway,
and hardware , time, and human resources are lim
ited. It is therefore impossible to obtain experimen
tal results for all configurations. However, for any
specific configuration, the simulation model can
provide expected performance results.

Digital Tecbntcaljournal No. 9 june 1989

Percent Line Utilization

Experiment Simulation Error

92.85 92.85 0.00
93.37 92.82 0.56
94.21 94.49 0.30

The user can easily run the simulation with dif
ferent parameters and plot graphs to analyze the
relationship of the different parameters . For exam
ple, one can plot the steady-state throughput in
conjunction with RU size to find out how RU size
affects throughput. Or one can plot TE-session delay
in the gateway in conjunction with the number of
concurrent users to analyze the "unacceptable"
level of delay with increasing numbers of concur
rent users. The results achieved may be used to plan
system capacity or to develop system response time
projections.

Acknowledgments
The authors would like to acknowledge the contribu
tions of the following members of the NPACE Group
without whose diligent efforts much of our success
would not have been possible: Jane Morency, Atul
Shrivastava, Rajan Subramanian, Carolyn Kay.

Reference

I .). Morency, D. Porter, R . Pitkin, and D. Oran,
"The DECnetjSNA Gateway Product-A Case Study
in Cross Vendor Networking," Digital Technical

journal (September 1986) : 35-53 .

99

ISSN 0898-901X

Printed in USA EY-Cl79E-DP Copyright © June 1989 Digital Equipment Corporation

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Development of the VAX Distributed Name Service
	Design and Implementation of the VAX Distributed File Service
	Remote System Management in Network Environments
	The Evolution of the MAILbus
	VAX/VMS Services for MS-DOS
	The WAVE Tools Base for Protocol Testing
	Performance Evaluation of Distributed Applications and Services in the DECnet Environment
	Measurement and Analysis Techniques for DECnet Products
	Modeling and Analysis of the DECnet/SNA Gateway
	Back cover

