
VAX cluster Systems

Digital Technical Journal
Digital Equipment Corporation

Number 5

September 1987

Cover Design

VAX cluster systems are featured in this issue. The central

connection between the elements in a cluster is called the

Star Coupler. Our star-filled cover evokes the thousands of

VAXcluster systems now operating worldwide. The image was

created using the Lightspeed System.

The cover was designed by Barbara Grzeslo and Tim Roberts

of the Graphic Design Department.

Editorial Staff
Ediwr- Richard W. Beane

Production Staff
Production Editor- Jane C. 131ake

Designer- Charlotte Bell

Interactive Page Makeup- Terry Reed

Advisory Board
Samuel H. Fuller, Chairman

Robert M. Glorioso

John W. McCredie

Mahendra R. Patel

F. Grant Saviers

William D. Strecker

The Digital Technical journal is published by
Digital Equipment Corporation, 77 Reed Road,
Hudson, MassachusettS 01749.

Changes of address should be sent to Digital
Equipment Corporation, attention: Media Response
Manager, 444 Whitney Street, NR02-1/J5, Northboro,
M.A 01532-2599

Comments on the content of any paper are welcomed.
Write to the editor at Mail Stop HL02-3/K11 at the
published-by address. Comments can also be sent on
the ENET to RDVAX::BEANE or on the ARPANET to
BEANE%RDVAX.DEC@DECWRL.

Copyright© 1987 Digital Equipment Corporation.
Copying without fee is permiued provided that such
copies are made for use in educational institutions by
facuhy members and are not distributed for
commercial advantage. Abstracting with credit of
Digital Equipment Corporation's authorship is
permitted Requests for other copies for a fee may be
made to the Digital Press of Digital Equipment
Corporation. All rights reserved.

The information in this journal is subject to change
without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

ISBN 1-55558-004-1

Documentation Number EY-8258E-DP

The following are trademarks of Digital Equipment
Corporation: CI, DEC, DECnet, DECnet-VAX,
DECsystem-1 0, DECSYSTEM-20, Digital Network
Architecture (DNA), Digital Storage Architecture
(DSA), the Digital logo, HSC, Local Area VAXcluster,

MicroVAX, MicroVAX II, MicroVAX 2000, Q-bus,
RJ\1S- I I , SA482, UNIBUS, VAX, VAX-11/750,
VAX-11/780, VAX-11/782, VAX-11/785, VAX 8600,
VAX 8650, VAX 8700, VAX 8974, VAX 8978,
VAXcluster, VAXstation, VAXstation JJ,
VAXstation ll/GPX, VA.Xstation 2000, VMS,
VT, VT220

IBM is a registered trademark of International Business
Machines, Inc.

Intel is a trademark of Intel Corporation.

Lightspeed is a trademark of Lightspeed Computers,
Inc.

Book production was done by Educational Services
Media Communications Group in Bedford, MA.

Contents

V AXcluster Systems

7 The VAX cluster Concept: An Overview of a Distributed System
Nancy P. Kronenberg, Henry M. Levy, William D. Strecker, and Richard J. Merewood

22 The System Communication Architecture
Darrell J. Duffy

29 The VAX/VMS Distributed Lock Manager
William E. Snaman, Jr. and David W. Thiel

4 5 The Design and Implementation of a Distributed File System
Andrew C. Goldstein

56 Local Area VAXcluster Systems
Michael S. Fox and John A. Ywoskus

69 VAXcluster Availability Modeling
Edward E. Balkovich, Prashant Bhabhalia, William R. Dunnington, and Thomas F. Weyant

80 System Level Performance of VAX 8974 and 8978 Systems
Daeil Park, Rekha D. Von Ehren, Tzyh-jong Wang, and Nii N. Quaynor

93 C/ Bus Arbitration Performance in a VAXcluster System
Xi-ren Cao, Nii N. Quaynor, and Fernando C. Colon Osorio

Editor:ls Introduction

Richal"d W. Beane
Editor

VAXcluster systems are closely cou pled configu·
rations of VAX CPUs and storage devices . The VAX
C PU a t a n y n o d e c a n c o m m u n i c a t e w i t h
the processor and storage dev ices at any other
node in the cluster . The interconnects and soft·
ware used to activate this un ique concept allow
data transfers at u p to 70 megabits per second
between nodes. This issue of the Digital Techni·
cal journal conta ins papers about some of the
key hardware and software features i n these sys·
terns , as wel l as some measures of their perfor·
mance . Since several organ izations within Digita l
are responsible for various VAXcluster features ,
these papers are comribured by engineers from a
wide spectrum of engineering groups.

S ince the VAXc luster concept spans such a
r a n ge of t e c h no log ies , the f i rst p a p e r i s a n
overview ex p l a i ni n g genera l ly how these sys
tems work . Nancy Kronenberg, Han k Levy, B i l l
Strecker , and Richard Merewood describe t h e
architecture, the storage control , the VMS soft·
ware a lterations, and the mu l t i tude of activi ties
that control access to the storage devices.

The System Commu n icat ion Arc h i tecture ,
described by Darre l l Duffy, is the structure that
a l l ows the nodes in a VAXcluster system to coop
erate. This relatively si mp le framework governs
t he shar ing of data betwe e n resources at the
nodes and binds together applications that run on
d i fferent VAX CPUs.

2

Add i t ional features were needed i n the VMS
software to accommodate ac cess i n g d i s ks on
multiple systems. The distribu ted lock manager,
described by Sandy Snaman and Dave Thie l , pro·
vides the synchron ization needed to accomplish
transparent data transfers between c luster mem·
hers. Other changes were a lso needed to broaden
the file functions performed by the VMS software .
Andy Goldste i n relates some a l ternative ways to
expand those functions and how the QJO proces·
sor was extended ro sync hroni ze fi l e accesses .
The resu l t ing system of locks and queues pro·
v ides a cons i stent sequence for managi ng d is
tributed fi les.

The next paper. by M i ke Fox and john Ywoskus,
descri bes the extension of the VA.-'Ccl uster con
cept ro systems connected w i t h a n E t herne t .
Tbcsc Local Area VAXcluster systems use speci a l
software to provide fu nctions needed by clusters ,
but not p rov ided by E t hernet software . Thus,
M icroVAX II and other sma l l VAX systems can be
clustered to yield sign i ficant amounts of process·
ing power .

The last three papers deal with performance
aspects of VAXcluster systems. The paper by Ed
Ba l kovich, Prashant Bhabhalia , D ick Dunnington,
and Tom Weyant d iscusses the resul ts of a VAX·
c luster model that demonstrates how redundancy
im proves ava i l ab i l i ty. The n , Dale Pa rk , Re kha
Von Ehren , T·J. Wang, and Ni i Quaynor describe
two mode ls they developed to measure the per·
formances of VAX 8974 and 8978 systems . These
models , based on benchmarks ru n in d i fferent
environments, use a VAX 8700 CPU for a base l i ne
comparison .

The fi nal paper re lates the resu lts of a model to
measure the characterist ics of the CI bus . Xi -rcn
Cao , N i i Quaynor, and Fernando Colon Osorio
descr ibe how t h e i r model measures the per·
formance of t he arbi trat ion a l go r i thm i n t h i s
bus. They suggest some i n terest ing schemes to
improve uti l i zation and reduce response t ime.

Biographies

Edward E. Balkovich Ed Ba lkov ich is the manager of V�'{c luster System
Engi neering, which addresses issues of VAXcluster pcrformance, ava i labi l i ty
and architecture for H igh Performance Systems. He was Digita l 's associate
d irector of Project Athena at M . I .T. and is an Adjunct A.o;soc iate Professor at
Brandeis University. Before join ing Digital in 1 9R I, Eel was a faculty member
at the University of Connecticut. He earned his B.A. degree (1968) from the
University of Cal i fornia at Berkeley, and his M . S. (197 1) and P h . D. (1976)
degrees from the University of Californi a at Santa Ba rbara . He is a member of
the ACM and IEEE .

Prashant Bhabhalia A principal engi neer i n V�'Ccl uster Systems Eng i·
neering, Prashant Bhabhal ia develops and in terprets re liabi l i ty and avai labi l·
ity mode ls . Earl ier, he was a program manager in Computer Systems Manu
facturing and a sen ior engineer in GlA Manufacturing. Before joi n i ng Digital
in 19RO, Prashant was an industr ia l engi neer at Norton Company and Gits
Plastic Corporation . He holds an M.S . I .E . degree (197 4) from the Polytech
nic I nsti tute of Brooklyn and a B .S . M .E . degree (1972) from the M.S. Univer
sity in India . Prashant is a sen ior member of l . I .E .

Xi-Ren Cao A.<> a principal software engineer in the H igh Performance Sys
tems and Clusters Group, X i - Ren Cao mode ls and eva luates VAXcluster con
figurations. Before joining Digital i n 1986, he was a research fe llow at Har
vard Universiry. Xi -Ren has published over 20 technical papers on
performance evaluat ion, si mulation, srochastic systems, queuing networks,
and control theory, and has co-authored a book "Perrurbation Analysis of Dis
crete Event Systems ," to be published in 1988. He received h is Ph . D . degree
from Harvard Un iversity i n 19R4 and is a member of IEEE .

Fernando C . Colon Osorio Fernando Colon Osorio graduated from the
Un iversity of Puerto Rico (B .S . E . E . , 1970) and the University of Massachu
setts (M .S . , Ph . D , 1976). Jo in ing Digita l i n l97(J. he helped design the PDP-
1Ij60 and PDP-11/74 systems and managed the LAN group i n Corporate
Research . Fernando also managed the overall design verificat ion for the V�'{
8600 project . In H igh Performance Systems. he now manages the systems
research and advanced development group, responsible for VAXclusters.
fault tolerance, advanced arch itectures, and performance ana lyses . He was
Associate Ed i tor of the IEEE Transactions on Com puters and is the co-author
of "Engineering In te l l igent Systems."

Darrellj. Duffy As a consult ing software engi neer. Dan-ell Duffy works on
the network architecture for VAXcluster systems . On prev ious projects , he
led the deve lopment of operating systems for parallel processors and wrote
software for the Local Area Terminal protocol . Darre l l helped to deve lop
DECnet software after jo in ing Digital in 1977 He received a B .S . in com
puter science from West Virgin ia University in 197 2 and worked at the Un i
versity of Flor ida . Darre l l and three other Digital engi neers have appl ied for a
parent on the LAT protocol .

.-1

Biographies

4

William R. Dunnington Dick Dunni ngton is a principal qual i ty engineer
working on avai labil i ty modeli ng in the Com puter System Manufactu ring
Grou p . Prev iously, he was a quali ty engi neer in the Far East Manufactu ring
Grou p , working on personal computer memories . Before join ing Digital i n
1979, D ick was a captain i n the U .S . Army. H e received a n A<>sociates degree
in l ibera l arts from S .U . NY (1973) and a B .S . degree in engineering science
from the Univers i ty of Nebraska (1 97 4) . Dick, a member of SIAM and ASQC,
is a l so a Certified Qua l i ty Engineer.

Michael S. Fox I n J 977, Mike Fox joined Digital after earning his M .S .
(1977) and B.S. (1976) degrees i n computer science from Rensselaer
Polytechnic Institute. In i tia l ly , he helped to develop the RSXI 1 M-PLUS soft
ware, then served as archi tect and supervisor on the PRO/SERVER project . I n
D igi ta l 's Graduate Engineering Education Program , M i ke returned to Rensse
l aer for a year as a faculty member in computer science. Back at Digi ta l , he
jo ined the VMS Engineering Group and lead the p roject that developed the
Local Area VAXcluster software . M ike is now a consult ing software engineer.

Andrew C. Goldstein Andy Goldstein received h is B . S . E . E . and M . S . E . E .
degrees from M. l .T in 197 1, and joined Digi ta l in 1973. He was ini t ia l ly
responsible for the fi le system in the RSX-11 D and RSX-11 M systems, and
became a charter member of the VMS Deve lopment group . Andy designed
and implemented the VMS fi le system, and worked as wel l on the VMS ljO
and executive software . More recently, he designed the security features i n
VMS version 4 .0 and helped w i t h the VAX c l uster fi le system . Andy i s now a
sen ior consu ltant software engineer, and is a member of Tau Beta Pi , Eta
Kappa Nu , Sigma Xi , and ACM .

Nancy P. Kronenberg Nancy Kronenberg i s a sen ior consu ltant software
engineer in the Advanced VAX Deve lopment Group . She is currently project
leader of the microcode team for a new VAX CPU. Previously, Nancy worked
i n the VMS Development Group where she assisted with the SCA specifica
t ion and wrote the CI port driver and pan of the VMS SCA services. Before
joi n ing Digita l i n 1978, she was a systems analyst at Massachusetts Computer
Associates and at Appl ied Data Research . Nancy earned her AB degree i n
physics from Corne l l Un iversity in 196 7 .

Henry M. Levy A consu l tant engi neer on leave from Digita l , Hank Levy is
currently an A'isistant Professor working on distributed systems and com
puter architecture research at Univers i ty of Washi ngton . Hank joined D igita l
i n 197 4. H e was a member o f t he orig ina l VAXjVMS team and later worked
for the VAX Architecture Group on i nterconnect and workstation archi
tectures . He has publ ished over a dozen papers and the books Capab i l i ty
Based Computer Systems and Computer Programm ing and Arc hitecture: The
VA..,'<-11. Hank holds a l3 .S . degree (1974) from Carnegie-Me l lon Un iversity
and an M .S . degree (19R 1) from Univers i ty of Washington .

Richard J. Merewood Richard Merewood is the software development
manager for the DECnet-VAX , Local Area VAXcluster , and VAXcluster soft·
ware projects. In Reading, England , he managed the development of Digital's
X . 25 networking products, performed advance development on the ISDN
project, and supervised a modem development project. Before joining Digi
tal in 1 980, Richard was an international consultant in data communications
and transaction processing. He studied electrical engineering at the Imperial
Col lege of Science & Technology, London .

Daeil Park As a principal software engineer in the Systems Performance
Group, Dale Park executes and ana lyses tests to determine VAXcluster per·
formance. He is particularly involved with measuring the performance of
appl ication programs on these systems . Dale joined Digital in 1 983 after
receiving his M .S . degree in computer engineering (1 983) from Case West
ern Reserve University. Earl ier, he was a system design engineer at Samsung
Electronics Co . Ltd , in Korea . Dale earned his B .S . degree in electrical engi
neering (1977) from Seoul National University in Korea .

Nii N. Quaynor After earning his B .E . degree from Dartmouth Col lege in
1973 and his Ph . D . from S .U .N .Y . at Stony Brook in 1 977 , Nii Quaynor joined
Digital in 1 978 . He first worked in corporate research on multimicro sys
tems. In 1 98 2 , Nii joined the VAX 8600 project as a consu lting software
engineer and created models for large-scale CAD applications using a register
transfer language . Later, he worked on the verification of the VAX 8600
design . Nii is now the manager of the System Performance Group in High Per
formance Systems.

William E. Snaman, Jr. Sandy Snaman is a principal software engineer in
the VMS Development Group, currently working on software for VAXcluster
systems and the distributed lock manager. Sandy has also developed and
taught VAXcluster courses in Educational Services and was a software main
tainab i l ity engineer for Customer Services Systems Engineering. He joined
Digital in 1 980 after eight years in the U .S . Navy . Sandy holds a B .S . degree
(1 985, Magna Cum Laude) from the University of Lowe l l , where he is now
completing his M.S . degree in computer science.

William D. Strecker Bill Strecker, vice president for Product Strategy and
Architecture , joined Digital after receiving h is B .S . , M . S . , and Ph . D . degrees
from Carnegie-Mel lon University. Bil l's work on cache memories led to the
PDP- 1 1 /70 system , and he also led the team that developed the VAX archi
tecture . Bi l l guided Digital's interconnect strategy, which lead to the com
puter interconnect (CI) and the Systems Communication Architecture . He
holds several patents on CPU designs and computer interconnects. B i l l and
was elected to the National Academy of Engineering in 1 986 .

5

Biographies

6

David W. Thiel Dave Thie l , a consult ing software engineer, is currently
studying future directions for VAXcluster systems in the VMS Development
Group . He was project leader for the i ni t ia l VAXcluster support in VMS ver
sion 4 . 0 . Dave a lso worked on the executive and data compression areas of
the VMS software. Dave joined Digital i n 1 980 from GenRad , I nc . , where he
was a principal software engineer. He earned his B . S . E . E . , M .S . E . E . , and Elec
trical Engineer degrees from M . I .T. in 1 97 2 . He is a member of Tau Beta Pi ,
Eta Kappa Nu, ACM , a nd IEEE .

Rekha D. Von Ehren As a senior software engi neer i n the Systems Perfor
mance Group , Rekha Von Ehren works on performance measurements and
ana lyses for VAXcl uster systems. Previously, she analyzed the performance of
VAX 8600 and 86'50 CPUs. Rekha joi ned Digital in 1 983 after receiving her
M . S . degree in i ndustrial engineering from the Univers i ty of Wisconsin . She
also earned an M .S . degree (1 98 1) i n operations research from the London
School of Economics and a B . S . degree i n stat istics and computing from North
London Polytechnic . Rekha has just given birth to her first chi ld, a baby boy,
named Samuel .

Tzyh-Jong Wang As a pri nc ipa l engineer in the Systems Performance
Group, Tzyh-Jong Wang conducts model ing stud ies to measure system per
formance . He analyzes VAXcluster configurat ions, on- l ine transaction pro
cessing, and other advanced systems. Before join ing Digital in 1 987 , Tzyh
jong was a lecturer at the Univers i ty of Wisconsin at Madison, where he
received h is M .S . and P h . D . degress (1 987) in information systems. He a lso
earned a B .S . I . E . degree (1 978) from the Nationa l Tsi ng-Hua University, Ta i
wan . Tzyh-jong is a member of ACM , IEEE , ORSA, a nd TIMS.

Thomas F. Weyant Tom Weyan t is the manager of the Systems Rel iabi l i ty
Engineering Group i n Computer Systems Manufacturing. As a consulting
engineer, he worked on systems rel iab i l i ty a nd avai labi l i ty model ing, com
puter- i nterconnect re l iab i l i ty , infant-morta.l i ty and long-term failure-rate
model ing, and was the manager of advanced development . Before jo in ing
Digital i n 1 98 5 , Tom worked for ten years at AT&T Bel l Laboratories and
Hughes Aircraft Company. He earned his 13 .S . M . E . degree (1 97'5) from the
University of Ca l i forn ia at Santa Barbara , and his M .S . and Ph . D . degrees
(1 98 1) i n operations research from UCLA.

John A. Ywoskus john Ywoskus is a principal software engineer with the
VAXjVMS Development Group . He is currently project leader of the Local

Area VAXcluster development effort and was lead technical contributor i n
the development of the first release of this product. Before jo in ing the VMS
group in 1 98'5, john worked as a developer on the LAT- 1 1 terminal server
project and as project leader of the LATplus Vl. O applicat ion termina l pro
ject . john came to Digital in 1 98 1 from the Charles Stark Draper Laboratory,
where he worked on CAD system software deve lopment . He earned a B .S .
degree in Appl ied Mathematics from Harvard Col lege in 19 79 .

Nancy P. Kronenberg
Henry M. Levy

William D. Strecker
Richard J. Merewood

The VAXcluster Concept:
An Overview of a Distributed System

A VAXcluster system is a highly available and extensible configuration of
VAX computers that operate as a single system. To achieve high perfor
mance in a multicomputer environment, a new communications architec
ture, communications hardware, and distributed software had to be
jointly designed. The software is the VAXjVMS operating system, using a
distributed lock manager to synchronize access to shared resources. The
communications hardware includes a 70-megabit per second message-ori
ented interconnect, and an interconnect port that performs communica
tions tasks traditionally handled IJy software. The Local Area VAXcluster
system, an implementation of the VAXcluster architecture, uses a standard
Ethernet as its interconnect. This development provides VAXcluster func
tions for the Micro VAX family.

Contemporary mul ticomputer systems typical ly
l ie at the ends of the spectrum delimi ted by
tightly coupled multiprocessors and loosely cou
pled distributed systems. H istorical ly, loosely
coupled systems have been characterized by the
physical separation of processors, low-bandwidth
message-oriented interprocessor communication ,
and independen t operating systems . 1 ·2··H Con
versely, tightly coupled systems have been char
acterized by close physical proxi mity of proces
sors, high-bandwidth communication through
shared memory, and a single copy of t he operat
ing system .'·6·7

An in termediate approach taken at Digital
Equipment Corporation was ro bui ld a "c losely
coupled" structure of standard VAX computers,R
caJ i ed a VAXcluster system . By close ly coupled ,
we imply that a VAXcluster system has character
istics of both loosely and tightly coupled systems .
On one hand, a VAXcl uster system has separate
processors and memories connected by a mes
sage-oriented i nterconnect, running i nstances of
the same copy of the distributed VAXfVMS oper
ating system . On the other hand , the in i t i a l

The original version o f 1his paper appeared in "VAXclus1ers:
A Closely·Coupled Dis1ribU1ed Sys1em," by Nancy P. Kronen
berg, Henry M. Levy, and William D. S1recker, published in
ACM Transactions on Computer .\:ystems, Vol. 4, No. 2,
May 1986 Copyrigh1 1987, Associa1ion for Compming
Machinery, Inc.

Digital Tecbtzical Journal
No. 5 September 1987

implementation of the cluster rel ied on close
physical proximity , a single (physical and logi
cal) security domain, shared physical access to
d isk srorage , and high-speed memory-to-memory
block transfers between nodes .

The goals of the VAXcluster multicomputer sys
tem are high availabil i ty (in suitable configura
tions) and easy extensibi l i ty to a large number of
processors and device controllers. In contrast to
other h ighly available systems,9 10 1 1 · 1 2 a VAXclus
ter system is built from general-purpose, off-t he
shelf processors ranging in size from MicroVAX
workstationsl.\ to high-performance VAX CPUs,
and a general-purpose operating system .

A key concern i n this approach is system
performance . Two important factors in the per
formance of a mult icomputer system are the
software overhead of the communications archi
tecture and the bandwidth of the computer inter
connect . To address these issues, severa l develop
ments were undertaken as part of the original
VAXcJuster design , incl uding

• A simple, low-overhead communications
architecture whose functions are tai lored to
the needs of highly avai lable, extensible sys
tems. This architecture is called the System
Communication Archi tecture (SCA).

• A very high speed message-oriented Computer
I nterconnect , cal led the CI bus

7

lbe V AXcluster Concept: An Overview of a Distributed System

• An intell igent hardware interface to the CI
bus , cal led the CI port, that implements part
of the SCA in hardware

• An intell igent, message-oriented mass storage
controller that uses both the CI bus and the Cl
port interface

This combined software and hardware archi
tecture supports a high-performance communi
cations structure for interconnecting high-perfor
mance VAX systems. For low-end VAX CPUs, the
Local Area VAXcluster system has been developed
to perm it workstations interconnected by means
of the Ethernet to share a common file system,
printers, and batch processing. Workstation users
can derive the benefits of centra lized t imesharing
without sharing a CPU and without system man
agement overhead . A Local Area VAXcluster sys
tem is supported by software that emulates some
of the CI functions, thus making the difference
between CI -based and Ethernet-based VAXclus
ters largely invisible to higher level software .
Local Area VAXcluster systems can be formed
from and coexist with existing Ethernet networks
without the need for special-purpose hardware .

This paper describes the communications hard
ware developed for VAXcluster systems, the hard
ware-software i nterface , the Local Area VAXclus
ter system, and the structure of the d istributed
VAXjVMS operating system. The developments
described in this paper are part of Digita l's VAX
cluster product; there are, as of mid-1987 ,
approximately 6 ,000 VAXcluster and Local Area
VAXcl uster systems in operation .

VAXcluster Hardware Structure

The CI- based VAXcluster System

Figure 1 shows the topology of a typical CI-based
VAXcluster system. The components include the
Cl bus, VAX hosts, Cl ports, and Hierarchical
Storage Controllers (HSC) for mass storage (i . e . ,
d isk and tape) . For high-reliabi l i ty appl ications, a
cluster must contain a min imu m of two VAX pro
cessors and two mass storage controllers w ith
dual-ported devices . The preferred method of
attaching terminals is through a Local Area Trans
port (LAT) server (not shown) , which al lows a
terminal to connect to any host in a VAXcluster
system.

The Cl bus is a dual-path serial intercon
nect with each path supporting a transfer rate of
70-megabits per second . The primary purpose of

8

CI PORT

VAX

Cl PORT

HSC
DISK
SYSTEM

VAX

Cl PORT

Cl PORT

Cl PORT

HSC
DISK
SYSTEM

VAX

STORAGE
CONTROLLERS

Figure 1 VAXcluster Hardware Topology

the dual paths is tO provide redundancy in the
case of path fai lure; when both paths are avail
able, they are usable concurrent ly . Each path is
implemented in two coaxial cables; one for trans
m itted and one for received signals. Baseband sig
nal ing with Manchester encoding is employed .

While the CI bus is logica l ly a bus, it is physi
cally organized as a star topology. A central hub
called the Star Coupler connects al l of the nodes
through radial CI paths of u p to 4 5 meters.
The current coupler is a passive device that sup
ports a maximum of 1 6 nodes; node addresses
are 8 bits, providing an archi tectural l imit of
2 5 6 nodes.

The selection of a star topology was chosen
over a conventional l inear topology for several
reasons. First, the efficiency of a seria l bus is
related to the longest transi t t ime between nodes .
The star permits nodes tO be located within a
4 5 -meter radius (an area of about 6400 square
meters) with a maximum node separation of
90 meter radius (an area of about 6 4 00 square
meters) with a maximum node separation of

Digital Technicaljournal
No. 5 September 1987

90 meters. Typically, a l inear bus threaded
through 1 6 nodes in the same area would greatly
exceed 90 meters. Second, the central coupler
provides simple , electrically and mechanically
safe addition and removal of nodes.

The CI port is responsible for arbitration , path
selection , and data transmission . Arbitration uses
carrier sense multiple access (CSMA) but is dif
ferent from the arbitration used by the Ether
net . 14·15 Each CI port has a node-specific delay
time . When wishing to transmit, a port waits
until the CI bus is quiet and then waits i ts
specific delay time . If the CI bus is sti l l quiet , the
node has won its arbitration and may send i ts
packet. This scheme gives priority to nodes with
short delay times. To ensure fairness, nodes actu
ally have two delay times- one relatively short
and one re latively long . Under heavy loading,
nodes alternate between short and long delays.
Thus the bus is contention driven under l ight
loading and round robin under heavy loading.

Upon winning an arbitration , a port sends a
data packet and waits for receipt of an acknowl
edgment . If the data packet is correctly received ,
the receiving port immediately returns an
acknowledgment packet without re-arbitrating
the CI bus. This action is possible because the Cl
port can generate an acknowledgment in less
time than the smal lest node-specific delay.
Retries are performed if the sending CI port does
not receive an acknowledgment .

To distribute transmissions across both paths of
the dual-path CI bus, the CI port maintains a path
status table indicating which paths to each node
are currently good or bad . Assu ming that both
paths are marked good, the CI port chooses one
randomly. This provides statistical load sharing
and early detection of failures . Should repeated
retries fa il on a path, it is marked bad in the status
table and the other path is tried.

The Ethernet-based VA.Xcluster System

Figure 2 shows an example of a Local Area VAX
cluster system. The CI bus of Figure 1 has been
replaced by an Ethernet, and the VAX hosts
(referred to as sate l l ite nodes) are MicroVAX
computers and workstations. Satel l i te nodes may
be diskless, in which case one or more VAX
hosts act as storage servers , serving a function
analogous to the HSC controllers in CI-based con
figurations. One or more storage servers, cal led
boot nodes, are responsible for load ing sate l l i te
nodes with the VMS operating system and for stor-

Digital Technical journal
No. 5 September 1987

ing crash dumps from those nodes. Satell ite
nodes may use remote disks for process swapping
and virtual memory backing storage .

The important difference between the Cl
based and the Local Area VAXcluster systems is
t hat the communication functions performed by
the CI hardware are emu lated in the latter by soft
ware within the VMS operating system. The Eth
ernet is an industry-standard, 1 0-megabit per sec
ond baseband local area network' 5 that uses the
carrier sense multiple access with coll ision
detection (CSMA/CD) technique for arbitration .
Unlike the CI bus, an Ethernet may be used to
carry multiple protOcols simultaneously. (Note
that this allows a cluster to share the Ethernet
with other protocols , such as the lAT and DECnet
protocols .)

A new Ethernet protOcol , which is an extension
of SCA, was designed for Local Area VAXcluster
system . Using this protocol , a VMS software com
ponent emulates the Cl port interface, which is
to say that the higher level software interface is
identical to that of the Cl bus, but the Ethernet is
used to carry data . This approach e l iminated the
need for any special hardware and a l lowed the
software modifications needed to be mostly l im
ited to a single VMS component .

Exactly the same approach was used for load
ing the VMS system into satel lite nodes. Here , a
special port emulator was developed to operate
in the booting and system-init ial ization environ
ment . This boot driver forms part of a vestigial
VMS environment whose function is to read ,
initialize, and start the VMS system image from
the remote disk. These modules are themselves
loaded by means of the Digital Network Architec
ture maintenance operations protocol (MOP) .16

The CI Port Architecture

Each VAXcluster host and mass storage controller
connects either to the CI bus through a CI port or
to the Ethernet by means of a standard Ethernet
adapter. CI ports have been implemented for the
HSC50 and HSC70 mass storage controllers, and
the VAX- 1 1 /750, 1 1 /780, 1 1 /782 , 1 1 /785 , and
VAX 8000 series hosts . Ethernet adapters have
been implemented for al l VAX processors . VAX
CI pons implement a common architecture,
whose goals are to

• Off load much of the communications over
head typically performed by nodes in dis
tributed systems

9

VAXcluster
Systems

The VAXcluster Concept: A n Overview of a Distributed System

• Provide a standard, message-oriented sofnvare
i nterface for both interprocessor communica
tion and device control

The design of the CI port is based on the needs
of the VMS System Communications Architecture.
SCA is a software layer t hat provides efficient
communications services to low- level distributed
applications (e.g . , device drivers , file services,
and network managers) . SCA supports three com
mu nications services: datagrams, messages, and
block data transfers . In a Local Area VA.,'(cluster
system, the SCA functions performed by the CI
port are performed by software in the port emula
tor modul e .

SCA datagrams and messages are information
un i ts of less than 4,000 bytes sent over a connec-

VAX VAX CPU CPU VAX CPU
PORT PORT PORT

tion . They differ only i n reliabi l i ty . The delivery
of datagrams is not guaranreed; they can be lost,
dupl icated, or delivered out of order. The deliv
ery of messages is guaranteed, as is their order of
arrival . Datagrams are used for status and infor
mation messages whose loss is not critical , and by
appl ications Jike the DECnet software that have
their own high-level rel iabil i ty protOcols . Mes
sages are used , for example, to carry disk read
and write requests.

To s implify buffer a l location, hosts must
agree on the maximum size of messages and data
grams that they wi l l transmit. VA.Xcluster hosts
use standard sizes of 5 76 bytes for data grams and
112 bytes for messages.

To ensure t he del ivery of messages without
duplication or loss , each CI port maintains a vir-

EMULATOR EMULATOR EMULATOR

10

ETHERNET ETHERNET ETHERNET PORT PORT PORT

--------�--------------�------------�---------------r------------- ETHERNET

ETHERNET PORT
PORT EMULATOR

VAX CPU

Figure 2 Local Area VAX cluster Topologv

Digital Technical journal
No. 5 September I ')87

tual circuit with every other remote CI port. A
virtual circui t descriptor table in each port indi
cates the status of its port-to-port virtual circuits.
Included in each virtual circuit descriptor are
sending and receiving sequence numbers. Each
transmitted message carries a sequence number
enabl ing duplicate packets to be discarded .

Block data is any contiguous data in a process'
virtual address space . There is no size l imit
except that i mposed by the physical memory
constraints of the host. The CI port hardware is
capable of copying block data directly from the
process virtual memory on one node to the pro
cess virtual memory on another node. For the Eth
ernet, this function is performed in software by
the port emulator.

The delivery of block data is guaranteed . The
sending and receiving ports and the port emula
tors cooperate in breaking up the transfer into
data packets and ensuring that all packets are cor
rectly transmitted, received, and placed in the
appropriate destination buffer. Virtual circuit
sequence numbers are used on the individual
packets, as with messages. Thus the major differ
ences between block data and messages are the
size of the transfer, and the fact that block data
need not be copied by the host operating system .

Block data transfers are used, for example , by
disk subsystems and disk servers to move data
associated with disk read and write requests .

CI Port Interface

The VAX CI port i nterface is shown in Figure 3 .
The interface consists of a set of seven queues:
four command queues, a response queue, a data
gram free queue, and a message free queue . The
queues and queue headers are located in host
memory. When the port is initialized , the host
software loads a port register with the address of
a descriptor for the queue headers.

Host software and the port communicate
through queued command and response packets.
To issue a port command , the port driver software
queues a command packet to one of the four com
mand queues. These four queues accommodate
four priority levels; servicing is FIFO within each
queue. An opcode within the packet specifies the
command to be executed . The response queue is
used by the port to enqueue incoming messages
and datagrams, while the free queues are a
source of empty packets for incoming messages
and a sink for transmitted message packets.

For example, to send a datagram, software
queues a SEND DATAGRAM packet onto one of

COMMAND QUEUE 0

VAX

PORT

SOFTWARE

I I l

COMMAN D QU EUE 3

I I I
R ESPONSE QU EUE

I I I

I DATAGRAM FREE QUEUE

I I I t

I MESSAGE FREE QUEUE

I I I t

BU FFER
DESCRIPTOR
TABLE

VAX MEMORY

Figure 3 The CJ Port Interface

Cl
PORT

Digital Technical journal l l
No. 5 September 1987

VAXcluster
Systems

The VAXcluster Concept: An Overview of a Distributed System

FORWA R D L I N K

BACKWA R D L I N K

OPCODE I PORT I STATU S

DATAGRAM LENGTH

DATAGRAM TEXT

Figure 4 CI Port Command jacket

the command queues. The packet contains an
opcode field specifying SEND DATAGRAM , a port
field with the destination port number, the data
gram size , and the text of the datagram. The
packet is doubly l inked through its first two
fields. This structure is shown in Figure 4 .

If the host software needs confirmation when
the packet is sent , it sets a response queue bit in
the flags fie ld . This bit causes the port to place
the packet in the response queue and interrupts
the host after the packet has been transmitted.
The response packet is identical to the SEND
DATAGRAM packet, except that the status field
indicates whether or not the send was successful .
Had the response queue flag bit been clear in the
SEND DATAGRAM command (as it typically is),
the port would instead place the transmitted
command packer on the datagram free queue
without causing a host interrupt.

Upon receiving a datagram , a CI port takes a

packet from its datagram free queue . Should the
queue be empty, the datagram is discarded . Oth
erwise, the port constructs a DATAGRAM
RECEIVED packet that contains the datagram and
the port number of the sending port. This packet
is then queued on the response queue .

Messages operate in a similar fashion, except
that they have a different opcode, and the mes
sage buffers are dequeued from the message free
queue . If the message free queue is empty when
a message arrives, the port generates an error
interrupt to the host . The high-level SCA flow

12

control ensures that the message free queue does
not become empty.

Block transfer operations are somewhat more
complicated . Each port has a data structure
calle<J a buffer descriptor table. Before perform
ing a block transfer , host software creates a buffer
descriptor that defines the virtual memory buffer
to be used . The descriptor contains a pointer to
the first VAX page table entry mapping the virtu
ally contiguous buffer. In addi tion, the descrip
tor contains the offset (within the first page) of
the first byte of the buffer, the length of the
buffer, and a 16-bit key. The data structures for a
block transfer are illustrated in Figure 5 .

Each buffer has a 32-bit name, consisting of
a 16-bit buffer descriptor table index and the
16-bit buffer key. The key is used tO prevent dan
gling references and is modified whenever a
descriptor is re leased. To transfer block data , the
initiating software must have the buffer names of
the source and destination buffers. The buffer
names are exchanged through a high level mes
sage protocol . A host can cause data to be moved
either ro another node (SEND DATA) or from
another node (REQUEST DATA) . A SEND DATA or
REQUEST DATA command packet contains the
names of both buffers and the length of the trans
fer. In either case (send or request) , a single
command packet causes the source and destina
tion ports to perform the block transfer. When
the last packet has been successful ly received,
the initiating port places a response packet on its
response queue, indicating that the transfer is
complete .

The goal of reducing VAX host interrupts is met
through several strategies and mechanisms. First,
the block transfer mechanism minimizes the
number of interrupts necessary to transfer large
amounts of data . Second, at the sending port,
DATAGRAJVI SENT/MESSAGE SENT confirmation
packets are typica l ly generated only when a fail
ure occurs . Third, a receiving port interrupts the
VAX host only when the port queues a received
packet on an empty response queue . Thus when
software dequeues a packet in response to an
interrupt, it always checks for more packets
before dismissing t he interrupt .

Port Emulation for the Ethernet
Figure 6 shows the relationship of the port emu
lator to the VMS operating system functions that
usc that emulator. For comparison, the CI port
interface is a lso shown in this diagram . The port
emulator implements the same functions as the

Digital Technical journal
No. 5 September J'J87

Cl B U S

1\
Cl PORT

COMM'"" I
QUEUE \ '"""' I � I I I DESC R I PTOR PAGE

�
TAB LE TABLE

QU EUE LINKS

FLAGS I OPCODE

I
DESCRIPTOR

PORT NO. I STATUS

TRANS. SIZE

SOU RCE BUFFER NAME

DEST. BUFFER NAME

BLOCK TRANSFER
PORT COMMAND

HOST MEMORY

Figure 5 CI Port Block Data Memory Mapping

VMS
SYSTEM COM M U N ICATION SERVICES

ROUT I N E S

C l B U S

COM MAND
INTERFACE

TRANSPORT
PROTOCOL

DATALINK
CONTROL

ETHERNET

Figure 6 CI Port Emulation Using Ethernet

PAGES

Digital Technical journal 1 :�
No. 5 September 1 98 7

VAXcluster
Systems

The VAXcluster Concept: An Overview of a Distributed .�)'stem

emulator implcmt:nts the same functions as the
CI port and its associated driver . The emulator
also operates the SCA protocol across the Ether
net and manages i ts interface with the Ethernet
datal ink driver . Thus the emulatOr is responsible
for

• The provision of a compatible command int er
face tO the system communication services
(SCS) module

• The operation of a transport protOcol that imi
tates C I behavior

• Node authentication and topology control
functions

• Propagation of Ethernet datagrams and data
link control

The port emu latOr must deal with an underly
ing datal ink layer whose characteristics are some
what different than those of the CI bus. The Eth
ernet data l ink can transmit datagrams between
64 and I , 5 36 bytes in length in ei ther a point-to
point, mul ticast, or broadcast fashion . The Ether
net provides neither automatic acknowledgment
nor flow control , and Ethernet adapters do not
handle ei ther buffer segmentation or d i fferent
message types. The CI functions of datagram
transmission , sequenced messages, and block
transfers must be implemented by the emulator
and translated into requests that can be p ro
cessed by the standard VMS Ethernet device
drivers .

Port emu lation can be viewed conceptual ly as
three separate layers . The highest layer provides a
command interface for the higher level SCS rou
tines . That interface is compatible with that used
for CI ports . This layer is a l so responsible for tht:
fragmentation and re-assembly of block transfer
buffers that are larger than the maximum Ether
net message size .

The transport layer provides a sequenced nlCs
sage and datagram service ro the corresponding
layer in the remote node. I ts hand l ing of data
grams amounts to l i tr le more than a pass-through
function ; the hand! ing of sequenced messages
and block transfers, however, is more complex.
ln the latter case, the transport layer must t:nsure
that messages are transmi tted and received in the
correct order, ensure that acknowledgments arc
sent and received , and retransmit messages that
have been lost. The transport layer operato a
simpk pipel ine flow control scheme that a l l ows
a fixed window of unacknowledged messages.
Acknowledgments can be " piggybacked" on
rt:turning messages.

1 4

Last. the datal ink control layer is responsible
for passi ng messages between the Ethernet device
clrivns and the transport layer and control of the
Ethernet data l ink service . The datal ink control
layer also maintains a record of t he cluster's
topol ogy by exchanging mu l ticast messages with
other cl uster members .

Below the port emulator module is tht: stan
dard VMS Ethernet device driver, which can also
be ust:cl s imultaneously by other applications l i ke
the DECnet , LAT. and ISO transport protocols .
These protocol<> are mu lt iplexed and demu lt i
plcxed by the Ethernet device driver using the
Ethernet standard p rotocol type .

The C l port emulation function for the Local
Area VAXcluster system has a h igher system
ovnhcad than the equivalent CI connection
si nct: the operations involved are performed by
tht: host VAX processor. S ince the Ethernet has
lower bandwidth and longer response ti mes .
however, the demand for host system resources
is moderated . The Local Area VAXcluster per
formance is acceptable for typical customer
work loads in which most nodes are single-user
workstations. The CPU t ime overheads are most
noticeable on nodes that serve disks to multiple
users; those nodes are typical ly dedicated
proct:ssors .

Mass Storage Control
·rhe move from control- and status register
activatt:cl storage devices to message-oriented
storage devices offers several advantages:

• Sharing is s implified si nce severa l hosts can
queue messages to a s ingle control ler . In add i
tion , device control messages can be transmit
ted to and executed by hosts with local disks.

• Extension to new devices is easier. In contrast
to conwntional systems where there is a differ
ent drivn for every type of d isk and disk
interface, a single d isk class driver si mply
bui l ds mt:ssage packets and transmits them
using a communications interface . The disk
class driver is independent of drive specifics
(e .g , cy l inders and sectors) . New d isk and
tape devices ancl control lers can be added with
I i ttk or no modification to the host software .

• Performance is improved . The controller can
mainta in a queue of requests from mu lt iple
hosts and can opt imize disk performance in
rt:a l time. The control ler can also hand le error
rt:covt:ry and bad-block replacement.

Digital Technicaljournal
No. 5 September 1 ')8 7

The HSC fami ly, shown in Figu re 1 , is a CI
based control ler for both d isks and tapes . A s ingle
HSC70 control ler can hand le up to 32 d isk
drives . Mult iple HSC contro l lers with dual
ported d isks provide redundancy in case of fa i l
ures. Further redundancy can be provided by
grouping disk volumes rogether in shadow sets to
form a single virtual vol u me in which a l l mem
bers conta in exactly the same data . If one mem
ber of the shadow set fa i ls , the virtual disk vol
ume continues tO be avai lable .

The protocol interpreted by the HSC controller
is ca l led t he Mass Storage Control Protocol
(MSCP) , which provides accl:ss to mass storagl"
voluml:s at the logical b lock kvd . The MSCP

VAX 1

PROCESS

FILE RECORD
MGMT. MGMT.

model sl:paratl"S the tlow of control and status
informat ion from the tlow of data . This d istinc
t ion has been used in other systems to achieve
efficient fi le access 1 7 and corresponds to the CI
port's message and block data mechanisms ; mes
sages arc used for device control commands
whi le block transfers are used for data .

The same control protocol is used tO provide
clusterwide access tO CI-based control lers l i ke
the HSC devices, and tO d isks connected directly
to a VAX processor (See Figure 7) . In a Loca l Area
V�'Cclustcr system , a l l mass storage is connected
d irectly to the boot node and to zero or more
other storage server nodes. Messages arc routed
from the d isk class driver in the requesting node

VAX 2

PROCESS

FILE RECORD
MGMT. MGMT.

D ISK
CLASS
DR IVER

LOCK
MANAGER

DISK
CLASS
DRIVER

LOCK
MANAGER

MSCP
DISK
SERVER

DISK
PORT
DRIVER

SCA SOFTWARE SCA SOFTWA R E

LOCAL
DISKS

Cl BUS ----------�--------------�--------------�---------------------------- OR
ETH ERNET

HSC
(CI BUS ONLY) SCA SOFTWARE

DISKS

Figure 7 VAXcluster Software Structure

Digital Technical journal 1 ')
No. 5 September 1 987

VAXcluster
Systems

The VAXcluster Concept: A n Overview of a Distributed System

to an MSCP server on the node with the local
disk. This server then parses the MSCP message ,
issues requests to its disk, and ini tiates the block
transfer through i ts SCA interface . Thus in either
a CI-based or a Local Area VAXcluster system , all
locally attached disks can be made transparently
avai lable to all other VAX hosts in the cluster.

VAXcluster Software

From a user's point of view, a VAXcluster system
is a set of nodes cooperating through the VAX/
VMS distributed operating system software to
provide sharing of resources among users on all
nodes . Shared resources include certain devices,
fi les, records within files, and system batch and
print queues. Typical ly, user account and pass
word information resides i n a single file shared
by all cluster nodes. A user obtains the same
environment (files, default directory, privileges,
etc .) regardless of the node to which he or she is
logged into . In many respects, the VAXcluster
system "feels" l ike a single system to the user.

This sense of a single system results from the
fact that the VAXcluster system is symmetrical
with respect to the participating VAX processors .
In other words, there is no special ization of func
tion designed into the sofrware (although an
installation may choose to configure certain
CPUs differently according tO the special needs
of that insta l lation) . The VMS and VAXcluster fi le
system architecture is based on the concept of
clusterwide and uniform logical block access to
the mass storage managed by a distributed file
system . This concept contrasts with fil e server
based distributed systems.

Figure 7 shows an example of a smal l VAXclus
ter system and some of its major sofrware compo
nents. Note that the operation of the VMS soft
ware in the VAXcluster environment is exactly
the same for both Local Area and CI-based VAX
cluster systems. The diagram shows an underly
ing interconnect that may be either the cr bus or
the Ethernet, both of which use the port interface
methods described above . HSC disk control lers
connect only to the Cl bus.

At the highest leve l , multiple user processes on
each node execute in separate address spaces .
File and record management services are imple
mented as procedure-based code within each
process . The fil e and record services rely on
lower level primitives, such as the lock man
ager 18 and disk class driver. The lock manager is
the foundation of al l resource sharing in both

1 6

clustered and single-node VMS systems. I t pro
vides services for naming, locking, and unlocking
clusterwide resources. The disk class driver,
mentioned earlier, uses the MSCP to communi
cate with disk servers . The disk class driver runs
in both clustered and nonclustered environments
and contains no knowledge of the VAXcluster
configuration . SCA software below the driver is
responsible for routing driver messages to the
correct device control ler.

A distributed connection manager is responsi
ble for coordinating the c luster. Connection
managers on all cluster nodes collectively decide
upon cluster membership, which varies as nodes
leave and join the cluster. Connection managers
recognize recoverable fai lures in remote nodes;
they a lso provide data transfer services that han
dle such fai lures transparent to higher software
levels.

Form ing a Cluster

A VAXcluster system is formed when a suffi
cient set of VAX nodes and mass stOrage resources
becomes available . New nodes may boot and join
the c luster, and members may fai l or shut down
and leave the cluster. When a node leaves or
joins, the process of reforming the cluster is
cal led a cluster transition . Cluster transitions are
managed by the connection managers .

In an operating cluster, each connection man
ager has a l ist of all member nodes. The l ist must
be agreed upon by all members. A single node
can be a member of only one VAXcluster system ;
in particular, the same resource (such as a d isk
controller) cannot be shared by two clusters or
the integrity of the resources could not be guar
anteed . Therefore , connection managers must
prevent the partitioning of a cluster into two or
more clusters attempting co share the same
resources .

To prevent partitioning, the VMS system uses a
quorum voting scheme . Each cl uster node con
tributes a number of votes, and the connection
managers dynamically compute the total votes of
al l members. The connection managers also
maintain a quorum value . As transitions occur,
the cluster continues to run as 1long as the total
number of votes present equals or exceeds the
quorum . Should the total number of votes fal l
below the quorum , the connection managers wi l l
suspend VAXcluscer activity. When a node joins
and brings the total votes up to the quorum , clus
ter activity will resume .

Digital Technicaljournal
No. 5 September 1987

A c luster member may have a recoverable error
in i ts communications. Such an error leaves the
node's memory i ntact and al lows the operating
system to continue running after the error cond i
t ion has disappeared . These errors can cause ter
mination of a virtual c ircui t and a corresponding
loss in communication . When cluster members
detect the loss of com mun ication with a node,
they wait for a short period (specified by the sys
tem manager) for the fa i l i ng member to re-estab
l ish contact. If the fai l i ng member recovers
within this period , it rejoins the cluster. Users
may experience a brief interruption of service
when this happens. If the fai l ing member docs
not recover in t ime , the surviving members
remove the fa i led node from the cluster and con
tinue operat ing (assuming sufficient votes arc
present) . A node that recovers after it has been
removed from the cluster is told to re-boot by the
connection managers.

Shared Files

The VAXcluster system provides a clusterwide
shared fi le system to i ts users . 1 9 Cluster accessi
ble fi les can exist on CI-based disk control lers or
on disks local to any of the cluster nodes. Each
cl uster disk has a unique and location- indepen
dent name . A complete cluster fi le name includes
the disk device name , the d irectory name, and the
fi le name. Using the device name for a fi le , the
cluster software can locate the node (either a
CPU or a d isk controller) on which the fi le
resides .

Cluster fi le activity requ i res synchronization ;
exc lusive-write fi le opens, coord i nation of fde
system data structures, and management of fi le
system caches arc a few examples. However,
despite the fact that fi les can be shared cluster
wide, the fi le management services are largely
unaware of whether they are executing in a clus
tered environment . These fi le managers synchro
nize through the VMS lock manager, described
later. The lock manager hand les the locking and
unlocking of resources across the cluster. At the
l eve! of the fi le manager, then, cluster fi le
sharing i·s s imi Jar to s ingle-node file sharing.
lower levels hand le the clustcrwidc synchroniza
tion and rout ing of physical- level disk requests to
the correct device .

Distributed Lock Manager

As previously described , the VMS lock manager is
the basis for clusterwide synchronizat ion . Severa l

Digital Technical journal
No. 5 September I 987

goa ls influenced the design of the lock manager
for a distributed environment . First , programs
using the lock manager must run in both single
node and cluster configurations . Second , lock
services must be efficient to support system- level
software that makes frequent short-duration
accesses. Therefore , i n a VAXcluster system , the
lock manager must min imize the number of SCA
messages needed to manage locks . In a single
node configuration , the ,Jock manager must rec
ognize the simpler environment and bypass any
c l uster-specific overhead. Finally, the lock man
ager must recover from fai lu res of nodes holding
l ocks so that surviving nodes can continue to
access shared data i n a consistent manner.

The VMS lock manager services al low cooper
ating processes to define shared resources and
synchron ize access to those resources. A resource
can be any object an appl ication cares to define.
Each resource has a user-defined name by which
it is referenced . The lock manager provides basic
synchronization services to request and release
locks. Each lock request specifics a locking
mode, such as exclusive access, protected read,
concurrent read, and concurrent write . If a pro
cess requests a lock that is incompatible with
existing locks , the request is queued unt i l the
resource becomes avai lable. In many appl ica
tions, resources may be subdivided into a
resource tree, as i l lustrated in Figure 8 .

FILE 1

DISK VOL U M E

F I L E 2 FILE 3

�
RECORD 1 RECORD 2

Figure 8 VAXcluster Locking Structure

In this example, the resource Disk Volume
conta ins resources Fi le I through Fi le 3 ; resource
Fi le 3 contains resources Record 1 , Record 2 , and
so on . The first locking request for a resource can
specify the parent of that resource, thereby defin
ing its re lationship in a tree. A process making
several global changes can hold a h igh-level l ock
(e.g . , the root) a nd can make them all very effi
cient ly . A process making a smal l , low-level
change (c . g . , a leaf) can do so whi lc stiH per
mitt ing concurrent access to other parts of the
tree. 20

1 7

VAXcluster
Systems

The VAXcluster Concept: An Overview of a Distributed System

The lock manager's implementation is in
tended to d istribute the overhead of lock man
agement throughout the c luster while s t i l l min i
mizing the internode traffic needed to perform
l ock services. The database is therefore d ivided
into two parts: the resource lock descriptions,
and the resource lock d irectory system, both of
which arc d istributed . Each resource has a master
node responsible for granting locks on the
resource ; the master mainta ins a l ist of granted
locks and a queue of wait ing requests for that
resource . The master for a l l operations for a s in
gle tree is the node on which the l ock request for
the root was made . While the master mainta ins
the l ock data for i ts resource tree , any node hold
i ng a lock on a resource mastered by another
node keeps i ts own copy of the resource and lock
descri ptions .

The second part of the database , the resource
d irectory system , maps a resource name i nto the
name of the master node for that resource . The
d irectory database is d istributed among nodes
wil l ing to share this overhead . Given a resource
name, a node can trivia ll y compute the responsi
ble directory as a function of the name string and
the number of d irectory nodes.

To l ock a resource in a YA.Xcluster system , the
lock manager sends a lock req uest message
through the SCA to the d i rectory for t he resource .
The directory responds in one of three ways:

1 . If l ocated on the master node for the

tfl l , �ource , the d irectory performs the lock
��J,y 6request and sends a confirmation response to

the requesting system .

2 . I f the directory i s not o n the master node hut
finds the resource defined , i t returns a
response containing the identity of the mas
ter node .

3 . I f the d i rectOry finds the resource to be
undefi ned , it returns a response tel l ing the
requesting node to master the resource
i tsel f.

In the best cases (l and 5) , two messages arc
required to request a lock ; case 2 takes four mes
sages. An un lock is executed with one message . lf
the lock request is for a subrcsource in a resource
tree , the requesting process wi l l e i ther be
located on the master node (i . e . , the request is
local) or wi l l know who the master for i ts parent
is, a l lowing i t to bypass the d irectory looku p . In
a l I cases the number of messages required is

1 8

independent of the number of nodes in the VAX
cluster system .

I n addi tion t o standard .locking services, the
lock manager supports data caching in a dis
tri buted environment . Depend ing on the fre
quency of modifications, caching of shared data
in a distributed system can substant ia l ly reduce
the I/0 and commun ications workload .

A I 6-byte block of information , cal led a va lue
block, can be associated with a resource when
the resource is defined to the lock manager. The
value in the va lue block can he modified by a
process releasing a lock on the resource and can
be read by a process when it acqu i res ownership .
Thus this information can be passed a long with
the resource ownership .

In the case of a fil e buffer , for example , a ver
sion nu mber is mainta ined i n the va lue block.
When caching a buffer, a process saves the cur
rent version number. To modify the buffer , the
process obtains an exclusive l ock and receives
the current version number. If the current ver
sion number equals the version number of the
cached data , the cache is va l id . Several u pdates
can then be made on the cached data before i t is
written back tO disk . When the modified data is
written , the process increments the version num
ber and re leases i ts lock .

Another mechanism used in buffer caching is a
software i nterrupt mechanism . When requesting
an exc lusive lock , a process can specify that it
shou ld be notified if another lock request on the
resource is forced ro block . A process can then
hold a modified copy of the data without writing
it back . When another process wants access , the
owner wri tes the modified data and releases i rs
l ock.

In the case of cl uster transi t ions (e .g . , fai l u re
of a node) , the connection manager notifies the
lock manager that a t ransit ion has started . Each
lock manager performs recovery action , and a l l
lock managers must complete this activity before
cl uster operation can cont inue .

As the first step i n hand l i ng transit ions, a lock
manager dcall ocates a l l locks acquired on beha lf
of other systems. Only local l ock and resource
information is retai ned . Temporari ly, t here are no
re-source masters or d i rectory nodes . In the sec
ond step, each lock manager re-acquires each
lock it had when the cluster transit ion began .
This step establishes new di rectory nodes based
on a new set of e lig ible c luster members and rear
ranges the assignment of master nodes. If a node

Digital Technicaljom-nal
No. 5 September 1987

has left the cluster, the net result is to re lease
locks held by that node. If no node has left the
cluster but nodes have joined , this recovery is not
necessary from an integrity point of v iew. It is
performed , however , to keep the d i rectory and
lock mastering overhead evenly distributed .

Some resources, depending on how they are
modi fied. might be left i n an inconsistent state by
a c luster transition. To ensure the proper han
d l i ng of such resou rces, users can defi ne a class
of l ocks that are nor released on a c luster transi
tion . In this case a special process can search for
such locks and perform needed consistency
checks before releasi ng them .

Batch and Print Services

In a VA.Xcluster system, users may either submit a
batch job to a qu eue on a particu lar node (not
necessari ly their own node) , or submit a job to a
c lusterwide batch queue . Jobs on the c lusterwide
queue arc routed to queues attached to specific
nodes for execution . The algorithm for assigning
jobs to specific nodes is a simple one based on
the ratio of executing jobs compared to the job
l imit of the queue .

The management of batch jobs i s the responsi
bil ity of a VMS process cal led the job control ler .
Each VMS node runs a job controller process,
which acqu ires work from one or more batch
queues. Batch queues are stored in a d isk fi le that
may be shared by a l l nodes . The synchron i zation
of queue man i pulation is handled with lock man
ager serv ices.

Pri nt queues are s imi lar tO batch queues. Users
may queue a request for a specific printer (not
necessari ly physically attached to their own
node) or may let the operating system choose an
avai lable printer from those i n the cluster .

Both batch and print jobs can be declared
restartable . If a node fa i ls , restartable jobs are
either requeued to complete on another node in
the c luster or executed w hen the fa i led node
reboots (for jobs that must execute on a speci fic
node) .

DECnet Communications

Each member of a VA.Xcluster system can a lso
participate i n a DECoct network as an individual
node. Simu ltaneously, the cl uster as a whole may
participate in the network as a s ingle node. The
cl uster's system manager may select an additiona l
DECnet node name and address, known as the

Digital Technical journal
No. 5 September J 987

c luster's alias, ro be assigned to the cl uster. DEC
net connections originating from a c luster mem
ber can be made to appear as if they came from
the a l ias node, regardl ess of the true originator .
Connections add ressed to the al ias wi l l be
d irected to any cluster member that has declared
itsel f wi l l i ng ro receive them. This concept i s
particu larly usefu l for send ing and receiv ing net
work mai I . Al l mai l sent from the cluster wi l l
appear to have come from a si ogle node . AJ I
repl ies wi l l be del ivered to the cluster 's mail fi les
even when the node from which the first message
was sent is u navai lable (provided that the disk
rema ins ava i lable) .

The VA.Xcl uster DECnet a l ias address requ i res
the presence of at least one routing node i n the
cluster . DECnet routing nodes mai nta i n rabies
describi ng the topology of the network and com
mun icate this information to other nodes . The
existence of the cluster's a l ias address is thus
propagated in control messages tO other nodes i n
the network. Although the a l ias node does not
actual ly exist, a path to it v ia the cluster's router
is apparent. The router mai ntains a table of con
nections ro the a l i as node by means of the dis
tributed lock manager. When a connect request
for the a l i as arrives at the router, it passes the
request tO another node in the cl uster, distribut
ing the connections in a round -robin fash ion .
Connect requests originating from the cl uster
members arc simply set up as if they came from
the a l ias.

Terminal Support

The optimum method for connecting users' ter
m i nals to a VA.Xc luster system is through the LAT
server . Termi nals are connt:cted to the LAT server,
which is attached to the VAX systems by the Eth
ernet. In a Loca l Area VA.Xcl ustcr system , this
connection can be the same Ethernet used to
i nterconnect the members of the c luster . Users
command tht: LAT server to connect them e ither
to a specific node or ro any node i n the cluster.
The case of sw itching nodes leads users to find
and usc the least busy node . The server a lso
a l lows usns to quickly move from a fai led nodt:
tO one that is sti l l ru nning. If the LAT server is
d i rected to select a node , i t attempts tO fi nd the
least busy one . Its choice is based on node CPU
type (a mt:asurc of proct:ssi ng power) and recent
id le time .

1 9

VAXcluster
Systems

The VAXcluster Concept: An Overview of a Distributed Syst(!m

Performance

Performance measurements using a CI -baseu
VAXclusrer system of two VAX- 1 1 /780 systems
have shown i t is possible to ach ieve 3 ,000 mes
sage rou nd-trips per second 2 1 A round-tri p i s
defined a s the transmission of a message and the
receipt of i ts acknowledgment from the remote
system . This performance provides a basis for
efficient execution of h igher l evel d istributed
services, such as the VMS distributed lock man
ager and the MSCP logica l block service used
for access to mass storage . The performance
characterist ics of CI -based VAXcl uster systems
vary almost l inearly in relation to the nu mber
of CI nodes in the system . From this it can he
concluded that the u nderlyi ng communications
archi tecture upon which the VAXcluster system
is based sca les wel l wi th an i ncreasing nwn
ber of nodes . Measurements with up to twelve
VAX- l l j780 nodes showed nearly l i near perfor
mance in c luster round trips per second .

The performance characterist ics of a Loca l Area
VAXcluster system are somewhat d i fferent for the
fol lowing reasons:

• The i nterconnect speed is l i m i ted to I 0 mega
bi ts per second , as opposed to 70 megabits per
second for the CI bus.

• The delay (i . e . , latency) for message round
tr ips in the Ethernet network is somewhat
greater.

Because VMS VAXc luster systems attac hed to
the Ethernet are opt im ized as single-user work
stations, the l i mi ts of throughput and latency do
not present a problem . Workload stud ies have
shown that the l i m i ting factor in Local Area VAX
cluster performance i s the rate at which the boot
node can service the sate l l i tes ' mass storage 1/0
requests . These studies fu rther indicate that th is
l imi t in turn depends upon the CPU speed of the
boot node wh i le executing both the C I porr emu
l ation code and the MSCP server code. For a fast
VAX system (e .g . , a VAX 8700 CPU) , the next
l i m i t is imposed by the through put of the Ether
net adapter used by the boot node . The fi nal
l im i t to be encountered is the saturation of the
Ethernet network i tself. This l i m i t is reached at
approxi mately 1 00 typical VMS 1/0 requests per
second and is largely independent of the n u m ber
of sate l l i te and boot nodes accommodated by the
network. Note that the factors l i mit ing the n u m
ber and size o f Loca l Area VAXcl uster systems that

20

can be sustained by a s ingle Ethernet segment is
heavi ly dependent upon the nature of the app l i
cat ions being ru n .

Summary

A principal goa l of VAXcluster systems was the
deve lopment of an ava i lab le and extensi ble mu l
ticomputer system bui It from standard processors
and a genera l -purpose operat ing system . Much
was ga ined by the jo in t design of distribured sofl
warc , com mu nications protocols, and hardware
a imed to meet this goa l . For example :

• The C l in terconnect su pports the fast message
transfer needed by the system software.

• The CI port implements many of the functions
needed by the SCA software .

• The HSC conrroJiers, with the i r message-pro
tocol and request-queuing opti mization logic ,
support a l a rge pool of d isks for mult iple
hosts .

Designing hardware and software together
a l lows for system- level trade-offs ; the software
in terface and protocols can be tuned to the hard
ware devices.

An important s impl i fying aspect of the VAX
cl uster design is the usc of a d istr ibuted lock
manager for resource sync hron ization . I n this
way, h igher level services such as the fi le system
do nor requ i re specia l code to hand le sharing in
a d istributed environment . However, the perfor
mance of the lock manager becomes a crucial fac
tor. The performance of the distributed lock
manager has been attacked with the design of
a locking prorocol requiring a fixed number of
messages, independent of the nu mber of cooper
at ing nodes.

The system design of the orig inal VAXc luster
i mplementat ion a lso a l lowed i ts straightforward
m igration to the Ethernet wi thout the need for
extensive hardware and software modification .
The Loca l Area VAXcJuster prod uct a l lows work
station users ro e njoy the benefits of a large, cen
tra l ly managed timeshar ing system on the i r indi
vidual office system withour having to dea l with
the various system management tasks.

Fi nally , we bel ieve that performance measure
ments show the extent to which t he VAXcluster
system has succeeded in imp lement ing an effi
cient com mun ications archi tecture that is appl i
cable to both a high-speed ded icated LAN (the
CJ bus) and a general -purpose shared LAN (the

Digital Technical jounwl
No. 5 Septem ber J 'J87

Ethernet) . This feat is particu lar ly impressive
when consideri ng that the VMS software is a
large , general -purpose operati ng syste m.

Acknowledgments
VAXcluster systems are the result of work done by
many ind ividuals i n severa l engineeri ng groups at
D igita l Equipment Corporat ion . We would partic
u larly l i ke to acknowledge the contributions of
Richard I . Hustvedt to the VAXcluster design .

References

1 . G . Almes et a l . , "The EDEN System : A Tech
nica l Review ," IEEE Transactio ns on Soft

ware Engin eering SE- I f (January 1 9 8'5) :
4 3 -'59

2 . Apollo Domain A rchitecture (North Bi l l er
ica : Apo l lo Computer Corporation , 1 9 8 1) .

3 . A. Brownbirdge, A. Marsha l l . and A. Rande l l ,
"The Newcastle Connection or UNIXES of
the World Unite ' , " Software - Practical

Experiments 1 2 (1 98 2) 1 1 4 7- 1 1 62 .

4 . G . Popek et a l . , .. LOCUS: A Network Trans
parent, H igh Rel iabi l i ty Distributed Sys
tem ," Proceedings of the 8th Symposium

on Operating Systems Principles, A CM

(1 9 8 1) : 1 69- 1 7 7 .

5 . G . F ie i J and and D . Rodgers , " 3 2 -bit Com
puter System Shares Load Equa l ly Among Up
tO I 2 Processors , " Electrical Design (Sep
tember 1 9 84) : 1 5 3- 1 68 .

6 . K . Hwang and F. Briggs , Computer Architec

ture a nd Parallel Processing , (New York :
McG raw-H i l l , 1 984) .

7 . M . Satya narayanan, Multiprocessors: A Com

parative Study , (Engl ewood Cliffs : Pren
tice-Hal l . 1 9 80) .

H . W . Strecker. "VAX- I 1 /780 : A Vi rtua l
Address Extension to the DEC PDP- 1 1 Fam
i l y," Proceedings of A FIPS NCC (1 978) :
967-980 .

9 . J. Bart lett , "A Nonstop Kerne l , " Proceedings

of the 8th Symposium on Operating -�)s

tems Principles, A CM (1 9 8 1) : 2 2 - 29

1 0 . A . Borg,). Baumbach, and S. G lazer, "A Mes
sage System Supporti ng Fault Tolerance."
Proceedings of the 9th Symposium on

Operating .�ystems Principles, A CM
(1 98:)) : 90-99.

Digital Technical journal
No 5 Septemhl'r 1 ')8 7

1 1 . D. Katsuki et a l . . " PLURI BUS - An Opera
tional Fault-tOlerant Multiprocessor , " Pro

ceedings of the IEEE 66 (October 1 97 8) :
1 1 4 6- 1 1 '59 .

1 2 . .1 - Katzman , "The Tandem 1 6 : A Fault-toler
ant Computing System ," Computer Struc

tures: Principles and Exa mples , ed. D .
Siewiorck (New York: McGraw-H i l l , I 98 2) .

1 3 . M . Fox and j . Ywoskus . "Local Area VAXclus
ter Systems ," Digital Techn ical journal

(September 1 9 87, th is issue) : '56-68 .

1 4 . R . Metca lfe and D . Boggs. "Ethernet: Dis
tributed Packet Switching for Loca l Com
puter Networks," Com munications of the

A CM / 9 (July 1 97 6) : 3 9 '5 - 4 04 .

1 '5 . The l:."thernet: A Local A rea Network, Data

Link Layer and Physical Layer Specifica

tion, Version 2. 0 (Digita l Equi pment Cor
porat ion , lnte l Corporation, and Xerox Cor
porat ion , Order No . AA- K75 9B-TK. 1 98 2) .

1 6 . DECnet Digital Network Architecture

(Phase IV) Maintenance Operations Func

tional Specification (Bed ford : Digi tal
Equ i pment Corporation , Order No. AA

X4 ,16A-TK, 1 98 3) .

1 7 . D . Cheri ton and W. Zwaenepoel , "The Dis
trihu ted V Keene I and 1 ts Performance for
Diskl ess Workstations," Proceedings of the

9th Symposiu m on Operating Systems

Principles, A CM (1 98 3) : I 2 9- 1 4 0 .

1 8 . \Xl Snaman. Jr. and D. Thie l "The VAXjYMS
Distributed Lock Manager," Digital Techni

cal journal (September 1 9 87, this issue) :
29-44

1 9 . A. Goldste in , "The Design and lmplementa
r ion of a Distributed F i le System," Digital

Technical journal (September I 987 , this
issue) : 4 '5-5 5 .

2 0 .] . Gray e t a l . . " Granu larity of Locks and
Degrees of Consistency in a Shared Data
Base . " Modelling in Data Base Ma nage

ment Systems , ed . G . Ni jssen (Amsterda m:
North Hol land , 1 9 76) .

2 I . 1 Kronenberg. H . Levy, and W. Strecker,
"VAXclusters: A Close ly-Coupled Dis
tributed System." A CM Transactions on

Computer Systems , vol . 4 . no . 2 (May
1 986) : 1 30- 1 4 6 .

2 1

VAXcluster
Systems

DarrellJ. Duffy I

The System Communication
Architecture

The System Communication Architecture defines how data traffic is han
dled among host systems and their disk systems over the CI interconnect in
a VAXcluster configuration. Low CPU overhead was a key design goal. The
SCA supports the management of cluster configurations, buffers, and con
nections. It also supports directory services, datagram and sequenced
message services, and named-buffer transfer services. The SCA can be
extended to connections between hosts and locally attached storage con
trollers, and to Local Area VAXcluster systems, which use the Ethernet.
Each CI port is capable of sustaining about two megabytes per second of
bandwidth with minimal overhead required from a CPU.

The System Communication Architecture (SCA)
defines the network architecture for VAXd ustcr
systems , much l i ke the Digital Network Archi tec
ture (DNA) defines the network protocols for
Digita l 's wide area networks. 1

In 1 98 1 , as the Computer I nterconnect (Cl)
hardware was being developed , i t became clear
that some type of network archi tecture was
needed to bind the CI subsystems together. This
archi tecture requ ired a relatively simple struc
ture so that l i tr le overhead wou ld be needed in
e i ther the VAX host computers or the H ierarch i
cal Storage Controllers (HSC) . Many of the sys
tem processes with in the systems and contro l l ers
wou ld have to communicate i n , at that t ime.
unforeseen ways. Therefore , the SCA archi tecture
had to support a l l the features and performance
of the CI hardware so they cou ld be used by the
system processes.

The Cl lnterconnect

The CI i nterconnect provides the following bas ic
scrvices:2

• Sending datagrams, which arc not guaranteed
against loss and dupl ication

• Sending sequenced messages, which are guar
anteed aga inst loss and dupl ication (If an error
occurs , the sendi ng node on the CI i n tercon
nect wi l l be noti fied .)

2 2

• Named-buffer transfers, which are potent ia l ly
large c.Jata transfers between process buffers in
virtual memory (These transfers arc also guar
antcccl aga inst l oss and dupl icat ion .)

These services are very useful to the operat ing
system software when VA.Xcluster and other dis
tr ibuted systems are bui l t . However, in the form
that the C I port provided those services, they
cou ld not be shared conven iently by the many
parts of the operat ing system need ing them.

The SCA arch i tecture provides a s imple and
efficient means for the various parts of the operat
ing system and the d isk-control ler software to use
these services.

SCA Goals

SCA was developed from the beginning wi th the
fol lowing set of goals :

• To provide a high-performance means of
access ing and d i recting mass-stOrage control
lers . and of transferring data

• To faci l i tate access to and sharing of a l l the
capabi l i t ies of the CI ports among many pro
cesses with in the operat ing systems of the host
computers

• ' l (> prov ide a way for each system on the C l
interconnect (e . g . . V�X host systems. d isk and
rape con trol lers) to obta in configurat ion infor-

Digital T(•chnical journal
No. 5 Se{Jielllber I 'JH�

marion about every other system and which
functions each system performs

• To establ ish a means of binding together sys
tem appl ications (SYSAPs) in two d ifferent
systems over the CI interconnect so that the
SYSAPs can com municate using the i r names

SYSAPs arc fu nctions within the operating sys-
tems of hosts and within the firmware of disk and
tape comrol lers. I n host systems, those functions
include disk and tape class drivers, DECnet soft
ware, and the VAXcluster connection manager,
among others . '

I n s ingle computer systems, command status
registers are used to d i rect the mass-storage con
trollers and other devices . In YAXcluster systems,
however, the SCA network archi tecture wou ld
now direct the traffic between host systems and
disk systems One imporram design goal of SCA
was to n1ake i t operate as efficiently as possible.
that is , with low overhead on the systems.

SCA Services

The SCA architecture supports the performance
of six different functions.

1. Cluster configuration management

2. Buffer management

3. Connection management

4 . Directory services

5. Datagram and sequenced- message services

6. Named-buffer transfer services

The fo.llowing sections descri be each of these
functions and show how they i nteroperate to
provide a coherent scheme for system communi
cation .

Cluster Configuration Management

A node on the CI interconnect is e ither a VAX
computer system or an HSC control ler su pporr
ing d isc or tape devices . Within the cluster , a
node cannot communicate with another node
unti l it has established that node's location on the
CI i nterconnect. At present , 1 6 nodes is the maxi
mum nu mber the C I interconilect can support ,
a lthough the archi tecture can support 2 2 4 . Since
this current number is smal l , pol l ing is an effi
cient method for each node tO determi ne which
of the potential nodes are present . There is an
" instance " of the SCA software within each of the

Digital Technical journal
No. 5 September 1 ')87

hardware components connected to the C I inter
connect . Using the ID requestjresponse feature
of the Cl ports, SCA software period ically pol ls
each of the other nodes on the CI and keeps a l ist
of the act ive members in the hardware cluster.
Using the information in this l ist, the SCA soft
ware keeps a port-to-port v i rtual c ircuit open to
every other node on the interconnect.

SCA software opens this port-to-port virtual c ir
cuit by using a series of messages, ca l led a hand
shake, between itself and another SCA software
instance in a partner node. The handshake a l lows
the two SCA instances to first synchronize and
then exchange i nformat ion . At the end of the
handshake each node w i l l di rect i ts local CI port
to enable the virrual circu it state with the other
node's Cl port . This enabl i ng al lows the guaran
teed excha nge of sequenced messages and
named -buffer transfers between the two pons.

The information exchanged in the handshake
gives to each node the software type and SCA ver
s ion running on the other node. That a l lows
nodes with different SCA versions to interoperate .
Other information , such as the t ime of day and
the t i me the node last booted, is also exchanged.

A node with multiple Cl ports wil l use all its
ports to form port-to-port v i rtual c ircuits tO all
the other remote nodes . Each node will stare
informat ion about each of the remote nodes in a
system block for that remote node . Each port-tO
port virrual circuit is cal led a path . The informa
tion blocks representing these paths, cal led path
blocks. are chained together to the system block
for a particular remote node. ln that way, SCA can
mainta in the exact relationships among the paths
and nodes .

The tOtal number of paths between two nodes
is equal to the nu mber of Cl ports on the local
node t i mes the nu mber of Cl pons on the remote
node. SYSAPs i n both the local and remote nodes
can determine the topology of the CI intercon
nect by making spec ial ca ll s to SCA software . Fig
ure 1 depicts an exa mple of the re lations hip
between system blocks and path blocks for a net
work.

Buffer Management

One of SCA's most important properties is i ts
close control over how the communications
buffers arc used within the nodes. This control is
i mportant because node activity norma l ly occurs
at very high data rates. The buffers cou ld be

2 :1

VAXcluster
Systems

The System Communication Architecture

SYSTEM
r--

PATH --.. PATH PATH
BLOCK A BLOCK BLOCK - BLOCK

!
SYSTEM -- PATH

1----
PATH

BLOCK B BLOCK BLOCK

l
SYSTEM -- PATH

--
PATH

r---
PATH

BLOCK C BLOCK BLOCK BLOCK

Figure 1 Connections between .�ystem
and Path Blocks

qu ickly overrun if data trans m i ssion were not

strict ly conrrolkd from t he source . Recovery

from buffer exhaustion is not a ra pid process.

Duri n g periods of h i g h load w i t h i n the node,

these delays yield further de lays and t hu s

i ncrease the req u i reme n ts for buffering.

SCA softwa re conrrols the buffers for two types

of traffic : SCA control messages, and SYSAP data

messages. SCA control messages are used ro estab

l ish and re move SYSAP-to-SYSAP connections and

to control bu ffe r usage on t hose con nections . The

SCA control- message protocol i s structu red so as

to s i m p l i fy the control of buffer usage .

Control messages come in pa i rs , a com mand

and i ts response . A response is expected for each

com mand se n t , and a buffe r must be ava i lable t o

receive i r . T h e SCA arc h i tecture specifies that a

response w i l l be received for each command

sent. Therefore. a command bu ffe r is made

ava i lable on the free queue of the CI porr to

receive the response . Thus each SCA path has two

buffers avai table for control messages , one for

send i n g a com mand and rece iving i ts response .

t he other for receivi ng a command and sendi n g

i ts response .

Allocating buffers for SYSAP d i a logues is not

as s i m p l e as the commandjresponse al loca

tion . I n t h i s case , the buffer a l location must be

based on the needs of the protocol used by the

SYSAPs. Some protocols are commandjresponse

in nature , such as t he Mass Storage Control ProtO

col (MSC P) used for the HSC and other storage

control lers. Ot hers are not, such as the VMS con

nection - manager prorocol used for VAXc!uster

system s .

24

SCA a rc h i tecture enables the SYSAPs on a node

to a l l ocate as many rece i ve bu ffers as arc needed

for each connec ti on . Each SYSAP provides t hese

buffers ro SCA. which then keeps track of them .

Each receive buffer acts as a " c red i t " to a l l ow the

ot her node to send one message over that con

nect ion . The nod e's SCA software i nforms t he

remote SCA softwa re of the number of cred i ts

avai l a ble for each con nection . If a cre d i t is not

avai lable . t he remote SYSAP wi l l suspend send i n g

i ts message . This style o f buffer m anagement is

ca l l ed " pess i mi s tic flow control . " It i s norma l l y

u ns u i table for use i n ge neral networks i nvol ving

rou t i n g messages between nodes . However, s i nce

rou t i ng is not done i n the SCA environment, this

style has the advantage of bei ng completely pre

d i cta b l e . If a node mome n tari ly l ags in satisfying

commun ication requests made u pon it , the other

nodes s i m p l y wai t u nr i l the lagg i ng node recov

e rs . Thus no add i t ional bu ffer m anagement is

requ i red .

The cost of these t ight controls on buffe r man

agement is some a d d i t iona l overhead to com mu

n icate the cre d i ts to t he sendi n g node. These

cred i ts are " p i ggybac ked " onto messages goi ng tO

the correct node by i nc l u d i ng a cred i t fie ld i n a l l

SCA messages . When the SYSAP protocol docs not

conta i n retur n i n g traffi c , howeve r , addi tional

control messages are req u i re d .

The com mancljresponse nature of SCA control

messages and the pess i m istic flow control for

SYSAP messages remove much of the t i me-related

behavior from the SCA a rc h i tecture . That means

the SCA operation is re lat ively i ndependent of t he

exact t i m i ng of t he arrival of messages and t he

speed of response of the nodes i n volved i n the

com m u n ication . These fac tors make i t relat i ve l y

easy t o i m p l e ment a n d ve rify the SCA softwa re.

Connection Management

A connection between two SYSAPs i n d i fferent

nodes is a correspondence between two connec

tion ide n tifiers, one from each SCA i nstance .

These connection identifiers a l low the SCA soft

ware ro mu ltiplex i ts services onto the underly

ing vi rtu a l c i r c u i t by d ispatc h i n g t he messages to

the correct connection based on t he connection

iden t i fiers . Each SCA message has a header con

ta in ing these con nection iden t i fiers . Figure 2
shows the layout of an SCA message wi th t he for

mar of t he protocol header.

When a node rece ives a message , SCA w i l l d i s

patch it based on the message type . For SYSAP-

Digital Technical journal
No. 5 S.-ptemb<'r I <JI:J7

l '" Cl PORT H E A D E R

C R E DITS I MSG TYPE

DESTINATION CONN ECTION I D

S O U R C E CONN ECTION ID

J,
r SYSAP MESSAGE CONTENTS

1

SCA PJ
HEA

OTOCOL
D E R

_j
"'
r

Figure 2 SCA Message witb Protocol Header

related messages, SCA uses the I D of the desti na
tion connection to dispatch further to the correct
SYSAP. As mentioned earlier, the cred i t fie ld in
each message header a l lows credi ts to be p iggy
backed in message traffic.

A SYSAP signals its wi l l ingness to receive con
nections from other SYSAPs by i ni tiati ng a " l is
ten" ca ll to its own SCA so ftware instance. This
ca l l establishes the name of that SYSAP in a l ist
of names of wai t ing processes . SYSAP names
are defined by the archi tecture as strings of up
to 1 6 characters. Some of the currently defined
names are MSCP S DISK and MSCP STAPE for
the disk and tape servers, YMS SVA.Xcluster for
the YA.Xcl uster connection manager, and
SCS SDI RECTORY for the SCA directory server .

A SYSAP from another node, the source node .
can establ ish a connection to a l istening SYSAP in
a destination node by issu i ng a connect cal l to
SCA, giving the node address of the desti nation
node and the name of the l istening SYSAP. Two
SCA control-message pa irs are requ ired to estab
lish a connection . The first commandjresponse
pair from the source establ ishes the connect ion at
the dest inat ion end ; the second pair from the des
tination to the source e i ther accepts or rejects the

SYSTEM A

connect ion . This separation i nto pa irs a l lows the
dest inat ion SYSAP to decide , based on t he i nfor
mation passed with the connect request from the
source and on its current resources. whether or
not to accept the connection .

Figure :1 i J l ustrates the events required to es
tablish a connection between two SYSAPs . The
sequence of messages is as fol lows :

1 . A connect-request message is sent from the
source node to the destination node . This
message conta i ns the source and destination
SYSAP names and 1 6 bytes of additional in
formation from the source SYSAP.

2 . A connect-response message is sent from the
desti nation node to the source node. This
message indicates that a SYSAP wi th the
requested name exists and that enough re
sources arc present for SCA to honor a con
nect ion . If there arc not enough resources ,
then the connection is refused .

3 . Later. the destination SYSAP performs ei ther
an accept or a reject ca l l , and i ts SCA soft
ware responds by sending ei ther an accept
request message or a reject-request message
to the source node .

4 . If the message was accept request, the
source wi II respond with an accept-response
message and notify i ts SYSAP that the con
nection is open . If the message was a reject
request , the source SCA software w i l l re
spond with i ts own reject response, and the
connection w i l l not be opened .

The accept and reject responses by the receiv
ing SYSAP arc separated from the connect-request
and connect-response message pa i r . That separa
tion a l lows the SYSAP to ini tiate a potentially

SYSTEM B

SENDING SYSAP STARTS CONN ECT R EQUEST M ESSAGE

CALL CONNECT (system B.· SYSAPname·)

ACC E PT SIGNALLED TO S E N D I N G SYSAP.
CONN ECTION OPEN TO SYSTEM B

CONNECT R ESPONSE M ESSAGE

ACC E PT R EQUEST M ESSAGE

ACC E PT R E SPONSE M ESSAGE

Figure 3 Events to Open a Connection

CALL LISTEN (' SYSAPname·)

CONNECT R EQU EST SIGNALLED
SYSAPname SYSAP.
CALL ACCEPT (CONNECT ID)

CONN ECTION OPEN TO SYSTEM A

Digital Technical journal 2 5
No. 5 September I ')87

VAXcluster
Systems

The .�ystem Communication A rchitecture

t ime-consuming operation without tyi ng up the
SCA control -message buffer of the send ing SCA
i nstance .

When ei ther member of a pair of SYSAPs hold
ing an open connection wishes to break that con
nection , that member performs a d isconnl'ct ca l l
to i ts SCA software . The SCA software wi l l i n form
the SYSAP in the other node . which must then
perform i ts own disconnect ca ll to synchron ize
t he dismantl i ng of the connect ion . Each side
informs the other of the d isconnect ca ll by
exchanging a d isconnect-request and d isconnect
response message pair .

Directory Services

To accompl ish their tasks , the various SYSAPs
runn ing with in a node need the help of SYSAPs in
other nodes . These SYSAPs operate ei ther in a
peer-to-peer relationsh ip , such as the VA.Xcl ustcr
connection manager,1 or in a c l ient-to-server rela
tionship, such as the disk class driver and the
MSCP disk server . The method by which SYSAPs
find those other SYSAPs within the context of SCA
is cal led the d i rectory service . This snvicc is
i tself implemented as a SYSAP that l i stens for
i ncomi ng connections. The service responds to a
s imple protocol of requests for information about
which SYSAPs on this node are l istening for con
nections from other nodes.

To query the d irectory service , a SYSAP must
request an SCA connection to another node with a
destination process name of SCS S DIRECTORY
This specia I process name is reserved for usc by
the d i rectory serv ices. The requesting SYSAP can
t hen i nqui re if a SYSAP with a particular name is
l isten ing for a connection and also ask for a l ist of
a l l SYSAPs currently listening for connections .
figure 4 shows two VAX systems and an HSC
device in a cluster, with the SYSAP processes lis
ten ing in each node.

SCS$D I R ECTORY
VAX A VMS$VAXcluster

MSCP$01SK

HSC
SCS$ D I R ECTORY
MSCP$ 0 1 S K
MSCP$TAPE

SCS$01 R ECTORY
VMS$VAXcluster

Figure 4 SBAP Processes among Three Nodes

2 6

Every i mplementation of a SYSAP has the prob
lem of fi nd ing partner SYSAPs of thl' same name
to communicate with in the clustn. To centra l ize
the software performi ng t h is function , the VAX/
VMS software impleme nts a general fac i l i ty for
SYSAPs to find other SYSAPs . This fac i l i ty period i
cally polls other nodes through the d i rectory ser
vice to determi ne which l isten ing SYSAPs are
present . 'fh is process pol l er is a powerfu l tool
that s impl ifies the design of the SYSAPs and the
operating system software by al lowing various
SYSAPs to start in one node wi thout depend ing on
whether or not other nodes arc working yet .
When new nodes - and the SYSAPs within those
nodes - arc added to the cluster , a l l the SYSAPs
currently runn ing w i l l fi nd each other and com
mun icate automatica l ly .

Datagram and
Sequenced- message Services

The CI port and the C I interconnect provide
the capab i l i ty to exchange datagrams and
sequenced messages between ports . Datagram
and seq uenced-message services arc both pro
vided by SCA in the context of a connection . A
SYSAP establ ishes a connection wi th another
SYSAP and then sends datagrams or messages over
that connection . l n the context of SCA, datagrams
and messages, by convention . d i fft:r in size as
wel l as i n the i r del i very mechanisms. Datagrams
are 576 brtes i n length so that they arc suitable
for use by the DECnet protocol as dt�ta l ink
buffers . Messages are 1 1 2 bytes in lengt h to
accommodate MSCP control messages and VAX/
VMS lock manager messages .

Control l i ng the tlow of cred i ts for datagrams
and messages is done separately by SCA. Data
gram cred i t controls operate at the rl'cciver . The
receiving of datagrams is not guaranteed . U pon
receivi ng a datagram , a SYSAP must have ava i l
able a datagra m-receive credi t ; otherwise . the
datagram is d iscarded. The receiving of messages.
however . is guaranteed . Message-cred i t controls
arc institu ted at the send ing node . When a SYSAP
wants ro send a message , the rec<:iving node must
have a cred i t avai lable . If nor , the scnd ing SYSAP
wai ts and docs not send the message unt i l
i n formed that the cred i t i s ava i lahl c .

A-; ment ioned earl ier , the port-to-port virtua l
c ircuit provided by the Cl port hardware controls
the loss of sequenced messages buwccn nodes.
The c i rcuit retransm its these messages as neces
sary to guarantee the ir del i very . I n fact , rhc hard-

Digital Techn ical journal
.Vo. 'i .\ eptem l>er I 'JR �

ware performs this task for CI datagrams as wel l .
but h igher layers o f software do not take advan
tage of th is fact .

Datagrams are used to log events and other
commun ications, such as from DECnet nodes ,
that control the Joss of datagrams i n other ways. I t
is useful in these applications t o d iscard informa
t ion when buffering becomes a problem so that
too many buffers are not consumed . In the case of
event logging, the lost messages are l i kely to be
dupl icates anyway. I n t he case of the DECnet soft
ware, h igher layers of DECnet protocol control
the loss , and d iscarding the datagrams prevents
congestion at in termediate nodes.

SCA and the CI port work together to make
message transfer more efficient by e l iminat ing
transmit-done i nterrupts. When a node expects a
response to a message, SCA and the CI port coop
erate to queue the buffer sendi ng the message to
the free queue. That buffer can then be used to
receive the response . Thus in a command/
response exchange of two messages, the sendi ng
and receiving nodes each experience on ly one
receive interrupt .

Named- buffer Transfer Services

One strik ing feature of t he CI port hardware is i ts
ab i l i ty to transfer large amounts of data between
named buffers i n the virtual address space of pro
cesses within a node 2 This feature is the most
useful one for d isk and tape transfers .

SCA provides services for the two named-buffer
transfer commands ava ilable i n the C I port : the
send-data command , and the request-data com
mand . The send-data command transmits the con
tents of a segment of a local named buffer i nt o a
segment of a named buffer i n a remote node. The
parameters for the send-data command are the
transfer length in bytes, and the names and byte
offsets of the sendi ng and receiving buffers. The
request-data command asks the remote port to
transmi t data from a remote named buffer ro a
local named buffer . The send-data command per
formed by a d isk control ler corresponds to a disk
read function , and the req uest-data command to a
d isk write function .

Of course, named-buffer transfers can be used
by any SYSAP, not just the ones communicating
with d isk controllers . Using named-buffer trans
fers , i t is poss ible for two VAX systems in a clus
ter to exchange memory data at a transfer rate of
over 2 megabytes per second at the Cl ports.

Digital Technical journal
No. 5 September I '}87

Extensions to Other Interconnects
To this poin t , only the C I implementation of SCA
has been d iscussed . However, the ut i l i ty of SCA
is not l i mi ted solely to the Cl in terconnect. SCA
i s a general network communication archi tec
ture that can serve a number of i nterconnects .
For example , i t is currently used i n local ly con
nected storage controllers and on Ethernet for
low-end VAXcluster systems.

Locally Connected Storage Controllers

The UDA50 UNIB US and KDB ') O B l d isk con
trollers an: locally connected storage controllers
t hat connect Digi ta l Storage Architecture (DSA)
d isk drives to VAX computers without an i nter
ven ing Cl i nterconnect . These devices are i nte l l i
gent control lers that i ncorporate the SCA and
MSCP protocols , just as does the HSC50 Cl-based
d isk controller . The use of SCA in these con
trol lers has proven to be an efficient means to
communicate with disk control lers i n which a
d irect bus interface has tradi tional ly been used.

In control lers , there is no i nterconnect be
tween the host adapter and the d isk controller;
both functions are performed by the same con
trol ler. Although the port header has been s impl i
fied because i t does not have to address mult i pie
ports on an in terconnect , the basic SCA functions
sti l l operate . The use of SCA allows mult iple
functions to be placed i n a control ler and used
separately by having them appear as SYSAPs with
d i fferent names . For example, d i sk a nd tape con
trol ler functions can both co-reside in a con
troller but are accessed via d i fferent SYSAPs.

Adapting SCA to Ethernet

Digital decided to extend the VAXcluster archi
tecture to the Ethernet i n order to support work
stations and other Ethernet-based systems . The
most obvious way to accompl ish that extension
was to bu i ld a port emularor for the CI capab i l i
ties on top of the datagram capabi l i t ies of the Eth
ernet adapters . Such a port emulator performs
t he functions of a CI port in software written as
a driver running under the VMS system . SCA
extends naturally i n th is way s ince the Ethernet
has the fu ndamental properties expected of a net
work to be used by SCA That is, Ethernet i s a
mu l tiaccess media i n which the nodes need not
be concerned with how packets are routed to
the i r final destinations .

2 7

VAXcluster
Systems

The System Communication A rchitecture

SCA Performance

VAXcluster performance greatly depends on the
performance of SCA, in terms of messages and
bytes transferred per second . and on the overhead
on the system software performing the transfer.
Not only does SCA perform srorage access. it also
sends the lock manager messages that al low VAX
cluster systems ro share devices and fi les. SCA.
together with the CI port design, is i ndeed a
h igh-performance and low-overhead intercon
nect . For example, on a VAX- 1 1 /780 system, over
3000 sequenced-message round trips per second
can be exchanged with another VAX system . Yet ,
only about 300 microseconds of CPU overhead
are required to send and receive each message
pair . Each C I port wi l l sustai n approxi mate ly
2 megabytes per second of named-buffer trans
fer bandwidth with no overhead on the part of
the CPU . Each mass srorage operation requ ires
a sequenced-message pa ir and a named-buffer
transfer i ni t iated by the HSC'50 d isk control
ler . Therefore , the CPU overhead of SCA soft
ware alone for these functions is on ly about
300 m icroseconds . The storage transfer i tse l f can
proceed at the rate of about 2 megabytes per
second for long transfers to d isk or between host
systems.

Summary

SCA is a h igh-performance network architecture
developed to al low the C I i nterconnect ro be
shared among the various functions requ ired i n
VAXcluster systems. Among these functions are
mass-storage and tape-storage access, which had
trad i tionally been done using d irect control over
a bus instead of a network message-passi ng proto
col . SCA has proven ro be a highly efficient means
both to control storage access and to a l low VAX
host systems to communicate :; I ts flexibi l i ty per
mits i ts use ro be extended to d irect local-storage
controllers and to other int erconnects such as
Ethernet.

Acknowledgments

A large number of people contributed to the SCA
architecture and i ts implementations. Without
their efforts, SCA cou ld not have met i ts goals and
wou ld not be so widely used . Thanks also tO a l l
the fol ks who have reviewed and contributed
helpful suggestions ro th is paper.

28

References

1 . A . Lauck, D . Oran, and R . Perlman,
Network Archi tecture Overview,"
Technical journal (September
1 0-24 .

" Dig i tal
Digital
1 986) :

2 . N . Kronenberg, H . Levy. W. Strecker, and R.
Merewood , 'The VAXcluster Concept: An
Overview of a D istri buted System , " Digital
Technical journal (September 1 987 , this
i ssue) : 7-2 1 .

3 . W . Snaman , Jr . and D. Thie l , "The VA.."XjVMS
Distri bmed Lock Manager, " Digital Techni
cal journal (September 1 987 , this issue) :
2 9 -4 4

4 . N . Kronenberg, H . Levy, and W. Strecker,
" VAXcl usters : A C losely-Cou pled Distribu
t ion System , " A CM Transactions on Com
puter Systems , vol . 4 , no. 2 (May 1 986) :
1 5 0- 1 4 6 .

Di?,ilal Technical Journal
No. 5 September I ')87

William E. Snaman, Jr. I David W. Thiel

The VAX/VMS Distributed
Lock Manager

The VMS distributed lock manager provides the synchronization mecha·
nism needed to ensure transparent and reliable data sharing between
nodes in a VAXcluster system. The lock manager provides services for
mutual exclusion and event notification, and achieves high performance
by minimizing the number of messages sent between nodes. The lock man
ager also handles deadlock situations with a minimum of messages
exchanged. Since processors systems can join or leave a cluster at any
time, a connection manager was developed to handle reconfigurations in
a dynamic, efficient manner.

Development Background
A<> people and organizations came to depend
heav i ly on computer systems to perform their
dai ly activities, i t became i ncreasingly obvious
that they needed continuous access to the vital
data stored in those computer systems. Moreover,
growing organizations were faced with a need to
incrementa l ly i ncrease the amount of computing
power ava i lable to them over an extended period
of t ime . I n the past, their options were usua l ly
l imi ted to ei ther buying more than needed i ni
t ial ly or facing pai nfu l upgrades and appl ication
conversions as the systems were outgrown . The
emergence of bus technologies, such as Digi tal 's
Computer Interconnect (CI) and the Ethernet,
provided an opportunity to combine mult iple
processors and storage control lers into close ly
coupled d istributed systems . Such systems could
provide the needed clara ava ilab i l i ty and incre
mental growth characteristics. The VA.Xclustcr
system was developed to answer those needs. 1

To encompass the VA.Xcluster concept, the VMS
operating system was extended to provide trans
parent data sharing and dynamic adjustment to
changes in the underlying hardware configura
tion . These extensions make it possible for mult i
ple processors, storage control lers , cl isks, and
tapes to be dynamical ly added to a VA.Xcluster
system configuration . Thus a sma l l system can be
purchased i ni t ia l ly and expanded as needed by
adding computing and storage resources with no
software modifications or appl ication convcr-

DiJ:ita/ Technical journal
No. 5 September I <JR7

sions. New devices can even be added without
shutting down operations. The abi l i ty to use
redundant processors and storage controllers vir
tual ly e l imi nates single points of fa i lure .

The VMS software running on each processor
node in a VA.Xcluster system provides a high level
of transparent data s haring and independent fai l
ure characteristics. Each processor runs i ts own
copy of the operating system and i nteracts with
the other processors tO form a cooperat ing dis
tributed operating system . In this system, a l l
d isks and the fi les resid ing on them arc accessible
from any processor in exactly the same fash ion as
if those fi les were connected to a s ingle proces
sor. They can be transparently shared at the
record level by appl ication software .

One of the challenges of putting together such
a system is to provide both max imu m perfor
mance and a very high level of rel iabi l ity . A data
sharing model was chosen as the design center
rather than a c l ient-server mode l . In the data
sharing mode l , data resources are made direct ly
ava ilable tO a l l processors, which must coordi
nate their accesses to those resources. This model
contrasts wi th t hat of the c l ient-server, i n which
the server mediates access to the data . The data
sharing model e l i minates potential bottlenecks
that develop around heavily ut i l i zed servers, pro
vides better opportuni ties for para l le l ism, and
avoids the server as a single point of fa i l ure .

In 1 9 8 2 , the first lock manager was provided
in version 3 0 of the VA.XjVMS operat ing system.

29

The VAXjVMS Distributed Lock Manager

The lock manager provided synchroni zation ser
vices for mult ip le processes resid ing on a s ingle
processor, as well as deadlock derection 2 Con
currently, design work was under way for a d is
tributed version of rhis lock manager . The d is
tri buted lock manager was released in 1 9H4 wirh
version 4 . 0 of rhe VAXfVMS operat ing system; the
CI bus was used as the com mun ications med i u m .
I n 1 986, the Local Area VAXc lusrer sysrem was
re leased 5 This system has the same locking and
other algorithms as the CI -based VAXcluster sys
tem, but uses the Ethernet as the communications
interconnect .

Lock Manager Description

This paper describes the d istributed lock man
ager, which i s the basic synchroni zation mecha
nism for VAXcluster systems. The lock manager
permi ts the high degree of transparent data
sharing attained by the VMS system by provid ing
a set of services used by cooperat ing processes to
synchronize access to shared resources . These
processes can reside on any or a l l of the VAX pro
cessors that com prise a VAXcl usrer sysrem . In
this paper, the terms " node " and " processor" arc
used i nterchangeably to refer to VAX processors.

Each resource in a VAXc luster system is repre
sented by a unique abstract name that is agreed
upon by all the cooperat ing processes . This name
is entered into a d istributed global namespace
that is mainta i ned by the distributed lock man
ager. Cooperating processes can use the lock
manager as a mechanism to mediate access to a
resource by requesti ng loc ks on t he abstract rep
resentation before accessing the acrua l resource .

The lock manager does not actua l ly a! locate
or control the resource , and there is no req ui re
ment that the name represent an actual physical
resource . This permi ts the lock manager services
to be used for event notification and other com
munication functions, in addition ro mutua l
exclusion functions . Deadlock detection is a lso
provided .

To permi t maximum concurrency, resource
names can be rree structured , and locks Gin he

requested at modes thar perm i t varying degrees
of sharing. Many resources have an inherent
hierarchical structure rhat perm i ts d i fferent pans
to be accessed by different processes ar rhe same
r ime. For example , a d isk can cont a i n various
fi les, each in turn conta in ing records This struc
ture al lows different records of the same fi l e .
and different fi l es to be updated concurr(.'n t ly .

50

Providing tree-structured resource names per
m i ts locks to be requested at d i fferent levels of
the h ierarchy.·•

ln the lock manager , s ix lock modes are repre
sented by an abstract matrix t hat defines whether
or not a given mode is compat ible with another
mode. An appl ication designer can in terpret
t hese modes as setting l imi ts on how a resource
can be accessed (e .g . , no access, read, or wri te) .
The modes can also be interpreted as setting l i m
i ts on how a resource is shared (i .e . , permi t read
access. write access , or no access to others) . Lock
requests that arc granted at one mode can be con
verted ro a more or less restrictive mode . Table 1

descri bes the compatibi l i ty of each lock mode;
Table 2 conta ins the suggested interpretation of
each mode.

The services provided by the distributed lock
manager arc flexible enough to be used by coop
erating processes for mutual exclusion , syn
chron ization . and event notification . These ser
vices arc known as the S ENQ (lock) and S DEQ
(un lock) syst(.'m services. The S ENQ system ser
vice al lows a process to request a lock on a
resource . The lock request is then e i ther granted
or denied by the lock manager, based on the
mode of other locks that are granted on the
resource . The S ENQ service al lows a caller to
queue a lock request and e ither wai t for the
request ro be granted or cont inue execution . The
caller can also s ign i fy that the request shou ld not
be queued . In this case the status is returned i n
the cvenr that the request cannot be granted
i mmediately .

I f a caller chooses to queue a lock request and
cont inue execution , the S ENQ service provides
asynchronous not ification when the lock request
is granted . Tht: ca l ler can specify a rour int: to be
cal led when tht: lock request is granted . This

Ta ble 1 Compatibil ity of Lock Modes

Mode of
Requ ested Mode of C urrently Granted Lock

Lock N L

N L Yes

C R Yes

cw Yes

PR Yes

PW Yes

EX Yes

N L - N u l l lock
CW - Concurrent write
PW - Protected write

C R cw PR PW EX

Yes Yes Yes Yes Yes

Yes Yes Yes Yes No
Yes Yes N o N o No
Yes N o Yes N o N o

Yes N o N o N o N o

N o N o N o N o N o

C R - Concurrent read
PR - Protected read
EX - Exclusive lock

Digital Technical journal
No. 5 September 1 98 7

abi l i ty to specify a rout ine perm i ts queuing a
request i n a way that leaves the process free to
carry on other functions un t i l the request is
granted . The not ification mechanism used is
ca l led a complet ion asynchronous system trap
(AST) .

The S ENQ service a lso provides a notificat ion
mechanism whereby a process that has been
grantee! a lock on a resource can be notified when
another process is wa i ting for it to release the
lock. This mechanism , known as a blocking AST,
can provide an i mportan t performance optimiza
tion when a resource is shared infrequently. After
acquiring a lock. the holder can access the
resource mult ip le t imes wi thout further lock
i ng unti l notified by a block ing AST that another
process is wai t ing for i t to rel ease the lock . The

Table 2 Modes at which Locks Can Be
Requested

Mode Suggested I nterpretation of Mode

N L N u l l mode g rants n o access t o the
resource; it i s typical ly used either as an
ind icator of interest i n the resource or as a
place holder for future lock conversions.

C R Concurrent read m o d e g rants read access
to the resou rce and al lows its sharing with
other readers. The concurrent read mode is
general ly used either when addit ional lock
ing is being performed at a finer granularity
with sublocks or to read data from a
resource in an " u n protected" fashion
(al lowing s i multaneous writes to the
resource).

cw

PR

PW

EX

Concurrent write mode grants write access
to the resou rce and al lows its sharing with
other writers. The concurrent write mode is
typical ly used either to perform addit ional
locking at a f iner g ran ularity, or to write in
an " u n protected" fash ion.

Protected read mode grants read access to
the resource and al lows its sharing with
other readers. N o writers are al lowed
access to the resource. This mode is the
trad itional " share lock."

Protected write mode g rants write access
to the resource and al lows i ts sharing with
concurrent read-mode readers. N o other
writers are al lowed access to the resource.
This mode is the trad it ional " u pdate lock."

Exclusive mode grants write access to the
resource and prevents it sharing with any
other readers or writers. This mode is the
traditional "exclusive lock."

Digital Technical journal
No. 5 Sept em her I 'J87

holder then stops accessing the resource and
releases the lock. thus perm it t ing the lock re
quest of the other process to be granted.

Appl icat ions can be designed that dynamical ly
change their locking protocol from blocking
ASTs (during periods of low contention) to a
request- release protocol (during periods of h igh
content ion) .

Another usc for the blocking AST is to imple
ment a "door-be l l " not ification mechanism in
which a process takes out a l ock and speci fies a
blocking AST. When another process wants to get
the first process's attention , it makes an i ncom
pat ible lock request that resu l ts in the del ivery of
a block ing AST to the first process.

A 1 6-byte va lue block associated with each
resource functions as a sma I I piece of globa l
memory that is atomica l l y updated . The contents
of a va lue block are optiona l ly returned when a
lock is granted, and updated when an exc lusive
(EX) or protected wri te (PW) mode lock is
re leased . Parameters on the lock and u n lock
requests control the use of a va lue block.

A value block can be used to help implement
l ocal cach ing of d isk data . The resource repre
sents the data be ing accessed and l ocks arc used
to provide mutu a l exclusion . A value b lock asso
c iated with the resource is used to maintain a
sequence number representing the current ver
sion of data stored on the disk . Whenever data is
i n i t i a l ly read from the d isk i nto a local buffer , a
lock is first obta ined, and the version number
conta i ned in the va lue block is saved with the
data that is read . Whenever the data is to be modi
fied, a lock is first obta i ned, t hen the buffer i s
updated and written back to the d isk . When the
lock is rclcasccL an updated version number is
stored in the va lue block represent ing the new
version of the data on the d isk . Upon subsequent
reads by this or any other node in the VAXcluster
system. a lock is first obta i ned . and the sequence
number conta i ned in the va lue block is com
pared to the sequence nu mber stored with the
loca l ly cached data . Whenever the seq uence
nu mbers match, the cache is va l id and no d isk
read is requ ired . '

Va lue blocks c a n a lso b e used for communica
t ion between processes.

The S DEQ system service is used to indicate
that a process no longer wan ts to mainta in a lock
on the resource . Part of i ts function is to option
a l ly u pdate the va lue block when the mode of the
lock being re l eased is e i ther J>W or EX .

5 1

VAXcluster
Systems

The VAXjVMS Distributed Lock Manager

Design Constraints and Goals

Several constra i nts were placed on the design of
the d istributed lock manager, the most i mpor
tant one being that i t had to be extreme ly re l i
able . Thi s constrain t was vital s ince the VMS fi le
system, the Record Management System, several
database systems, and other critica l products
would depend on the lock manager to mainta in
the i ntegrity of the ir resources. The lock manager
had to be general enough so that many d i fferent
appl ications could be bu i l t using i ts services,
rhus avoiding the creation of a separate synchro
n ization tool for each appl ication . Moreover, the
lock manager had to have very h igh perform·
ance characteristics and be able to tolerate the
fai lure of an arb itrary number of processes or
nodes.

For performance reasons, it was essentia l ro
min imize the number of messages exchanged
between the various nodes. This was especia l ly
important as the number of nodes i ncreased .
Add itiona l ly , min imum penalties shou ld be
imposed when a l l the cooperat ing processes
reside on a single processor. The goal was to have
the cost i ncrease no more than l i nearly as the
number of nodes i ncreased . In fact , what was
atta ined was a cost bounded by a sma l l constant
that is i ndependent of the number of nodes that
exist in a VAXcluster system .

Relationship between the Distributed
Lock Manager and the Connection
Manager

As the lock manager was being developed , i t
became clear that a need existed to separate the
function of managing a dynamic configuration of
processors from that of managing the resource
namespace. This separation requ ired the creation
of a new entity , the connection manager. The d is
tri buted lock manager rei ies on the connection
manager for several viral services.

The connection manager maintai ns a g loba l l y
consistent l ist of a l l processors that are i n the
VAXcluster system at any given i nstant . To main
tain this consistency, the connection manager ut i
l izes a very strong notion of c luster membersh ip
and orchestrates the addition and remova l of
nodes . Part of that orchestration process is the
coordi nation of the d istr ibuted lock manager's
task of rebui l ding a database describ ing the lock·
ing namespace and stare whenever the configura
t ion changes.

3 2

Another function o f the connection manager i s
to prevent the parti tioning of the namespace .
This partit ioning could happen if the d istributed
lock managers in dis joint subsets of nodes oper
ated i ndependently. They cou ld do so in the
event of a communications fa i lure, or a " rol l i ng"
power fai lure a nd recovery cycle . In these s itua·
t ions, any objects access ible to mu l tiple subsets
cou ld be inconsistently accessed and therefore
corrupted . The connection manager uses a voting
a lgorithm to ensure that the set of ava i lab le pro
cessors cannot be sp l i t into two or more function
i ng groups if communications fa i l . This approach
requ i res that only a very l i m i ted amount of globa l
informat ion (i .e . , the number of votes held by a
node and the tota l nu mber of votes ava i lable to
the entire set of member nodes) be known by
each system . Furthermore , protection is given
against a very wide set of fa i lures because there
are no addi tional underly ing assumptions about
fai lure mechanisms.

The fi nal function is a commun ications ser
vice that provides a virtual c ircui t between each
member node of a VAXcluster system . This ser
v ice ensures the rel iable del ivery of sequenced
messages . I f messages cannot be del ivered in
sequence, the virtual circui t wi l l break . The
most sign ificant characteristic of this service
is that c l uster membershi p and the existence of
the v i rtual c ircu i t are t ightly coupled . The
virtua l circuit must exist for a pa ir of nodes tO
become or rema in part of a VAXcluster system .
A fa i l ur e of the v irtual c i rcu i t , therefore, requ ires
the removal from the c luster of at least one of the
nodes termi nating that c ircu i t . This approach
greatly s imp l i fied the design of the distributed
lock manager because only one type of com muni
cations fa i lure is visib le to i t . The requ i red act ion
upon the occasion of such a fa i lure is made s im
pler because i r is certa in to be fol lowed by a
change in the c l uster's membersh ip . Such a
change involves rebu i ld ing the distributed lock
manager's database .

The Operation of the Distributed
Lock Manager

The fol lowing section descri bes the operation of
the d istribmed lock manager when a l l lock
requests can be granted i mmediately. A l ater sec
tion d iscusses its operation u nder condi tions of
content ion . Table 3 gives defin i t ions of the terms
used in descr ib ing these operations.

Digital Technical journal
No 5 September J ')87

Table 3 Terms and Definitions

Term Definition

Resource tree The lock manager al lows names to be structured in a h ierarchical fashion. For example,
the root resource can represent a device; its ch i ld , referred to as a sub-resource , can
represent a fi le on that device; and another su bresou rce beneath it can represent a
record .

Lock req uest The request by a process for a lock on a resource.

Root-lock The lock request for a resource at the root of a resource tree.

Sublock The lock request for a resource below the root of a resource tree .

Resource manager The node that controls the granting of lock requests on a g iven resource tree for which
it maintains i nformation about a l l g ranted and wait ing lock requests. Al l nodes are
potential ly resource managers, each handl ing a particular su bset of the set of resource
trees .

Di rectory service The d i rectory service provides a mechan i s m to locate the cu rrent resource manager. This
service is needed because lock requests must be d i rected to the resou rce manager,
which may change over t ime. The di rectory fu nction i s d i stributed among the various
nodes i n a VAXcluster system, each node providing the function for a subset of the
resou rce trees. This d istribution el im inates potential performance bottlenecks .

Lock mode The mode of a lock request indicates the type of lock being requested, such as NL, P R ,
or EX. B y convention, t h e mode represents t h e type of access t o t h e resource that is
being requested, such as read , write, or no access. I t a lso indicates a wi l l ingness to
permit others to share the resource.

An Initial Lock Request on a
Root Resource
When a process somewhere in a VA.Xcluster sys
tem requests a root-lock, the distr ibuted lock
manager must first identify which node is cur
rent ly managing the resource tree. The resource
name specified by the lock request is hashed , and
the resul tant value is appl ied to a vector contain
ing zero or more entries for every node currently
in the cluster. The selected vector entry identi
fies the directory node for the resource specified .
A message is then sent to this node requesting a
lock on the resource. The bui ld ing and sending
of a message can be avoided if the node making
the request is also the directory node .

The vector is maintained by the connection
manager, which ensures that the vector is
updated whenever a node enters or leaves the
cluster. The connection manager also ensures
that the vector is identical on all nodes. Each
node can request that it be entered zero or more
t imes in the directory vector, depending on the
extent to which the node wants to participate in
the d istributed d irectory function .

Upon receiving the message , the d i rectory
node can respond in any of three ways . First , i t
can indicate that the node making the request
should manage the resource i tself. Second , it can

Digital Technical journal
No. 5 September 1987

indicate that the request should be re-sent to
another node that is already managing the
resource . Finally, it can respond to the request
d i rectly, since the d i rectory node itself may
a lready be managing the resource. If this lock
request is the first one on the resource , the d irec
tory node wi l l instruct the requestor to manage
the resource itself. It wi l l a lso create a directory
entry for the resource , thus ensuring that subse
quent requests from other nodes wi l l be di rected
to the new resource manager. Figure I i l lustrates
this case .

Al l subsequent lock requests for addit ional
root-locks or sublocks on th is resource from the
node that originated t he in i tial request wi l l now
be processed without further message traffic,
s ince the node is now managing the resource
i tself. This action , called local locking, was
developed to min imize the cost of locking should
al l the processes sharing a resource reside on one
node. Figure 2 provides an i l lustration of local
locking.

At this point , if a process residing on another
node makes an in i t ial root-lock request , the
resource name is again hashed and the d irectOry
node identified in the same fashion as before . The
request is sent to the directory node, which
responds by identifying the node currently man-

33

VAXcluster
Systems

Tbe V AXjVMS Distributed Lock Manager

RESOURCE MANAGER

CD

0 0

NODE B CD

0

CD

0

KEY:

D
D

0

DIRECTORY NODE

o: CD

RESOURCE BLOCK

D I R ECTORY ENTRY FOR RESOURCE
(I MPLEMENTED AS A R ESOURCE BLOCK)

LOCK BLOCK

NODE C

When a lock request is received, a resource
block and a lock block are created.

A message requesting a lock is then sent to the
directory node.

A directory entry is created listing node A as the
resource manager .

The response message directs node A to
become the resource manager.

Figure 1 A Root-lock Request When No Resource Manager Exists

aging the resource. Upon receiving the response,
the requestor re-sends the lock request to that
node.

This case is potentially the worst with regard to
messages s ince one round trip is required to the
d irectory node (assuming t hat i t is another node
in the VAXcluster system) and another round trip
to the resource manager. Note that th is cost is
bounded by a sma l l constant with respect to the
number of nodes in a VAXcluster system. Figure 3
i l lustrates this case.

Subsequent Root-Lock and Sublock
Requests

Once a lock on a root-level resource has been
established , the identi ty of the resource-manager

3 4

node is known. After that point n o further mes
sages are sent to the d irectory node by that pro
cessor; all requests are sent d i rectly to the
resource manager. If the lock request is made on
a node that is not t he resource manager, rwo mes
sages are required for every lock request after the
first : a request, and a response. This process is
called remote locking. Figure 4 i l l ustrates the
remote locking concept .

Releasing Lock Requests
When a process resid ing on the node managing
the resource decides to release a lock, no mes
sages are sent unless the lock is the last remain
ing one on the resource . I n that event a message
is sent to the d irectory node ind icating that th is

Digital TechnicaiJournal
No. 5 September I 98 7

NODE A

KEY:

D
0

DIRECTORY NODE

D

RESOU RCE BLOCK

D I RECTORY ENTRY FOR R ESOURCE
(IMPLEMENTED AS A RESOU RCE BLOCK)

LOCK BLOCK

NODE C

As root-lock requests are received. lock blocks
are created and linked to the existing resource
block.

When a sublock request is received, a sub
resource block is created if this is the first
request for a lock on the subresource. A lock
block is then l inked to the subresource block.

Figure 2 Root and Sublock Requests Made on the Resource Manager

node is no longer managing the resource . The
directory node then deletes the d irectory entry
for the resource. This deletion al lows the next
node requesting a lock on the resource to
become the resource manager . No response is
necessary because the message delivery is guaran
teed by the connection manager.

For the case in which a process releasing a lock
does not reside on the node that manages the
resource, a message is sent to the resource man
ager. Aga in , i f this is the last remain ing lock on
the resource , the resource manager sends a mes
sage to the d irectory node i ndicating that this
node is no longer the resource manager. Figure 5
i l lustrates the concept of unlocking.

Digital Tecbnicaljournal
No. 5 September 1987

Converting Lock Requests

The lock manager also permits the mode of a
granted lock to be altered . This action is called a
conversion . Conversion requests can be pro
cessed more efficiently than new lock requests
because al l the data structures are already i n
place, and the resource manager has already been
identified . If a conversion request is made on the

node managing the resource, no messages need
be exchanged. If the resource manager is not the

node on which the request is being made, e i ther
one or two messages are required . For example,

i n some cases in which the requested mode is
compatib le with the granted mode, the request

3 5

VAXcluster
Systems

The V AXjVMS Distributed Lock Manager

NODE A

RESOURCE MANAGER

NODE 8

DIR ECTORY NODE CD
CD
0
0

NODE C

When a new root-lock request is received, local
copies of the resource block and lock block are
created.

A message requesting a lock is then sent to the
directory node.

The response i ndicates that node A is currently
the resou rce manager.

The lock request i s again sent to node A .

A master-copy lock block i s created o n the
resou rce manager and linked to the resource
block.

K E Y :
(D A granted response is returned.

Dl R ESOU RCE BLOCK

D DIRECTORY ENTRY FOR RESOU RCE
(IMPLEMENTED AS A RESOU R C E BLOCK}

0 LOCK BLOCK

Figure 3 New Root-lock Request When a Resource Manager Exists

can be uni lateral ly granted , and a single message
sent ro noti fy the resource manager of the
change . In others, the resource manager must
make a dec ision based on the other requests t ha t
are granted . A request i s then sent to the resource
manager, who must respond . Jn all cases, no com
munications are req uired with the di rectory
node. Figure 6 i l lustrates a conversion request .

Operation During Periods of
Resource Contention

The operation is slightly more complicated dur
ing periods of contention . When a resource man
ager receives a lock request t hat cannot be
granted because an incompatible lock exists, two

actions are required . First, a l l holders of incom
patible locks that have indicated a desire ro
receive blocking ASTs must be noti fied that a pro
cess is waiting. To accomplish this, a message is
sent to each node where a lock holder resides.
The process holding the lock is notified only
once , even though it may be blocking multiple
lock requests. Second , the requester of the lock
must be told to wait ; this is accomplished by
sending a response to the lock request . When the
blocking lock is later re leased, a message is sent
to each waiting requestor indicating that the lock
is now granted . Table 4 su mmari zes the numbers
of messages used for different types of lock
requests .

Digital Tecb�Jical journal
No. 5 September 1987

NODE A

RESOURCE MANAGER

NODE B

D I R ECTORY NODE

D

CD
0

NODE C

When a sublock request is received. a lock block
is created. If this is the first lock on the sub·
resource, a resource block is also created.

The request is sent to the resou rce manager. No
d irectory lookup is requ ired.

If locks already exist on the subresource . only
a lock block is created. Otherwise, both a lock
block and a resource block are created.

(D A granted response is returned.

K EY :

D
0

RESOURCE BLOCK

DIRECTORY ENTRY FOR RESOURCE
(IMPLEMENTED AS A RESOURCE BLOCK)

LOCK BLOCK

Figure 4 A Subtock Request on a Node that Is Not the Resource Manager

Scaling Behavior of the Distributed
Lock Manager

It can be shown that the number of messages

requ ired for any locking operation is bounded by
a small constant that is independent of the num·
ber of nodes, or c l uster size, i n a VAXcluster sys·
re m . This section addresses how the size of the
dara representing the locking state and the total
number of locking messages vary with a cluster's
size .

The d istributed lock manager uses a fixed-size
control block to represent both a lock and a lock

request . An instance of this control block exists
on the node requesting the lock . If the resource
manager is a different node, another instance
exists on the resource manager. A resource is rep·

Digital Technical journal
No. 5 September I Y87

resented by another fixed-size control block. An
instance of this control block exists on each node
requesti ng the lock, on the resource manager,
and on the directory node . Whenever any of these
categories overlap (i . e . , requestor, resource man·
ager, and directory node) , only one instance of
the control block is present . The control blocks
for Jocks and resources are dynamicaLly allocated
and deal located .

At l east one lock is represented for every
resource represented. Conversely, a resource is
represented for every lock represented . For each
lock, the u pper bound on the storage require·
ments is two lock control blocks and three
resource control blocks . This upper bound is
usually quite loose and depends on a c luster's
size.

37

VAXcluster
Systems

The VAX/VMS Distributed Lock Manager

NODE A

RESOURCE MANAGER

NODE B

D I R ECTORY NODE

0
CD

When an unlock request is received for a root
lock, the lock block is deallocated. If this is the
last lock on the resource. the resou rce block is
also deallocated.

A message is sent to the resource manager. No
response is required.

The resource manager deallocates the lock block.
If this i s the last lock on the resource. the
resource block i s also deallocated.

0 A message is sent to the d i rectory node.

(I) The directory entry is removed.

KEY:

D
D

RESOURCE BLOCK

DIRECTORY ENTRY FOR RESOURCE
(IMPLEMENTED AS A RESOURCE BLOCK)

LOCK BLOCK

Figure 5 Unlock Request for the Last Remaining Lock on a Root Resource

VAXcluster appl ications are typical ly designed
so that their algorithms do not change as the size
of the cluster changes. Therefore, an i nstance of a
typical appl ication running on one node exhibits
a behavior with respect to the number of ou t
standing locks and the frequency of locking oper
ations that is independent of the number of addi
tional instances of that appl ication running on
the same or other nodes. I f multiple instances of
the appl ication are running, the number of out
standing locks and the frequency of locking oper
ations increase i n proportion to the number of
copies of the application , independent of the
cJ uster size.

Both the number of messages per locking oper
ation and the storage requirements for a lock are

3 8

bou nded b y constants that are independent of the
cl uster si ze. Therefore, the rate at which mes
sages must be exchanged and the tota l storage
required to represent the locking state are pro
portional to the nu mber of instances of the appli
cation that are running, which is also i ndepen
dent of the cluster's size . I f the nu mber of
instances of the application i s proportional to the
cluster size, the rate of message exchange and the
total storage required to represent the locking
state are both bounded by a constant ti mes t he
cJ uster size.

This argument is also val id when multiple
instances of each of several appl ications are
present .

Digital Technical journal
No. 5 Septem ber 198 7

NODE A NODE C

RESOURCE MANAGER

NODE 8 (D A conversion request is received.

(D The request is sent to the resource manager.

G) The request is granted.
DIR ECTORY NODE (D A granted response is returned.

D Note: Conversion requests on the resource
manager require no messages.

KEY:

D
0

RESOURCE BLOCK

DIRECTORY ENTRY FOR RESOURCE
(IMPLEMENTED AS A RESOURCE BLOCK)

LOCK BLOCK

Figure 6 Conversion Request on a Node that Is Not the Resource Manager

These characteristics of the d istributed lock
manager (i . e . , total space and message traffic
behavior that is subject to a l inear bound i n the
"workload ") are a significant fact or in allowing
VA.Xcluster systems to act as distributed operat
ing systems . These characteristics suggest that,
from the d istributed lock manager's viewpoint ,
additional growth in the size of a VAXcluster con
figurations is certainly viable .

Performance Aspects of the Distribu ted
Lock Manager

Table 5 sum marizes the performance of the d is
tributed lock manager. The measurements reflect
operations that are norma lly done in pairs . Such

Digital TeciJnical journal
No. 5 Sepl<!mher 1987

operations include an SENQ fol lowed by a S DEQ,
and a conversion to a more restrictive mode (up)
foUowed by a conversion to a less restrictive
mode (down) . The operations reported in the
table are performed on sublocks .

When Processors join or Leave the
VAXcluster System

The connection manager plays a major role in the
lock manager's abi l ity to deal with configuration
changes when one or more nodes join or leave the
VAXcluster system. When the membership of the
cluster must be a ltered , a coordinator node is
e lected to lead the other nodes through the state
transition . Any node can become the coordinator

3 9

VAXcluster
Systems

The VAXjVMS Distributed Lock Manager

Table 4 Summary of Number of Messages Used for Lock Requests

Request Type

I n itial root- lock request from a system for
a previously unknown resource (i . e . , no
manager exists)

Messages

2 or 0

Subsequent root-lock requests on 0
resource manager

Sublock request on resource manager 0

U nlock request on resource manager with
locks remaining

U nlock of last lock on resource by
resource manager

In it ia l root-lock request from a system for
a resource that i s known (i . e . , a manager
exists)

Sublock requests and subsequent
root-lock requests from a system that is
not resource manager

U n lock request from a system that is not
the resource manager

1 or 0

2 or 4 (1)

2 (1)

1 or 2

Comments

Zero messages i f node making the request is
the di rectory node. Otherwise two messages;
a d i rectory lookup req uest fol lowed by a "do
loca l " response.

Remove d i rectory entry message sent to
d i rectory node. N o message sent i f manager
i s also d i rectory node.

I f requester is the d irectory node, two
messages consisting of a lock request
fol lowed by a response from the manager. If
requester is not d i rectory node, d o a
d i rectory lookup, a resend to manager
response, a lock request to the manager, and
a response back.

Lock request to manager and a response
bac k .

Dequeue message t o manager. Manager may
then send a remove d i rectory message to
d i rectory node if this lock i s the last one.

NOTE: I f the lock request cannot b e granted immediately, add one message. I f the lock is granted, blocking another request, and a blocking
AST was requested, add one message. In all cases the number of messages is independent of the number of nodes in the VAX cluster
system.

Table 5 Performance Summary of the
Distributed Lock Manager

VAX- 1 1 /780 VAXcluster System Locking
Using the Computer I nterconnect (CI780)

ENO + DEO
CVT (up+down)

Local
Locking

Local
CPU

0 .6
0.4

Remote Locking

Local Remote Elapsed
CPU CPU Time

2.7
2.4

1 .5
1 .3

3.9
3.3

MicroVAX I I Locking Using the Ethernet

ENO + DEQ
CVT (up+down)

Local
Locking

Local
CPU

0.7
0.5

Remote Locking

Local Remote Elapsed
CPU CPU Time

6.0
5 . 6

4 . 8
4 . 6

8 . 1
7 . 8

• All numbers are in milliseconds
• For Local Locking, Local CPU � Elapsed Time
• ENO refers to a lock operation, DEO refers to an unlock, and

CVT to a mode conversion

4 0

and i t i s usua l ly the first to d iscover that a mem
bership change is requ i red . The need for a mem
bership change can resu l t from t i ming out a bro
ken connection , or upon d iscovering a new node.
All configuration changes arc made using a two
phase com m i t protocol to ensure consistency on
a l l nodes. To add or remove a node, the coordina
tor describes a proposed configuration to the
other members . They have the option of agreeing
or d isagreeing with the proposed configuration .

They w i l l d isagree i f they can construct a more
opt ima l configuration based on the number of
nodes they can com municate with and on the
assignment of votes to those nodes. The resul ting
VAXc lustcr system can only consist of a strongly
connected group of nodes where every node has a
connection ro each of the others .

In case of d isagreement , the coordinator backs
out of the operation , wai ts a random amount of
t i me , and then in i t i ates the e lect ion protocol
aga in . During this interva l other nodes can
attempt to become the coordi nator. D isagree-

Digital Technical journal
No. 5 September I ')87

ments are quickly resolved so that the node that
can put together the most optimal configuration
becomes the coordinator. At this point, the new
configuration has been described to all nodes and
they have agreed ; therefore , commit messages are
sent.

Thus the connection manager is able to provide
the distributed lock manager with a consistent
view of the processors that are members of the
VAXcluster system. The connection manager can
a lso ensure that the vectors used to identify the
directory node for a given resource are identical
on all nodes. In addition , the manager assigns a
unique identifier, called the cluster system I D
(CSID) , to each processor admitted into the VAX
cluster system.

At the completion of any change in member
ship, the connection manager leads the other
nodes through a lock database rebui ld . The node
that was the coordinator now takes on the role of
a synchronizer. Each node begins to execute a
series of action routines that control how the lock
database is to be rebui l t . Each action routine
describes a particular step in the rebuild pro
cess, and all nodes execute the action routines in
paral lel .

One or more action routines are separated by
synchronization steps. Upon reaching a synchro
n ization step, a node sends a message to the syn
chronizer indicating that that node has com
pleted a step and is waiting for notification to
proceed with the next one. After receiving this
message from each processor in the VAXcluster
system , the synchronizer sends a message to each
node telling it to proceed with the next step.
This process continues until all action routines
have been executed and the lock database has
been rebuilt on all nodes.

From the viewpoint of the distributed lock
manager, the actions taken are identical when
nodes are added or removed. This redistrib
utes the management of resource trees to pre
vent the management of most of them from
migrating to the "oldest" member of the VAX
cluster system .

Upon discovering a broken connection to a
remote node, the connection manager initia l ly
assumes that this condit ion is temporary and
attempts to restore the connection for a speci
fied interval that depends on the instal lation .
During this interval , normal activity can gener
ally proceed. Lock-request and other messages
addressed to the remote node and sent using the

Digital Technical journal
No. 5 September 1 987

connection manager's message del ivery service
are queued pending the re-establ ishment of the
connection . If the connection is re-established,
the queued messages are sent in the original
order, and the sender remains unaware that a
problem existed .

If the connection cannot be re-established
within a specified interval , the connection is
declared i rrevocably broken , and a cluster recon
figuration is required. Locking is disabled on all
nodes duri ng a reconfiguration. Lock requests
can stil l be made , but the processes making them
wil l be blocked pending completion of the state
transition .

The lock database is rebui l t in the following
fashion by each node. First , new lock requests are
disabled . Then, the lock database is scanned and
all directory information is removed, since a
change in membership redistributes the direc
tory functions. Information about locks that are
either held or requested by processes on other
nodes is also discarded . These actions result in a
period of time during which no directory nodes
and no resource managers exist. The only infor
mation retained concerns the lock requests made
by processes actually residing on a node.

At this point the nodes re-acquire al l the locks
held before the membership changed, using the
same algorithm by which the locks were initially
acquired. Locks that were waiting to be granted
are re-ordered by a sequence number that was
assigned when they were queued so that the
order in which they wait is preserved. By the pro
cess of re-acquiring locks, new directory entries
are created and new resource managers chosen.
Since each node re-acquires its own locks, the
locks held by nodes that are no longer members
of the VAXcluster system are released. Once all
locks have been re-acquired, an attempt is made
to grant waiting locks since the removal of lock
requests contributed by a fai led node may permit
wai ting requests to be granted . Once these
actions have been accompl ished, locking is
enabled and activity proceeds normally.

Distributed Deadlock Detection

The requirements for a distributed deadlock
algorithm were to minimize the number of mes
sages involved in a deadlock search, find al l
deadlocks, and not find fa lse deadlocks. Since
the distributed lock manager was to be a general
purpose synchronization tool used by many

4 1

VAXcluster
Systems

The VAXjVMS Distributed Lock Manager

applications, s impl ifications based on assump
t ions about the way i t was used cou ld nor be
made.

From the lock manager's perspective, there are
two classes of deadlocks : conversion , and mul t i
ple-resource . This distinction is made because
conversion deadlocks are eas i ly detected by the
resource manager whereas mu lt iple-resource
deadlocks are detected by a more complex d is
tributed deadlock a lgorithm.

A conversion deadlock i nvolves mult ip le con
version requests on a s ingle resource so that a l l
i nformation wi l l be readi ly ava i lable for the
resource manager to identify them . Let us con
sider a request to convert a lock held at one mode
to another more restrictive mode (e.g. , from CR
mode to EX mode) . I f another lock i s also held at
CR mode , the conversion request must wai t for
the second lock to be released or converted tO a
compatible mode . If an attempt is then made to
convert the second lock from CR mode tO EX
mode, a conversion deadlock resu lts . The first
conversion request cannot be granted whi le the
second lock is sri 11 held at the original mode and
the second conversion request cannot be granted
because it must wai t for the first lock to be
granted .

A multiple-resource deadlock can be identified
by searching for cycles in a " wait-for" graph of
processes . A s imple example can be constructed
with two processes and two resources. Suppose a
process P I , which is already hold ing a granted
lock on resource R 1 , waits for a lock request to
be granted on resource R2 . A deadlock resu lts if a
process holding a lock on R2 that is blocking P l 's
request attempts to acqui re a lock on R 1 t hat is
incompatible with t he granted lock held by P l .

Distributed deadlock detection is imple
mented with an a lgorithm that searches the cl.us
terwide wai t-for graph by sending messages to
traverse arcs that cross system boundaries . The
algorithm using messages tO traverse arcs
between systems was developed i ndependently
both at Digital and at I BM Corporation.6·7

One of the assumptions that was made in the
design of the lock manager was that deadlock
searches wou ld be an infrequent occurrence and
relative ly costly. This being the case , deadlock
searches are in i t iated only after a process has
waited longer than a configuration-specified
period. This has the effect of greatly reducing the
number of searches that are ini t iated . For exam
ple , if process A on system 1 has a lock request

4 2

waiting for longer than the deadlock wai t inter
va l , then a deadlock search is in i tiated on i ts
behalf.

Ti me-outs are detected on the node that is man
aging a resource so that information about aU
lock requests on the part icu lar resource i s ava i l
ab le for the deadlock search . If a conversion
request has t imed-out, the queue of conversion
requests is searched to ident ify whether the
granted mode of any conversion request made
after the t imed-out conversion request is incom
patible with the requested mode of the ti med-out
conversion request. If one is found , a conversion
deadlock exists and a victim is selected. The
wai ting lock request of the vict im is then com
p leted with a error status indicating that a dead
lock was found . Granted locks are never affected
by victim selection .

If no conversion dead lock is found , a more
extensive mult i pie-resource deadlock search i s
in i tiated . The wai t-for graph o f processes i s tra
versed , beginning with t he process owning the
t imed-out lock request and searching for a path
back to that same process. Beginning with the
lock request, each process hold ing a blocking
lock on the resource is tested to determi ne i f the
process has waiting Jocks on other resources . For
each wait ing lock found , the a lgorithm is app l ied
recursive ly until either no more waiting locks are
found or the ini t ia l process is found . In the for
mer case no dead lock exists because no cycle
exists. In the later case a deadlock exists because
a cycle was found to inc lude the process owning
the lock that t imed out .

I f the arcs of the wai t-for graph traverse proces
sor boundaries in the VAXcluster system , mes
sages are sent ind icating that the search should be
continued on the destination processor. The mes
sages i ndicate that the search shou ld commence
with a certa in lock and continue with the u lt i
mate goal of d iscovering a path to the process
owning the t imed-out lock request.

In the i mplementation , two poss ib i l i t ies exist
that must be accounted for . In the first, a b lock
ing Jock is found that is owned by a process resid
ing on a remote system. I n this case the search
must be continued on the remote system by iden
tifying a l l locks that the process is wait ing for . In
the second , a process i s wai ti ng for a lock man
aged on a remote system . In this case the search
must be continued on t he remote system by iden
t ifying all locks that are blocking the waiting
lock.

Digital Technical journal
No. 5 September 198 7

Let us consider the fol lowing example. A wait
ing lock request L 1 owned by process PI on node
N l t imes out , and a deadlock search is i n i t iated .
The search is i nit iated on node N 2 , which man
ages the resource tree . A blocking lock L2 owned
by process P2 located on node N3 is d iscovered
on the resource . A message is then sent to node
N 3 , i ndicating that a search should be continued
there, beginning with the lock L2, with the goal
of finding a path to process P l . Upon receiving
the message, node N3 determines that process P 2
is wai ting o n lock L3 managed b y node N4 . A
message is sent to node N4 to continue the search
starting with lock L3 with a goal of findi ng pro
cess P 1 . Lock L3 is d iscovered to be blocked by
lock L4 that is owned by process P l . S ince a cycle
has been d iscovered, a v ict im is selected, and i ts
wait ing lock request is completed with deadlock
status. Deadlock messages contai n the identity of
the best victim found so far, and a message is sent
to the node i n which the victi m resides.

An interest ing extension to the s imi Jar a lgo
rithm described in reference 6 is used in the
deadlock search. To prevent looping on cycles
that do not i nclude the process with a t imed-out
Jock request and to greatly reduce the worst-case
search t ime , a b itmap is used to i nd icate if a pro
cess has already been visited i n the search. Each
node in the VAXcluster system has a bit map with
one bi t for every process on that node . When the
search is i n itiated, a l l b i ts are cleared. If a pro
cess has been involved in the deadlock search,
i ts corresponding b i t i s set. I f a message then
arrives that i ndicates that this process should
be involved in the search, the message is ignored
since a l l paths from this process have been
searched already.

A node never knows when a deadlock search is
completed because the messages simply die out
when no dead lock is found . Therefore , some way
must be provided to determine when the b itmap
can be reused for a new search. That is accom
plished by assigning a " ti mestamp l ifetime" to
the deadlock search. I n this scheme, one node is
assigned the role of a t imestamp server by the
connection manager whenever the cluster mem
bership changes. To ini t iate a deadlock search, a
node requests a t imestamp from the timestamp
server. The t imestamp represents a t ime sl ightly
in the future . Once that t imestamp has been
issued, the t imestamp server wi l l nor issue
another unt i l that t ime has passed (i . e . , the t imes
tamp has expired) . The in i tial val ue of the t ime-

Digital Technical journal
No. 5 September I ')87

stamp is 50 miU iseconds, based on an estimate of
a reasonable worst-case search t ime . The t imes
tamp is used in the deadlock messages to indicate
a speci fic deadlock search.

Whenever a deadlock message is received , i ts
t imestamp is compared to a t imestamp stored
with the bitmap. The comparison determines
how the bitmap is to be used . There are three
possible cases, described as fol lows :

• The message value exceeds the bitmap value -
The bitmap was being used by a previous
deadlock search and i ts t imestamp l ifetime has
expired . In this case the b i tmap is ava i lable for
use by t he new deadlock search . The b itmap is
cleared and the t imestamp from the message is
saved with it . The new search is then contin
ued .

• The bitmap equals the message value - The
bitmap is ava i lable and has already been used
by an earl ier message i nvolved in this search.
Proceed with the search. If the bit corre
sponding to the process requesting the lock is
a lready set, then ignore this message since a l l
paths from this process have already been
searched .

• The bitmap value exceeds the message value
The bitmap has been preempted by a sub
sequent deadlock search. The timestamp
assigned to this message expired before the
search completed . Abort this deadlock search
for now but rein i t iate it later with a new t imes
tamp that is double the last t imestamp's l i fe
t ime.

The bitmap opt imization provides not only the
performance benefits noted above, but a lso pre
vents the a lgori thm from looping when i t
encounters unsuspected deadlocks. For example,
suppose process A is wai t ing for B which waits
for C which waits for B. Processes B and C have a
dead lock that wi l l not be d iscovered when
searching on behalf of process A s ince the u lt i
mate destination of the search is process A . How
ever, the deadlock wi l l be found when searching
on beha lf of B or C . The use of bitmap opti miza
tion prevents the search from loop ing when
searching on behalf of process A.

Acknowledgments

The authors wou ld l i ke to acknowledge a l l those
who worked to make VAXcluster systems a real
i ty . We especially want to acknowledge Steve

4 3

VAXcluster
Systems

The VAXjVMS Distributed Lock Manager

Beckhardt , who designed and implemented t he
distributed lock manager. Also, our thanks to
Steve Neupauer, who supplied the performance
figures, and to a l l those who reviewed t his paper.

References

1 . N . Kronenberg, H . Levy, and W . Strecker,
"VAXclusters : A Close ly-coupled Dis
tributed System," A CM Transactions on
Computer Systems , vol . 4 , no. 2 . (May
1 986) : 1 30 - 1 4 6 .

2 . L . Kenah and S . Bate, VAX/VMS Internals
and Data Structures , (Bedford : Digita l
Press, 1 984) .

3 . M . Fox and] . Ywoskus, " Local Area VAXclus
ter Systems , " Digital Technical journal
(September 1 987 , th is issue) : 5 6-68.

4 4

4 . J . Gray , R . Lorie, G . Putzo lu , and I . Traiger,
"Granu lar i ty Of Locks and Degrees of Con
sistency in a Shared Data Base ," IBM
Research Report RJ I 654 (I 9 7 5) .

5 . VAX/VMS System Services Reference Man
ual (Maynard : Digital Equipment Corpora
t ion , Order No . AA-Z5 0 I C-TE, I 986) .

6 . R . Obermarck , "Global Deadlock Detec
t ion ." IBM Research Report RJ284 5 (3 6 1 3 1)
Oune 1 980) .

7 . S. Beckhardt , Digital Equipment Corpora
tion Internal Memorandum describing the
dead lock detection a lgori thm used by the
VMS operating system.

Digital Tet:hnica/ jourual
No. 5 Seplembf!r I 'J87

Andrew C. Goldstein I

The Design and Implementation
of a Distributed File System

The advent of VAXcluster systems, with their simultaneous requests for
storage data, altered the requirements of the file functions in the VMS soft
ware. To replace the single-system process, an extended QIO processor
was developed to synchronize file accesses. The locks in the VMS lock man
ager provide that synchronization by arbitrating and blocking requests.
Deadlock is prevented by taking out locks in a consistent order. Proper
cache management is ensured by locks with sequence counters and a set of
synchronization queues. This total scheme works so weU that, in addition
to VAXcluster hosts, it is used for single systems as weU.

The VMS fi le system provides basic fi le-manage
ment faci l ities to a l l VMS users and to many other
components of the VMS system itself. From a raw
d isk, which consists simply of a series of data
blocks, this fi le system provides files and fi le
management, d irectories, security enforcement ,
and a variety of functions related to the intrica
cies of managing a fi le structure. The VMS inter
face to the fi le system is the SQIO system ser
vice . 1 The SQIO read and write functions provide
block-level access to fi le data . Other SQIO func
tions specific to the fi le system create , access,
modify, and delete fi les .

The SQIO service normal ly leads to the VMS
driver context . This context consists of ini t ia l
kernel-mode execution i n the process context,
with few system services a l lowed, fol lowed later
by interrupt-level execution . The complexity of
the file system makes it impractical to execute in
the normal driver context. Therefore , the VMS
system provides two methods for extending the
operating context of the fi le system to provide
the richness needed to support i ts complexity.

The Ancillary Control Process

I n VMS releases 1 through 3 , a technique cal l ed
the anci llary control process (ACP) extended the
fi le system's context. An ACP is a separate VMS
system process that executes in a privi leged con
text . Al l the VMS services normal ly available ro
processes are ava i lable to the ACP, thus making
feasible the implementation of complex code .
The ljO processing routines (the FDT routines)

Digital Technicaljournal
No. 5 September 1987

i n a process context send SQIO functions for the
fi le system to the ACP. In turn , the ACP executes
the functions in i ts own context, returning com
pletion data and status to the cal ler by using the
ljO completion routines in t he VMS kernel . An
extension of the VMS buffered-I/O mechanism
copies both the cal ler's arguments to the ACP and
the return parameters back to the caller .

In addition to the extended execution environ
ment, the ACP concept provides an important
fac i l i ty to the fi le system : synchronization . The
VMS fi le system ACP executes user functions in a
single stream, completing each function before
starting the next one . Thus a l l fi le functions are
inherently synchronized because only one ACP
performs fi le management on a volume . More
over, the i mplementation of a fi le system cache
becomes qui te s imple and straightforward when
operating in the single-process context . Figure 1
depicts the ACP-based fi le system .

D I S K
VOL U M E

Figure 1 A CP-based File System

4 5

The VAx'jVMS Distributed Lock Manager

Cluster Alternatives

Many of the attributes that made the ACP concept
attract ive were i nval idated when the VMS soft
ware had to su pport the VAXcluster concept.
VAXcl uster systems requ i re that each d isk vo l
ume be accessible to a l l host systems in t he c lus
ter. Therefore , a disk volume can no longer be
served by a single process. We examined other
concepts, i ncluding having a s ingle " master ACP"
for a vol u me on one member of the cluster . That
ACP wou ld then execute a l l fi l e fu nctions for a l l
c luster members . We rejected t h i s approach ,
however, because of the high avai labi l i ty requ i re
ments of VA.'Xcluster systems. Transferring the fi le
system context to another cl uster member in the
event of a fai lu re woul d have been very d i fficu l t .

Based on those considerations, we chose an
approach that uses a symmetrica l f i le- manage
ment design in which the fi le functions execute
on the cluster member on which they origi nate .
No longer having the impl ic i t synchronization
and cache management of a s ingle ACP, we were
now forced to address those issues expl ici t ly i n
the distributed system .

The Extended QIO Processor

Our need for an expl ic i t synchron ization scheme
e l im inated one of the major attractions of the
ACP : i ts impl ic i t synchron ization . In addit ion, it
seemed redundant to have two schemes - one
i mpl icit (ACP) and one expl ici t - to manage
fi l e operations . Therefore, rather than us ing
exp l ic i t synchroni zation only between cluster
members, we chose to usc it for a l l operations,
i ncluding those local tO one processor. As a
resu lt , we developed the second operat ing con
text for the fi le system now ava i lable i n the VMS
softwa re : the extended QIO processor, or XQP.
The XQP executes as an asynchronous system
trap (AST) thread at the kernel level in the con-

USER

XOP

4 6

USER

XOP

l
/ f'...

DISK
VOL U M E

'-

Figure 2 XQP. hased File .�vstem

U S E R

XOP

text of the ca l l i ng process . An extended kerne l
stack and a data area located in the process's
P l region provide the necessary execution con
text. S ince execution occurs a t i nterrupt prior i ty
leve l (lPL) 0, a l l the basic system services can be
used . Figure 2 depicts the XQ P-bascd fi le syste m .

The XQP design for the fi le system has several
advantages over the d istri buted master-ACP
design :

• Consistency - Al l fi le operat ions are synchro
n ized in the same way, whether the vol u me is
access ib le cl usterwide or not. This technique
s impl ifies the synchron izat ion design and pro
vides fewer opportu n i t ies for bugs .

• Performance - We e l im inated the process con
text switch associated with an ACP ca 1 l by ru n
n ing the f i le system i n the context of the
ca l ler .

• Concurrency - Mult i p le fi le operations can
proceed concurrent ly , in many cases , by
imp l ementing exp lic i t synchroni zation where
it is needed , t hus i mprov ing system perfor
mance .

The remainder of th is paper concentrates on
the prob lems u n ique tO the VAXcluster dis
tr ibuted-fi le system : synchron ization , and cache
management.

Synchronization
The fi le system requires synchroni zation for two
basic reasons:

I. F i l e structure integrity - Mul t ip le users must
be prevented from s imu l taneously modifying
the same pans of the fi le structure (e .g . ,
atte mpting to fi nd and a l locate the same
piece of free disk space to different fi l es) .

2 . F i le system semantics - Certa in fi le opera
t ions provide user- level sync hron ization
(e .g . , preventing two users from s imul ta
neously accessing the same fi lc in a confl ict
ing manner) .

Synchron ization is ach ieved first by organ izi ng
the fi le structure into un i ts that can be synchro
n ized . then by using an underlying fac i l i ty to
control concurrency. The VMS l ock-management
services provide an idea l synchron izat ion fac i l i ty
for VAXcluster systems 2 The VMS fi le structure
readi ly decomposes i nto managea ble uni ts . In
fact , a l l u n i ts are fi les . Natura l ly . a fi le i tsel f i s a

Digital Technical journal
No. 5 Seplernber 1987

fi le . A d irectory is a fi l e . Even the volumewide
management structures (e .g . , the quota fi le and
the srorage bi tmap) arc fi les . Thus the fi le is the
natural u n i t of synchron ization for most aspects
of fi le operat ions . 1

Each fi le has a 4 H-bi t fi le l D that un iquely
ident ifies the fi le with in a vol u me or vol u me set .
Removing the sequence nu mber from the fi le lD
leaves a 3 2 -bi t integer that u n iquely identifies
the fi l e at any instant of t ime . This i nteger, the
fi le nu mber , forms the resource name that syn
chron izes operations on the fi le . A fil e consists of
i ts contents p lus a fi le header, both of wh ich are
synchronized by a si ngle lock. Not all Jocks arc
based on individual fi les . For example, for conve
n ience and efficiency , a si ngle-vol ume synchro
nization Jock controls the al location and deal lo
catioo of a l l free space and fi le headers .

Armed with this introduction , we can now
examine in deta i l how each lock is used ro syn
chronize the operations of rhe file system .

Device Lock

'J'he device lock manages the states of devices
accessed by the c l uster. The resource name of the
lock i s derived from the device name, prefixed
with the text string SYS S . The fol lowing lock
modes represent the device state:

Lock Mode

(No lock)
CR

PW
EX

Device State

Id le
Volume has channels assigned
andjor is moun ted for shared
access
Mount in progress
Volume a l located or mounted
privately

These lock modes provide the same device
arbi tration that is ava i lable on single-CPU VMS
systems. The va lue block of the device lock con
tains addi t ional deta i l s about the device state
(device ownership and protection , whether
mounted or nor , whether mounted on a fore ign
system or not , etc .) .

Mount Lock

'J'he device arbi tration semant ics in the VMS sys
tem dictate that the device lock may not be
wai ted upon ; any attempt at a confl icting access
to a device yields a lock error. Therefore . an add i
t ional mount lock wi ll serial ize concurrent
attempts to mount the same device. The resource

Digital Technical journal
No. 5 September I ')87

name of the mount lock is aga in derived from the
device name. prefixed with the text string
MOU S . The mount lock is he ld in EX mode whi le
a user mou nts a device . thus a l lowing others in
the cl uster to queue beh ind the current mount
operation .

Volume Synchronization Lock

Mounti ng a volume creates the volume synchro
n i zation lock in CR mode . This lock represents
the mounted volume and associates one for one
with the device on which the volu me is mounted.
The Jock 's resource name is derived for shareable
volu mes from the vol u me labe l . prefi xed with
the text string F 1 1 B Sv . Thi s derivation guaran
tees that a l l shareable vol u mes mounted in the
c luster w i l l have un ique volume labe l s . Non
shareable volumes usc the system address of the
u n i t contro l b lock (UCB, the VMS data structure
represent ing the device) as the volume lock
name, thus a l lowing vol u mes with dupl icate
names to be mounted. The value b lock of the vol
u me lock conta ins additiona l flags to describe the
state of the volume as wel l as the a l locat ion and
buffer-management states.

Both the device lock and the volume lock must
he held by a c l uster member for the tota l length
of t ime a volume is mou nted . This period wi l l
usua l ly exceed the l i fet ime o f any process i n the
system . Therefore , normal locks. which arc asso
c iated with an owner process. cannot bc used .
I nstead . thc fi le system uses system-owned locks .
which arc he ld by the system as a whole , not by
any part icular process. As a resu l t . they survive
the l i fe of any ancl a l l processes in the system .
These locks arc re leased only when expl ici tly
commanded by thc system software or when the
system lcavcs the cJ uster (e .g . , i t crashes) .

The volume synchronizat ion lock a lso synchro
n i zes the a l locat ion and cleal locat ion of a l l space
on the vol ume. When the XQP wishes to a l locate
space (e . g . . to create a fi le) , it takes a scparate
copy of the volume lock in PW mode. (Note that
PW mode is compatible with the CR-mode Jock
representing the mou nt , but i ncompatible wi th
i tse lf. That ensu res that on ly one process wi l l
attempt to a l locate or deal locate space at the
same r ime .) This form of the vol u me lock is held
as a process lock. but on ly for short periods of
t ime (the duration of a s ingle fi le function or
less) . Pan of the va l ue b lock for the volu me lock
controls the a l l ocation of space and contains the
current count of free blocks as we l l as poi nters

4 7

VAXcluster
Systems

The VAXjVMS Distributed Lock Manager

in tO the space-allocation bitmaps. Upon ra is ing
the volume lock to PW mode, the XQP reads this
value block and wri tes it back to the lock man
ager upon release .

File Serialization Lock

The fi le seriali zation lock synchronizes aU opera
tions t hat affect the state of an ind ividual fil e . The
resource name of the fi le seria l ization lock is sim
ply the fi le nu mber, prefixed with the text string
F I I B Ss. The resource name is qualified by the
volume name by virtue of being a sublock of the
volume synchronization lock. By holding the
file serial ization Jock at PW mode, the XQP
ensures that only one operation (opening, clos
ing, extendi ng , deleting, etc .) is performed at a
t ime on any one fi le . The serial ization lock also
ensures that only one operation i s performed at a
t ime on any one d irectOry. The fi le serial ization
lock, a process lock, is held only for the duration
of a single fi le operat ion .

The locks described so far are sufficient tO
assure the i ntegrity of t he fi lc structure in the
face of concurrent operations . However , two
addi tional locks are required to support the syn
chronization semant ics that the fi le system pro
vides tO i ts users .

Arbitration Lock

The fi le system provides access arbitra tion for
fi les; that is , users may open fi les for read or
write operations and can specify whether other
users may open the fi le concurrently . An arbi tra
tion lock is used to arbitrate fi le access across a
c luster. The resource name of the arbitration lock
is the fi le number, prefixed by the text string
F I I B Sa and the volume lock name (the resource
name of the volume lock) . The arbi tration lock is
held as a system-owned lock i n any of the avai l
able lock modes, depend ing on the state of access
of the file . These states of access are

4 8

N L - No-Jock fi le access

CR - Open for read , a l lowing other
readsjwri tes

CW - Open for readjwrite , a l lowing other
readsjwrites

PR - Open for read , a l lowing other readers

PW - Open for readjwrite, allowing other
readers

EX - Open for exclus ive access

S ince the arbi tration lock is held for the entire
t ime that a fi le is ope n , its usc is optimized . One
system -owned lock represents the state of al l
accesses to t he fil e on each c luster node . The
loc k mode represen ts the " h ighest" mode of
access to the fi le on that cluster member .

Blocking Lock

Certain ma intenance operations on the fil e struc
ture require it to be held stable for a period of
t ime . For example , the ANALYZE/D ISK ut i l i ty
wi l l lock out a l l fi le operations during a disk
rebu i ld operation by using privileged fil e func
tions to lock t he volume. To implement the lock
i ng function c lusterwide requi res another
vol ume-specific lock, the blocking lock. The
resource name of the blocking lock is the volume
l ock name, prefixed by the text string F l l BSb .

Since performance degrades if the lock man
agt:r checks on the blocking lock as each file
function starts, this lock is managed in a n opti
mi zed fashion . Under normal condi tions , each
c luster member holds t he block ing lock as a sys
tem -owned loc k i n CR mode . This state is noted
in the vol ume control block (VCB) . Thus the start
of every fi le fu nction requi res on ly a local state
check . When a lock-vol ume function executes , it
attempts ro raise t he blocking lock ro EX mode .
Since t he EX lock is incompatible with the CR
locks , a system-blocking AST routine wi l l be exe
cuted on each cl uster member hold ing the lock
at the CR mode . This AST rout ine executes as a
su brou tine cal led at IPL 8 using the JSB sub
rout ine ca l l instruction . The routine acqui res
process context by " borrowing" the swapper
process . A kernel A..I)T is then queued ro the swap
per, causing another rout i ne lO execute in the
swappcr's process context . This other routine
releases the CR-mode blocking lock and up
d ates the VCB context accord ingly. When all the
CR-mode locks have been re leased, t he EX lock
wi l l be granted and the lock-volume function
comp letes

The volume wi l l rema i n locked because the
blocking- lock check at the start of every fi le fu nc
tion wi l l now fai l . When that happens, the XQP
wi l l attempt to reacquire the blocking Jock. This
a ttem pt causes the process to stal l because the
blocking lock is sti l l held e lsewhere in EX mode .
When a n unlock-volume funct ion fi nally releases
the blocking lock, a l l processes waiting for the
lock wi I I also be released and the CR mode lock
is re-establ ished . Normal fi le operations can then
proceed .

Digital Technical journal
No. 5 Septernbe1· I 987

Deadlock Prevention and
Locking Order

The execution of a si ngle fi le function can
involve taking out several locks. Holding more
than one lock at a t ime always presents the poten
t ial for deadlock . The XQP avoids dead locks,
however, by taking out locks i n a consistent
order, as fol lows :

I . Blocking lock

2. Directory seria l iza tion lock

3. File seri a l ization lock

4 . Volume lock

5 . Other special locks

Note that the ordering of the directory and fi le
locks assumes a truly hierarchical directory struc
ture . The VMS fi le structure a l lows the creat ion
of arbi trary l inks; thus directory l i n.ks can point
"upward " in the directory hierarchy. Any artempt
to traverse an upward l ink while another process
is traversing the correspondi ng downward I ink
can result in a dead lock error. The VMS system
views such deadlocks as an exceptional circum
stance and returns them to the caller.

Caching

The fi le structure of the VMS fil e structure is
complex . -� Typical fi le operations require the
examination or mod ification of several separate
components of the fi le structure. To achieve
acceptable performance, the VMS fil e system has
always maintained extensive caches of compo
nents of the fi le structure . These caches include
the fol lowing:

• A genera l-pu rpose block-buffer cache holds
recently read disk blocks containing file struc
ture components.

• A fi le control block (FCB) l ist describes the
attributes and states of all open fi les and
recently referenced directories.

• An extent cache holds a portion of the disk's
free space for fast allocation and deal locat ion .
Space held in t he extent cache is marked " in
use" in the disk's storage bitmap (the primary
structure that controls space al locat ion) to
ensure safety if the system crashes. Shou ld the
system crash, the space in the extent cache
will be temporarily lost . Because this space
has been marked " i n use ," there is no possibi l
i ty of space that was a ! located to fi les before

Digital Technical journal
No. 5 September 1 98 7

the crash being aga in a l located to other files
after the crash . Lost space is usually recovered
with a disk rebui ld operation after the volume
is mounted .

• A fi le- I D cache holds a set of free fi le nu mbers
for fast a l location and deal location of fi le
headers . Similar to those in the extent cache,
fi l e n u mbers held in this cache are marked " i n
use" in the d isk's fi le-number bitmap.

• When quota management is in effect, a quota
cache holds quota records for currently act ive
users.

Together, these caches absorb over 75 percent
of the disk 1/0 that the fi le system wou ld other
wise incur in perform ing fi le management func
t ions.

I mplemcming these cac hes in the single-sys
tem ACP context was relat ively stra ightforward.
The block-buffer cache was located in the ACP's
process context ; the rema ining caches occu pied
sma l l portions of the system non paged poo l .

The advem o f clusters and t h e X Q P introduced
the traditional prob lems of maintain ing cache
coherency in a d istributed envi ronment . These
problems were solved by using tradi tional cache
consistency techniques and both trad it ional
and nontradi t ional appl ication of the VMS lock
manager. Many of the synchroni za tion locks
described so far also play a second role in manag
ing the caches.

To put the block-buffer cache into a shared
context , we moved this cache from the ACP pro
cess context tO the system paged pool . The other
caches remai ned in their exist ing locat ions Since
each CPU in a cl uster has i ts own set of caches,
a l l were synchron ized with locks using a combi
nat ion of sequence counters and blocking ASTs .

Because major changes were involved , we wok
the opportunity w examine some of the design
decisions made in VMS version I. Based on this
exam ination , we made some a l terations to reflect
the changes in sca l e that have taken p lace i n the
VMS software since i rs ini t ial release . For exam
p le , the original block-buffer cache bad used l in
ear searching on i ts descriptor tables. The new
block-buffer cache uses descri ptors based on a
hash tabl e to a l low faster access ro a la rge cache .

Previous versions of the VMS system used a si m
ple directory-i ndex mechanism built into the
d irectory's fi le control block . I n effect . this
mechan ism kept a smal l table of corm:nts that
al lowed faster access to the entries of a d i rectory

4 9

VAXcluster
Systems

The VAXjVMS Distributed Lock Manager

fi le. In the XQP conversion , this i ndex was
moved into the block-buffer cache to i ncrease
the space avai lable to each d irectOry index, thus
i mproving i ts effecti veness .

Block Buffer Cache

The block-buffer cache consists of a col lection of
5 1 2 -byte buffers for disk blocks , plus the neces
sary collection of descriptors and hash tab les.
Cache coherency is maintained using the trad i
tional lock and sequence-number technique.

Every fi le structure block processed by the
XQP is governed by some synchroni zation lock.
The value block of the lock contains a sequence
number representing the last update to blocks
governed by that lock. Upon reading a block , the
fi le system associates the current sequence num
ber with the copy of the block held in the cache .
Upon mod ifying a block, the fi le system incre
ments the sequence number and, at the end of the
fi le operation, releases the lock with the updated
sequence number. The corresponding locks are
not ful ly released i f any data blocks remain in the
cache . Instead, the locks are demoted to NL mode
to preserve the continuity of the value block .

If another system's XQP su bsequently refer
ences this file structure block and finds an old
copy of it in its own block-buffer cache , that sys
tem will find that the sequence numbers in the
cache descriptor and in the value block of the
lock do not match. This mismatch indicates that
the block has been modified , and that the cache

CACHE
HEADER

LOGICAL
BLOCK
N UMBER
HASH
TABLE

LOCK 10
HASH
TABLE

contents are invalid and must be refreshed from
the disk.

We observed earl ier that the volu me synchro
n ization lock and the file seria l ization lock are
the only ones strictly necessary tO ensure the
integrity of the fi le structure . Consequently, al l
f i le structure data is read and written u nder these
two classes of locks , which govern cache
coherency. Blocks related tO space allocation on
the volume, such as the storage and fi le-number
bi tmaps, are processed under the volume lock.
All other blocks, such as fi le headers and direc
tory contents, are processed under the fi le serial
i zation lock of the fi le to which they belong. The
fi le seria l ization lock carries two sequence num
bers to discrimi nate berween updates to fi le data
(e .g. , di rectory contents) and u pdates to fi le
headers (e.g. , the directory fi le header) .

Detailed Cache Organization

The bu ffers of the cache are part i tioned into fou r
buffer pools . These pools contain

• File headers and file-nu mber bitmap blocks

• Storage bitmap blocks

• Di rectOry, quota fi le , and m iscellaneous data
blocks

• Directory i ndex blocks

This part ition ing is needed because one or two
buffers of each type may have to be ava ilable con
currently. For example, creating a fi le might

BUFFER

Figure 3 Buffer Cache Structure

50 Digital Technical journal
No. 5 Septembe,. I ')87

requ ire concurrent access to the fi le header, the
srorage bitmap for space allocation , and the
d irectory to create the d irectory entry. Each
buffer pool is managed using a variant of least
recently used (LRU) rep lacement . Consequently,
the buffer manager can guarantee concu rrent
access to one or rwo buffers of each type withou t
any explicit buffer lock and release mechanism.
(Cerra in fi le and di rectory operations require
concurrent access to two fi le headers or two
d irectory blocks .) The structure of the buffer
cache is shown in Figure 3 .

Each buffer has a buffer descriptor (BFRD) ,
which contains the information needed to iden
t ify and manage the current buffer contents, as
shown i n Figure 4 . The BFRD conta i ns the fol low
i ng information :

• An logica l block nu mber (LBN) and a un i t con
trol block (UCB) to identify t he disk address
and the volume of the block contained in the
buffer

• The lock basis (i . e . , the root of the resource
name for the lock govern ing t he buffer)

- QU EUE -LINKAGE

LOGICAL BLOCK NU MBER

UNIT CONTROL BLOCK

LOCK BASIS

SEQUENCE NUMBER

BFRL TYPE I FLAGS

NEXT PROCESS ID

Figure 4 Buffer Descriptor Block

REFERENCE COUNT I NEXT

LOCK 1 0

LOCK BASIS

PARENT I D

Figure 5 Buffer Lock Block

Digital Technical journal
No. 5 September 1 987

• The buffer sequence number from the va lue
block of the lock

• A poi nter to t he lock block of t he buffer

• Flags, including valid and mod ified

• A process ID of the buffer's owner

• Queue pointers for state queue l inkage

• A hash-chain l in k pointer

In add i t ion , a buffer lock block (BFRL) , shown
in Figure 5 , is associated with each buffer, sev
eral of which may be processed under the same
lock . Thus the BFRL ident ifies the lock under
which some set of buffers is managed and con
tains the follow i ng information :

• The loc k ID of the lock

• The lock ID of t he parent lock

• The lock basis

• A reference cou nt

• A hash-chai n l ink pointer

Buffers and locks are fou nd using two hash
tables, one each for BFRDs and BFRLs . The disk
block LBN is used tO hash in to the BFRD hash
table ; the lock basis is used to hash in to the BFRL
hash table. Each entry in the table forms the head
of the hash cha i n for a set of BFRDs or BFRLs.

The cache header t ies together the compo
nents in the block-buffer cache . The cache
header contains

• Base pointers for the hash tables

• The BFRD and BFRL lists

• Availab i l i ty counts and descriptors to form the
four parti t ions of the buffer cache

• Performance counters

• Several synchron izat ion queues

Each synchroni zation queue is described as
follows :

• Cache synchroni zation queue - Changes to
the cache descriptors (e .g . , signing a buffer
out of the cache for process use or changing
the contents of a buffer) must be serial ized.

• Pool wa i t queues - I f i nsuffic ient buffers are
left i n the buffer pools, the XQP must wait
before process ing a fi le function .

5 1

VAXcluster
Systems

The VAXjVMS Distributed Lock Manager

• Ambigui ty queue - The lock name used to
synchronize a fi le header someti mes changes.
For example, a l l headers of a multi header fi le
are synchronized u nder the seria l ization lock
of the primary fi le header. Therefore, the lock
name for an extension header wi l l change
when the fi le is deleted and the header reused
for another fi le . The ambiguity queue is used
when the VMS software finds that a fi le header
buffer is owned by another process under a
different lock . Thus the queue al lows the cur·
rent ly executing XQP to wa it unt i l the state of
the header buffer stabi l i zes.

S ince each host CPU has a buffer cache, access
to it is not synchroni zed by the lock manager .
Rather, an informal queuing mechanism, which
saves considerable overhead, is used . When an
XQP must wait on one of the buffer header
queues, it si mply sends the 1/0 packet represent·
ing the current fil e operation in to the appropri·
ate queue and suspends execution . Some time
later, another process i n the system w i l l rectify
whatever condi t ion the first process was wai t ing
for (e .g . , making buffers ava ilable) . Having done
so , the other process checks the appropriate
queue to detect that the first process is wai t ing.
The first process is then restarted by removing its
1/0 packet from the synchron ization queue and
using the 1/0 packet to queue an AST.

Buffer Management

In the block-buffer cache , each buffer is in one of
two states: either it is avai lable for use (and may
or may not contain va l id disk data) , or i t is owned
by a process (and only one process) . The cache is
carefu l ly managed to avoid resource dead loc ks
and to prevent individual processes from "hog·
ging" i t .

A resource deadlock happens when a process
partially executes a fi le function , then d iscovers
t he need for an additional 1/0 buffer. Being par·
tially complete, the process probably holds some
locks. If no more buffers were avai lable, the pro·
cess would have to wai t , holding its locks. In the
meantime , some other process, also holding some
1/0 buffers , might attempt to acquire a lock that
the first process is holding. In this case, that
other process wi ll stal l . This situation is the clas·
sic deadlock of "A is holding X and wait ing for Y,
B is holding Y and wai t ing for X . " Yet the VMS
lock manager wou ld not detect this dead lock
because some of the enti ties involved are not
Jocks.

5 2

Resource deadlocks are avoided by reserving
sufficient buffers before starting a file function .
Thus the fi le system i s designed so that a l l fi le
functions can be completed us ing a known mini ·
mum number of buffers . I f this m i n i mum num·
ber is not available, the XQP must wait on the
pool wait queue. Therefore , deadlocks cannot
occur because the XQP is not yet holding any
locks.

Bu ffers are reserved by simply decrementing
the pool availabi l ity counters in the cache
header. Individual buffers are not actually taken
by the process unt i l needed. The state queue
l inkage and the owner process 1 0 (PID) repre·
sent the state of a buffer . An available buffer is
l inked i nto the LRU l ist corresponding to the
buffer pool ; this buffer has a zero-owner PID . A
process takes a buffer when the process wishes to
read a part icular d isk block . The process selects
an appropriate buffer either by finding the
desired disk b lock i n the LBN hash table, or, i f
the block i s not found , by removing the oldest
buffer from the front of the LRU l ist . Tak i ng a
bu ffer for process use involves first removing it
from the LRU list and entering it into the pro·
cess's in-process l ist , then entering the process
1 0 into the buffer's owner P I O field .

A bu ffer i s never taken if marked with a d iffer·
ent owner PID (i . e . , owned by another process) .
If the buffer is for a file header, the lock basis for
the header could be changing; therefore , the
XQP must wait on the ambiguity queue. The lock
basis for other types of buffers never changes
whi le the buffer is owned . Therefore , find ing a
buffer owned by another process i ndicates that
fil e synchronization has been violated, which
causes a system crash.

In many cases, more buffers than the necessary
minimum may be usefu l in processing a fi le func·
t ion (e .g . , when a fi le has many headers or a large
directory must be searched) . If more buffers are
avai lable i n the cache , the XQP wil l continue to
reserve and take them for process use . Once the
cache avai labi l i ty cou nters fa l l below a minimum
threshol d, however , the XQP wi l l stop reserving
addi t ional buffers . I n this case, the XQP must
return a buffer from its in -process J ist for each
new buffer taken . This swap prevents one very
complex fi le operation from hogging a l l avai lable
bu ffers and guarantees a minimum level of opera·
t iona! concurrency.

At the end of a fi le operation , a l l buffers held
on the in -process l ist must be returned tO the
cache. Si nce modi fied buffers are not held in the

Digital Technicaljournal
No. 5 September 1987

cache , any on the in-process I ist are written back
to the disk as they are returned . A'> the buffers are
returned , the XQP ensures that each one is asso
ciated with a BFRL correspondi ng to the synchro
ni zation lock under which the bu ffer was read .
The XQP wil l release a l l synchronization locks
when a l l buffers have returned . Locks corre
sponding to buffers remaining in the cache are
not re leased but are demoted to NL mode to pre
serve the buffer sequence number.

The inabi l i ty to hold mod ified buffers in the
general cache is a small regression from the ACP
based fi le system. VMS versions 2 and 3 cou ld
hold modi fied fi le headers of fi les currently open
for write in the cache . That abi l i ty saved a wri te
operation when such a fi le was modi fied (e .g . ,
extended) . Now, the technique of hold ing modi
fied buffers and flush i ng them under a blocking
AST is we l l understood . It is possible to add the
necessary mechanism to the new buffer manager.
However, deve lopment ti me constra i nts pre
vented us from including this capabi l i ty in VMS
version 4 .

User Interference

The fi le system is designed to tolerate the modifi
cation of the file structure components by user
level software (such as the disk-rebui l d ut i l i ty) .
Therefore , when a user process opens the storage
bi tmap fi l e for a write operation , for example,
any updates to that fi l e must be accounted for i n
the block-buffer cache . This task i s accompl ished
by first recogn izing fi les that constitute compo
nents of the file structure when they are opened
for write , then routing a l l wri tes through the
XQP. The XQP checks a l l b locks written aga inst
the cache and i nval idates matching cache
buffers.

File Control Blocks

Like the block-buffer cache , the fi le control
b locks for open fi les and di rectories represent
repl icated cache data that must be kept coherent .
The blocking AST mechanism in the lock man
ager solves this coherency prob lem . Recal l that
each cl uster member holds an arbitration lock for
each open file on a c luster-accessible volume .
Associated with t he arbitration lock is a system
blocking AST routine. Fi l e access arbitration
never invokes this rout ine because arbi trat ion
does not wai t for fi l e accessibi l i ty . (F i le access
confl icts are returned as errors to the caller .)

When a user modifies the attributes of a fi le (i ts
size, protection , etc .) , the various fi le control

Digital Technica/Journal
No. 5 September I ')87

blocks across the c luster must be updated . This
task is done by queu i ng an EX- lock request for
the arbitration lock, thus causing the blocking
AST rout ine to execute . The AST rout ine s imply
marks the loca l f i le control block "sta le . " Once
queued , the EX- lock request w i l l be i m mediately
canceled since it wi l l norma l ly never be granted .
On the other cluster nodes, the next operation on
the fi le wi ll update the fi le control b lock . The
XQP, fi nd ing the fi le control block marked stale ,
wi 1 1 refresh i t with file data read from the disk
and rearm the blocking AST by re-establ ishing the
arbi tration lock .

Quota Cache

The quota cache presents a unique cluster-syn
chronization prob lem . The quota cache contains
a sma l l nu mber of currently active quota records,
each represent ing a fi le owner to whom file
space has been charged . Now, users normal ly
mod ify fi les owned on ly by themse lves. There
fore, a smal l cross section of the quota fi le , repre
senting the set of users currently logged in to the
system , can be cached with excellent local i ty .
The quota cache is especia l ly effective because
quota changes are reflected on ly in the cache
ent ries. These changes are written back to the
quota fi le only when replacement removes them
from the cache . As a resu l t , a properly sized
cache e l i m i nates a lmost a l l the overhead of quota
management . Figure 6 i l l ustrates the access to
the quota cache, and Figure 7 the entry to that
cache .

Preserving the performance characteristics of
the quota cache presented us with a u nique
problem. The loca l i ty of use of fi le owners does
not in any way reflect back into local ity of use of
quota fi l e b locks . Thus the cache entries must be
hand led on an ind iv idual basis . Quota-cache
coherency across the cluster is maintained by
using a separate lock for each quota-cache entry.
The dynamic part of a quota record (q uota, over
draft, and usage , plus some flags) just fi ts i nto the
1 6 -byte va lue block of the lock. The resource
name of the lock is the fi le owner, plus the vol
u me name and the text string F I I B S q .

A lock held a t PW mode backs u p each va lid
entry to the quota cache . When another XQP in
the cluster wishes to usc the same quota record .
that XQP must find a sui tab le cache entry (by
fi nd ing the fi le owner in i ts cache or raking the
LRU cache entry) and then enqueue for the lock
at PW mode . This action triggers a blocking A�T

5 .3

VAXcluster
Systems

The VAXjVMS Distributed Lock Manager

,----

-

UNIT
CONTROL

BLOCK

VCB

VOLUME
CONTROL

BLOCK

QUOCACHE

QUOTA
BLOCK

QUOTA BLOCK
AST CONTR. BLK.

QUOTA FLUSH
AST CONTR. BLK.

QUOTA CACHE
ENTRIES

Figure 6 Quota Cache

LRU I N DEX I CACHE I N D EX

LOCK I D

FLAGS I RECORD NUMBER

USAGE

PERM QUOTA

OVERDRAFT

USER ID CODE

Figure 7 Quota Cache Entry

VAL U E
C K BLO

on the node currently holding the lock at PW
mode . Because the quota-cache lock i s system
owned , the blocking AST rout ine wi l l execute at
I PL 8 . Using an AST control block bui lt into the
quota-cache structure, the rout ine queues an AST
to the swapper process to borrow i ts process con
text . The swapper AST executes another subrou
t ine that releases control of the entry to the quota
cache . This subrout ine marks this entry " inva l id"
and demotes the PW lock to CR mode, in the pro
cess wri t ing the entry contents into the va lue
block of the lock . Upon re lease , the lock is
granted to t he requesting process, which trans
fers the lock's value block into i ts cache entry. A..;;
a result , the lock manager can transfer quota
cac he entries about the c luster without incurring
any disk ljO.

54

File Number and Exten t Caches

During normal operation , the fi le -nu mber and
extent caches , shown in F igure 8, do not present
any synchronization or coherency problems in
the c l uster. S ince the cache contents are marked
" i n use" in the appropriate bitmap, each cache in
each c luster member s imply conta i ns a d i fferent
col lection of free disk space or free fi le numbers .

The cache m ay have to be emptied , however,
and i ts contents written back to the bitmap.
There are two reasons for these actions . F i rst, the
fi l e system w i l l tolerate the modi fication of the
fi le structure components by user- leve l software
(e .g . , the disk-rebu i ld ut i l i ty) . Therefore, when a
user process opens the storage bitmap fi l e for a
write, for example, a l l instances of the extent
cache must be flushed to the bitmap. That does
two th ings :

I . I t presents the user with a correct view of
the bitmap.

2. I t prevents the cache from contain ing stale
data in the event the user mod i fies the
bitmap.

Note , by the way, that the quota cache is affected
by a l l these considerations as wel l .

Second , resource exhaustion must be handled
as gracefu l l y as poss ib le . With the extent caches
in operation , the avai lable free space on t he disk
is d istributed i n the various extent caches across
the c l uster. If a user makes an a l locat ion request
for a l l the remaining free space on the d isk , that

r--

�

UNIT
CONTROL

BLOCK

VCB

VOLU M E
CONTROL

BLOCK

CACHE

VOLUM E
CACHE
BLOCK

FlOC ACHE

EXTCAC H E

F I L E
N U M BER
CAC H E

EXTENT
CACHE

Figure 8 File Number and Extent Caches

Digital Technicaljournal
No. 5 September 1 ')87

request cannot be satisfied without emptying the
extent caches on the other cl uster members .

A cache-flush lock wi l l handle both s i tuations
stated above . The quota , fi le-number, and extent
caches are each backed by a cache-flush lock .
The resource name is derived from the fi le
number of the related fi le , plus the text string
F l l B Sc . While a cache is active , the cache-fl ush
lock i s hel d as a system-owned lock at PR mode.

When wishi ng to cause a cache fl ush for a cer
tain rype of cache across the c l uster, the XQP
enqueues for the rel ated lock at CW mode . This
action causes the blocking AST associated with
the PR lock to execute as a fork IPL 8 rout ine .
This rout ine uses an AST control b lock bui l t
into the cache structure to queue an AST to the
CACHE_SERVER process of the fi le system. One
such process runs on each node in a cluster; its
sole responsib i li ty is to respond to cache-fl ush
requests.

The parameters associated with the AST iden
tify which cache is involved and the vol ume
for which the cache is to be fl ushed . The
CACHE_SERVER process then executes a privi
leged fi le system control function that causes the
fi le system to empty the specified cache. Having
emptied the cache, the XQP releases the PR lock,
thus al lowing the process request ing the CW
lock to proceed . If a cache fl ush is requested
s imply to make all free space ava i lable, the CW
lock wi l l be immediately rel eased . If the cache
flush is associated with opening a piece of the
fi le structu re for a wri te , however, the CW lock
wi l l be held as a system-owned lock until the fi l <:
is closed . S ince any attempt tO refi l l the cache
must first acquire the PR lock, such attempts w i l l
fa i l unti l the fi le i s closed and the CW lock
released .

Digital Technical journal
No. 5 September 1987

Summary

The d istributed fi le system was one of the most
chal lenging aspects in developing VA.Xcluster
systems. Starring from a fi le system that was pro
cess based and s ingle threaded, we developed
one that is procedure based and mu l t i threaded .
The major cha l lenges lay in deve loping the nec
essary synchroni zat ion and in redesigning the
caches to work correctly in the distributed envi
ronment . We solved these problems by exten
s ively employi ng the VMS distributed-lock man
ager in new and creative ways . The resul t is a fi le
system that works effectively in the c luster envi
ronment . What's more . this fi l e system displays
better performance and concurrency i n t he s in
gle-system environment as wel l .

References

1 . VA.XjVMS ljO User's Reference Manual,

Part 1 (Maynard : Digital Equi pment Corpo
ration , Order No. AA-Z600C-TE, 1 986) .

2 . VAXjVMS Systems Services Reference Man
ual (Maynard : Digital Equ i pment Corpora
t ion , Order No . AA-Z50 I B-TE, 1 986) .

3 . Guide to VAX/VMS Disk and Magnetic
Tape Operations (Maynard : Digital Equip
ment Corporation , Order No . Al-Y506B-TE,
1 986) .

5 5

VAXcluster
Systems

Michael S. Fox
I john A. Ywoskus

Local Area VAXcluster Systems

Local Area VAXcluster systems use the Ethernet rather than the CI bus as
their interconnect between nodes. Ibis makes it possible to include
Micro VAX systems and workstations in a VAX cluster environment. The key
technical issues that had to be solved were to provide an Ethernet base
equivalent to the CI bus for the cluster's System Communication Architec
ture protocols and to allow the VMS software to boot on a diskless system
using the Ethernet as a link to a remote system disk. Ibis paper describes
the work done to satisfy these two design issues: providing robust cluster
communication on the Ethernet as a means of performing remote disk
access, and network booting of the VMS system.

The Local Area VAXc luster (rAVe) software is a
new product that brings VAXcluster functiona l i ty
to the fu l l range of VAX processors . A rAVe uses
the Ethernet instead of Digita l 's proprietary Com
puter Interconnect cal led the CI bus, thus mak
ing possible the i nc lusion of sma l l systems l i ke
the MicroVAX I I CPU in the VAXcluster configu
ration . This paper describes the benefits pro
vided by a rAVe, the concepts on which it was
bu i l t , and the technica l deta i ls of the two new
major internal capabi l i t ies added to the VMS
operat ing system .

VAXcluster System Definition
A VAXcluster system is a d istributed system made
up of VAX computers and the ir associa ted stor
age elements , a l l l in ked in a c lose ly coupled
arrangemenr . 1 VA.Xcluster members cooperate
with each other on a peer-to-peer bas is . They a l l
share a common fi le system, print and batch
queue operat ions, and comprise a single manage
ment domain (the c luster is managed as a s ingle
system entity) enclosed by a s ingle security
perimeter.

A VA.Xcluster system d i ffers from a more t ightly
coupled mult iprocessor arrangement i n severa l
ways . F i rst , the VAX systems commun icate over a
fast , efficient network l i n k instead of sharing
memory. Second, each system has i ts own copy of
the VMS system in memory (poss ib ly loaded from
the same shared disk i mage) . Third, the members
may boot and shu t down independently . F ina l ly ,
the c lusterwide fi le system, s ingle security and

management domains , and other VAXcluster fea
tures are much c loser to those offered by a trad i
t ional single t i mesharing system than to t he capa
bi l i t ies offered by trad i t iona l networks .

Thc first VAXcluster implementation (VMS ver
sion 4 . 0) operated on ly on the CI bus, a l im i ted
distance LAN connecting up ro s ixteen nodes at
70 megabits per second . C I adapters are highly
inte l l igent , and hence relat ive ly complex and
expensive . They were bu i l t expressly for large
systems located i n machine rooms. With thc
advent of sma l l desktop VAX processors, some
new interconnect was needed for bringing them
the benefits of c luster functiona lity. The CI bus
could meet nei ther the geographical criteria nor
the low cost required in an office (as opposed ro
a computer room) environment , nor cou ld it sup
port enough nodes .

The VA.Xcluster support in VMS version 4 . 4 had
matured enough so that extend ing it to another
i n terconnect became feasibl e . The Ethernet ,
a l ready Digita l 's standard for network com muni
cation , was the obvious choice for this new in ter
connect . Ethernet's cost , d istance, speed , connec
tion capabi l i ties, and exist ing hardware base
a l l owed the VA.Xcluster funct ions to move out
of the machine room and effective ly support
sma l ler systems.

LAVe Goals, Requirements,
and Configurations

The overa l l LAVe goa l was to bring the benefits
of VAXcluster systems to low-end and desktOp

DiJ!.ital Technical journal
No. 5 Septern/Jer I 'J87

systems. The benefits of this goal included the
fol lowing:

• A single, clusterwide common fi le system with
d isks connected to any CPU

• Fully integrated and synchronized fi le sharing
at the record level among users on any member
in the cluster

• Clusterwide availabi l i ry of print and batch
queues (Print and batch execution faci l i t ies
can be located on any set of members .)

• A single securiry domai n

• The simpl ification (or even e l iminat ion) of the
end user's system-management responsibi lities

With this goal in mind, we drew up a l ist of
requirements for such a product. These require-
ments included

• Support the Ethernet instead of the CI bus as a
cl uster interconnect, yet a l low simultaneous
use by other clusters and nerworks

• Boot the VMS sofrware over the Ethernet

• Simplify cluster management and insta l lation
by providing tools a nd l i mit ing configurations

• Provide clusterwide disk access by means of
the sofrware Mass Storage Control Protocol
(MSCP) server instead of the HSC controllers

• Reta in all the existing VA.Xcluster software
capabi l ities and as much of the implementa
tion as possible

• Support d iskless systems

The first three requirements had the largest
impact on the LAVe deve lopment . In fact , the first
rwo required the most engineering effort to
deve lop new sofrware . After a brief description of
the result ing LAVe product, the remainder of this
paper will descri be the techn ical work done to
meet those two requirements.

Configurations

The configuration supported by the in it ia l
releases of LAVe uti l izes a s ingle Ethernet as the
cl uster interconnect. Conservative restrictions
were imposed where necessary to l imi t the com
plexity and to aLlow thorough testing and perfor
mance ana lysis of almost a l l supported cluster
configurations. The resu lt is the configuration
shown in Figure l . Future extensions to increase

Digital Technical journal
No. 5 September I 987

the number of members, al low both CI and Ether
net in the same cluster, and multiple Ethernets
are being p lanned. They wi l l not be addressed
further in this paper.

The members cooperate with each other in a
peer-to-peer relationship. They are managed by a
cluster connection manager and synchronized by
a distributed lock manager without regard for the
roles they play in an operating LAVe . 2 That is a
key difference between the LAVe and other
"c l iem;server" products . Any system in the clus
ter can provide or consume resources provided
by the other systems. To s impl ify the resulting
supported configurations, however, we chose to
assign certain roles to the systems. The boot
member and sate l l ite roles merely describe the
jobs those systems perform ; the roles are not
known by the VA.Xcluster sofrware . The c luster
software cares only where the resources are
located and which systems have access to them.

Each boot member is a management center of
the cluster. The VMS system disks connected to
each boot member makes them ava i lable to other
cluster members by means of the MSCP server
software. The init ia l LAVe releases l imit the num
ber of boot members and system disks to reduce
the complexity of insta l lation and management.

VAX VAX

ETH E R N ET

Figure 1 LAVe Configuration

'5 7

VAXcluster
Systems

Local Area V AXcluster Systems

Boot members may also serve other data d isks i n
the cluster.

A boot member also functions as a load host
during an Ethernet boot operation . This role
is discussed further i n the sections on remote
booting.

Satel l ite systems boot off the system disk pro
vided by a boot member and general ly depend on
that member for other resources as wel l (data
d isks, printers, etc .) . On the other hand , satel
l ites may serve data disks to the cluster, as well as
provide print or batch resources. The satel l i tes
are configured by the cluster manager tO best
meet the needs of the a pp t ication .

To date, only members of the Micro VAX I I fam
i ly of systems and workstations (MicroVAX I I ,
VAXstation I I , VAXstation IljG PX, MicroVAX
2000 , and VAXstation 2000 systems) can be
sate l l ites. This restriction results from the need
for specific code tO be written to support remote
booting for the CPU and Ethernet adapters. Satel
l ite support for other CPUs (both new and exist
ing) wi l l be considered in the future .

Disk Access

I n a CI cluster, the HSC disk control lers connect
tO the CI bus in the same manner as do the VAX
systems. 1/0 requests originating i n any VAX CPU
are passed to the disk c lass driver (DUOR IVER) ,
which encodes them i nto MSCP packets . These
packets are sent over the Cl network to the appro
priate HSC control ler for execution . All VAX
CPUs i n the cluster therefore have equal access
to the HSC controllers and the d isks connected
to them. However, an HSC control ler cannot
connect to an Ethernet . Therefore, some other
method is needed in a lAVe to al low disk access
to a l l systems.

In the absence of HSC controllers, each disk
must be connected to the system by some con
troller, such as a UDA, KDA, or UNI BUS con
troller. Making these disks accessible to other
VAX systems in the cluster requ ires a software
emulation of the HSC controller . This need is
fi l led by the MSCP server software .

The VAX CPU originating the I/0 request
merely sends an MSCP packet over the network tO
the target VAX CPU with the desired disk. The
packet is identical to the one DUDRIVER wou ld
have sent to an HSC control ler. The MSCP server
software on that target CPU receives the packet,
performs the operation , and returns the resu lts
just as an HSC wou ld do. The class driver on

58

the originating VAX cannot tel l the d ifference
between the MSCP server and an HSC control ler.
The result , as shown in Figure 2, i s that d isks
served by the MSCP server appear to be equal ly
avai lable to a l l systems in the cluster, i ndepen
dent of which system they are actually cabled to
and the type of interconnect.

System Management

The lAVe configurations described above were
designed so that al l system management activities
would take place on the boot member. Although
the cluster can be configured differently, that
configuration is the s implest . It is also what most
users would want when the sate l l ites are personal
workstations.

The VMS, satel lite system, and application soft
ware i nsta llations are a l l controlled by command
procedures executed on the boot member. Disk
backups are done mostly on the boot member, on
which the backup device (usual ly tape) is
located. Data disks can be located a nywhere i n
the cluster. If the sate l l i te i s a single-user work
station , we recommend that applications and user
data not be put on a ny of i ts disks. Using a work
station's local d isks on ly for page and swap files
e l iminates the need for backups, thus freeing the
owner of all system-management responsi b i l ities.

The overall product simplicity goal is c learly
facilitated by configuring the cluster in this man
ner. Al l management activity i s local to one sys
tem and remains u nder the control of a l imited
number of people. Cl uster users should have no

HSC

Figure 2 Disk Access

Digital Technical]ournal
No. 5 Septem be•· 1 98 7

more system-management responsibi l i ties than
users of dumb (e .g . , VT2 20) terminals wou ld
have .

LAVe's Use of the Ethernet

The Ethernet is used as the cluster communica
tion mechanism because it i s compatible with
the LAVe's requirements for cost and system envi
ronment (non-computer room) . There are , how
ever, significant tradeoffs i nherent in substituting
the Ethernet for the CI bus. For example , commu
nication over the Ethernet is slower and more
CPU intensive than over the C I bus. The Ether
net's advantages are lower expense, much greater
geographic distance, and the abi l i ty to connect
many more systems.

The VMS port driver that provides rel iable
cl uster communication ut i l iz ing the Ethernet is
ca l led PEDRIVER. I t provides communication in
such a way that the rest of the VMS software is
unaffected . This section describes PEDRIVER's
role within a LAVe, the PEDRIVER protocol ,
and some technical detai ls about its internal
structure.

The PEDRIVER

Communication services within a VAXc lusrer sys
tem are described by the System Communication
Architecture, or SCA.3 The SCA model consists of
the four layers shown i n Figure 3 .

The system appl ication (SYSAP) layer consists
of users of the connection services provided by
the systems communication services (SCS) layer.
Examples of SYSAPs are the disk c lass driver
(DUDRIVER) . the MSCP server , and the c luster
connection manager.

The SCS layer provides network resources to
the SYSAPs . I t mult iplexes the u nderlying com
munication service , provided by the port-to-port
communication layer, into several connections .
These connections J ink a number of enti ties,
including the connection managers between two

SYSAP SYSTEM APPLICATIONS LAYER

scs SYSTEMS COM M U N ICATION SERVICES LAYER

PPO PORT-TO-PORT COM M U N ICATIONS LAY E R

P I PHYSICAL I NTERCONNECT LAYER

Figure 3 SCA Layers

Digital Tecbnicaljournal
No. 5 September 1987

members , the class driver to the MSCP server (or
HSC device) , and so forth . The SCS layer a lso pro
vides flow control , buffer management, notifica
t ion of new SYSAPs registering with i t , and notifi
cation of connection breakage .

The port-to-port communications (PPD) layer
maintains a single communications path , called a
virtual c ircuit , with every other VAX system or
HSC control ler in the cluster. On a C I cluster,
this layer is the lowest software layer within the
VMS system . I t is implemented by the CI port
driver, called PADRIVER. PADRIVER knows how
to interface with the CI adapter and is responsi
ble for d iscovering new nodes , forming virtual
circuits with them, detecting communication
fa i lures, and s ignal ing these events to the SCS
layer .

In a LAVe, PEDRIVER provides much of the
same PPD functiona l i ty as does PADRIVER . Since
the Ethernet hardware offers only a datagram ser
vice (instead of the rel iable communication path
offered by t he CI bus) , PEDRIVER uses a net
working protocol to provide a rel iable com muni
cations service. Unl ike PADRIVER, PEDRIVER is
device independent, ut i l izing an underlying
datal ink driver to control the Ethernet adapter.

The physica l interconnect (PI) layer repre
sents the medium over which packets are sent
and received . A complete specification for this
l ayer includes the mechanisms for clocking bi ts
on the wire , the framing of bits into bytes and
bytes into messages, e l.ectrica l s ignal require
ments, cabl ing, and so forth .

Ports

A port is a software interface between the port
driver and a communications entity, usua l ly an
adapter. A port is implemented as a set of queues
whose use is rigorous ly defined . Access to these
queues is by means of interlocked i nstructions;
thus no other synchronization mechanisms are
required. The port driver manages the port . The
driver receives requests from the SCS layer, for
mats them, then passes them across the port by
l inking a packet in a prioritized command queue.
The driver then sets a control bit to inform the
port of this action . The entity behind the port
dequeues the command packet , executes i t , and
either returns i t to the driver with a status mes
sage or p laces i t in the appropriate free queue.
Packets being del ivered across the port to the
driver are l inked into a response queue. An in ter
rupt is generated if the queue was previously
empty.

59

VAXcluster
Systems

Local Area V AXcluster Systems

In the CI case, this port structure is used to
communicate between PADR IVER and the Cl
hardware. The hardware guarantees the del ivery
of sequential messages. It a lso moves user data
into or out of the v i rtual address space of a target
node during block transfers. Thus the CPU over
head is kept to an absolute minimum. The CI
adapter is inte l l igent enough to perform these
functions on its own and to interrupt the CPU
when the operation is finished .

Ethernet adapters do not fi t this mode l . They
are typica l ly packet-oriented devices that trans
mit or receive usi ng discrete , l i mi ted-size
buffers. The adapters do not guarantee sequential
del ivery. Since VAXcluster systems requi re these
features , they must be replaced with software, at
a corresponding i ncrease in CPU overhead.

To preserve the same port interface, however,
we put the software providing these services
below the port interface. The port then becomes
an in terface between SCS and a port driver above
the port , and a port emulator below. Preserving
the same level of fu nctional i ty at the port inter
face e l iminated the need for extensive software
modifications to the SCS and h igher software lay
ers. Figure 4 shows the port structure for both
the CI and Ethernet cases.

SYSAP SYSAP SYSAP

� I /
SYSTEMS COM M U N ICATION SERVICES (SCS)

60

I
C l ETHERNET PORT DRIVER PORT DRIVER (PADRIVER)

'---- - - - - - PEDRIVER

PORT EMU LATOR

I
DATALINK
DRIVER

I
ETHERNET

ADAPTER ADAPTER
CABLE

C I CABLE

Figure 4 VAXcluster Software Structure

PEDRJVER Functions

PEDRIVER is used i nstead of PADRIVER as the
port driver in a lAVe . PEDRIVER conta ins two
major segments: a port manager that receives
packets from SCS and queues them to the port,
and a port emu lator that operates below the port
interface . This port emulator effectively emu lates
the behavior of the CI hardware, uti l iz ing a sti l l
lower l evel datal ink driver for access to the Ether
net adapter, as shown in Figure 5 . Since the port
emu lator is the key to the lAVe's use of the Ether
net , i ts design and implementation wi l l now be
described in deta i l .

NJ-SCA i s the name of protocol used by the port
emu lator tO com municate with its peers on other
nodes. This protocol extends the SCA so that sys
tems can be connected by the Ethernet (also
known as the NI) . This extension is achieved a t
the cost o f reduced CPU efficiency, since the soft
ware is doing more work, and lower 1/0 band
width, si nce the Ethernet is slower than the CI
bus . In addition , the publ ic access nature of the
Ethernet introduces security and configuration
problems not encountered on the CI bus.

Major Objectives

The goa ls of the NI-SCA port design are

• Compati bi l ity - The i nterface to the N I -SCA
port must have a strong resemb lance to that of
the Cl port tO min imize the impact on the sys
tem software directly using the port . In partic
u lar, the functions required by the SCS layer
and provided by the port shou ld be opera
tional ly equivalent to their Cl port counter
parts so that the SCS layer need not be
changed .

• Performance - The port arch itecture has tO
address rwo performance problems. First, the
low Ethernet bandwidth may very we l l be a
bottleneck i n some configurations, especially

DU DRIVER

scs

PEDRIVER

DATALINK

ADAPTER

MSCP MSCP � - - - - - - - - - - - -- - - SERVER
SCS CONN ECTIONS � - - - - - - - - - - - - - - scs

NI-SCA PEDRIVER 1- - - - - - - - - - - - - - -
ETH ERNET DATALINK

'- - - - - - - - - - - - - - DATALINK
PHYSICAL ETHERNET CABLE

ADAPTER

Figure 5 Protocol Layering

Digital Technical Journal
No. 5 September 1 987

as CPU speeds increase . Second , the low band
width affects both the aggregate t hroughput
and the response r ime between a transmitted
message and the subsequent response.

• Securi ty - Provisions for authenticati ng
remote nodes are required. (Software data
encryption is not currently part of the port
design .)

• Simplicity - The port architecture shou ld be
defined so that implementations may substi
tute performance for simpl ic i ty . Ports imple
menting differen t subsets of the archi tecture
must be able to communicate with each other.

Differences between the CI Bus
and Ethernet

The NI -SCA architecture must address several
areas that result from the fundamental differ
ences between the CI and E thernet buses and
their exist ing adapters .

• Locating other nodes - The CI pol l ing for t he
existence of other nodes does nor work in the
larger Ethernet environment.

• Data transport - The N I -SCA port emu lator
must make t he data transfer l i m i tations of the
Ethernet transparent. Data segmentation and
reconstruction must be handled efficiently.

• Multiple paths - Any given node may i nteract
with more than one Ethernet through more
than one Ethernet adapter. The port emu lator
must a l low an i mp lementation to exploit such
configurations transparently to achieve the
requirements of efficiency and redundancy.
The current i mplementation of PEDRlVER
does not support this .

• Detection of communication fa i lures - The
port emu lator must detect node or communi
cations fai l ures and signal t hem to the SCS
layer.

• Ethernet coexistence - The N I-SCA protocol
must al low mul tiple clusters to coexist on the
same Ethernet and to share that Ethernet with
other network protocols.

• Security - Secure com munication between
nodes must be addressed since the Et hernet
spans a wider and less secure environ ment
than does t he CI bus, which is typical ly pro
tected by the securi ty of t he computer room .

Digital Technical journal
No. 5 September 1987

Locating Other Nodes and Virtual
Circuit Formation

The address space on the CI bus is currently
implemented as a fou r-bit fiel d . The resu lting
maximum of 1 6 poss ible addresses and t he l imi
tation of one cluster per Cl bus makes pol ling all
possible addresses to locate other nodes an
attractive solu tion . Pol l ing is clearly not prac
t ical on the Ethernet , however, where there are
2 4 7 possible addresses, mul tiple cl usters, and
nodes tota l ly unrelated to c lusters .

PEDRIVER replaces the CI bus pol l ing with a
mul ticast scheme to a cluster-specific mul ticast
address . A large block of consecutive mult icast
addresses have been reserved for N I-SCA. The
lowest address in the block is hard coded into
PEDRIVER. During insta l lation, the user assigns a
group nu mber to the cluster. PEDRIVER adds this
group number to the base address to generate
that cluster's unique multicast address within NI
SCA's reserved block.

PEDRIVE R enables the reception of this mu lti
cast address and transmits a HELLO multicast to i t
every three seconds. PEDRIVER will attempt ro
create a circuit u pon receiving a HELLO message
from a node with which it does not currently
share an open virtual circu i t . HELLO messages
received from nodes with a currently open vir
tual ci rcu i t indicate that the remote node i s sti l l
operationa l .

A standard three-message-exchange handshake
is used to create a virtual circu i t , as shown in
Figure 6.

The START_VC and START--ACK contain infor
mation about the transm itt ing system , and what
i t bel ieves the cluster password to be . These
parameters are verified at the receiving system,
which continues the handshake only if i ts verifi
cation is successfu l . Thus each system authent i
cates the other. After t he fi nal ACK message , the
virtual circuit is open for use by both systems.

TRANSMITTING
SYSTEM

RECEIVING
SYSTEM

START_VC

START_ACK

ACK

Figure 6 Standard Handshake

6 1

VAXcluster
Systems

Local Area VAXcluster Systems

Data Transport

PEDRIVER uses the virtual circuit to provide t he
three SCA port data transfer services described
below. The SCS layer does not need to disti ngu ish
between the C I hardware or the NI-SCA port emu
lator version of these services.

1 . Datagrams - Packets to be del ivered on a
"best effort" basis. No guarantees are made
about del ivery, sequential i ty, or repl ication .

2 . Sequenced messages - The port guarantees
the sequential del ivery of exactly one copy
of the packet.

3 . Block transfers - The port moves a large
amount of data i n ei ther direction . Segmenta
tion, handled below the port , is invisible to
the port driver and everyth ing above i t .

Datagrams are sent as Ethernet packets, which
are sufficient s ince no del ivery guarantees are
assumed .

PEDRIVER uses a standard networking protocol
to provide rel iable communications when neces
sary. A sequence number is included in each
packet so that lost or out-of-sequence packets can
be detected . Each packet requiring re l iable
del i very must be acknowledged by the receiving
port emulator. To improve effic iency, several
packets may be sent without waiting for an ACK.
Whenever possible, the recip ient wi l l also bun
dle the ACK i nto a message to be sent back to the
original source, thus saving the cost of an explici t
ACK. Timers are used i n both the source and des
tination systems to generate a retransm ission if an
ACK does not arrive after a specified t ime period
has elapsed. These t i mers also in i tiate t he trans
mission of an explicit ACK in the absence of any
reverse traffic .

To send relat ively smal l amounts of data, SYS
APs use sequenced messages, general ly hold ing
up to about 1 2 0 bytes. PEDRIVER sends these
messages with a sequence number over the vir
tual circui t , and they must be acknowledged by
the recipient as described above . PEDRIVER can
therefore guarantee reliable message delivery to
the desti nation SYSAP.

To send large amounts of data, SYSAPs use
block transfers . In a VAXclusrer system, the disk
class driver and the MSCP server use block
transfers to move data being read from or written
to a disk. PEDRIVER's port emu lator imple
ments block transfers by segmenting the data in
1 3 00-byte chunks . Each chunk is copied out of

6 2

the source buffer into a datal i n k packet and trans
mitted over the virtual circui t as a sequenced
message . The receiving port emulator copies the
data out of the Ethernet packet into the user's
buffer . The virtual ci rcu i t guarantees the sequen
tial delivery of these packets, thus mai ntain ing
data ordering and integrity .

The CI adapter can copy data i nto or out of
the virtual address space of a target node by
using direct memory access (DMA) . Thus the
CPU is not involved in block transfers . Ether
net adapters, however , access data in specific
buffers ; therefore, PEDRIVER must copy data
using a MOVC instruction . This scheme adds a lot
of CPU overhead to Ethernet block transfers.

Detection of Communication and
Node Failures

Communication can be lost between nodes for
several reasons: a node shutdown, a system crash,
or a hardware fai lure . PEDRIVER must detect
these events and signal their occurrences to the
SCS layer.

A system genera l ly transmi ts a node-stop (or
last gasp) datagram upon learning i t wi l l shut
down. This shutdown could be a planned event
by an operator or a system software crash . The
SCS layer acts upon a received node-stop data
gram. SCS breaks all connections with SYSAPs on
the originating system and tell s PEDRIVER to
break the virtual c ircuit . Cluster reconfiguration
occurs much faster when a last-gasp datagram is
received because no t ime-outs are required.

Communication can be lost, however, without
the receipt of a node-stop datagram . Both a hard
ware fai lure and tripping a syste m 's halt swi tch
wi l l break contact, or the node-stop datagram
coul d be lost on the Ethernet. Therefore, other
ways of detecting a breakage are needed. In gen
era l , PEDRlVER detects a breakage by checking
for the HELLO multicasts being transmitted every
three seconds. One eight-second t imer checks for
the arrival of H ELLO messages for al l virtual cir
cuits. If two ticks of this t imer (eight to sixteen
seconds) occur withou t receiving a HELLO mes
sage from a system, that system is assumed to
have fa i led. The SCS layer is then notified of this
occurrence.

Certain hardware fai lures may cause a node to
continue send ing but to be unable to receive
HELLO messages. Therefore, sti l l another fai l
ure detection method i s used : the counting of
retransmission attempts for a sequenced packet.

Digital Technical journal
No. 5 September 1 987

If a send ing node makes 30 attempts (at one-sec·
ond intervals) withou t receiving an ACK , the
reci pient node is presumed dead and SCS notified
of the fai lu re .

Sharing the Ethernet

The Ethernet is designed as a shared-communica·
tions bus . Any NI -SCA architecture that precludes
i ts use by other clusters or networks is un
acceptable.

Multiple LAVes coexist on the same Ethernet by
using different group numbers . Thus each LAVe
uses different multicast addresses to transmi t and
receive i ts HELLO messages . A."> a result , it does
not " hear" messages from other LAVe 's or attempt
to form virtual circu i ts with them. Mult icast mes
sages on one Ethernet a re not passed to other Eth·
ernets that are l inked by means of traffic
routers or gateways ut i l iz ing other commun ica·
tions media . Therefore , group nu mbers must
be unique only on each Ethernet . Different clus
ters on other Ethernets may use the same group
number. The grou p-number space is large
enough so that ranges of numbers can be given
to different branches of a business organization,
thereby reducing the need for networkwide
administration.

Nl -SCA is registered as Ethernet protocol
type 60-07. This registration al lows the datal ink
driver to d ist inguish NI-SCA packets from those
sent by the DECnet, LAT, or other protocols .
PEDRIVER's use of the Ethernet has no effect on
any other protocol , regardless of how the packets
are mu lt iplexed on the single Ethernet .

Security

The VAXcluster system i tself is one VMS security
domai n. Al l the security control and alarm fea
tures in the VMS system work on a cl usterwide
basis . These features can be used with an appro
priate degree of physical security (around the
systems and Ethernet cable) to achieve a desired
level of overal l securi ty .

Unauthorized systems are prevented from join·
ing the cl uster because a cl uster password is
required to establish communications. That pass
word is va l idated by both nodes during the in i
t ia l ization handshake to create the virtual circui t .
The password prevents a n unauthorized user
from booting off a privately created local d isk
with a local au thorization fi le (i nstead of a boot
member) and joining the cluster . Satel l ite sys
tems booting off the boot member must have

Digital Technical journal
No. 5 September 1!)87

been configured in to a database by the system
manager, effectively authoriz ing t he ir entry into
the c luster. A means is a lso provided tO prevent
users from performing conversational bootstraps
tO a lter system parameters.

Ethernet cables are subject to unauthorized
taps and eavesdropping. The LAVe assumes the
presence of an appropriate level of physical secu
rity around the systems and Ethernet cables, as
these problems cannot be solved in software.
Encryption hardware is the only tru ly effect ive
counterweapon to these attacks. Exploiting the
vulnerabi l i t ies of Ethernet in the absence of
encryption could be done, but it wou ld requ ire
substantial t ime , energy, and expertise .

Internal Structure of PEDRIVER

When extending SCA to include the Ethernet, we
found the layering of the original model to be
somewhat inconvenient. For one thing, the PPD
layer performed too many functions to be
thought of as a s ingle layer . This problem was fur
ther compounded when addi t iona l functions,
such as node authentication , were included .
Therefore, the approach taken was to adhere gen
erally to the original mode l , but to replace the
PPD and PI layers with several layers.

In the NI -SCA model , the PPD layer was
replaced with the layers from the port command
i nterface (PCI) to the datagram propagation
(OX) layers. The PI layer was replaced with the
data l ink and physical l ink (PL) layers. The resul
tant layering may seem a bi t excessive - seven
layers replacing two - but is nevertheless a nat
ural part i t ion ing of the activit ies be low the SCS
layer. Increasing the nu mber of layers for NI -SCA
does not increase the intrinsic complexity of the
port; it merely fac i l i tates the port's description .
The new Nl-SCA model is shown in F igure 7 ,
together with a brief description of each new
layer.

The Port Command Interface
(PC!) Layer

The PCI layer effect ively i mplements the port by
defin ing the in terface between the port and the
port driver. Normal ly, the modu les of a given
layer com municate with modu les in the corre·
sponding layer on remote nodes. Lacking this
characteristic, the PCI is not a layer i n the strict
sense of the word but is merely an interface
between the SCS and the port-to-port communi ·
cat ions (PPC) layers.

63

VAXcluster
Systems

Local Area VAXcluster Systems

SYSAP SYSTEM APPLICATIONS LAYER

scs SYSTEMS COMMUNICATION
SERVICES LAYER

PCI PORT COM MAND
INTERFACE LAYER

PPC PORT-TO-PORT
COM M U N ICATIONS LAYER

TRANSPORT PACKET SEQUENCING AND
ACKing LAYER

CHANNEL NODE AUTHENTICATION,
CONTROL TOPOLOGY CONTROL,

UNSEQU ENCED DATAGRAM
SERVICE LAY ER

ox DATAGRAM PROPAGATION LAYER

DATALINK DATALINK CONTROL LAYER

PL PHYSICAL LINK LAYER

Figure 7 NI-SCA Layers

PPD LAYER
IN SCA

PI LAYER
I N SCA

_L

The PCI layer is the set of queues used to pass
command packets down to and response packets
up from the port emul awr. Each packet consists
of two regions :

• The port i n terface region i s comprised of com
mand and status information between the port
and the port driver. The specifics of th is region
are private tO PEORIVER .

• The PPC region is comprised of the informa
tion used by the l ocal P PC layer to commu ni
cate wi th a remote PPC layer. The specifics of
this region are not private to PEORI VER since
the region is in terconnect i ndependent . The
P PC region is the same for the Ethernet as it is
for the CI bus.

The Port- to-Port Communication
(PPC) Layer
The P PC layer exists below the port i nterface .
This l ayer provides port services (datagrams,
sequenced messages, and b lock transfers) co the
PCI layer by translating between PCI packets and
a series of PPC messages exchanged with the

64

remote port . The PPC layer a lso segments block
transfers into a series of sequenced messages. The
datagram and sequenced services provided by the
transport layer are used to exchange these mes
sages. To be consistent with the CI bus , any errors
detected at the PPC layer in a packet sent or
received in sequenced mode cause the virtual
c ircuit to be d isconnected .

The Transport (TR) Layer

The transport layer uses one or more paths to the
remote node to provide the loca l PPC layer with a
sequenced- message and datagram connection to a
remote PPC l ayer . For datagrams, the transport
layer is l i ttle more than a conduit to the channel
control layer. For sequenced messages, the trans
port layer handles a l l the sequencing, sending
and receiving ACKs, and retransmissions required
to provide guaranreed message del ivery and
sequcncial icy. Although mu l t ip le Ethernecs are
not currently supported in a c luster, th is layer
would be responsible for that functional i ty .

The Chan nel Control (CC) Layer

A channel is a path that ut i l i zes a single Ethernet
to join two ports with an authorized datagram
service . To accomp l ish that service , che channel
uses the datagram service provided by the OX
layer. The channel control layer manages the net
work topology and therefore provides such ser
vices as node authentication , access control , and
virtua l c ircu it in i t ia l izat ion .

The Datagram Exchange (DX) Layer

The OX layer attempts co transmit packets
from the source port to the destination port . On
any given system, the OX layer is the interface
between the ports and the datal i nks . As such, this
layer is basica l ly a swi tch; many ports may be
above i t , many datal. i nks be low i t . Note chat on a
si ngk system, the OX layer may be shared among
mu lt ip le ports and is not owned by any one pore .

The OX layer determi nes which systems are on
which Ethernet and t ransmi ts packets correctly
to their dest inat ions by managing the group num
ber and mu lticast HELLO messages. This layer
includes the group nu mber in a l l the packets i t
transmi ts and checks the numbers on received
packets .

The Data/ink Control Layer
'fhe datal i n k l ayer provides access tO the physical
l i nk ami the functions at the packet leve l . These

Digital Technical journal
Nu. 5 St!plem ber l .'.J8 7

functions incl ude the hardware adapter contro l ,
the min imum and maximum length req u i rements
of packet, provisions for data- i n tegrity checking,
data l i nk header formats , and mult icast add ress
ing. For NI -SCA, this layer is provided by a sepa
rate datal i n k driver. This driver controls the Eth
ernet adapter hardware and is shared by a l l
Et hernet users (LAVe , DECnet , LAT systems, etc.)
on the system .

The Physical Link (PL) Layer
The PL layer represents the med ium over which
packets are sent and received. A complete spec i
fication for this layer would i nclude the mecha
nisms for clocking b i ts on the wire, the framing
of bits into bytes , e lectrical signal requi rements,
cabl ing, and so forth . For Nl -SCA, this layer is
defined by the Ethernet standard .

Network Booting of the VMS Software
Two LAVe requi rements are met by booting the
VMS software over the Ethernet : s impl ifying sys
tem management by requi ri ng only one VMS sys
tem disk , and making possible d iskless systems.
The software engi neering effort required dur ing
LAVe deve lopment w provide th i s functiona l i ty
was second on ly to that needed to develop
PEDRIVER.

Normal VMS Booting
Booting a system on a VAX processor takes p lace
in several stages . Each stage is characterized by a
loaded program that performs some prescribed
fu nction, which i n turn loads and transfers con
trol to another program .

The first such program tO ru n i s the console
program, which is d i fferent on different proces
sor types. I ts basic role with respect to boot ing is
to retrieve the input parameters, stOre them in
the fi rst six general -purpose registers , and then
load and transfer control to VMB. VMB , referred
to as e i ther the primary bootstrap or primary
loader, is the first program that i s more or less
common across a l l processor types . Depending
on the processor type , VMB is retrieved ei ther
from ROM (the M icroVAX 11 class of systems)
or the console block-storage device (other VAX
systems) .

Although the parti tion ing of work between
the console program and VMB d iffers s l ightly
with processor type , together they accomp l ish
the fol lowing:

• Locate a block of memory tO use during the
boot

Digital Technical journal
No. 5 Septembe1· 1987

• Locate and estab l ish an access path tO the sys
tem disk

• Provide a pri mit ive r;o system consisting of a
boot driver for the system device , a fi le system ,
and the SQI O access rout ine

• Loca te, load , and transfer control to the sec
ondary bootstrap, ca1led SYSBOOT. EXE for
the VMS system , or DlAGBOOT. EXE for diag
nostics

SYSBOOT is the secondary bootstrap selected
tO run when VMB is d i rected to load the VMS soft
ware. SYSBOOT performs the fo l lowing actions:

• Loads the VMS i mages i nto memory

• Reads the system parameter fi le , accepts any
user speci fied parameter changes if th is is a
conversation boot , and configures the system
accord ingly

• Al locates memory for and loads the termina l
and system d isk drivers

• Transfers control to t he ! NIT module of the
VMS system

The VMS I N IT module in i t ia l izes the now run
ning VMS system .

• Loads the processor dependent code (SYS
LOAxxx) and other loadable components i n to
memory

• Copies the boot I/0 rout ines ro the nonpaged
pool for use duri ng any system crash

• Tries to form a new VAXcluster system or join
an existing one i f the parameters are set tO do
this

• Transfers control to the system scheduler to
in i t iate process execution

Remote Booting Requirements

The act ions performed during each of the three
stages of a network boot are the same as those in a
local disk boot. No mod i ficat ions were requ i red
i n the fu nctional operation of these programs.
What was needed was the abil i ty to contend with
an Ethernet l i nking the booting system with i ts
system disk. The Ethernet has tota l ly different
characteristics than those of the block-structured
d isk device previously present . The plan , then,
was tO load a piece of software that makes the
Ethernet l ook l i ke a disk, rhus enabl ing the rest of
the VMS boot sequence to proceed normal ly.

65

VAXcluster
Systems

Local Area VAXcluster Systems

The three primary requiremems for the remote
booting design and implememation were to

• Change the existing boot p rocess as l irt lc as
possible

• Require no in itial state or comext information
on the sate l l i te system

• Work with the exist ing M icroVA.t'X II boot
ROMs (Requ i red hardware upgrades in the
fiel d wou ld make a LAVe much more difficu lt
tO i nsta l l) .

The existing boot ROMs on MicroVA.X I I sys
tems i nclude an Ethernet device boot driver capa
ble of transmi tting and receiving packets , p lus a
VMB program conta in ing the DECnet mai nte
nance operation protocol (MOP) . MOP locates a
boot host system on the Ethernet network, uses a
si mple, synchronous pi ng-pong protocol to copy
an i mage from the host i nto local memory, and
then transfers control to that i mage .

The existing SYSBOOT program cou ld not be
loaded d i rectly by a MOP exchange. SYSBOOT
expects to be able to access the boot device as a
block-structured srorage device ; i t does not
understand the various types of Ethernet adapt·
ers that may be present. Moreover , SYSBOOT
wou ld not have enough information to locate the
system d isk . Therefore, a nother image ca l led
NISCS_LOAD is inserted into the boot sequence
between VMB and SYSBOOT. NISCS_LOAD pro
vides the environment that SYSBOOT needs ro do
i ts job correctly. As a resu l t , mi nimal mod ifica
tions ro SYSBOOT and VMS I NIT were necessary.

Remote Booting Operation

The user starts the satel l i te boot sequence with
the appropriate BOOT command on the system
console. From thereon , the process is automatic.

Satellite Operation during the
MOP Exchange

The VMB program i n the satel l i te system's boot
ROM interprets the boot com mand and attempts
an Ethernet boot . VMB starts by transm itt ing a
mult icast message requesting an operat ing sys
tem load . This message is mul ticast to an archi
tectura l ly spec ified address because the ROM
cannot have any knowledge of the network con
figurat ion . Th is " please boot me" request is
received by host systems on the E thernet that are
wi l l i ng ro service network boots . I f t he request
ing satel l i te is one that the host is wiJ! i ng to ser-

66

vice, i t responds to the request with an "assis
tance volu nteer" packet . The satel l ite responds to
the first ' ' assistance volunteer" packet received
and ignores any others. That response causes
the host to send the N ISCS_LOAD image to the
sate l l i te .

Boot Member Operation during the
MOP Exchange

The host s ide of the MOP exchange i s handled by
the DECnet-VAX software , which must be ru n
n ing on the boot member. Each boot member i n
a l l c lusters o n the Ethernet wi l l hear the operat
i ng system request mu lticasts sent out by every
sate l l i te . Other systems that are not boot mem
bers wil l not have enabled reception of th is mul
ticast address.

The DECnet sofrware responds to an i ncoming
boot request mu l ticast by extracting the source
address of the mu l t icast from the packet and
search i ng the node database for a matc h . This
48-bi t hardware add ress of the transmitting sate l
l i te is guaranteed to be un ique on every Ethernet
adapter. This add ress is not norma l ly present in
the database s ince i t i s not used for DEC net (or
other) com municat ion under the VMS system .
Only those nodes that have been configured into
the boot member's cluster by the cluster mana
ger wi l l have the i r hardware address entered
into the database . The request is ignored i f
the mul ticast sou rce does not match a n address
in the database . Therefore , sate l l i tes w i l l be
booted on ly by a boot member in the appropriate
cluster.

I f the source address does match an address in
the database , the DECnet software starts running
the maintenance operations module (MOM) . This
program handles the host end of the MOP
exchange . MOM a lso looks up the satel l i te in the
node database to get other i nformation stored
there, i nc lud ing the name of a load assist agent
(LAA) progra m . wh ich is used tO custom ize the
load procedure for a LAVe . MOM cannot do this
custom iz ing because i t i s a genera l -purpose MOP
faci l i ty. MOM i nvokes the LAA by merging it i nto
MOM's address space and then ca l l i ng i t .

The LAA was written specifical ly t o hand le the
loading of N ISCS_LOAD. I.AA custom i zes the
NISCS_tOAD image for the boot i ng satel l i te by
appending necessary i n format ion to i t , inc lud ing

• The name and un i t nu mber of the sate l l i te 's
system disk

Digital Technical journal
No. 5 September J <)87

• The name of that sate l l ite 's root d irecrory on
t hat disk

• The cluster group number

• The c luster password

• A flag al lowing or d isa llowing conversat ional
bootstraps

The NISCS_LOAD i mage and appended data are
then passed to rout ines within MOM that transmit
them ro the sate l l i te using t he MOP protOcol .
When N ISCS_LOAD starts executing on the satel
l i te , i t can use this information for the next phase
of the boot.

Mter NISCS_LOAD has been successfu l ly trans
mitted , the MOP phase of the boot (and t he
involvement of DECnet-VAX) is complete . The
boot member no l onger knows that the sate l l i te is
booti ng, and i t does not need to provide the satel
lite with addit ional special services .

NISCS_L OAD, L oading SYSBOOT, and
VMS Software

The VMS system wil l not have been loaded into
the sate l l i te when NISCS_LOAD executes. There
fore , NISCS_LOAD is designed to run in a bare
machine environment ; that is , NISCS_LOAD must
be spec ifica lly programmed to handle any Ether
net adapter or CPU i t is to support . To date, only
support for the MicroVA.X II CPU has been
included , along with the Q-bus adapter and the
MicroVA.X 2 0 00 and VA.Xstation 2 0 00 Ethernet
adapters.

The NISCS_LOAD image contains four compo
nents :

• Data l ink boot drivers for a l l supported Ether
net adapters

• A boot driver version of PEDRIVER, cal led
PEBTDRIVER

• Pri mitive "class driver" MSCP code

• Parameter values assembled by the load assist
agent on the boot member

PEBTDRIVER retrieves the boot member's Eth
ernet address, the group nu mber, and the cluster
password from the NISCS_LOAD parameter list .
A virtual circuit back to the boor member is set
up by transmitting a START_VC packet , which
starts the normal init ial ization sequ ence . The
boot member does not know that the system at
the other end of this 'virtual circuit is booting

Digital Technical journal
No. 5 Septem ber I '}87

since the virtual circuit and 1/0 requests sent
over i t are identical to those sent by a running
VMS system .

Upon setting u p the virtual circu i t , PEST
DRIVER has a path ro the system disk that
NISCS_LOAD will need to continue the boot .
The primi t ive class driver now issues a normal
MSCP command to read the SYSBOOT.EXE i mage
from that disk into memory and transfer control
to that image . PEBTDRIVER remains in memory
to serve as SYSBOOT's "d river" for accessing the
system disk, hiding a l l knowledge of the E thernet
adapter. The presence of the primit ive class
driver makes SYSBOOT "see" the expected
block-structured device interface . SYSBOOT can
now load the VMS software normal ly by issuing a
read operation over the virtual circu it set up by
PEBTDRIVER .

After being l oaded by SYSBOOT, the VMS sys
tem can init ial ize normally because the E thernet
path to t he system disk is tota l ly h idden . No oper
ational changes to SYSBOOT or VMS !NIT were
necessary. The runtime PEDRIVER takes over
from the boor driver during the initial ization of
the VMS software, thus breaking the boot driver's
virtual circu i t and establ ishing a new one .

The PEBTDRIVER portion of NISCS-LOAD
remains permanently in memory. If the system
crashes, that portion is activated again to write
the contents of memory into the dump fi l e . The
runtime driver is not used because the state of the
VMS system, the drivers, and the data structures
cannot be trusted in a crashed system . The boot
driver is total ly ignored while the system is up ;
therefore , its in tegrity is usual ly left in tact by the
crash . As with any other boot driver, the system
disk is the only known device. Therefore, the
dump fi le must be on that disk.

Summary

We have shown how Local Area VA.Xcluster sys
tems are a natural fol low-on ro the original VMS
VA.Xcluster im plementation using the CI bus . The
cluster archi tecture and implementat ion were
genera l ly independent of the interconnect
specifics; therefore, the switch to Ethernet was
confined to the port driver layer. The replace
ment of PAD RIVER with PEDRIVER and the addi
t ion of Ethernet booting was al l that was required
ro make the prod uct work. This combining of
VA.Xcluster functional i ty with the MicroVA.X sys
tems and workstat ions now available, plus the

67

VAXcluster
Systems

Local Area VAXcluster Systems

low cost and flexibil ity of the Ethernet, brings

new power to low-end syste ms. These benefits
i nclude both the data and resou rce-sharing capa
bil ities of VAXcluster systems, and the abi lity to
isolate workstation users from system-manage
ment responsibi l ities .

The lAVe has a bright fu ture planned . Work is
i n progress to al low both CI and Ethernet inter
connects tO coexist in the same cluster. When
this work is completed , workstation users wi ll be
able to draw upon the power, resources, and
speed of the large VAX machi nes , HSC con
trollers, and disk fa rms in the computer room . In
addition , users wi l l have fu l l access to the same
data files as do users on those mai nframes. AU
these systems wi l l be ru nning the same opera ting
syste m, be centrally managed , be highly avai l
abl e, and offer the same software environment to
all users. No other prod uct comes close to offe r
i ng such total system integration from the data
center to the desk top .

68

References

1 . N. Kronenberg, H . Levy, W. Strecker, and R .

Merewood , "The VAXcluster Concept: An

Overview of a Distributed Syste m," Digital

Techn ical journal (September 1 987 , this
issue) : 7-2 1 .

2 . W. Snaman and D . Thiel , "The VAXjVMS
Distributed Lock Manager," Digital Techni

cal journal (September 1 987 , this issue) :
29-4 4 .

3 . D . Duffy, "The System Communication
Architecture , " Digital Technical journal

(September 1 987 , this issue) : 2 2 - 2 8 .

Di?,ital Technical journal
No. 5 Sejilelllber I ')87

Edward E. Balkovich
Prashant Bhabhalia

William R. Dunnington
Thomas F. Weyant

VAXcluster Availability Modeling

VAXcluster systems use redundant hardware-processors, interconnects,
and storage elements-and software to achieve high system availability.
No special hardware or software is required. A simple, first-order
availability model is used to illustrate how this redundancy improves
availability. Four VAXcluster configurations are analyzed to show that
redundancy decreases system unavailability by two orders of magnitude.
Decomposition techniques were used to develop these first-order availabil
ity models, which were then analyzed using "textbook" reliability analysis
techniques. More complex configurations and models of broader classes of
faults will require the support of more sophisticated modeling tools.

An increasing number of special i zed computer
systems are being dedicated to tasks that are
critical to the success of an organization . For
example, in the financia l services industry or in
manufacturing, i t must be possible to access a
computing system to del iver a service or to man
ufacture a product. Any loss of access to the com
put ing system adversely impacts business . The
abi l i ty to access a computing system when it is
needed (commonly referred to as ava i labil i ty) is
becoming an important metric used to select
such computer systems. Obviously, h igh avai l
abi l i ty a lso i mproves the qua l i ty of service pro
vided by general-purpose computing systems,
such as those providing t imesharing services.

VAXcluster systems provide high avai labi l
i ty . 1 They can be configured so that there i s no
single point of fai lure . Each c luster i s a mult iple
computer system, bui l t from standard hardware
and software e lements. VAXcluster systems can
be expanded in increments to provide the com
puting power, data resources, and storage capa
bi l ities typical ly associated with mainframe sys
tems .

Although these systems are not fau l t tolerant ,
they can detect , isolate, and recover from faults
in their processor, in terconnect , and storage sub
systems. (Fault tolerance generally implies that a
recovery from a faul t is completely invisible to an
application .) While VAXcluster systems can
detect , isolate, and recover from faults , the
recovery from some types of fau lts impacts the
applications and their design . For example, a
VAXcluster system wil l retry an 1/0 operation i f a

Digital Technical journal
No. 5 September I 987

fau l t is detected in e i ther the interconnect or
storage subsystems.

The integrity of the ljO operation is ensured by
the operating system. If a processor fai ls , how
ever, the computations hosted by it are lost . A
user must start a new session on another (avai l
able) processor. The user must depend on an
appl ication , not the operating system, to recover
the state of the computat ion to the point at which
the fau lt occurred . For example, a journal fi le
can be used to recover an editi ng session or data
base transaction . In this case , the in tegrity of the
computation is assured by the application , not by
the operating system .

This paper documents a study using simple
first-order models to show how the inherent
redundancy of VAXcluster systems is used to
achieve high avai lab i l i ty . Although more sophisti
cated models are possible , the models used in
this study were sufficient to i l lustrate the main
points. I t is assumed that the reader is fami l iar
with the basic technical concepts of VAXcluster
systems presented in our companion papers . 2 . 3 I t
is not assumed that the reader is fami l iar with the
standard methods of analyzing avai lab i l i ty used
to i l lustrate the points of this study.

VAXcluster Structure

Figure I i l lustrates a simple VAXcluster system
with terminals connected to the system via a IAT
server. E ither processor is accessible through that
server , and dual -ported disks are accessible
through either H ierarchical Storage Control ler
(HSC) . The HSC devices and the processors are

69

VAXcluster Availability Modeling

VAX VAX

HSC HSC

Figure 1 Simple VAXcluster Configuration

connected by a Star Coupler, a passive device
offering two independent datapaths between
each node of the system . Multiple disks are used
to shadow a volume of information. This simple
system i l lustrates all the basic forms of redun
dancy in VAXcluster systems.

Processor Failures

If a processor or its Computer Interconnect (CI)
adapter fails, all computations in progress on that
processor will be lost. The processor and the
adapter can detect some types of fau lts and
inform the VAXcluster system of them immedi
ately. Other types of faults are detected by the
other VAXcluster processors by way of time-outs.

When other processors detect a fault in a pro
cessor or its adapter, they reconfigure themselves
to remove the failed processor from the cluster.
The reconfiguration times depend on the number
of locks in the system and on the number of 1/0
devices in the configuration. The average recon
figuration time after a processor failure is a small
number of seconds. 4 After the reconfiguration
is complete, the user can begin a new session
on the remaining processor. Appropriately con-

70

structed appl ications, such as those employing
journaling, can then be recovered to the point of
the failure .

Interconnect Failures

The Star Coupler, a passive device, has a negligi
ble failure rate compared with the other ele·
ments. The individual CI paths attached to a
single adapter have active elements, however,
and the failure rates for those paths must be
considered .

If a single path fails , the Cl adapter will retry
the transmission on the redundant path. The retry
is invisible to both the processor and the HSC
device using the adapter.

If both paths fail , neither the processor nor the
HSC device attached to the adapter can commu
nicate with other elements of the VAXcluster con
figuration . The effect is similar to a processor or
HSC fai lure . However, other processors and HSC
devices can continue to communicate with each
other.

Hierarchical Storage Controller Failures

HSC failures are managed by the VAX processors .
The HSC device can detect some faults and
inform the cluster about them immediately.
Other types of faults are detected by the VAX pro
cessors and the disks by time-outs. When a fault is
detected in an HSC device, the VAX processors
will retry any 1/0 operations in progress by using
the redundant HSC device. An HSC failure is
invisible to the process issuing the QIO opera
tion. The times required to reconfigure the sys
tem after an HSC failure depend on the number
of outstanding ljO operations, the number of
1/0 devices , and the use of volume shadowing.
The average time is typically a small number of
seconds.

Volume shadow sets, hosted by an HSC de
vice, must be reconstructed if that device fails.
Although the shadow set is available during
reconstruction, this process involves additional
1/0 that competes with user requests to read or
write to the volume shadow set .

Disk Failures

HSC devices detect disk fai lures. Volume shadow
ing allows an HSC device to retry a failed 1/0
operation using another member of the volume
shadow set. The failure of a disk in a shadow
set is invisible to the process issuing the QIO
operation . When a fault is detected, the volume

Digital TechnicaiJournaJ
No. 5 September 1987

shadow set wi l l be reconfigured to remove the
fai led volume . Once again , the average time
requ ired to reconfigure the shadow set after a
disk fa ilure is a small number of seconds.

VAXcluster Configurations
Considered

Modeling Procedure

This paper focuses on the avai labil ity modeling
of four simple VAXcluster configurations. The
goals of the study were tO

• Demonstrate the sensitivity of different rel i
abi l i ty and avai labi lity parameters

• Demonstrate how different types of redun
dancy improve VAXcluster availabil i ty

These goals were achieved by first modeling
the avai lability of a basel ine configuration con
sisting of a VAX processor, an HSC storage con
trol ler , and a disk drive. Each element in the con
figuration represented a si ngle point of failure.
Next, redundancy in the form of a second VAX
processor was added tO the baseline configura
tion to create a second configuration . Another
HSC stOrage controller was then added tO create a
third configuration . Finally, a disk drive and vol
ume shadowing were added to create a fourth and
ful ly redundant configuration . These four simple
configurations were used to study the principal
forms of redundancy in a VAXcluster system.

Referring to Figure 1 , the configurations con
sidered here consisted of VAX processors, a Star
Coupler, HSC storage control lers, and disk
drives; they did not i nclude the Ethernet , the LAT
server, or the user terminals.

Baseline Configuration - Model 1
The basel ine configuration , Figure 2 , consisted of
a VAX processor, an HSC storage control ler, and a

VAX HSC

CONFIG URATION

VAX HSC

RELIABILITY BLOCK DIAGRAM

Figure 2 Baseline Configuration (Model 1)

Digital Technical journal
No. 5 September 1987

disk drive . The processor and the storage con
troller were connected by way of a Star Coupler
whose fa i lure rate is negl igible compared to that
of the other elements. Figure 2 also shows the
configuration diagram translated into a rel iabi l ity
block diagram in which the series positioning of
each element represents a single point of fai lure
for the configuration.

Redundant Processor
Configuration - Mode/ 2

The second configuration considered in the
study, Figure 3 , added redundancy in the form
of a second VAX processor. The fa i lure of either
processor or i ts Cl adapter requires a fai lover
process to the redundant processor with its asso
ciated VAXcluster reconfiguration acttvtttes.
These activities usually complete in a matter of
seconds.

In the rel iabi l i ty block diagram for the hard
ware model , the redundant VAX processors are
shown in parallel because both must fai l for the
configuration to fai l . However, the HSC device

VAX

HSC

CON FIGU RATION

HSC

R E LIABI LITY BLOCK DIAGRAM
FOR HARDWARE MODEL

RELIABI LITY BLOCK D I AGRAM
FOR RECONFIGU RATION MODEL

Figure 3 Configuration with Redundant
Processor (Model 2)

7 1

VAXcluster
Systems

VAXcluster Availability Modeling

and the disk drive are sti l l shown as single points
of fai lure.

If ei ther processor fa ils, the VAXcluster system
wi ll undergo a reconfigurat ion . Depending on
the user application, the system may be unavail
able during the fai lover process. 5 This condition
is represented in the rel iabi l i ty block diagram by
the two VAX processors in series.

Simi larly, the reconfiguration operation is re
peated when a repaired VAX processor is re
establ ished in the VAXcluster system . Again,
depending on the user appl ication, the system
may be unavai lable until the reconfigurat ion
completes. Since either VAX processor coul d fai l ,
the reliabi l i ty block diagram is again valid for
this cond ition.

Redundant Storage Controller
Configuration - Model 3
In the third configuration, Figure 4 , additional
redundancy in the form of a second HSC stOrage
controller was added to the Model 2 configura
tion, which already had a redundant VAX proces
sor. Now the fai lure of either a VAX processor or
an HSC storage control ler requires a failover pro
cess to either the redundant processor or the con
troller with the associated VAXcluster reconfigu
ration activities.

When a repaired HSC storage controller is
re-established in a VAXcluster system , there is
no reconfiguration operation . Instead , the HSC
device is placed in "warm stand-by" redundancy.
That is, the device is not actively re-established in
the VAXcluster system unless the other HSC
device fails . This situation contrasts with that
of the active redundancy of the VAX processor,
which is immediately reconfigured back into
operation as soon as i t is repai red .

Fully Redundant Configuration -
Model 4

A fourth configuration, Figure 5 , added further
redundancy in the form of a second disk drive and
volume shadowing to the Model 3 configuration ,
which alre�dy had a redundant VAX processor
and HSC storage controller.

In volume shadowing, write commands are
applied tO all avai lable volumes in the shadow
set . Read commands are accompl ished using any
avai lable volume. A fault in a disk causes it to be
removed from the shadow set . A repaired volume
is merged back into a shadow set by first copying
the data from an available volume as a back-

72

ground activity. Only upon becoming identical to
existing members of the set wil l the repaired vol
ume again become a n avai lable member of the
shadow set.

A detailed description and analysis of the
Model 4 configuration is given later.

Modeling Approach

Several formal definitions are needed to quantify
VAXcluster avai labil ity.

Availability is the proportion of t ime that ser
vice is available from a VAXcluster system to per
form a user appl ication.

I t is i mportant to remember that this definition
of availabil ity is a general one . As the nature of
the application , the size of the VAXcluster config
u ration, and the amount of redundancy change,
avai labi l i ty can be defined in more complex

CONFIGURATION

RELIABILITY BLOCK DIAGRAM
FOR HARDWARE MODEL

RELIABILITY BLOCK DIAGRAM
FOR RECONFIGURATION MODEL

Figure 4 Configuration with Redundant
Processor and Storage Controller
(Mode/ 3)

Digital Technical journal
No. 5 September 1987

ways . For the configurations used i n this study, at
least one of each type of element must be running
for the VA.Xcluster system to be operational .

Unavailability is the proportion of t ime that
service is interrupted and that a VAXcluster sys
tem cannot perform a user application .

I n this study, the related metric of downtime i n
minutes per year w i l l be used rather than the sys
tem unavailabi l ity .

Reconfiguration t ime is the time taken to ini
t ia l ly detect a fa iled element and remove i t from
the VAXcluster system. For a failed VAX proces
sor, this time also i ncludes the time taken later to
re-establ ish the repaired element's membership
in the cluster.

CONFIGURATION

RELIABILITY BLOCK DIAGRAM
FOR HARDWARE MODEL

RELIABI LITY BLOCK DIAGRAM
FOR RECONFIGU RATION MODEL

Figure 5 Configuration of Fully Redundant
System (Model 4)

Digital Technicaljournal
No. 5 September 1987

Note that the HSC device employs "warm
stand-by" redundancy and therefore does not
have any significant reconfiguration time associ
ated with re-establishing membership in the
cluster.

VAXcluster reconfiguration activities usually
complete i n a matter of seconds; however, in
extremely rare cases, much longer t imes are
possible .

Overview
The most common approach to model ing com
plex systems consists of structural ly d ividing a
system into smaller subsystems, such as proces
sors, controllers, and d isks.6 The ava ilabi l i ty of
each subsystem is then analyzed separately, and
the i ndividual subsystem solutions are combined
to obtai n the system solution . One important
assumption must be made to achieve a solution: ·

the behavior of each subsystem must be indepen
dent from that of any other subsystem .

Furthermore, a decomposition technique can
be appl ied to certain behaviors that cause system
outages due to fai lures in redundant subsystems.
In these cases, the recovery to an operational sys
tem happens q u ickly . Similar behavior is also
present when the failed subsystem is repai red
and is ready to rejoi n the system to make it a fully
configured system. This type of decomposition is
cal led behavioral decomposition .

With this approach to structural and behavioral
decomposi tion , hardware fai lures and VAXcl uster
reconfigurations are modeled separately. Such a
decomposi tion allows the model to analyze both
VAXcluster reconfigurations and complete sys
tem fa i lures due to hardware fai lures. It also
al lows the model to analyze the sensitivity of sys
tem availabil ity to each factor.

In this study, ava i labil ity model i ng captured
the following factors :

• Hard fai lures requiring a repair ca l l

• VAXcluster reconfigurations during which the
VA.Xcluster system was assumed to be unavail
able in th is analysis

• Response time for maintenance personnel

• Time-to-repair

The following factors were nor considered
(except for the impact of reconfigurations due to
hardware failures) :

• I ntermittent fa i lures

• Transient fai lures

7 3

VAXcluster
Systems

VAXcluster A vailability Modeling

• Quorum disks

• Operational errors

• Software errors

The fol lowing modeling parameters were used :

• The mean time-between-failures (MTBF) and
mean t ime-to-repair (MTTR) of each of the fol
lowing elements:

- VAX processor

- HSC storage control ler

- Disk drive

• VAXcluster reconfiguration times caused by

- VAX processor failure

- Re-establishment of the repaired VAX
processor into the VAXcluster configuration

- HSC storage controller fai lure

- Disk drive failure

• Response time for maintenance

The remainder of this section describes i n
detai l the modeling of the fourth configuration
(Model 4) .

Analysis of Hardware Failure

Consider the structural decomposition of the
VAXcluster configuration. Three subsystems
were connected in series, each consisting of two
elements in parallel . At least one element in each
subsystem had to be operational for the VAXclus
ter system to be operational . The hardware reli
ability block diagram is shown in Figure 5 .

Repairable systems are those for which an auto
matic or manual repair can be made if an element
fails. Assume that each element is subject to fa i l
ure and has its own repair facil ity 7 I f the time-to
failure of element i is exponentially distributed
with fa ilure rate A1 , and the time-to-repair of ele
ment i is exponentially distributed with repair
rate f.Lt , the i nstantaneous availability can be
obtained by the fol lowing equation:

As t approaches i nfinity, A1(t) approaches the
steady-state availabi l ity and A1 equals f.L;/(A; +f.L;) .

The steady-state availabil ity of a single element
is given by the following equation :

A = f.L/(A + f.L)

7 4

in which A i s the fai lure rate o f the element and f.L
is the repair rate of the element. The time-to-fail
ure and the time-to-repair are assumed to be
exponentially distributed .

The steady-state availability of two elements in
parallel iss

In Model 4 , the elements in each subsystem are
two VAX processors, or two HSC storage con
trollers, or two disk drives. Using the equation
above , the availability of the processor subsys
tem , Ap , can be expressed as

Sim i larly, the availability of the HSC storage
controller su bsystem , Ah , and the avai lability of
the disk drive subsystem , A" can be expressed as

and

The aggregate availabi lity of the VAXcluster
system is

For exponentially distributed times, the fai l
ure rate, A , i s I jMTBF a n d the repair rate, f.L, is
l jMTTR .

Analysis of Reconfiguration Times

Nex t, consider the behavioral decomposition
caused by the reconfiguration that occurs when
one el ement in a subsystem fa ils and an automatic
failove r tO a second (redundant) element takes
place . During this process, a reconfiguration
occurs when a failed element l eaves the VAXclus
ter syste m . For processors only, another reconfig
uration occurs when a repaired processor later
rejoi ns the VAXcluster system . Depend ing on the
user application , the VAXcluster system may be
unavai lable to perform user applications during
these reconfigurations .

Digital Technicaljournal
No. 5 Septem be•· 1987

For example, consider the following time l i ne :

--y,._, ,-t-----t.--'t
__ ___.,..., TIME

t , tz b t.

Figure 6

Time t1 to t2 is the VAXcluster reconfi guration
time for a failed VAX processor to be detected
and re moved from the VAXcluster membership.
Time t2 to t3 is the repair time for the fai led hard
ware element . Time t3 to t4 is the time for the
repaired VAX processor to be re-established in
the VAXcluster me mbershi p .

Figure 5 incl udes the reliabil ity block dia
gram representing the VAXcluster reconfigura
tion behavior of the Model 4 configuration. Each
subsystem is shown as two elements in series. If
any single element is not operational , the sub
system can be unavailable due to a VAXcl uster
reconfiguration.

For two elements in series, the availability is8

A = A1 X Az

In model 4 , the elements in each subsystem are
two VAX processors, or two HSC storage con
trollers, or two disk drives.

Applying the equation above for elements i n
series, the availabil i ty of the processor subsys
tem , Ap , is

A { llp }z p = (J..p +!lp)
Note that for the VAX processor, the rate llp is

the reciprocal of the sum of the times t 1 to t2 and
t3 to t 1 .

Similarly, the avai labi l ity of the HSC storage
control ler subsystem, Ab , and the avai labi l ity of
the disk drive su bsystem , A, , is

A { llb }2
b

= (J..b + llb)
and

Ar = { (J..r�llr)f

The aggregate avai labi lity of the VAXcluster
system is

As = Ap X Ah X Ar

Assum ing an operation running 24 hours a
day, 365 days per year, the downtime equals

Digital Technicaljournal
No . 5 September 1 98 7

(l -As) X 5 2 5 , 600 mi nutes per year. This fig
ure is the downtime caused only by reconfigura
tions. The total downtime is the sum of the down
time caused by hardware fa i lures and the down
ti me caused by VAXcl uster reconfigurations .

Extensions to the Models

The simple mode.ls considered in this study can
be extended in several dimensions.

The complexity of the configurations can be
i ncreased either by adding more VAXcl uster e le
ments or by extend ing the bounds of the models
to include the Ethernet and its attachments. A
complex configuration cou ld include multiple
clusters and multiple Ethernet segments. More
complex definitions of availabil ity are needed as
the configurations increase in complexity. These
definitions range from the single-user view to a
measure of system productivity.

Only permanent (hard) hardware fai lu res are
considered in this study. I ntermittent and tran
sient hardware and software fai lu res, as we ll as
operational errors, can be added as extensions to
future models. The downtime allocation reponed
in the l i terature typically attributes about one
third of the total to each of the hardware, soft
ware, and operator- induced failures.9 This result
includes the effectiveness of system recovery that
can be hardware based, software based, or both.
Certain insidious failures can result in ineffec
tive recovery, even i n the presence of hardware
or software redundancies. The term "fault cover
age" represents the joint probabil ity of fault
detection and successful fai lover to a red un
dant element. A faul t-coverage factor of one is
assumed in this smdy.

This study also assumes that the su bsystems of
VAX processors , HSC storage control lers, and disk
drives are independent. Relaxing this assumption
adds to the complexity of the mode ling
approach. Simi larly, a simplistic mai ntenance
strategy is assumed in which each cluster ele
ment has its own repair facility.

The extensions described above add more rea l
ism to the model ing approach at the expense of
added complexity in both model formulation and
solution technique . Moreover, the textbook for
mulae used i n this study are li miting and often
inappropriate.

Markov modeling is a particu larly useful ana
lytic technique for formu lating and solving these
complex models _ 7 Simul ation is an alternat ive
but computationally less efficient technique.

75

VAXcluster
Systems

VAXcluster A vailability Modeling

Another valuable ind ustry-wide tool is the Sym
bolic Hierarchical Automatic Re liability and
Performance Evaluator (SHARPE) software . 1 0
SHARPE's hierarchical feature al lows complex
su bsystem models tO be combined into a system
model for efficient solution . SHARPE a lso
employs state-of-the-art matrix-solving routines
to solve large and often i l l-conditioned problems
arising from the Markov model formulation of
these complex configurations.

Results and Conclusions

This section discusses the results of this study i n
detail.

The Impact of Initial Redundancy

I n Model 1 , no redundancy exists in the syste m .
In Model 2 , the redundancy of the additional

VAX processor reduces the total downtime to
16 percent of the downtime in Model 1 .

I n Model 3 , the redundancy of an additional
VAX processor and an HSC storage controller
reduces the total downtime to almost 7 percent
of the downtime in Model 1 .

In Model 4 , the total redundancy of an addi
tional VAX processor, an HSC storage controller,
and a disk drive reduces the total downtime to
slightly under 1 percent of the downtime in
Model l .

These results show that redundancy does work
to increase the avai labil ity of the system . Figure 7
shows the effect on total downtime as different
forms of redundancy are introduced . A fully
redundant configuration reduces system down
time by two orders of magnitude.

VAXcluster Reconfiguration Downtime

Figure 8 is an expanded view of the decrease i n
total downtime for the three models that i nclude

76

I I
2 3 4

VAXcluster MODELS

Figure 7 Impact of Initial Redundancy

redundancy. It also shows the contribution of
VAXcl uster reconfigurations to total downti me.
Here the typical duration of reconfiguration is
used. Since Model 1 has no redundancy, the VAX
cluster reconfiguration downtime is zero.

Impact of Increased Frequency
of Reconfigurations

Since the previous results considered the fre
quency of reconfigurations equal to that of hard
ware fa il ures, it was necessary to study the
i mpact of an increased frequency of reconfigura
tions on downtime .

Figure 9 shows the l inear relationship between
reconfiguration downtime and an i ncrease in the
frequency of reconfigurations. It also shows the
trend in the reconfiguration downtime as the
duration of reconfiguration is first varied to three
and then to six times the typical value. As shown,
the key to reduced downtime is keeping the dura
tion and the frequency of reconfigurations as low
as practical . High-rel iability hardware is a major
factor in keeping the frequency of reconfigura
tions low.

Contribution of Individual
VAXcluster Elements

This study also examined how much downtime
an individual VAXcluster element contributes
toward the total downtime.

Figure 1 0 shows the contribution of each ele
ment (CPU, HSC, and disk) toward the total
downtime for Model 4 . At a given MTBF, the VAX
processor contributed 8 2 percent of the total

UJ
�
� z
�
Cl
-'

g 1-

2 3
VAXcluster MODELS

4

KEY:

c::J RECONFIGURATION
HARDWARE

Figure 8 Total System Downtime by Model

Digital Tecbnical]ournal
No. 5 September 1987

w
::2
i= z
3:
0
0

0

- -

MODEL 4

- -

..
.... --

_ .,..- _ _ _ . _ _ _ ...
.,.,...- - - .. - - - · · - -

2 4 6

FREQUENCY OF RECONFIGURATIONS

KEY:

---- 1 X TYPICAL

- - 3 X TYPICAL

-- 6 X TYPICAL

Figure 9 Reconfiguration Downtime by
Frequency of Reconfigurations

8

downtime . When the MTBF of that particular VAX
processor was i mproved, i ts contribution
dropped to 57 percent .

Typical VAXcluster configurations would gen
erally include more than the two disks used in
this study. Having more d isks wou ld change the
contribution of the disk subsystem to the system
unavai labi l ity. (Analyzing the impact of addi
tional disks is outside the scope of this paper.)

The reliabil i ty i mprovement in the MTBF of the
VAX processor decreased both the hardware and
the reconfiguration downtime. Figure I I shows a
decrease of approximately 58 percent in total
downtime.

Hardware Downtime versus
Response Time

This study included a response t ime for mainte
nance for each cal l as part of the recovery time. If
an on-site maintenance person were ava ilable,
the response time would be e l iminated , thus
speeding the recovery of a fai led element . When
this strategy is considered , the hardware down
time drops by almost 60 percent. Figure I 2
shows this reduction as applied to Model 4 .

The N of M Redundancy Case

The results given so far have been for (1 of I) and
(I of 2) configurations of VAX processors, stor
age controllers, and disks . In this section, the
hardware downtime resul ts for VAX processors

Digital Tecbnical]ournal
No. 5 September 1987

arc generalized tO the (N of M) redundancy case.
The assumption is that N processors are required
for capacity and M processors represent M - N
redundancy. The steady-state availability is
defined as the probabi lity of at least (N of M)
processors working. The cluster is assumed to be
unavai lable when less than N processors are
working. Note that, depending on the configura
tion and application, clusters with less than N
working could be considered as partially avai l
able . The case of the partially avai lable cluster is
not considered here.

The (N of M) availabi l i ty , as defined above, is

,U-N Ml J.1. M - 1 J.1. I
A vailability(NofM) = � (-) (1 --)

• 1�11 i! (M - i) ! !L+.\ !L+.\

w
::2
i= z
� 0

FIRST MTBF

KEY:

VAX

c:::::::J H SC

c::::::J DISK

MODEL 4

Figure 1 0 Contributions of Individual
VAXcluster Elements to Downtime

MODEL 4

FIRST MTBF IM PROVED MTBF

Figure 1 1 Total System Downtime by
VAX Processor MTBF

77

VAXcluster
Systems

VAXcluster A vailability Modeling

An application of the (N of M) availabil ity
expression for VAX processors is shown in Fig
ure 1 3 . The number of VAX processors required
to run appl ications to capacity was set to 1 , 2 , 3 ,
and 4 . The values for M were set to N + 0 , N + I ,
and N + 2 . High availability is typically measured
in values much greater than 0 . 9 9 . Therefore , to
distinguish the variation in avai lability, the origin
in Figure 1 3 is not zero but much greater than
0 . 9 . With no redundancy (M = N + O) , availabil
ity decreases with an increase in the number of
processors. That decrease occurs because more
CPUs must be available to del iver the applica
tion, bringing about a greater Likelihood of fai l -

w
::!
i= z
3:
0 0

MODEL 4

ON-SITE MAINTENANCE SERVICE CALL

RESPONSE TIME

Figure 12 Hardware Downtime versus
Response Time

1 .00

r-

..

fl
..--

�
....- r-.-- ..--

I"""

r-
I · I"""

�;
:,

1' ..

1 2 3 4

....-

,

PROCESSORS R EQU IRED FOR APPLICATION (N)

78

KEY:

N + O

c:::J N + 1
c=J N + 2

Figure 13 The (N of M) VAX Processor
Redundancy Case

ure and outage . This result is shown in the graph
by the downward trend of the " N + O" bars.
Adding a single redundant CPU (M = N + 1)
greatly i mproves system availability. Adding a
second redundant CPU (M = N + 2) has l ittle
additional effect on availabil ity. The additional
improvement is not visible on the graph , even
with the expanded vertical scale. It can therefore
be assumed that " N + I " redundancy is sufficient
for most applications.

Summary

VAXcluster systems achieve high availability by
eliminating single pointS of failure with redun
dant hardware. Redundancy is introduced at the
level of standard processors, interconnects, stor
age elements, and software . No special-purpose
hardware or software is required . The same hard
ware and software could be used to construct a
less available u niprocessor system without vol
u me shadowing.

The simple analytic models of VAXcluster
avai lability developed in this study show that
redundancy yields dramatic improvements in sys
tem availabil ity for the system configuration
shown in Figure 1 . The average downtime of the
system is reduced by nearly two orders of magni
tude from that of a similar u niprocessor system
without volu me shadowing.

Because they can be expanded incrementally,
VAXcluster systems requiring a minimum num
ber of N processors to achieve a performance goal
can achieve significant improvements in avail
ability with the addition of a single redundant
processor. There is no requirement to fully repli
cate al l the original N processors .

The system configurations analyzed in this
study are simple ones designed to i l lustrate the
most important concepts of VAXcluster systems.
The downtime of a more complex VAXcluster
configuration, with many additional processors,
HSC devices, and disk drives, changes system
downtime in complex ways . In genera l , addi
tional redundant hardware causes multiple hard
ware fa ilures to become less of a factor. When
faults do occur, however, time is required to
reconfigure the system . Some applications may
view these smal l reconfiguration times as a
source of system downtime . In such cases, addi
tional hardware increases both the frequency of
reconfigurations and their contribution to sys
tem downtime . Continuing effortS to improve
hardware reliability are particu larly i mportant to

Digital Technicaljounull
No. 5 September 1987

reduce the downtime due to multiple hardware
fai lures and the frequency of reconfigurations
that might be counted as downtime by an appli
cation.

The analysis used in this study uses structural
and behavioral decompositions of systems. Struc
tura l decomposition is the most common
approach to modeling complex systems. How
ever, this approach assumes that each subsystem
behaves independently. For the systems and phe
nomena considered in this study , recovery to an
operational state happens quickly fol lowing a
system reconfiguration caused by a fault in a
redundant subsystem . Simi lar behavior is also
present when a fai led VAX processor subsystem is
repaired and is ready to rejoin the system .

These modeling approaches were applied to
the VAXcluster system, which was considered to
be repairable . Structural decomposition was used
to model the hardware failures of each VAX pro
cessor, HSC device, and disk drive in the system .
Behavioral decomposition was used separately to
model the reconfiguration times.

Notes and References

1 . This paper is l imited to Cl-based VAXcluster
systems. Local Area VAXcluster systems,
implemented with Ethernet, are not consid
ered in this analysis. The reader should be
aware that there are significant configura
tion differences between Cl-based VAXclus
ter systems and Local Area VAXcluster sys
tems that lead to important differences in
system availabi l i ty .

2 . N . Kronenberg, H . Levy, W. Strecker, and R .
Merewood , "The VAXcluster Concept : An

Overview of a Distributed System," Digital
Technical journal (September 1 987, this
issue) : 7-2 1 .

Digital Technical journal
No. 5 September 1987

3 . VAXcluster Systems Handbook (Bedford:
Digital Equipment Corporation, Order No .
EB-28858-46, 1 986) .

4 . E . Los, S. Snaman , S. Szeto, and D . Thie l ,
Corrections to "Cluster State Transitions ,"
VAXcluster Systems Quorum , vol . 2 ,
issue 3 (Digital Equipment Corporation,
February 1 987) : addendum .

5 . During reconfiguration , significant proces
sor resources are used to reconstruct the
Jock manager database. Some real-time app
l ications may view the reconfiguration time
as a system outage .

6 . S. Bavuso et al . , Dependability Analysis of
Typical Fault- Tolerant Architectures Using
HARP, CS- 1 986- 1 8 .

7 . K. Trivedi , Probability and Statistics with
Reliability, Queuing and Computer Sci
ence Applications (Englewood Cliffs : Pren
tice Hal l , 1 982) .

8 . P. O 'Connor, Practical Reliability Engi
neering (Chichester: John Wiley & Sons,
Ltd . , 1 985) .

9 . D . Siewiorek and R . Swarz , The Theory and
Practice of Reliable System Design (Bed
ford : Digital Press, 1 982) .

1 0 . R . Sahner and K. Trivedi , SHARPE: Symbolic
Hierarchical A utomatic Reliability and
Performance Evaluator, (Durham : Duke
University Department of Computer Sci
ence , September 1 986) .

79

VAXcluster
Systems

Daeil Park
Rekba D. Von Ehren

Tzyh-jong Wang
Nii N. Quaynor

System Level Performance
of VAX 8974 and 8978 Systems

This paper describes the results of performance tests on the VAX 8974 and
8978 systems in two different situations: a scientific environnrent, and a
transaction processing environnrent. Benchmarks were run in both envi
ronnrents to collect application throughput, IjO activity, and other per

formance data. The results of a VAX 8700 were used as a baseline compari
son. Based upon measured data, two models, one for each environment,
were constructed to predict system performance under different configu
rations. These models were run with various parameters to construct per

formance curves. Subsequent test results showed that both models pre
dicted performance accurately. The 8974 performed 3.2 to 4 times faster,
and the 8978, 6 to 8 times faster, relative to the 8700.

The VAX 8974 and VAX 8978 systems are power
ful new systems based on Digital 's VAXcl uster
technology. These systems consist of either four
or eight VAX 8700 processors respectively, pack
aged with an I/0 subsystem of storage control lers
and d isk arrays. This paper presents the perfor
mance of the VAX 8974 and VAX 8978 systems in
both a scientific environment and a transaction
processing environment. For comparison, the
corresponding VAX 8700 data is presented as the
base-level performance.

The scientific environment was measured
using multistream batch jobs. The transaction
processing environment was measured using a
mu l tiuser interactive workload that simu lated an
order entry and i nventory control syste m . The
measured performance for both environments is
presented in terms of user-visible performance ,
system behavior, and resource utilization of the
app l ications.

Based on the measured data, performance mod
els of VAX 8974/8978 systems u nder each of the
two environments to predict the performance for
different configu rations. The construction of the
model and some resul ts are discussed fol lowing
each measured performance section .

VA.Xcluster Performance Overview

A VAXcluster system is a highly in tegrated organi
zation of VAXjVMS systems can be viewed as a
single-domain information management system .

80

It is a state-of-the-art distribu ted system provid
ing fu l l data-sharing functions. All the accesses to
files and records are coordinated by locking
schemes implemented by the distributed lock
manager l The distribu ted lock manager is a VMS
feature that has been extended w provide syn
chronized readjwrite resource sharing among the
nodes in a VAXcluster system . Being a multicom
puter system of a single management domain ,
a cluster offers increased availabil ity and per
formance .

The performance of a VAXcluster system can be
observed at many levels, such as the Computer
I nterconnect (CI) and the System Communica
tion Architecture . 2 The context used in this
paper, however , is the system -level , or user-per
ceived , performance . The questions that i mmedi
ately arise about VAXcl uster performance are
how it grows as add itional processors are added ,
whether the performance grows in a l inear scale,
and if not, what performance range is expected
compared to the singl e-system performance.

There are two pri mary factors that affect the
performance of a VAXcluster system : a communi
cation overhead, and a locking overhead. The
first factor is related w the management of the
VAXcl uster system. It is the cost ro maintain the
mu ltiple processors in an i ntegrated system and
incl udes such overhead as the compute time £O
maintain the connections between the nodes. A
commun ication overhead always exists in a VAX-

Digital Technical journal
No. 5 September 1987

cluster system , regardless of the appl ications and
the size of the cluster, a lthough that overhead is
general ly sma l l .

The second factor comes from sharing a
resource clusterwide . Every access made to a
shared resource by the processes must be regu
lated by a certa in synchronization scheme . In a
VAXcluster environment, this synchronization is
implemented by using locks. A lock operation
may involve sending and receiving messages
between processors . A previous study shows that
a lock request in a VAXcluster system may take
seven times as long as that in a single VAXfVMS
environment .-> Therefore , the performance of a
VAXcluster system wi l l depend upon the degree
of data-sharing of a particular app lication .

This study has been conducted to understand
what impl ications these factors , especial ly the
locking overhead, have on the system-level per
formance of a VAXcl uster system . The two appli
cations used in this study show the extremes i n
terms of degrees of data-sharing. The scientific
workload had no fi les being shared by the pro
cesses, whereas with the transaction processing
workload, a l l the fi les and records are shared
clusterwide by a ll the processes . The goal of this
study was to find the relative performance range
of a VAXcluster system across the entire applica
tion space by tracing the performance of the two
extreme applications d iscussed above .

Scientific Environment

Workload Description

The scientific workload , called SCIENCE, is a
suite of multistream (homogeneous) batch jobs.
These jobs are we ll -known programs frequently
used i n science and research environments. Four
benchmarks commonly used in physics are ISA
JET and GEISHA, two Monte Carlo simulations
used in high-energy physics applications, and
TAIR and 1WING , two tests used in aerodynamics
applications. Three other programs used in
chemistry are GAUSSIAN 8 2 , a quantum chem
istry package ; MOPAC, a general-purpose semi
empirical molecu Jar orbital package; and RS/ 1 ,
an interactive data ana lysis software package fre
quently used i n chemistry labs .

Performance Metric for
SCIENCE Workload

The most important performance metric is
throughput. Throughput is defi ned as the num-

Digital Technical journal
No. 5 Septem ber 1987

ber of jobs that the system can process in a given
t ime. This metric was derived in the fol lowing
manner, using the elapsed times extracted from
the batch log fi les. For a closed system with one
job,

1
Throughput = .

Average e lapsed ume

The following steps were used tO apply this
equation tO the multinode, multistream system:

Sum of e lapsed
Average elapsed _ ti mes for all jobs

time per job Total number of jobs

in which Tota l number of jobs = Number of
nodes X Number of streams, and

Th h _ Total number of jobs
roug put - Average elapsed time per job

The SCIENCE workload is a su ite of repre
sentative programs, each yielding a throughput
for each system. To compare the performance
of systems u nder this workload, the mult iple
relative performances based on the individual
throughput comparison have to be aggregated .
The geometric mean is chosen tO aggregate the
relative performances, with equal weight on each
program 4 ·5

Test Methodology

The basic methodology of this study was tO
increase the load on the system gradually unti l
the processors were ful ly uti l ized , thus yield ing a
peak throughput for a particular configuration .
Since a l l the benchmarks were run as batch jobs,
this saturation was achieved using mult istream
batch jobs. Up to five batch streams on each pro
cessor were run for each benchmark tested.

Potential 1/0 and memory bottlenecks were
m inim ized by a l lowing large si zes of user work
ing sets and by al locating one d isk per job stream
for data and scratch fi les.

Hardware and Software Configuration

The hardware environment consisted of the fol
lowing elements:

• A VAX 8700 system with one CPU, two HSC70
stOrage control lers, and two SA4 82 storage
arrays

• A VAX 8974 system with four VAX 8700 CPUs,
two HSC70 stOrage controllers, and six SA4 82
storage arrays

8 1

VAXcluster
Systems

System Level Performance of VAX 8974 and 8978 Systems

• A VAX 8978 system with eight VAX 8700
CPUs, fou r HSC70 storage controllers , and
twelve SA4 82 storage arrays

The software environment consisted of the
VAXjVMS version 4 . 4 operating system and
FORTRAN version 4 . 3 .

Characterization ofthe
SCIENCE Workload

The seven benchmarks of the SCIENCE workload
were grouped into two categories based on their
I/0 behavior. One group included the bench
marks with virtually no I/0 activity; the other
with those that generated some I/0 activity.

MOPAC and TWING both generate few IjOs ,
thereby fa l l ing i nto the first category. The re
maining five benchmarks, ISA)ET, GEISHA, TAI R,
RS/ 1 , and GAUSSIAN 82 exhibit some I/0 activ
ity. Among a l l , GAUSSIAN 82 is the most 1/0
intensive . MOPAC and GAUSSIAN 82 were chosen
as being representative of each category. Before
starting the experiments, we ran the representa
tive benchmarks on a VAX 8700 system to study
the characteristics of the system resource usage .
The fol lowing graphs give a profi l e of the two cat
egories in terms of these stud ies .

Figure 1 shows the profi les of MOPAC and
GAUSSIAN 82 in terms of processor ut i l i zation
plotted against elapsed t ime . Note that a single
stream of MOPAC saturated the VAX 8700 proces
sor during the entire run of a l most 40 minutes,
doing virtual ly no I/0. On the other hand , GAUS
SIAN 82 consumed the most CPU power in the
first five minutes and then remained at a lower
rate (67 percent) of CPU ut i l ization for the rest
of the run time . For the first five minutes , GAUS-

a 1 00 UJ
N
:J 80 i= ::J
::J 60 c..
0
LJ._ 40 0
f-z UJ 20 0
cr:
UJ 0 c..

0 5 1 0 1 5 20 25 30 35 40
ELAPSED TIME (MINUTES)

KEY:

"' MOPAC
D GAUSSIAN82

Figure 1 Transient CPU Utilization

82

SIAN 82 generated l i ttle ljO activity. Then , how
ever, it generated a heavy I/0 load - up to
2 1 IjOs per second - to the user disk during
the rest of the run . The ljO transfer size of
GAUSSIAN 8 2 is the largest of a l l the tests, around
2 5 ki lobytes (KB) per request. The I/0 data rate
of a single GAUSSl.A.!'\1 82 test , col lected using the
Software Performance Monitor (SPM) program
with 60-second intervals, shows as much as
530KB per second during this IjO i ntensive
period .

Results and Observations
MOPAC Results. Figure 2 p lots the throughput
of the MOPAC benchmark against the total num
ber of streams i n the cl uster. The throughput
increases l inearly up to one job stream per pro
cessor. Beyond this point the curves remain flat .
This flattening occurs because the benchmark is
very CPU intensive, and one stream saturates a
single processor with an average uti l ization of
9 9 . 6 percent. Therefore , adding more streams
does not increase throughpu t .

The throughputs at which the curves flatten
out are 1 .6 , 6 . 4 , and 1 2 . 8 jobs per hour re
spectively for the VAX 8700 , VAX 8974, and
VAX 8978 systems. In terms of relative perfor
mance , the throughput of the VAX 8974 and
VAX 8978 systems were 4 . 0 times and 8 . 0 times
respectively greater than the throughput of a sin
gle VAX 8700 CPU, a l l showing l inear growth
with the number of streams.

GAUSSIAN 82 Results
Figure 3 shows the throughput for the GAUS
SIAN 8 2 benchmark plotted against the total
number of concurrent streams on all the systems.

ir 1 6
::J
0 1 4 I
(jj 1 2
Ill
0 1 0
2
f- 8
::J
c.. 6 I
C) 4 ::J
0 2 cr: I f- 5

KEY:

• VAX 8978
... VAX 8974
0 VAX 8700

Figure 2

1 0 1 5 20 25
TOTAL STREAMS

MOPA C Throughput

Digital Technical]om-nal
No. 5 September 1987

The curves show how throughput grows as the
number of processors increases i n the cluster.
The VAX 8974 system achieved a maximum
throughput of 1 2 . 1 jobs per hour with 1 6 con
current streams. This throughput is 3 . 8 t imes
that of the VAX 8700 CPU, which achieved
3 . 2 jobs per hour. The peak throughput of the
VAX 8978 system was 2 1 . 9 jobs per hour, or
7 .0 t imes that of the VAX 8700 CPU. The relative
figure for the VAX 8978 system is somewhat low
because there was an imbalance in the use of the
1/0 subsystem.

Table 1 shows the 1/0 activit ies for each
HSC70 device during the five-stream run of
GAUSSIAN 82 on the VAX 8978 system . All the
numbers are averaged for the entire run t ime .
One can dearly see in this table that some HSC70
devices were loaded more than others . Most disks
were connected tO the two HSC70 controllers,
labeled HSCO 1 1 and HSCO 1 4 , i nd icating that
the other two were hot-standbys for the case
of fai lovers . This loading variation happened
because user d isks were randomly assigned tO the
job streams. The data rate of over 2 megabytes
(MB) per second on HSCO l l was only the aver
aged number; the peak rate was close tO 4MB per
second , thus l imiting the IjO rate . The total data
rate on the CI bus of the VAX 8978 system was
over 4MB per second, 2 . 3MB of which was
through one HSC70 device. This l imi ted the per
formance of five processors in the c luster.

�
::::>
0 I
(j)
10
0
2-
I-::::> a..
I
<!l
::::>
0 a:
I I-

30

25

20

1 5

1 0

5

KEY:

• VAX 8978
• VAX 8974
D VAX 8700

TOTAL STREAMS

Figure 3 GAUSSIAN 82 Throughput

Digital Technicaljournal
No. 5 September 1987

Note that within i nd ividual system configura
tions, throughput increases as the number of
streams increases. With the VAX 8974 system ,
for example, one stream per processor produced
a throughput of 2 . 2 3 jobs per hour, increasing
up to 3 .06 jobs per hour - a 3 7 percent
increase - with five streams.

Performance Summary

Table 2 shows the relative performance of each
benchmark in terms of maximum throughput
achieved with respect to a s ingle VAX 8700 CPU.
The performance of the VAX 8974 and VAX 8978
systems ranged from 3 . 76 to 4 . 00 t imes, and
6 .95 to 8 .00 t imes that of the 8700, with geo
metric means of 3 . 88 and 7 . 40 respectively.

Simulation ofthe GAUSSIAN 82
Workload on the 89 74!89 78

Based on the measured data , a model called
SIMsci was developed tO describe the perfor
mance of the 8974/8978 under GAUSSIAN 82 ,
the mu ltistream , scientific computation work
load. As described earlier, GAUSSIAN 8 2 , a com
putational package for quantum chemistry, is a
collection of routines for different calculation
needs. The key computational behavior patterns

Table 1 1/0 Activities per HSC Device

l/0 Rate Data Rate
No. of (Requests/ (KB per

HSC70 Spindles Second) Second)

H SC0 1 1 24 96.4 2 1 26.2

HSC0 1 2 2 1 2.7 238.8

HSC01 3 2 1 2.5 247.7

HSC0 1 4 1 2 65.4 1 464.2

Table 2 SCIENCE Performance
Relative to the VAX 8700

Program VAX 8974 VAX 8978

G E I SHA 3.76 7.02

ISAJ ET 3.88 7.40

TAI R 3.86 7.29

TWI N G 4 .00 7.97

M O PAC 4 .00 8 .00

RS/1 3 .82 7.22

GAUSS I A N 82 3 . 84 6.95

Geometric Mean 3.88 7 .40

83

VAXcluster
Systems

System Level Performance of VAX 8974 and 8978 Systems

of this workload modeled by SIMsci are

• An executing stream places significantly dif
ferent loads on t he CPU and the disk at differ
ent times of execution (see Figure 1 for the
transient CPU utilization pattern) .

• An executing stream has a lot of 1/0 and CPU
overlap (i . e . , computation continues while
1/0 is in progress) .

As shown in Figure 4 , SIMsci consists of batch
jobs (as concurrent streams) , processors , and 1/0
devices. An executing batch job accesses both
CPUs and 1/0 devices. The execution of a job is
modeled as several interconnected stages. Each
stage represents an executing interval during
which the job has similar util izations of the CPUs
and the I/0 devices. These stages are introduced
to capture the transient behavior of GAUSSIAN 82
shown in Figure 1 . Note that the number and
types of stages depend on the input data to GAUS
SIAN 82 , which triggers d ifferent routines to exe
cute accordingly.

The CPUs and I/0 devices are the principal
resources consumed by a typical batch job . SIM
sci models a CPU as a single-server queue (i . e . , it
can serve one batch job each time) . When more
than one batch job competes for the same CPU,
the jobs are served in a round-robin, t ime-sl iced
fashion. The CPU serves a job exclusively e ither
for a fixed duration (e .g. , 200 mil liseconds) or
until the job gives up the CPU (e .g . , issues an 1/0
request) , which then switches to another waiting
job. The I/0 device is simply modeled as a time
delay since the GAUSSIAN 82 experiments are
designed to avoid 1/0 resource contention . The
presence of simultaneous CPU computations and
1/0 operations (over 30 percent of the time, as
observed from direct measurement) , was mod
eled. For a certain percentage of times, a job con
tinues its computations within the CPU while i ts

84

IDLE BUSY

Figure 4 Model Structures ofS/Msci

I/0 request is being processed. For the rest of the
times, a job is on hold while its 1/0 request is in
progress .

S!Msci uses the fol lowing model parameters to
describe the interactions of job, CPU, and 1/0
devices:

• TotalStage, the total number of distinguishable
stages of a batch job

• Nio (l) , the total number of I/0 requests at
stage I

• TcpuUser(l) , the total CPU time used by
GAUSSIAN 82 at stage I

• TcpuSys(I) , the total CPU time used by the
VMS software at stage I

• Tcpuldle (l) , the total CPU idle time due to
page and swap waits at stage I

• TioWait(I) , the total time that the job waits for
its 1/0 to complete at stage I

• RTio(I) , the average response time of disk 1/0
at stage I

The values of these parameters were derived
from the measurement data . Several assumptions
were made about the relationships between
these parameter values and the VAXcluster con
figurations and job loads per node . First, it was
assumed that each job's Nio, TcpuUser, and
TioWait should have the same values for both the
VAX 8974 and VAX 8978 configurations and for
different job loads (i .e . , number of streams per
node) . These assumptions were made because
each GAUSSIAN 82 workload would always exe
cute the same codes with the same data in any of
the environments.

Second , it was assumed that TcpuSys increases
as the number of nodes and the number of
streams i ncrease , thus adding communication
load within the cluster and scheduling load
within each node . The third assumption was
that Tcpuldle increases as the number of nodes
increases, since more page or swap requests
would be placed on the pagejswap d isk, which is
shared by all nodes in the cluster. It was also
assumed, however, that Tcpuldle decreases as
the number of streams per node increases. The
more streams per node, the higher the probabil
ity that at least one job without page faults exists
and can util ize the CPU while other jobs are
doing paging or swapping. These assumptions
were consistent with the measurement results .

Digital Technical journal
No. 5 September 1987

SIMsci was validated against the measured data of
three key metrics, job elapsed time , CPU uti l iza
tion, and d isk 1/0 rate, with less than 5 percent
difference.

The performance data collected were through
put per hour and CPU ut i l ization . Figure 5 shows
that the measured and modeled results overlap
for both the VAX 8700 and VAX 8974 systems,
thus indicating the accuracy of the mode l . The
8978 curves , however , differ from each other.
The previous section discussed the fact that the
measured throughput of GAUSSIAN 82 was some
what low due to the i mbalanced r;o subsystem .
Therefore, the model results here give us a best
case throughput when there is no I/0 boule
neck . Although SIMsci produces reasonably accu
rate results with l i ttle effort , i t does have i ts
l imitations. One major one is that SIMsci cannot
predict the saturation of the IjO subsystem .

SIMwic assumes that IjOs are always free of
bottlenecks; thus i t cannot predict the perfor
mance of the VAX 8974/8978 systems under
heavy workloads (e .g . , 1 0 or more streams per
node) .

Transaction Processing Environment

Workload Description

The warehouse and inventory control (WIC)
workload is a transaction processing program
based on the on- l ine support required to manage
the movement of i tems into and out of a ware
house . Although WIC is a warehouse app.lica-

�
:::J
0 I
;n
[!J
0
2
1-:::J Q_
I
C)
:::J
0 a:
I 1-

30

25

20

1 5

1 0

5

1 0 20 30 40
NUMBER OF STREAMS

KEY:

.A. 8978 MEASUREMENT
v 8974 MEASUR EMENT
• 8700 MEASUREMENT
• 8978 SIMU LATION
0 8974 SIMULATION
0 8700 SIMU LATION

50

Figure 5 GAUSSIAN 82 Throughput
Model versus Measured

Digital Tech11ical]ournal
No. 5 September 1987

60

tion , it is a representative transaction processing
appl ication .

A WIC workload is d ivided into five functional
parts, each associated with one task type. The
five task types and the percent of total tasks rep
resented by each type are given as follows:

• Receiving - Performs the functions needed to
log the receipt of parts from the loading dock
i nto the warehouse (1 7 percent)

• Inventory - Queries and u pdates the files
conta ining inventory i nformation (1 0 per
cent)

• Warehouse - Performs the functions needed
to pick parts based on se leered orders (1 0 per
cent)

• Order entry - Places orders to be fi l led by the
warehouse (46 percent)

• Purchase order - Composes purchase orders
(with outside vendors) for parts to be stocked
in the warehouse (1 7 percent)

Each task is performed a specified proportion
of the execution t ime. The task selection percent
ages reflect the assu mption that the average flow
of i tems into the warehouse equals the flow out
of the warehouse during peak-hour operations.

Each task consists of a nu mber of transactions.
A transaction is defined as one or more user input
steps fol lowed by computation , database I/0, and
output to the terminal user. Each task has an aver
age of 7 . 8 transactions in the WIC app.lication .
Since a transaction impl ies the init iation of work
by the system , throughput is measured in terms
of transactions per second .

Al l menus and forms are implemented by re
quests to the VAX Transaction Data Management
System. Inqu i ry and update operations take p lace
on seven different application fi les i n the VAX
Record Management Services (RMS) software.

Performance Metrics for WIC Workload

• System throughput is defined as the total num
ber of transaction processed systemwide i n
constant time (one second) , o r transactions
per second (TPS) . This number i ncludes all
types of transactions . Figure 6 i l l ustrates the
user and system actions needed for one trans
action .

• User prod uctivi ty is the average number of
transactions each user completes i n a unit of
time, expressed in transactions per user per
hour .

85

VAXcluster
Systems

System Level Performance of VAX 8974 and 8978 Systems

USER
THINKING
TIME

USER
PR ESSES
CARRIAGE
RETURN

USER
TYPING
TIME

SYSTEM
BEGINS
RESPONSE

SYSTEM
COMPLETES
RESPONSE

- sERVICE TIME-

TRANSACTION

Figure 6 Transaction

• Mean service t i me is defined as the average
t ime required to complete a transaction . This
time does not i nclude the input typing t ime or
think t ime, but does include the t ime taken for
screen output. A specific receiving transac
tion , called REC3, was chosen for the evalua
tion of this metric . REC3 i nvolves updating
three records and writ ing one record several
t imes, which represents a moderately complex
unit of work.

Test Methodology

The transaction processing environment was cre
ated by using remote terminal emulators (RTEs) ,
which emulated al l activities of terminal users.
The RTEs also kept track of each transaction and
the time of i ts occurrence and maintained the
transaction mix throughout the experiment. Sev
eral systems of the VAX 8600 cl ass were used as
RTEs to load the systems under test, called SUTs.

To establish a base level of performance, the
init ial set of experi ments was carried out with
one VAX 8700 CPU as the SUT. The VAX 8974
and VAX 8978 systems were then tested by vary
ing the number of users, and hence the number
of transactions.

The RTEs logged users i nto the SUTs in the
cluster at four-second i ntervals (users were
evenly distributed between the SUTs i n the clus
ter for all the configurations tested) . After log
ging in , each user started his appl ication , also at
four-second i ntervals. After the SUTs reached a
steady state , data was collected for 2 0 minutes on
both the SUTs and the RTEs.

Hardware and Software Configuration

The hardware environment for each VAXcluster
configuration included the same 1/0 subsystem .
The hardware components of the configurat ions
consisted of the fol lowing elements:

86

• A VAX 8974 system with four VAX 8700 CPUs,
each with 3 2 MB of memory, two HSC70 con
trol lers, one SA4 8 2 storage array for the sys
tem ; and the pagingjswapping software, and
three SA4 82 arrays for the database.

• A VAX 8978 system with eight VAX 8700
CPUs; the other hardware was the same as the
VAX 8974 system 's above.

The software environment consisted of the
VAXjVMS version 4 . 5 operating system , VAX- 1 1
ACMS version 2 . 0 , VAX- 1 1 TDMS version 1 .4 ,
VAX- 1 1 CDD version 3 . 1 , VAX- 1 1 COBOL ver
sion 3 . 1 , and SPM version 3 0 .

In addition t o the general tuning of the SYSGEN
parameters, several appl ication-specific parame
ters were adjusted for the best performance .
These include the number of appl ication server
processes, and the size of the RMS global buffer
used to buffer some portion of each RMS fi le. In a
d istributed system l i ke a cluster, increasing the
buffer size can resul t in additional 1/0 requests
caused by more frequent buffer invalidations.
The database consisted of 1 4 RMS indexed
sequential files spread over 1 2 d isk spindles to
balance the 1/0 rates.

Performance Results and Observatio ns

System Throughput

Figure 7 displays the system throughput (the
nu mber of exchanges processed) at different
user loads on the different configurations. These
curves give a global i ndication of the overal l re la
tive performance of the VAX 8974 and VAX 8978
systems.

0 60 z
0
u 50 UJ
(/)
cr 40 UJ a._
(/) 30 z
0 20 f= u <(1 0 (/)
z
<(
cr
1- 200 400 600 800 1 000 1 200 1 400

KEY:

0 VAX 8978
.6. VAX 8974
1:> VAX 8700

N U M B E R OF USERS

Figure 7 WIC Throughput

Digital Technical journal
No. 5 September I 987

The VAX 8700 CPU peaked at 1 0 . 5 trans
actions per second (TPS) while servicing
280 users. The VAX 8974 configuration achieved
its maximum throughput rate of around 3 4 . 5 TPS
while servicing 960 users. Thus the maximum
throughput of the VAX 8974 system is about
3 . 3 times that of a single VAX 8700 CPU . The
performance gain is not l inear in this case
because the degree of data-sharing is quite h igh
in the WIC application, causing the locking over
head typical in a cluster environment.

The limiting resource for the VAX 8974 system
and the VAX 8700 CPU was processor power. The
8700 and each processor in the 8974 were fully
util ized at around 960 users for the 8974 and
280 users for the 8700. The corresponding I/0
rates for the peak user levels were 2 20 and 60
respectively for the 8974 and the 8700.

The VAX 8978 system achieved a maxi
mum throughput of 4 7 . 5 TPS while servic
ing I , 200 users, which is only 4 . 5 times the
VAX 8700 throughput . Even taking into account
the cluster overhead, this resul t is a very low rela
tive performance gain . Clearly, this result indi
cates that with the current implementation of the
application the VAX 8978 performance was l im
ited by some resource.

After more investigation , we found that the
disks were this l imiting resource . We observed a
peak of 320 disk I/Os per second at 1 , 200 users
on the VAX 8978 system . Let us assume that the

35

30

w 25
�
a: 20
0
� 1 5
en
0 1 0

5

0
480

KEY:

- DISK 1

DISK 2

c:::::::J 0 IS K 3

c::::::J 0 IS K 4

960

N U M B E R OF USeRS

1 200

Figure 8 Disk f/0 Rates for WIC
(Top Four Disks)

Digital Tecbnica/Journai
No. 5 September 1 987

ljOs were uniformly distributed between the
1 2 spindles (which they were not) . In this case ,
dividing the peak of 320 ljOs between the spin
dles yields 27 ljOs per spindle. However, the
actual maximum observed on any one spindle
was actual ly around 35 IjOs per second. Figure 8
plotS the four highest 1/0 rates.

Investigating further, we found that these disks
also had large queue lengths associated with
them (up tO 4 requests at 1 , 200 users) . Clearly,
the IjO rates above coupled with the large queue
lengths established that disk IjOs were the l imit
ing resource for the VAX 8978 configuration . In
the section Simulation of the WIC Workload ,
where the modeling of VAXcluster systems is d is
cussed , more data on the VAX 8978 performance
will be presented without this l imiting factor.

Figure 9 gives a view of system performance in
terms of throughput and processor util ization.
Note that the more processors there are in the sys
tem, the more processor power it takes to do the
same amount of work. For example, to obtain a
throughput level of 30 TPS , the VAX 8974 system
required 300 percent of the processor power and
the VAX 8978 system required around 3 4 0 per
cent. This extra power is needed by the cluster
overhead, which involves locking activities and
message transfers between the processors.

User Productivity

Figure I 0 provides another view of throughput
in terms of user productivity, defined as the
throughput per user (the throughput in Figure 7
divided by the number of users) .

Cl
z 60 0
(.)

50 w
en
a: 40 w o._
en 30 z
0
t= 20 (.) ..: en 1 0 z
..: a: 0 f-

/
0

KEY:

0 VAX 8978
£ VAX 8974
.t;. VAX 8700

200 400 600

CPU UTILIZATION

Figure 9 Throughput versus CPU Utilization

87

VAXcluster
Systems

System Level Performance of VAX 8974 and 89 78 Systems

200 400 600 800 1 000 1 200 1 400
NUMBER OF USERS

KEY:

0 VAX 8978
J1. VAX 8974
!!. VAX 8700

Figure 1 0 User Productivity

This figure shows that the maximum through
put per user for this workload is around 1 50 TPS
for any configuration . This graph also indicates
the number of users that can be supported by
each system while mainraini ng a certain level of
user productivity. For example, at 1 4 0 TPS , the
8700, 8974 , and 8978 support 2 5 0 , 8 5 0 , a nd
1 , 2 00 users respectively. More users can be sup
ported at lower user productivity levels.

Figure 1 0 also indicates the level of users at
which one m ight consider switching to a larger
system to mainta in a certa i n l evel of user pro
ductivity . For example , to maintain a user pro
ductivity level of approximately 1 5 0 TPS, one
must switch to a VAX 8974 system at around
2 4 0 users, and to a VAX 8978 system at around
7 2 0 users .

Mean Service Time

The VAX 8700 and VAX 8974 service ti mes
remained under one second for a l l user l evels
tested. The VAX 8978 service-time curve a lso fol
lowed this trend u p to the 960-user level . How
ever, after that level , the service time degraded
quickly due to the large number of IjOs and
queue lengths at the disks as the 1 200-user level
was approached . These patterns are shown i n
Figure 1 1 .

ENQ Rate

So far, only user visible performance and some
system behavior has been d iscussed . Now some of

88

2.50

2.00
(j)
0 1 .50 z
0
u 1 .00 w
(j)

0 50

0
�

0 200

KEY:

D VAX 8978
J1. VAX 8974
!!. VAX 8700

400 600 800 1 000

NUMBER OF USERS

Figure 1 1 WIC Service Time

1 200 1 400

the cl uster aspects of the systems are examined,
mainly the locking activities.

As mentioned at the beginn i ng of this paper,
the WIC workload assumes ful l data-sharing (i . e . ,
a l l the database fi les are shared by al l users) . This
sharing i nvolves locking and un locking fil es and
records every t ime they are accessed . The locking
and unlocking operations are performed by sys
tem services cal led ENQ and DEQ . An ENQ
request is serviced by the d istri buted lock man
ager, which examines outstand ing locks to the
resource and a l lows access if there is no confl ict .

The SPM software records the the number of
ENQs on a particular processor. The total ENQ
rates at different user levels for differem configu
rations were extracted from SPM data and
graphed in Figure 1 2 . This cu rve cl osely resem
bles the throughput curve , implying a strong cor
relation between locking activit ies and through
put. Around 26 ENQ operations were required on
the average to perform each exchange .

Total Remote ENQ Rate

A remote ENQ occurs when the resource of inter
est is mastered by a process that runs on an
other processor in the c luster. Remote locks are
more costly than local locks because additional
interprocessor commun ication over the CI bus is
required between the requesti ng and mastering
nodes.

Figure 1 3 plots the remote ENQ rates aga inst
the tOtal ENQ rates for different configurations .

Digital Technical journal
No. 5 September 1 <)87

200 400 600 800 1 000 1 200 1 400

KEY :

0 VAX 8978
• VAX 8974
D. VAX 8700

NUMBER OF USERS

Figure 12 Total ENQ Rate

The increasing slopes of the different curves
ind icate that the remote EN Q rate also i ncreases
with the nu mber of processors in the system as
well as with the total nu mber of users. Generally,
i n an N-processor homogeneous distributed sys
tem i n which all resources are equally accessed
by a l l processors and a l l accesses require locking
operations, the remote locki ng operations wi l l
equal (N - 1) /N times the total locking activity.
This result occurs because each processor has
an equal opportunity to master a particu lar
resou rce. This re lationship held in the case of t he
remote versus the total new ENQ rates observed
in the VAX 8974 and VAX 8978 systems, in which
the ratios were 75 percent and 8 7 . 5 percent
respectively . Figure I 3 shows, however, that on
the average only 60 percent and 80 percent of
the ENQs were remote for the 8974 and the 8978
respectively . These resu lts occu rred because t he
ploned ENQ rate includes the convened ENQ
rate as wel l as the new ENQ rate; most convened
ENQs were found to be loca l .

lnterprocessor Com munication

The communications between the processors are
achieved by the Systems Communication Archi
teCture by way of transmitting and receiving
sequenced messages. Figure 1 4 shows the num
ber of sequenced messages transferred between
the processors every second . Most of these mes
sages are generated by t he distributed lock man
ager for clusterwide locking purposes.

·Digital Technical journal
No. 5 September I ')87

TOTAL ENO/SECOND

KEY:

0 VAX 8978
• VAX 8974
D. VAX 8700

Figure 13 Remote versus Total ENQ Rates

0
z
0
frl 4 .00
� 3.50
(f)
0 3.00 z
;?, 2.50
6 2.00
I
1- 1 .50

I
(f) 1 .00
w � 0.50
(f) 0 �����----�--�----�--�--�
l{l 0
::2

200 400 600 800 1 000 1 200 1 400

KEY:

D VAX 8978
• VAX 8974
D. VAX 8700

NUMBER OF USERS

Figure 14 Message Rate between Processors

Cl Traffic

The traffic on the CI consists of three packet
types: datagrams, sequenced messages, and block
transfer messages. In this appl ication , datagrams
were used only for error loggi ng and t herefore
did not exist . Sequenced messages are used for
communications between the processors and the
HSC70 controllers . Most of these short packets
are ei ther packets between the d istri buted lock
managers to perform clusterwide lock ing (d is
cussed earl ier) or packets between a processor
and an HSC70 controller to request and response
to I/0 operations . Each 1/0 request to the disks

89

VAXcluster
Systems

System Level Performance of VAX 89 74 and 89 78 Systems

or tapes controlled by an HSC70 device requires
a pair of messages to be exchanged between the
processor and the controller. Block transfer mes
sages are data packets for 1/0 operations. The
transfer rates of each message type are recorded
by the SPM software . Figure 1 5 pl ots the CI traf
fic against the n umber of users. The CI traffic,
expressed i n KB per second , is calculated from

the data collected by the SPM software.
This figure shows that, in general , the CI bus is

rather underutilized , peak ing around I , 2 65KB
per second at 1 , 200 users for the VAX 8978 sys
tem . This utilization is less than I 5 percent of the
raw bandwidth of a single CI wire , or 7 . 5 percent

of the bandwidth on each CI path. It should be
noted, however, that this data includes neither
the extra bytes of the lower level protocol over
head nor the additional traffic incurred by
retransmissions. Thus the actual CI util ization

will be a little higher than these figures.

WIC Database Partitioning
Extended Study
The results presented i n the previous section
indicate that the application as currently imple
mented presented a problem with the disk IjO.

More IjOs were being generated to several files,
resulting i n too many d is k IjOs to several spin
dles. To reduce the nu mber of ljOs, we parti
tioned both the application and the database,
anticipating that the number of ljOs to each
spindle wou ld be reduced. This section su mma
rizes the results from this study.

The main difference between this study and
the previous one is the number of disk spindles

1 .60

0 1 .40

5 1 .20

� 1 00

� 0.60

� 0.60 >
al 0.40
="

0.20

0 �--�---L--�----L----L--�--�

90

0 200 400 600 BOO 1 000 1 200 1 400

KEY:

D VAX 6976
4 VAX 6974
1'> VAX 6700

NUMBER OF USERS

Figure 15 CI Traffic

used. This study used 24 spindles (6 SA4 82 s) ,
whereas the previous study used only 1 2
(3 SA4 82 s) . The throughputs achieved with this
new configuration are plotted in Figure 1 6 .

It is clear that with this configuration the
VAX 8978 system performed much better with
2 4 spindles than with 1 2 . The system achieved a
peak throughput of 66 transactions per second
with I ,60 0 users, which was 6 . 3 times the
throughput of the VAX 8700 CPU . This resu lt
i l l ustrates the importance of having a system ba l
anced in regards to its processing power and 1/0
capacity.

Simulation ofthe WIC Workload
Based on the measurement data , a model called
SIMwic was developed to describe the perfor
mance of VAX 8974/8978 systems under WIC,
the multiuser, on-l ine transaction processing
workload. WIC characterizes the on- l ine transac
tion processing of items (i .e . , parts) that flow

into and out of a warehouse and supports multi
ple concurrent access to the WIC database. The
model structure of S!Mwic is shown in Figure I 7 .

The fol lowing components of WIC were mod
eled in SIMwic:

• Users (who generate transactions)

• Lock messages

• CPUs

• Shared IjO passages (CI bus, HSC70 con
trol ler, channel)

• Disks

0
z
0 (.) w (/)
a: w ll.
(/) z
0
f= (.) <{ (/) z
<{ a: 1-

60

70

60

50

40

30
20

1 0
0

0 500

KEY:

4 24 DISKS

0 1 2 DISKS

1 000 1 500

NUMBER OF USERS

Figw-e 16 WIC Throughputfor 1 2
versus 24 Disks

2000

Digital Technica/journa/
No. 5 September 1987

-

USER LOGIN NEXT TASK

TASK DELAY IN ITIAL TRANSACTION

DATA ENTRY DELAY TRANSACTION DELAY NEXT TRANSACTION

LOCK MESSAGES

Figure 1 7 Model Structure of S!Mwic

A user generates one task at a time tO access the
WIC database, eac h task consisting of severa l
transactions. Each transaction uses the CPU for a
certa in amount of t ime and sends severa l I/0
requests through the shared r;o passage to
access the WIC database disks. Each IjO request
wi l l first send lock messages to ensure that the
data is accessible and then i ni tiate the IjO opera
tions .

The fol lowing parameters are used by SIMwic
to describe the interactions of the users, lock
messages , CPUs , shared I/0 passages, and d isks:

• Jntertask Delay , the delay after the completion
of a task prior tO the init iation of another task
by the same user

• lntertransaction Delay , the delay after the
completion of a transaction but prior to the
initiation of the next transaction by the same
task

• Task Mix, the percentages of each task type of
the WIC workload

Digital Technicaljournal
No 5 September 1 987

• Total Transaction , the total number of transac
tions for each task type

• Total Disk IjO, the total number of d isk 1/0
for each transaction

• ProbDisk , the probabil i ty of selecting disk
for r;o

• CPU Delay, the CPU ti me tO process a transac
tion on each visit

• Lock Delay, the CPU t ime to process lock mes
sages due tO an I/0 request

• CI Delay, HSC delay , Disk Delay , and Channel
Delay , delays due to data transfer and disk
seeks

The values of these parameters were obtained
from several sources, including workload specifi
cations, direct measurements, other performance
studies, and hardware specifications.

SlMwic was va l idated on measurements of CPU
uti l i zation , throughput, and disk I/0 rates. The
differences between s imu lated and direct-mea-

9 1

VAXcluster
Systems

System Level Performance of VAX 89 74 and 89 78 Systems

sured results were within five percent, as shown
in Figure 1 8 . The performance data collected
were task l ife-cycle, throughput rate, CPU uti
l i zation , and d isk 1/0 rate.

A5 discussed earl ier, the performance of the
VAX 8978 system under the WIC workload can
be sign ificantly improved by spreadi ng the data
base over 24 d isks i nstead of 1 2 . S IMwic modeled
such a database expansion and confirmed the per
formance improvements on the throughput, as
plotted in Figure 1 9 .

Summary

The performances of VAX 8978 and VAX 8974
systems were studied i n two environments: a
scientific, compute-intensive batch environment

a 60 z
a
() 50 w
(/)
a: 40 w (l.
(/) 30
z
0 20 f=
() <((/)
z 1 0
<(0 a:
1- 0 500 1 000 1 500

NUMBER OF USERS

KEY:
.11. MEASUREM ENT
0 SIMULATION

Figure I 8 WIC Throughput - Model
versus Measured

� 80
8 70
w
(/) 60
a: � 50
cg_ 40
§ 30
� 20
(/) ::i: 1 0

2000

� 0 '------'-------'--------'------'
0 500 1 000 1 500 2000

92

KEY:

.II. 24 DISKS
0 1 2 DISKS

NUMBER OF USERS

Figure I 9 Model Results: Throughput
with I 2 versus 24 Disks

using the SC IENCE workload, and an on- li ne
transaction processi ng environment using the
WIC workload . These two environments were
chosen to capture the range of the relat ive per
formances VAXcluster systems can achieve
compared with the performance of a s ingle sys
tem . Using both measurement and modeling
approaches, i t was shown that the 8974 has
from 3 . 3 to 4 . 0 t imes the performance of a single
VAX 8700 CPU, depending on the degree of fi le
sharing, when there is no substantial bottleneck
in the 1/0 subsystems. A 8978 was shown to have
between 6 . 0 and 8 . 0 t imes the performance of
the VAX 8700 CPU, again depending upon the
appl ication's characteristics, especial ly the
amount of remote locking activi ty.

Acknowledgment

The authors wish to thank Joe Marconis for
his support with the WIC workload, and Bil l
Youngs for providing a sui t of scientific pro
grams. Also thanks to Jory Tsai for the d iscussion
on the VAX 8650 cluster model , to Hossein
Hosse in i for the WIC experiments, and to Ray
Kopacko, who developed the SCIENCE workload
and performed the experiments using i t .

References
1 . W. Snaman and D . Thiel, "The VAXjVMS

Distributed Lock Manager," Digital Techni
cal journal (September 1 987, this issue) :
2 9-44 .

2 . D . Duffy, "The System Communication
Architecture, " Digital Technical journal
(September 1 987, this issue) : 2 2- 2 8 .

3 . N . Kronenberg, H . Levy, and W. Strecker,
"VAXclusters: A Closely-Coupled D is
tributed System," ACM Transactions on
Computer Systems, vol . 4 , no. 2 (May
1 986) : 1 30- 1 46 .

4 . P . Fleming and). Wal lace , " How Not To Lie
With Statistics: The Correct Way To Summa
rize Benchmark Results," CA CM, vol . 29,
no . 3 (March 1 986) : 2 1 8- 2 2 1 .

5 . F. Colon Osorio, N . Quaynor, D . Park, X .
Cao , "Axiomatic Approach t o Summarizing
Benchmark Resul ts ," Annual Review/
Reports, System Performance Group
(1 986) .

Digital Technicaljournal
No. 5 Septem ber 1 987

Xi-Ren Cao
Nii N. Quaynor

Fernando C. Colon Osorio

CI Bus Arbitration Performance
in a VAXcluster System

CI bus performance is difficult to evaluate with a conventional queuing
network approach. Therefore, a new mode� a generalized semi-Markov

process, is used to model the process on the CI bus under its arbitration
algorithm. This new model is implemented in a PASCAL program that is
run for different configurations of VAXcluster systems. The simulation
results demonstrate the properties of the arbitration algorithm. The
results also suggest that a centralized control scheme could improve the CJ
utilization, and that some load-balance schemes can reduce the average
response time. The method may be useful for designing other products.

This paper re lates the study of performance
of the CI bus in a VAXc luster environment. The
cluster nodes (computers and storage control
lers) are connected through a Star Coupler by a
dual-path CI bus. An arbitration algorithm deter
mines which node wil l be al lowed to send pack
ets over that CI bus. The performance of the CI
bus may d irectly affect the cluster's performance,
and studying the performance of the CI bus algo
rithm shoul d yield some useful insights to en
hance the designs of future computer-intercon
nect products.

Our approach is first to buil d a model that cap
tures the main feature of the algori thm , 1 and then
to consider other aspects as parameters of the
model . The most important parameters are the
length of the packets and the length of the quiet
slot.

Because arbitration is compl icated, a conven
tional queuing network model would be inade
quate for model ing the CI process. For example,
the CI bus cou ld not be modeled as a server since
packet transmission cannot start immediately
after a request arrives, even if the CI bus were
id le . Thus we propose another model based on
the general ized semi-Markov process (GSMP) .
Moreover, this model may be useful for studying
other processes in VAXcluster systems.

CI Bus Arbitration Algorithm

Here, we briefly review aspects of the C I arbi
tration related to the performance study. Refer
ence 1 contains detai ls of the CI bus arbitration .

Digital Teclmical]ournal
No. 5 September 1987

A Simple Description of a CI Bus
Let us assume a VAXcluster system in which there
are N nodes attached to a CI bus. Each node can
send both information and acknowledge packets
through the bus to any other node . Upon receiv
ing an informat ion packet, a node first checks the
cyclica l redundancy check (CRC) information in
that packet . If the CRC succeeds, the receiving
node wil l immediately send back to the transmit
ting node an acknowledge packet with either an
acknowledgment (ACK) if the node accepts and
stores the packet correctly, or a non-acknowledg
ment (NAK) if not . If the CRC fai ls, the node wi l l
send no response .

A time period , called the quiet slot, is reserved
to guarantee the transmission of the acknowledge
packet. The quiet slot (QS) is defined as the
period of t ime needed to accommodate the time
delay through a node's front-end logic , plus the
round-trip cable and coupler delays for the
longest path in a CI c luster installation . Only the
node that generates the acknowledge packet for
the i nformation packet just received can grasp
the CI bus during the quiet slot fol lowing the
transmission of any information packet. Thus, as
an approxi mation, the transmission t ime of the
information packet may be extended to incl ude
the transmission t ime of the acknowledge packet .

After sending an information packet, the trans
mi tting node wai ts for the length of an acknowl
edge t ime-out period . I f that node receives an
ACK during that period , the transm it is com
pleted . Upon receiving a NAK or no response
within the time-out period , however, the trans-

93

Cl Bus Arbitration Performance in a VAXcluster System

mitting node must retransmit the packet . The
acknowledge t ime-out period is greater than the
sum of one quiet slot , plus the CI bus turnaround
t ime, plus the t ime to verify and accept the
acknowledge packet at the transmitt ing node .

In addition, in any such "shared" multinode
bus structure, the arbitration for use of the bus so
as to avoid col l isions is a critical element of the
design . The CI bus architecture implements the
distributed arbitrat ion scheme d iscussed below.

CJ Bus A rbitration

Two identical Cl paths are used in a VAXcluster
system, and all nodes are connected to both of
them. Each node can randomly pick one path
before transmi tt ing an information packet . Once
having chosen a path, the node will use it unti l
an acknowledge packet from the destination node
has been received. However, each node cannot
transmit and receive simultaneously using two
different paths. Figure 1 i l lustrates the structure
of a VAXcl uster system in which VAX CPUs and
HSC devices are connected to one CI pat h .

Arbitration must b e performed by al l nodes
prior to the transmission of any information
packet . The acknowledge packet, following re
ceipt of an information packet, does not require
arbitration . This method is called a slotted-carrier
sense multiple access (CSMA) protocol , a lso
referred to as dual-count round robin . The fol
lowing parameters are used in current VAXclus
ter systems :

• The clock u n i t (TCLK) is s e t a t 1 1 4 . 2 8 nano
seconds (ns) .

• The va lue of the quiet slot can range from 7 to
64 TCLKs, or 800 to 7 , 3 1 4 ns, depending on
the cable length of the cluster. The QS for the
for the discussion of this paper simulation is
1 , 1 4 3 ns .

94

HSC
i + 1

DISKS

. . . HSC
n

DISKS

Figure 1 A Typical VAX cluster System

• The maxi mum number of nodes in the cluster,
N, is 1 6 for the current algori thmic implemen
tation .

• The IO numbers of the nodes are 1 = 0 ,
1 , . . . , N - 1 , one for each node .

The arbi tration a lgorithm operates as follows :

1 . Upon starting a transmit operation , node I
chooses randomly one of the C I paths and
sets the value of i ts arbitration counter, C, to
N + l + l .

2 . I n each TCLK period , the node determ ines
whether or not the C I bus is busy. If i t is
busy, the arbi tration counter wil l remain
unchanged .

3 . Once the node senses that the CI bus is not
busy, it wil l start counting quiet slots. That
is, the arbitration counter is set to C - 1 , and
the node then wai ts for one QS period .

If C > 0 at the end of one QS period , the
node wi l l inquire if the CI bus is busy. If i t
isn ' t busy, C i s set t o C - 1 , and the node
waits during one additional QS period . lf the
CI bus is busy, the arbitration counter is set
to another va lue that depends on the node
I D .

• I f the C l bus is occupied by a node whose
I D is greater than I, or if this is the node's
first attempt to grasp the CI bus, then C is
set to N + I + 1 (i . e . , the ini tial value of C
for this node) .

• I f the CI bus is occupied by a node whose
1 0 is less than I and this is not the first
attempt of node I to grasp the CI bus, then
C is set tO I + 1 . After the arbi tra tion coun
ter is reset , control returns tO step 2
above.

If C = 0 at the end of the QS period , the node
inquires again if the CI bus is busy . If so, the
arbitration counter is set to another value
that depends on the node 10, as explained
just above . I f the CI bus is not busy, the node
inquires if a packet is being received from
t he other path.

• I f the node is receiving from the other
path , C is reset to N, and control goes to
step 2 above .

• If the node is not receiving, it starts the
transmission i mmediately.

Digital Tecbtzical]om-nal
No. 5 September 1 <)87

Figure 2 shows a possible case of CI arbitra
tion. This figure depicts a short histOry of the
arbitration times for three nodes, labeled 2 , 6,
and 8 . During the period [O , t i] , the C I bus is
transmitting a packet from some other node
while both node 2 and node 6 have requested tO
transmit. The arbitration counters of these two
nodes are set respectively to 1 9 (1 6 + 2 + 1) and
2 3 (1 6 + 6 + 1) . At time t 1 , the CI bus becomes
idle , and nodes 2 and 6 both start counting quiet
slots . At time t2 (t2 - t 1 = 1 9QS) , the arbitration
counter of node 2 becomes zero; hence node 2
wins the bus. At this instant, the arbitration coun
ter of node 6 is 4 . After detecting that the bus has
been captured by a node whose I D is less than i ts
own , node 6 sets its arbitration counter number
to 7 (6+ 1) . (Assume that this is not the first
attempt of node 6 .)

The transmission of the packet from node 2
ends at 14 • Node 6 starts counting again at 14 with
an arbitration counter of 7 and wins the bus
at h (t6 - t4 = 7 QS) . Figure 2 also shows that
requests arrive at the ports of nodes 2 and 8 at t3
and t5 respectively. At t6 , the arbitration counter
of node 2 becomes 1 9 (1 6 + 2 + 1) since the bus
was won by a node whose 10 is bigger than that of
node 2 . The arbitration counter of node 8 is set to
25 (1 6 + 8 + 1) since this is node 8 's first attempt
to occupy the C1 bus.

For simplicity , we wi l l study the properties of
only one CI path in this report. The principle for
studying two C I paths shou ld be the same .

Some Prelim inary A nalysis

Although a complete analysis of the CI bus pro
cess is difficult , some prel iminary analyses may
help us to understand the properties of this pro-

25

a: 20 w I-z
::::>
0 1 5 0
z
Q
t;: 1 0 a: I-
iD
a: 5 <(

cess and perhaps validate the simulation results.
When two packets attempt to pass through the

same path of the CI bus simu ltaneously, both
packets wil l be destroyed. Therefore , packets can
be passed successfu l ly only if, before sending a
packet, each node determines whether the CI bus
is busy. Even with this check, two nodes can sti l l
send their packets simultaneously i f each node
detects at the same instant that the CI bus is idle .
The situation is even worse because of the propa
gation t ime of a packet from the transmitting
node to the detecting node.

The introduction of the QS concept into the
arbitration algorithm almost el iminates the possi
bi l i ty of packet col l isions when the CI bus is satu
rated . In this case nearly every transmit request
wil l find the CI bus busy and must wait until the
end of the transmission of the current packet. At
the end of a transmission period from a node,
denoted as I0, a l l other nodes having an outstand
ing transmit request wil l start counting quiet
slots simu l taneously. The arbitration counters of
nodes whose transmit requests are made during
the transmission period have the form N + I + 1 .
The arbitration counters of those nodes whose
transmit requests were made in previous trans
mission periods have the form N + I + 1 if I > I0 ,
or the form I if I < I0 . Thus at a given time, each
node has a unique arbitration count . The node
whose arbitration counter reaches zero first will
grasp the cr bus.

After each transmission period, there is a short
intenral (1 6 quiet slots) in which no transmis
sions occur on the CI bus. However, every
requesting node is sti l l counting the quiet slots
during this period . For example , suppose that
in one QS, the smal lest arbitration counter is

Figure 2 A rbitration among Three Nodes

Digital Tecbnicaljournal
No. 5 September 1987

9 5

VAXcluster
Systems

Cl Bus Arbitration Performance in a VAXcluster System

N + I + 1 , and that in the same QS, node I in i
tiates a transmit operation. In this case the arbi
tration counters of node I and the node whose
arbitration counter is N + I + 1 in that QS are
a lways the same . Therefore , these two nodes
could start to transmit at the same time, and a col
l ision cou ld occur, even though its probabi l i ty is
very sma l l .

The CI bus could b e considered a s a server.
From the arbitration scheme discussed above ,
however, customers do not start services i mmedi
ately after arriving at t h e server, even i f i t is id le .
One may argue that the arbitration t ime can be
modeled by a separate server. I n this case, how
ever, the customer i n that server does not have a
fixed service t ime (the arbitration counter needs
to be reset frequently) . Therefore , the Cl bus
cannot be modeled as a standard queuing system .
Fortunately, many stochastic processes exist that
can be used to model real-world processes. One
stochastic process, called the general ized semi
Markov process, has a characteristic very s imilar
to the process on the CI bus under the above arbi
tration rules.

In the next section, we give an description of
this process.

Generalized Semi-Markov Processes

The general ized semi-Markov process, or GSMP,
is one of the most promising stochastic processes
in operat ions research for model ing complex
phenomena. GSMP was introduced by Matthes,2

and i nvestigated further by other researchers,
among them Schassberger,3 and Whitt.4

A GSMP can be described as fol lows . Let S and
R be subsets of positive i ntegers. We regard the
elements s of subset S as possible states of the
GSMP. Some events may occur at each state . R
denotes the indices of a l l possible events that may
occur during the evolut ion of a GSMP. All events
that can occur i n state s are denoted as set E (s) ,
which i s a subset of R .

The system wil l stay i n a state s unti l a n event
i E E(s) triggers a transition of the system to
another state s' . Let p (s ' ,s , i) be the probabil ity
that the new state is s', given that event i triggers
a transition from state s . An event can trigger a
transition only at the end of i ts l i fet ime . Associ
ated with each event i is a clock whose reading
is denoted as C; . The c lock runs at a speed r(s , i) ,
which depends o n both the event i and the
state s . If at t ime 0 the clock is set to C; , then at
t ime t the reading of the clock wil l be

96

c'; = C; - r (s , i) X t . The l i fetime of an event ends
when the associated clock reading reaches zero .
We assume r (s , i) > O for some i E E(s) . When
r(s , i) = O for i E E(s) , event i is regarded as
i nactive in state s .

The events associated with state s' are i n
the set E (s ') . The c lock readings after the
transition are determi ned as follows . New clock
readings are i ndependently generated for each
j E N(s', s , i) - E (s') - (E(s) - i) . The new clock
reading for event j E N(s' ,s , i) has a cumu
lative probabil ity d istribution , or c .p .d . , of
F(x;s' , j ,s , i) . For events i n both E(s) and E (s') .
except for event i , the old clock readings are
kept after the trans ition, i .e . , for

j E O (s',s , i) = E(s') n (E (s) - i) , ci = C/ (s , c)

For events in E(s) but not i n E(s') , the c locks arc
set equal to zero (i . e . , i fj E (E(s) - i) - E (s') ,
then c1 = co after the transition .)

For the purpose of model ing the CI process,
the above scheme of determ ining the clock read
ings has to be modified s l ightly. We associate
each event i with a set of events H (i) . Only for
events i n j E O (s',s , i) = E (s') n !E (s) - H(i) l
are old clock readi ngs kept (i .e . , c1 = c/ (s , c)) .
For events in N(s', s , i) = E(s') - IE(s) - H(i) l .
new clock read ings have t o be assigned according
to the c .p .d . F(x;s ', j , s , i) . We cal l the process
with this clock-reading assignment scheme a
modified GSMP. A block diagram is shown i n
Figure 3 .

The next transition occurs according to the
same rules . These transitions describe the evolu
tion of the system.

The Stochastic Process on the CI Bus

To describe the process on the Cl bus, we use
a continuous time doma in as opposed to a dis
crete domai n (i . e . , we consider the clock unit
1 1 4 . 2 8 nanoseconds to be i nfin i tesimal ly sma l l
compared with other event t imes, such a s trans
mission t imes.) Furthermore, to make the prob
lem tractable , we make the fol lowing stochastic
assumptions:

• The transmission ti mes requ i red by every node
are independent of each other.

• The times between two successive transmis
sion requests are independent.

• The destinations of the transmitted packets arc
independent of the transm itting node and the
transmission time.

Digital Technical journal
No. 5 September I ')87

Under the above assumptions, the CI system can
be characterized by the fol lowing items:

• The number of nodes, N

• The cumulative distribution functions of the
transmission time of each node, denoted as
F1 (x) , i = 0 , 1 , . . . N - 1

• The cumulative distribution functions of
the t ime between two successive transmis
sion re-quests of each node , denoted as
G1 (x) , i = O , 1 , . . . ,N - 1

• The probabi l ity that a packet from node i will
go to node j, denoted as Pt,J

The state x of the CI bus consists of the fol lowing
elements:

• An index j, indicating the node that is trans
mitting a packet (We use j = N to indicate that
the Cl bus is idle .)

• The number of transmission requests made
by nodes i = O, 1 , . . . ,N - 1 , denoted as
n0 , n 1 , . . . , nN- 1

STATE AT 1(1) WITH EVENTS e , , e2. AND e3

!
DETERMINE LIFE TIMES 1 , , 12, l3 FOR e, TO
e3 FROM DISTRIBUTIONS, CHOOSE RATES
r,, r2. f3 ACCORDING TO SOME RULES

!
EVENT e, DIES AT t, = I(I) + I , / r , ETC.
SUPPOSE 12 = MINIMUM {!, .12.13}

!
NEXT TRANSITION HAPPENS AT
1(1 + 1) = 1(1) + 12

!
DETERMINE THE STATE AND EVENTS
(SAY e2. e3. AND e,) AFTER TRANSITION

!
ASSIGN NEW LIFE TIME AND RATES FOR
e2, e3, AND e,

Figure 3 Block Diagram of Modified GSMP

Digital Tecbnicaljournal
No. 5 September 1987

• The residual transmiSSIOn times of nodes
i = O , 1 , . . . ,N- 1 , denoted as bo, b, , . . . , bN- 1
(Except for node j , these values are the same
as the transmission times .)

• The residual t imes between two transmission
requests of nodes i = 0, I , . . . ,N- 1 , denoted
as t0, t , , . . . , tN- 1

• The arbitration counters for the first request
of nodes i = 0, 1 , . . . ,N - 1 , denoted as
a0 ,a , , . . . ,aN- I (Note that a1 = 0 .)

The process o n one C I path can b e described as
a modified GSMP. Let L be the length of a QS
period . The arbitration counters can be translated
into continuous nu mbers d1 = a1 X L . These con
tinuous numbers can be viewed as clock read
ings. When j = N (i .e . , no packet is being trans
mi tted on the CI bus) , these clocks run at a rate
r = 1 until one of the readings reaches zero .
When j 'f'= N, then these clocks run at a rate r = O ;
this means that when a server is transmitting
packets, all arbitration counts do not change . The
clock readings may jump to some other values at
some transition t imes .

Now we can describe the process on one CI
path. Let s = {j , n0 , n1 , . . . , nN- d - Using the termi
nology of GSMP, we call s the state of the process.
Associated with each state s , there are at most 3N
events in E (s) (i . e . , the end of a transmission
from each node, the grasp of the CI bus by each
node , and a new request arrival at each node) .
The clock readings corresponding to these events
are b1 , t1 , and d1, i = O , l , . . . ,N - 1 . The clock
rates are always one for all t1 , one for b1 , zero for
b1 if i 'f'= j , and one for a l l d1 if j 'f'= 0 and zero for al l
d1 if j = N. For convenience, we also use b1 , t1 ,
and d1 to denote the corresponding events. Thus

E(s) = { b1 , i : n1 > 0; t1 , aU i; d1 , i : n1 > 0}.

The only remaining work for specifying the
GSMP on the Cl path is to determine the clock
rates r (s , c) , transition rules p (s , s ' , i) , and clock
reading distributions F(x ,s',j ,s , i) . These can be
done by examining careful ly the arbitration
scheme . The details can be found in reference 7 .

We have modeLled the C I process as a modified
GSMP. This concept helps us to simplify the
underlying mechanism of the process. This
mechanism is no more complicated than state
transition and clock readings. A simulation
algorithm based on this model is given i n the next
section .

97

VAXcluster
Systems

CI Bus Arbitration Performance in a VAXcluster System

Simulation Algorithm

Although the GSMP concept looks sophisticated,
i ts simulation is not difficult . In fact, the simu la
tion of a GSMP consists mainly of two steps:

1 . Use the c lock readings and c lock rates to
determine the next transition time and the
event that triggers this transition .

2 . Determine the new state and the new clock
readings after each transition .

Thus the GSMP model simplifies the concept of
the mechanism of CI arbitration to these two
steps.

The specific rules and distributions for deter
mining the process on one CI path were de
scribed in detai l in the previous sections. The
simulation algorithm is given as fol lows:

1 . Initialize the system .

• Choose a n initial state s = {j ; n0 , n 1 , . . . ,
nN- d. n1 is the number of transmission
requests of node i. j is the node transmit
ting, and j = N means that the bus is idle.

• Assign initial clock readings for events.
For all nodes, the next transmission
request happens at a time with distribu
tion G1 (x) . The transmission time of a
request on each node has a d istribution
F1 (x) . Set the arbitration counts accord
ing to the arbitration rule .

• Set the value of the simulation clock, v ,
to 0 .

2 . Determine the clock rates for events accord
ing to the state s . The rates for the next trans
mission request are always 1 . The rates for
the transmission completion are 1 for nodej,
and 0 for al l other nodes. The rates for arbi
tration counters are 1 for a l l nodes if j = N
(CI bus idle) , 0 ifj =F N (CI bus busy) .

3 . Using the c lock rates, find the event whose
clock reading reaches zero the earliest. This
event triggers the transition. Set the simula
tion clock to the time when this reading
reaches zero .

4 . Using the transition probabilities, determine
the next state of the process.

5 . Assign new clock readings and rates for the
new state . (This can be done as described in
steps 1 and 2 above .)

98

6 . If the terminating condition is not met , go
to step 3 . If the condition is met , stop the
simu lation .

There are some points that should be noted
about this algorithm.

First, the model for two CI paths can be easily
obtained by combining two models for one CI
path and making the following modification. At
the end of the arbitration of each node, the model
checks to determine if the node is receiving from
the other path. If not, the node starts transmis
sion; otherwise , the model sets the arbitration
count C of that node to N and starts the counting
again.

The second point is , the ACK or NAK transmis
sion t imes are i ncluded i n the i nformation packet
transmission times (i .e . , the distribution F1 (x)
describes the total transmission times of both an
information packet and its ACK or NAK) .

As mentioned earlier, we wrote a PASCAL pro
gram to implement this algorithm . The next
two sections discuss the problems of choosing
parameters for this model and the performance
resul ts obtained .

Choosing Parameters

As mentioned earlier, the maximum number of
nodes in a CI-based VAXcluster system is 1 6 ;
therefore, N is set to 1 6 in the simulation . QS is
set to I , I 4 3 ns.

The remaining problem is choosing the mean
transmission times and the mean i nterrequest
times, all of which depend on the node types and
specific applications. In this simulation , these
values are taken from the results of two previous
experiments performed at DigitaJ . 5 ·6 The first of
those observes the CI packet traffic in a system
running ASYNCQIO; the second measures the
IjO performance of a system running lOX .
(ASYNCQIO and lOX are both workload pro
grams used for simulations .) The fol lowing is the
mean interrequest and the mean transmission
times of these two experiments; we use them as
parameters in our simulation .

For ASYNCQIO, we have :

• The mean interrequest time of a VAX 8600
CPU with a CI780 bus is rv. 1 = 8 ,300 micro
seconds (J.1S) .

• The mean transmission time is Sv,I = 6 . 4 J.lS .

• The mean interrequest time of the HSC device
is rH. 1 = I ,400 J.lS.

Digital TecbnicalJournal
No. 5 September 1987

• The mean transmission time of a packet from
an HSC device is sH. I = 60 . 5 J.LS.

For lOX, we have :

• The mean interrequest time of a VAX 8600
CPU with a CI780 bus is rv. 2 = 2 2 ,900
microseconds (J.Ls) .

• The mean interrequest t ime of the HSC device
is rH. z = 3, 800 J.LS.

Since we assume that lOX reads the same num
ber of blocks per request as ASYNCQIO, the
mean transmission times Sv,2 and sH,2 are the same
as sv. 1 and sH. I ·

These values are obtained by assuming that the
VAX CPU runs only one stream of ASYNCQIO or
lOX on one disk. If the CPU runs m streams
simultaneously, it is reasonable to take rv, ;fm and
rH,;jm , for i = l , 2 , as the mean interrequest
times.

Fina l ly, both ASYNCQIO and lOX are 1/0
intensive workloads. Therefore , the simu lations
described in the next section, using the data
derived from these two workloads, represent the
performance of 1/0 intensive programs. The cal
culations here just yield reasonable values for
parameters.

Simulation Results

The mean values obtained in the previous section
were used in the simulations. In each simulation
run , half the nodes were VAX systems, the other
half were HSC devices. Also, half the VAX systems
ran ASYNCQIO, the other half ran lOX . To study
the CI performance, we ran four sets of simula
tions.

The first set had 1 6 nodes, or eight VAX sys
tems and eight HSC devices. The average trans
mission time for the VAX systems was 6 .4 J.LS, and
for the HSC devices 60 .5 J.LS. The interrequest
times were chosen tO model the systems in which
each VAX system runs from one to three streams
of the 1/0 intensive workloads. Specifically, the
mean interrequest t imes for a system running two
streams are half those for a system running only
one stream , and so forth .

The Cl util ization rates of this first set of simu
lations are shown in Figure 4 , the other results in
Table 1 . The CI bus transmits packets during
busy time, arbi tration occurs during arbitration
time , and the bus is idle during idle time . Idle
time does not include any arbitration time . The
busy, idle, and arbitration rates are the ratios of

Digital Tecbnica/Jom·nal
No. 5 September 1987

w

80

70

60

� 50

� 40
(,)

ffi 30
Q.

20

1 0

0

r--

,..--

-
,..-- ..--

I

n
2

NUMBER OF STREAMS

KEY:

c:::J BUSY RATE

CJ IDLE RATE

ARBITRATION RATE

-

.....-

-
3

Figure 4 CI Performance for First Simulation

Table 1 First Set of Results

Simulation 1 . 1 1 .2

No. of nodes: n 1 6 1 6

No. of streams 1 2

s, to s8 - !!Seconds 6.40 6.40

5g to s,s 60.50 60.50

r, to r4 - JLSeconds 8,300.00 4 , 1 50.00

rs to rs 22,900.00 1 1 ,450.00

r9 to r, 2 1 ,400.00 700.00

r, 3 to r,6 3,800.00 1 ,900.00

Total time - seconds 43.79 21 .90

Busy time - seconds 1 0.56 1 0.56

Idle time 27.27 5.95

Arbitration time 5.96 5.38

Busy rate - % 24 48

Idle rate 62 27

Arbitration rate 1 4 25

Arbitration/busy ratio 0.58 0.52

Response time -
!!seconds

RE, 46 80

RE2 48 86

RE3 48 86

RE4 50 92

RE5 51 95

REs 55 95

RE7 57 97

RE6 61 1 01

RE9 1 1 5 1 81

RE1 0 1 20 2 1 2

RE1 1 1 27 238

RE, 2 1 35 269

RE,3 1 39 257

RE14 1 43 263

RE,5 1 47 270

RE, 6 1 50 278

1 .3

1 6

3

6.40

60.50

2,800.00

7,600.00

470.00

1 ,270.00

1 4.69

1 0.57

0.42

3.70

72

3

25

0.35

213

235

246

261

256

256

265

269

1 ,0 1 5

1 , 1 79

1 , 1 7 1

1 ,281

539

545

555

552

99

VAXcluster
Systems

CI Bus A rbitration Performance in a VAXcluster System

80

70

60 UJ
Cl 50 ;::
a:i 40
()
ffi 30
a..

20

1 0

0
16 1 2 8

NUMBER OF NODES

KEY:

c:::J BUSY RATE

c:::J I DLE RATE

ARBITRATION RATE

4

Figure 5 Cl Performance for Second
Simulation

Table 2 Second Set of Results

Simulation

No. of nodes: n

s1 to sn12 - 11seconds

Sn/2+1 to Sn

r1 to rn/4 - 11seconds

rn/4+1 to rn/2
rn/2+1 to r3nf4

r3nf4+ 1 to rn

Total time - seconds

Busy time - seconds

Idle time

Arbitration time

Busy rate - %

Idle rate

Arbitration rate

Arbitration/busy ratio

Response time -
11seconds

RE,
RE2
RE3
RE4
REs

RE6

RE7

REa

RE9
REI O
RE1 1
RE1 2
RE13
RE14
RE1s
RE16

1 00

2.1 2.2

1 6 1 2

6.40 6.40

60.50 60.50

2,800.00 2,800.00

7,600.00 7,600.00

470.00 470.00

1 ,270.00 1 ,270.00

1 4.69 1 9.56

1 0.57 1 0.55

0.56 4.59

3.56 4.41

72 54

4 23

24 23

0.33 0.43

2 1 5 94

237 99

235 1 03

245 1 03

232 1 07

235 1 1 0

243 21 8

239 249

1 ,002 283

1 ,086 248

1 ,037 255

1 ,091 258

471 -
475 -
482 -
481 -

2.3 2.4

8 4

6.40 6.40

60.50 60.50

2,800.00 2,800.00

7,600.00 7,600.00

470.00 470.00

1 ,270.00 1 ,270.00

29.45 58.95

1 0.55 1 0.56

1 4.28 44. 1 5

4.61 4.25

36 1 8

49 75

1 6 7

0.44 0.39

59 41

60 41
64 1 01

64 1 08

1 32 -
1 53 -
1 58 -
1 62 -

- -
- -
- -
- -
- -
- -
- -
- -

the busy, idle, and arbitration times tO the total
time respectively.

From these results , we can see that the arbitra
tion time takes about 23 to 24 percent of the total
t ime if the CI bus is busy for more than 50 per
cent of the total time. The ratio of arbitration
time to busy time decreases as the busy rate
increases. We can also see that the response t ime
is somewhat sensitive to the i nterrequest time .
HSC controllers have a longer response time than
VAX CPUs since the interarrival t imes of the con
trollers are shorter. The results also reveal that
while the arbitration is almost fair for all nodes,
some very small degree of unfairness sti l l exists.
For example, nodes 1 3 to 1 6 have the same mean
interrequest and transmission times ; however,
the response times increase slightly as the 1 0

number of the node increases. These properties
will be explained later. Of course , such a smal l
degree of unfairness wi l l not affect the perfor
mance of the CI cluster .

The second set of s imulations compared the
performances of clusters with 4 , 8, 1 2 , and
1 6 nodes. The node I D numbers are 0 to 3 for the
4-node experiment, 0 to 7 for the 7 -node experi
ment, and so forth . Each VAX CPU runs three
streams of lOX or ASYNCQIO.

The resul ts are shown in Figure 5 and Table 2 .
These results confirm the properties observed

in the first set of simulations. As far as the CI traf
fic is concerned , reducing the number of nodes is
equ ivalent tO decreasing the traffic intensity on
the bus.

The third set of simulations examined the
effect on performance of the lengths of packets
transmitted on the CI bus. The average transmis
sion t imes of a packet are assumed to be e ither
60 . 5 , 60 . 5/2 . 60 .5/3 , or 60 . 5/4 11-s , depending
on the number of streams. The results are shown
in Figure 6 and Table 3 .

As we expected , the ratio of arbitration time to
busy time increases as the length of a packet
decreases . If the average packet length is one
fourth of a block, the system will spend more
t ime arbitrating than transmitting.

The fourth set of simulations kept the interre
quest t imes of eight nodes constant at 1 , 000 J.LS,
but varied the times of the other eight nodes from
300 to 1 , 000 11-s . The parameters are l isted in
Table 4 , and the results reported in Figure 7 .

Figure 7 shows that i f the mean interrequest
times of nodes 1 to 4 and 9 to 1 2 are between
700 and 1 ,000 11-s, the average response t imes of

Digital Technicaljournal
No. 5 September 1 98 7

al l nodes wi l l be very simi lar . If the interrequest
t imes of these nodes decreases further, their
response times increase rapidly. In this case a
load balance scheme would be needed to achieve
better performance .

CI Arbitration Properties

We can make the following observations from the
simulation resul ts :

• The response time increases rapidly i f the Cl
bus is nearly saturated. This behavior is s imilar
to that of a s ingle-server queue.

• The arbitration algorithm is almost fai r for a l l
nodes. There i s only a very sma l l degree of
unfai rness. The response times of nodes with
lower ID numbers are a l ittle bit smal ler than
those of nodes with higher IDs.

To explain this unfairness , let us consider
two nodes, node I and node 1 0. Two cases
in which node 1 gets h igher priority than
node 1 0 are given as fol lows:

I . Assume that the CI bus is idle, and that
node I 0 requi res a transmission at t 1 while
node 1 requires a transmission at t1 + 9QS .
In this case, node 1 wil l win the bus
despi te the fact that node I 0 submitted i ts
request before node 1 .

2 . Assume that the C I bus is busy, and that
during this busy period both nodes 1 and
1 0 require transmissions. As soon as the CI
bus becomes idle, both nodes wiJ l start
counting quiet slots. In this case, node 1
wil l a lways win the bus whether or not i t
was the first to make the request.

• Under the current arbitration a lgorithm, the
response ti mes are sensitive to the inter
request t imes, especially when the CI bus
is highly ut i l ized . For example, in Simu la
tion 1 . 3 , the response t imes for two nodes
with mean i nterrequest times of 470 and
7,600 J.LS are approxi mately 1 ,050 and 2 4 0 J.LS
respect ively.

This resu lt wil l occur because, under satura
tion , the arbitration is approximately a round
robin algorithm . If there are three requests i n
node I and six requests in node 2 , t h e CI bus
must serve the three requests in node 1 and the
first three requests in node 2 before it can
serve the last three requests in node 2 . This
algorithm gives higher priority to requests i n
node 1 than t o those in node 2 .

Digital Technical]om-nal
No. 5 September 1 98 7

80
70
60 LLJ

� 50

dJ 40
(.)
ffi 30
a..

20
1 0

0
60.5 30.25 20. 1 7 1 5 . 1 2
MEAN TRANSMISSION TIMES, - !'SECONDS

KEY:

CJ BUSY RATE
c:::J IDLE RATE

ARBITRATION RATE

Figure 6 CI Performance for Third
Simulation

Table 3 Third Set of Results
Simulation 3.1 3.2

No. of nodes: n 1 6 1 6

s, t o s8 - �!Seconds 6.40 6.40

� to s,6 60.50 30.25

3.3

1 6

6.40

20. 1 7

3.4

16

6.40

1 5 . 1 2

r, t o r4 - 14seconds 2,800.00 2,800.00 2,800.00 2,800.00

r5 to r6 7,600.00 7,600.00 7,600.00 7,600.00

r9 to r,2 470.00 470.00 470.00 470.00

r13 to r,s 1 ,270.00 1 ,270.00 1 ,270.00 1 ,270.00

Total time - seconds 1 4.69 1 4 .69 1 4.69 1 4 .69

Busy time - seconds 1 0.57 5.38 3.65 2.78

Idle time 0.56 4 . 1 6 5.59 6.34

Arbitration time 3.56 5 . 1 5 5.45 5.57

Busy rate - % 72 37 25 1 9

Idle rate 4 28 38 43

Arbitration rate 24 35 37 38

Arbitration/busy ratio 0.33 0.95 1 .48 2.00

Response time -
�!Seconds

RE, 2 1 5 56 41 36

RE2 237 60 44 39

RE3 235 63 46 41

RE4 245 65 48 42

RE5 232 65 49 44

RE6 235 69 52 46

RE7 243 69 54 48

RE6 239 72 55 49

RE9 1 ,002 1 1 1 76 63

RE10 1 ,086 1 2 1 81 67
RE1 1 1 ,037 1 31 87 72

RE, 2 1 ,091 1 4 1 93 76

R£,3 471 1 37 93 77

RE14 475 1 38 95 79
RE15 482 143 98 82

RE,s 481 1 46 1 0 1 84

1 0 1

VAXcluster
Systems

CI Bus Arbitration Performance in a VAXcluster System

(f) §? 1 .00
0
0 � 0.80
::; � 0.60

I 0.40 w
::2
i= 0.20 w
(f)
6 0 L---�-----L----J_----�----L---� 200 Bi 0 400 600 800 1 000
w
cr: INTERREQUEST TIME - �tSECONDS

KEY:

o NODE 5
• NODE 1

1 200

Figure 7 CI Performance for Fourth
Simulation

Table 4 Fourth Set of Results
Simulation

No. of
nodes: n

s, to sa -
�tseconds

5g to s16

r, to r4 -
!'seconds

r5 to ra
r9 to r,2
r13 to r16

Simulation

No. of
nodes: n

s, to sa -
�tseconds

s9 to s,6

r, to '• -
!'seconds

r5 to ra
r9 to r12
r,3 to r16

4 . 1

1 6

6.40

60.50

1 ,000.00

1 ,000.00

1 ,000.00

1 ,000.00

4.6

1 6

6.40

60.50

500.00

1 ,000.00

500.00

1 ,000.00

4.2 4.3

1 6 1 6

6.40 6.40

60.50 60.50

900.00 800.00

1 ,000.00 1 ,000.00

900.00 800.00

1 , 000.00 1 ,000.00

4.7 4.8

1 6 1 6

6.40 6.40

60.50 60.50

450.00 400.00

1 ,000.00 1 ,000.00

450.00 400.00

1 ,000.00 1 ,000.00

4.4 4.5

1 6 1 6

6.40 6.40

60.50 60.50

700.00 600.00

1 ,000.00 1 ,000.00

700.00 600.00

1 ,000.00 1 ,000.00

4.9 4 . 1 0

1 6 1 6

6.40 6.40

60.50 60.50

350.00 300.00

1 ,000.00 1 ,000.00

350.00 300.00

1 ,000.00 1 ,000.00

• Figure 7 shows the effect of the relative inter
request t ime on the response times . The
response t imes of nodes 5 to 9 i ncrease rapid ly
when their interrequest t ime is between 50
and 60 percent of the t ime for nodes 1 to 4 .

• The results of the first and second sets of simu
lations show that the higher the CI busy rate,
the smal ler the total arbitration time . For
example, in Simulation 1 . 1 , the total arbitra-

1 02

tion time for 200 ,000 requests is 5 .86 sec
onds, while that figure in S imu lation 1 . 2 i s
5 . 1 I seconds .

If the CI bus rate is low, the average transmis
sion request from node I will have to wait an
arbitration t ime of (N + I + 1) QS . If the Cl
busy rate is high , however, each request can
always find some node whose ID is lower and
which can occupy the CI bus earlier. In this
case the average request spends only (I + 1) QS
on arbitration .

• In the third simulation, the arbi tration time
rate increases from 0. 24 for an average packet
length of one block to 0 . 38 for a length of one
fourth of a block . The absolute val ue of arbi
tration t ime also increases. This result occurs
because the arbi tration t ime i s the same for
packets with different lengths.

Conclusion
This paper describes the performance of the
a lgori thm for CI bus arbitration as measured by a
genera l ized semi-Markov process mode l . The
simu lation results show the fol lowing:

• The arbitration algorithm is almost fa ir to a l l
nodes.

• The ratio of arbitration to busy times depends
on the average length of packets transmitted;
the smaller the length, the bigger this ratio.

• The ratio of arbitration to busy times also
depends on the traffic i ntensity; the larger the
intensiry, the smaller the ratio.

• The response t imes of packets at a node are
sensitive to its I/0 rate compared to other
nodes; the higher the rate, the longer its
response time .

• Because of the arbitration time, the CI bus is
not fu lly util i zed . I n experiment 1 . 3 , the
effective bandwidth for one path of the CI bus
is about 75 percent. This effective bandwidth
a lso depends on the average length of packets.

The resul ts indicate where problems can be
anticipated, especially when the CI bus is highly
uti l i zed, and suggest some ways to improve Cl
performance.

Acknowledgments
The authors are indebted to Jory Tsai for d is
cussing the possibi l i ty of using PAWS to imple·
mem the GSMP model , and to Hossei n Hosseini
for assistance in preparing the report.

Digital Technical Jou1-nal
No. 5 September 198 7

References

I . V. Boaen et a l . , "Computer I nterconnect
Specification , " Digi tal Equipment Corpora
tion Standard 1 6 1 -0 , 1 986.

2. K. Matthes, "Zur Theorie der Bedienungs
prozesse," Transactions of the Third
Prague Conference on Information The
ory (1 96 2) .

3 . R. Schassberger, " Insensitivity of Steady
state Distributions of General ized Semi
Markov Processes, Part 1 , " A n nuals of Prob
ability 5. (1 977) : 8 1 -99 .

4 . W. Whitt, "Continuity of General ized Semi
Markov Processes," Mathematics of Opera
tions Research , vol . 5 , no . 4 (1 980) : 4 9 4 -
5 0 1

Digital Tecbnical]ounlal
No . .5 September 1 987

5. B . Murray, "CI Traffic Observations: A Com
parison of the CI780, CIBC I , and CIBCA,"
Digital Equ ipment Corporation Internal
Technical Memorandum (OctOber 1 986) .

6. X. Cao and H . Hossein i , " I/O Properties of a
VAXcluster: Part I , " Digital Equipment Cor
poration Internal Technical Memorandum
(OctOber 1 986) .

7 . X. Cao, N . Quaynor, and F. Colon Osorio
"CI Bus Arbitration Performance in a VAX:
cluster," D igita l Equipment Corporation
Internal Technical Memorandum (March
1 987) .

1 03

VAXcluster
Systems

. . ..

ISBN 1-5 55 58-004-l

Printed in USA EY-8258E,,D.I'"Cojlytigh< © Scp<c"!ber 1.1)8.7 Digital Equipment Corporation

	Front cover
	Contents
	Editor's Introduction
	Biographies
	The VAXcluster concept: An Overview of a Distributed System
	The System Communication Architecture
	The VAX/VMS Distributed Lock Manager
	The Design and Implementation of a Distributed File System
	Local Area VAXcluster Systems
	VAXcluster Availability Modeling
	System Level Performance of VAX 8974 and 8978 Systems
	CI Bus Arbitration Performance in a VAXcluster System
	Back cover

