
Transaction Processing, Databases,
and Fault-tolerant Systems

Digital Technical Journal
Digital Equipment Corporation

Volume 3 Number 1

Winter 1991

Cover Design
Transaction processing is the common theme for papers in this

issue. The automatic teller machine on our cover represents one

of the many businesses that rely on TP systems. If we could look

behind the familiar machine, we would see the products and

technologies - here symbolized by linked databases - that

suppo1·t reliable and speedy processing of transactions worldwide.

The cover was designed by Dave Bryant of Digital's Media

Communications Group.

Editorial
Jane C. Blake, Editor
Kathleen M. Stetson, Associate Editor

Ci.rculation
Catherine M. Phillips, Administrator
Suzanne). Babineau, Secretary

Production
Helen L. Patterson, Production Editor
Nancy jones, Typographer
Peter Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Robert M. Glorioso
Richard). Hollingsworth

john W McCredie
Alan G. Nemeth
Mahendra R. Patel
F. Grant Sa viers
Robert K. Spitz
Victor A. Vyssotsky

Gayn B. Winters

The Digital Tecbnicaljoumal is published quarterly by Digital
Equipment Corporation, 146 Main Street MLO l-3/B68, Maynard,
Massachusetts 0175 4-2571. Subscriptions to the journal are $40.00
for four issues and must be prepaid in .S. funds. niversity and
college professors and Ph.D. students in the electrical engineering

and computer science fields receive complimentary subscriptions
upon request. Orders , inquiries, and address changes should be
sent to The Digital Tecbn.ical}oumal at the published-by address.
Inquiries can also be sent electronically to DTJ®CRJ..DEC.COM.
Single copies and back issues are available for $16.00 each from
Digital Press of Digital Equipment Corporation, 12 Crosby Drive,
Bedford, M A 01730 -1493.

Digital employees may send subscription orders on the ENET to

RDVAX::JOURNAI. or by interoffice mail to mailstop MLO I-3/B68.
Orders should include badge number, cost center, site location code
and address. All employees must advise of changes of address.

Comn1ents on the content of any paper are welcomed and may
be sent to the editor at the published-by or network address.

Copyright <D 1991 Digital Equipment Corporation. Copying
without fee is permitted provided that such copies are made for
use in educational institutions by faculty members and are not

distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted. All

rights reserved.

The information in this journal is subject to change without
notice and should not be construed as a commitment by Digital

Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in this journal.

ISSN 0898-901 X

Documentation Number EY-F588E-DP

The following are trademarks of Digital Equipment Corporation:
DEC, DECforms, DECintact, DECnet, DECserver, DECtp, Digital, the
Digital logo, LAT, Rdb/VMS, TA, VAX ACMS, VAX CDD, VAX COBOL,
VAX DBMS, VAX Performance Advisor, VAX RALLY, VAX Rdb/VMS,
VAX RMS, VAX SPM, VAX SQL, VAX 6000, VAX 9000, VAXcluster,
VA.Xft, VAXserver, VMS.

IBM is a registered trademark of International Business Machines
Corporation.

TPC Benchmark is a trademark of the Transaction Processing
Performance Council.

Book production was done by Digital's Educational Services
Media Communications Group in Bedford, MA.

I Contents

8 Foreword
Carlos G. Borgiall i

1 0 DECdta-Digital's Distributed
Transaction Processing Architecture

Transaction Processing, Databases,

and Fault-tolerant Systems

Phil ip A. Bernstein, Wil l iam T. Emberton, and Vi jay Trehan

18 Digital's Transaction Processing Monitors
Thomas G. Speer and Mark W Storm

33 Transaction Management Support in the
VMS Operating System Kernel
Wil l iam A. Laing, James E. Johnson, and Robert V Landau

45 Peiformance Evaluation of
Transaction Processing Systems
Walter H. Kohler, Yun-Ping Hsu, Thomas K. Rogers,
and Wael H. Bahaa-EI-Di n

58 Tools and Techniques for Preliminary Sizing of
Transaction Processing Applications
William Z. Zahavi, Frances A. Habib, and Kenneth). Omahen

65 Database Availability for Transaction Processing
Ananth Raghavan and T. K. Rengarajan

70 Designing an Optimized Transaction Commit Protocol
Peter M. Spiro, Ashok M . Joshi, and T. K. Rengarajan

79 Verification of the First Fault-tolerant VAX System
Wil l iam F. Bruckert, Carlos Alonso, and James M . Melvin

I Editors Introduction

Jane C. Blake
Editor

Digital's t ransact ion processi ng system s are i nte

grated hardware and software products that operate

in a distributed environment to support commer
cial appl icat ions, such as bank cash wit hd rawals,
credi t card t ransactions, and global t rad i ng. For
these app lications, data i ntegrity and cont i nuous

access to shared resources are necessary system
characteristics; anything less would jeopardize the
revenues of busine ss operat ions that depend on

these applications. Papers in this issue of the Journal
look at some of D igi tal 's techologies and products
that provide these system characterist ics in three
areas: distributed transact ion processing, database

access, and system fault tolerance.
Opening the issue is a d iscussion of the architec

ture, DECdta, which ensures rel iable interoperation

in a d i st ri buted environment. Phi l Bernstei n, B i l l

Emberton, and V i jay Trehan define some transaction
processing termi nology and analyze a TP appl ica

t ion to i l lustrate the need for separate architectural
components. They then present overviews of each
of the components and interfaces of the distributed
transaction p rocessing architecture, giving partic
ular attention to transaction management.

Two products, the ACMS and DECi ntact monitors,
implement several of the functions defi ned by the
D ECdta architecture and are the twi n topics of a
paper by Tom Speer and Mark Storm. Although
based on di fferent implementation strategies, both
ACMS and DECintact provide TP-specific services

for developi ng, e xecut ing, and managing TP appli
cat ions. Tom and Mark discuss the two strategies

and then highl ight the functional simi lari t ies and
differences of each monitor product.

The ACMS and DECi ntact monitors are layered on
the VMS ope rat i ng system, which provides base
services for d istributed transaction management .
Described by Bi l l Lai ng, J im Joh nson, and Bob
Landau, these VMS services, called DECdtm, are an

2

addit ion to the operat ing system kernel and address
the problem of i ntegrat ing data from mult iple sys
tem s and databases. The authors describe t he t hree
DECdtm components, an opt imized implementa

tion of the two-phase commit protocol , and some
VA.Xclu ster-specific optim izations.

The next two papers turn to the issues of measur
i ng TP system pe rformance and of sizi ng a system
to ensure a TP appl icat ion will run efficient ly. Wal t

Kohler, Yun-Ping Hsu, Tom Rogers, and Wael Bahaa
E I-Din discuss how Digital measures and models TP
system performance. They present an overview of

the industry-standard TPC Benchmark A and Digital's

implementation, and then describe an alternative

to benchmark measurement- a mult i level analyti
cal model ofTP system performance that simpl i fies

the system's complex behavior to a manageable set
of parameters. The discussion of performance con
tinues but takes a di fferent perspective in t he paper
on s iz ing TP systems. B i l l Zahavi , Fran H abib, and
Ken Omahen have wri tten about a methodology

for estimat ing the appropriate system size for a TP
application. The tools, techniques and algorithms
they describe are used when an appl icat ion is sti l l

in i t s early stages of development.
High performance must extend to the database

system . ln their paper on database avai labi l i ty,
Ananth Raghavan and T.K. Rengarajan exam i ne
strategies and novel techniques that minim ize the
affects of downtime situations. The two databases
referenced in their discussion are the VAX Rdb/YMS
and VAX D BMS systems. Both system s u se a database

kernel called KODA, which provides t ransaction
capabil i t ies and comm i t processing. Peter Spiro,
AshokJoshi, and T.K. Rengarajan explain the impor
tance of commit processi ng relati ve to throughput
and describe new designs for improving the perfor
mance of group com mit processing. These designs
were tested , and the results of these tests and t he
authors' observations are presented .

Equal ly as important in TP systems as database
avai labil ity is system availabi l i ty. The topic of the
final paper in this issue is a system designed to be
cont i nou sly available, the VAX.ft 3000 fault-tolerant
system. Authors Bill Bruckert, Carlos Alonso, and

Jim Melvin give an overview of the system and then

focus on the four-phase verification strategy devised
to ensure t ransparent system recovery from errors.

I thank Carlos Borgial l i for his help in prepari ng
this issue and for writ ing the issue's Foreword.

Biographies I

Carlos Alonso A principal software engineer, Carlos Alonso is a team leader

for the project to port the System-V operat ing system to the VAXft 3000.

Previou sly, he was the project leader for various VAXft 3000 system val idation

development efforts. As a member of the research group, Carlos developed the

test bed for evaluati ng concurrency control algorithms using the VMS

Distributed Lock Manager, and he designed the prototype alternate lock

rebuild algorithm for cluster transit ions. He holds a B.S . E .E . (1979) from Tulane

University and an M.S . C.S . (1980) from Boston University.

Wael Hilal Bahaa-El-Din Wael Bahaa-EI-Din joined Digi tal in 1987 as a senior

consultant to t he Systems Performance Group, Database System s. He has led a

number of studies to evaluate performance database and transaction process

i ng systems under response time constraints. After receiving his Ph .D. (1984) in

computer and informat ion science from Ohio State University, Wael spent

three years as an assistant professor at the University of Houston. He is

a member of ACMS and IEE E , and he has wri t ten numerous art icles for profes

sional journals and conferences.

Philip A. Bernstein As a senior consultant engineer, Philip Bern stein is both

an architectural consultant i n the Transaction Processing Systems Group and a

researcher at the Cambridge Research Laboratory. Prior to joining Digital in 1987,

he was a professor at Wang Institute of Graduate Studies and at Harvard Univer

sity, a vice president at Sequoia System s, and a researcher at the Computer

Corporation of America. He bas published over 60 papers and coauthored two

books. Phi l received a B.S. (1971) in engineering from Cornel l University and a

Ph. D. (197'5) in computer science from the University of Toronto.

William F. Bruckert William Bruckert is a consult i ng engineer who joined

D igital in 1969 after receiving a B .S .E .E . degree from the University of

Massachusetts. He received an M.S .E . E./C.E . degree from the same university

in 1981 . Begin n i ng as a worldwide product support engineer, Bi l l later worked

on a number of DECsystem-10/20 designs. He developed the cache, memory,

and 1/0 subsystem for the VA.,'(8600 processor and was the system architect

of the VAX 86'50 processor. H is most recent role was as the architect of the VAXft

3000 system . Bi . l l currently holds seven patents.

3

4

William T. Emberton As a principal software engineer, William Emberton is

currently involved in the development of Queue Management Architecture. He

is also involved in X/Open and POS!X TP Standards work ancl is a member

of the team that is developing the overall DECtp product architecture. Previ

ously, he worked on the initial versions of the DEC:dta architecture. Before com

ing to Digital in 1987, Bill held positions as Director of Software Development

at National Semiconductor and Manager of Systems Development for Inter

national Retail Systems at NCR. He was educated at London University.

Frances A. Habib Fran Habib is a principal software engineer involved with

the development of transaction processing workload characterization and siz

ing tools. Previously, Fran worked at Data General and c;TE Laboratories as a

management science consultant. She holds an M.S. in operations research from

MIT and a B.S. in engineering and applied science from Harvard. Fran is a full

member of ORSA ancl belongs to ACM, IEEE, and the AC:YI S!CMETRJC:S special

interest group on modeling and performance evaluation of computer systems.

Yun-Ping Hsu Yun-Ping is currently a principal software engineer in the

Transaction Processing Systems Performance and Characterization Group. He

joined Digital in October 1987, after receiving his master's degree in electrical

and computer engineering from the University of Massachusetts at Amherst. In

his position, Yun-Ping is responsible for performance modeling and bench

mark measurement of both ACMS- and DEC:intact-based TP systems. He also

participated in the TPC Benchmark A standardization activity during !989 He is

a member of ACM and IEEE.

james E. johnson A consulting software engineer, Jim Johnson has worked

for the VMS Engineering Group since joining Digital in 1984. He is current!)' a

project leader for VMS Engineering in Europe. Prior to this work, Jim led the

RMS project, and after relocating to the UK three years ago, he was responsible

for much of the design and implementation of the DEC:dtm services. At the same

time, Jim was an active participant in the transaction management architecture

review group. He has applied for a patent pertaining to the two-phase commit

protocol optimization currently used in DECdtm services.

Ashok M. Joshi Ashok Joshi is a principal software engineer interested in

database systems, transaction processing , and object-based programming. He is

presently working on the KODA subsystem, which provides record storage for

Rdb/VMS and DBMS software. For the Rdb/VMS project, he developed hash

indexing and record placement features, and he worked on optimizing the lock

protocols. Ashok came to Digital after receiving a bachelor's degree in electrical

engineering from the Indian Institute of Technology, Bombay, and a master's

degree in computer science from the University of Wisconsin, Madison.

Walter H. Kohler As a software engineering senior manager, Walt is respon

s ible for TP system performance measurement and analysis and leads D igital's

TP benchmark standards activities. Before joining Digital in 1988, Walt was a vis

i t ing scientist and technical consultant to D igital and a professor of electrical

and computer engineering at the Univers i ty of Massachusetts at Amherst. He

holds B.S. , M.S., and Ph .D . degrees in electrical engineering, all from Princeton

University. Walt recently received the IEEE/CS Meritorious Service Award, and

he has published over 25 technical articles.

William A. Laing Wil l iam La i ng is a senior consu l tant engineer based in

Newbury, England . He is the technical leader for production systems support

for the VMS operat i ng system . During five years spent in the U.S . , Bi l l was

responsible for the design and in it ial development of symmetrical mult i

processi ng support i n the VMS system . He joined Digital i n 1981, after doing

research on operating systems at Edinburgh University for nine years. Bi l l holds

a B.Sc. (1972) in mathematics and computer science and an M.Phi l . (1976) i n

computer science, both from Edinburgh Univers ity.

Robert V. Landau Principal software engineer Robert Landau is a member of

the VMS Engineering Group, based in Newbury, England . He is currently the

project leader of a VMS advanced development team investigat ing a high-perfor

mance, transaction-based, flat f i le system. Before joining D igi tal i n 1987, Bob

worked for a variety of software houses special i zing in database-related prod

ucts. He stud ied botany at London Univers ity and, subsequently, obta ined a

teaching qualification from Hereford College.

James M. Melvin As a principal design engineer, Jim was responsible for the

specification of hardware error-handling mechanisms i n the VAXft system and is

presently an engineering project leader for future VA.,'(ft systems. He also speci

fied and led the implementatio n of t he hardware system simulation platform

and the hardware des ign verification test plan. J im joined D igital in 1984 and

holds a B.S.E.E. (1984) and an M .S . (1989) in engineering management from

Worcester Polytechnic Insti tute. He holds three patents on the VAXft 3000 sys

tem, al l related to error handling in a fault - tolerant system.

Kenneth]. Omahen A principal engineer, Kenneth Omahen is developing

object-oriented queuing network solvers. He designed a variety of perfor

mance tools and performed design support stud ies which i nfluenced a number

of Digital products. Prior to jo ining D igital , Ken worked at Bel l Telephone

Laboratories, lectured at the University of Newcast le-Upon-Tyne, and was a

faculty member at Purdue University. He received a B.S. degree i n science engi

neering from Northwestern University and M . S . and Ph .D . degrees in informa

tion sciences from the University of Chicago.

5

Biographies

6

Ananth Raghavan Since join i ng D igital i n 1988, Ananth Raghavan has been

a software engineer who has led projects for the KODA/Rdb Group. Previous to

this posit ion, he was a teaching ass istant in the computer science department

of the University of Wisconsin. Anant h holds a B.S. (1985) degree in mechani

cal engineering from the I nd ian I nst i tu te of Technology, Madras, and an M.S.

(1987) degree in computer science from the University of Wisconsin, Mad ison .

He has two patent applicat ions pend i ng for h is work on undo and undo/redo

database algori thms.

T. K. Rengarajan T. K. Rengarajan has been a member of the Database

Systems Group s ince 1987 and works on the KODA software kernel for database

management systems. He is involved in the support for WORM devices and

global buffer management in the VA..'\cluster environment. His work in the areas

of boundary element methods and database management systems is reported in

several published papers and patent applications. Ranga holds an M.S. degree i n

computer-a ided design from the University o f Kentucky and a n M.S. in com

puter science from the Universi ty of Wisconsin.

Thomas K. Rogers Thomas Rogers is a project leader for the Transaction

Processing Systems Performance ami Characterization Group. He is respon

s ible for tes t i ng the V.A.,'C 9000 Model 210 system us ing the TPC Benchmark A

standard . Prior to jo in ing D igital i n January 1988, Tom worked for Sperry

Corporation as a techn ical specia l ist for t he Nort heast region. He received a

bachelor of science degree in mathematical sciences i n 1979 from Johns

Hopkins University.

Thomas G. Speer As a principal software engineer i n t he DECtp/East

Engineering Group, T homas Speer is currently lead i ng the D ECintact V2 .0 pro

ject. In this posi t ion, his m ajor responsi b i lity is defi n i ng the requirements for

DECintact support of DECdtm services, c l ient/server database access, and sup

port for the DECforms product. Since joining Digital in 1981 , Tom has worked

on several development projects, including FORTRAN-10/20 and RMS-20. He holds

degrees from Harvard University, Rutgers University, and Simmons College. He

is a member of Phi Beta Kappa.

Peter M. Spiro Peter Spiro, a principal software engineer, is currently

involved in optimizing database technology for RISC machi nes. He has worked

on database fac i l i t ies such as access m e t hods, journal i ng and recovery, t rans

action protocols, and buffer management. Peter joined D igital i n 1985 , after

rece iving M.S. degrees in forest science and computer science from the

University ofWiscons in . He has a patent pend ing for a method of database jour

nal ing and recovery, and he authored a paper for an earl ier issue of the Digital

Technical journal. In addi tion, Peter enjoys the game of Ping-Pong.

Mark W. Storm Consul t ing engineer Mark Storm was one of t he original

designers of the ACMS monitor, and he has been i nvolved in the development of

TP products for more than ten years. Currently, he is act ing technica l d irector

for the East Coast Transaction Processing Engineering Group, as wel l as manag

ing a small advanced development group. After join ing Digital i n 1976, Mark

worked on COBOL compi lers for the PDP-11 systems and developed the first

native COBOL compi ler for the VAX computer. He holds a B .S . (with honors) in

computer science from the University of Southern M ississippi .

Vijay Trehan Since join ing Digi tal i n 1978, Vijay Trehan has contributed t o

several archi tecture projects. He i s t h e techn i cal d irector responsi ble for

DECtp architecture, design, and standards work. Prior to this assignment, Vijay

was the archi tect for t he DECdtm p rotocol, architect for the DDIS data inter

change format, and i n i t iator of work on the DDIF document i n terchange format

and compound document strategy. He holds a B.S. (1972) in mechanical engi

neering from t he I nd ian I nstitute of Technology and an M.S. (1974) in operations

research from Syracuse University.

William Z. Zahavi As an engineering manager, B i l l is responsible for the

des ign and development of predict ive s izing tools for t ransaction processing

app. l ications. Before join i ng D igi tal i n 1987, he was a technical consultant for

Sperry Corporation, special izing i n systems performance analysis and capacity

planning. Bil l rece ived an M .B.A. from Northeastern University and a B.S. i n

mathematics from the Univers ity o f Virgin ia . H e i s an active member o f the

Computer Measurement Group, and frequently presents at CMG conferences.

7

I Foreword

Carlos G. Borgialli
Senior Manager, DECtp Software
Engineering

Transaction p rocessing is one of the largest, most
rapid ly growing segments of the computer i ndus

try. D igital's strategy is to be a leader in transaction

processing, and toward that end we are making
technological advances and delivering products to

meet the evolving needs of businesses that rely on
transaction processing systems.

Because of the speed and rel iabi l i ty with which

transaction processing systems capture and d is

play up-to-date information, they enable businesses

to make well-informed, t imely decisions. Industries
for which transaction p rocessing systems are a sig

nificant asset i nclude banking, laboratory automa

tion , manufacturing, government, and insurance.

For these industries and others, t ransaction p ro

cessing is an information l ifeli ne that supports the

achievement of da i l y business object ives and i n

many instances provides a competi tive advantage.
Many older transaction processing systems on

which businesses rely are centralized and tied to a
particular vendor. A great deal of money and time

has been invested in these systems to keep pace

with busi ness expansion. As expansion continues
beyond geographic boundaries, however, the cen

tralized, s ingle-vendor transaction p rocessing sys
tems are less and less l ikely to offer the flex ibi l i ty

needed for round- the-clock, rel iable, business

operations conducted worldwide. Transaction pro

cessi ng technology therefore must evolve to

respond to the new business environment and at

the same t ime protect the i nvestment made i n

existing systems.
Our research efforts and i nnovative p roducts

provide the transaction p rocessi ng systems that
businesses need today. The demand for d istributed

8

rather than central ized systems has focused atten

tion on system m anagement. Queuing services,

highly ava i lable systems, heterogeneous environ

ments, securi ty services, and computer-a ided soft

ware engineering (CASE) are a few examples of

areas in which research and advanced develop
ment efforts have had and wil l cont inue to have a

major i mpact o n the capabi l i t ies of transaction

processing systems.

Transaction p rocess ing solut ions require the

application of a w ide range of technology and the

integration of mult iple software and hardware

products: from desktop to mainframe: from presen

tation services and user interfaces to TP moni tors,
database systems, and computer-a ided software

eng ineeri ng tools; from optim ization of system

performance to optimization of availabi l i ty. Making

al l of this tcch.nology work well together is a great

chal lenge, but a challenge D igital is u niquely posi

t ioned to meet.

D igital ensures broad appl ication of its t rans

action p rocess i ng technology by defi n i ng an
architecture, the Digital Distribu ted Transaction

Architecture (DECdta). DE Cdta, about which you wi l l

read i n this issue, defines the major components of

a D igital TP systt:m and the way those components

can form an integrated transaction p rocessi ng sys-

tem. The DECdta architecture describes how data

and processi ng are eas i ly d istributed among m ulti
p le VAX p rocessors, as wel l as how the components

can i nteroperate in a heterogeneous environment.

The DECdta architecture is based on the client/

server computing model, which allows D igital to

apply its tradit ional strengths in networking and

expandabi I i ty to t ransaction p rocessi ng system
solutions. In the DECdta client/server computing

model, the client port ion interacts with the user to
create processing requests, and the server portion
performs the data manipulat ion and computation
to execute the processing request. T his computing

model faci l itates the d ivision of a TP system into

small components in three ways. It al lows for dis
tr ibut ion of functions among VA_,\: p rocessors; i t

part i t ions the work performed b y one or more of

the components to al low for parallel processi ng;

or i t repl icates functions to achieve h igher ava i l

abil i ty goals. These opt ions permit the customer
to purchase the configurat ion that meets present
needs, confident that the system wil l a l low smooth

expansion in the future.

Further, the D ECdta architecture sets a direction
for i ts evolut ion through different p roducts in a

coord inated manner. It provides for the cooper
ation and interoperation of components imple
mented on different platforms, and i t supports the
expansion of customer applicat ions to meet growth
requirements. The DECdta arch i tecture is des igned
to work with other Digital arch itectures such as the
D igital Network Architecture (DNA), t he network
application services (NAS), and the Digi tal database
archi tecture (DDA). Moreover, the DECdta architec
ture supports industry st andards that enable the
portability of appl icat ions and their interopera
t ion in a heterogeneous enviro nment, such as the
standard appl ication programming interfaces being
developed by t he X/Open Transaction Proce ssing
Working Group and t he IEEE POSJX. Standard wire
protocols that provide for systems interoperation
in a mult ivendor, heterogeneous environment are
be i ng developed by the International Standards
Organization as part of the Open System Inter
connection activit ies.

Among the products D igi tal has developed speci
f ical l y for TP systems are the TP monitors. These
monitors provide the system integrat ion "glue," if
you will. Rather than act as their own systems inte
grators, customers who use D igital's TP monitors
are able to spend more t ime on solving bus iness
problems and less t ime on solving software inte
grat ion problems, such as how to make forms and
database products work together smoothly.

Digital's TP moni tors run on all types of hard
ware configurations, including local area networks
(LANs), wide area networks (WAJ'\Is), and VAXcluster
systems. The DECdta client/server computing model
provides t he necessary flex ibility to change hard
ware configurations, thus allowing reco nfigura
t ion without the need for any source code changes.

The two TP moni tors, DECin tact and VAX AG•IS,
i ntegrate vital D igital technologies such as t h e
D igital Distributed Transaction Manager (DECcltm)
and products such as D igital's forms systems
(DECforms) and our Rdb/VMS or V�'\ DBMS data
base products. DECdt m uses the two-phase com
mit protocol to solve the complex problem of
coord i nating updates to multiple data resources
or databases.

Major developments in Digita l's database prod

ucts have enhanced the strengths of i ts overal l
product offerings. The two mainstrea m database
products noted above, Rdb/VMS and VA,"(DBMS,

layer on top of a database kernel called KODA, thus
providing data access i ndependent of any data
mod el. The services made available by KODA,

besides its high performance, allow D igi tal's data
base products to eff icient ly support TP applica
t ions as well as to provide rich functional i ty for
general-purpose database appl ications.

For those TP systems that require u ser i nter
faces, DECforms provides a device-independent,
easy-to-use human interface and perm its t he sup
port of mult iple devices and users within a single
appl icat ion.

TP systems that requ ire high ava ilabil i ty or con
t inuous operations are supported by the V�'X fam

ily of hardware and software. The introd uct ion of
the fault-tolerant VAXft 3000 system, added to t he
successfu l V�'Xcluster system, allows for a high
level of s ystem av a ilabil i t y. Performance needs
also are be ing met by a combination of hardware
resources. includ ing the VAX 9000 system.

This combinat ion of architecture, software, and
hardware technology, and support for emerging
industry standards places D igital in an excellent
pos i t ion to become the industry leader for d is

tributed, portable transaction processing systems.
The papers in this issue of the Journal provide a
view of t he key elements of D igital's d istributed

transaction process ing technologies.
Many individuals, teams, organizations, and busi

ness partners are respons ible for bringing Digi tal's
TP v ision to fru it ion. Their dedicat ion, hard work,

and creativity will cont inue to drive t he develop
ment of new technologies t hat enhance our family

of products and services .

9

I

Philip A. Bernstein
William T. Emberton

Vijay Trehan

DECdta -Digitals Distributed
Transaction Processing
Architecture

Digital's Distributed Transaction Processing Architecture (DECdta) describes tfJe

modules and interfaces that are common to Digital's transaction processing

(DECtp) products. The architecture allows easy distribution of DECtjJ products.

fn particular. it supports client/server style applications. Distributed transaction

management is the main function that ties DECdta modules together it ensures

that application programs, database systems, and other resource managers inter

operate reliably in a distributed �ystem.

Transaction processing (TP) is the activity of execut

ing requests to access shared resources, typical ly
databases. A computer system that is configured to

execute TP applications is cal led a TP system.

A t ransaction is an execut ion of a set of opera
t ions on shared resources that has the fo llowing

properties:

• Atom ici ty. Either aJ J of the transaction ·s ope ra

t ions execute, or the transact ion has no effect

at a l l .

• Serializabi l i ty. The set of a l l operat ions that exe

cute on behalf of the t ransaction appears to

execute serially with respect to the set of opera
tions executed by every other transaction.

• Durabi l i ty. The effects of the transaction 's oper

ations are resistant to fa i lures.

A t ransaction terminates by executing the com

mit or abort operat ion. Commit tells the system to
install the effect of the transact ion's operations
permanently. Abort tells the system to undo the
effects of the transact ion's operations.

For enhanced reliabi l i ty and ava i labil ity, a TP

application uses t ransactions to execute requests.

That is, the application receives a request message
(from a d isp lay, computer, or other device), exe

cutes one o r more t ransactions to process the

request, and possibly sends a reply to the origina

tor of the request or to some other parry specified
by the originator.

TP appl icat ions are essentia l to the operation
of many industries, such as finance, reta i l , health

care, transportation, govern ment, commun ications,

10

and manufacturing. Given the broad range of appli

cat ions of TP, D igital offers a wide variety of prod

ucts with which to build Tl' systems.
DECtp is an u mbrel la term that refers to Digi tal's

TP p roducts. The goal of DECtp is to offer an inte

grated set of ha rdware and software products

t hat supports the development, execut ion, and

management of TP appl ications for enterprises of

all sizes.

DECtp systems include software components

that are specialized for TP, notably TP monitors

such as the ACMS and DECintacr TP monito rs, and

transaction managers such as the DEC:dtm t rans

action manager. ' ' DECtp systems also req uire the
integration of general-purpose hardware products

(processors, storage, communicat ions, and termi

nals) and software products (operat ing systems,
database systems, and com munication gateways).

These products are typically integrated as shown

in Figure l.

TP APPLICATION

TP MONITOR DATABASE SYSTEMS FORMS MANAGER

OPERATING SYSTEM COMMUNICATION SYSTEM

Figure 1 Layering of Products to Support
a TP Application

Vol. .l No. I Willll!r J')')J Digital Tec!Jnical jounwl

DECdta - Digital's Distributed Transaction Processing Architecture

Appl ications on DECtp systems can be des igned
using a c l ient/server parad igm. This parad igm is

especia l ly useful for separat i ng the work of prepar

ing a request from that of running transactions.

Request p reparation can be done by a front-end
system, that is, one that is close to the user, i n

which processor cycles arc i nexpens ive and inter

active feedback is easy to obta in . Transaction
execution can be done by a larger back-end sys

tem, that is, one that manages large databases

and may be far from the user. Back-end systems

may themselves be d istributed . Each back-end

system manages a p orrion of the enterprise
database and executes appl icat ions, usual ly ones
that make heavy use of the database on that back

end. DECtp products are modu larized to al low easy

d istribution across front ends and back ends,

which enables them to support client/server style
applications. DECtp systems thereby simplify pro

gramming and reconfiguration in a d istributed
system.

Digi t a l 's Distributed Transaction Processi ng
Architecture (DECdta) defines the modularization

and d istribu t ion structure that is common to DI'Ctp
products. D istributed transaction management is

the main function that t ics this structu re together.
This paper describes the D ECdta structure and

expla ins how DECdta components are integrated
by distributed transaction management.

Current versions of DECtp p roducts imp lement

most, but not a l l , modu les and interfaces in the

DECdta architectur e . Gaps between the architec

ture and products wi l l be fi l led over time. DECtp

products that current ly imp lement DECdta compo
nents are referenced throughout the paper.

TP Application Structure

By analyzing TP appl icat ions, we can see where the

need arises for separate D ECdta components. A

typical TP app l ication is structured as fo l lows:
Step 1 : The client application i nteracts with a

user (a person or machine) to gather input, e .g . ,
us ing a forms manager.

Step 2 : The client maps the user's input into a

request, that is, a message that asks the system to
perform some work. The c l ient sends the request

to a server appl ication to process the request.

A request may he d irect or queued. Jf d irect, the

cl ient expects a server to process the request right

away. If queued , the cl ient deposits the request
in a queue from which a server can dequeue the
request later.

Digitu/ Teclm icul jouniUI Vol. ,) Nu I Winter t'J'JI

Step 3: A server processes the request by
executing one or more transactions. Each trans

action may

a. Access mult iple resources

b. Cal. I programs, some of which may be remote

c. Generate requests to execute other t ransactions

d. Interact with a user

e. Return a reply when the transaction finishes

Step 4: If the transaction produces a reply, then

the client interacts with the user to d isplay that
reply, e .g . , using a forms manager.

Each of the above steps involves the interact ion

of two or more programs. In many cases, it is desir

able that these programs be d istributed . To d is
t ribute them conveniently, i t is important that the
programs be in separate components. For exam

ple, consider the fol lowing:

• The p resentation service that operates the dis

play and the appl ication that controls which
form to d isplay may be d istributed.

One may want to off-load presentation services
and related functions to front ends, whi le al low

ing programs on back ends to control which

forms are d isplayed to users. This capabi l i ty is
useful in Steps 1 , 3d, and 4 above to gather input

and d isplay output . To ensure that the presenta·

t ion service and application can be d istribu ted,

the p resentat ion service should correspond to a
separate DECdta component.

• The cl ient appl icat ion that sends a request and

the server application that processes the request

may be d istribu ted. The applicat ions m ay com
m u n icate through a nerwork or a queue.

In Step 2, front-end applications may want to

send requests direct ly to back-end applicat ions

or to place requests in queues that are managed

on back ends. Simi larly, in Step 3c , a t rans·
action, T, may enqueue a request to run another
t ransaction, where the queue resides on a d if
ferent system than T. To max imize the flex ibi l
ity of d istribu t i ng request management , request

management should correspond to a separate

DECdta component.

• Two transaction m anagers that want to run a

com m i t protocol may be d istributed .

For a transaction to be distributed across different
systems, as in Step 3b, the transaction management

1 1

Transaction Processing, Databases, and Fault-tolerant Systems

se rvices must be dist ri buted. '1() ensure that each

t ran saction is at omic, the t ransac tion manage rs on

these syste ms must c on trol t ran sac tion commit

men t using a com mon commit prot oc ol. To com

plic ate matte rs, the re is more t han on e w ide ly used

prot ocol for t ransac ti on commit men t. To the

extent possib le, a system sh ou ld all ow inte ro pe ra

t ion of these protoc ols .

To ensure th at t ran sact ion manag e rs can be dis

t ributed, the t ransact ion man ager should be a

c o mponent of DEC:dt a. Tc> en sure th at they c an

inte ro pe rate, the ir t ransaction prot oc ol sh ou ld

also be in DECdt a. To ensure th at (liffe rent commit

prot ocol s em be supported , the part of tran saction

management th at define s the prot ocol for inte r

act ion with remote t ransac tion manage rs sh ould

be separated f ro m the part that coordinates t rans

act ion exec ution ac ross loca l resources. In the

DECdt a architecture, the forme r is called a c o mmu

nic at ion manage r, and the latte r is cal led a t rans

act ion manage r.

Inte rope rat ion of t ransaction manage rs and

re source managers, such as (latabasc syste ms, also

affect s the m od ul arization of DEC:dt a c omponent s.

A t ransaction may inv olve clifferent ty pes of

resource s, as in Step :)a. For example , it may update

dat a that is managed by different database syste ms.

To c ont rol t ransaction commit men t, the t ransac

tion man age r must interac t wi th d ifferent resource

manage rs, possi bly supplied by diffe rent vend ors.

This require s that re source manag e rs be separate

components of DE C:dt a.

The DECdta Architecture

H aving seen whe re t he need for DECdt a compo

nent s ari se s, we are now ready t o de sc ribe the

DE Cdt a architec ture as a whole, inc luding the func

t ions of and interfaces t o each component.

Most DECdt a inte rface s are rmblic . S ome of the

public inte rf ace s are c ont rolled by offic ial stan

dard s bodie s and ind ust ry consortia; i .e., they are

"open " inte rf ac es . Oth ers are c ont rolled sole ly by

D igit al. DECdt a interf ace s and protoc ols w il l be

published and align ed with ind ust ry st andards, as

appropriate.

DECdt a c omponent s are abst ract entities. They

do not necessari ly map one-t o-one to hardware

component s, software c omponent s (e .g ., p ro

g rams or prod uct s), or exec ution envi ron ment s

(e .g . , a single-th re aded proce ss, a multithreaded

process, or an ope rating system se rvice). Rathe r, a

DE Cdt a component may be i mple mented as mu lti

ple software c omponents, for example, as seve ral

1 2

processes . Alte rnatively. sev era l DECdt a compo

nen ts may be imple men ted as a s ing le software

c omponent. For example, an operating system or

TP monit or ty pica l ly offe rs th e fac il ities of more

than one DECdt a compon en t.

The following are the c omponen ts of DEC:d ta :

• An appl ic a t ion prog ram is any prog ram that

uses se rv ice s of DECdta com pon ent s

• A resource man ager manag es resources th at sup

port t ransact ion semantics.

• A t ransaction manage r c oordin ates tran sac tion

te rminat ion (i .e , commi t and abort).

• A c om munic ation manage r supports a t rans

ac tion c o m m unicat ion protoc ol between Tl'
systems.

• A pre sent ation manager supports dev ic e-inde

pendent inte ract ions with a presentation devic e.

• A reque st manag er fac i li t ates th e subm ission of

reque sts to exec ute t ransactions.

DECdt a c omponent s are l ayered on serv ice s that

are provided by the underlying operating syste m

and dist ributed system platform, and arc not spec i

fic t o Tl', as shmvn in Figure 2.

Application Program
We usc the term appl ication prog ram to mean a

prog ram th at use s the services provid ed by oth er

DECd ta c ompon ent s . An app lic ation program

c o u ld be a c ust omcr-wri tt cn prog ram, a laye red

prod uct . or a DfUita component .

In the DECdt a arch i tecture, we disting uish tw o

special types of app l ication prog ram : request ini

tiat ors and t ran sact ion se rve rs. A request in it iator

is a DECd ta c omponent that prepares ami submits

a reque st for the exec ut ion of a t ransact ion. Tb
c reate a reque st, the reque st initiator usua II y inter

act s with a pre sent ati on m anage r that provides an

inte rface to a device, such as a te rmin al, a w ork

station, a dig it al priv ate branch exchange, or an

automated te lle r machine .

A t ransaction se rve r c an d emarc at e a t rans

action, inte ract with one or more resourc e man

age rs t o access rec ove rable resources on behalf of

the t ransaction, inv oke ot her t ransac tion serve rs,

and respond t o c alls f rom request initiat ors.

For a s imple req ue st , a t ransac tion server

receives the reque st , proce sses it, and option ally

ret urns a reply t o the reque st initiat or. A c onve r

sational reque st is like a simple request, except that

while p roce ssing the req ue st, t he transac t ion

\�11. j .Vu. J Winter 1991 Digital Tecbuica/ jourua/

DECdta - Digital's Distributed Tra nsaction Processing A rchitecture

APPL ICATION PROGRAMS

TP SERVICES

R EQUEST

I N ITIATOR

R E QU EST

MANAGER

PRESENTATION

MANAGER

REQU EST

MANAGER

OPERATING SYSTEM AND DISTRI BUTED SYSTEM SERVICES

DISTRIBUTED

NAME SERVICE

DISTR I BUTED

TIME S E R V I C E

T H R E A D

MANAG EMENT

SERVICE

TRANSACTION SERVER

RESOU RCE

MANAG E R

OTH E R

COM M U N I CATION

MANAGE R S

TRANSACTION

MANAGER

UID SERVICE
AUTHENTICATION

SERVICE

Figure 2 DECdta Components and Interfaces

server exchanges one or more messages with the
user, usuall y through the request in i t iator.

In principle, a request in i tiator coul ll also execute
transactions (not shown in Figure 2). That is, the dis
t inct ion between request i n i t iators and transaction
servers is for clarity onl y, and does not restrict an
appli cation from perform ing request ini t iation func
t ions i n a transaction . Archi tectural ly, this amounts
to saying that request in i t i at ion fu nct ions can exe
cute in a transaction server.

Resource 1l1anager

A resource manager performs operat ions on shared
resources. We are especia l l y i nterested i n recover
able resource managers, those that obey transaction
semantics. In part icular, a recoverable resource
manager undoes a transaction's updates to the
resources if the transaction aborts. Other recover
able resource manager activit ies i n support of trans
actions are described in the next section. In the rest
of this paper, we use " resource manager" to mean
" recoverable resource manager."

In a TP system, the most common k i nd of
resource manager is a database system. Some pre
sentation managers and communicat ion managers
may also be resource managers. A resource man-

Digita/ 1ec1Jitical jourt�al 1-'11/ . .> Nu. I \Vinter I'J'JI

ager may be wri t ten by a customer, a third party,
or D igi tal .

Each resource manage r type offers a resource
manager-specific in terface that is used by applica
tion p rograms to access and modify recoverable
resources managed by the resource manager. A des
cription of these resource manager i nterfaces is
outs ide the scope of DECdta. However, many of
these resource manager interfaces have archi tec
tures defined by industry standards, such as SQL
(e .g. , t he VAX Rdb/Vtv!S product), CODASYL data man
ipulation language (e.g . , the VAX DB,'v!S product), and
COBOL fi le operations (e .g . , RNIS i n the VMS system).

One type of resource manager that plays a spe
cial role in TP systems is a queue resource manager.
It manages recoverable queues, which are often
used to store requests. ' I t a l lows appl ication pro
grams to p lace elements i nto queues and retrieve
them, so that appl ication programs can com muni
cate even though they execute i ndependently and
asynchronou s l y. For example, an appl ication pro
gram that sends elements can communicate with
one that receives elements even if the two appl ica
t ion p rograms are not operationai s imultaneously.
This communication arrangement improves ava i l
abil i ty and faci l i tates hatch input of elements.

1 3

Transact ion Processing, Databases, and Fault-tolerant Systems

A queue resource manager i n terface supports
such operations as open-queue, close-queue,

enqueue, dequeue, and read-element . The ACMS

and DECintact TP monitors both have queue

resource managers as components.

Transaction Manager

A t ransaction manager supports the transact ion

abstraction. It is responsible for ensur i ng the atom

icity of each transaction by tel l i ng each resource

manager in a transaction when to commit . It uses

a two-phase comm i t p rotocol to ensure that ei ther

all resource managers accessed by a t ransaction

comm i t the transaction or they all abort the trans

action. ' To support transaction atomici ty, a t rans

action manager provides the fo l lowing functions:

• Transaction demarcation operations allow appli

cation programs or resource managers to start
and commi t or abort a transaction. (Resource

managers sometimes start a transaction to exe

cute a resource operat ion if the caller is not

execut ing a transac t ion. The SQL standard

requires this.)

• Transaction execut ion operations al low
resource managers and communication man

agers to declare themselves part of an exist ing

transaction.

• Two-phase com m i t operations al low resource

managers and communication managers to

change a transaction's state (to "prepared," "com

mit ted," or "aborted ") .

The serial izabi l i ty of t ransactions is primari ly

the responsibi l i ty of the resource managers.

Usual ly, a resource m anager ensures serial izabi l i ty
by set t i ng locks on resources accessed by each

transaction, and by releasing t he locks after the

transact ion manager tel l s the resource manager
to commit . (The latter activi ty makes serial izabi l
i ty partly the respons ib i l i ty of the transaction

manager.) If t ransactions become dead locked, a
resource manager may detect the dead lock and

abort one of the dead locked transact ions.
The durabi l i ty of transactions is a responsibi l ity

of transaction managers and resource managers.

The transaction manager is responsible for the

durabi l i t y of the com m i t or abort decis ion. A

resource manager is responsible for the durabi l i ty

of operations of com m i t ted transactions. Usually,

i t ensures durabi l it y by storing a description of

each transact ion 's resource operations and state
changes in a stable (e.g., d isk- resident) log. It can

14

later use the log to reconstruct transactions' states

while recovering from a fa i lure.

A deta i led description of the DECdta transaction

manager component appears in the Transact ion

Manager Architecture section.

Communication Manager

A com munication manager provides services for

communication between named obj ects i n a TP

system, such as appl ication programs and trans

action managers. Some commun ication managers

part icipate in coordinat ing the termi nation of a
transaction by p ropagat ing the transaction man

ager's two-phase commi t operations as messages

to remote communication managers. Other com

munication managers propagate application data
and transact ion context, such as a t ransaction iden

tifier, from one node to another. Some do both.

A TP system can support multiple communica

tion managers. These communication managers

can interact with other nodes us ing d ifferent com

m i t protocols or message-passi ng p rotocols, and

may be part of d ifferent name spaces, securi ty

doma i ns , system management doma i ns, etc.

Examples are an IBM SNA LU6.2 communication

manager or an ISO-TP communication manager.
By support i ng m u l t iple com munication man

agers, the DECdta architecture enhances the i nter
operabil i ty ofTP systems. Different TP systems can

interoperate by execut i ng a t ransact ion using d if

ferent commit protocols.
A communication manager offers an interface

for application p rograms to communicate wi th

other application programs. Different communica

tion managers may offer d ifferent communication

paradigms, such as remote procedure call or peer
to-peer message pass i ng.

A communication m anager also has an interface
to i ts local t ransaction manager. It u ses this i n ter

face to tel l the transaction manager when a trans
action has spread to a new node and to obt a i n
i nformation about transaction commitment, which

it exchanges w i th communicat ion managers on
remote nodes.

Presentation Manager

A p resentation manager provides an appl icat ion

p rogram with a record-oriented interface to a pre

sentation device. Its services are used by applica

t ion programs, usual ly request i n i t iators. By using

presentation manager services, i nstead of d irectly

access i ng a p resentation device, appl ication pro
grams become device independent.

Vol. 3 No. 1 Winter 1991 Digital Teclmicaljournal

DECdta - Digital's Distributed Transaction Processing A rchitecture

A forms manager is one type of presentation

manager. Just as a database system supports opera
t ions to define, open, close, and access databases, a

forms m anager supports operations to define,

enable, d isable, and access forms. A form includes

the defi n i t ion of the fields (wi t h different
attributes) that make up the form. I t also i ncludes
services to map the fields into device-independent

application records, to perform data validation,

and to perform data conversion to map fields onto

device-specific frames.
One presentation manager is D igital 's DEC:forms

forms management p roduct. The DECforms prod
uct is the first i mplementat ion of the ANSI/ISO
Forms Interface Management Systems standard

(COOASYL FIMS) .'

Request Manager

A request manager provides services to authenti

cate the source of requests (a user ami/or a presen
tat ion device), to subm i t requests, and to receive

repl ies from the execution of requests. It supports
such operat ions as send-request and receive-reply.

Send-request must p rovide the ident i t y of the
source device, the identity of the user who entered

the request, the ident ity of the appl ication pro
gra m to be invoked, and the input data to the

program.

A request manager can ei ther pass the request
di rect ly to an appl ication program, or it can store

requests in a queue. In t he latter case, anot her

request manager can subsequently schedule the
request by dequeuing the request ami invoking an

a ppl ication program. The ACMS System Interface is
an example of an ex isting request manager inter

face for d irect requests. The ACMS Queued Trans

action Ini tiator is an example of a request m anager
that schedules queued requests.'

Transaction Manager Architecture

OECdta components are t ied together by the trans
action abstraction. Transactions al low application

programs, resource m anagers, request managers
(ind irectly through queue resource managers), and
communication managers to inte mperate reliably.

Since transactions p lay an especia l ly important

ro le in the O ECdta archi tecture, we describe the

transaction management funct ions in more det a i l .

The OECdta archi tecture incl udes interfaces
between transaction managers and applicat ion

programs, resource managers, and communication
managers, as shown in Figure 3. I t also includes a

Digital Tedmical Jour11al 1'<>1. . i 1\i>. I Winler I') VI

APPLICATION
PROGRAM

OTH ER
COMMUNICATION
MANAGERS

Figure 3 Transaction Manager A rchitecture

transaction manager protocol, whose messages are
propagated by communication managers. This pro

tocol is used by D igital's DEC :dtm d istributed trans
action manager.'

From a t ransaction manager's viewpoint , a trans

action consists of transact ion demarcation opera

t ions, transact ion execution operat ions, two-phase

com m it operat ions, and recovery operations.

• The transaction demarcation operat ions are
issued by an application program to a transac

tion manager and incl ude operat ions to start

and e i ther end or abort a t ransaction.

• Transaction execur ion operations are issued by

resource managers ami communication man

agers to a transaction manager. They include

operat ions

For a resource manager or communication

manager to join an existing transaction

- For a commun icat ion manager to tel l a t rans

action manager to start a new branch of a

t ransaction that a l ready exists at another node

• Two-phase com m i t operat ions are issued by a
transaction manager to resource managers,
communication managers, and through com

munication managers to other t ransaction man
agers, and vice-versa. They i nclude operat ions

- For a transaction manager to ask a resource

manager or communication manager to pre
pare , commi t, or abort a transaction

For a resource manager or communica
t ion manager to tel l a transaction manager

whether i t has p repared, com m it ted , o r
aborted a transaction

1 5

Transaction Processing, Databases, and Fault-tolerant Systems

- For a com mu n ication manager to ask a t rans

action manager to p repare, com m it, or abort
a t ransaction

- For a transact ion manager to te l l a commu

nication manager whether it has prepared,

com m itted, or aborted a transaction

• Recovery operat ions are issued by a resource
manager to its t ransaction manager to deter

m ine the state of a t ransaction (i . e . , comm itted

or aborted).

In response to a start operat ion i nvoked by an

application program, the transaction manager d is
penses a unique transaction ident ifier for the trans

action. The transaction manager that processes the

start ope ration is that t ransact ion's home trans
action manager.

When an application program invokes an opera

tion supported by a resource manager, the

resource manager must find out the t ransaction

identifier of the appl ication program's t ransaction.

This can happen in d ifferent ways. For example, the

appl ication program may tag the operation with

the transaction ident ifier, or the resource manager

may look up the transact ion identifier in the app l i

cation program's context. When a resource man

ager receives i ts first operation on behalf of a

transaction, T, i t must join T, meani ng that it must

tel l a transact ion manager that i t is a subordinate
for T. AJ ternatively, the DECdta architecture sup

ports a model in which a resource manager may ask

to be jo ined automatically to all transactions man

aged by its transaction manager, rather than asking
to join each transaction separately.

A t ransact ion , T, spreads from one node, Node 1 ,

to another node, Node 2 , by sendi ng a message

(through a commun ication manager) from an appl i
cation p rogram that is executing T at Node 1 to
an application p rogram at Node 2 . When T sends
a message fro m Node 1 to Node 2 for the first
t ime, the communication managers at Node 1 and

Node 2 m ust perfor m branch registration. This
function may be performed automatica l l y by the

communication managers. Or, i t may be done man

ually by the application program , which tel l s t he

communication managers at Node 1 and Node 2
that the transaction has spread to Node 2. In ei ther

case, the result is as fol lows: the com munication

manager at Node 1 becomes the subordinate of the
t ransaction manager at Node 1 for T and the supe

rior of the com m u nication manager at Node 2

for T; and the com munication manager at Node 2

becomes the superior of the transaction manager

1 6

at Node 2 for T. This arrangement al lows the com
mit protocol between transact ion managers to be

propagated properly by communication managers.
After the transaction is done with i ts applicat ion

work, the appl ication program that started transac

t ion T may i nvoke an "end" operation at the home

transaction manager to commit T. This causes the

home transact ion manager to ask its subord inate

resource managers and com munication managers

to try to com m i t T. The t ransaction manager does
this by using a two-phase commit p rotocol. The
p rotocol ensures that ei ther all subord inate

resource managers com m i t the transaction or they
all abort the transaction.

In phase 1 , the home transaction manager asks

its subordinates for T to prepare T. A subord inate

p repares T by doing what is necessary to guarantee

that it can either com m i t T or abort T if asked to do

so by its superior; this guarantee is val id even if

i t fa i ls i mmediately after becom i ng p repared . To

prepare T,

• Each subordinate for T recmsively propagates

the prepare request to i ts subordinates for T

• Each resource manager subordi nate writes a l l of

T's updates to stable storage

• Each resource manager and transaction manager

subord inate writes a prepare-record to stable

storage

A subordinate for T repl ies with a "yes" vote if

and when i t bas completed its stable writes and a l l

o f i t s subordinates for T have voted " yes" ; other

wise, it votes "no.'' lf any subordinate for T does not

acknowledge the request to prepare within the

t imeout period, then the home transaction man

ager aborts T; the effect is the same as issuing an
abort operation.

In phase 2 , when the home transaction manager

has received "yes" votes from all of its subordinates
for T, i t decides to comm i t T. I t writes a com m i t

record for T t o stable storage a n d tells i t s subordi
nates for T to com m i t T. Each subordi nate for T

writes a com m i t record for T to stable storage and

recursively p ropagates the com m i t request to i ts

subord in2.tes for T. A subord inate for T rep I ies with

an acknowledgment if and when i t has com m itted

the transaction (in the case of a resource manager
subord inate) and has received acknowledgments

from all subord inates for T. When the home trans

action manager receives acknowledgments from a l l

o f i t s subordi nates for T, the transaction com m i t

ment is complete.

v'!JI. j No. J Winter I':J'JJ Digital Technical journal

DECdta - Digital's Distributed Transaction Processing A rchitecture

To recove r from a f a ilu re , all res ource manage rs

that part icipated in a trans action mu st examine

the i r logs on s table s torage to de te rm i ne w hat to

do. If the log contains a commit or abort record for

T, the n T completed. No act ion is requ i red. If the

log conta ins no prep are , com m it , or abort record

for T, the n T w as act ive. T mus t be aborted. If t he

l og cont a i ns a prepare record for T, bur no com

m i t or abort record for T, T w as betwee n p hases I
and 2. The res ou rce manage r mus t ask i ts su perior

transaction manager w hether to commi t or abort

the trans act ion.

An i nhcrenr p roble m in aU two-phase commi t

protocols is that a resource manager is blocked

between phases I and 2. that is, after vot i ng "yes"

and before receivi ng the commit or abort decision.

I t cannot com m i t or abort t he transaction u nt i l the

trans action manager tel ls i t w hich to do. I f i ts trans

action manage r fa i ls , the res ource manager may be

block ed indef i n i tel y, until e i the r the t ransaction

manage r recove rs or an ex te rnal agent , such as a

system manage r, s teps i n to tel l t he re sou rce man

age r w he the r to commit or abort .

A trans action T may s pontaneousl y abort due to

syste m e rrors at any r ime du ring i rs execu t ion. Or,

an appl ication p rog ram (p rior to comp let i ng i t s

work) or a res ource manage r (p rior to vot i ng "yes")

may tell i ts trans ac t ion manager to abort T. In

e i the r case , the t ransaction manager t hen tel l s

a l l of i ts su bord inates for T to undo t he effe cts

of T's res ource manage r operat ions . S ubord i nate

re source manage rs abort T, and su bord i nate com

mun ication managers recursivel y prop ag ate the

abort reques t to the ir su bord i nates for T.

The two-phase commit p roto col is opt im ized for

those cases in w hich the nu mber of messages

exchang ed can be red uced below that of the gen

eral cas e (e.g. , if the re is onl y o ne su bord i nate

res ource manage r. if a resource manager d id not

mod ify res ou rces, or if the presu med-abort proto
col was us ed to s ave acknowledgments)."

Summary

We have presented an overview of the DECdta
archi tecture. As part of this overview, we in tro

duced the components and expla ined t he fu nct ion

of each i n tcrface . We als o des cribed tile DECd ta

trans act ion manag ement an:hi recrure in some

dera i l . Over t ime, many i nte rf aces of the DECd ta

model w ill be made pu bl ic via prod uct of feri ng s or

archi tectur e pu b! ications .

Digital Teclmical jounwl l'ol . . > .\'u. I Winter I')<) I

Acknowledgments

T his architecture g rew f rom dis cu ssions wi th many

col le agues . We thank them a l l for their help, espe

cially D ieter G awl ick, B ill La ing , Dave Lomet , Bruce

M ann , B arry Ru bi nson , D iog enes Torres, and the TP

archi tecture g roup , i nclud ing Edw ard B ragi nsky,

Tony Del laFe ra, George Gaj nak, Per G y l lstrom, and

Yoav Raz.

References

1 . T. Speer and M . Storm, " D igital 's Transaction

Process ing Monitors," Digital Technical journal,

vol . 3. no. I (W i nte r 1991 , this issue): 18-32.

2. W L1 ing, J. johnson, and R. Landau, "Transaction

M anagement Supp ort in the VMS Ope rati ng

System Ke rnel," Digital Technical journal, vol . 3,

no. 1 (Winter 1991 , th is issue): :B-44.

3. P B ernste in , V Hadzi lacos , and N. Good man,

Concurrency Control and Recouery in Database

Systems (Read ing, MA: Add is on-Wes le y, 1987).

4 . P Bernste in , M. Hsu , and B. Mann, " Implement

i ng Recoverable Req ues ts Us ing Q ueues,"

Proceedings 1 990 ACM StG/viOD Conference on

Management of Data (May 1990).

5. FIMS journal of Developrnent (Norfo l k, VA:
CODASYL FIMS Committee, Ju ly 1990).

6. C. Mohan, B. Lindsay, and R. O bermarck,

"Trans action M anage ment i n the R* D istribu ted

D atabase M anag ement System ," ACM Trans

actions on Database .�vstems, vo l . 1 1 , no . 4

(De ce mber 1986)

1.7

Digitals Transaction
Processing Monitors

T homas G. Speer
Mark W. Storm

Digital provides two transaction processing (TP) monitor products - ACi\115
(Application Control and Management System) and DECintact (Integrated Appli

cation Control). Each monitor is a unified set of transaction processing services for

the application environment. These services are layered on the Vi\:15 operating .\)'S

tem. Although there is a large junctional overlap between the two, both products

achieve similar goals by means of some significant�y different implementation

strategies. Flow control and multithreading in the ACM5 monitor is managed by

means of a fourth-generation language (4GL) task definition language. Flow control

and multithreading in the DECintact monitor is managed at the application level

by third-generation language ()GL) calls to a library of services. The ACM5 monitor

supports a deferred task model of queuing, and the DECintact monitor supports a

message-based model. Over time, the persistent distinguishing feature between the

two monitors will be their differeYJt application programming interfaces.

Transaction processing is the execution of an

application that performs an administrative func

t ion by accessi ng a shared database. Within t rans

action process ing, p rocess i ng monitors provide

the software "glue" that ties together many soft

ware components into a transaction p rocess ing

system solut ion.
A typical t ransaction process ing application

involves interaction with many terminal users by

means of a presentation manager or forms system

to collect user requests. Information gathered by
the presentation manager is then used to query or

update one or more databases that reflect the cur

rent state of the business. A characteristic of t rans

action processing systems and appl ications is
many users performing a small number of s imi lar

funct ions agai nst a common database . A t rans
action processing monitor is a system environment
that supports the efficient development, execu

tion, and management of such applications.

Processing moni tors are usually built on top of

or as extensions to the operating system and other

products such as database systems and presenta

t ion services. By so doing, addi tional components

can be integrated into a system and can fi l l " holes"
by providing functions t hat are specifical ly needed

by transaction process ing appl ications. Some
examples of these functions are appl ication con

trol and management, t ransaction-processing-

1 8

specific execut ion environments, and transaction

processing-specific programming interfaces.

D igi tal provides two t ransaction processing
monitors: the Appl ication Control and Manage

ment System (ACMS) and the DECintact monitor.

Both moni tors are bui l t on top of the VMS operat

ing system . Each mon i tor provides a unified set

of transaction-process ing-specific services to the

application environment, and a large functional
overlap exists between the services each monitor

provides. The d ist inguishing factor between the

two monitors is i n t he area of appl ication p rogram

m ing styles and interfaces - fourth-generation

language (4GL) versus third-generation language

(3GL). This d istinction represents D igi tal 's recog

n it ion that customers have their own styles of
application programm i ng. Those that prefer 4GL

styles should be able to bu i ld t ransaction p rocess
ing applications us ing D igital's TP monitors with

out changing t heir sty le. S imi larly, those t hat prefer

3GL styles s hould also be able to bu ild TP applica

tions using D igi tal 's TP monitors without changing

their style.

The ACMS monitor was first introduced by D igital

i n 1984. The ACMS moni tor addresses the require
ments of large, complex transact ion process ing

appl ications by making them eas ier to develop and

manage. The ACMS monitor a lso creates an efficient

execution environment for these applicat ions.

Vol. 3 No. I Winter 1991 Digital Technical journal

The DECintact monitor (Integrated App l ication

Control) was origi nal ly developed by a th ird-party

vendor. Purchased and introduced by D igital i n
1988, i t has been i nstal led i n major financial i nsti

tut ions and manufacturi ng s i tes. The DECin t act

mon i to r i ncl udes i ts own presentation manager,
support for DECforms, a recoverable queu ing sub
system. a transaction manager, and a resource man

ager that provides its own recovery of RJV!S (Record
Management Services) fi lcs.

This paper highl ights the important s imi lari t ies

and differences of the r\GvJS and DEC:in tact monitors
in terms of goals and implementation strategies.

Development Environment

Transaction process i ng moni tors provide a view

of the transaction p rocess i ng system for appl i
cation development. 'fherefore, the ACMS and

DEC: i ntact monito rs must embody a style of pro

gram development.

ACMS Programming Style

A "d ivide and conquer" approach was used i n the

ACMS mon i to r. The work typical l y i nvolved i n

developing a T P appl ication was d ivided i nto logi

cally separate functions described below. Each of

these functions was then "conquered" by a special

ut i l ity or approach.
Tn the ACJ';JS moni tor, an "appl icat ion" is defined

as a col lect ion of selectable u n i ts of work ca l led

tasks. A separate appl ication defi n i t io n faci l ity

iso lates the system management characteristics of
the appl ication (such as resource a l location, fi le

location, and protect ion) from t he logic of the

appl icat ion.

The specification of menus is also clecoupled

from the appl icat ion . A nonprocedural (4GL)
method of defi n i ng menu layouts is used in which

the layouts are compi led i nto form files and data

structures to be used at run-time. Each menu entry
points e i ther to another menu or to an appl ication

and a task. (Decoupl i ng menus fro m t he appl ica
t ion a l lows user mem1s to be independent of how

the tasks are grouped i nto appl icat ions.)
In add i t ion to separate menu specificat ion and

system management characterist ics, the appl ica

tion logic is broken down i nto the three logical

parts of interact ive Tl' appl ications:

• Exchange steps support the exchange of data

with the end user. This exchange is typical ly

accompl ished by displaying a form on a terminal
screen and col lect ing the input .

Digita1 1ec1JIIical jour11al V"l . . i .Vu. I Winter I')') I

Digital's Transaction Processing Monitors

• !'>rocess ing steps perform computational pro
cessing and database or fi le l/0 through standard
subro u t ines. The subrout i nes are written i n

any language that accepts records passed by

reference.

• The task defi n i tion language defines the flow of
control berween process i ng steps and exchange

steps and specifies transaction demarcat ion.

Work spaces arc specia l records that the ACMS

monitor provides to pass data between the task

defin i t ion, exchange steps, and processing steps.

A compi ler, cal led the appl ication defin i t ion ut i l-

i ty (ADU) . is implemented in the ACMS monitor to

comp i le the task defi n i t ion language into b inary

data structures. The run-t ime system is table-driven,

rather than interpreted , by these structures.

D igital is the only vendor that suppl ies this "d ivide

and conquer" solution to bu i ld ing large complex TP
appl icat ions. We bel ieve this approach - un ique i n

the industry - reduces comp lex i ty, thus maki ng

appl ications easier to produce and to manage.

DECintact Programming Style

The approach to appl icat ion development used in

the DEC: intact monitor provides the appl ication

developer with 3GL control over the transaction

process i ng services requ ired . This approach

al lows appl ication prototyping and deve lopment

to be done rapid ly. Moreover, the appl ication can

m ake t he most efficient use of monitor services

by selec t i ng and contro l l i ng o n l y those services

required for a particular task.

In the D ECi ntact monitor. an appl icat ion is

defined as one or more programs wri tten ent irely

in 3GL and supported by the VMS system. The code

wri t ten by the appl ication developer manages a l l

flow control, user interaction, and data manipu
lat ion through the u t i l i t ies and service l ibraries

provided by the DECintact monitor. Al l DECintact

serv ices are cal lable, i ncluding most services pro
vided by the D ECintact u t i I i t ies. The DECintact
services are as fol lows:

• A l i brary of presentation services used for a l l

interaction with users. The appl ication developer
includes calls to these services for form man ip

u lation and display. Forms are created with a

forms edi tor u t i l i ty and can be updated dynami

cally. Forms are d isplayed by the D ECintact

termina l manager in emu lated block mode.

Device- and termi nal-dependent information is

completely separated from the implementation

of the application.

1 9

Transaction Processing, Databases, and Fault-tolerant Systems

• The separation of specification of menus from

the application. DECintact menus are defined by

means of a menu database and are compi led into
data structures accessed at run-t ime. The menus

are tree-structured. Each entry poi nts e i ther to

another menu entry or to an executable applica
tion image. The specification of mem1s is l i nked

to the DECintact monitor's secur i ty subsystem.

The DEC:intact terminal user sees only those
specific menu entries for which the user has

been granted access.

• A l ibrary of services for the control of fi le and

queue operations. In addi t ion to layered access
to the RMS fi le system , the DEC:intact monitor
supports its own hash fi le format (a functional

analog to s i ngle-keyed indexed files i n RMS)

which provides very fast, efficient record

ret rieva l . The applicat ion develope r i ncl udes
cal ls to these services for managing fu\1S and
hash fi le 1/0 operations, demarcat ing recovery

unit boundaries, creating queues, placing data

i tems on queues, and removing data items from

queues. The queuing subsystem is typical ly an
integral part of appl ication des ign and work

flow control . Applicat ion-defined D EC:i ntact

recovery units ensure that fu\1S, hash, and queue

operat ions can be comm itted or aborted a to m i
cal ly; that is, e i ther al l permanent effects of the

recovery unit happen, or none happen.

Because of D ECintact's 3GL development envi-

ronment, application program mers who are acctis

tomed to cal l i ng procedure l ibraries from standard
VMS languages o r who are fam i l iar wi th other
t ransaction processi ng monitors can eas i ly learn

DEC:intact's services. Appl ication prototypes can
be produced quickly because only sk i l l s in 3C�L
are requ ired . Further, completed app l icat ions
can be p roduced qu ickl y because tra in i ng t ime

is m inimal .

On-line Execution Environment
Transaction processing moni tors provide an execu
t ion environment ta i lored to the characteristics and

needs of transaction processi ng applications. This

environment generally has two aspects: on-l ine, for

i nteract ive appl ications t hat use terminals; and off
l ine, for noninteractive applicat ions that use other

devices.

Trad i t ional VMS t imesharing appl icat ions are
implemented by al locating one VMS process to each
terminal user when the user logs in to the system.
An image activat ion is then done each t ime the ter-

20

m i nal user invokes a new funct ion. This method is

most beneficial i n s imple transaction process ing

appl icat ions that have a relat ively smal l number of
users. However, as the number of users grows or as

the application becomes larger ancl more complex,
several p roblem areas may arise with this method:

• Resource use. As the number of processes grows,

more and more m emory is needed to run the

system effectively.

• Start -up costs. Process creation, i mage act iva

t ion, file opens, and database bi nds are expen
s ive operat ions in terms of system resources

ut i l ized and t ime elapsed. These operations can
degrade system performance if clone frequently.

• Contention. As the number o f users s imul

taneously accessing a database or fi le grows,

contention for locks a l so increases. For many

appl icat ions, lock contention is a s ignificant
factor in throughput.

• Processing location. Single process implementa

t ions Jim i t d istribut ion options.

ACMS On-line Execution

To address the problems l isted above, D igi ta l imple

mented a client/server archi tecture in the ACMS

monitor. (Cl ient/server is also ca l led request/
response.) The bas ic run-time architecture consists
of three types of p rocesses, as shown in Figure 1 :
the com mand p rocess, execution control ler, ancl

procedure serve rs.

An agent in the ACMS monitor is a process that
submits work requests to an application. In the

ACMS system, the command p rocess is a special
agent respons ible for inte ractions with the termi

nal user. (In terms of the DECdta architecture, the

command p rocess i mp lements the functions of
a request i n i t iator, p resentation manager, and
request manager for d i rect requests .) � The com
mand process is general ly created at system start
up time, a l tho ugh ACM S comm a nds al low it to
be started a t o t he r t imes . The p rocess is m u lt i
threaded through the use of VMS asynchronous
system t raps (AS1') . Thus, one command process

p e r node is general l y sufficient for a l l terminals

handled by that node.

There are two subcomponents of the ACMS moni
tor within the command p rocess:

• System interface, which is a set of services for
submi t t ing work requests and for interacting
with the ACMS appl ication

Vol. 3 No. 1 Winter 1991 Digital Tee/mica/ jour11al

g
g
g

l__
r

MENU
DATABASE

+
COMMAND SYSTEM
PROCESS INTERFACE

DEC FORMS
SERVER

I
I
I
I

I
I
I
I

Digital's Transaction Processing Monitors

IBAC�END NODE - - - - �
I
I
I
I
I
•

I

TASK
DEF IN ITION

�
EXECUTION
CONTROLLER

I
I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I

KEY :

ACMS
PROCESSES

APPLICATION
PROCESSES

PROCEDURE
SERVERS

USER DATABASES
� - - - - - - - - - - _j

Figure I Basic Run-time Architecture of the ACMS Monitor

• DECforms, Digital 's forms management product,

which implements the A NSI/ISO Forms Inter
face Management System (FIMS) that p rovides

the presentat ion server for execut ing the
exchange steps

The command process reads the menu defi n i

t ion for a particular terminal user and determines
which menu to d isplay. When the terminal user
selects a particular menu entry, the command pro

cess calls the ACMS system interface services to
submi t the task. The system i n terface uses logical
names from the VMS system to t ranslate the app l i
cat ion name into the address of the execut ion con

troller that represents that appl icat ion . The system
interface then sends a message to the execution
control ler. The message conta ins the locations of
the presentation serve r and an index into the task
defi n i t ion tables for t he part icular task. The status
of the task is returned in the response. Duri ng the
course of task execut ion, the command p rocess
accepts ca l l backs from the task to d isplay a form

for interaction with the term inal user.
The execution contro l le r executes the task

defi n i t ion language and creates and manages p ro

cedure servers. The control ler is created at appli
cation start-up t ime and is m u l t i threaded by

u s i ng VMS ASTs. There is one execut ion control ler
per application. (In terms of the D ECdta archi
tecture , the execution control ler and the p roce-

Digital TeciJnical jounwl Vul . .> Nu. I Winter I'J91

dure servers i mplement the funct ions of a t rans
action server.)'

When the execution control ler receives a request

from the command p rocess, i t invokes DECdtm
(Digital D istributed Transaction Manager) services

to jo in t he t ransaction if the agent passes the

t ransaction identifier. If the agent does not pass a

t ransaction ident ifier, there is no t ransact ion to

jo in and a DECdtm or resource-manager-specific

transaction is started as specified in the task defini

t ion. The execut ion control ler then uses the task

index to find the tables that represent the task.

When the execut ion of a task reaches an exchange

step, the execut ion control ler sends a cal lback to

the command process for a form to be d isp layed

and the input to be col lected for the task . When

the request to d isplay a form is sent to the com
m and p rocess, the execution controller d ism isses

the AST to enable other threads to execute. When

t he response to the request arrives from the

exchange step, an AST is added to the queue for
the execut ion contro l le r.

When a task comes to a processing step, the exe

cution contro l le r al locates a free procedure server

to the task . I t then sends a request to the proce

dure server to execute the particu lar p rocedure
and dism isses the AST. If no procedure server is
free , the exec u t ion control ler puts the request

on a wa i t i ng l ist and d is misses the AST. When a

2 1

Transact ion Processing, Databases, and Fault-tolerant Systems

procedure server becomes free, the execution con

trol ler checks the wa i t l ist and al locates the proce

dure server to the next task, if any, on the wa i t l ist.

Procedure servers are created and deleted by

the execution control ler. Procedure servers are a

col lection of user-written procedures that perform
computation and provide database or fi le accesses
for t he appl icat ion . The procedures are wri t ten in

standard languages and use no special services. The
ACMS system creates a t ransfe r vector from the

server defin i t ion. This transfer vecror is l inked into

the server image. With this vector, the ACMS system

code can receive incoming messages and translate
them into calls to the procedure.

A procedure server is specified with init ial ization
and termi nation procedures, which are routines

suppl ied by the user. The ACMS monitor cal ls these
procedures whenever a procedure server is created

and deleted. The i n i t ial ization procedure opens
files and performs database bind operat ions. The

terminat ion p rocedure does clean-up work, such
as clos ing fi les prior to process ex i t .

The ACMS architecture addresses the problem
areas d iscussed in the On- l ine Execution Environ
ment section in several ways.

Resource Use Because procedure se. vers are al lo

cated on l y for the time required to execute a pro

cess i ng step, the servers are ava i lable for other
use whi l e a terminal user types in data for the

form. Thus, the system can execute efficiently with

fewe r procedure servers than active terminal
users. Improvement ga ins in resource use can vary,

depending on the application. Our debit and cred i t

benchmark experiments wi th the ACMS monitor
and the Rdb/VMS relat ional database system ind i

cated that the most improvement occurs with one
p rocedure server for every one or two t ransactions
p e r second (TPS). These benchmarks equate to
I p rocedure serve r for every lO to 20 active termi
nal users.

The use of p rocedure servers and the mu l t i
threaded character of the execution control ler and

the command process a llow the architecture to

reduce the number of processes and, therefore, the

number of resources needed . The optimal solution

for resource use wou ld consist of one large mu lt i

threaded process that p erformed al l process i ng.

However, we chose to trade off some resource use
in the architecture in favor of other gains.

• Ease of use - Mult i threaded applications are

general ly more d ifficult to code than s ingle-

22

threaded appl icat ions. For this reason, p roce

d ure server subrout ines in the ACMS system

can be wri t ten in a standard fashion by using

standard cal ls to Rdb/VMS and the VMS system.

• Error isolat ion - In one large mult i threaded

p rocess, the threads are not comp letely pro

tected within the process. An aprl icat ion logic

error i n one thread can corrupt data in a thread

that is executing for a d i fferent user. A severe

e rror in one thread could potent ia l ly bring

clown the entire application. The mult i threaded

processes in the ACMS archi tecture (i . e . , the

execution control ler and command p rocess)

are provided by D igita l . Because no appl ica

tion code executes d i rectly in t hese p rocesses,

we can guarantee that no appl ication coding

error can affect them. Procedure servers are

single- threaded . Therefore, an application logic

error in a procedur e server is isolated to affect

o n ly the task that is execut i ng i n the p roce

dure server.

Start-up Costs The run-t ime environment is basi

cal ly "static," which means that the start-up costs

(i .e . , system resources and elapsed t ime) are

inc urred i nfrequent ly (i . e . , at system and appl i

cation start-up t ime). A t imesharing user who is

running many d ifferent applications causes image

activations and rundowns by swi tching among

images. Because the terminal user in the ACMS

system is separated from the applicat ions pro

cesses, the p rocess of swi tching appl icat ions

involves only changing message destinat ions and

incurs m inimal overhead .

Contention The database accesses in the ACMS

environment are channeled through a relat ively

few, but heavi ly used, number of p rocesses. The

typical VMS t imesharing environment uses a l arge

number of l ight l y used p rocesses. By reducing

the number of processes that access the database,

the contention for locks is reduced.

Processing Location Because the ACMS monitor

is a mult iprocess architecture, the command pro

cess and forms process i ng can be clone close to the

terminal user on smal l , inexpens ive machines. This

method takes advantage of the i nexpens ive pro

cessing power ava i lable on these smal ler machines

while the rest of the appl icat ion execu tes on a

larger VA-'<cluster system.

VI>!. .i No. I Winter !')')! Digital Technical journal

DECintact On-line Execution

Although the specific components of the DECintact
monitor vary from those of the ACMS monitor, the
basic architecture is very simi lar. Figure 2 shows the
appl ication configured locally to t he front end. The
run- time archi tecture consists of three types of
DECintact system processes - termi nal manager/
d ispatcher, DECforms servers, server m anager -
and, typical ly, one o r m o re application processes.
When forms processing is d istributed , the same
application is configured as shown in Figure 3.

The D ECintact moni tor can run i n m ul t iple
copies on any one VA)(node. Each copy can be an
i ndependent run-time environment; or i t can share
data and resources, such as user security profiles
and menu defi n i t ions, wi th other copies on the
same system. Thus, i ndependent development,
test i ng, and production e nvironments can reside
on the same node.

In the DECintact system, t he terminal m anager/
d ispatcher process (one per copy) is responsible
for the fol lowing:

• Displaying DECintact forms

• Coordinating DECforms forms d isplay

• Interact ing with local appl ications

• Communicating, through DECnet, with remote
DECintact copies

• Mainta i n i ng securi ty authorization, i ncludi ng
the dynamic generation of user-specific menus

KEY

D
D

TERMINAL MANAGER/

DISPATCHER

DECI NTACT

PROCESSES

APP LICATION

PROCESSES

Digital's Transaction Processing Monitors

Applications designated i n the local menu data
base as remote applications cause the front-end
terminal manager/d ispatcher process to communi
cate with the cooperating back-end terminal
manager/dispatcher process through a task-to-task
DECnet l ink. (In terms of the DECdta architecture,
the ter m inal m anage r/dispatcher implements the
functions of presentation manager, request initia
tor, and request manager for direct requests.)'

When a user selects the remote task, that user's
request is sent to the back end and is treated by the
application as a local request. The terminal man
ager/dispatcher p rocess is started automatically as
part of a copy start-up and is mult ithreaded.
Therefore, one such p rocess can hand le all the ter
m i nal u sers for a particular DECintact copy.

When the termi nal user selects a menu task, one
of the fol lowing actions occurs, depending on
whether the task is local or remote and whether it
is single- or mult i threaded.

If the application is local and single-threaded, a
VMS p rocess may be created that activates the
appli cat ion i mage associated with this task. The
term i n a l manager/d ispatcher, upon start up, may
create a user-specified number of appl ication s hell
VMS p rocesses to activate subsequent appl icat ion
images. I f such a s hel l exists when the user selects
a task, this p rocess is used to run the app l icat ion
i mage. Each user who selects a given menu entry
receives an ind ividual VMS p rocess and i mage.

If the app l ication is local and mult ithreaded, the

terminal manager/dispatcher first determines

MULTITHREADED

APPLICATION

DATABASE

SERVERS

USER DATABASES

Figure 2 Basic Run-time Architecture of the DEC intact Monitor

Digital Technical journal Vol. j .Vo. I Winter 1991 23

Transaction Processing, Databases, and Fault-tolerant Systems

- - - - - - - - - - - - - - - - - �

FRONT-END NODE
������� - - - - - - - - - - - ,
I
I
I
I
I
I

TERMINAL MANAGER/ 1--.---t--+1
DISPATCHER

TERMINAL MANAGER/

DISPATCHER

'--- - - - - - - - - - - - - - - - - _ I

KEY

D
D

DECI NTACT
PROCESSES

APPLICATION
PROCESSES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

MULTITHREADED

APPLICATION

I I : USER DATABASES I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ j

Figure 3 DECintact Basic Architecture with Distributed Forms Processing

whether this task has al ready been activated by pre

vious users. If the task has not been activated and
a shell is not avai I able, the terminal manager/

dispatcher creates a VMS process for the appl ica
tion and act ivates the image. If the task is al ready
activated, the term inal manager/dispatcher con
nects the user to the active task. The user becomes

another thread of execution within the image .
Mult i threaded appl icat ions handle many simul ta
neous users within the context of one VMS p rocess
and image .

Remote appl icat ions, whether si ngle- or m u lti
threaded, route the menu task selection to a remote
terminal manager/d ispatcher p rocess. On receipt
of the request, the remote ter m inal manager/

d ispatcher processes the selection local ly by using

the same procedures as described above.
Local DECintact forms interaction is hand led i n

the fol lowing manner b y the local terminal man
ager/dispatcher. The appl ication's cal l to d isplay a
for m sends a request to the terminal manager. The

terminal manager locates t he form in its database
of active forms, d isplays the form on the user's ter
m inal, and returns control to the application when

24

the user has entered a l l data in the form. If the
appl ication is remote, form i nformat ion is sent
between cooperating local and remote term inal
manager processes; the interface is transparent to

the appl ication.

In add it ion to support ing DECintact forms, the
DECintact monitor also supports appl ications that

u s e DECforms as their presentat ion service. The
implementation of this support fol lows the same

cl ient/se rver model used by the ACMS system's
support for DECforms and shares much of the
underly ing run - t i me interprocess communicat ion
code used by the ACMS moni tor. Funct ional ly, the
two implementations of DECforms support are also
s i m i la r to the ACMS m o n i tor. Both implemen

tations offer t ransparent support for d istributed

DECforms processi ng, automat ic forms cach i ng

(i .e . , p ropagation of updated DECforms in a distrib
u ted environment) , and DECforms session cachi ng

for increased performance.

The DECintact monitor supports application
level , s ingle- and mult i threaded environments. The
DECintact monitor's threading package allows appli
cation program m e rs to use standard languages

Vol. .) No. I Wi11ter 1991 Digital Technical journal

supported by the VMS system to write m u l t i

threaded r rocesses. App l icat ions declare them
selves as e i ther s ingle- or mult i t hreac.leu . With t he

exception of the declaration, t he re is l i t t le differ
ence between the way an on- l ine mult i threaded

application and its s ingle-threaded counterpart
must be coded . For on- l ine appl icat ions, thread

creation, deletion, and management are automatic .

New threads are created when a term i nal user
selects the mult i threaded application and a re

deleted when the user leaves the appl ication.

In a si ngle- threaded application, the fol lowing

occurs:

• Each user receives an ind ividual VMS process and

image context (e.g. , 200 users, 200 processes) .

• Al l terminal and fi le l/0 is synchronous.

• The appl ication image normally ex its when the

appl ication work is completed.

In a mult i threaded on- l ine application, the fol
lowing occurs :

• One VMS process/image can hand le many simul

taneous users .

• All terminal and fi le 1/0 is asynchronous.

• New threads are created automatical ly when

new users are connected to the p rocess.

• The appl icat ion image does not exit when a l l

currently al located threads have comrleted exe

cution but remains for use by new on-l ine users.

For each thread in a mult i threaded application

image, the DECintact system ma inta i ns thread con
text and state i nformation. Each l/0 request is
issued asynchronously. Immed iately after contro l
is returnec.l, but before the l/0 request completes,

the DECintact system saves the currently execut ing
t hread's context and schedules another thread to

execute. When the thread 's 1/0 completion AST is
del ivered, the thread's context is restored , and the
t hread is i nserted on an i nternal ly m a inta ined l ist

of threads el igible for execut ion.
A thread's context consists of the fol lowing:

• An internal ly m a i n tained thread block conta i n

ing state information

• The stack

• Standard DECintact work spaces that a re a l lo
cated to each t hread and that m a inta i n terminal

and fi le management context

Digital Technical journal Vol. J No. I Winter I'J'JI

Digital's Transaction Processing Monitors

• Local storage (e .g . , the $LOCAL PSECT i n COBOL
applicat ions) that the appl icat ion has designated
as thread-specific

The PSECT nam i ng convent ion a l lows the
appl icat ion to decide which v ariable storage is
t hread-specific and which is process-global.
Thread-specific storage is u nava i I able to other

threads i n the same process because i t is saved

and restored on each thread switch. Process-global
storage is always ava i lable to a l l t hreads in the

p rocess and can be used when interthread commu
n ication or synchronization is desired.

The use of mult i thread ing i n the DECintact sys
tem is appropriate for h igher vo lume mult iuser
appl ications that perform frequent 1/0. Such appl i

cation usage is typical in t ransaction p rocessing

environments. Because t hreac.J swi tches occur on ly

when l/0 is requested or when locking requests

are issued, this environment may not be recom
mended for appl ications that p erform i nfrequent

1/0 or t hat expect very smal l numbers of concur

rent users, such as end-of-day account ing pro

grams or other batch-oriented processi ng. These
kinds of appl icat ions typical ly choose to declare
themselves as s ingle-threac.Jed .

Al l 1/0 from within a mult i threaded DECintact

appl ication process is asynchronous. Therefore,
the DECintact system provides a cl ient/server i nter
face between mul t i threaded applicat ions and syn
chronous database systems, such as VAX DBMS

(Database Management System) and Rdb/VMS sys

tems . The interface is provided because cal l i ng a

synchronous database operation d irect ly fro m

within a mult i threaded appl ication would stal l the
cal l i ng t hread and a l l other threads u nt i l t he call

completed. Figure 2 shows that a typical on- l ine
DECintact appl icat ion access i ng Rdb/VMS, for

example, is written i n two p ieces:

• A mult i threaded, on- l ine piece (the cl ient), that

hand les forms requests from mult iple users

• A single-threaded, database server piece (a server
i nstance), that performs the actual synchronous

database 1/0

This cl ient/server approach to database access is

functional ly very s imi lar to that of ACMS procedure
servers and offers s i m i lar benefits . Like the ACMS

monitor, the DECintact monitor offers system man

agement faci l it ies to define pools of servers and to

adjust them dynamically at run-t ime i n accordance

with load. S imi lar algorithms are used in both mon
i tors to allocate server i nstances to cl ient threads

25

Transaction Processing, Databases, and Fault-tolerant Systems

ami to start up new instances, as necessary. The

DECintact server code , l ike the ACMS procedure
server code, can define in i t ia lization and termina
t ion procedures to p erform once-only start-up and

shut -down processing. With DECintact transact ion

semantics, which are layered on D ECdtm services,
a c l ient can declare a global transaction that t he
server instance wi l l jo in . The server instance can

also declare its own independent t ransaction or no

t ransaction. (In terms of the DECdta architecture,

this client/server approach implements the func
t ions of a t ransaction server.) ' The p rincipal differ

ence between the DECintact and ACMS approach is

that DECintact clients and servers use a message

based 3GL communications interface to send and

rece ive work requests. Control in the ACMS moni

tor resides in the execution control ler.
As the ACMS monitor does, the DECintact archi

tecture addresses the p roblem areas d iscussed in

the On- l i ne Execution section in several ways.
AJso, as with the ACMS approach, the factors we
chose to trade off al lowed us to achieve better effi

ciency, performance, and ease of use.

Resource Use The D ECintact system's mul t i
threaded methodology economizes o n VMS

resources. Sim ilar to the method used in the ACMS
monitor, the system reduces process creations

and image activations. A major difference between
the ACMS and DECintact architectures is the way

the DECintact monitor implements mult i thread
ing support. The transparent implementation of
threading capabi l it ies means that cod ing mult i

threaded appl icat ions is no more d ifficul t than

coding t radi tional s ingle-threaded applicat ions. As
with any appl ication- level thread ing scheme, how

ever, the respons ibi l i ty for ensuring that a logic
e rror in one thread is isolated to that thread l ies

with the application. The DECintact client/server
faci l i t ies for accessing databases, l ike those used in

the ACMS monitor, can rea l ize simi lar benefits in
process reuse, throughput, and error isolation.

Start-up Costs The DECi ntact archi tecture, l ike

the ACMS archi tecture, d istributes start-up costs
(i .e . , system resources and elapsed t ime) between

two points : the start of the DECintact system, and

the start of appl ications. System start-up can
involve prestart i ng VMS process shel ls (as d is
cussed p reviously) for subsequent appl ication
image activation. On-l ine appl ication start-up is
executed on demand when the first user selects a
particular menu task. Mult i threaded appl icat ions,

26

once started, do not exi t but w a i t for new user

threads as users select the appl ication. Thus, the

IXCintact terminal user can switch between appli
cation images and incur only an inexpens ive

thread creation.

Contention As in the ACMS moni tor, database
accesses in the DECintact cl ient/server environ

ment are channeled through a relatively few, but

heavi ly used , number of processes rather than
through a large number of l ightly u sed processes.
This reduction decreases lock content ion.

Processing Location Forms process ing can be
off- loaded to a front end and brought closer to the

terminal user. Thus s maller, less expensive CPUs
can be used whi le the rest of the appl ication exe
cutes on a l arger back-end machine or cl uster. In

the DECintact monitor, the front end can consist of

forms processing on.ly or a m i x of forms process

ing and applicat ion remote queui ng work.

Off-line Execution

Many transaction process ing appl ications are used
with nontermi nal devices, such as a bar code

reade r or a com municat ions link used for an elec
tronic funds transfer application. Because there is
no human interaction with these appl ications,
they have two requirements that differ from the

requirements of interactive appl ications: tasks must

be simple data entries, and the system must handle
fa i l ures transparent ly.

ACMS Offline Execution

The ACMS monitor's goal for off- l ine p rocess ing is
to a l low s imple transaction capture to cont inue

when the appl ication is not ava i lable . A typical
example is the continued capture of data on a man
ufacturing assembly l ine by a MicroVAX system
when t he appl ication is u nava i !able . The ACMS
monitor provides two m echanisms for support
i ng nonterminal devices: queuing agents and user

written agents.
Figure 4 i l lustrates the ACMS queui ng model .

A queuing system is a resource manage r that
processes entries, with priorit ies, in first - in , first

out (FIFO) order. (In terms of DECdta, this is the

queue resource manager.) ' The ACMS queuing faci l

i ty is bui l t upon RMS-indexed fi les. The primary

goal of ACMS queui ng is to p rovide a store
and-forward mechanism to a l low task requests
to be collected for later execut ion . By using

the ACMS$ ENQlJE_TASK service, a user can write

Vol. J Nu I \Vinter /991 Digital Technicaljountal

� - - - - - - - - - - - - - - - - - ,

I NODE B

I
I
I
I
I
I
I

i u----
I USER DATABASES

I

K E Y :

D
D

ACMS

PROCESSES

APPLICATION

PROCESSES

EXECUTION

CONTROLLER

PROCEDURE

SERVERS

1....------r

Figure 4 ACMS Queuing Agents

a process that captures a task request and safely
stores the task on a local d isk queue.

The ACMS moni tor provides a special agent,

cal led the queued task in i t iator (QTI), which takes

a task entry from the queue and subm its it to the

appropriate execution controller. The QTI starts a

DECdtm t ransaction, removes the task entry from

the queue within that t ransaction, i nvokes the

ACMS task, and passes t he transaction ident ifier. On

the DECdta archi tecture, the QTI implements t he
functions of a request manager for queued
requests.)' The task then joins that t ransact ion.

The removal from the queue is atomic with the

commit of the task, and no task entry is lost or
executed twice.

Figure 5 shows the ACMS user-written agent
model for off- l ine p rocessi ng. With the ACMS sys

tem i nterface, users may write their own versions

of the command process. Note that because t hese

agents cannot be safely stored on d isks, this

method is generally not as reliable as using queues.

User-written agents can be used, however, with
DECdtm and the fau l t - to le rant VAXft 3000 system

to produce a reliable front-end system . To do so, a

Digital Tee/mica/ journal Vol. 3 No. I Winter l!.J91

Digital's Transaction Processing Monitors

user writes an agent that captures the i nput for the

task and then starts a DECdtm t ransaction. The

agent uses t he system i nterface services to invoke

the ACMS task and passes the t ransaction identifier

and the input data. When the task call completes,

the agent com mi ts the t ransact ion. If DECdt m

returns a n error o n t h e commit , the agent loops
back to start another t ransaction and to resubm it

the task. If a VA.Xcluster system is used for the appli

cation, this configuration will survive any single

point of fa i lure.

DECintact Offline Execution

The D ECintact monitor provides several faci l i t ies

for appl ications to perform off- l i ne p rocess ing.

These faci l i t ies al low appl ications to

• Interface with and process data from nonterm i

na! devices and asynchronous events

• Control t ransaction capture, store and forward,

interprocess communication, and business work

flow through the DECintact queuing subsystem

Off-line Multithreading Off- l i ne , mult i threaded

DECintact applications are typically used to service

r - 1
I VAXFT 3000

I I I I BARCODE I I R EADERS
I I I I _ _ _ j

r - - - - - - - - - - - - - - - - - - �

I BAC K-END NODE

I
I
I
I
I
I
I
I

EXECUTION

CONTROLLER

I u--- PROCEDURE I SERVERS
I L-----�
I USER DATABASES

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

KEY:

D
D

ACMS

PROCESSES

APPLICATION

PROCESSES

Figure 5 ACMS User-written Agent Model
for Off-line Processing

27

Transaction Processing, Databases, and Fault-tolerant Systems

asynchronous events, such as the a rrival of an

electronic funds t ransfer message or the add i t ion
to the queue of an i tem a lready on a DECin tact
queue . The application programmer expl ici t ly

controls how many threads are created , when they
are created, and which execution path or paths

each thread wi l l fo l low. Off- l ine, m u l t i threaded

appl icat ions are wel l-sui ted to message switching
systems and other aspects of electronic fu nds

transfe r in which each thread may be ded icated to
servicing a d iffe rent kind of event.

DECintact Queues The p rimary goal of the
DECintact queuing subsystem is to support a work

flow m odel of business t ransactions. (In the

D EC :dta architecture, the DECintact queuing sub

system implements the funct ions of a queue
resource manager and request in i t iator for queued

requests.) ' In a typical DECintact application that
rel ies on queuing, the state of the business trans
action may be represented by the queue on which
a particular queue i tem resides at the moment. An
i tem moves from queue to queue as the item 's

process ing state changes, much as a work i tem

moves from desk to desk. The superset of queue
items that reside on queues throughout the app l i
cation at any one t ime represents the state of trans

actions current ly execut ing. Depending on the
number of p rograms that need to process data dur

ing the course of a t ransaction, a queue i tem may

be inserted on several different queues before the

transaction completes. The appl ication also may

wish to cha in together several small t ransactions

within the context of a larger business transact ion.

The DECintact queuing system functions through
out the appl icat ion: from the front end , where
queues col lect and route i ncoming data ; to the

back end , where queues can be integrated with
data fi les in recovery units; and in between, where

different p rograms i n the application can use

queues to share data.
The DEc:intact queuing subsystem consists of a

comprehensive set of cal lable services for the cre
at ion and manipu lation of queues, queue sets, and

queue items. Queue item operat ions performed
within the context of a DECintact t ransaction are

fu l l y atomic along with DECintact fi le operations.
In add i t ion to ove ra ll workflow control, the

DECintact queuing system al lows the fol lowing:

• Deferred process ing - An i tem can be queued
by one process and then removed from the

queue later by another p rocess for process ing .
Deferred processing is usefu l when the vol u me

28

of data entry is concentrated at particular times

of clay; applicat ions can ass ign themselves to
one or more queues and can be not ified when
an item is inserted on the queue.

• Store-and-forward process i ng - \Vhen users at

the front end of the system wri te i tems to local
queues, data entry can be continuous in the
event of back-end system fa i lure or whenever a

program that is needed to process data is tem

porarily unavailable.

• lnterprocess communication - Local ly between

app l i cat ions sharing a node and by means of
the DECintact remote queuing faci l i ty, appl ica
tions can use the queuing system to rei iably

exchange application data between processes

and appl icat ions.

A fundamental difference between ACMS queues
and DECintact queues is that the ACMS system

i nserts tasks onto the queues, and tile DECintact
system inserts data items. In DECi ntact queuing,

each data item conta ins both user-suppl ied data

and a header that inc l udes an item key and other

control information. The header is used by the
queu ing system to control the movement of the

item from queue to queue. Each queue i tem can be

assigned an i tem priority. Items can be removed

from the queue in FIFO order, in F IFO order within
i tem priority, or by d irect access using the item

key. Queues can be stopped and started for inser

tion, removal, or both. Queues can also be red i

rected t ransparently at the system m anagement

i<.:vcl to runn ing applicat ions.

ln the DECintact monitor, alert thresholds can be

specified on a queue-by-queue basis to alert the

system manager when queue levels reach defined
amounts . Indiv idual queue i tems can be held
aga inst removal or released. Queues can be grouped
together into logica l ent i t ies, cal led q ueue sets,
which . look and behave to the appl ication the same

as ind ividual queues. Queue sets have added fac i l i
t ies for broadcast insertion on a l l members of a
queue set and a choice of removing algori thms that

can weight relat ive item- and queue-level priorities

from the queue.
DECintact queues can be automatica l l y d istrib

uted. A t the system management level, a local
queue can be des ignated as remote outbound. That
is to say, items aclclecl to this queue are shipped
t ransparently across the network to a correspond

ing remote inbound queue on t he desti nat ion

node. The t ransfe r is hand led by t he DECintact
queuing system by us ing exact ly-once semantics

Vuf. 3 Nu. f Winter f'J'Jf Digital Tecbnical journal

(i .e . , t he i tem is guaranteed to be sent once and
only once). From the point of view of the appl i

cation that is add i ng or removing i tems from the

queue, remote queues behave exact ly as local

queues behave.

To better understand some of the uses for
DECintact queuing, cons ider a simplified but repre

sentat ive electronic funds transfer example b u i lt
on the DECintact monitor. Figure 6 shows the ele

ments of such an appl ication. In this appl ication,
t ransactions m ight be i n i t iated e i t her locally by

clerks entering data i nto t he system from user-

NODE A

Digital's Transaction Processing Monitors

generated documents or by an off- l ine application

that receives data from another branch or bank.
The transact ions are verified or repa ired by other

clerks in a d iffe rent department of the bank. The
transact ions are then sent to destination banks

over one or more network services.

To implement this application, the developer uses

queues to route, safely store, and synchronize data

as i t progresses through the system, and to priori
t ize data i tems. Data i tems are given priority levels,

based on applicat ion-defined criteria, such as trans

fer amount, dest ination bank, or t ime-to-clos i ng.

,I I II,
TERMINAL MANAGER/

DISPATCHER

g--...._________,

DATA ENTRY

APPLICATION

TERMINAL MANAGER/

DISPATCHER

DATABASE

SERVERS

USER DATABASES

KEY:

D DEC I NTACT

PROCESSES

APPLICATION

PROCESSES

VERIFY AND REPAIR

APPLICATION

,...._----'.--- FEDWIRE

NETWORK

Figure 6 Elements of a DEC intact Electronics Functs Transfer

Digital Teclmical jow·nal Vol. 3 No. I Winter 1991 29

Transact ion Processing, Databases, and Fault-tolerant Systems

As i l lustrated in Figure 6, the terminal manager
controls terminals for the Data Entry and Verify and

Repa ir applications. Clerks enter data from user
generated documents on-l ine as complete messages.

Verification and repair clerks receive these mes

sages as work items from the verify and repair

queue through the Verify and Repair application.
The result of verification is ei ther a validated mes
sage, which is ultimately sent to a destinat ion bank,

or an unverifiable message, which is routed to the

supervisor queue for special hand l ing. After special

hand l ing, the message rejoins the p rocess ing flow
by return ing to the verify and repa ir queue. After

val idation, the messages are i nserted in the

Fedwire Xmt queue and sent over the network to

the Federal Reserve System. The Fedwire Process

application controls the phys ical in te rface to

the commu nication l i ne and implements the

Fedwire protoco l . The validated messages are also
used to u pdate a local database by m eans of

database server programs.

The Fedwire Xmt queue could be defined as a
queue set, which would permit the Fedwire

Process appl ication to remove i tems from the

queue by a number of algorit hms that bias t he

t ransfe r amount by queue and i tem p riori ty.

Simi larly, this queue set cou ld be passively repriori
t ized near the close of the business day. In other

words, the DECintact system adm inistrator could

use the DECintact queue u t i l i ty near the end of the

day to change queue-wide priori t ies and ensure
that i tems with a h igher p riority level in the queue
set wou ld be sent over the Fedwire first, without

changing any application code.

Applicatio1l Ma1lageme1lt

Typical ly, transaction process ing appl ications are

crucial to the business running the app l ications. If
the appl ications cannot perform their functions

rel iabl y or securely, business activity may have to
cease a ltogether or be curta i led, as in the case of an

i nventory control application or electronic funds
p rocess ing application. Therefore, t he appl ica
t ions requ ire addi t ional controls to ensure that the
applicat ions and the access by users to the appli

cations are l imi ted to exact ly what is needed for

t he business.

ACMS Application Management

Of the many features and tools for moni toring and
contro l l i ng the system offered in the AG>IS moni
tor, three areas are most often used .

30

• Contro l l ing and restric t ing term inal user

environments

• Contro l l ing and restrict ing the appl ication

• Abi l i ty to dynamically make changes to the appli

cation without stopping work

In add i t ion to using the VMS user amhorization

fi le (Vi'v!S SYSUAF), the ACMS monitor provides ut i l i
t ies to define which users and terminals have

access to the ACMS system. Contro l led terminals
are term inals defined by one of these ut i l i t ies to be

owned by the ACJVIS monitor. These terminals are

a l located by the ACMS moni tor when the ACM S

system is s tarted . When a user presses the Return
key, the ACMS monitor displays its login prompt.

Un less the user has login access , the VMS system
cannot be accessed. The user's access is restricted

to only those ACMS functions that t he user is per

m i tted to invoke. This restriction prevents a user
from damaging the i ntegrity of data on the system.
The ACMS monitor also a l lows access support for

terminals that are automatical l y logged in to the
ACMS system, such as a term inal on a shop floor.
Such access is useful for u np rivi leged users who
are not accustomed to computers. They can enter

data without understanding the process for log

ging in to t he system .
For appl ication control, t h e ACMS monitor uses a

protected d irectory, ACMS$DIRECTORY, to store the

appl ication defini t ion files. The appl ication autho
rization u t i l ity (AAU) ensures that special authori

zation is required for a user to make changes to an
appl ication.

In the ACMS monitor, the appl ication is a single

point of controL The ACMS/START APPI.ICATION and
ACMS/ST'OP APPLICATION commands cause the exe
cut ion contro l ler for the appl ication to be created
and deleted. An operator can cont rol the t imes
when an appl ication is access ible . For example , an
application can be contro l led to run only on
Fridays or only between certa i n hours. The control

of access times can also be used to restrict access
whi le changes or rep a irs are m ade to the appl ica

t ion . This type of access control is d ifficu l t to

achieve with o n l y the VMS system because the VMS

system does not provide these capabil i t ies.

The execution contro l le r does access-control
l ist checking that is specified for each task. This
mechanism can restrict user access by function.
For examp le , a user could have the privi lege to
make a particular update to a database but not have

access to read or make changes to any other parts

Vol. j No. 1 Winter 199/ Digital Tecb11ical jounwl

of that database. The execution controller achieves
a much finer level of control than do the mecha
nisms of the VMS system or the database system.

DECintact Application Management

The DECintact monitor controls access to the whole
system and to ind ividual t asks by means of a secu
rity subsystem. The subsystem adds transaction
processing-specific features to basic VMS security.

• User security profi les specify the DECintact user
name and password (DECintact users are not
required to have an entry in the VMS SYSUAF
file); levels of security entitlement; incl usive and
exclus ive hours of permissible s ign-on; menu
entries authorized for the user. Only one user
under a given DECintact user name can be signed
on to the DECintact system a t any one t ime on
any one nod e.

• Dedicated terminal security profi les are used, in
conjunction wit h user securi ty profiles, to pro
vide geographic ent itlement.

• CAPTIVE and INITlAL_MENU user attributes
restrict users to a specific menu level of func
t ions and prevent the user from accessing outer
levels .

• User-specific menus are menu entries for which

an explici t authorization has been granted in the
user profile and are the only menu i tems visible
on the menu p resented to terminal users. The
DECintact monitor does include an exception fo r
u sers who have an audi tor privilege. Audi tors
can see all menu functions but must be specifi
cally authorized to execute any single function.

• The subsystem provides the abil i ty to dynami
call y enable or disable specific menu functions.

• Password revalidation is an attribute that can be
associated with a menu function. If set, t he user
must reenter the DECintact user name and pass
word before being allowed to access the function.

The DECintact monitor supports both controlled
or dedicated terminals and term inals assigned LAT

term inal server appl ication ports, as does the ACMS
monitor. These term inals are owned by, and allo
cated to, the DECintact system. When a user types
any character at t hese term inals, a DECintact s ign
on screen is d isplayed, and the user is prevented
from logging in to the VMS system.

Geographic entitlement lim its certain DECintact
terminal-based funct ions to certain term inals or

Digital TecbtJicaljourtJal Vol. 3 No. I WitJter 1991

Digital's Transaction Processing Monitors

even to certain users on certain terminals. The three
elements in geographic ent itlement are as follows:

• The user security profile enables a function to be
accessed by a certa in user.

• The term inal security profile enables a function
to be accessed at a certain te rminal.

• A GEOG attribu te is associated with a menu
entry in the terminal m anager/d ispatcher's
menu database. This attribute, when associated
with a function, demands that there be an appli
cable term inal security p rofile before the func

t ion can be accessed .

Normally, if a function is enabled in a user
p rofile, the user can access the funct ion without
further checks. If t he GEOG attribute is associated
with the functi on, however, t hat funct ion must

be enabled in the user profi le and in the term inal
profile before it can be accessed.

Geographic enti tlement is frequently a require
ment in financial environments which have specific
and rigid security p rotocols. For example, a bank
officer may be authorized to execute certain sensi
tive functions available onl y at dedicated terminals
when the offi cer is signed-in a t the home office.
The same officer may be authorized to execu te
onl y a subset of less sens i tive functions when
signed-in from a branch office. Such sensitive func
t ions can be protected by requ iring that the user

profile and the dedicated terminal profile enable
the function.

Applications and resources are cont rolled
withi n the context of a DECintact copy's run- t ime
and management environment. Multiple copies
can be establ is hed on the same VMS system.
D ifferent groups of users can mainta in a certa in
level of autonomy (e .g . , separate appl icat ions and
data fi les), but all users can also share some or all
funct ions and resources of a given DECintact ver
sion. A typical example of this concept, that is, t he
abil ity t o create multiple DECintact copies for isola
tion and part i t ioning, is the com mon practice of
establishing development, acceptance testing, and
p roduct ion DECintact environments. Managing
applicat ions and resources within a development
environment, for example, can d iffer from manag
ing appl ications and resources within a prod uction
environment with a d ifferent system manager.

Access to menu functions is contro l led by the
INTACT MANAGE DISABLE/ENABLE command. This
command removes or restores specified funct ions

3 1

Transact ion Processing, Databases, and Fault-tolerant Systems

dynamical ly from a l l menus i n the DECintact copy
and d isables or enables their selection by subse
quent users . (Current accessors of the specified
function are al lowed to complete the function.)

The execution of s ingle- and mult i threaded appl i

cations or DECi ntact system components can be

shut down by the INTACT 1Y1Ai'IAGE SHUTDOWN

command. This command issues a m a i l box request
to the appl ication or component, which then ini t i
ates an orderly shutdown. Access to the system by

inclusive and exclusive t ime of day is control led on

a per-user basis through the DECintact security

subsystem. In addi t ion to these com mands and

funct ions, the queuing subsystem is managed by
means of a queue management ut i l i ty This u t i l i ty

creates and deletes queues and queue sets, modi

fies queue and queue set attributes, and performs
al l othe r funct ions necessary for managing the

DECintact queuing subsystem.
In general , the DECintact monitor's security and

application control focuses on the front end by

concentrat i ng access checking at the point of sys

tem sign-in and menu generation. The ACMS system

concentrates more on the back-end parts of the
system by means of VMS access contro l l ists (ACL)

on specified tasks. The ACMS approach is bui l t on

VMS security and system access (the SYSUAF fi lc)
and reflects an environment i n which the VMS sys

tem and t he transaction p rocessing securi ty func

t ions are typical ly performed by t he same system
management agency The DECintact moni tor's sys
tem access is hand led more i ndependently of the

VMS system and reflects an environment in which
t ransaction-process ing-specific security functions

may be performed by a d iffe rent department from

those of the general VMS security system.

Conclusion
The ACMS and DECintact transaction process ing
monitors provide a u n ified set of t ransact ion-pro
cessing-specific services to the appl icat ion envi
ronment. A large functional overlap exists between
the services etch monitor provides. Where the
functions provided by each moni tor are identical
or s imi lar (e .g . , c l ient/server database access and

support for DECforms), the factors that d ist inguish

one from the other are p rimarily a resu lt of the use

of 4GL and .)GL application p rogra m ming styles

and interfaces. Where notable functional d iffer
ences remai n (as in each p roduct's respect ive
queuing or secur i t y systems), the differences are

p rimari ly ones of emphasis rather than func
tional incompatibi l i ty. The set of common features

shared by both moni tors has been growing with
the l atest releases of the ACMS and DECintact

monitors . This external convergence has been fos
tered and made possible by an i nternal conver

gence, which is based on sharing the underlying
code that supports the common features of each

moni tor. As more common features are introduced
and enhanced in the DECtp system, the investment

in appl icat ions bui l t on e i ther moni tor can be
pro tected and the d ist inctive progra m mi ng sty les

of both can be preserved.

Reference

1 . P A . Bernstein , W T. Emberton, and V Trehan,
"DEC:dta - D igital 's D istributed Transaction Pro

cess ing Architecture," Digital Technical journal,
vol . 3, no. 1 (Winter 1991, this issue): 10- 17 .

Vol. 3 No. I Winter 1991 Digital TeciJnical jour11al

William A. Laing
James E. Johnson
Robert V. Landau

Transaction Management
Support in the 1/MS
operating System Kernel

Distributed transaction management support is an enhancement to the VMS oper·

ating system. This support provides services in the VMS operating system for atomic

transactions that may span multtple resource managers, such as those for flat files,

network databases, and relational databases. These transactions may also be distrib

uted across multiple nodes in a network, independent of the communications

mechanisms used by either the application programs or the resource managers.

The Digital distributed transaction manager (DECdtm) services implement an opti

mized variant of the two-phase commit protocol to ensure transaction atomicity.

Additionally, these services take advantage of the unique VAX. cluster capabilities to

greatly reduce the potential for blocking that occurs with the traditional two-phase

commit protocol. These features, now part of the VMS operating system, are readily

available to multiple resource managers and to many applications outside the

traditional transaction processing monitor environment.

Busi nesses are becoming critically dependent on
the ava ilabil i ty and integrity of data stored on com

puter systems. As these businesses expand and
merge, they acquire ever greater amounts of on-l ine
data, often on disparate computer systems and often

in disparate databases. The Digital distributed trans
action manager (DECdtm) services described in
this paper address the problem of integrating data
from mult iple computer systems and multiple
databases whi le mainta ining data integrity under
transaction control.

The DECdtm services are a set of transaction pro
cessing features embedded in the VMS operating
system. These services support d istributed atomic
transactions and implement an optimized variant
of the well-known, two-phase commit protocol.

Design Goals

Our overall design goal was to provide base services
on which higher layers of software could be built .
This software would support reliable and robust
applications, while maintaining data integrity.

Many researchers report that an atomic trans

action is a very powerful abstract ion for bui ld ing
robust applications that consistently update data.' '
Supporting such an abstraction makes i t possible
both to respond to partial fa ilures and to maintain

Digital Tecbntcal]ournal Vol. 3 No. I Winter 1991

data consistency. Moreover, a simplifying abstrac
tion is crucial when one is faced wit h the complex
ity of a d istributed system.

With increas ingly rel iable hardware and the
influx of more general-purpose, fault- tolerant sys

tems, the focus on reliabil i ty has sh ifted from
hardware to software.1 Recent d iscussions indicate
that the key requ irements for build ing systems
with a 100-year mean time between fa i lures may be
(1) software-fault containment, us ing processes,
and (2) software-fau lt masking, using process check

pointing and transactions.'
It was clear that we could use transactions as a

pervasive technique to increase appl ication avai l
ability and data consistency. Further, we saw that
this technique had merit in a general-purpose oper
ating system that supports t ransaction processing,
as well as t imesharing, office automation, and tech
nical computing.

The design of DECdtm services also reflects sev
eral other Digital and VMS design strategies:

• Pervasive availability and reliabil ity. As organi

zations become increasingly dependent on t heir
information systems, the need for all applica
t ions to be universally available and highly reli
able increases. Features that ensure application

33

Transaction Processing, Databases, and Fault-tolerant Systems

ava i labil i ty and data integrity, such as journal ing

and two-phase commit, must be ava i lable to all

applications, and not l im ited to those tradi tion

ally thought of as "transaction processing."

• Operating environment consistency. Embedding

features in the operating system that are required

by a broad range of ut i l i ties ensures consistency

in two areas: first, in the functionali ty across all

layered software products, and, second, in the

i n terface for developers. For i nstance, if several

d istributed database products require the two

phase com m i t p rotoco l , i ncorporati ng the

p rotocol i nto the underlyi ng system al lows

programmers to focus on prov id i ng "va lue

added" features for their products i nstead of

re-creati ng a common rout i ne or protocol.

• Flex ib i l i ty and interoperabi l i ty. Our vision

i ncludes making DECdtm i nterfaces ava i lable to

any developer or customer, al lowing a broad
range of software products to take advantage of

the VMS environment. Future D ECdtm services

are also being des igned to conform to de facto

and i n ternational standards for transaction pro
cess i ng, thereby ensuring that VMS appl ications

can interoperate with applications on other

vendors' systems.

Transaction Manager - Some
Definitions

To grasp the concept of transaction manager, some

basic terms must first be understood :

• Resource manager. A software entity that con

trols both the access and recovery of a resource.

For example, a database manager serves as the

resource manager for a database.

• Transaction. The execut ion of a set of opera

t ions with the properties of atomicity, serial iz
abi l ity, and durabi l i ty on recoverable resources.

• Atomicity. Either all the operations of a trans
action complete, or the transaction has no effect
at all .

• Serializabil ity. Al l operations that executed for

the transaction must appear to execute serial ly,

with respect to every other transaction.

• Durabi l ity. The effects of operat ions that exe

cuted on behalf of the transaction are resi l ient

to fa i lures.

A transaction manager supports the transaction
abstraction by providi ng the fol lowing services:

34

• Demarcation operat ions to start, com m it, and
abort a transaction

• Execution operations for resource m anagers to

declare themselves part of a transaction and for

transaction branch managers to declare the d is

tri but ion of a transaction

• Two-phase commit operations for resource man

agers and other transaction managers to change

the transaction state (to e i ther "preparing" or

" co m m i t t i ng") or to acknowledge receipt of a

request to change state

Benifits of Embedding Transaction
Semantics in the Kernel

Several benefits are achieved by embeddi ng trans

action semantics i n the kernel of the VMS operati ng

system. Briefly, these benefits include consistency,

interoperabi l i ty, and flex i b i l i ty. Embed d i ng trans

action semantics i n the kernel makes a set of

services ava i lable to d ifferent environments and

products in a consistent manner. As a consequence,

interoperab i l i ty between products is encouraged,

as well as i nvestment in the development of "value

added" features . The i nherent flex ib i l i ty a l lows a

programmer to choose a transaction process ing

monitor, such as VAX ACMS, and to access mult iple

databases anywhere in the network. The p rogram
mer may also wri te an appl icat ion that reads a

VAX DBMS CODASYL database, updates an Rdb/VMS

relat ional database, and wri tes report records to

a sequential VAX RMS fi le - all i n a s i ngle trans

action. Because all database and transaction pro

cess ing products use DECdtm services, a fa i lure at

any point i n the transaction causes a l l updates to

be backed out and the fi les to be restored to their

original state .

Two-phase Commit Protocol

D ECdt m services use a n opt i mized variant of t he
technique referred to as two-phase comm i t . The

technique is a member of the class of protocols

known as Atom ic Com m i t Protocols. This class
guarantees two outcomes: first, a s ingle yes or no

decision is reached among a d istributed set of par

t icipants; and, second , this decision is consistent ly

propagated to a ll participants, regard less of sub

sequent mach i ne or communications fa i lures. This

guarantee is used in transaction process i ng to help

achieve the atomicity property of a transaction.

The basic two-phase commit protocol is stra ight

forward and wel l known. It has been the subject of

considerable research and technical l i terature for

Vol. 3 No. 1 Winter 1991 Digital Tec1Jnical]our11al

Transaction Management Suppo1·t in the VMS Operating System Kernel

several years.'·6·'"·" The following section describes
in deta i l this general two-phase commit protocol
for those who wish to have more information on

the subject.

The Basic Two-phase Commit
Protocol

The two-phase commit protocol occurs between
two types of participants: one coordinator and one
or more subordi nates. The coordinator must arrive
at a yes or no decision (typically called the " com
mit decision") and propagate that decision to all
subordinates, regardless of any ensu ing fa i lures.
Conversely, the subordinates must ma inta in cer
t a i n guarantees (as descri bed below) and must
defer to the coordinator for the result of the com
mit decis ion. As the name suggests, two-phase
commit occurs in two d ist inct phases, which the
coordinator drives.

In the first phase, cal led the prepare phase, the
coordinator issues " requests to prepare" to all sub
ordinates. The subordinates then vote, ei ther a "yes
vote" or a "veto." Impl icit in a "yes vote" is the guar
antee that the subordinate wil l neither commit nor
abort the transaction (decide yes or no) without an

explicit order from the coordinator. This guarantee

must be maintained despite any subsequent fa i l
ures and usually requires the subordinate to place
sufficient data on d isk (prior to the "yes vote") to
ensure that the operations can be e ither completed
or backed out.

The second phase, cal led the comm it phase,
begins after the coord inator receives all expected
votes. Based on the subordinate votes, the coor
dinator decides to commit if there are no "veto"
votes; otherwise, i t decides to abort. The coord ina
tor propagates the decision to al l subordi nates as
ei ther an ··order to com mit" or an "order to abort."

SUBORDINATE COORD INA TOR

INCREASING
TIME

j

END TRANS FROM
APPLICATION

REQUEST TO PREPARE

FORCE WRITE
"PREPARE"
RECORD

YES VOTE

� EJ FORCE WRITE
"COMMIT"

COMMIT POINT --.....- RECORD

NOTIFY
APPLICATION

ORDER TO COMMIT

LAZY WRITE
"COMMIT"
RECORD

DONE

-------�
LAZY WRITE F===t
"FORGET" l__.J
RECORD

LAZY WRITE
"FORGET"
RECORD

FigU1·e 1 Simple Two-phase Commit Time Line

Digital Technicaljounwl Vol. 3 No. I \Vinter 1991 35

Transaction Processing, Databases, and Fault-tolerant Systems

Because the coordinator's decision must survive

fa i lures, a record of the decision is usual ly stored

on d isk before the orders are sent to the subordi

nates. When the subordinates complete process

i ng, they send an acknowledgment back to the

coordinator that they are "done." This al lows the

coord inator to recl a i m d isk storage from com

pleted transactions. Figure 1 shows a t ime l ine of

the two-phase comm i t sequence.

A subord inate node may also function as a supe
rior (intermediate) node to fo l low-on subordinates.

In such cases, there is a tree-structured relation

ship between the coordinator and the full set of sub

ordinates. Intermediate nodes must propagate the
messages down the tree and col lect responses back

up the tree. Figure 2 shows a time l ine for a two
phase commit sequence with an intermediate node.

Most of us have had direct contact with the two

phase commit protocol. It occurs in many activities.

Cons ider the typical wedding ceremony as p re

sented below, which is actual ly a very p recise two

phase commit .

SUBORDINATE INTERMEDIATE COORDINATOR

36

INCREASING
TIME

j

FORCE WRITE
"PREPARE"
RECORD

YES VOTE

ORDER TO COMMIT

LAZY WRITE
"COMMIT"
RECORD

END TRANS FROM -
APPLICATION

REQUEST TO PREPARE

-... EJ FORCE WRITE
"PREPARE"

..-- RECORD

YES VOTE

-------- -.... � FORCE WRITE l__..J "COMMIT"
COMMIT POINT - ..-- RECORD
NOTIFY
APPLICATION

ORDER TO COMMIT

LAZY WRITE
"COMMIT"
RECORD

DONE

LAZY WRITE
"FORGET"
RECORD

-... EJ ..--

LAZY WRITE
"FORGET"
RECORD

Figure 2 Three-node Two-phase Commit Time Line

Vol. .3 No. I Winter 1991 Digital Technical journal

Transaction Management Support in the VMS Operating System Kernel

Official:
Bride:

Will you, Mary, take john .
! wil l.

Official:
Groom:

Will you, John, take Mary . . . ?
I wil l .

Official: I now pronounce you man and wife.

The above dialog can be v iewed as a two-phase
commit:

Coord inator:
Participant 1 :

Coordinator:
Participant 2:
Coordinator:

Request to Prepare?
Yes Vote.
Request to Prepare?
Yes Vote.
Commit Decision.
Order to Commit.

The basic two-phase commit protocol is stra ight
forward, survives fa i lures, and produces a s ingle,
consistent yes or no decision. However, this proto
col is rarely used in commercial products. Opt i
mizations are often applied to mi nimize message
exchanges and physical d isk writes. These optimi
zat ions are important particularly to the trans
action process ing market because the market i s
very performance sens itive , and two-phase com
mit occurs after the application is complete. Thus,
two-phase commit is reasonably considered an
added overhead cost. We have endeavored to reduce
the cost in a number of ways, result ing in low
overhead and a scalable protocol embodied i n the
DECdt m services. Some of the optim izations are
described later in another section.

COMMUNICATION
INTERFACE

RESOURCE
MANAGER
REGISTRY

TRANSACTION
COORDI NATOR

RESOURCE
MANAGER
SERVICES

t
USER BRANCH

MANAGEMENT SERVICES
SERVICES

Components of the DECdtm Services

The DECdtm services were developed as three sep
arate components: a t ransaction manager, a log

manager, and a communication manager. Together,
these components p rovide support for d istributed
transaction management. The transaction manager
is the central component. The log manager ser
vices enable the transaction manager to store data
on nonvolatile storage. The communicat ion man
ager provides a location-i ndependent interprocess
communicat ion service used by the transaction
and log managers. Figure 3 shows the relationships
among these components.

The Digital Distributed Transaction
Manager

As the central component of the DECdtm services,
the transaction manager is responsible for the
application i nterface to the DECdtm services. This
sect ion presents t he system services the trans
action manager comprises.

The transaction coord inator is the core of the
transaction manager. It implements the transaction
state machine and knows which resource man
agers and subordinate t ransaction managers are
involved in a t ransaction. The coordinator also con
trols what is writ ten to nonvolat i le storage and
manages the volatile l ist of active transactions.

The user services are routines that implement
the START_TRANSACTION, END_TRANSACTION, and
ABORT_ TRANSACTION transaction system services.

VOLATILE
REGISTRY

LOGGING
INTERFACE

t
I N FORMATION
SERVICES

-

TO REMOTE
DECDTM

TO HARDENED
REGISTRY

EXTERNAL
INTERFACE

Figure 3 Components of the DECdtm Services

Digital Technical journal Vol. 3 No. I Winter 1991 37

Transaction Processing, Databases, and Fault-tolerant Systems

They val idate user parameters, d ispense a t rans
action identifier, pass state trans i t ion requests to
the transaction coord i nator, and return i nforma
t ion about the transaction outcome.

The branch management services support the

creation and demarcation of branches in the d is

tribu ted transact ion tree. New branches are con

structed when subord i nate appl ication programs
are invoked in a d istributed environment. The ser

vices are cal led on to attach an appl ication pro

gram to the transaction, to demarcate the work

done in that appl ication as parr of the transaction,

and finally to return i nformat ion about the trans

act ion outcome.
The resource manager services are rout ines that

provide the interface between the DECdtm services

and the cooperati ng resource managers. This in ter

face a l lows resource managers to declare t hem

selves to the transact ion manager and to register

their i nvolvement in the "voting'' stage of the two

phase comm i t p rocess of a specific transact ion.

Final ly, the i nformation serv ices rou t ines are

the interface that a l lows resource managers to

query and update transaction information stored
by DECdtm services. This information is stored

i n e i ther the volat i le-active transact ion l ist or the

nonvolat i le transaction log. Resource managers

may resolve and poss ibly modify the state of

" in-doubt" transactions through these services.

The Log Manager

The Jog manager provides the transaction manager

with an interface for storing sufficient i nformation

i n nonvolat i le storage to ensure that the outcome

of a transaction can be cons istent ly resolved. This

i nterface is ava i lable to operat ing system compo
nents. The log manager also supports the creat ion,

delet ion, and general management of the trans
action logs used by the transact ion manager. An

add i t ional u t i l i ty enables operators to examine
transaction logs and , i n extreme cases, makes i t
possible t o change the state o f any transact ion.

The Communication Manager

The communication manager provides a command/
response message-pass ing fac i l i ty to the t rans

action manager and the log manager. The i nterface
is specifically des igned to offer high-performance,

low-latency services to operat i ng system com

ponents. The comm and/response, connection
oriented, message-passi ng system al lows clients
to exchange messages. The cl ients may reside on
the same node, within the same cluster, or within

38

a homogeneous VMS wide area network. The com

munication manager also provides highly optimized

local (that is , intranode) and i ntracluster trans

ports. In add i t ion, this service component mul t i
plexes communication l inks across a s ingle, cached

DECnet virtual circuit to improve the performance
of creat i ng and destroying wide area l i nks.

Transaction Processing Model

D igital 's t ransaction processi ng model enta i ls the

cooperation of several dist inct elements for correct

execution of a d istributed transaction. These ele
ments are (1) the appl ication programmer, (2) the

resource m anagers, (3) the i ntegrat ion of the

DECdtm serv ices into the VMS operat i ng system,

(4) transaction trees, and (5) vote-gathering and
the fi nal outcome.

Application Programmer

The application programmer must bracket a series

of operations with START_TRANSACTION and

END_TRANSACTION calls. This bracket i ng demar
cates the un i t of work that the system is to treat as

a s ingle atomic unit . The app l ication programmer

may call the DECdtm services to create the branches
of the d istributed transaction tree.

Resource Managers

Resource managers, such as VAX RMS, VA,'{ Rdb/VMS,

and VAX DBMS, that access recoverable resources

during a transaction i nform the DECdtm services of

their i nvolvement in the transaction. The resource

managers can then participate i n the vot i ng phase

and react appropriately to the decision on the final

outcome of the transaction. Resource managers

must also provide recovery mechanisms to restore

resources they manage to a transact ion-consistent

state in the event of a fa i l ure.

Integration in the Operating System

The DECcl tm services are a basic component of the

VMS operating system. These services are responsi

ble for ma inta i n i ng the overa.l l state of the d istrib
u ted transact ion and for ensuring that sufficient

i nformation is recorded on stable storage . Such

information is essent ial in the event of a fa i lure so
that resource managers can obt a i n a consistent

v iew of the outcome of transactions.

Each VMS node in a network normal ly conta ins
one transaction manager object. This object mai n

ta i ns a l ist of participants i n transactions that are

act ive on the node. This l ist cons ists of resource
managers local to the node and the transaction
manager objects located on other nodes.

Vol. 3 No. I Winter 1991 Digital Technical journal

Transaction Management Support in the VMS Operating System Kernel

Transaction Trees

The node on which the transaction originated (that
is, the node on which the START_TRANSACTION

service was called) may be viewed as the "root" of
a d istributed transact ion tree. The t ransaction
manager object on this node is usually responsible
for coordinat ing the transaction commit phase of
the transaction. The transact ion t ree grows as
appl icat ions call on the branch management ser
vices of the transaction manager object.

The transact ion identifier d ispensed by the
START_TRANSACTION service is an input parameter

to the branch services. This parameter ident ifies
two concerns for the local transact ion manager
object: (1) to which transaction tree the new branch
should be added, and (2) which transaction man

ager object is the immed iate superior in the tree.
Resource managers join specific branches in a

transaction tree by cal l ing the resource manager
services of the local transaction manager object.

Vote-gathering and the Final Outcome

When the "co m m i t" phase of the transaction is
entered (triggered by an appl ication call to
END_TRA.t"\ISACTION), each transact ion manager
object involved in the transaction must gather the
"votes" of the locally registered resource managers
and the subordinate transaction manager objects.

The results are forwarded to the coordinating trans
action manager object.

The coordinating transaction manager object
eventually informs the local ly registered resource
managers and the subordinate transaction manager
objects of the final outcome of the transaction. The
subordinate transaction manager objects, in turn,
propagate this i nformation to local ly registered
resource managers as well as to any subordinate
transaction manager objects.

Protocol Optimizations

The DECd tm services use several previously pub
l ished optimizat ions and extend those opt imiza
t ions with a number that are unique to VAXcluster
systems. In this section we present these general
optimizations, a discussion of VAXcluster consider
at ions, and two VAXcluster-specific optimizations.

General Optimizations

The following sections describe some previously

published optimizations.

Presumed A bort DECdtm services use the " p re
sumed abort" optimizat ion."·" This optimization
states that, if no information can be found for a

Digital Technical journal Vol. 3 No. I Winter 1991

transact ion by the coord i nator, the transact ion
aborts. This removes the need to write an abort

decision to disk and to subsequently acknowledge

the order to abort. In addition, subordinates that
do not mod ify any data during the transaction (that
is, they are "read only"), avoid writing i nformat ion

to disk or participating in the commit phase.

Lazy Commit Log Write The DECdtm services
can act as intermediate nodes in a d istributed trans
action. In this mode, they write a "prepare" record
prior to responding with a "yes vote." They a lso
write a "commit" record upon receipt of an order
to comm it. This latter record is written so that the
coordinator need not be asked about the commit
decision should the intermed iate node fa i l . This
refi nement isolates the intermediate node's recov
ery from communication fa i lures between i t and
the coordinator.

Performance is enhanced when the DECdtm ser

vices write the comm it record on an intermediate
node in a "nonurgent" or " lazy" manner. '" The lazy

wri te buffers the i nformation and waits for an
urgent request to trigger the group commi t t imer
to write the data to disk. Typically, this operation
avoids a d isk write at the intermediate node. The
increase in the length of t ime before the commit
record is written is negligible.

One-phase Commit A key consideration in the
design of the DECdtm services was to incur mini
mal impact on the performance of Digital 's data
base products. We exploited two attributes to
achieve this goal. First, all current users are limited
to non-d istributed transactions (those that involve

only a single subordinate). Second, the rwo-phase
commit protocol requires that all subordinates
respond with a "yes vote" to commi t the trans
action. This al lows a highly optimized path for

single subord inate transactions. Such transactions
require no writes to d isk by the DECdtm services
and execute in one phase . The subordinate is told
that it is the only voting party in the transact ion
and, if it is wil l ing to respond with a "yes vote," i t
should proceed and perform its order t o commit
processing.

VAX cluster Considerations

The optimizat ions l isted above (and others not
described here) provide the DECdtm services

with a compet i t ive two-phase com m i t protocol.
VAXcluster technology, though, offers other
untapped potential. VAXcluster systems offer sev
eral unique features, in part icu lar, the guarantee

39

Transaction Processing, Databases, and Fault-tolerant Systems

aga inst parti t ioning, the d istributed lock manager,
and the abil i ty ro share disk access between CPUs . "

Within a VAXcluster system, use of these unique
features al lows the DECdtm services to avoid a
blocked condit ion which occurs during the short
period of time when a su bord inate node responds
wi th a "yes vote" and communication with its
coord inator is lost. NormaLly, the subord inate is
unable to proceed with that transact ion's commit

unt i l com munications have been restored.
Outs ide a VAXcluster system, the DECdtm ser

vices would i ndeed be blocked. If, however, the
subordi nate and its coordinator are in the same
VAXcluster system, this wil l nor occur. If communi
cation is lost, a subordi nate node knows, as a result
of the guarantee aga inst part i t ioning, that i ts coor

d inator has fa i led.
Because a subordinate node can access the trans

action Jog of the fa i led coordinator, it may imme
diately "host" i ts fa i led coordinator's recovery.
Communications to the hosted coord inator are
quickly restored, and the subordinate node is able
to complete the transaction commit.

VAXcluster-specific Optimizations

Once the blocking potential was removed from
intra-VAXcluster t ransact ions, several add i t ional
protocol optimizations became practical. The
optim izat ions described in this section are dynam
ically enabled if the subordinate and its coordina
tor are both in the same VAXcluster system.

Early Prepare Log Write As mentioned earlier, an
intermediate node must write a "prepare" record
prior to responding with a "yes vote." The pres
ence of th is record in an i ntermed iate node's
log ind icates that the node must get the outcome
of the t ransaction from the coordinator and, thus,
it is subject to blocking. Therefore, the prepare
record is typically wri t ten after all the expected
votes are returned, which adds to com m i t - t ime
latency.

The DECdtm services are free from blocking con
cerns within a VAXclusrer system; the vast majority
of transact ions do commit . This factor p rompted
an optim ization that writes a prepare record while
s imultaneously col lecti ng the subordinate votes.
This reduces commit- t ime latency.

No Commit Log Write The lazy comm i t log write
opti m i zation described above causes the inter

mediate node's commit record to be wri t ten and ,
thus, minim izes the potential for blocking should

the intermediate node fa i l . Note that this is not a
concern for the intra-VAXcluster case. Therefore, no
com mit record is wri tten at the i ntermediate node.

Performance Evaluation

Table 1 describes the message and Jog wri te costs
of the DECdtm services protocol and compares i t
t o the basic two-phase commit protocol, as wel l
a s to the standard presumed abort variant previ
ously described." ''

Ta ble 1 Log ging and Message Cost by Two-phase Commit (2PC) Protocol Variant

Coordi nator Intermediate
Coordi nator Log Write Message Log Write Message

Basic 2PC: 2, 1 forced 2N 2, 2 forced 2
Presumed Abort: 2, 1 forced 2N 2, 2 forced 2
(RO intermediate) 2, 1 forced 1 N 0 1

Normal DECdtm: 2, 1 forced 2N 2, 1 forced 2
(RO in termediate) 2, 1 forced 1 N 0 1

lntracluster: 2, 1 forced 2N 1 , 1 forced* 2
(RO intermediate) 2, 1 forced 1 N 0 1

DECdtm 1 PC: 0

Notes:

Log writes are total writes, forced. The table entry 2,1 forced means that there are two total log writes, one of which is forced. A forced write
must complete before the protocol makes a transition to the next state.

RO means Read Only.

Where a message is l isted as xN, N represents the number of intermediates that fit that category.

• In this i nstance, forced means that the log write is init iated optimistically; thus, it has lower latency.

40 Vol. 3 No. 1 Winter 1991 Digital Technical journal

Transaction Management Support in the VMS Operating System Kernel

Ease-of-use Evaluation

A primary goal in providing transaction processing
prim i t ives within the VMS kernel was to supply
many disparate applications with a stra ightforward
interface to distributed transaction ma nagement.
This contrasts with most commercially ava ilable
systems, where d istribu ted t ransaction manage
ment functional ity is ava i lable only from a trans

action processing moni tor. This latter form restricts
the functional ity to appl icat ions written to exe
cute under t he control of the transaction process
ing monitor, and i t effect ively precludes other
applicat ions from making use of the technology.

from the short t ime it took to make the required
changes. Based on this experience, we expect t hird
party software vendors to rapid ly take advantage of
the DECdtm services as they become available as
part of the standard VMS operating system.

From the ou tset of development, we endeavored
to provide an interface that was suitable fo r as
many applications as possible. We made early ver
sions of the DECdtm services ava ilable within
D igi tal to decrease the " time to market" for soft
ware products that wished to exploi t d istribu ted
t ransact ion process i ng technology. As of]u ly 1990,
at least seven D igital software products have been
mod ified to use the DECdtm services. These
products are VAX Rdb/VMS, VAX DBMS, VAX RMS
)ournali ng , VAX ACMS, DECin tact, VAX RALLY,
and VAX SQL.

To i ncorporate the D ECdt m services into a
recoverable resource manager, t he ex isti ng inter
nal transaction management mod u le with calls

to the DECdt m serv ices must be rep laced. The
resource m anager must also be modified to cor
rect ly respond to the prepare and commit cal lbacks

by the DECdtm services. Furt her, t h e recovery
logic of the resource manager must be mod ified to

obt a i n from t he DECdtm services the state of " i n
doubt" transactions.

Example of DECdtm Usage

The model and pseud ocode shown in Figures 4a
and b i l l ustrate the use of DECdt m services in a
simple example of a d istributed transaction. The
transaction spans two nodes, NOD E_A and NODE_B,
in a VMS network. During the course of the t rans

action, recoverable resources managed by resource
manage rs, RM_A and RM_B, are mod ified. Two
"appl ication" programs, APPL_A and APPL_B, that
run on NODE_A and NODE_B, respect ively, make
normal procedural cal ls to RM_A and RM_B. APPL_A

In general, the modifications to these products
have been relatively minor, as might be i nferred

NODE A I NODEB
- - - - - - - - - - - - - - -

DECDTM

R E SOURCE BRANCH USER
MANAGER SERVICES S E RVICES
SERVICES

+ +

-� ?
-. T

I RM_A I === = = = APPL_A

I

I I

- + - - - - - j _
I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

- � · · · · · · · · J ·
I I

I I

I I

DECDTM

USER BRANCH RESOURCE

SERVICES SERVICES MANAGER
SERVICES

+ +

� �
+ +

. AP PL_B - - - - - � 1 - - - - - - RM_B I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I � - - - - - - - - - - - - - - - - - -
KEY:

I PC CONN ECTION

RPC

-- SYSTEM S E RVICE CALL

RM

APPL

PROC EDURE CALL

RESOURCE MANAGER

APPLICATION

Figure 4a Model Illustrating the Use of DECdtm Services

Digital Technical journal Vtll. 3 No. I Winter 1991 4 1

Transaction Processing, Databases, and Fault-tolerant Systems

P R O G R A M A P P L A

E s t a b l i s h c o m m u n i c a t i o n s w i t h r e m o t e a p p l i c a t i o n

I P C _ L I N K (n o d e = " N O D E _ B " , a p p l i c a t i o n = " A P P L_ B " , l i n k = l i n k _ i d) ;

E x c h a n g e t r a n s a c t i o n m a n a g e r n a m e s

L I B $ G E T J P I (J P I $_ C O M M I T _ D O M A I N , , , m y_ c d) ;
I P C T R A N S C E I V E (l i n k = L i n k _ i d , s e n d_ d a t a = m y_ c d ,

r e c e i v e _ d a t a = y o u r _ c d) ;

S t a r t a t r a n s a c t i o n

$ S T A R T_ T R A N S W (i o s b = s t a t u s , t i d = t i d) ;

M a k e a p r o c e d u r a l c a l l t o R M A t o p e r f o r m a n o p e r a t i o n

R M_ A (t i d , r e q u e s t e d _ o p e r a t i o n) ;

! N o w c r e a t e a t r a n s a c t i o n b r a n c h f o r t h e r e m o t e a p p l i c a t i o n

$ A D D B R A N C H W (i o s b = s t a t u s , t i d = t i d , b r a n c h = b i d ,
c d_ n a m e = y o u r _ c d) ;

A s k A P P L 8 t o d o s o m e t h i n g a s p a r t o f t h i s t r a n s a c t i o n

! P C T R A N S C E I V E (l i n k = l i n k _ i d , s e n d_ d a t a = (t i d , b i d , d a t a) ,
r e c e i v e _d a t a = s t a t u s) ;

A n d e n d t h e t r a n s a c t i o n

$ E N D T R A N S W (i o s b = s t a t u s , t i d = t i d) ;

P R O G R A M A P P L B (l i n k i d)

4 2

E x c h a n g e t r a n s a c t i o n m a n a g e r n a m e s

I P C _ R E C E I V E (l i n k = L i n k _ i d , d a t a = s u p_ c d) ;
L I B $ G E T J P I (J P I $_ C O M M I T_ D O M A I N , , , m y_ c d) ;
I P C _ R E P L Y (L i n k = l i n k _ i d , d a t a = m y _ c d) ;

N o w w e e x e c u t e t r a n s a c t i o n r e q u e s t s

l o o p ;
! P C R E C E I V E (l i n k = l i n k _ i d , d a t a = (t i d , b i d , d a t a)) ;

S t a r t t h e t r a n s a c t i o n b r a n c h c r e a t e d b y A P P L_ A .

$ S T A R T B R A N C H W (i o s b = s t a t u s , t i d = t i d , b r a n c h = b i d ,
c d_ n a m e = s u p_ c d) ;

! M a k e a p r o c e d u r a l c a l l t o R M_ B t o p e r f o r m a n o p e r a t i o n

R M_B (t i d , r e q u e s t e d _ o p e r a t i o n) ;

T e l l A P P L A w e a r e d o n e

I P C R E P L Y (l i n k = l i n k _ i d , d a t a = S S $_ N O R M A L) ;

D e c l a r e t h a t w e a r e f i n i s h e d f o r t h i s t r a n s a c t i o n a n d
w a i t f o r i t t o c o m p l e t e

$ R E A D Y T O C O M M I T W (i o s b = s t a t u s , t i d = t i d) ;
e n d _ l o o p ;

Vol . . 3 No. I Winter 1991 Digital Technical jourrw/

Transaction Management Support in the VMS Operating System Kernel

R O U T I N E R M_A (t i d , r e q u e s t e d _o p e r a t i o n)

I f t h i s i s t h e f i r s t o p e r a t i o n , r e g i s t e r w i t h D E C d t m s e r v i c e s a s a
r e s o u r c e m a n a g e r . A s p a r t o f t h e r e g i s t r a t i o n w e d e c l a r e a n e v e n t
r o u t i n e t h a t w i l l b e c a l l e d d u r i n g t h e v o t i n g p r o c e s s .

i f f i r s t t i m e w e ' v e b e e n c a l l e d t h e n
$ D E C L A R E R M W (i o s b = s t a t u s , n a m e = " R M _ A " , e v t r t n = R M_ A _ E V E N T ,

r m_ i d = r m_ h a n d l e) ;

I n f o r m D E C d t m s e r v i c e s o f o u r i n t e r e s t i n t h i s t r a n s a c t i o n

i f t i d h a s n o t p r e v i o u s l y b e e n s e e n t h e n
$ J O I N R M W (i o s b = s t a t u s , r m _ i d = r m_ h a n d l e , t i d = t i d ,

p a r t _ i d = p a r t i c i p a n t) ;

1 P e r f o r m t h e r e q u e s t e d o p e r a t i o n

D O_O P E R A T I O N (r e q u e s t e d _o p e r a t i o n) ;
R E T U R N

R O U T I N E R M A E V E N T (e v e n t b l o c k)

! S e l e c t a c t i o n f r o m t h e D E C d t m s e r v i c e s e v e n t t y p e

C A S E e v e n t b l o c k . D D T M $ L O P T Y P E F R O M . . . T O . . .

D o " r e q u e s t t o p r e p a r e " p r o c e s s i n g

[D D T M $ K_ P R E P A R E J :
D O P R E P A R E A C T I V I T Y (r e s u l t = s t a t u s , t i d = e v e n t _ t y p e . D D T M $ A_ T I D) ;

D o " o r d e r t o c o m m i t " p r o c e s s i n g

[D D T M $ K _ C O M M I T J :
D O C O M M I T A C T I V I T Y (r e s u l t = s t a t u s , t i d = e v e n t _t y p e . D D T M $ A _ T I D) ;

D o " o r d e r t o a b o r t " p r o c e s s i n g

[D D T M $ K_A B O R T J :
D O A B O R T A C T I V I T Y (r e s u l t = s t a t u s , t i d = e v e n t _ t y p e . D D T M $ A _ T I D) ;

E S A C ;

I n f o r m t h e D E C d t m s e r v i c e s o f t h e f i n a l s t a t u s o f o u r e v e n t
p r o c e s s i n g .

$ F I N I S H R M O P W (i o s b = i o s b , p a r t _ i d = e v e n t _ t y p e . D D T M $ L_ P A R T _ I D ,
r e t s t s = s t a t u s) ;

R E T U R N

Figure 4b Pseudocode Illustrating the Use of DECdtm Services

and APPL_B use an interprocess com munication
mechanism to communicate i nformation across
the network. The DECdtm se rvice cal ls are pre

fi.."Xed with a dollar sign ($).

ROUTINE RM_A_EVENT, is i nvoked by the DECdtm
services during transaction state trans it ions.

The code for the resource managers, RM_A and
RM_B, is identical with respect t o calls for the
DECd t m services. The resource manager rou t i ne ,

Digital Tech nical journal Vol. 3 No. I Winter 1991

Conclusions

The addi t ion of a d istributed transaction manager
to the kernel of the general-purpose VMS operating
system makes d istribu ted transactions ava i lable

43

Transaction Processing, Databases, and Fault-tolerant Systems

to a wide spectrum of appl ications. This des ign

and implementation was accompl ished with com
parat ive ease and with qual i ty performance. In

addi t ion to uti l izing the most commonly described

opt i mizations of the two-phase com m i t protoco l ,

we have used optim izations that explo i t some of

the unique benefits of the VAXcluster system.

Acknowledgments

We wish to gratefu l l y acknowledge the contrib

ut ions of all the transact ion processi ng architects
involved, and in particu lar Vijay Trehan, for del iver

ing to us an understandable and implement

able archi tecture. We also extend our thanks to

Phi l Bernste in for his encouragement and advice,

and to our i n i t ial users, Bill Wright, Peter Spiro,

and Lenny Szubowicz, for the ir pers istence and

good nature .

Final ly, and most i mportant l y, we would l ike

to thank all the DECdt m development engineers

and the others who helped sh ip the product:

Stuart Bay ley, Cathy Foley, Mike Grossmith, Tom

Harding, Tony Hasler, Mark Howel l , Dave Marsh,

Jul ian Pa lmer, Kevin Playford , and Chris Whitaker.

References

I . R . Haskin, Y. Malachi , W Sawdon, and G. Chan,

" Recovery Management in Quicksi lver,'' ACLl-'1
Transactions on Computer Systems, vol. 6,

no. 1 (February 1988).

2. A. Spector et al . , Camelot: A Distributed Trans
action Facility for Mach and the Internet - An
Interim Report (Pi t tsburgh: Carnegie M e l lon

Universi ty, Department of Computer Science,

June 1987).

). W Bruckert, C. Alonso, and J. Melvin , "Verifi

cation of the First Fault - to lerant VA..'{ System,"

Digital Technical journal, vol. 3, no. 1 (Wi nter
1991 , this issue): 79 -85.

4. J. Gray, "A Census of Tandem System Ava i la

bi l i ty between 1985 and 1990," Tandem Techni
cal Report 90.1 , part no. 33579 (January 1990).

5 . P Bernstei n , V Hadzilacos, and N . Goodman,

Concurrency Control and Recovery in Data
base Systems (Readi ng, MA: Add ison-Wesley,

1987).

6. J. Gray, " Notes on Database Operating Systems,"

In Operating Systems: An Advanced Course
(Berl in : Springer-Verlag, 1978).

44

7. B. Lampson , "Atomic Transact ions," In Dis
tributed Systems-Architecture and Imple
mentation: A n Aduanced Course, edi ted by

G. Goos and J . Hartmanis (Ber l in : Springer

Verl ag, 1981) .

8 . C. M ohan, B. Lindsay, and R . Obermarck,

"Transact ion Management in the R* Distributed

Database Management System ," ACM Trans
actions on Computer Systems, vol . 1 1 , no. 4
(December 1986).

9. C. Mohan and B. Lindsay, "Efficient Comm i t
Protocol for the Tree o f Processes Model of

Distributed Transact ions," Proceedings of the
2nd ACM SIGACT/SIGOPS Symposium on Prin
ciples of Distributed Computing (Montreal,

August 1983).

10. D. Duchamp, "Analysis of Transact ion Manage

ment Performance," Proceedings of the Twelfth
ACM Symposium on Operating Systems Prin
ciples (Special issue), vol. 23, no. 5 (December

1989): 177- 190.

1 1 . N. Kronenberg, H . Levy, and W Strecker,
"VAXclusters: A Closely-Coupled Distribu ted

System," AOH Transactions on Computer
Systems, vol . 4, no. 2 (May 1986) .

Vol. 3 No. 1 Winter 1991 Digital Technical journal

Walter H. Kohler
Yun-Ping Hsu

Thomas K. Rogers
Wael H. Bahaa-El-Din

Performance Evaluation
of Transaction Processing
Systems

Performance and price/performance are important attributes to consider when

evaluating a transaction processing system. Two major approaches to performance

evaluation are measurement and modeling TPC Benchmark A is an industry stan

dard benchmark for measuring a transaction processing system s performance and

price/perfmmance. Digital has implemented TPC Benchmark A in a distributed

transaction processing environment. Benchmark measurements were performed

on the VAX 9000 Model 210 and the VAX 4000 Mode/300 systems. Further, a compre

hensive analytical model was developed and customized to model the pe�formance

behavior of TPC Benchmark A on Digital's transaction processing platforms. This
model was validated using measurement results and has proven to be an accurate

petformance prediction tool.

Transaction process ing systems are complex i n

nature a n d are usual l y characterized b y a large

number of interactive termi nals and users, a large

vo lu me of on-li ne data and storage devices, and a

high vol ume of concurrent and shared database

accesses. Transaction processing systems require

layers of software components and hardware

devices to work in concert. Performance and

price/performance are two important attributes

for customers to consider when selecting trans

action processing systems. Performance is impor

tant because transaction processing systems are

frequently used to operate the customer's business

or handle mission-critical tasks. Therefore, a certain

level of throughput and response t ime guarantee

are required from the systems during normal oper

ation. Price/performance is the total system and

main tenance cost in dollars, normal ized by the per

formance metric.

The performance of a transaction p rocessi ng

system is often measured by i ts throughput in trans

actions per second (TPS) that sat isfies a response

t ime constraint . For example, 90 percent of the

transactions must have a response t ime that is less

than 2 seconds. This throughput, qualified by t he

associated response t ime constraint, is cal led the

maximum qualified t hroughput (MQTh). In a trans

action processing environment, the most mean

ingfu l response t ime definit ion is the end-to-end

Digital Tecbllical]ournal Vol . .3 No. I Winter I<J91

response time, i .e . , the response t ime observed by

a user at a terminal. The end-to-end response t ime

represents the time required by a l l components

that compose the transaction processing system.

The two major approaches used for evaluating

transaction processi ng system pe rformance are

measurement and model i ng. The measurement

approach is the most realistic way of evaluating the

performance of a system. Performance measure

ment results from standard benchma rks have been

the most accepted form of performance assess

ment of transaction processing systems. However,

due to the complexity of transaction processing

systems, such measurements are usually very expen

sive, very t ime-consu ming, and difficult to perform.

Model ing uses sim u lation or analyt ical model

i ng techniques. Compared to t he measurement

approach, model ing makes i t easier to produce

results and requires less comput i ng resources.

Performance models are also flex ible. Models can

be used to answer "what-if" types of questions and

to provide insights into the complex pe rformance

behavior of transaction processing systems, which

is difficult (if not impossi ble) to observe in the

measurement environment. Performance models

are widely used in research and engineering com

muni ties to provide valuable analysis of design

alternatives, architecture evaluat ion, and capacity

planni ng. Simpl ifying assumpt ions are usually

4 5

Transaction Processing, Databases, and Fault-tolerant Systems

made in the model ing approach. Therefore, perfor

mance models require val idation, through deta i led

s imulat ion or measurement, before p redict ions

from the models are accepted.

The benchmark can be run in either a local

area network (LAN) or a wide area network (WAN)
configurat ion. The related t hroughput metrics

are tpsA-Local and tpsA-Wide, respectively. The
benchmark specification defines the general appli

cation requirements, database design and scaling

rules, testing and pricing g u ide! ines, fu l l d isclo

sure report requirements, and an audit checklist . '

The following sect ions provide an overview of

the benchmark.

This paper presents Digital's benchmark measure

ment and modeling approaches to t ransact ion

process i ng system performance evaluation . The

paper i ncludes an overview of the current industry

standard transaction processing benchmark, the

TPC Benchmark A, and a descript ion of Digital 's

implementation of the benchmark, i ncluding the

dist inguish ing features of t he implementation and

the benchmark methodology. The performance

measurement resu lts that were achieved by using

the TPC &nchmark A are also presented . F inal ly, a
mult i level analyt ical model of the performance

behavior of transaction p rocess ing systems with

response time constraints is presented and val i

dated aga i nst measurement results.

Application Environment

The TPC Benchmark A workload is patterned after a

simplified banking appl ication. In this model, the

bank cont a i ns one or more branches. Each branch

has 10 tel lers and 100,000 customer accounts. A

transaction occurs when a teller enters a deposit

or a withdrawal for a customer aga i nst an account
at a branch locat ion. Each tel ler enters t ransactions

at an average rate of one every 10 seconds . Figure I

i l lustrates t his s implified banking environment . TPC Benchmark A-An Overview

The TPC Benchmark A simulates a s imple banking

environment and exercises key components of

the system under test (SUT) by us ing a s imple,

update-intensive transaction type. The benchmark

is i ntended to simulate a class of t ransaction p ro

cessing appl ication environments, not t he entire
range of t ransact ion processi ng environments.

Nevertheless, the s ingle transaction type specified

by the TPC &nchmark A standard provides a simple

and repeatable unit of work.

Transaction Logic

The transact ion logic of the TPC Benchmark A

workload can be described in terms of the bank

environment shown in Figure 1. A teller deposits

in or withdraws money from an account, updates

the current cash pos i t ion of t he teller and branch,
and makes an entry of t he transaction in a history
file. The pseudocode shown in Figure 2 represents

the t ransaction.

46

�- - - - - - - - , � - - - - - - - - , �- - - - - - - - ,

I 1 oo,ooo I 1 1 oo,ooo I 1 1 oo.ooo
I ACCOUNTS 1 I ACCOUNTS 1 I ACCOUNTS

I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I 1--+--t-------I -+ . . . �
I I I
I I I
I I I
I I I
1 1 0 1 0 I 1 1 0
I TELLERS TELLERS I I TELLERS

I I I
I I I
: CUSTOMERS I : CUSTOMERS : : CUSTOMERS

L - - - - - - - � L - - - - - - - � L - - - - - - - �

Figure 1 TPC Benchmark A Banking Environment

Vol. 3 No. 1 Winter 1991 Digital Technical journal

Performance Evaluation of Transaction Processing Systems

R e a d 1 0 0 b y t e s i n c l u d i n g B i d , T i d , A i d , D e l t a f r o m t e r m i n a l

B E G I N T R A N S A C T I O N

U p d a t e A c c o u n t w h e r e A c c o u n t _ I D = A i d :

R e a d A c c o u n t _B a l a n c e f r o m A c c o u n t

S e t A c c o u n t B a l a n c e = A c c o u n t B a l a n c e + D e l t a

W r i t e A c c o u n t B a l a n c e t o A c c o u n t

W r i t e t o H i s t o r y :

A i d , T i d , B i d , D e l t a , T i m e_ S t a m p

U p d a t e T e l l e r w h e r e T e l l e r _ I D = T i d :

S e t T e l l e r B a l a n c e = T e l l e r B a l a n c e + D e l t a

W r i t e T e l l e r B a l a n c e t o T e l l e r

U p d a t e B r a n c h w h e r e B r a n c h _ I D = B i d :

S e t B r a n c h B a l a n c e = B r a n c h _B a l a n c e + D e l t a

W r i t e B r a n c h _ B a l a n c e t o B r a n c h

C O M M I T T R A N S A C T I O N

W r i t e 2 0 0 b y t e s i n c l u d i n g A i d , T i d , D e l t a , A c c o u n t B a l a n c e

t o t e r m i n a l

Figure 2 TPC Benchmark A Transaction Pseudocode

Terminal Communication

For each transaction, the originating terminal is
required to transmit data to, and receive data from,
t he system under test. The data sent to the system
under test must consist of at least 100 alphanumeric

data bytes, organized as at least four d ist inct fields:
Account_ID, Tel ler_ID, Branch_I D, and Delta. The

Branch_ID identifies the branch where the tel ler is
located . The Delta is t he amount to be credited to,

or debited from, the specified account. The data
received from the system under test consists of at
least 200 data bytes, organized as the above four
input fields and the Account_Balance that results
from the successful comm it operation of the
transaction.

Implementation Constraints

The TPC Benchmark A imposes several condi tions
on the test environment.

• The transaction process ing system must support
atomicity, consistency, isolation, and durabi l i ty
(ACI D) properties during the test.

• The tested system must preserve the effects of

com m i t ted t ransact ions and ensure database
consistency after recovering from

- The fa i lure of a single durable medium that
conta ins datatbase or recovery log data

- The crash and reboot of the system

- The loss of al l or part of memory

Digital Tecbt�ical]ou rttal Vol. 3 No. I \Vittter 1991

• Eighty-five percent of the accounts processed
by a teller must belong to the home branch (the
one to which the teller belongs). Fifteen percent
of the accounts processed by a teller must be
owned by a remote branch (one to which the

tel ler does not belong). Accounts must be uni
formly d istributed and randomly selected.

Database Design

The database consists of four individual files/tables:
Branch, Tel le r, Account, and History, as defined in
Table 1 . The overal l size of the database is deter
mined by the throughput capacity of the system.
Ten tellers, each entering transactions at an aver

age rate of one transaction every 10 seconds, gener
ate what is defined as a one-TPS load . Therefore,
each teller contributes one-tenth (1/10) TPS. The
history area must be large enough to store the his
tory records generated during 90 eight-hour days
of operation at the published system TPS capacity.
For a system that has a processing capacity of
x TPS, the database is sized as shown in Table 2.

For example, to process 20 TPS, a system must
use a database that includes 20 branch records, 200
teller records, and 2,000,000 account records.
Because each teUer uses a term inal, the price of the
system must i nclude 200 term inals. A test that
results in a higher TPS rate is invalid un less the size
of the database and the number of termi nals are
increased proportionately.

47

Transaction Processing, Databases, and Fault-tolerant Systems

Table 1 Database Enti ties

Record Bytes Fields Required Description

Branch 1 00 Branch_ID
Branch_ Balance

Identifies the branch across the range of branches
Contains the branch's current cash balance

Teller 1 00 Teller_ID
Branch_ID
Teller _Balance

Identifies the teller across the range of tel lers
Identifies the branch where the teller is located
Contains the teller's current cash balance

Account 1 00 Account_ID
Branch_ID
Account_Balance

Ident ifies the customer account uniquely for the entire database
Identifies the branch where the account is held
Contains the accoun t's current cash balance

History 50 Account_ID
Teller_ID
Branch_ID
Amount

Identifies the account updated by the transaction
Identifies the teller i nvolved in the transact ion
Identifies the branch associated with the teller
Contains the amount of credi t or debit (delta) specified by
the transact ion

Time_ Stamp Contai ns the date and t ime taken between the BEGIN
TRANSACTION and CO M M IT TRANSACTION statements

Table 2 Database Sizi ng

Number of Records

1 X X

1 0 X X

1 QQ,QQQ X X

2,592,000 X X

Benchmark Metrics

Record Type

Branch records

Tel ler records

Account records

H istory records

TPC Benchmark A uses two basic metrics:

• Transactions per second (TPS) - throughput in

TPS, subject to a response time constra i n t, i .e . ,

the MQTh, is measured whi le t he system is in a

susta i nable steady-state cond ition.

• Price p e r TPS (K$/TPS) - the purchase p rice

and five-year m a intenance costs associated with

one TPS.

Transactions per Second To guarantee that the

tested system provides fast response to on-l ine

users, t he TPC Benchmark A imposes a sp ecific

response t ime constra i n t on the benchmark.

Ninety p e rcent of al l transactions must have a

response t ime of less t han two seconds. The TPC

Benchmark A standard defines transaction response

t ime as the t ime i nterval between the trans m ission

from the termi nal o f t he first byte of the input mes

sage to the system under test to t he arrival at the

term inal o f the last byte of the outpu t message

from t he system under test.

The reported TPS is the total nu mber o f com m i t

ted t ransactions that both started and completed

48

during an i nterval of steady-state performance,

d ivided b y the elapsed t ime of the i nterval . The

steady-state measurement i nterval must be at least

15 m inures, and 90 percent of t he transactions

must have a response time of less t han 2 seco nds.

Price per TPS The K$/TPS price/performance

metric measures the total system p rice in t hou

sands of dollars, normal i zed by the TPS rating of

the system. The p riced system i n cludes a l l t he

components that a custo mer requires to achieve

the reported perform ance level and is defi ned by

the TPC Benchmark A stand ard as t he

• Price of the system under test, including all hard

ware, software , and ma i ntenance for five years.

• Price of the terminals and n etwork compo

nents, and their mai ntenance for five years.

• Price of on-l ine storage for 90 days of h istory

records at the publ ished TPS rate, which amounts

to 2,592,000 records per TPS. A storage medium

is considered to be on- l ine if any record can be

accessed randomly within one second.

• Price of addi tional p roducts required for the

operation, adm i n istration, or m a i n tenance of

the priced systems.

• Price of p ro d ucts required for application

development.

Al l hardware and software used in the tested

configuration must be announced and general l y

ava i lable to customers.

ViJI. 3 No. I Winter /991 Digital Technical journal

Performance Evaluation of Transaction Processing Systems

TPC Benchmark A Implementation

Digital 's implementation of the TPC Benchmark A
goes beyond the m i n im u m requirements of the

TPC Benchmark A standard and uses D igital's d is

tribu ted approach to transaction processi ng.' For
example, D igital 's TPC Benchmark A implementa

t ion i ncludes forms management and transaction

processing monitor software that are required i n

most real t ransact ion processing environments

but are not required by the benchmark. The fol
lowing sections provide an overview of D igital 's
approach and implementation.

Transaction Processing Software
Environment

The three basic funct ions of a general-purpose
transaction process ing system are the user inter

face (forms processing), applications management,

and database management. D igital has developed a
d istributed transaction architecture (DECdta) to

define how the major functions are parti t ioned
and supported by components that fit together to
form a complete transaction processing system.

Table 3 shows the software components in a typical

D igital transaction processing environment.

Distributed Transaction Processing
Approach

D igital transaction processi ng systems can be d is

tributed by placing one or more of the basic system

functions (i .e. , user i nterface, application m anager,

BACK-END
PROCESSORS 1---AP_P_L_IC

_
A_T_IO_N

_
-1

TP MONITOR
DATABASE

OPERATING SYSTEM
COMMUNICATIONS

Table 3 Transact ion Processing Software
Components

Component

Operat ing system

Communications

Database

TP monitor

Forms

Appl ication

Example

VMS

LAT, DECnet

VAX RdbNMS

VAX ACMS, DECintact

DECforms

COBOL

database manager) on separate computers. In the

s implest for m of a d istributed transaction process

i ng system, the user interface component runs on a

front-end processor, and the appl ication and data

base components run on a back-end processor. The

configuration allows terminal and forms manage

ment to be performed at a remote location, whereas
the application is p rocessed at a central locat ion.

The D igital transaction processing software com

ponents are separable because their clearly defined
interfaces can be layered transparently onto a net

work. How these components may be part i tioned

in the D igital d istributed transaction processing

environment is i l lustrated in Figure 3.

TPC Benchmark A Test Environment

The D igital TPC Benchmark A tests are imple

mented in a d istributed transaction processing

environment using the transaction processing

FORMS
TP MONITOR

OPERATING SYSTEM
COMMUNICATIONS

DATABASE
STORAGE

FRONT-END
PROCESSORS

Figure 3 Distributed Transaction Processing Environment

Digital Technical journal Vol. 3 No. I Winter 1')91 49

Transaction Processing, Databases, and Fault-tolerant Systems

software components shown in F igure 3. The user
i n terface component runs on one or more front

end p rocessors, whereas the appl ication and

database components run on one or more back

end p rocessors. Transactions are entered from

teller termi nals , which communicate with the
front -end p rocessors. The front-end processors

then communicate with the back-end p rocessors
to invoke the appl ication servers and perform

database operations. The communicat ions can
take p lace over e i ther a local area or a wide area

network. However, to s implify testing, the TPC

Benchmark A standard al lows sponsors to use
remote ter minal emulators (RTEs) rather than real

term i nals . Therefore, the TPC Benchmark A tests
base performance and price/performance resu lts

on two dist inct ly configured systems, the target
system and the test system.

The target system is the configuration of hard

ware and software components that customers can

use to perform transaction p rocess ing. With the

Digital distributed transaction processing approach,

user terminals i n i t iate transactions and com muni

cate with the front-end processors. Front-end pro
cessors communicate wi th a back-end processor
using the DECnet protocol .

The test system is the configurat ion of com

ponents used i n the l ab t o measure the perfor

mance of the target system. The test system uses

RTEs, rather than user termi nals , to generate the

workload and measure response t ime . (Note: In

previously publ ished reports, based on D igita l 's

Debi tCredi t benchmark, the RTE emulated front

end p rocessors. In the TPC Benchmark A standard,
the RTE emulates only the user t e r minals .) The
RTE component

• Emulates the behavior of terminal users accord

ing to the benchmark specification (e . g . , think

t ime, transact ion parameters)

• Emulates term inal devices (e.g . , conversion

and mult iplexi ng i n to the local area t ransport
[LAT) protocol used by the OECserver terminal
servers)

• Records transaction messages and resp onse
t imes (e.g . , the starting and end i ng t imes of

ind iv idual transactions from each emulated
termi nal device)

Figure 4 depicts the test system configuration in
the LAN environment with one back-end proces
sor, mult iple front-end p rocessors, and m u l tiple

remote terminal emulators.

so

DATABASE

Figure 4 Test System Configuration

TPC Benchmark A Results

We now present the resu lts of two TPC Benchmark

A tests based on audited benchmark experiments
performed on the VAX 9000 Model 210 and the
VAX 4000 Model 300 systems.' ' These two systems
are representative of Digital 's large and small t rans

act ion p rocess ing platforms. The benchmark was
implemented us ing the VAX ACMS transaction p ro

cess i ng m o n itor, the VAX Rdb/YMS relational data

base m anagement system, and the DECforms forms

management system on the VMS operat ing system.
Tables 4 and 5 show the back-end system configu
rations for the VAX 9000 Model 210 and the VAX 4000

Model 300 systems, respect ively. Table 6 shows the

system configuration of the front-end systems.

Measurement Results

The maximum qualified throughput and response

t ime resu lts for the TPC Benchmark A are summa

rized in Table 7 for t he V�'\ 9000 Model 210 and the

VAX 4000 Model 300 systems. Both configurations

have sufficient m a in memory and disk drives such

Table 4 VAX 9000 Model 21 0 Back-end
System Configuration

Component Product Quantity

Processor VAX 9000 Model 21 0 1

Memory 256 MB

Tape d rive TA81 1

Disk contro ller KDM70 2

Disks RA92 1 6

Operat ing system VMS 5.4

Communicat ions DECnet-VMS Phase IV

TP monitor VAX ACMS V3. 1

Dictionary VAX COD/Plus V4.1

Appl ication VAX COBOL V4.2

Database system VAX RdbNMS V4.0

Forms management DECforms V1 .2

Vol. 3 No. I Winter I<)') I Digital Tech11ical jour11al

Performance Evaluation of Transaction Processing Systems

Table 5 VAX 4000 Model 300 Back-end
System Configuration

Component Product Quantity

Processor VAX 4000 Model 300

Memory 64 M B

Tape drive TK70 1

Disk control ler DSSI 3

Disks RF31 1 8

Operat i ng system VMS 5.4

Communications DECnet-VMS Phase IV

TP monitor VAX ACMS V3.1

Dict ionary VAX CDD/Pius V4.1

Application VAX COBOL V4.2

Database system VAX RdbNMS V4.0

Forms management DECforms V1 .2

that the processors are effectively ut i l ized with no

other bottleneck. Both systems achieved well over

90 percent CPU ut i l ization at the maximum quali
fied throughput under the response t ime constra int.
In addi t ion to the throughput and response t ime,

the TPC Benchmark A specification requires that

several other data points and graphs be reported.

We demonstrate these data and graphs by using

the VAX 9000 Model 210 TPC Benchmark A results.

• Response Time in Relat ionship to TPS. Figure 5
shows the n i n et ieth p e rcent i le and average

2.0
(j)
0
z

1 .8
0 1 .6 (.)
IJ.J
� 1 .4
IJ.J
::; 1 .2
f=
IJ.J 1 .0
rn
z 0.8 0
c._
rn 0.6 IJ.J
a: 0.4

20 30 40 50 60 70 80
TRANSACTIONS PER SECOND

KEY:

t::,---{:,. AVERAGE

..__..... 90TH PERCENTILE

Figure 5 VAX 9000 Response Time in
Relationship to Transactions
per Second

response t imes at 100 percent and approximately

80 percent and 50 percent of the maximum
qual ified t hroughput . The mean t ransaction

response t ime sti l l grows l inearly with the

transaction rate up to the 70 TPS level, but the

n inetieth percent i le response t ime curve has

started to rise quickly due to the high CPU ut i

l ization and random arrival of transactions.

• Response Time Frequency Distribution. Figure 6

is a graphical representation of the transaction

Table 6 Front-end Run-time System Configuration

Component Product Quantity

Processor VAXserver 31 00 Model 1 0 1 0 for VAX 9000 back-end

Memory

Disks

Operat ing system

Communications

TP monitor

Forms management

RZ23 (1 04 MB)

VMS 5.3
VMS 5.4

DECnet-VMS Phase IV

VAX ACMS V3.1

DECforms V1 .2

Table 7 Maximum Qua l ified Throughput

3 for VAX 4000 back-end

1 6 M B for VAX 9000 back-end
1 2 M B for VAX 4000 back-end

1 6

1 for VAX 9000 back-end
1 for VAX 4000 back-end

1

Response Time (seconds)
System TPS (tpsA-Local) Average 90 percent Maximum

VAX 9000 Model 21 0

VAX 4000 Model 300

69.4

21 .6

Digital Technical journal Vol. 3 No. I Winter 1991

1 .20

1 .39

1 .74

1 .99

5.82

4.81

51

Transaction Processing, Databases, and Fault-tolerant Systems

(/) 1 4000
z
0
f=
0
<{
(/)
z
<{
[[
f-

1 2000

1 0000

8000

� 6000

ffi 4000
CD

3 2000
z

I+- AVERAGE = 1 . 20 SECONDS

I I I I I I
I
I

I I
I
I

90TH PERCENTILE = 1 . 74 SECONDS

MAXIMUM = 5.82 SECONDS

0 2 4 6 8 1 0 12 14 16 18 20

RESPONSE TIME (SECONDS)

Figure 6 VAX 9000 Response Time Frequency

Distribution

response t ime d istri bu t ion. The average, n ine

t ieth percen t i le, and m ax imum transaction

response ti mes are also marked on the graph.

• Transactions per Second over Time. The resul ts

shown in Figure 7 demons trate the sust a i nable

max imum qualified throughpu t . The one-m inute

ru nning average transaction throughputs dur

ing the warm-up and data col lection periods of

the experiment are plotted o n the graph. This

graph shows that the throughput was steady

during the period of data col lection.

• Ave rage Response Time over Time. The results

s hown in Figure 8 demonstrate the sust a i n

able average response t i m e in t h e experiment.

The one-mi n u te running average t ransaction

response times d ur i ng the war m-up and data

co l lection periods of the experiment are plotted

on the graph. This graph sh ows that t he mean

response tim e was steady duri ng the period of

data col lection.

Comprehensive Analytical Model

Model i ng techn iques can be used as a supplement

or an alternat ive to the measurement approach.

The performance behavior of complex transact ion

process i ng systems can be characterized by a set of

parameters, a set of performance metrics, and t he

relationships among t hem. These parameters can

be used to describe the d ifferent resources ava i l

able in the system, the database operations of trans

actions, and the workload that the transactio n

process ing system u ndergoes. To completely rep

resent such a system, t he si ze of t he parameter set

wo uld be too huge to manage. An analyt ical model

simplifies, through abstraction, the complex behav

ior of a system into a manageable set of parameters

'52

0
z
0
0 w
(/)
[[
w
0..
(/)
z
0
f=
0
<{ (/)
z
<{
[[
f-

80

70

60

50

40

30

20

1 0

0 5 1 0

I- DATA COLLECTION -!

I I N TERVAL I
I I
I I
I I

1 5 20 25 3 0

T I M E (MI NUTES)

Figure 7 VAX 9000 Tra nsactions per Second

ouer Time

35

and p o l icies. Such a model, after proper validation,

can be a powerful tool for many types of analysis,

as well as a perfo rmance pred iction tooL Results
can be obta i ned q u ickly fo r any combination of

parameters.

A comp rehensive analyt ical model of the perfor

mance behavior of transaction process i ng systems

with a response t ime constra i n t was developed

and val idated aga i nst measurement results. This

model is hierarch ical and flex ible for extension.

The fo l lowi ng sections describe the basic con

stru ction of the model and the customization made

to model the execu tion of TPC Benchmark A on

D igital 's transaction process i ng systems. The

model can also be used to study d ifferent tra ns

action process i ng workloads in addit ion to t he

TPC Benchmark A .

Response Time Components

The m a i n metric used in t he model is the maxi

mum qual ified throughput u nder a response t ime

constra int. The response t ime constra i n t is in t he

w
::;;;

6

f= 5
w
'Q UJ 4
O o
o.. z � 8 3
[[w

lli � 2
<{
[[
w
>
<{

0

Figure S

I_ DATA COLLECTION -!
I INTERVAL I
i I
I I

1 0 1 5 20 25 30

TIME (M I NUTES)

VA..-Y 9000 Auerage Response Time

ouer Titne

35

Vol. 3 No. I Winter 1991 Digital Tee/m ica/ journal

Performance Evaluation of Transaction Processing Systems

form of "x percent of transact ion response times

are less thany seconds."
To evaluate throughput under such response t ime

constra i nt, the distribution of transaction response

times is determined by first decomposing the trans

action response t ime into nonoverlapping and

independent components. The d istribution of each
component is then evaluated . Finally, the overal l

transact ion response t ime d istribut ion is derived

from the mathemat ical convolut ion of the compo

nent response t ime distributions.

The logical flow of a transaction i n a fron t-end

and back-end d istributed transact ion processing

system that is used to implement TPC Benchmark A

is depicted i n Figure 9. The response time of a

transaction consists of three bas ic components:

front-end p rocessing, back-end process ing, and
communication delays.

• Front-end processing usually incl udes terminal
1/0 processing, forms/presentation services, and

communication with the back-end systems. I n

the benchmark experiments, n o disk 1/0 act ivity

was i nvolved during the front-end p rocessing.

• Back-end processing i ncludes the execut ion of

application, database access, concurrency control,

and transaction commit processing. The back-end
processing usual ly involves a high degree of con

currency and many disk 1/0 activities.

• Communication delays primarily include the

communications between t he user terminal and

the front-end node, and the front-end and back

end i nteractions.

(Note: These response t ime components do not
overlap with each other.)

Within the back-end system, the transaction
response t ime is further decomposed into two

addi t ional components, CPU delays and non-CPU,
nonoverlappi ng delays. CPU delays i nclude both

the CPU service and the CPU wait ing t imes of trans

actions. Non-CPU, nonoverlapping delays i nclude:

• Logging delays, which i nclude the t ime for trans

action log wri tes and comm i t protocol delays

• Database 1/0 delays, which include both wait ing

and service t imes for accessi ng storage devices

• Other delays, which include delays that result

from concurrency control (e.g. , wait ing for locks)

and wait ing for messages

Two-level Approach

The model is configured i n a two-level h ierarchy, a

high level and a detai led level. The use of a hierarchy

allows a complex and deta i led model that considers

many components and involves many parameters

to be constructed easi ly. Because of the hierarchical

approach, the model also provides flex i b i l i ty for

modifications and extensions, and validation of

separate submodels.

The high-level model assumes the decomposition

of transaction response t imes, as described in the

Response Time Components section, and models

the behavior of the transact ion processing system
by an open queuing system, as shown in Figure 10.

The queuing system consists of servers and delay

centers, which are connected in a queuing net

work with the fol lowing assumptions:

• The front-end processing does not i nvolve any

d isk 1/0 operation, and the load on the front
end systems is equally balanced.

.................. 1

I COMMUNICATION I FRONT-END I COMMUNICATION I BACK-END

END-TO-END --�
RESPONSE
TIME

Figure 9 Response Time Components

Digital Technical journal Vol. 3 No. I Winter 1991 53

Transaction Processing, Databases, and Fault-tolerant Systems

COMMUN ICATION

COMMUNICATION

{8 � : DELAYS r
FRONT-END
PROCESSORS

BACK-END 8 PROCESSORS 1/0 DEVELOPMENT

1/0 DEVELOPMENT

Figure 10 High-level Queuing Model for a Transaction Processing System

• The back-end is a shared-memory multiprocessor

system with symmetrical loads on al l processors
(or it can be simply a u niprocessor).

• No intratransact ion paral lel ism exists within

i nd ividual transaction execution.

• No m u tual dependency exists between trans

action response t ime components.

• Transaction arrivals tO the processors have a

Poisson distribu tion.

These assumptions correspond to Digital's TPC Bench

mark A testing methodology and implementation.
The front-end CPU is modeled as an M/M/1 queu

ing center, and the back-end CPU is modeled as an
M/M/m queui ng center. The transactions' CPU t imes

on the front-end and back-end systems are assumed
to be exponentially d istributed (coefficient of vari

ation equal tO 1) due to the s ingle type of trans

action i n the benchmark. (Note: An approximatio n
o f M/G/m can b e used to consider a coefficient of
variat ion other than 1 for the back-end transact ion
CPU service time, especially in the m u lt iprocessor
case when the bus is highly ut i l ized .) Database 1/0,
logging 1/0, and other delays are modeled as delay
centers, with appropriate delay distribut ions. For
the model of the TPC Benchmark A workJoad, the
database I/0, journal i ng 1/0, and other communi

cation and synchro n ization delays are combined

into one delay center, cal led the LOD delay center,
which is represented by a 2-Erlang d istribution.
The major input parameters for this h igh-level
model are the

• Number of front-end systems and the front-end
CPU service t ime per transaction

54

• Number of CPUs in the back-end system and the
back-end CPU service time per transact ion

• Sum of the back-end database 1/0 response t ime,
journa l ing 1/0 response time, and other delay

t imes (i .e . , the mean for the LOD delay center's
2-Erlang d istribution)

• Response t ime constra int (in the form of x per
centi le less thany seconds)

The m a i n result from the high- level model is the
MQTh. This high-level model presents a global pic
ture of the performance behavior and manifests the
relationship between the most important parameters

of t he transaction process i ng system and MQTh.

Some of the input parameters i n the h igh-level
model are dynamic. The CPU service t ime of a trans

act ion may vary with the throughput or number of
processors, and the database 1/0 or other delays

may also depend on the throughput. A good exam

ple of a dynamic model is a t ightly coupled mult i
processor system, with one bus interconnect ing
the processors and with a shared common memory
(e .g. , a VAX 6000 Model 440 system). Such a system

would run a s i ngle copy of the symmetrical mult i
process ing operat i ng system (e.g . , the VMS system).

The average CPU service t ime of t ransactions is
affected by both hardware and software factors,

such as

• Hardware contention that results from conflict

ing accesses to the shared bus and main memory
and that causes processor speed degradation
and longer CPU service t ime .

• Processor synchronization overhead that results
from the serial izat ion of accesses to shared data

Vol. 3 No. 1 Winter 1991 Digital Technical jounml

Performance Evaluation of Transaction Processing Systems

structures. Many operat ing systems use spin
locks as the mechanism for p rocessor- level
synchronization, and t he processor spins (i .e . ,
busy-wa i ts) in the case of a confl ict . I n the
model, the busy-wai t overhead is considered
to be part of t he t ransaction code path, and

such contention elongates the transaction CPU
service t ime.

Four deta i led-level submodels are u sed to
account for the dynamic behavior of these param
eters: CPU-cache-bus-memory, busy-wait, I/0 group,
and LOD.

The CPU-cache-bus-memory submodel cons ists
of many low-level parameters associated with the

workload, processor, cache, bus, and memory com
ponents of mult iprocessor systems. I t models these

components by using a m ixed queui ng network
model that consists of both open and closed cha ins,
as shown in Figure 1 1 . The most important output

from this submodel is t he average number of CPU
clock cycles per instruction.

The busy-wa i t submodel models t he spi n-lock

content ion that is associated with t he two major
VMS spin-locks, called SCHED and IOLOCK8. This sub
model d ivides the state of a processor into several
nonover lapping states and uses probabi l i ty analy
sis to derive busy-wait t ime. The I/O grouping sub
model models the group commit and group write

mechanisms of the VAX Rdb/VMS relational database
management system. This submodel affects the path
length of transaction because of the amorti zat ion

of disk I/O processi ng among grouped trans
actions. The LOD submodel considers t he d isk I/0
t imes and the lock contention of cert a i n crit ical
resources in the VAX Rdb/VMS system.

Integrating the Two Levels of the Model

The two levels of the model are integrated by using
an iterative procedure outl ined i n Figure 12. I t
starts at the deta i led-level submodels, with in i t ial

values for the MQTh, the transaction path length,
the busy-wa i t overhead, and the CPU u t i l ization.

By applying the in i t ial ized parameters to the

submodels, t he values of these parameters are
refined and input to the high-level model. The out

put parameters from t he high-level model are t hen
fed back to the deta i led-level submodels, and this

i terative process continues u ntil the MQTh con
verges. In most cases, convergence is reached
within a few i terations.

Model Predictions

The back-end portion of the model was validated

aga inst measurement results from numerous

DebitCredit benchmarks (Digital 's precursor of the
TPC Benchmark A) on many VAX computers wit h

the VMS operating system, runni ng VAX ACMS and
VAX Rdb/VMS software.1 With sufficient deta i led

parameters ava i l able (such as transaction instruc
t ion count, i nstruction cycle t ime, bus/memory

access t ime, cache hit ratio), the model correctly
estimated the MQTh and many intermediate results

for several mult iprocessor VAX systems. The model
was t hen extended to i nclude the front-end sys

tems. In this section, we discuss applying this com
plete end-to-end model to the TPC Benchmark A

on two VAX platforms, the VAX 9000 Model 210 and

the VAX 4000 Model 300 systems, and then compare

the results. The benchmark environment and imple
mentation are described in t he TPC Benchmark A

Implementation section of this paper.

MEMORY 1 SINK �- �
I I I I � - - - - - - - - - - - - I

KEY:
CLOSED CHAIN
OPEN CHAIN

SOURCE

I
I
I
I
I

- r - - - - - 1
I
I
I
I
I
I
I

MEMORY m 1
I

I I
• _ !

Figure 11 CPU-cache-bus-memory Submodel

Digital Tecb,tcaljournal Vol. 3 No. I Winter 1991 55

Transaction Processing, Databases, and Fault-tolerant Systems

I N I T I A L I Z E :
T x n P L , M Q T h , B u s y W a i t P L , C p u U t i l i z a t i o n ;

L O D - s u b m o d e l (i n p u t : M Q T h ; o u t p u t : L O D)
R E P E A T

I / 0 - G r o u p i n g - s u b m o d e l (i n p u t : M Q T h ; o u t p u t : D i o P e r T x n , T x n P L) ;
R E P E A T

R E P E A T
B u s y W a i t - s u b m o d e l (i n p u t : T x n P L , B u s y W a i t P L , C p u U t i l i z a t i o n ,

D i o P e r T x n ; o u t p u t : B u s y W a i t P L) ;
U N T I L (B u s y W a i t P L c o n v e r g e s) ;
C P U - C a c h e - B u s - M e m o r y - s u b m o d e l (i n p u t : T x n P L , B u s y W a i t P L ;

o u t p u t : C p u U t i l i z a t i o n , A v g C p u S v c T i m e) ;
U N T I L (C p u U t i L i z a t i o n c o n v e r g e s) ;
R E P E A T

M Q T h - m o d e l (i n p u t : A v g C p u S v c T i m e , L O D ; o u t p u t : M Q T h , C p u U t i l i z a t i o n) ;
L O D - s u b m o d e l (i n p u t : M Q T h ; o u t p u t : L O D) ;

U N T I L (M Q T h c o n v e r g e s) ;
U N T I L (M Q T h c o n v e r g e s) ;

Figure 12 Tbe Iterative Procedure to Integrating Submodels

Because both the VAX 9000 Model 210 and the
VAX 4000 Model 300 systems are uniprocessor

systems, there is no other processor contending

for the processor-memory interconnect and mem
ory subsystems. Such content ion effects can there

fore be ignored w hen model i ng a uniprocessor

system. The transaction process ing performance

predict ion for the VAX 9000 Model 210 system is a
successful example of the application of our analyt

ical model.
We needed an accurate estimate of TPC Bench

mark A p erformance on the VAX 9000 Model 210

system before a VAX 9000 system was actua l ly ava i l

able for rest ing . The high-level (MQTh) model was

used with estimated values for the input parame

ters, LOD and transaction CPU service t ime . The
est imated LOD was based on previous measure

ment observations from the VAX 6000 systems. The
other parameter, back-end transact ion CPU service
t ime, was derived from t he

• Timing information of the VAX 9000 CPU

• Memory access t ime and cache m iss penalty of

the VA.'\ 9000 CPU

• Prediction of cache hi t ratio of the VAX 9000 sys
tem under the TPC Benchmark A workload

• Transaction path length of the TPC Benchmark A

imp lementation

• Instruction profi le of the TPC Benchmark A
implementation

56

The high- level model predicted a range of MQTh,
with a high end of 70 TPS and w i t h a strong proba
bi l ity that the high-end performance was achievable.

Addi t ional pred ictions were made later, when an
early prototype version of the VAX 9000 Model 210

system was ava i lable for test ing. A variant of the

Debi tCredi t benchmark, much smal ler i n scale and

easier to run, was performed on the p rototype
system, with the emphasis on measuring the CPU

performance in a transaction process ing environ
ment. The resu lt was used to extrapolate the CPU
service t ime of the TPC Benchmark A t ransactions
on the VAX 9000 Model 210 system and to refine

the early estimate. The results of these m od ifica

t ions supported the previous h igh-end estimate of
performance of 70 TPS and refined the low-end
performance to be 62 TPS. The final , audited TPC
Benchmark A measurement resul t of the VAX 9000

Model 210 system showed 69.4 TPS, which closely
matches the pred iction . Tab le 8 compares the
results fro m benchmark m easurement and the

analytical model outputs.

Table 8 Measurement Compared to Model
Predictions

System

VAX 9000 Model 21 0

VAX 4000 Model 300

Measured
MOTh

69.4

21 .5

Modeled
MOTh

70.0

20.8

Vol. 3 No. I If/inter 1991 Digital Technical Journal

The VAX 4000 Model 300 TPC Benchmark A
results were also used as a validation case. VAX 4000

Model 300 systems use the same CMOS chip as
the VAX 6000 Model 400 series and the same
28-nanosecond (ns) CPU cycle time. However, i n
the VAX 4000 series, the CPU-memory interconnect
is not the XMI bus but a d irect primary memory

i nterconnect. This d irect memory interconnect
results in fast main memory access. The processor,
cache, and main memory subsystems are otherwise
the same as in the VAX 6000 Model 400 systems.
Therefore, the detai led-level model and associated
parameters for the VAX 6000 Model 410 system
can be used by ignoring the bus access time. The
TPC Benchmark A measurement results are within
7 percent of the model p rediction, which means
that our assumption on the memory access time
is acceptable.

Conclusion

Performance is one of the most important attrib
utes in evaluating a transaction processing system.
However, because of the complex nature of trans
action processing systems, a universal assessment
of transaction processing system performance is
impossible. The performance of a transaction pro
cessing system is workload dependent, configura
tion dependent, and implementation dependent. A
standard benchmark, l ike TPC Benchmark A, is a
step toward a fai r comparison of transaction pro
cessing performance by different vendors. But it is
only one transaction processing benchmark that
represents a l imited class of applications. When
evaluating transaction processing systems perfor
mance, a good understanding of the targeted appli
cation environment and requirements is essential
before using any ava i lable benchmark result .
Addit ional benchmarks that represent a broader
range of commercial appl ications are expected to

be standardized by the Transaction Processing
Performance Counci l (TPC) in the com ing years.

Performance model ing is an attractive alterna
tive to benchmark measurement because i t i s less
expens ive to perform and results can be compiled
more quickly. Modeling provides more ins ight
into the behavior of system components that are
treated as black boxes in most measurement exper
iments. Modeling helps system designers to better
understand performance issues and to d iscover
existing or potential performance problems. Model

i ng also provides solut ions for improving perfor
mance by model ing d ifferent tuning or des ign
alternatives. The analytical model presented in this

Digital Technical journal Vol. 3 No. I Winter 1991

Performance Evaluation of Transaction Processing Systems

paper was val idated and used extensively in many
engineering performance studies. The model also
helped the benchmark process to size the hard
ware during preparat ion (e .g . , the number of
RTE and front-end systems needed , the s ize of
the database) and to provide an MQTh goal as a
sanity check and a tun i ng a id . The model could
be extended to represent addit ional d istributed
configurations, such as shared-d isk and "shared

nothing" back-end transaction processing systems,
and could be applied to additional transaction pro
cessing workloads.

Acknowledgments

The Digital TPC Benchmark A implementation and
measurements are the resu lt of work by many
individuals within Digital. The authors would l ike
especial ly to thank Jim McKenzie, Martha Ryan,
Hwan Shen, and Bob Tanski for their work in the
TPC Benchmark A measurement experiments; and
Per Gyl lstrom and Rabah Mediouni for their con
tribut ions to the analytical model and val idation.

References

1 . Transaction Processing Performance Council,

TPC Benchmark A Standard Specification

(Menlo Park, CA: Waterside Associates,
November 1989).

2. Transaction Processing Systems Handbook

(Maynard: D igital Equipment Corporat ion,
Order No. EC-H0650-57, 1990).

3. TPC Benchmark: A Report for the VAX 9000

Model 2 1 0 System (Maynard : Digital Equipment
Corporation, Order No. EC-N0302-57, 1990).

4. TPC Benchmark: A Report for the VAX 4000

Model 300 System (Maynard: Digital Equipment
Corporation, Order No. EC-N0301-57, 1990).

5. L. Wright, W Kohler, and W Zahavi, "The Digital
DebitCredit Benchmark: Methodology and
Results ," Proceedings of the International

Conference on Management and Performance

Evaluation of Computer Systems (December
1989): 84-92.

57

William Z Zahavi I Frances A Habib
Ket�neth J. Omahen 1

Tools and Techniques for Preliminary
Sizing of Transaction Processing
Applications

Sizing transaction processing systems correctly is a difficult task. By nature, trans

action processing applications are not predefined and can vmy from tbe simple to

tbe complex. Sizing during the analysis and design stages of tbe application devel

opment cycle is particularly difficult. It is impossible to measure tbe resource

requirements of an application which is not yet written or fully implemented. To

make sizing easier and more accurate in these stages, a sizing methodology was

developed that uses measurements from systems on which industry-standard

benchmarks have been run and employs standard systems analysis techniques for

acquiring sizing information. These metrics are tben used to predict future trans

action resource usage.

The transact ion p rocessi ng marketplace is d o m i

nated by commercial applications that support

busi nesses. These applications contribute substan

tially to the success or fa i l ure of a business, based on

the level of performance the app l icat ion p rovides .

I n transaction processing, poor appl ication perfor

mance can translate d irectly i nto lost revenues.

The risk of implementing a transaction process

i ng appl ication that performs poorly can be m i n i

m i zed by estimating the proper system s i ze in the

early stages of applicat ion development. Sizing esti

mation includes configuring the correct processor

and proper number of d is k drives and controllers,

given the characteristics of the appl icat ion.

The sizing of transaction process i ng systems is

a d iffi c u l t activity. Un l ike t rad i t ional app l ications

such as m a i l , transact ion processing applications

are not predefi ned. Each customer's requirement
is d ifferent and can vary from s i mple to complex.

Therefore, Digital chose to develop a sizing method

o logy that specifical l y meets the un ique require

ments of transact ion p rocessing c u stomers. The

goa l of t his effort was t o develop s i z i ng tools and

techn iques t ha t would help marke t i ng groups and

design consu ltants i n rec o m m en d i ng configura

tions that meet the needs of D igi t a l 's custo mers.

D igital 's methodology evolved over t i me, as experi

ence was gain ed in dea l i ng with the real-world

problems of transaction process i ng system sizi ng.

58

The development of Digital's transaction process

ing sizing methodology was guided by several prin

ciples. The first principle is that t he methodology

sho u ld rely heav i l y u p o n measurements o f Digital

system s ru n n i ng i nd ustry-standard t ransaction

p rocess i ng benchmarks. These benchmarks pro

vide val uable data t hat quan t ifies t he p e rfo rmance

characteristics of d ifferent hardware and software

configurations.

The second pri nciple is t h a t systems analysis

methodologies should be used to provide a frame

work fo r acquiring s i zi ng information. In partic
u lar, a m u lt i level view of a customer's business

is adopted. This approach recogni zes t hat a man

ager's view of the business functions performed by

an organ i zation is d i fferent from a computer ana

lyst's view of the transaction process ing activity.

The s i zi ng methodology should accommodate both

these views.

The third principle is that the s izing methodol

ogy must employ tools and teclmiques appropriate

to the current stage of the customer's application

des ign cycle. Early i n t he effort t o develop a sizing

methodology, i t was found that a d istinction m ust

be made between prel im inary s izi ng and si zing

during later stages of the application development

cycle. Preli m i nary sizi n g occurs duri ng the analysis

and design stages of the application development

cycl e. Therefore, no app l i cation software exists

Vol. 3 No. I Wi11ter 1991 Digital Technical journal

Tools and Techniques for Preliminary Sizing of Transaction Processing Applications

which can be measured. Application software does
exist in later stages of the application development
cycle, and its measurement provides valuable input
for more precise s izing act ivities.

For example, if a customer is in the analysis or
design stages of the application development cycle,
i t is u n likely that est imates can be obtained for
such quantit ies as paging rates or memory usage.
However, if the application is fully implemented,
then tools such as the VA.Xcluster Performance
Advisor (VPA) and the DECcp capacity plan n i ng
products can be used for sizing. These tools pro
vide fac i l i t ies for measuring and analyz ing data
from a running system and for using the data as
input to queuing models.

The term sizing, as used in this paper, refers to

preliminary s izing. The paper presents the metrics
and algebra used in the s iz ing process for DECtp
applications. It also describes the individuaJ tools
developed as part of Digital's transaction process
ing s izi ng effort.

Sizing

The purpose of sizing tools is twofold. First, s izing

tools are used to select the appropriate system
components and to estimate the performance level
of the system i n terms of device util ization and
user response times. Second, sizing tools bridge the

gap between business specialists and computer
specialists. This bridge translates the business units
into functions that are performed on t he system
and, ultimately, into units of work that can be quan
t ified and measured in terms of system resources.

In the sections that follow, a number of important
elements of the s izi ng methodology are described.
The first of these elements is the platform on which
the transaction process ing system wi l l be imple
mented. It is assumed that the customer will supply
general preferences for the software and hardware
configuration as part of the platform informat ion.
The Levels of Business Metrics section detai ls the
multi level approach used to describe the work per
formed by the business. The Sizing Metrics and
Sizing Formu las sect ions describe the algorithms
that use platform and business metric i nformation
to perform transaction processing system sizi ng .

Platforms

The term platform is used i n transaction process

ing sizing methodology to encompass general cus
tomer preferences for the hardware and software
upon which the transaction processing application
wi l l run.

Digital Technical journal Vol. 3 Nu. I Wirzter 1991

The hardware platform specifies the des ired
topology or processing style. For example, process

ing style i ncludes a centralized configuration and a
front-end and back-end configuration as valid alter
natives. The hardware platform may also include
specific hardware components within the process
ing style. (In this paper, the term processor refers
to the overall process ing unit , which may be com
posed of multiple CPUs.)

The software platform identifies the set of layered
products to be used by the transaction processing
appl ication, with each software product identified
by i ts name and version number. In the transaction
process i ng environment, a software platform is

composed of the transaction processing moni tor,
forms manager, database management system, appli

cation language, and operating system.
D ifferent combi nations of software platforms

may be configured, depending on the hardware plat
form used. A centralized configuration conta i ns

all the software components on the same system. A
distributed system is comprised of a front -end pro
cessor and a back-end processor; different software
platforms may exist on each processor.

Levels of Business Metrics

The term business metrics refers collect ively to

the various ways to measure the work associated
with a customer's business. In this section, various
levels of business metrics are identified and the
relationship between metrics at d ifferent levels is
described.' As mentioned earl ier, the levels corre

spond to the multi level view of busi ness operation
typically used for systems analysis. The organi
zation or personnel most interested in a metric in
relation to its busi ness operat ion is noted i n the
discussion of each metric.

The decomposit ion of the business application
requirements i nto components that can be counted

and quantified in terms of resource usage requires
that a set of metrics be defined. These met rics
reflect the business activity and the system load.
The business metrics are the foundation for the
development of several transaction processing siz
ing tools and for a consistent algebra that connects
the busi ness units with the computer units.

The busi ness metrics are natural forecasting units,

business funct ions, t ransactions, and the number
of I/Os per transaction. The relationship among
these levels is shown in Figure 1 . In general, a busi

ness may have one or more natural forecasting
units. Each natural forecasting unit may drive one or
more business functions. A busi ness function may

59

Transaction Processing, Databases, and Fault-tolerant Systems

FILES
READS

1/0 ACTIVITY REQUIREMENTS

INSE RTS U P DATE
READS

UPDATE
WAITES

Figure 1 Levels of Business Activity Characterization

have mul tiple transactions, and a si ngle transaction

may be activated by different business funct ions.
Every transaction issues a variety of 1/0 operations
to one or more fi les, which may be phys ically

located on zero, one, or more d isks. This section
discusses the business metrics but does not dis
cuss the physical distribut ion of 1/0s across disks,
which is an implementation-specific item.

A natural forecasting unit is a macrolevel i ndica
tor of business volume. (It is also called a key vol
ume indicator.) A business generally uses a volume
indicator to measure the level of success of the
busi ness. The volume is often measured in t ime
intervals that reflect the busi ness cycle, such as
weekly, monthly, or quarterly. For example, if busi
ness volume indicators were "number of ticket sales
per quarter," or "monthly production of widgets,"
then the correspond ing natural forecasting uni ts
would be " ticket sales" and "widgets." Natural fore
casting u n i ts are used by high-level executives to
track the health of the overall business.

Business functions are a logical unit of work per
formed on behalf of a natural forecasting unit . For
example, within an a irl ine reservation system, a
common business function might be "selling a ir
l ine t ickets." This business function may consist
of multiple interact ions with the computer (e .g. ,
flight i nquiry, customer credit check). The comple

t ion of the sale termi nates the business function,
and "airline t icket" acts as a natural forecasting uni t
for the enterprise sel l ing the t ickets. The measure
ment metric for business funct ions is the num
ber of business function occurrences per hour.
Business functions may be used by midd le-level

60

managers to track the act ivi ty of their departments.
A transaction is an atomic u n i t of work for an

applicat ion, and transaction response time is the
primary performance measure seen by a user. Each
of the interactions ment ioned in the above busi
ness function is a transact ion. The measurement
met ric for a t ransaction is the number of trans
action occurrences per busi ness function . Trans
actions may be used by low-level managers to track
the activity of their groups.

The bulk of commercial applications i nvolves
the maintaining and moving of information. This
information is data that is often stored on perma
nent storage devices such as rotational disks, sol id
state disks, or tapes. An l/0 operation is the process

by which a transact ion accesses that data. The mea
surement metric for the I/O p rofile is the number
of l/0 operations per transaction. 1/0 operations

by each transaction are important to programmers
or system analysts.

In addi tion to i ssu ing 1/0s, each transact ion
requires a certa in amount of CPU t ime to handle
forms processi ng. (Forms processi ng t ime is not
i l lustrated in Figure 1 .) The measurement metric
for forms processing time is the expected number
of fields. The number of i np u t and output fields
per form are important metrics for users of a trans
action processi ng application or programmer/

system analysts.
By collect ing informat ion about a transaction

processing appl icat ion at various levels, high- level
volume indicators are mapped to low-level un i ts
of 1/0 activity. This mappi ng is fundamental to the

transaction processing sizing methodology.

Vol. 3 No. I Win ter 1991 Digital Techt�icaljourtlal

Tools and Techniques for Preliminary Sizing of Transaction Processing Applications

Performance goals play a particularly important
role in the s izing of transaction processing systems.2
The major categories of performance goals com
monly encountered in the transaction processing
marketplace are bounds for

• Device ut i lization(s)

• Average response time for transactions

• Response time quantiles for transactions

For example, a customer might specify a required
processor util ization of less than 70 percent. Such a

constra int reflects the fact that system response
time typically rises dramatically at higher proces
sor ut i lizations. A common performance goal for
response time is to use a transaction 's average
response time and response t ime quanti les. For
example, the proposed system should have an aver
age response t ime of x seconds, with 95 percent
of all responses complet ing in less than or equal
to y seconds, where x is less than y. Transaction
response times are crucial for bus inesses. Poor
response t imes translate d irectly into decreased
productivity and lost revenues.

When a customer generates a formal Request For
Proposal (RFP), the performance goals for the
transaction processing system typical ly are speci
fied in deta i l . The specification of goals makes
it easier to define the performance bounds. For
customers who supply only general performance
goals, it is assumed that the performance goal takes
the form of bounds for device uti l izations.

Overall response time consists of i ncremental

contributions by each major component of the
overall system:

• Front-end processor

• Back-end processor

• Communications network

• Disk subsystem

A main objective in this approach to sizi ng was
to identify and use specific metrics that could be
easi ly counted for each m ajor component. For
instance, the number of fields per form could be
a metric used for s izing front-end processors
because that number is specific and eas i ly counted.
As the path of a transaction is fol lowed through the
overall system, the uni ts of work appropriate for
each component become clear. These units become
the metrics for sizing that part icular component.
The focus of this paper is on processor s izing with
bounds on processor uti l ization. Processors gener-

Digital Technical journal Vol. 3 No. I Winter 1991

ally constitute the major expense in any proposed
system solution. Mistakes in processor sizing are
very expensive to fix, both in terms of customer
satisfaction and cost.

Sizing Metrics

Transaction processing applications permit a large
number of users to share access to a common data
base crucial to the business and usually residing on
d isk memory. In an interactive transaction process
i ng environment, transactions generally i nvolve
some number of disk I/O operations, although the
number is relatively small compared to those
generated by batch transaction processing appli
cations. CPU processing also is general ly small and
consists primaril y of overhead for layered trans
action p rocess ing software p roducts. A lthough

these numbers are small, they did i nfluence the
s izing methodology in several ways.

Ratings for relative processor capacity in a trans
action processing environment were developed
to reflect the abili ty of a processor to support disk
1/0 activity (as observed in benchmark tests). In
addit ion, empirical studies of transaction process
i ng applications showed that, for purposes of pre
l im inary s izing, the number of disk 1/0s generated
by a transaction provides a good predict ion of the
required amount of CPU processing.; Numerous

industry-standard benchmark tests for product
positioning were run on Digital's processors. These
processors were configured as back-end proces
sors in a distributed configuration with different
software platforms.

The base workload for this benchmark testing is

currently the Transaction Processing Performance
Council 's TPC Benchmark A (TPC-A, formerly the
DebitCredit benchmark)�·' 6 The most complete
set of benchmark testing was run under Digital's
VAX ACMS transaction processi ng monitor and
VAX Rdb/VMS relational database. Therefore, results
from this software platform on all Digi tal proces
sors were used to compute the first s izing metric
called the base load factor.

The base load factor is a high- level metric that
i ncorporates the contribution by all layered soft
ware products on the back-end processor to the
total CPU time per 1/0 operation. Load factors are
computed by dividi ng the total CPU u t i lization by
the number of achieved disk 1/0 operations per
second. (The CPU uti l ization is normal ized in the
event that the processor is a Symmetrical Multi
processing [SMP] system, to ensure that its value

fall s within the range of 0 to 100 percent.) The

6 1

Transaction Processing, Databases, and Fault-tolerant Systems

calculation of load factor yields the total CPU time,
in centiseconds (hundredths of seconds), required
to support an appl ication's s ingle phys ical 1/0
operation.

The base load factors give the CPU time per 1/0
required to run the base workload, TPC-A, on any

Digi tal processor in a back-end configuration using
the ACMS/Rdb. The CPU time per 1/0 can be est i
mated for any workload. This generalized metric is
called the appl ication load factor.

To relate the base load factors to workloads other
t han t he base, an add i t ional metric was defined
cal led the intensity factor. The metric calculation
for the intens ity factor is the application load
factor d ivided by the base load factor. The value in
using intens ity factors is that, once estimated (or
calculated for ru nning appl icat ions), i ntens i ty fac
tors can be used to characterize any applicat ion in

a way that can be applied across all processor types
to estimate processor requirements.

Intensity factors vary based on the software
platform used. If a software plattorm other than a
combined VAX ACMS and VAX Rdb/YMS platform is
selected, the estimate of the i ntens ity factor must
be adjusted to reflect the resource usage character
istics of the selected DECtp software platform.

To estimate an appropriate intens ity factor for a
nonexistent appl ication, judgment and experience
with similar applications are required. However,
measured cases from a range of DECtp appl icat ions
shows relatively l it tle variation in intens i ty factors.
Guidelines to help determine intensity factors are
included in the documentation for Digital's inter
nal ly developed transaction processing sizing tools.

The work requ ired by any transaction pro
cessing application is composed of two parts: the
appl ication/database and the forms management.
This d ivision of work corresponds to what occurs
in a distributed configuration, where the forms pro
cess ing is off-loaded to one or more front -end pro
cessors. Load factors and i n tensity factors are
metrics that were developed to size the applicat ion/
database. To est im a te the amount of CPU t ime
required for forms management, a forms-specific
metric is required. For a first-cut approx imation,
the expected nu mber of (input) fields is used as the
sizing metric. This number is obta ined eas i ly from
the business-level descript ion of the appl ication.

Sizing Formulas

This section describes the underlying algebra devel
oped for p rocessor selection. Different formulas
to estimate the CPU t ime required for both t he

62

application/database and forms management were
developed. These formulas are used separately for
sizing back-end and front-end processors i n a d is
tribu ted configuration. The ind ividual contribu
t ions of t he formu las are combined for s iz ing a
central ized configuration.

The applicat ion/database is the work that takes

place on the back-end processor of a distributed
configuration. It is a function of phys ical d isk
accesses. To determi n e the m i n imal CPU t im e
required t o handle this load, processor ut i l ization
is used as the performance goal, sett ing up an
i nequal ity that is solved to obta in a correspond ing
load factor. The result ing load factor is then com
pared to the table of base load factors to obta i n a
recom mendation for a processor type. To rein
force this dependence of load factors on processor
types, load factor x refers to the associated pro
cessor type x in the fo l lowing calcu lations.

One method for estimating the average CPU time
per transaction is to multiply the number of 1/0s
per transaction by the load factor x and the i nten
s i ty factor. This yields CPU time per t ransaction,
expressed in cent iseconds per transaction . By mul
t iplying this product by the transactions per sec
ond rate, an expression for processor ut i l ization is
derived. Thus processor ut i l ization (expressed as a
percentage scaled between 0 and 100 percent) is
the number of transactions per second, t imes the
number of i/Os per transaction, t imes load factor x,

times the intensity factor.
The performance goal is a CPU ut i l ization that is

less than the ut i l ization specified by the customer.
Therefore, the calculation used to derive the load
factor is the ut i l ization percentage provided by the
customer, d ivided by the number of t ransactions

per second , t imes the number of l/Os per t rans
action, t imes the intensity factor.

Once computed, the load factor is compared to
those values in the base load factor table. The base
load factor equal to or Jess than the computed value
is selected, and i ts corresponding processor type,
x, is returned as the mi nimal processor required to
hand le this workload .

The four input parameters that need to be esti
mated for inclusion in this inequality are

• Processor uti l ization performance goal (tradi
tional ly set at around 70 percent, but may be set
higher for D igi tal's newer, faster processors)

• Target transactions per second (which may be
derived from Digital 's m u l t i level mapping of
busi ness metrics)

Vol. 3 No. I Winter 1991 Digital Technical journal

Tools and Techniques for Preliminary Sizing of Transaction Processing Applications

• l/Os per transaction (estimated from application
description and database expertise)

• Intensity factor (estimated from experience with

similar applications)

Note: Response time p erformance goals do not
appear in this formula. This sizing formula deals
strictly with ensuring adequate processor capacity.
However, t hese performance parameters (includ
ing the CPU service t ime per transaction) are fed
into an analytic queuing solver embedded in some
of the t ransaction processing sizing tools, which
produces estimates of response t imes.

Forms processing is the work that occurs e i ther
on the front-end processor of a d istributed config
uration or in a centralized configuration. It is not a
function of physical d isk accesses; rather, forms
processing is CPU intens ive. To estimate the CPU
t ime (in seconds) required for forms process ing,
the fo llowing simple linear equation is used:

y = c(a + bz)

where y equals the CPU t ime for forms processing;
a equals t he CPU t ime per form per t ransaction
i nstance, depending on the forms manager used;
b equals the CPU time per field per transaction
instance, depending on the forms manager used;
z equals the expected number of fields; and c equals
the scaling rat io, depending on the processor type.
This equation was developed by feed ing the results

of controlled forms test ing into a l inear regression
model to estimate the CPU cost per form and per
field (i .e . , a and b). The mult ipl icative term, c, is
used to el iminate the dependence of factors a and

b on the hardware platform used to run these tests.

Sizing Tools

Several sizing tools were constructed by using the

above formulas as start ing points . These tools dif
fer in the range of required i nputs and outputs, and
in the expected technical sophistication of the user.

The first tool developed is for quick, first
approximat ion processor s izing. Currently embod
ied as a DECalc spreadsheet, with one screen for
processor selection and one for transactions-per
second sensit ivity analysis, it can handle back-end,

front-end, or centralized sizing. The first screen
shows the range of processors required, given the
target processor u t i l ization, target transactions
per second, expected number of fields, and the
possible intensity factors and number of 1/0s per
transact ion. (Because the estimation of these last

Digital TecbnicalJourual VrJI. 3 No. I Win ter 1991

two i nputs generally i nvolves the most uncer
ta inty, the spreadsheet allows the user to input a
range of values for each .) The second screen turns
the analysis around, showing the result ing trans

action-per-second ranges that can be supported by
the processor type selected by the user, given the
target p rocessor u t i l ization, expected number of
fields , and possible i ntens ity factors and number of
1/0s per transaction.

The basi c sizing formula addresses issues that
deal specifically with capacity but not with per
formance. To predict behavior such as response
t imes and queue lengths, modeling techniques that
employ analytic solvers or simulators are needed.
A second tool embeds an analytic queuing solver

within i tself to produce performance estimates.
This tool i s an automated system (i .e . , a DECtp
appl ica tion) that requests informat ion from the
user according to the multi level workload charac
terization methodology. This starts from general
business-level i nformation and proceeds to request
success ively more deta i led i nformation about the

application. The tool also conta ins a knowledge
base of D igi tal's product characteristics (e.g . , pro
cessor and disk) and measured DECtp applications.
The user can search through the measured cases to
find a s imi lar case, which could then be used to

provide a starting point for est imating key applica
t ion parameters. The built - in product characteris

t ics shield the user from the numeric deta ils of the
sizing algorithms.

A third tool is a spin-off from the second tool.
This tool is a standalone analytic queuing solver with
a simple textual i nterface. The tool is intended for
the sophisticated user and assumes that the user
has completed the level of analysis required to be
able to supply the necessary technical input param
eters. No automatic table lookups are provided .
However, for a completely characterized applica

t ion, this tool gives the sophist icated user a quick
means to obta in performance est imates and run
sensitivity analyses. The complete DECtp software
platform necessary to run the second tool is not
required for this tool.

Data Collection

To use the sizing tools fully, certa in data must be
ava i lable, which allows measured workloads to be
used to establish the basic metrics. G u idance i n
sizing unmeasured transaction processing applica
tions is highly dependent on developi ng a knowl

edge base of real-world transaction processing
application descriptions and measurements. The

63

Transaction Processing, Databases, and Fault-tolerant Systems

kinds of data that need to be stored withi n the
knowledge base require the data col lection tools to

gather information consistent with the transaction
processing s izing algebra.

For each transaction type and for the aggregate
of all t he transaction types, the fol lowing i nforma
tion is necessary to perform transaction process
i ng system sizi ng:

• CPU time per disk 1/0

• D isk 1/0 operations per transaction

• Transaction rates

• Logical-to-physical disk 1/0 ratio

The CPU to 1/0 ratio can be derived from Digital's

existing instrumentation products, such as the VAX
Software Performance Monitor (SPM) and VAXcluster
Performance Advisor (VPA) products.' Both prod
ucts can record and store data t hat reflects CPU
usage levels and physical disk 1/0 rates.

The DECtrace product col lects event-driven data.

It can col lect resource i tems from layered soft
ware products, including VAX ACMS monitor, the
VAX Rdb/VMS and DBMS database systems, and if

instrumented, from the application program itself.
As an event collector, the DECtrace product can be
used to track the rate at which events occur.

The methods for determining the logical-to
physical disk 1/0 ratio per transaction rema in open
for cont inuing study. Physical d isk 1/0 operations
are issued based on logical commands from the
appl ication. The find, update, or fetch commands
from an SQL program translate i nto from zero to
many thousands of physical disk I/O operat ions,
depending upon where and how data is stored .
Characteristics that affect t his rat io i nclude the

length of the data tables, number of index keys, and
access methods used to reach i ndividual data items
(i.e . , sequential, random).

Few tools currently avai lable can provide data
on p hysical l/0 operations for workloads in the
design stage. A knowledge base that stores the
logical-to-physical disk 1/0 activity ratio is the best
method avai lable at this t ime for predicti ng that
value. The knowledge base in the second sizing
tool is beginning to be populated with application

descriptions that include this type of information.
I t is anticipated that, as this tool becomes widely
used in the field, many more applicat ion descrip
t ions wil l be stored in the knowledge base. Pooling
individual application experiences into one central
repository wi ll create a valuable source of knowl
edge that may be uti l ized to provide better infor

mation for future s izing exercises.

64

Acknowledgments

The authors would l ike to acknowledge our col
leagues i n the Transaction Process ing Systems
Performance Group whose efforts led to the devel
opment of these sizing tools, either through prod
uct characterization, system support, object ive

critique, or actual tool development. In particular,
we would l ike to acknowledge the contributions
made by Jim Bouhana to the development of the
sizi ng methodology and tools.

References

1 . W Zahavi and]. Bouhana, "Business -Level Des
cription of Transaction Processi ng Applications,"
CMG '88 Proceedings (1988): 720 -726.

2. K. Omahen, "Practical Strategies for Config
uring Balanced Transaction Processing Systems,"

IEEE COMPCON Spring '89 Proceedings (1989):
554- 559.

3. W Zahavi, "A First Approximation Sizi ng
Technique -The 1/0 Operation as a Metric of
CPU Power," CMG '90 Conference Proceedings

(forthcoming December 10- 14, 1990).

4. "TPC BENCHMARK A - Standard Specificat ion,"
(Transaction Processi ng Performance Council,
November 1989).

5. "A Measure of Transaction Processing Power,"
Datamation, vol . 31, no. 7 (April 1 , 1985): 112- 118.

6. L. Wright, W Kohler, and W Zahavi , "The Digital
DebitCredi t Benchmark: Methodology and
Results," CMG '89 Conference Proceedings

(1989): 84-92.

7 F Habib, Y. Hsu, and K. Omahen, "Software
Measurement Tools for VAX/VMS Systems," CMG

Transactions (Summer 1988): 47-78.

Vol. 3 No. J Winter 1991 Digital Technical journal

Ananth Raghavan I T. K. Rengarajan

Database Availability for
Transaction Processing

A transaction processing system relies on its database management system to supply

high availability Digital offers a network-based product, the VAX DBMS system,

and a relational data-based product, the VAX Rdb/VMS database system, for its

transaction processing systems. These database systems have several strategies to

survive failures, disk head crashes, revectored bad blocks, database corruptions,

memory corruptions, and memory overwrites by faulty application programs.

They use base hardware technologies and also employ novel software techniques,

such as parallel transaction recovery, recovery on surviving nodes of a VA.Xcluster

system, restore and rollforward operations on areas of the database, on-line

backup, verification and repair utilities, and executive mode protection of trusted

database management system code.

Modern businesses store critical data i n database

management systems. Much of the daily activity
of busi ness i ncludes manipulation of data in the

database. As businesses extend their operations

worldwide, t heir databases are shared among
office locations in d ifferent parts of the world .

Consequently, these businesses require transac

tion processing systems to be ava i lable for use at

all times. This requirement translates direct ly to a

goal of perfect ava i labi l ity for database manage

ment systems.

VAX DBMS and VAX Rdb/VMS database systems are
based on network and relational data models, respec

t ively. Both systems use a kernel of code that is
largel y responsible for providing high availabili ty.

This layer of code is maintained by the KODA group.
KODA is the physical subsystem for VAX DBMS and

VAX Rdb/VMS database systems. It is responsible for

all 1/0, buffer management, concurrency contro l ,
transaction consistency, locking, journal ing, and

access methods.

In this paper, we define database ava i labil ity,

and describe downtime situations and how such

situations can be resolved. We then d iscuss the
mechan isms that have been implemented to pro

vide min imal loss of ava i labil i ty.

Database Availability

The unit of work in transaction processing systems

is a transaction. We therefore define database ava i l

abil i ty as the abi l i ty to execute transactions. One

Dtgttal Tecbnicaljournal Vol. 3 No. I Winter 1991

way the database management system provides

high ava i labil i ty is by guaranteei ng the proper

t ies of transact ions: atomicity, seriali zabil i ty, and

durabi l ity.1 For example, if a transaction that has

made updates to the database is aborted, other

transactions must not be allowed to see these

updates; the updates made by the aborted trans

action must be removed from the database before

other transactions may u se that data. Yet, data that

has not been accessed by the aborted transaction

must continue to be ava i lable to other transactions.

Downtime is the term used to refer to periods

when the database is unava i lable. Downtime is

caused by either an u nexpected fa i lure (unex

pected downtime) or scheduled maintenance on

the database (scheduled downtime). Such classifi

cations of downtime are useful . Unexpected down

t ime is caused by factors that are beyond the

control of the transaction p rocessing system. For

example, a d isk fa i l ure is qui te poss ible at any

t ime duri ng normal p rocess i ng of transactions.
However, scheduled downtime is entirely within

the control of the database adm i n istrator. H igh

ava i labi lity demands that we eliminate scheduled

downtime and ensure fast system recovery from

unexpected fai l ures.

The layers of the software and hardware services

which compose a transaction processing system

are dependent on one another for high ava i labi l i ty.

The dependency among these services is i l lus

trated i n Figure 1 . Each service depends on the

65

Transaction Processing, Databases, and Fault-tolerant Systems

APPL ICATION
PROGRAM

1
DATABASE
MANAGEMENT
SYSTEM

I
OPERATING
SYSTEM (VMS)

I
HARDWARE
(CPU, DISK)

1
GENERAL
ENVI RONMENT AVAILABI LITY

Figure 1 Layers of Availability in Transaction
Processing Systems

ava i labi l i ty of the service i n the lower layers.

Errors and fa i l ures can occur in any layer, but may

not be detected immediately. For example, in the

case of a database management system, the effects

of a database corruption may not be apparent until

long after the corruption (error) has occurred .

Hence it is difficult to deal with such errors. On the

other hand , fa i l ures are noticed immediately.

Fa i lures usually make the system u nava i lable and

are the cause of u nexpected downtime.

Each layer can provide only as much ava i labi lity
as the immediate lower layer. Hence we can also

express the perfect -ava i labi l i ty goa l of a database

management system as the goal of matching the

ava i labi l i ty of the immediately lower layer, which
in our case is the operating system.

At the outset, it is clear that a database manage

ment system layered on top of an operating system

and hence only as ava i lable as the underlying oper

at ing system. However, a database management

system is in general not as ava i lable as the under

lying layer because of the need to guarantee the

properties of transactions.

Unexpected Downtime

In this section we d iscuss the causes of u nex
pected downt ime and the techniques that m i n i

m ize downtime.

66

A database monitor must be started on a node
before a user's process runn ing on that node can

access a database. The monitor oversees all data

base activity on the node. It al lows processes to

attach to and detach from databases and detects

fa i lures. On detecting a fa i lure, the monitor starts

a process to recover the transactions that did not

complete because of the fa i l ure. Note that t his

database monitor is d ifferent from the TP monitor.'

Application Program Exceptions

Although transaction processing systems are based

on the client/server architecture, Digital's database
systems are process based. The privi leged database

management system code is packaged in a share

able l ibrary and l inked with the appl ication pro

grams. Therefore, bugs i n the applications have

a good chance of affect i ng the consistency of the

database. Such bugs in applications are one type of

fa i lure that can make the database unavai lable.

The VAX DBMS and VAX Rdb/VMS systems guard

aga inst this class of fa i lure by execut ing the data

base management system code in the VAX execu

tive mode. Si nce appl icat ion p rograms execute in

user mode, they do not have access to data struc

tures used by the database management system.

When a faulty application program attempts such

an access, the VMS operat ing system detects it and

generates an exception. This exception then forces

an image rundown of the application program.
In general, when an image rundown is in i t iated,

D igital's database management p roducts use the

condition-hand ling facility of VMS to abort the trans

act ion. Condition handl ing of image rundown is

performed at two levels. Two cond i t ion handlers

are established, one in user mode a nd the other in

kernel mode. The user mode ex it handler is usual ly

i nvoked, which rolls back the current transaction

and unbinds it from the database. In this case, the
rest of the users on the system are not affected at

all . The database rema ins ava i lable . The execution
of the user mode exi t handler is, however, not
guaranteed by the VMS operat ing system. Under
some abnormal circumstances, the user mode exit

handlers may not be executed at al l . In such cir
cumstances, the kernel mode ex i t handler is

i nvoked by the VMS system. This handler res ides

in the database m o n itor. The moni tor starts a

database recovery (DBR) process. It is the responsi

bi l i ty of the DBR process to roll back the effects of

the aborted transaction. To do this, the DBR pro

cess first establishes a database freeze. This freeze

prevents other processes from acquiring locks that

Vol. 3 No I Winter 1991 Digital Technical Journal

were held by the aborted transaction and hence
see and update uncommitted data. (The VMS lock
manager releases all locks held by a process when
that process dies.) The DBR process then proceeds
to roll back the aborted transact ion.

Code Corruptions

It is important to prevent coding mistakes within
the DBMS from irretrievably corrupt ing the data
base . To protect the database management system

from cod ing mistakes, internal data structure con
sistency is examined at d ifferent points in the
code. If any inconsistency is found, a bug-check
ut i l i ty is cal led that dumps the internal database
format to a fi le. The ut i l i ty then ra ises an excep

tion that is handled by the monitor, and the DBR
process is started as described above.

To deal with corruptions to the database that are
undetected with this mechanism, an explicit ut i l i ty
is provided that verifies the structural consistency
of the database. This verify u t i l ity may be executed
on-line, while users are st i l l accessing the data

base. Such verification may also be executed by a
database adm inistrator (DBA) in response to a bug
check dump. Once such a corruption is detected,
an on-line uti l i ty provides the ability to repair the
database.

In general , corruption in databases causes unex
pected downt ime. D igital provides the means of
detecting such corruption on-line and repa iring
them on-line through recovery ut i l i t ies.

Process Failure

In the VMS system, a process fa i lure is always pre

ceded by image rundown of the current image run
ning as part of the process. Therefore, a process
fa i lure is detected by the database moni tor, which
then starts a DBR process to handle recovery.

Node Failure

Among the many mechanisms Digital provides for
avai labi l i ty is node fa i lover within a cluster. When
a node fails, another node on the cluster detects
the fa i lure and rolls back the lost transactions from
the failed node. Thus t he fa i lure of one node does
not cause transactions on other act ive nodes of the
cluster to come to a halt (except for the t ime the
DBR process enforces a freeze). It is the database
monitor t hat detects node fa i l ure and starts a
recovery process for every lost transact ion on the

fa i led node. The database becomes ava i lable as
soon as recovery is complete for all the users on
the fa i led node.

Digital Technical journal Vol. 3 No. I Winter 1991

Database Availability for Transaction Processing

Power Failure

Power fa i lure is a hardware fa i lure. As soon as
power is restored, the VMS system boots. When a

process attaches to the database, a number of mes
sages are passed between the process that is attach
ing and the monitor. If the database is corrupt
(because of power fa i l ure) , the moni tor is so
informed by the attaching process, and aga in the
monitor starts recovery processes to return the
database to a consistent state. The database becomes
ava i lable as soon as recovery is complete for all
such fa i led users.

As described above, recovery is always accom
plished by the monitor process starting DBR pro
cesses to do the recovery. The only differences in
the case of process, node, or cluster fa i l ure is the
mechanism by which the monitor is informed of
the fa i lure.

Disk Head Crash

Some fa i lures can result i n the loss or corruption of
the data on the stable storage device (disk). Digital

has a mechanism for bringing the database back to

a consistent state in such cases.
A disk head cras h is a fa i l ure of hardware that is

usual ly characterized by the inabi l i ty to read from
or write to the disk. Hence database storage areas

residing on that disk are unavailable and possibly
irretrievable. A disk head crash automatically aborts
transactions that need to read from or write to that
d isk. In addit ion, recovery of these aborted trans
actions is not poss ible since the recovery pro
cesses need access to the same disk. In this case,
the database is shut down and access is denied unt i l
the storage areas on the fa iled disk are brought on

l ine . Areas are restored from backups and then
rol led forward until consistent with the rest of the
database. The after image journal (AlJ) files are used
to roll t he areas forward. As soon as all the areas on

the fa i led disk have been restored onto a good disk
and rolled forward, the database becomes avai lable.

Bad Disk Blocks

Bad blocks are hardware errors t hat often are not
detected when they happen. The bad blocks are
revectored, and the next t ime the disk block is
read, an error is reported. Bad blocks simply mean
that the contents of a disk block are lost forever.
The database administrator detects the problem
only when a database appl ication fa ils to fetch data

on the revectored block. Such an error may cause a
certain transaction or a set of transactions to fa i l ,

no matter how many attempts are made to execute

67

Transaction Processing, Databases, and Fault-tolerant Systems

the transactions. This fa i l ure constitutes reduced
ava ilabil i ty; parts of the database are unava i !able to
transactions. Exactly how much of the database
remains ava i lable depends on which blocks were

revectored.
The mechanism provided to reduce the possible

downtime is early detect ion. D igital's database
systems provide a verification uti lity that can be
executed while users are running transactions.
The verification ut i l ity checks the structural con
s istency of the database. Once a bad block is
detected by such a ut i l ity, that area of the database
may be restored and rolled forward. These two

operations make the whole database temporarily
unava i lable; however, the bad block is corrected,
and future downtime is avoided. The downtime
caused by the bad block may be traded off agai nst
the downtime needed to restore and roll forward.

Site Failure

A s ite fa i lure occurs when neither the computers
nor the d isks are ava i lable. A site fa ilure is usually
caused by a natural d isaster such as an earthquake.
The best recourse for recovery is archival storage.
Digital provides mechanisms to back up the data
base and AIJ files to tape. These tapes must then be
stored at a site away from the s i te at which the
database resides. Should a d isaster happen, t hese
backup tapes can be used to restore the database.
However, the recovery may not be complete. It
cannot restore the effects of those committed trans
actions that were not backed up to tape.

After a disaster, the database can be restored
and rolled forward to the state of the completion of
the last AIJ that was backed up to tape. Any trans
actions t hat committed after the last Al] was backed
up cannot be recovered at the alternate s ite. Such
transaction losses can be minimized by frequently
backing up the AIJ files.

Memory Errors

Memory errors are quite i nfrequent, and when
they happen, they usually are not detected. If the
error happens to a data record, it may never be
detected by any uti l i ty, but may be seen as i ncor
rect data by the user. If the verification util ity is run
on- l i ne, it may also detect the errors. Aga in, the
database may only be partially ava i lable, as in the
case of bad blocks. However, it is possible to repair
the database while users are sti l l accessing the
database. Digital's database management products
provide explicit repair faci l it ies for this purpose.

68

The loss of ava ilabil ity during repair is not worse
than the loss due to the memory error itself.

As expla ined previously, the database monitor
plays an important part in ensuring database con
sistency and ava i labil i ty. Most u nexpected fai lure

scenarios are detected by the monitor, which then
starts recovery processes. In addit ion, some fa i l
ures might require the use of backup files to
restore the database.

Scheduled Downtime

Most database systems have scheduled maintenance
operations that require a database shutdown. Data
base backup for media recovery and verification to
check structural consistency are examples of oper
ations that may require scheduled downtime. In
this section we describe ways to perform many of
these operations while the database is execut ing
transactions.

Backup

Digital's database systems allow two types of trans
actions: update and "snapshot." The abil ity to back
up data on-line depends on the snapshot transaction
capabi lity of the database.

Database backup is a standard way of recovering
from media fa i lures. Digital's database systems pro
vide the ability to do transaction consistent back
ups of data on-line while users continue to change

the database.
The general scheme for snapshot transactions is

as fol lows. The update transactions of the database
preserve the previous versions of the database
records in the snapshot fi le . Al l versions of a data
base record are cha ined. Only the current version
of the record is in the database area. The older ver
sions are kept in the snapshot area. The versions
of the records are tagged with the transaction
numbers (TSNs). When a snapshot transaction (for
example, a database backup) needs to read a data
base record, it traverses the cha in for that database
record and then uses the appropriate version of
the record.

There are two modes of database operation with

respect to snapshot activity. In one mode, al l update
transactions write snapshot copies of any records
they update. In the deferred snapshot mode, the
updates cause snapshot copies to be written only
if a snapshot transaction is active and requires old
versions of a record. In this mode, a snapshot trans
action cannot start unti l aU currently active update
transactions (which are not writing snapshot

Vol. 3 No. I Winter 1991 Digital Technical journal

records) have completed; that is, the s napshot

transaction must wait for a quiet point in time. If

there are ei ther active or pend i ng snapshot trans

actions when an update transaction starts, the

update transaction must write snapshot copies.

Here we see a trade-off between update trans

act ions and snapshot transactions. The database

is completely ava i lable to snapshot transactions

if all update transactions always write snapshot
copies. On the other hand, if the deferred snapshot

mode is enabled, update transactions need not

write snapshot copies if a snapshot transaction

i n not active . This approach obviously resu lts i n
some loss o f ava i labi l ity t o snapshot transactions.

Verification

Database corruption can also result in downtime.

Although database corrupt ion is not p robable, it

is possible. Any database system that supports

critical data must provide faci l it ies to ensure the

consistency of the database. D igital's database man

agement systems provide verification ut i l i t ies t hat

scan the database to check the structural consis

tency of the database. These uti l i t ies may also be

executed on- l ine through the use of snapshot

transactions.

AI] Backup

The backup and the AlJ log are the two mechanisms

that provide media recovery for D igital's database

management products. The AlJ fi le is continuously

written to by all user processes updating the data

base. We need to provide some abil ity to back up

the AlJ file since it monotonical ly increases in size

and eventual ly fi l ls up the disk. D igi tal 's database

Digital Technical]ourrwl Vol. 3 Nu. I Winter 1991

Database Availability for Transaction Processing

systems offer t he abi l i ty to back up t he AlJ file to

tape (or another device) on-line. The only restric

tion is that a quiet point must be established for a
short period during which the backup operation

takes place. A qu iet point is defined as a point

when the database is quiescent, i .e . , there are no

active transactions.

On-line Schema Changes

D igital's database management systems allow users

to change metadata on-l ine, whi le users are sti l l
accessing the database. Although this may be stan

dard for relational database management systems,
it is not standard for network databases. The VAX
DBMS system provides a u t i l ity cal led the database

restructuring ut i l i ty (DRU) to al low for on-l ine

schema modifications.

Acknowledgments

Many engineers have contributed to the develop

ment of the algorithms described i n this paper. We
have chosen not to enumerate a l l such contribu

tions. However, we would like to recognize the con

tribut ions of Peter Spiro, Ashok Jos hi, Jeff Arnold,

and Rick Anderson who, together with the authors,

are members of the KODA team.

References

1 . P Bernstein, W Emberton, and V Trehan,

"DECdta - D igital's Distributed Transaction Pro

cessing Architecture," Digital Technical journal,
vol. 3, no. 1 (Winter 1991 , this issue): 10 -17.

2. T. Speer and M . Storm, " D igital's Transaction

Processing Monitors," Digital Technical journal,
vol. 3, no. 1 (Winter 1991 , this issue): 18 -32.

69

Peter M. Spiro I Ashok M.joshi
T. K. Rengarajan

Designing an optimized
Transaction Commit
Protocol

Digital's database products, VAX Rdb/VMS and VAX DBMS, share the same database

kernel called KODA. KODA uses a grouping mechanism to commit many concurrent

transactions together. This feature enables high transaction rates in a transaction

processing (TP) environment. Since group commit processing affects the maximum

throughput of the transaction processing system, the KODA group designed and

implemented several grouping algorithms and studied their performance charac

teristics. Preliminary results indicate that it is possible to achieve up to a 66 percent

improvement in transaction throughput by using more efficient grouping designs.

Digi tal has two general-purpose database products,

Rdb/VMS software, which supports the relational

data model, and VAX D BMS software, which sup

ports the CODASYL (Confe rence on Data Systems

Languages) data model. Both products layer on top

of a database kernel called KODA. In add i t ion to

other database services, KODA provides the trans

action capabi l i ties and comm it processing for these

two products.

In this paper, we address some of the issues rele

vant to efficient com m i t p rocess ing. We begin by

exp lain ing the importance of comm i t processing

in achieving high transaction throughput. Next, we

describe in deta i l the current algori thm for group

commit used in KODA. We then describe and con

t rast several new designs for perform ing a group

commit . Following these d iscussions, we present
our experimental results . And, final l y, we d iscuss

the possible direction of fu ture work and some

conclusions. No attempt is made to present formal

analysis or exhaust ive empirical results for commit

processing; rather, the focus is on an intuitive

understand i ng of the concepts and trade-offs,

along with some empirical results that support our

conclusions.

Commit Processing

To fol low a d iscussion of com mit processing, two

basic terms must first be understood. We begin this

section by defi ning a transaction and the "moment

of commit."

70

A transact ion is the execu t ion of one or more

statements that access data managed by a database

system. General ly, database management systems
guarantee that the effects of a transaction are atomic,

that is, either al l updates performed within the con

text of the transaction are recorded in the database,

or no updates are reflected i n the database.

The point at which a transaction's effects become

durable is known as the "moment of commit ." This

concept is important because it al lows database

recovery to proceed in a predictable manner after

a t ransact ion fa i lure. If a t ransaction terminates

abnormal l y before i t reaches the moment of com

mit , then it aborts. As a result , the database system

performs transaction recovery, which removes al l

effects of the transact ion. However, if the trans

action has passed the moment of commit, recovery

processing ensures that al l changes made by the

transaction are permanent.

Transaction Profile

For the purpose of analysis, i t is useful to divide a

transaction processed by KODA into four phases:

the transact ion start phase, the data manipu lation

phase, the logging phase, and the commit process
ing phase . Figure I i l l ustrates the phases of a trans

action in t ime sequence. The first three phases are

col lectively referred to as "the average transaction's

CPU cost (excluding the cost of com m i t) " and the

last phase (commit) as "the cost of writ ing a group

commit buffer." '

Vol. 3 No. I Winter 1991 Digital Technical journal

TIME -

DATA
MANIPULATION

Figure 1 Phases in the Execution
of a Transaction

The transaction start phase i nvolves acquiring

a transaction identifier and set t i ng up control

data structures. This phase u sually incurs a fixed

overhead.

The data manipulat ion phase i nvolves executing

the actions d ictated by an appl ication program.

Obviously, the t ime spent in this phase and the

amount of p rocess i ng required depend on the

nature of the application.

At some point a request is made to complete the

transaction. Accordi ngly in KODA, the transaction

enters the logging phase which i nvolves updating

the database with the changes and wri t i ng the
undo/redo information to disk. The amount of work

done in the logging phase is usually small and con

stant (less than one 1/0) for t ransaction processing.

Finally, the transaction enters the commit pro

cessing phase. In KODA, this phase i nvolves writ ing

commit information to d isk, thereby ensuring that

the transaction's effects are recorded in the data

base and now visible to other users.

For some t ransact ions, the data manipu lation

phase is very expensive, possibly requiring a large

number of 1/0s and a great deal of CPU t ime. For

example, if 500 employees in a company were to

get a 10 percent salary i ncrease, a transaction wou ld

have to fetch and modify every employee/salary

record i n the company database. The commit pro

cessing phase, in this example, represents 0.2 per

cent of the transaction durat ion. Thus, for this class

of transaction, commit processing is a small frac

t ion of the overall cost. Figure 2 i l lustrates the pro

file of a transaction modifying 500 records.

COMMIT .------ START LOGGING +l
II DATA

MANIPULATION I ll
TIME -

Figure 2 Profile of a Transaction Modifying
500 Records

In contrast, for transaction processing appl ica

t ions such as hotel reservation systems, banking

Digital Technical journal Vol. 3 No. I Winter 1!)91

Designing an Optimized Transaction Commit Protocol

applications, stock market t ransactions, or the
telephone system, the data manipulation phase is

usually short (requiring few 1/0s) . Instead, the log

gi ng and commit phases comprise the bulk of the

work and must be optim ized to a l low high trans

action throughput. The transaction profile for a

transaction modifying one record is shown i n

Figure 3 . Note that the commi t processing phase
represents 36 percent of the transaction duration,

in this example.

rr= START
DATA
MANIPULATION

II I LOGGING

TIME -

COMMIT

Figure 3 Profile of a Transaction Modifying
One Record

Group Commit

Generally, database systems must force write i nfor

mation to disk in order to commit transactions. In

the event of a fa ilure, this operation perm i ts recov

ery processing to determine which fa i led t rans

actions were active at the t ime of their termination

and which ones had reached their moment of com

mit . This information is often in the form of l ists of

transaction identifiers, called commit l ists.

Many database systems perform an opt imized

version of commit processing where commi t infor

mation for a group of transactions is written to disk

in one 1/0 operat ion, thereby, amort izing the cost

of the 1/0 across multiple t ransactions. So, rather

than having each transaction write i ts own commit

l ist to d isk, one transact ion writes to disk a com

mit l ist contai ning the commit information for a

number of other transact ions. This technique is

referred to in the l i terature as "group commit."'

Group commit processing is essential for achiev

i ng high throughput. If every transaction that

reached the commit stage had to actually perform

an 1/0 to the same disk to flush its own commit
informat ion, the throughput of the database sys

tem would be l imited to the l/0 rate of the disk. A

magnetic d isk is capable of performing 30 l/0

operations per second. Consequent ly, i n t he

absence of group commit , the throughput of t he

system is l im i ted to 30 t ransactions per second

(TPS) . Group commit is essential to breaking this

performance barrier.

7 1

Transaction Processing, Databases, and Fault-tolerant Systems

There are several variations of t he basic algo

rithms for grouping multiple comm i t l ists into a

s ingle 1/0. The specific group commit algorithm

chosen can significantly influence the throughput

and response times of transaction processing. One

study reports throughput ga ins of as much as 25

percent by select ing an optimal group commit

algorithm . 1

A t high transact ion throughput (hun dreds of

transactions per second), efficient commit process
i ng provides a significant performance advantage.

There is l it tle i nformation in the database l itera

ture about the efficiency of d ifferent methods of

perform ing a group commit. Therefore, we ana

lyzed several grouping designs and evaluated their

performance benefits.

Factors Affecting Group Commit

Before proceedi ng to a description of the experi

ments, it is useful to have a better understanding of

the factors affecting the behavior of the group com

m i t mechanism. This section discusses the group

s ize, the use of timers to stal l transactions, and the

relationship between these two factors.

Group Size An important factor affecting group

commit is the number of transactions that partici

pate in the group commit. There must be several

transactions in the group i n order to benefit from

1/0 amort ization. At the same time, transactions

s hould not be required to wa it too long for the

group to b u i ld up to a large size, as this factor

would adversely affect throughput.

It is interesting to note that the i ncremental

advantage of adding one more transaction to a

group decreases as the group s ize increases. The

i ncremental savings is equal to 1/(G x (G + 1)) ,

where G is the in i t ial group s ize. For example, if
the group consists of 2 transactions, each of them

does one-half a write. If the group size increases

to 3, the incremental savings in writes wi ll be

(1/2 - l/3), or 1/6 per transaction. If we do the same

calcu lation for a group s ize incremented from 10

to 1 1 , the savings wil l be (1/ 10 - l/11), or l/110 of a

write per transaction.

In general, if G represents the group size, and I
represents the number of 1/0s per second for the

disk, the maximum transaction commit rate is Jx G

TPS. For example, if the group size is 45 and the rate
is 30 I/Os per second to disk, the maximum trans

action commit rate is 30 x 45, or 1350 TPS. Note that

a grouping of only 10 wi l l restrict the maximum

TPS to 300 TPS, regard less of how powerful the

72

computer is. Therefore, the group s ize d irectl y

affects t h e m ax imum transaction throughput o f

the transaction processi ng system.

Use of Timers to Stall Transactions One of the

mechanisms to i ncrease the s ize of the commit

group is the use of timers.u Timers are used to

stal l the transactions for a s hort period of time

(on the order of tens of mil liseconds) during com

mit processing. During the stall , more transactions

enter the comm i t p rocessing phase and so the

group size becomes larger. The stalls provided by

the timers have the advantage of increasing the

group size , and the disadvantage of increasing the

response time.

Trade-ojfs This section discusses the trade-offs

between the size of the group and the use of timers
to stall transactions. Consider a system where there

are 50 active database p rograms, each repeatedly

processing transactions against a database. Assume

that on average each transaction takes between
0.4 and 0.5 seconds. Thus, at peak performance, the

database system can commit approximately 100

transactions every second, each program actually

completing two transactions in the one-second

time i nterval . Also, assume that the transactions

arrive at the commit point in a steady stream at dif

ferent times.

If transaction com m i t is stalled for 0.2 sec

onds to allow the commit group to build u p , the

group then consists of about 20 transactions

(0.2 seconds x 100 TPS) . In this case, each trans

action only i ncurs a s mall delay at commit t ime,

averaging 0.10 seconds, and the database system

shoul.d be able to approach its peak throughpu t of

100 TPS. However, if the mechanism delays commit

processing for one second, an entirely different

behavior sequence occurs. Since the transactions

complete in approximately 0.5 seconds, they accu

mu late at the commi t stall and are forced to wa it

unt i l the one-second stal l completes. The group
size then consists of 50 transactions, thereby maxi

m izing the l/0 amortization. However, throughput

is also l imited to 50 TPS, s ince a group com mit is

occurring only once per second.
Thus, it is necessary to balance response t ime

and the s ize of the commit group. The longer the

stall , the larger the group s ize; the larger the group

size, the better the l/0 amortization that is achieved.

However, if the stall time is too long, i t is possible

to l imit transaction throughput because of wasted

CPU cycles.

Vol. 3 No. I Winter 1991 Digital Technical journal

Motivation for Our Work

The concept of using commit timers is d iscussed

in great detail by Reuter' However, there are signifi

cant differences between his group commit scheme

and our scheme. These differences prompted the

work we present in this paper.

In Reuter's scheme, the timer expiration triggers

the group commit for everyone. In our scheme, no

single process is in charge of commit processing

based on a timer. Our commit processing is per

formed by one of the processes desiring to write a
commit record. Our designs i nvolve coordination

between the processes i n order to elect the group

committer (a process).

Reuter's analysis to determine the optimum value

of the timer based on system load assumes that the

total transaction durat ion, the time taken for com

mit processing, and the t ime taken for performing

the other phases are the same for all transactions.

In contrast, we do not make that assumption. Our

designs strive to adapt to the execut ion of many dif

ferent transaction types u nder d ifferent system

loads. Because of the complexity introduced by

allowing variations in transact ion classes, we do

not attempt to calculate the optimal timer values as

does Reuter.

Cooperative Commit Processing

In this section, we present the stages i n perform

ing the group commit with cooperating processes,

and we describe, in deta il , the grouping design cur

rently used i n KODA, the Commit -Lock Design.

Group Committer

Assume that a number of transactions have com

pleted all data manipulation and logging activity

and are ready to execute the commit processing

phase. To group t he commit requests, the follow

ing steps must be performed in KODA:

1 . Each transaction must make i ts commit infor

mation avai lable to the group committer.

2. One of the processes must be selected as the
"group committer."

3. The other members of the group need to be
i nformed t hat their commit work wil .l be com

pleted by the group com mitter. These processes

must wa it until the commit i nformation is writ

ten to disk by the group committer.

4. Once the group committer has written the com

mit information to stable storage, it must inform

the other members that commit processing is

completed.

Digital Technical journal Vul. 3 No. I Winter 1991

Designing an Optimized Transaction Commit Protocol

Commit-Lock Design

The Comm it-Lock Design uses a VMS lock to gener

ate groups of comm itt ing transactions; the lock is

also used to choose the group commi ttee

Once a process completes all its updates and

wants to commit its transaction, the procedure is
as fo llows. Each transaction must first declare its

i ntent to join a group commit. In KODA, each pro

cess uses the i nterlocked queue instructions of the
VAX system running VMS software to enqueue a

block of commit information, known as a commit

packet, onto a global ly accessible commit queue.
The commit queue and the commit packets are

located in a shared, writeable global section.

Each process then issues a lock request for t he

commit lock. At this point, a number of other

p rocesses are assumed to be go ing through the

same sequence; that is, they are posti ng their

commit packets and making lock requests for the

commit lock. One of these processes is granted

the commit lock. For t he time being, assume the

p rocess that currently acquires the lock acts as

the group committer.

The group com m itter, first, counts the number

of entries on t he commit queue, provid ing the

number of transactions that wi ll be part of the

group commit . Because of t he VAX i nterlocked

queue instructions, scanning to obta i n a count and

concurrent queue operations by other processes

can p roceed simultaneously. The group committer

u ses the information in each commit packet to

format the commit block which wil l be written

to disk. In KODA, the commit block is used as a

commit list, record i ng which transactions have

committed and which ones are active. In order to

com mit for a transaction, the group committer

must mark each current transaction as completed.

In addi tion, as an optimization, the group commit

ter assigns a new transaction identifier for each

p rocess's next transaction. Figure 4 i l l ustrates a
commit block ready to be flushed to disk.

Once the com m it block is mod ified , the group
committer writes it to disk in one atomic 1/0. This

is the moment of commit for all transactions in

the group. Thus, all transactions that were active

and took part in this group commit are now stably
marked as committed. In add ition, as explained

above, these transactions now have new transac

tion identifiers. Next, the group commi tter sets a
commit flag in each commit packet for all recently

committed transactions, removes all comm it pack

ets from t he commit queue, and, finally, releases

the commit lock. Figure 5 i l lustrates a committed

73

Transaction Processing, Databases, and Fault-tolerant Systems

COMMIT
PACKET

COMMIT
QUEUE

CURR_TI D 37 CURR T ID 32
- NEXT_TID 0 -- NEXT

-
TID 0 r--

COMMIT_FLG 0 COMMIT_FLG 0

COMMIT GROUP

KEY:

CURR_TID NEXT_TID
37 42
32 43
41 44

COMMIT BLOCK

CURR_ T ID CURRENT TRANSACTION IDENTIF IER
NEXT TID NEXT TRANSACTION I DENTIF IER
COMMIT_FLG COMMIT FLAG

CURR TID 4 1 CURR TID 28 CURR_TID 39
NEXT

-
TID 0 r-- NEXT

-
TID 0 -- NEXT T ID 0

COMMIT_FLG 0 COMMIT_FLG 0 COMMIT_FLG 0

Figure 4 Commit Block Ready to be Flushed to Disk

group with new transaction identifiers and with

commit flags set.

At this point, the rema ining processes that were

part of the group commit are, i n turn, granted

the commit Jock. Because their commit flags are

already set, these processes realize they do not

need to perform a commi t and, thus, release the

commit lock and proceed to the next transaction.

After all these committed processes release the

commit lock, a process that did not take part in the

COMMIT
QUEUE

CURR TID -1
NEXT

-
TID 42

COMMIT _FLG 1

KEY:

CURR TID -1
NEXT

-
TID 43

COMMIT _FLG 1

COMMITTED GROUP

CURR TID -1
NEXT

-
TID 44

COMMIT_FLG 1

CURR TID CURRENT TRANSACTION IDENTIFIER
NEXT

-
TID NEXT TRANSACTION IDENTIFIER

COMMIT _FLG COMMIT FLAG

group commit acquires the lock, notices it has not

been committed, and, therefore, init iates the next

group commit.

There are several i nteresting points about using

the VMS Jock as the grouping mechanism. Even

though all the transactions are effectively commit

ted after the comm i t block l/0 has completed, the

transactions are sti l l forced to proceed serially;

that is, each p rocess is granted the lock, notices

that it is comm it ted, and then releases the Jock.

NEXT COMMIT PACKET

CURR TID 28 CURR TID 39 CURR TID 29
NEXT

-
TID 0 -- NEXT

-
TID 0 -- NEXT

-
TID 0

COMMIT_FLG 0 COMMIT_FLG 0 COMMIT_FLG 0

Figure 5 Committed Group

74 Vol. 3 No. I Winter 1991 Digital Technical journal

So there is a serial procession of lock enqueues/
dequeues before the next group can start.

This serial procession can be made more concur

rent by, first, requesting the lock i n a shared mode,

hoping that aU p rocesses commit ted are granted

the lock in unison. However, in practice, some pro

cesses that are granted the lock are not committed.

These p rocesses must then request the lock i n an
exclusive mode. If this lock request is mastered on

a d ifferent node in a VAXcluster system , the lock

enqueue/dequeues are very expensive.

Also, there is no expl ici t stall t ime built into

the algorithm. The latency associated with the
lock enqueue/dequeue requests al lows the commit

queue to build up. This stall is entirely dependent
on the contention for the lock, which in turn

depends on the throughput.

Group Commit Mechanisms
Our New Designs

To improve on the transaction throughput provided

by the Commit -Lock Design, we developed three

different grouping designs, and we compared their

performances at high throughput. Note that the

basic paradigm of group com m i t for all these

designs is described i n the Group Committer sec

t ion. Our designs are as follows.

Com.m.it-Stall Design

In the Commit-Sta l l Des ign, the use of the commit

lock as the grouping mechanism is elim inated.

Instead , a process i nserts its commit packet onto

the comm i t queue and, then, checks to see if it is

the first process on the queue. If so, the p rocess

acts as the group commi t ter. If not, the process

schedules its own wake-up call, then sleeps. Upon

waking, the process checks to see if i t has been

committed . If so, the process proceeds to i ts next

transact ion. If not, the process aga i n checks to see

if i t is first on the comm i t queue. The algorithm

then repeats, as described above.

This method attempts to el iminate the serial

wake-up behavior displayed by using the commit

lock. Also, the duration for which each process

stalls can be varied per transaction to allow explicit
control of the group size. Note that if the stall time
is too smal l, a process may wake up and stal l many

times before it is committed .

Willing-to-Wait Design

As we have seen before, a delay in the com m i t

sequence i s a convenient means of converting a
response time advantage into a throughput ga in . If

we increase the stal l t ime, the transaction duration

Digital Technical journal Vol. 3 No. 1 Winter 1991

Designing an Optimized Transaction Commit Protocol

i ncreases, which is u ndesirable. At the same t ime,

the grouping s ize for group commit i ncreases,

which is desirable. The challenge is to determ ine

the optimal stal l t ime. Reuter presented an analyti

cal way of determining the optimal stall t ime for a
system with transactions of the same type.'

Ideally, we would like to devise a flexible scheme

that makes the trade-off we have just described i n

real time a n d determines t h e optimum comm i t

stall t ime dynamical ly. However, we cannot deter

mine the optimum stall time automatically, because

the database management system cannot judge

which is more important to the user in a general
customer situation - the transaction response time

or the throughput.
The Willing-to-Wa it Design provides a user param

eter called WTW t ime. This parameter represents

the amount of time the user is wil l ing to wa i t for

the transaction to complete, given this wa it will

benefit the complete system by increasing through

put. wrw time may be specified by the user for each

transaction. Given such a user specification, it is

easy to calculate the commit stall to i ncrease the

group size. This stal l equals the WlW t ime m i nus

the t ime taken by the transaction thus far, but only

if the transaction has not already exceeded the

WlW t ime. For example, if a transaction comes to
commit processing i n 0.5 second and the wrw time

is 2.0 seconds, the stall t ime is then 1 .5 seconds. In

add ition, we can make a further improvement by

reducing the stall t ime by the amount of time

needed for group commi t processing. This delta

t ime is constant , on the order of 50 m i l l iseconds

(one 1/0 plus some computation).

The WTW parameter gives the user control over

how much of the response t ime advantage (if any)

may be used by the system to improve transaction

throughput. The choice of an abnormally high value

of WlW by one process only affects its own trans

action response time; it does not have any adverse

effect on the total throughput of the system. A low

value of WlW would cause small commit groups,

which in turn would l imit the throughput. However,

this can be avoided by adm in istrative controls on

the database that specify a minimum WlW time.

Hiber Design

The Hiber Des ign is sim i lar to the Commit-Stall

Design, but, i nstead of each process schedul i ng i ts

own wake-up call, the group committer wakes up

all processes i n the committed group. In addi tion,

the group committer must wake up the process

that will be the next group committer.

75

Transaction Processing, Databases, and Fault-tolerant Systems

Note, this design exhibits a serial wake-up behav
ior l ike the Comm it -Lock Design, however, the

mechanism is less costl y than the VMS lock used by
the Com m i t -Lock Design. In the Hiber Design, if

a process is not the group comm i t te r, it s imply
s leeps; i t does not schedu le its own wake-up cal l .

Therefore, each process is guaranteed to s leep and
wake up at most once p e r commit , in contrast to

the Commit -Stal l Design. Another interest ing char
acterist ic of the Hiber Des ign is that the group

committe r can choose to e i ther wake up the next

group com m i t te r immediately, or i t can actually
schedule the wake-up cal l after a delay. Such a delay

al lows the next group s ize to become larger.

Experiments

We implemented and tested the Com m i t -Lock, the
Com mit -Sta l l , and the Wi l l i ng-to-Wa i t des igns in
KODA . The objectives of o ur experiments were

• To find o u t which design wou ld y ield the

maxi m u m throughput under response t ime

constra ints

• Tb understand the performance characteristics

of the des igns

In the fol lowing sections, we present the deta i ls

of our experiments, the resul ts we obta ined, and
some observations.

Details of the Experiments

The hardware used for a l l of the fol lowing tests was
a VAX 6340 with four processors, each rated at 36
VAX u nits of performance (VUP). The total poss ible

CPU u t i l ization was 400 percent and the total p ro
cess ing power of the computer was 14.4 vurs. As

the com m i t processing becomes more sign ificant
in a t ransaction (in relation to the other phasc:s),
the impact of the grouping mechanism on the trans

act ion throughput increases. Therefore, i n order
to accentuate the performance d ifferences between
the various designs, we performed our experiments

using a t ransact ion that involved no database act iv

ity except to fol low the comm i t sequence. So, for
a l l rractical purposes, the TPS data presented
in t his paper can be interp reted as " c o m m i t
sequences rer second .'' Also, note that our system

imposed an upper l imit of 50 on the grouping size.

Results

Using the Com m i t-Lock Design, t ransact ion pro
cess ing bott lenecked at 300 TPS. Performance
great ly improved with the Comm it-Stal l Design;
the maximum t h roughput was 464 ·rPS. The

Wi l l ing-to-Wa i t Des ign provided the highest

76

throughput, 500 TPS . Using this last des ign, it was

possible to achieve up to a 66 percent improve

ment over the less-efficient Comm i t -Lock Design.

Although both t imer schemes, i .e . , t he Com m it
Sta l l and Wi l l ing- to-Wa i t designs, needed tuning to
set the parameters and the Com m it -Lock Des ign
did not, we obse rved that the maximum through

put obta ined using timers is much better than t hat
obta i ned with the lock. These results were s imi lar

to those of Reuter.
For our Wi l l i ng-to-Wa i t Design, the minimum

transaction duration is the WTW t ime . Therefore,
the maximum TPS, the number of servers, and

t he WTW stall t ime, measured in m i l l iseconds,

are r elated by the for m u l a : number of servers

x 1000/WTW = ma x im u m TPS. For example, our
maximum TPS for the \.XI TW design was obta i ned
wi th 50 servers and 90 m i l l iseconds WTW t i m e .

Us ing the formula , 5 0 x 1000/90 = 555. The actual

TPS achieved was 500, which is 90 percent of the
maxi m u m TPS . This ratio is also a measure of the

effect iveness of the experiment.
Dur ing our experiments, the maximum group

s ize observed was 45 (with the Wi l l ing-to-Wa i t
Design). This i s close t o t h e system- imposed l im i t

o f 5 0 and , so, w e may b e able t o get better grouping
with higher l imits on the s ize of the group.

Observations

In the Commit-Stall and the Wil l ing-to-Wa i t designs,

given a constant stal l , if the number of servers is
increased, the TPS increases and then decreases.

The rate of decrease is slower than t he rate of
i ncrease. The TPS decrease is due to CPU overload

i ng. The TPS increase is due to more servers trying
to execute transactions and bet ter CPU ut i l i zation.
Figure 6 i l lustrates how TPS varies with the num

ber of servers, given a constanr stal l WlW t ime.
Aga in, i n the stal l ing designs, for a constant num

ber of servers, if the stal l is increased, the TPS

increases and then decreases. The TPS inc rease is
due to bet ter grouping and the decrease is due to

CPU underut i l i zation. Figures 7 and 8 show the
effects on TPS when you vary the com m i t -stal l

t ime or t he WT\V t ime, while keepi ng the number

of servers constant.
Tb maximize TPS with the Comm it-Stal l Design,

the fol lowing " mounta i n-cl i mbing" algorithm was

usefu l . This algorithm is based on the previous two
observations. Start with a reasonable va lue of the
sta l l and the number of servers, such that the CPU

is u nderut i l ized. Then in-crease the number of

servers . CPU u t i l izat ion and the TPS i ncrease.

Vol . .) No. I Winter 1991 Digital Tecbnical journal

0 480 z
0
0 460 w
(/)
a: 440 w
(l_
(/) 420 z
Q
1- 400 0
<{ (/) 380 z
<{
a:
1- 360

N UMBER OF SERVERS

NOTE THE WILLING-TO-WAIT STALL TIME IS A CONSTANT
1 00 M I LLIS ECONDS

Figure 6 Transactions per Second in

Relationship to the Number of

Servers, Given a Constant

Willing-to-Wait Time

Continue until the CPU is overloaded; then, increase
the stall t ime. CPU u t i l ization decreases, but the
TPS increases due to the larger group size.

This algori thm demonstrates t hat increas i ng
the number of servers and the stall by small
amounts a t a t ime increases the TPS, but only up
to a l imit . After th is poi nt, the TPS drops. When

close to the l imit , t he two factors may be varied
alternately i n order to find the true maximum.
Table 1 shows the pe rformance measurements of

the Commit-Stal l Design. Comments are i ncluded
in the table to highlight t he performance behavior

the data supports.
The same mountain-climbing algorithm is modi

fied sl ightly to obtai n the maximum TPS with t he
Wil l ing-to-Wa i t Design. The performance measure-

0 440 z
0
0 w
(/) 400

a:
w

360 (l_
(/)
z
0 320
i=
0
<{

280 (/)
z
<{
a:
1- 240

20 30 40 50 60 70 1 0 80

COMMIT-STALL TIME (M I LLISECONDS)

NOTE THE NUMBER OF S E RVERS EQUALS 50

Figure 7 Transactions per Second in

Relationship to the Com mit-Stall

Time, Given a Constant Number

of Servers

Digital Techn ical journal Vul. 3 No. I Winter J'YJI

Designing an Optimized Transaction Commit Protocol

0 490
z
0 480 0 w
(/) 470 a:
w
(l_ 460
(/)
z 450 Q
1-
0
<{ 440
(/)
z 430
<{
a:

420 1-
90 1 00 1 1 0 1 20 1 30 1 40 1 50

WILLING-TO-WAIT TIME (M I LLISECONDS)

NOTE THE NUMBER OF SERVERS EQUALS 65.

Figure 8 Transactions per Second in

Relationshzp to the WTW Time,

Given a Constant Number

of Servers

ments of this des ign are presented i n Table 2 . As
we have seen before, the maximum TPS with this
des ign is i nversely proportional to the wrw t ime,
whi le CPU is not fully u t i li zed . The first four rows
of Table 2 i l lustrate this behavior. The rest of the
table follows the same pattern as Table 1 .

The Wil l ing- to-Wa i t Design performs s l ightly
better than the Comm i t-Stall Oesign by adjusting

to the variations in the speed at which different
servers arrive at the commit point. Such variat ions
are compensated for by t he variable stalls in the
Wil l ing-to-Wa i t Design. The refore, if the variation
is h igh and the commit sequence is a significant
portion of the transaction, we expect the Wil l ing
to-Wa it Des ign to perform much better than the
Commi t-Stall Design.

Future Work
There is scope for more interest ing work to further

optimize commit processing in t he KODA database
kernel. First, we wou ld l ike to perform experi

ments on the Hiber Design and compare it to the
other designs. Next, we would like to explore ways

of combin i ng the Hiber Design wi th either of the

two t imer des igns, Commi t -Stall or Wil l ing-to

Wa i t . This may be the best design of all the above,
with a good mixture of automat ic stall , low over

head , and explicit con trol over the total stall t ime.

In addit ion, we would l ike to invest igate the use of

t imers to ease system management. For example, a

system admin istrator may i ncrease the stalls for

all transactions on the system i n order to ease CPU

contention, thereby increas ing the overall effective

ness of the system.

77

Transaction Processing, Databases, and Fault-tolerant Systems

Table 1 Commit-Stall Design Performance Data

Number of Comm i t Stal l CPU Util ization
Servers (Mil l iseconds) (Percent)* TPS Comments

50 20 360 425 Starting poi nt

55 20 375 454 I ncreased num ber of servers, therefore, higher TPS

60 20 378 457 I ncreased num ber of servers, t herefore, CPU saturated

60 30 340 461 Increased stall, therefore, CPU less util ized

65 30 350 464 I ncreased number of servers, maximum TPS

70 30 360 456 "Over-the-hi l l" situation, same strategy of further
i ncreasing the number of servers does not increase TPS

70 40 330 451 No benefit from i ncreasing number of servers and stall

65 40 329 448 No benefit from just i ncreasing stall

• Four processors were used i n the experiments. Thus, the total possible CPU util ization is 400 percent.

Table 2 Wil l i ng-to-Wait Performance Data

Wil l ing-to-Wait
Number of Stal l CPU Util ization
Servers (Mill iseconds) (Percent)* TPS

45 1 00 285 426

45 90 295 466

45 80 344 498

45 70 363 471

50 80 372 485

50 90 340 500

55 90 349 465

50 1 00 324 468

Comments

Starting point, CPU not saturated

Decreased stall to load CPU, CPU st i l l not saturated

Decreased stall again

Further decreased stal l , CPU almost saturated

Increased number of servers, CPU more saturated

I ncreased stall to lower CPU usage, maximum TPS

"Over-the-hi l l"situation, same strategy of further
i ncreasing number of servers does not i ncrease TPS

No benefit from just i ncreasing stall

• Four processors were used i n the experiments. Thus, the total possible CPU ut il ization is 400 percent.

Conclusions
We have presented the concept of group commit

processing as well as a general analysis of various
options ava i lable, some t rade-offs i nvolved, and

some performance results indicating areas for pos

sible improvement. It is clear that the choice of the

algorithm can significantly influence performance

at high transaction throughput. We are optimistic

that with some further investigation an optimal

commit sequence can be incorporated into Rdb/VMS

and VAX DBMS with considerable gains i n trans

action processing performance.

Acknowledgments
We wish to acknowledge the help provided by

Rabah Med ioun i in performing the experiments

d iscussed in this paper. We would l ike to thank

Phi l Bernstei n and Dave Lomet for their carefu l

78

reviews of this paper. Also, we want to thank the

other KODA group members for their contri

butions during informal d iscussions. Finally, we

would l ike to acknowledge the efforts of Steve Klein

who designed the original KODA group commit

mechan ism.

References

I . P Helland , H. Sam mer,). Lyon, R. Carr, P Garrett,

and A. Reu ter, "Group Comm it Timers and High

Volume Transaction Processing Systems," High
Performance Transaction Systems, Proceedings

of the 2nd International Workshop (September

1987).

2. D. Gawlick and D. Kinkade, "Variet ies of Con

currency Control in IMS/VS Fast Path," Database
Engineering Qune 1985).

Vol. 3 No. I Winter 1991 Digital Techuicaljournal

William F. Bruckert
Carlos Alonso

James M. Melvin

Verification of the First
Fault-tolerant l2.lX System

The fault-tolerant character of the VAXft 3000 system required that plans be made

early in the development stages for the verification and test of the system. To ensure

proper test coverage of the fault- tolerant features, engineers built fault-insertion

points directly into the system hardware. During the verification process, test engi

neers used hardware and software fault insertion in directed and random test

forms. A four-phase verification strategy was devised to ensure that the VAXft system

hardware and software was fully tested for error recovery that is transparent to

applications on the system.

The VAXft 3000 system provides transparent fault

tolerance for app l ications that run on the system.

Because the 3000 i ncludes fault- tolerant features,

verification of the system was unlike that ordinar

i ly conducted on VAX systems. To facil i tate system

test, the verification strategy outlined a four-phase

approach which would require hardware to be

built into the system specifically for test purposes.

This paper presents a brief overview of the VAXft

system architecture and then describes the meth

ods used to verify the system's fault tolerance.

VAXft 3000 Architectural Overview

The VAX.ft fault -tolerant system is designed to

recover from any si ngle point of hardware fa i lure.

Fault tolerance is p rovided transparently for all

applications running u nder the VMS operati ng

system. This section reviews the implementation

of the system to p rovide background for the main

discussion of the verification process.

The system comprises two dupl icate systems,
called zones. Each zone is a ful ly functional com

puter with enough elements to run an operating
system. These two zones, referred to as zone A and

zone B, are shown in Figure 1, which i l lustrates the

duplication of the system components. The two

independent zones are connected by duplicate

cross-link cables. The cabinet of each zone also

i ncludes a battery, a power regulator, cooling fans,

and an AC power input. Each zone's hardware has

sufficient error checking to detect all s i ngle faults

within that zone.

Figure 2 is a block diagram of a s i ngle zone with

one 1/0 adapter. Note the portions of the zone

Digital Technicaljourtral Vol. 3 No. I Winter 1991

labeled dual-ra i l and s ingle-ra i l . The dual-ra i l por

t ions of the system have two i ndependent sets

of hardware p erformi ng the same operations.

Correct operation is verified by comparison. The

fault-detection mechanism for the s ingle-ra i l I/O

modules combines checking codes and communi

cation protocols.

The system performs J/0 operations by send i ng

and receiving message packets. The packets are

exchanged between the CPU and various servers,

includi ng d isks, Ethernet, and synchronous l i nes.

These message packets are formed and i nterpreted

in the dual- ra i l portion of the system. They are pro

tected in the s i ngle- rai l portion of the machine by

check codes which are generated and checked i n

the dual-ra i l port ion of the machine. Corrupted

packets can be retransmitted through the same or

alternate paths.

In the normal mode of fau lt-tolerant operation,

both zones execute the same i nstruction at the

same time. The four processors (two in each zone)

appear to the operati ng system as a s ingle logical

CPU. The hardware supplies the detection and

recovery facil it ies for fau lts detected in the CPU
and memory portions of the system. A defective

CPU module and i ts memory are automatically

removed from service by the hardware, and the

remaining CPU conti nues processing.

Error hand ling for the l/0 interconnections is

managed d ifferently. The paths to and from I/O

adapters are duplicated for checking purposes. If a

fault is detected, the hardware retries the operation.

If the retry is successful , the error is logged, and

operation continues without software assistance.

79

Transaction Processing, Databases, and Fault-tolerant Systems

80

ZON E A

E >-0::
w
f-

G
f-
<(
m

'"'==

AC BOX

DUAL-RAIL

SINGLE-RAIL

DISK OR
TAPE

>- >- >-
0:: 0:: 0::
0 0 0
2 2 2

>- w w w
o:: 2 2 2
0 0:: 0:: 0::

::::J 2 0 0 0

� � [l_ W 0 0 0
0 2 :::: .:::::: ;:,

I
FAN I

Figure 1

�
�

FIREWALL

EDC

ZON E B

CROSSLINK CABLES

A Dual-zone VAX.ft System

MEMORY
INTERFACE
BUS

CROSSLINK
CABLES
TO ZONE B

MODULE
INTE RCONNECT

�
�

F IREWALL

EDC

D

�

CPU
MODULE

1 /0 ADAPTER

Figure 2 Single-zone Structure of a VAX.ft 3000 System

Vol 3 No. 1 Winter 1991 Digital Techt�ical]our nell

If the ret ry is unsuccessfu l, the Fault-tole rant
System Services (FTSS) software performs e rror
recovery. FTSS is a layered software product that is
ut i li zed with every VAX.ft 3000 system. I t provides
the software necessary to complete system error
recovery. For system recovery from a fa i led 1/0
device, an alternate path or device is u sed . All
recoverable fau lts have an associated maximum
threshold value. If this threshold is exceeded, FTSS
performs appropriate device reconfiguration.

Verification of a Fault-tolerant
J::aXSystem

This section entai ls a discussion of the types of sys
tem tests and the fau lt - insertion techniques used

to ensure the correct operation of the VAXft system.
In addit ion, the four-phase verificat ion strategy and
the procedures involved in each phase are reviewed .

There are two types of system tests: d irected and
random. Directed tests, which test specific hard
ware or software features, are used most frequently
i n computer system verification and fol low a strict

test sequence . Complex systems, however, cannot
be completely verified in a d irected fashion.' As a
case i n point , an operat ing system running on a

processor has innumerable states. Directed tests

verify functional operat ion unde r a particular set
of conditions. They may not, however, be u sed to
verify that same functional i ty under a l l poss i ble

system cond i tions.

In comparison, random testi ng allows mult iple
test processes to interact in a pseudo-random or
random fashion. In random testing, test coverage

is i ncreased with add i t ional run-time. Thus, once
the proper test processes are in place, the need to
develop addit ional tests in order to increase cover
age is eliminated. This type of testing also reduces
the effects of the biases of the engineers generating
the tests. While directed test i ng can provide only a

l imited level of coverage, this coverage level can be
well understood. Random test ing offers a poten
tially unbounded level of coverage; however, quan
t ifying this coverage is d ifficult if not impossible.

To achieve the proper level of verification, t he
VAX.ft verif ication ut i l i zed a balance of directed
and random test i ng. D i rected testi ng was used to

achieve a cert a i n base leve l of fu nct ionality, and
random testi ng was used to expand the level of
coverage.

To permit testi ng of system fau lt tolerance i n a
practical amount of t ime, some form of fault i nser

tion is required. The reliabili ty of components used
in computer systems has been improving, and more

Digital Techttical joul"lwl Vol. 3 No. I Winter 1991

Verification of the First Fault-tolerant VAX System

importantly, the number of components used to
implement any funct ion has been dramatical ly
decreasing. These factors have produced a corre
spond i ng reduction in system fa i lure rates. Given
the high reliab i l ity of today's machi nes, it is not
pract ical from a verification standpoint to verify a

system by lett ing i t run unti l fa i lures occur.
Conceptual ly, faults can be inserted in two ways.

First, memory locat ions and registers can be cor
rupted to mimic the results of gate-level fau lts
(software faul t i nsertion). Second, gate-level fau l ts
may be i nserted d irect ly into the hardware (hard
ware fau l t i nsertion). There are advantages to
both techniques. One advantage of software·
implemented fault i nsertion is that no embedded
hardware support is required . ' The advantage of
hardware fault i nsertion, on the other hand, is that
faults are more representative of actual hardware
fa i lures and can reveal unanticipated side effects
from a gate-level fa i lure . To u t i l ize hardware fau l t

insert ion, e i t he r a mechanism must b e designed
into the system, or an external i nsert ion device

must be developed once the hardware is ava i l able.
Given the physical feature size of the components
used today, it is virtual ly impossible to achieve ade
quate fau l t -insertion coverage through an external
faul t -insert ion mechanism.

The error detec t ion and recovery mechanism
determines which fault i nsertion technique is
suitable for each component. Some examples i l l us
t rate this point. For the lockstep portion of the

VAXft 3000 CPUs, software faul t i nsertion is not suit
able because the lockstep functional ity prevents
corruption of memory or registers when fau lts
occur. Therefore, hardware fau lts cannot be mim
icked by modifying memory contents. However,
the software fault-insertion technique was suitable
to test the l/0 adapters s ince the system handles
fau lts in the adapters by detect ing the corruption

of data. Hardware fau l t i nsertion was not sui table
because the 1/0 adapters were implemented with
standard components that did not support hard
ware fault i nsertion.

Because the verif icat ion strategy for the 3000

was considered a fundamental part of the system
development effort, fault insertion points were

built directly into the system hardware. The amount
of logic necessary to implement fau l t i nsert ion is
relatively small . The goals of the fau lt - insertion
hardware were to

• El iminate any corrupt ion of the environment

under test that could result from faul t i nsertion.

For example, if a certa i n type of system wri te

8J

Transaction Processing, Databases, and Fault-tolerant Systems

operation is required to insert a fault, then every
test case wil l be done on a system that is in a

"post-fault- insertion" state.

• Enable the user to d istribute faul ts ran domly
across the system.

• Allow insertion of fau lts during system operation.

• Enable testing of transient and solid faults.

The fault - insertion points are accessed through
a separate serial interface bus isolated from the

operating hardware. This separate interface ensures

t hat the e nvironment under test is unbiased by
fault i nsertion.

E ven with hardware support for fault i nsertion,
only a small number of fault-insertion points can

be implemented relative to the total number possi
ble . Where the number of fau lt- insertion points is

small , the selection of the fault - insertion points

is important to achieve a random d istribution.
Fau lt-insertion points were designed into most of
the custom chips i n the VAXft system . When the
designers were choosing the fault-insertion points,
a s ingle bit of a data path was considered sufficient
for data path coverage . Since a significant portion
of the chip area is consumed by data paths, a high

level of coverage of each chip was achie ved with

relatively few fault-insertion points. The remaining
fault- insertion points could t hen be applied to the

control logic. Coverage of this logic was important
because control logic fau lts resul t in error modes
that are more unpredictable than data path failures.

The effect that a given fault has on the system
depends on the current system operation and when
in t hat operation the fault was i nserted. In the
3000, for example, a failure of bit 3 in a data path

wi l l have significantly different behavior depend

ing upon whether the data bit was incorrect during
the address transmission portion of a cycle or dur
ing the succeeding data port ion. Therefore, the
timi ng of the fault i nsertion was pseudo-random.
The choice of pseudo-random insertion was based
on the fact that t he fault- insertion hardware oper
ated asynchronously to the system under test. This

meant that faults could be i nserted at any time,
without correlation to the act ivity of the system
under test.

Faults may be transient or solid in nature. For
design purposes, a solid fault was defined as a fai l

ure that wil l be present on retry of an operation.
A transient faul t was defined as a fau l t that wil l not

be p resent on retry of the operat ion . Transient
faults do not require the removal of the device that

82

experienced the fault; solid faults do require device
removal. Since the system reacts differently to tran
sient and hard faults, both types of fau lts had to
be verified i n the VAXft system . Therefore, it was
required that the fault - insertion hardware be capa
ble of i nsert i ng solid or transient fau lts. Solid faults
were i nserted by continuall y applying the fau l t
insertion signal . Trans ient faults were i nserted by
applying the fault -insertion signal only unt i l the
machine detected an error.

As noted earlier, the verification strategy ut i lized
both hardware and software fault i nsertion. The

hardware fault - insertion mechanisms al lowed faults
to be inserted into any system environment, includ
ing diagnostics, e xercisers, and the VMS operating

system. As such, it was used for init ial verification
as well as regression testing of the system. The veri

fication strategy for the VAXft 3000 system involved
a multiphase effort. Each of the fol lowing four veri

ficat ion phases built upon the previous phase:

1. Hardware verification under simulation

2. Hardware verification with system exerciser and
fault i nsertion

3. System software verification with fault insertion

4. System application veri f ication with faul t

i nsertion

Figure 3 s hows the funct ional layers of the

VAXft 3000 system in relation to the verification
phases. The numbered brackets to the right of
the diagram correlate to the testing coverage of
each layer. For example, t he system software verifi
cation, phase 3, verified the VMS system, Fault
tolerant System Services (FTSS), and the hardware

platform.
The fol lowing sections briefly describe the four

phases of the VAXft verification.

Hardware Verification under Simulation

Funct ional design verification using software simu
lation is inherently slow i n a design as large as the
VAXft 3000 system. To use resources most efficiently,
a verification effort must i ncorporate a number of
d ifferent model ing levels, which means trad ing off
detail to achieve other goals such as speed.'

VAXft 3000 simulation occurred at two levels: the
module level and the system leveL Module-level
simulat ion verified the base funct ionality of each

module. Once this verification was complete, a sys
tem-level model was produced to val idate the
intermodule functional ity. The system-level model

Vol. 3 No. I Winter 1991 Digital Techt�ical]ourtlal

Verification of the First Fault-tolerant VAX System

TEST PHASE COVERAGE

....---------------. - - - - - - - - - - - -
USER APPLICATION

HOST-BASED VO LUME SHADOWING

�------------------------� - - - - - - - -
VMS 5.4 PHASE 4

FAULT-TOLERANT SYSTEM SERVICES PHASE 3

VAXFT 3000 HARDWARE } PHASE 1 } PHASE 2

Figure 3 Functional Layers of the VAXft 3000 System in Relation to the Verification Phases

consisted of a fu l l dual- ra i I , dual-zone system with
an 1/0 adapter in each zone. At the final stage, h1ll
system testing was performed.

More than 500 d irected error test cases were
developed for gate-level system simu lation. For each
test, the test environment was set up on a ful l y

operational system model, and then the fault was
inserted. A s imulation controller was developed to
coordinate the system operations in the simu lation
environment. The simu lation controller provided
the following control ove r the testing:

• Init ialization of all memory elements and certain

system registers to reduce test time

• Setup of all memory data buffers to be used in

testing

• Automated test execution

• Automated checking of test results

• Log of test results

For each test case, the test environment was
selected from the fol lowing: memory test ing, 1/0
register access, direct memory access (DMA) traf

fic, and interrupt cycles . In any given test case, any

number of the previous tests could be run. These
environments could be run with or without faults
inserted . In addi t ion, each environment consisted
of multiple test cases. In an error handl ing test case,
the proper system environment required for the
test was set, and then the fault was i nserted into
the system. The logic simulator used was designed

to verify logic design. When an i l legal logic condi
t ion was detected, i t produced an error response.
When a fault i nsertion resulted in an i l legal logic
condi t ion, the simulator responded by i nval idat
i ng the test. Because of this, a great deal of t ime was
spent to ensure that faults were i nserted in a way

Digital Technical journal Vol. 3 No. 1 Win te1' 1991

that wou ld not generate i l lega l condit ions. Each
test case was considered successful only when the
system error registers conta ined the correct data

and the system had the abil i ty to continue opera
t ion after the fault.

Hardware Verification with System
Exerciser and Fault Insertion

After the prototypes were available, the verification
effort shifted from simulation to fault insertion on
the hardware. The goal was to insert fau lts using an
exerciser that induced stressful, reproducible hard

ware activ i ty and that allowed us to analyze and
debug the fault easi ly.

Exerciser test cases were developed to stress

the various hardware functions. The tests were
designed to create maximum interrupt and data

t ransfer activity between the CPU and the l/0
adapters. These functions could be tested individ
ually or s imultaneously. The exerciser scheduler
provided a degree of randomness such that the
interaction of functions was representative of a
real operating system. The fault-insertion hardware
was used to achieve a random distribution of faul t
cases across the system.

Because it was possible to insert i n i t ial fau lts
whi le specific functions were performed, a great
degree of reproducibi l i ty was achieved that a ided
debug efforts. Once the full su ite of tests worked
correctly, fault insertion was performed while the
system continually switched between al l fu nc
tions. This test ing was more representative of actual
faults in customer environments, but was less
reproducible.

As previously mentioned, the hardware faul t
insertion tool al lowed the i nsertion of both tran
s ient and solid fa i lures. The VAXft 3000 hardware
recovers from trans ient fa i l ures and u t i l i zes

83

Transaction Processing, Databases, and Fault-tolerant Systems

software recovery for hard fa i l ures. S ince the goal

of phase 2 testing was to verify the hardware, the
focus was on t ransient fau l t i nsertion. Two criteria

for each error case determined the success of the

test. First and foremost, the system must continue

to run and to p roduce correct results. Second, the
error data that the system captures must be correct

based on the fault that was i nserted. Correct error

data is important because it is used to ident ify the

fa i l ing component both for software recovery and

for servicing.

Although the s imulation environment of phase 1

was substant ial ly slower than phase 2, it provided

the designers with more information. Therefore
when problems were discovered on the prototypes

used in phase 2, the fa i l i ng case was transferred to

the simulator for further debugging. The hardware

verif ication also val idated the models and test pro
cedures used in the simulation environment.

System Software Verification with Fault
Insertion

In parallel with hardware verificat ion, the VA.'{ft .)000

system software error hand ling capabi l i t ies were

tested . This phase represented the next higher

level of testing. The goal was to verify the VAX func
tionality of the 3000 system as we l l as the software

recovery mechanisms.

D igital has p roduced various test packages to

verify VAX functionality. Since the VA.'{ft 3000 system
incorporates a VAX chip set used i n the VAX 6000

series, i t was possible to use several standard

test packages that had been used to verify that

system.'

Fau l t - tolerant verif icat ion, however, was not

addressed by any of the existi ng test packages.

Therefore, add it ional tests were developed by com

bin ing the ex isting funct ional test suite with the
hardware fault - insertion tool and software fault

insertion routines. Test cases used included cache
fa i l ure, c lock fa i lure, memory fa i l u re, i ntercon

nect fa i lures, and disk fa i lures. These fa i lures were
applied to the system during various system opera

t ions. In add i t ion, servicing errors were also tested

by removing cables and modules whi le the system

was running. T he complet ion c ri teria for tests

included the fo llowing:

• Detection of the fault

• Isolation of the fa i led hardware

• Continuation of the test p rocesses without

interruption

84

System Application Verification with
Fault Insertion

The goals for the fi nal phase of the VAXft 3000

verifica t ion were to run an application with faul t

i nsert ion and to dl'monstrate that any system
fau lt recovery action had no effect on the process
integrity and data integrity of the applica t ion. The
appl ication used i n the testing was based on the

standard Debi tCred it banking benchmark and was

implemented using t he DECintact layered product.

The bank has 10 branches, 100 tel le rs , and 3,600
customer accounts (10 tellers and 360 accounts

per branch) Traffic on the system was sim u lated

using terminal emulat ion process (VAXRTE) scripts

represent ing bank teller activi ty. T he t ransaction
rate was i n i t ial ly one t ransaction per second (TPS)

and was varied up to the maximu m TPS rate to stress

the system load.

The general test p rocess can be described as

follows:

1 . Started appl ication execution. The terminal emu

lation processes emulating the bank tellers were

started and conti nued u n t i l t he system was

operat ing at the desired TPS rating.

2. Invoked fault insertion. A fault was selected at

random from a table of hardware and software
faults. The terminal emulation process submitted

st imul i to the application before, during, and

after fault insert ion.

3. Stopped term inal emulation p rocess. The appli

cation was run u n t i l a qu iescent state was

reached.

4. Performed resu lt validation. The p rocess i nteg

rity and data i ntegrity of the appl ication were

validated.

All the meani ngful events were logged and time
stamped during the experiments. Process i n tegrity

was proved by verifying continu i ty of t ransact ion
process ing through fa i lures. The time stamps on

the t ransaction execut ious and the system error

logs al lowed these two independent processes to
be correlated.

The proof of data integrity consisted of us ing the

fol lowing consistency ru les for transactions:

1 . The sum of the account balances is equal to the
sum of the teller balances, which is equal to the

sum of the branch balances.

2. For each branch, the sum of the teller balances is

equal to the branch balance.

Vol. 3 No J Winter 1991 Digital Teclmical journal

3. For each transact ion processed, a new record
must be added to the history fi le.

Appl ication verification under fau lt i nsertion
served as the final level of fault-tolerant validation.
Whereas the previous phases ensured that the vari
ous components required for fault tolerance oper

ated properly, the system appl ication verification

demonstrated that these components could oper
ate together to provide a fu lly fau lt-tolerant system.

Conclusions

The process of verify ing fault tolerance requires
a strong architectural test plan. This plan must be

developed early in the design cycle because hard

ware support for test ing may be required. The veri

fication plan must demonstrate cognizance of the

capabil i t ies and l imi tations at each phase of the

development cycle. For example, the speed of s im
u lation p rohibits verification of software error

recovery in a simulation enviro nment. Also, when
a system is implemented with V!.Sl technology, the

abi l ity to phys ically i nsert faults into the system
by means of an external mechan ical mechanism

may not be adequate to properly verify the correct

system error recovery. These and other issues
must be addressed before the chips are fabricated
or adequate error recovery verification may not be

poss ible. I nadequate e rror recovery verification

d irectly increases t he risk of real , u nrecoverable

faults resu l t ing in system outages.

The verification plan for the VAXft 3000 system
consisted of the fol lowing phases and object ives:

l. Hardware simu lation with fault insertion verified

error detect ion, hardware recovery, and e rror

data capture.

2. System exerciser with fault insertion enhanced
the coverage of the hardware simulat ion effort.

3. System software with fau lt i nsertion verified

software error recovery and reporting.

4. System software verification with fau lt inser

t ion verified t he transparency of the system
error recovery to t he application runn ing on

the system.

The rest of any fau l t to lerant system is to survive

a real fault whi le running a customer appl ication.

Remov i ng a module from a machine m ay be an

i mpressive test, bur machi nes fa i l as a result of
modu les fa l l ing out of the backplane. The i n i t ial

rest of the VAXft 3000 system showed that the sys

tem wou ld survive m ost of the faults introduced.

Digital Technicaljournal Vol. 3 No. I 1Vi11ter I')'JI

Verification of the First Fault- tolerant VAX System

Tests a lso revealed problems t h at would have

resu l ted in system outages if left uncorrected .

System enhancements were made in the areas
of system recovery act ions and repa ir ca l l out .

Whereas some of the problems were s i mple
codi ng errors, others were e rrors i n careful ly

reviewed and documented algori thms. Simply pur ,

the co l lect ive wisdom of t he des igners was not

always sufficient to reach the degree of accuracy

desired for this faul t - to lerant system .
A s the VAXft p roduct fam i l y evolves, p erfor

mance and funct ional enhancements wil l be ava i l

able. The test processes described in this paper
wiJI rema i n in use, so t hat every future release
of software wi l l be better than the p revious one.

The combination of hardware and software fau l t

insertion, coupled with physical system disrupt ion

al lows test ing to occur at such a great ly accelerated

rate, that al l test ing performed wi l l be repeated for
every new release.

Riferences

1 . J Crol l , L. Cami l l i , and A. Vaccaro, "Test and

Qual ification of the VAX 6000 Model 400 System."

Digital Technical journal, vol . 2, no. 2 (Spring

1990): 73-83

2. J. Barron, E. Czeck, Z. Segall , and D. Siewiorek,

" Fault Inject ion Experiments Us ing FIAT (Fault
Injection-based Automated Testing," IEEE Trans

actions on Computers, vol. 39, no. 4 (Apri l 1990).

3. R. Calcagni and W Sherwood, "VAX 6000 Model

400 CPU Chip Set Functional Design Verification,"

Digital Technical jou rnal, voL 2, no. 2 (Spring

1990): 64-72.

85

I Further Readings

The Digital Technical]ournal

publishes papers that explore
the technological foundations
of Digital's major products. Each

journal focuses on at least one
product area and presents a
compilation of papers written

� the engineers who developed
the product. The content for
the journal is selected � the

journal Advisory Board.

Topics covered i n previous issues of the Digital
Technical journal are as fol lows:

VAX 9000 Series
Vol. 2, No. 4, Fall 1990
The technologies and processes used to build

D igital 's first mainframe computer, including

papers on the architecture, m icroarchitecture,

chip set, vector processor, and power system,

as well as CAD and test methodologies

DECwindows Program
Vol. 2, No. 3, Summer 1990
An overview and descriptions of the enhancements

D igital's engineers have made to MIT's X Window

System in such areas as the server, toolkit, interface

language, and graphics, as well as contributions

made to related industry standards

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990
The highly expandable and configurable midrange

family of VAX systems that includes a vector p ro

cessor, a high-performance scalar processor, and

advances in chip design and physical technology

Compound Document Architecture
Vol. 2, No. 1, Winter 1990
The CDA family of architectures and services that

support the creation, interchange, and processing
of compound documents in a heterogeneous

network environment

Distributed Systems
Vol. 1, No. 9,]une 1989
Products that allow system resource sharing

throughout a network, the methods and tools to

evaluate product and system performance

Storage Technology
Vol. 1, No. 8, February 1989
Engineering technologies used i n the design,

86

manufacture, and maintenance of Digital's storage

and information management products

CVAX-based Systems
Vol. 1, No. 7, August 1988

CVAX chip set design and multiprocessing archi
tecture of the m id-range VAX 6200 fam ily of

systems and the Micro VAX 3500/3600 systems

Software Productivity Tools
Vol. 1, No. 6, February 1988
Tools that assist programmers i n the development

of high-qual ity, reliable software

VAXcluster Systems
Vol. 1, No. 5, September 1987

System communication architecture, design and

implementation of a d istributed lock manager,

and performance measurements

VAX 8800 Family
Vol. 1, No. 4, February 1987

The m icroarchitecture, internal boxes, VAXBI bus,

and VMS support for the VAX 8800 high-end multi

processor, simulation, and CAD methodology

Networking Products
Vol. 1, No. 3, September 1986
The D igital Network Architecture (DNA), network

performance, LANbridge 100, DECnet -ULTRIX and

DECnet-DOS, monitor design

MicroVAX II System
Vol. 1, No. 2, Mm·ch 1986
The implementation of the microprocessor and

floating point chips, CAD suite, MicroVAX work
station, d isk controllers, and TK50 tape drive

VAX 8600 Processor
Vol. 1, No. 1, August 1985

The system design with pipelined architecture,

the 1-box, F-box, packaging considerations, signal

i ntegrity, and design for reliability

Subscriptions to the Digital Technical journal are

ava ilable on a yearly, prepaid bas is. The subscrip

tion rate is $40.00 per year (four issues). Requests

should be sent to Cathy Phil l ips, D igital Equipment

Corporation, ML01·3/B68, 146 Main Street, Maynard,

MA 01754, U.S.A. Subscriptions must be paid in U.S.

dol lars, and checks should be made payable to

Digital Equipment Corporation.

Single copies and past issues of the Digital
Technical journal can be ordered from D igital

Press at a cost of $ 16.00 per copy.

Vol. 3 No. I Winter 1991 Digital TechnicalJow·nal

Technical Papers and Books by Digital Authors

P. Bernstein, V. Hadzilacos, and N. Goodman,

Concurrency Control and Recovery in Database
Systems (Read i ng, MA: Addison-Wesley, 1987).

P. Bernstein, M. Hsu, and B. Mann, " Implementing

Recoverable Requests Using Queues," Proceedings
1990 ACM 5/GMOD Conference on Management of
Data (May 1990).

T. K. Rengarajan, P. Spiro, and W Wright, "High

Ava ilability Mechanisms of VAX DBMS Software,"

Digital Technical journal, vol . 1 , no. 8 (February

1989): 88-98.

K. Morse, "The VMS/MicroVMS Merge," DEC
Professional Magazine, vol. 7, no. 5 (May 1988).

K. Morse and R. Gamache, "VAX/SMP," DEC
Professional Magazine, vol. 7, no. 4 (April 1988).

K. Morse, "Shrinking VMS," Datamation Quly 15,
1984).

L. Frampton,]. Schriesheirn, and M. Rountree,

" Planning for D istributed Processing," Auerbach
Report on Communications (1989).

Digital Press

Digital Press is the book publishing group of Digital

Equipment Corporation. The Press is an i nterna

tional publisher of computer books and journals

on new technologies and products for users, system

and network managers, programmers and other

professionals. Press editors welcome proposals and

ideas for books in these and related areas.

VAX/VMS: Writing Real Programs in DCL
Paul C. Anagnostopoulos, 1989, softbound,

409 pages ($29.95)

X WINDOW SYSTEM TOOLKIT: The Complete
Programmer's Guide and Specification
Paul]. Asente and Ralph R. Swick, 1990, softbound,

967 pages ($44.95)

UNIX FOR VMS USERS
Philip E. Bourne, 1990, softbound,

368 pages ($28.95)

VAX ARCHITECTURE REFERENCE MANUAL,
Second Edition
Richard A. Brunner, Editor, 1991 , softbound,

560 pages ($44.95)

Digital Tecbnical]ournal Vol. 3 No. I Winter 1991

SOFTWARE DESIGN TECHNIQUES FOR LARGE
ADA SYSTEMS
William E. Byrne, 1991, hardbound,

314 pages ($44.95)

INFORMATION TECHNOLOGY STANDARDIZA
TION: Theory, Practice, and Organizations
Carl F. Cargi l l , 1989, softbound,

252 pages ($24.95)

THE DIGITAL GUIDE TO SOFTWARE
DEVELOPMENT
Corporate User Publication Group of D igital

Equipment Corporation, 1990, softbound,

239 pages ($27.95)

DIGITAL GUIDE TO DEVELOPING
INTERNATIONAL SOFTWARE
Corporate User Publication Group of D igital

Equipment Corporation, 1991, softbound,

400 pages ($28.95)

VMS INTERNALS AND DATA STRUCTURES:
Version 5 Update Xpress, Volumes 1 ,2,3,4,5
Ruth E . Goldenberg and Lawrence]. Kenah, 1989,
1990, 1991 , all softbound ($35.00 each)

COMPUTER PROGRAMMING AND
ARCHITECTURE: The VAX, Second Edition
Henry M. Levy and Richard H. Eckhouse jr. , 1989,
hardbound, 444 pages ($38.00)

USING MS-DOS KERMIT: Connecting Your PC
to the Electronic World
Christine M. Gianone, 1990, softbound,

244 pages, with Kermit D iskette ($29.95)

THE USER'S DIRECTORY OF COMPUTER
NETWORKS
Tracy L. LaQuey, 1990, softbound,

630 pages ($34.95)

SOLVING BUSINESS PROBLEMS WITH MRP II
Alan D. Luber, 1991, hardbound,

333 pages ($34.95)

VMS FILE SYSTEM INTERNALS
Kirby McCoy, 1990, softcover,
460 pages ($49.95)

TECHNICAL ASPECTS OF DATA
COMMUNICATION, Third Edition
john E. McNamara, 1988, hardbound,

383 pages ($42 00)

LISP STYLE and DESIGN
Molly M. Mil ler and Eric Benson, 1990, softbound,

214 pages ($26.95)

87

Further Readings

THE VMS USER'S GUIDE

james F Peters I I I and Patrick J Holmay, 1990,
softbound, :)04 pages (5 28.9'5)

THE MATRIX: Computer Networks and

Conferencing Systems Worldwide

john S. Quarterman, 1990, softbound,

719 pages ($49 95)

X AND MOTIF QUICK REFERENCE GUIDE

Randi J Rost, 1990, softbound,

369 pages ($24.95)

FIFTH GENERATION MANAGEMENT:

Integrating Enterprises Through Human

Networking

Char les M. Savage, 1990, hardbound,

267 pages ($28 9'5)

A BEGINNER'S GUIDE TO VAX/VMS UTILITIES

AND APPLICATIONS

Ronald M. Sawey and ·rroy T Stokes, 1989,
softbound, 278 pages ($26.95)

88

X WINDOW SYSTEM, Second Edit ion

Robert Scheifler and james Gettys, 1990,
softbound, 851 pages ($49.95)

COMMON LISP: The Language, Second Edition

Guy L. Steele jr. , 1990, 1 ,029 pages ($ 38.9'5 in

softbound, $46.95 in hardbound)

WORKING WITH WPS-PLUS

Charlotte Temple and Dolores Cordeiro, 1990,
softbound, 235 pages ($24.95)

To receive information on these or other publ ica

tions from D igital Press, wri te:

D igital Press

Department DTJ
12 Crosby Drive

Bedford , MA 01730
617/276-1536

Or order directly by calling DECdirect at

800-DIGITAL (800-344 -4825).

Vol. 3 No. I lVinll!r 1991 Digital Tecbnical journal

ISSN 0898-901X

Printed in U.S.A. EY-F588E-DP/90 11 02 16.0 MCG/BUO Copyright © Digital Equipment Corporat ion. All Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	DECdta - Digital's Distributed Transaction Processing Architecture
	Digital's Transaction Processing Monitors
	Transaction Management Support in the VMS Operating System Kernel
	Performance Evaluation of Transaction Processing Systems
	Tools and Techniques for Preliminary Sizing of Transaction Processing Applications
	Database Availability for Transaction Processing
	Designing an Optimized Transaction Commit Protocol
	Verification of the First Fault-tolerant VAX System
	Further Readings
	Back cover

