
EY -0061 E- SG- 020 1

Programming
RSX-llM

in FORTRAN

Volume II

EY -0061 E-SG-020 1

Programming
RSX-llM

in FORTRAN

Student Workbook
Volume II

Prepared by Educational Services
of

Digital Equipment Corporation

Copyright © 1982, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com
mitment by Digital Equipment Corporation.· Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-l0 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM . RSTS
UNIBUS VAX RSX

VMS lAS

CONTENTS
Volume I

SG STUDENT GUIDE

INTRODUCTION • • • • • • • • • • • • •
PREREQUISITES. • • • • • • • • • •
COURSE GOALS AND NONGOALS. • •••

. . . .
COURSE ORGANIZATION. • • • ••••••••••
COURSE MAP DESCRIPTION • • • •
COURSE MAP • • • • • • • • • • • • • • • • • •
COURSE RESOURCES • • • • •• • • • • •

• 3
• ·4

• • 4
• ' 5
• 5
• 6
• 7

Required References •••••
Optional References •••••••

HOW TO TAKE THE COURSE • •

• • • • • • 7
7

• • • • • • • 8
PERSONAL PROGRESS PLOTTER. • • • • • •• 13

1 USING SYSTEM SERVICES

INTRODUCTION •
OBJECTIVES • • • • • • • • • • • • • • • •
RESOURCES.. ••• • • • •••••••••••
WHAT IS A SYSTEM SERVICE? ••••••
WHY SHOULD YOU USE SYSTEM SERVICES? •••••••••

To Extend the Features of Your programming
Language •••••••••••••••••
To Ease programming and Maintenance ••••••••
To Increase Performance. • • • • • • • • •••

WHAT SERVICES ARE PROVIDED? •••••••••••••
System and Task Information ••••••••••••
Task Control • • • • • • • • • • • • • • • • • • •
Task Communication and Coord ination. • • • • • • •
I/O to Peripheral Devices. • •••••••••
M ern 0 r y Us e • • • • • • •

OTHER SERVICES AVAILABLE • •
HOW SERVICES ARE PROVIDED.

.
Executive Directives • • • • • • • • • • • • •
Code Inserted into Your Task Image • • • • • • • •

AVAILABLE FILE AND RECORD ACCESS SYSTEMS • • •••••
SYSTEM LIBRARIES • • • • • • • • • • • • •

iii

17
17
17
19
19

19
19
20
20
20
21
21
21
22
22
23
23
26
28
28

2 DIRECTIVES

INTRODUCTION • • • • • • • • • • • • • • • • •
OBJECTIVES •• •• • • • • • • • •
RESOURCES. • • • • • • • • • • • • ••

, INVOKING EXECUTIVE DIRECTIVES FROM A USER TASK
Directive processing • • • • • • • • • • • ••
Functions Available Through Executive
Directives • • • • • • • • • • • • • • • • • •
The Directive Status Word (DSW). • • • • • • •
Sample Program ••••••••••••••
Example using Other Directives • •• • ••
Run Time Conversion Routines • • • • • • • • •

NOTIFYING A TASK WHEN AN EVENT OCCURS. • • • • ••
Event Flag s
Using Event Flags for Synchronization ••
Examples of the Use of Event Flags
for Synchronization •••••

ASYNCHRONOUS SYSTEM TRAPS (ASTs) • • • •

3 USING THE QIO DIRECTIVE

INTRODUCTION • • • • • • • • • • • • • • •
OBJECTIVES • • • • • • • • • • • •
RESOURCES. • • • •• • • • • • • • • • • • • •
OVERVIEW OF QIO DIRECTIVES • • • • • •
PERFORMING I/O • • • • • • • •• •• •
USING QIO DIRECTIVES IN FORTRAN. • • • • • ••
I/O FUNCTIONS. • • • • • • • • • • • • • •
LOG ICAL UNIT NUMBERS (LUNs). • • • • • • • • • • •
SYNCHRONOUS AND ASYNCHRONOUS I/O • • • • • • •
MAKING THE I/O REQUEST • • • • • • • •
THE I/O PARAMETER LIST IN FORTRAN. • • • •••
ERROR CHECKING AND THE I/O STATUS BLOCK. • • • • •
THE QIO DIRECTIVES • • • • • • • • • • • • • • • •

Synchronous I/O. • • • • • • • • • • • • • • •
Asynchronous I/O • • • • • • • • • • • • •

Synchronization With Asynchronous I/O.
TERMINAL I/O • • • • • • • • • • • • • • • • •

Device Specific Functions •••••••••••
I/O Status Block and Terminating Characters ••
Read After Prompt. •• • •••••••••
Read No Echo • • • • • • • • • • • • •
Read Wi th Timeout. • • • • • • •
Term inal- Independent Cursor Control. • • •

iv

33
33
33
35
35

36
38
39
42
46
47
47
48

49
53

63
63
63
65
65
66
66
68
68
74
76
76
77
77
82
82
86
86
87
89
91
93
96

4 USING DIRECTIVES FOR INTERT ASK COMMUNICATION

INTRODUCTION • • • • • • • • • • •• • • • • • • • • • 103
OBJECTIVES • 103
RESOURCE • ,. • 103
USING TASK CONTROL DIRECTIVES AND EVENT FLAGS. • • • • 105

Directives • • • • • • • • • • • •••• • • • 106
SEND/RECEIVE DIRECTIVES. • • • • • • • • • • • • • • • 116

General Concepts • • • • • • •• • • • • • • • 116
Directives • • • • • • • • • • • •• •• • • • 116
Synchroni zing Send Requests Wi th
Receive Requests • • • • • • •
using Send/Receive Directives

.
for Synchronization. • • • • • • • •• • ••
Slaving the Receiving Task •••••••••••

PARENT/OFFSPRING TASKING • • • • • • •• •• • •
Directives Issued by a Parent Task • • • • • • •
Directives Issued by an Offspring Task •••••
Chaining of Parent/Offspring Relationships •
Other Parent/Offspring Considerations ••••••

Retriev ing Command Lines in Spawned Tasks. •
Spawning a Utility or Other MCR
Spawnable Task •• • • • • • • • • •
Task Abort Status. • ••••••••

Summary of Various Methods of Data Transfer
Between Tasks. • • • • • • • • • • I. • •

Comparison of Methods of Data Transfer •
Other Methods of Transferring or Sharing Data

• 117

• 132
• 132
• 133
• 136
• 145
• 146
• 153
• 153

• 153
• 157

• 158
• 158

Between Tasks ••••••••••••••••••• 159

5 MEMORY MANAGEMENT CONCEPTS

INTRODUCTION • • • • • • •
OBJECTIVES • • • • • • • • •

• • • • • • • • • . 163
• • • • • 163

RESOURCES. • • • • • • •••••• • • • • • • 163
GOALS OF MEMORY MANAGEMENT • • • •
HARDWARE CONC EPTS. • • • .'. • • •

• • • • • • • • 165
• • • • •• •• 165

Mapped Versus Unmapped Systems • • • • • . • • 165
Virtual and Physical Addresses • • • • • • • • 170
The KT-l1 Memory Management Uni t • • • • • • • 1 7 ~

Mode Bits •••••••••• • • • • • 173
Active Page Registers (APRs) • •• 173

Converting Virtual Addresses to Physical
Addresses. • • • • • • • • •• • •••

SOFTWARE CONCEPTS. • • • • • •••
Virtual Address Windows ••
Reg ions. • • • • • • • • •

v

• 176
• 178
• 178
• 179

Volume II

6 OVERLAYING TECHNIQUES

INTRODUCTION • 185
OBJECTIVES • 185
RESOURCE • • • • • • • • • • • • • • • • • • • 185
CONCEPTS • • • • • • ••• • • • • • • • • 187
OVERLAY STRUCTURE. • • • • • • • • • • • • • • 188
STEPS IN PROGRAM DEVELOPMENT USING OVERLAYS. • 191
THE OVERLAY DESCRIPTOR LANGUAGE (ODL). • • • • • • 191

ODL Command Line Format. •• •• • •• 191
, TYPES OF OVERLAYS. • • • •• • •••••••••• 195

Disk-Resident. •• •• • • • ••• 195
Memory-Resident. • • • • • • • • • • • •• 197

LOADING METHODS. • • • • • • • • • • • • • • • • • • • 201
Autoload • • • •• • • • • • • ••• • • • 201
Manual Load. • •• • • • • • ••••• 203
Com pa r i so n 0 f a Ta s k Wi th No Over 1 a ys ,
With Disk-Resident Overlays, and
With Memory-Resident OVerlays •••••

LIBRARIES. • • • • • • • • • • •
GLOBAL SYMBOLS IN OVERLAID TASKS •

Data References in Overlays ••
CO-TREES • • • • • • • • • • • •

7 ST ATIC REGIONS

.

• • 204
• • • .' 211

• • 217
• 219

• • • • • • 225

• • 233
• • • • 233
• • • • 233

INTRODUCTION • • • • • • •
OBJECTIVES • • • • • • •
RESOURCE • • • • • • • • •
TYPES OF STATIC REGIONS. •
MEMORY ALLOCATION ••••

. • . • • 235
. • • • . • . . . 236

MAPPING. • • • • • • • • • ••• • • • ••• • • • 237
REFERENCES TO A SHARED REGION.
PROCEDURE FOR CREATING SHARED REGIONS

• • • • 240

AND REFERENCING TASKS. • ••••••••••••••• 241
Creating a Resident Common. • • • •• • ••• 241
C rea t ing a Re fer enc ing Task. • • • • • • • • • • • 249
Accessing a Reg ion for Read-Only or Read/Wri te •• 251

CREATING AND REFERENC INGA SHARED LIBRARY. • • • • • • 252
Task-Building the Shared Library
and the Re fer enc ing Task • • • •

DEVICE COMMONS • • • • • • • • • • • •

vi

• • • • 254
• • 257

8 DYNAMIC REGIONS

INTRODUCTION • • • • • • • • • • • • • • • • • 261
OBJ ECTIVES ,. • • • • • • • • • • • • • 261
RESOURCE • • • • • • • • • • • • • • • • • • • 261
SYSTEM FACILITIES. • •••• • • • • • • • • • • • 263
REQUIRED DATA STRUCTURES • • • • • • • • • • • •• 265

Region Definition Block (RDB). • • 265
Creating an RDB in FORTRAN • • • ••• •• 269
Window Definition Block (WDB). •••• •• 270
Creating a WOB in FORTRAN. • • • • •••••• 273

CREATING AND ACCESSING A REGION. • • • • • 275
Creat ing a Reg ion. • • •• •• • • •• •• 276
Attaching to a Region. • • • • • ••••• 279
Creating a Virtual Address Window. • • • • • • • • 280
Mapping to a Region. • •• • ••••••••• 281

SEND- AND RECEIVE-BY-REFERENCE • • • • • • • • • • • • 289
THE MAPPED ARRAY AREA. • • •• • • • ••••• 297

9 FILE I/O

INTRODUCTION • • • • • • • • • • ••• • • 305
OBJECTIVES • • • • • • • • • • • • 305
RESOURCES. • • • • • • • • • • • •• ••• • • 305
OVER VI EW • • • • •• • • • • • • • • • • • • • • • 307
TYPES OF DEVICES • • • • •• • • • • • • • • • 307

• • • • 307 Record-Oriented Devices ••••••••
Fil e-Structured Dev ices. • • • • • • • •

Types of File-Structured Devices •
• • • • • 307

COMMON CONCEPTS OF FILE I/O. • • •
Common Operations.. • •••••
steps of File I/O. • • • • ••

• • • • 308
• • • • • • 310

• • • • • 310
• • 310

FILES-II • 311
FILES-II Structure • • • •
Directories •••••••
Five Basic System Files.

. . .
Functions of the ACP • • • • • • • •

OVERVIEW AND COMPARISON OF FCS AND RMS •
Common Functions • • • • • • • •

FCS FEATURES • • • • • • • • • • • • • •
File Organizations •••

• • • • • 311
• • • • • 316

• • • • • 319
• • • • • 320

• • • • • • • 323
• • • • • 323

• • • 325
• • • • • 325

Suppo rted Record Types • • • •
Reco rd Access Modes. • • • • • • •
File Sharing •••••••••

• • • • • • • • 325
• • • • • • • • 329
• • • • • • • • 331

vii

RMS FEATURES • • • • • • • • • • • • • • • •• • • 332
File Organizations •••••••••••••••• 332
Record Formats • • • • • • • • • • • • • • •• 334
Record Access Modes •••••••••••••••• 334
File-Sharing Features ••••••••••••••• 336
Summary. • • • • • • • • • • • • •• • •••• 337

10 FILE CONTROL SERVICES

AP

INTRODUCTION • • • • • • • • • • • • • • • • • 341
OBJECTIVES • • • • • • • • • • • • • • • • • • 341
RESOURCE • • • • • • • • • • • • • • • • • • •• • 341
FILE ORGANIZATION VS. RECORD ACCESS. • • • • • • • • • 343
READ AND WRITE ACCESS TO A FILE.. •• • • • • • • 344
TYPES OF RECORDS IN A FILE • • • • • • • • • • • • • • 344
FORMATTED AND UNFORMATTED RECORDS. • • • • • • 345
DECLARING THE SIZE OF A RECORD • • • • • • • • • • • • 345
SUMMARY OF KEYWORDS IN THE OPEN STATEMENT. • • 346

APPENDICES

APPENDIX A GLOSSARY · · · · · · · · · · 367
APPENDIX B CONVERSION TABLES. · · · · · · · · · · 373
APPENDIX C FORTRAN/MACRO-II INTERFACE · · · · · · 375
APPENDIX D PRIVILEGED TASKS . · · · · · · · · · · 377
APPENDIX E TASK BUILDER USE OF PSECT ATTRIBUTES · · · 379
APPENDIX F ADDITIONAL SHARED REGION TOPICS. · · · · · 383
APPENDIX G ADDITIONAL EXAMPLE · · · · · · · · · . · · 397
APPENDIX H LEARNING ACTIVITY ANSWER SHEET · · · · · · 399

viii

1-1
1-2

1-3

2-1

3-1
3-2
3-3
3-4

4-1
4-2

5-1
5-2
5-3
5-4

5-5

FIGURES

Using Executive Directives to Service a Task •••
using Exe~utive Directives to Receive Services
From Other Tasks ••••••••••
Code Inserted into Your Task Image. • • • • •

AST Sequence.
Execution of a Synchronous I/O Request ••••
Events in Synchronous I/O • • • • • • •
Execution of an Asynchronous I/O Request •••••
Events in Asynchronous I/O. • • • • • • • • • • •

parent/Offspring Communication Facilities.
Spawning Versus Chaining (Request and
Offspr ing Information). • • • • • • •

Physical Address Space in an Unmapped System.
Physical Address Space in an 18-Bit Mapped System
Physical Address Space in a 22-Bit Mapped System.
Virtual Addresses Versus Physical Addresses
on an Unmapped System • •• • • • • • • • • •
Virtual Addresses Versus Physical Addresses

24

25
27

55

70
70
73
73

134

147

167
168
169

171

on a Mapped System ••• ~ •••• ~ • • • •• •• 172
5-6 Page Address Registers Used in Mapping a Task •••• 175
5-7 A Task wi th Three Windows to Three Reg ions. • • • • • 181
5-8 Task in Figure 5-7 After Attaching to and Mapping

to a Fo urth Reg ion. • • • • • • • • • •• 182

6-1 A Memory Allocation Diagram • • ••••••• 190
6-2 An Overlay Tree • • • • • • • • • • • • • • • 190
6-3 An Example of Disk-Resident OVerlays. • • • • 196
6-4 An Example of Memory-Resident Overlays. • 199
6-5 Task With Two Overlay Segments. • • • • • • • •• 213
6-6 Resolution of Global Symbols. • • • • •• 218
6-7 Task Without Co-Trees • • • • • • •••••••• 227
6-8 Use of Co-Trees • • • • • •• •••••• •• 228

ix

7-1 Tasks Using a position Independent Shared Region ••• 238
7-2 Tasks Us ing an Absol ute Shared Reg ion • • • • •• 239
7-3 Program Development for Shared Regions •••••••• 243

8-1
8-2
8-3

9-1

9-2

9-3

9-4
9-5
9-6

9-7
9-8
9-9

F-l
F-2
F-3
F-4

F-5
F-6

F-7

SG-l

1-1
1-2

2-1

3-1
3-2
3-3

The Region Definition Block •
The Window Definition Block ••

. • • 267
• • • 272

The Mapped Array Area • • • • • • • . . • • • • 298

Example of Virtual Block to Log ical Block,
to Physical Location Mapping. • • • • • • • • •
How the Operating System Converts Between
Virtual, Log ical, and Physical Blocks ••
FILES-II Structures Used to Support

• 313

• 314

Virtual-to-Log ical Block Mapping. • • • • • • • • 315
Directory and File Organi zation on a Vol ume •• • 317
Locating a File on a FILES-II Volume.. • •••• 318
Flow of Control During the processing
of an I/O Request • • • • • • • • • • •• •• • • 322
Move Mode and Locate Mode • • • • • •• • •• 324
Sequential Files ••••••••••••••••••• 325
RMS File Organizations •••••••••••••••• 333

A Shared Reg ion Wi th Memory-Resident OVerlays • • 384
Referencing Two Resident Libraries. • • • • • •• 386
Referenc ing Combined Li brar ies. • • • • • • • 388
Building One Library, Then Building
a Referencing Library •••••••••••••••• 390
Revectoring • • • • • • • • • •• ••• •• • 391
Using Revectoring When Referenced Library
Has Overlays. • • • • •• • • • • •• • ••• 393
Cluster Libraries •••••••••••••••••• 395

Typical Co urse Sched ules. •

Standard Libraries ••
Resident Libraries ••

Types of Directives •

Common (Standard) I/O Functions ••••••••
I/O Parameter List for Standard I/O Functions •
Some Special Terminal Function Codes ••••••

x

TABLES

. . . 12

29
30

37

67
75
88

4-1

4-2
4-3

4-4
4-5

4-6
4-7
4-8

4-9
4-10

4-11
4-12

Task Control Directives and Their Use
for Synchronizing Tasks ••••••••••••••• 107
Stopping Compared to Suspend ing or Wai ting.. •• 108
Event Flag Directives and Their Use
for Synchronizing Tasks ••••••••••••••• 109
The Send/Receive Data Directive • • • • • • • • • • • 117
Methods of Synchronizing a Receiving Task (RECEIV)
With a Sending Task (SEND) •••••••••
Standard Exit Status Codes ••••••••
Comparison of Parent Directives •••••
Directives Used by a Task to Establish138

• I! •

• 118
• 135
• 136

• • • 138
• 145

a parent/Offspr ing Relationship ••••••
Directives Which Return Status to a parent Task
Directives Which Pass Parent/Offspring Connections
to Other Tasks ••••••••••••••
Task Abort Status Codes • • • • • • • • •
Comparison of Methods of Data Transfer
Between Tasks • • • • • • • • • • • • • • • • •

148
• 157

• 158

5-1 Mapped Versus Unmapped Systems. • • • • • • • 166
5-2 APR and Virtual Address Correspondence •••••••• 174

6-1

7-1
7-2

8-1
8-2
8-3

Comparison of Overlaying Methods.

Types of Static Regions Available on RSX-11M.
Required Switches and Options for Building
a Sh a r ed Reg ion • • • • • •• • • • • • •

• • 210

• 236

• • 244

Memory Management Directives.
Reg ion S ta t us Wo rd. • • •
Window Status Word. • • • • •

• • • • • • 264
• • • • • • 268
• • • • • • 274

9-1 Compar ison of Physical, Log ical and Virtual Blocks •• 312
9-2 Examples of Use of F11ACP Functions • • • • • • • • • 321
9-3 Comparison of FCS Record Types. • • • • • 328
9-4 Comparison of Sequential Access I/O and

Random Access I/O • • • • • • • • • • • • • • • • • • 330
9-5 File Organization, Record Formats, and Access Modes. 335
9-6 Comparison of FCS and RMS •••••••••••••• 338

B-1 Decimal/Octal, Word/Byte/Block Conversions •••••• 373
B-2 APR/Virtual Addresses/Words Conversions.. • •• 373

xi

EXAMPLES

2-1 Requesting a Task From Another Task • • • • • • • •• 41
2-2 Using Some Miscellaneous Directives • 44
2-3 Wai ting for- an Event Flag • • • • • • • • • • • • •• 50
2-4 Setting an Event Flag • • • • • • • • • • • • • • 52
2-5 Using a Requested Exit AST. • • • • • •• 57

3-1
3-2

3-3
3-4
3-5
3-6

4-1
4-2
4-3
4-4

4-5
'4-6
4-7
4-8

4-9

6-1
6-2
6-3

6-4

6-5
6-6

7-1
7-2

Synchronous I/O • • • • • • • • • •
Asynchronous I/O Using Event Flags
for Synchronization ••••
Prom pt i ng fo r Input • • • •
Read No Echo ••••••••
Read With Timeout •••••
Terminal-Independent Cursor Control

.

.

80

84
90
92
94
98

Synchroni zing Tasks Using Suspend and Resume.. • III
Synchronizing Tasks Using Event Flags •••••••• 114
Synchronizing a Receiving Task Using Event Flags ••• 120
A Receiving Task Which Can be Run Before or After
the Sender. • • • • • • • • • • • • • • • • • 124
Synchroni zing a Receiv ing Task Using RCDS • • • • •• 129
A Task Which Spawns PIP • • • • • • • • • • • • • • • 140
A Generalized Spawning Task ••••••••••••• 143
An Offspring Task Which Chains Its parent/Offspring
Connection to PIP • • • • • • • • • • • • • • • • • • 150
A Spawned Task Which Retrieves a Command Line •••• 155

Description of An Overlaid Task • • • • • • • •• 189
Map File of Example 6-1 Without Overlays ••••••• 205
Map File of Example 6-1 with Disk-Resident
Overlays ••••••
Map File of Example 6-1 with Memory-Resident

• • 207

Overlays. • • •••••••••••••• 209
A Task Wi th Two Overlay Segments. • • • • • • • • • • 216
Complex Example Using Overlays ••• '. • • • •• • 221

Resident Common Referenced with FORTRAN COMMON •••• 247
Shared Library •••••••••••••••••••• 255

xii

8-1 Creating a Region •••••••••••••••••• 278
8-2 Creating a Region and Placing Data in It ••••••• 284
8-3 Attaching to an Existing Reg ion and Reading Data

8-4
8-5
8-6

From It • • • • • • • • • • •
Send-by-Reference • • • • • •
Rece ive- by-Re ference. • • • •
Use of the Mapped Array Area.

.
.

10-1 Creating a Sequential File with Variable

• 287
• 292
• 295
• 300

Length Records •••••••••••••••••••• 348
10-2 MACRO Equivalent of Example 10-1 ••••••••••• 349
10 - 3 P r og r am to Re ad a F i I e C rea ted in 10 -1 • • • • • • • • 3 51
10-4 Creating a File with Sequential, Fixed

Length Records. • • • • • • • • • • • • • • • 353
10-5 Reading a Fixed Length Record • • • • • • • • • • 355
10-6 Creating a Direct Access File • • • • • • • • • • • • 357
10-7 Creating an Unformatted, Direct Access File • 359
10-8 Creating a Segmented File • •• •••••• • 361
10-9 Creating a File using Block I/O. • • • • • • •• 362

G-1 Reading the Event Flags (for Exercise 1-1) •• • • 397

xiii

OVERLAYING TECHNIQUES

OVERLAYING TECHNIQUES

INTRODUCTION

Overlays are used to allow a task to be developed and run if the
amount of memory available or virtual address space for a task is
insufficient. This module explains the various overlay techniques
which are available and how to use them.

OBJECTIVES
1. To determine whether to use a disk-resident or

memory-resident overlay in a given situation

2. To construct overlay structures
descriptor language

3. To write tasks using overlays.

using the overlay

RESOURCE
• RSX-IIM/M-PLUS Task Builder Manual, Chapters 3 and 4

185

OVERLAYING TECHNIQUES

CONCEPTS

A task may be too large to fit in the available memory. This may
happen because it is larger than the total amount of memory on the
system. More likely, it is because it is larger than the
partition it is to run in, or the available space within the
partition. The partition is probably used at the same time by
other tasks, hence, the available space may be considerably less
than the full partition.

For example, a 20K word task may have to fit in 15K words of
memory. The task can use overlays and load only portions of the
code at a time and just use 15K words of memory. Typically, the
pieces which overlay each other contain subroutines.

As an example, consider a task with main code and two subroutines,
G and H, which overlay each other. The main code calls subroutine
G first, causing GiS code to be read into memory. Later, the main
code calls subroutine H, causing His code to be read into the same
memory locations, overlaying subroutine G. If the main code later
calls G, GiS code overlays subroutine H. As the task executes,
overlaying is performed whenever necessary. You can choose to
have all loading of overlay segments done automatically or you can
load them manually with specific calls to a loading routine.

In addition to physical memory limitations, tasks on PDP-II
systems have virtual memory limitations. As we learned in the
last module, a task can use a maximum of 32K words of virtual
addresses at a time. A task may require, say, 40K of virtual
memory, thereby exceeding the 32K virtual addressing limit.
Overlays loaded from disk would permit this task to run in 32K
words or less of physical memory, and allow all of the code loaded
at any given time to be addressed. Therefore, 32K words, or less,
of code are loaded and addressed at anyone time, satisfying the
virtual address limit. Or, using a special kind of overlay, all
40K words of code can be loaded into memory, but the task maps
only 32K words of code at a time. This means that the task stays
within the virtual addressing limits even though it uses 40K of
physical memory.

These special kinds of overlays are called memory-resident
overlays. They overlay by remapping rather than by reloading code
into memory.

187

OVERLAYING TECHNIQUES

An overlaid task can have several program segments. A program
segment consists of part or all of one or more object modules.
Each of the object modules consists in turn of one or more program
sections (Psects). There is always a single resident root
segment. This segment is loaded when the task is first loaded and
remains· loaded and mapped at all times. In addition, there are
overlay segments which either:

reside on disk unless needed and share virtual address
space and physical memory.

stay in memory once needed and share virtual address space
only.

There is one restriction on subroutines in an overlay segment.
They cannot call subroutines which are located in a segment which
overlays itself. The code for only one segment or the other is
available at anyone time, and never both. We say that the
segments must be logically independent.

There are some drawbacks to using overlays. Additional code is
required to handle the overlay structure and the loading and/or
mapping of the overlay segments. Also, some execution time is
required to load and/or map the overlay segments.

OVERLAY STRUCTURE

Example 6-1 lists the subroutines (corresponding to overlay
segments) which each segment calls during the execution of a task.
In addition, the sizes of the various modules are listed. If the
task is built without overlays, it is 17K words in size.

We can reduce the amount of memory needed to 8K words by using
overlays. Figure 6-1 shows a likely overlay structure, using a
memory allocation diagram. This picture represents the overlaying
or sharing of virtual and/or physical address space in the task.
Figure 6-2 shows another method for showing the same overlay
structure, an overlay tree. It is easier to draw but doesn't
allow you to estimate the size of the task. As the calculation
below Figure 6-1 shows, the largest pieces which will ever be
needed at anyone time are PROG, the root, and overlay segments
SUBI and B. These total 8K words, so this task can run in 8K
words of physical memory.

188

OVERLAYING TECHNIQUES

Main Segment: PROG

PROG calls: SUBl, SUB2, SUB3
SUBI calls: A, B
SUB2 calls: none
SUB3 calls: C, D, E

Segment Size

PROG 4K words
SUBI 2K words
SUB2 3K words
SUB3 lK words
A lK words
B 2K words
C lK words
D 2K words
E lK words

TOTAL 17K words

Example 6-1 Description of An Overlaid Task

189

OVERLAYING TECHNIQUES

A B
!"'--

C 0 E

SUBl
SUB2

SUB3

PROG

TK-7764

Figure 6-1 A Memory Allocation Diagram

Overlaid Task Size = Size of Root + Sum of lengths of segments
using, the most overlay
area at anyone time

= Size of PROG + Size of SUB1 + Size of B
= 4K + 2K + 2K = 8K

A B C 0 E

T I

I

I

SUB1 SUB2 SUB3

I

I
I

PROG

TK-7765

Figure 6-2 An Overlay Tree

190

OVERLAYING TECHNIQUES

STEPS IN PROGRAM DEVELOPMENT USING OVERLAYS

Use the following steps in developing a task which uses overlays:

1. Compile each module, producing a .OBJ file for each.

2. Use the editor to create an overlay descriptor file
(defines the overlay structure for the Task Builder).

3. Task-build using the overlay descriptor file as the only
input file.

THE OVERLAY DESCRIPTOR LANGUAGE (ODL)

The overlay descriptor language (ODL) is a fairly simple language
which is used to define the overlay structure for the Task
Builder. Statements are placed in a text file which has a file
type • 0 D L • (e • g • , EXAM P L E • OD L) • It i sid en t i fie d to th eTa s k
Builder as a special file by using the 10VERLAY DESCRIPTION input
file qualifier (IMP in MCR) in the task-build command line.

ODL Command Line Format

The ODL command lines use the following format:

label: directive argument-list ;comment

where:

label - a one to six character symbolic, required only on a
.FCTR directive.

directive - one of the following

.ROOT

.END

.FCTR
• NAME

.PSECT

- indicates the start of the overlay tree
- indicates the end of input
- allows naming of subtrees
- allows naming a segment and assigning

attributes
- allows special placement of a global

program section (Psect) - typically
used only in special cases in MACRO-II.

191

OVERLAYING TECHNIQUES

argument list - a list of .OBJ files and/or object
libraries, separated by hyphens or
commas, and grouped together with
parentheses.

comment - a comment to annotate the line

The separators have the following meaning:

• Parentheses' ()'

enclose the segments to be overlaid

• The hyphen I_I

indicates the concatenation of virtual address space

• The comma ',I

separates the segments to be overlaid

192

OVERLAYING TECHNIQUES

Examples of ODL:

1. X, the root of a task, calls subroutines Y and Z.

.ROOT

.END

Y Z

x

X-(Y,Z)

Explanation: X is the root segment, Y and Z are each
overlay segments. Virtual addresses are
assigned to X first. Starting after that,
Y and Z begin at the same virtual address.
Either Y or Z (never both) is loaded and
mapped using those virtual addresses.

2. Using the information from Example 1, Y calls subroutines U
and V.

.ROOT

.END

U
I

I
y

V

Z

X

X-(Y-(U,V) ,Z)

Explanation: Add to Example 1. U and V are overlay
segments which overlay each other. After
the last address for Y, virtual addresses
begin for U and V.

193

OVERLAYING TECHNIQUES

3. Using Example 1 again, add subroutine A to the root segment.

.ROOT

.END

y Z

A
X

X-A-(Y,Z)

Explanation: X and A together make up the root segment.
Virtual addresses are assigned first to X and.
then to A. After that, Y and Z are assigned
virtual addresses.

4. Using ODL to describe Example 6-1 (Figures 6-1 and 6-2):

.ROOT

.END
PROG-(SUBl-(A,B) ,SUB2,SUB3-(C,D,E»

Explanation: PROG is the root segment. SUBl, SUB2, and
SUB3 overlay each other, beginning at the
same virtual address. A and B overlay each
other, beginning after SUBI. C, D, and E
overlay each other, beginning after SUB3.

5. Using the .FCTR directive to describe Example 6-1:

PARTl:
PART2:

.ROOT

.FCTR

.FCTR

.END

PROG-(PARTl,SUB2,PART2)
SUBl-(A,B)
SUB3-(C,D,E)

Explanation: Substitute SUBl-(A,B) for PARTI in the first
line. Substitute SUB3-(C,D,E) for PART2 in
the first line.

194

OVERLAYING TECHNIQUES

TYPES OF OVERLAYS

There are two types of overlays available, disk-resident overlays
and memory-resident overlays. In fact, both are loaded from disk.
The distinction is that disk-resident overlays are always loaded
from disk every time they are needed, while memory-resident
overlays are loaded from disk only the first time they are needed.
After that, they remain in memory and remapping is used to overlay
segments as needed.

Disk-Resident

Disk-resident overlays are available on all RSX-IIM systems. See
Figure 6-3 for an example of a task with a root segment and three
disk-resident overlays. On initial load, only the root segment
MAIN is loaded. Overlay segments are loaded from disk whenever
required. This typically occurs when a subroutine in the overlay
segment is called. So if the root overlay segment MAIN contains .a
call for subroutine A, for example, segment A is loaded from disk
prior to the transfer of control to A. If, after the subroutine
returns control to MAIN, a call is made to subroutine B, segment B
is loaded into memory right over segment A. If a call is later
made to subroutine C, segment C is loaded right over segment B.
This loading of overlay segments is performed whenever necessary.
The subroutines may be called in any order and each subroutine may
be called any number of times in the course of task execution.

The same starting virtual address is assigned to all three overlay
segments, A, B, and C, beginning at the next 32(10) word boundary
after the code for MAIN. So A, B, and C use the same virtual
addresses and are loaded starting at the same physical address.
One virtual address window maps the entire task, just the code in
memory is changed when an overlay is loaded.

This technique is useful when the entire task is too large to fit
into the space allowed for it. In the example in Figure 6-3, a
22K word .task runs in 15K words of physical memory. Disk-resident
overlays are the default overlay type. The examples in the
previous section all produce disk-resident overlays.

195

OVERLAYING TECHNIQUES

160000 APR7

140000 APR6

120000 APR5

100000 APR4

60000 APR3

WINDOW 40000 APR2
o

20000 APR1

VIRTUAL
MEMORY

LOADED
AS NEEDED •

t----"-"---'--L....--.................... .

INITIAL
LOAD

AND MAP
o APRO '"-______ ___ _

PHYSICAL
MEMORY

TIME1 TIME2 TIME3

C
A

B

M~IN

(ROOT SEGMENT)

~------
HEADER AND STACK

15K WORDS

TK-7766

Figure 6-3 An Example of Disk-Resident Overlays

196

OVERLAYING TECHNIQUES

Memory-Resident

Memory-resident overlays are available only on mapped systems
which support the memory management directives. See Figure 6-4
for the same task as in Figure 6-3, this time with memory-resident
overlays. On initial load, again only the root segment MAIN is
loaded. The first time an overlay seg~ent is needed it is loaded
from disk. However, once a segment is loaded it remains in memory
and is not reloaded from disk.

If subroutine A is called first, overlay segment A is loaded and
virtual address window I is mapped to A. If, after the subroutine
returns control to MAIN, a call is made to subroutine B, then
segment B is loaded, but not directly over A. Instead, it is
loaded into another area of memory, and then virtual address
window 1 is mapped to B. If a call is later made to subroutine C,
segment C is loaded into another area of memory, and virtual
address window 1 is mapped to C.

The real gain in run-time efficiency is made when an overlay is
needed again. If another call is mape to A, overlay segment A
does not have to be loaded again from disk. It is already
memory-resident. Therefore, virtual address window 1 is simply
remapped from segment C to segment A. Any additional overlaying
is performed by remapping, with no further loading of overlay
segments necessary. Again, the subroutines may be called in any
ord~r and each subroutine may be called ~ny number of times.

The advantage of this approach is that after the first load, it is
much faster than disk-resident overlays. However, there is no
savings in the use of physical memory. In fact, a bit more memory
is required than with a non-overlaid task. So its main use is for
overcoming the 32K word virtual address limit when execution time
efficiency is important. A 44K word task can use memory-resident
overlays if there is enough memory. available and the time
necessary for loading disk-resident overlay segments is
unacceptable.

The root segment uses one window and each overlay area requires a
separate window. This means that virtual addresses for each
overlay segment begin at the starting virtual address for the next
highest APR, corresponding to a 4K word boundary. Because the
root segment is 9K(10), APRs 0, 1, and 2 must be used to map the
root segment. Notice that A, B, and C all begin at virtual
address 60000, for APR 3~

197

OVERLAYING TECHNIQUES

This means that virtual addresses 44000-57777 cannot be used by
this t"ask. If in fact MAIN were extended, then these virtual
addresses would be used. Remember, this doesn't mean that any
physical memory is wasted; but it does mean that careful
allocation of sizes to the various segments is necessary to avoid
wasting virtual address space. Note that the maximum number of
overlay areas with memory-resident overlay is seven since the root
segment requires one virtual address window and each overlay level
requires another virtual address window.

To indicate that you want memory-resident overlays, place an
exclamation point (1) before an overlay specification. The'l'
applies only to the first level; the next level may have
disk-resident overlays or memory-resident overlays again. The
only restriction on mixing of types is that once a level has
disk-resident overlays, no higher level may have memory-resident
overlays.

198

160000 APR7

140000 APR6

120000 APR5

{

100000 APR4
WINDOW
1

60000 APR3

~I N DOW 20000 AP R 1

OVERLAYING TECHNIQUES

VIRTUAL
MEMORY

MAIN
(ROOT SEGMENT)

(9K WORDS)

-----~

INITIAL LOAD
•

AND MAP {

40000 APR2

o APRO '--_______ -'-________ _

-

-

PHYSICAL
MEMORY

C

B

A

MAIN

(ROOT SEGMENT)

HEADER AND STACK

TK·1767

Figure 6-4 An Example of Memory-Resident Overlays

199

OVERLAYING TECHNIQUES

Examples of .ODL files for memory-resident overlays:

1. X, the root of a task, calls subroutines Y and Z.

y Z

x

• ROOT X -! (Y , Z)
.END
The! makes the overlays memory-resident.

2. Using the information from Example 1, Y calls subroutines 'U
and V.

I

U J V

Y Z

X

a. All memory-resident overlays:

.ROOT

.END
X-I (Y-! (U, V) , Z)

b. Some memory-resident
overlays:

overlays,

.ROOT

.END

c. Illegal mixture:

.ROOT

.END

X-I (Y-(U,V) ,Z)

x-(Y-! (U,V) ,Z)

some disk-resident

Explanation of c.: This mixture is illegal because the first
level (Y and Z) is disk-resident. The next higher level
cannot have memory-resident overlays. Therefore, U and V
cannot be memory-resident.

200

OVERLAYING TECHNIQUES

LOADING METHODS

There are two loading methods, autoload and manual load. With
autoload, any necessary loading and/or remapping (in the case of
memory-resident overlays) is done automatically and is transparent
to the program. With manual load, the overlay segments are loaded
by specific user calls to a loading routine. Autoload and manual
load cannot be mixed in the same task.

Autoload

When a call is made to a subroutine in an overlay segment, an
autoload routine takes control before the transfer to the
subroutine is made. It checks to find out whether the required
segment is already loaded or loaded and mapped. It performs any
necessary loading and/or remapping. Following that, the transfer
to the called subroutine is made.

Autoload is path loading, meaning that all segments along the path
to the required overlay segment are loaded. For example, in
example 2 in the previous section, involving X, Y, U, V, and Z, if
a call from segment X is made to subroutine U, both Y and U are
loaded. (However, the auto-load routine checks to see if either Y
or U is already in memory and if so, the segments are not loaded.)

Autoload is indicated by an asterisk (*) before an overlay
specification in an ODL line. An asterisk outside a set of
parentheses applies to all levels inside the parentheses.

The advantages of autoload are that it is easy to use and that it
does not require changes in the source code. For instance, you
could make changes in the ODL commands for the task but you would
not have to make any cbanges in the source code. One disadvantage
to autoload is that it increases the size of the segments, since
the autoload code plus its data structures must be included in the
task. Another disadvantage is that it executes slower than manual
load, since the autoload code has to check for whether the
required segment is available or not each time an autoloadable
segment is called. In addition, autoload must be performed
synchronously. See Section 4.1 (on Autoload) i,n the
RSX-llM/M-PLUS Task Builder Manual for more information about
autoload.

201

OVERLAYING TECHNIQUES

Examples of autoload:

1. X, the root of a task, calls subroutines Y and Z.

y Z

x

With disk-resident overlays:

• ROOT,
.END

X-*(Y,Z)

With memory-resident overlays:

.ROOT

.END
X-*!(Y,Z)

2. Using the information from Example 1, Y calls subroutines U
and V.

U I V

Y Z

X

With disk-resident overlays:

.ROOT

.END
X-*(Y-(U,V) ,Z)

With memory-resident overlays:

.ROOT

.END
X-*! (y-! (U,V) ,Z)

With some memory resident and some disk resident overlays:

• ROOT
.END

X-*! (Y-(U,V) ,Z)

202

OVERLAYING TECHNIQUES

Manual Load

With manual load, you must call the subroutine MNLOAD in the main
program or any subroutines to load and/or map any required overlay
segment before calling a subroutine in that segment.
Additionally, you must keep track of which segments are currently
available to avoid a transfer of control to an incorrect segment,
and to avoid unnecessary calls to the loading subroutine. Manual
load is not path loading. In example 2 of the previous section,
if X calls U, it can load just segment U, without loading segment
Y, unless that is desired. See Section 4.2 (on Manual Load) in
the RSX-IIM/M-PLUS Task Builder Manual for more information on
manual load.

Manual load is the default loading' method. Anytime that a segment
is not preceeded by an asterisk (*) in the ODL file, manual load
is used.

The advantages of manual load are that smaller overlay segments
result, it is usually more run time efficient, and loading of
overlay segments can be performed either synchronously or
asynchronously. The disadvantages are that the user must keep
track of things and that it requires special coding in the source
program.

203

OVERLAYING TECHNIQUES

Comparison of a Task With No Overlays, With Disk-Resident Overlays, and
With Memory-Resident Overlays

Example 6-1, shown earlier in the module, and repeated below for
convenience, shows a main program which calls a subroutine, which
in turn calls another subroutine, etc. Note that the sizes shown
for the various parts of the task are only approximate.

Main Segment: PROG

PROG calls: SUBl, SUB2, SUB3
SUBl calls: A, B
SUB2 calls: none
SUB3 calls: C, D, E

Segment Size (in words)

PROG 4K
SUBl 2K
SUB2 3K
SUB3 lK
A lK
B 2K
C lK
D 2K
E lK

Total 17K

Example 6-1 Description of an Overlaid Task

Example 6-2 shows part of the task-build map for the task in
Example 6-1 when the task is built with no overlays.

Example 6-3 shows the map when Example 6-1 is built with all
disk-resident overlays.

Example 6-4 shows the map when Example 6-1 is built with all
memory-:-resident overlays.

Example 6-2 does not use overlays; therefore no .ODL file is
required. Examples 6-3 and 6-4 use overlays; therefore they
require a .ODL file. These files are shown along with the map.

204

OVERLAYING TECHNIQUES

Example 6-2 has a root segment but does not have any overlay
segments. Note that a single virtual address window maps the
entire task. The virtual address limits of the task are 000000(8)
and 105357(8), meaning that these virtual addresses are used to
reference the task code when it is loaded into memory. The task
image is 17792(10) words long; hence 17792(10) words of physical
memory are required to load and run the task.

Task-build command:

LINK/MAP PROG,SUBl,A,B,SUB2,SUB3,C,D,E,
LB:[l,l]FOROTS/LIBRARY

Partition name : GEN
Identification : 01
Task UIC : [305,301]
Stack limits: 000254 001253 001000 00512.
PRG xfr address: 021254
Total address windows: 1.
Task imaSe size 17792. words
Task address limits: 000000 105357
R-W disk blk limits: 000002 000107 000106 00070.

*** ROOT SEGMENT: PROG

R/W mem limits: 000000 105357 105360 35568.
Disk blk limits: 000002 000107 000106 00070.

Example 6-2 Map File of Example 6-1 Without Overlays

205

OVERLAYING TECHNIQUES

Example 6-3 with disk-resident overlays, has a root segment, PROG,
and eight overlay segments. Note that a single virtual address
window maps the entire task when just disk overlays are used;
i.e., when no memory resident overlays are used. The overlay
description shows the virtual addresses and sizes of the segments.
On the right side, the segments are listed, lined up by overlay
level. Segments SUBl, SUB2, and SUB3 overlay each other. They
all begin at virtual address 022200(8), right after the root
segment PROG. At various times, virtual addresses starting at
022200(8) reference the memory code of the overlay segment which
is actually loaded in memory at that time.

Segments A and B overlay each other, beginning with virtual
address 032234(8), right after SUBI. In a similar way, segments
C, D, and E begin at viitual addresses 026250(8), right after
SUB3. With disk-resident overlays, only virtual addresses
000000(8) to 042237(8) are used to reference the task in memory,
compared to 0000000(8) to 105357(8) without overlays. This task
requires only 8800(10) words of memory, compared to 17792(10)
words with no overlays.

206

OVERLAYING TECHNIQUES

PROG.ODL file:

.ROOT PROG-L-*(SUBI-L-(A-L,B-L) ,SUB2-L,SUB3-L-(C-L,D-L,E-L))
L: •. FACTR LB: [1,1] FOROTS/LIBRARY

.END

Task-build command:

LINK/MAP PROG/OVERLAY_DESCRIPTION

Note that LB:[l,l]FOROTS/LIBRARY must be concatenated with each
segment in the ODL file. In the remaining examples of ODL files,
the concatenation of the library to each segment will not be shown
in order to simplify the appearance of the ODL file.

Partition name : GEN
Identification : 01
Task UIC [305y301J
Stack limits: 000260 001257 001000 00512.
PRG xfr address! 021260
Total address windows: 1.
Task ima~e size 8800. words
Task address limits: 000000 042237
R-W disk blk limits: 000002 000120 000117 00079.

EX63.TSK Overla~ description:

Base Top Len~th -_ _--
000000 022177 022200 09344. F'ROG
022200 032233 010034 04124. SUBl
()32234 036237 004004 02052.
O:322~54 042237 010004 04100.
022:~00 036203 014004 06148. SUB2
022200 026247 004050 02088. SUB3
()26250 032253 004004 02052.
()262~50 03c!)253 010004 04100.
()26250 032253 004004 02052.

A
B

C
D
E

Example 6-3 Map File of Example 6-1 With Disk-Resident Overlays

207

OVERLAYING TECHNIQUES

Example 6-4, with memory-resident overlays, also has a root
segment, PROG, and eight overlay segments. Notice -that three
virtual address windows are required for this task, one for the
root segment and one for each other overlay level. PROG uses
virtual addresses 000000(8) to 023077(8), slightly more than with
Example 6-3. However, segments SUB1, SUB2, and SUB3 begin at
virtual address 40000(8) corresponding to the next available APR,
APR 2, and not right after PROG. This is necessary because the
virtual address window must begin with the next APR. Segments A
and B begin at 60000(8), since the next virtual address window
begins with APR3. Segments C, D and E also begin at 60000(8) for
the same reason. With memory-resident overlays, virtual addresses
000000(8) to 077777(8) are used and the task requires 18464(10)
words in memory. The memory-resident overlay version of the task
requires the most virtual memory and also the most physical memory
of the three examples.

208

OVERLAYING TECHNIQUES

PROG.ODL file:

.ROOT PROG-*1 (8UB1-l (A,B) ,SUB2,8UB3-1 (C,D,E))

.END

Task-build command:

Example 6-4

LINK/MAP PROG/OVERLAY_DESCRIPTION

Partition name BEN
Identification 01
Task UIC [305,301]
Stack limits: 000320 001317 001000 00512.
PRG xfr address: 021320
Total address windows: 3.
Task imase size 18464. words
Task address limits: 000000 077777
R-W disk blk limits: 000003 000122 000120 00080.

EXDOVR.TSK Overlay description:

Base Top Lensth

000000 023077 023100 09792. PROG
040000 050077 010100 04160. SUBl
060000 064077 004100 02112.
O(SOOOO 0700T7 010100 04160.
040000 O~j4077 014100 06208. SUB2
040000 044077 004100 02112. SUB3
060000 064077 004100 02112.
060000 070077 010100 04160.
060000 064077 004100 02112.

A
B

C
D
E

Map File of Example 6-1 With Memory-Resident

209

Overlays

OVERLAYING TECHNIQUES

Table 6-1 refers to Examples 6-2, 6-3, and 6-4.

Table 6-1 Comparison of Overlaying Methods

Method Task Size Windows

Non-Overlaid 17792(10) Words 1

Disk-Resident

of Memory

70(10) Blocks
on Disk

105360(8)
Virtual
Addresses Used

8800(10) Words
of Memory

79(10) Blocks
on Disk

42238(8)
Virtual
Addresses Used

Memory-Resident 18464(10) Words
of Memory

80(10) Blocks
on Disk

100000(8)
Virtual
Addresses Used

1

2l~

3

Advantages and
Disadvantages

Advantages
Smallest task size on
disk
Fastest execution
Simplest to develop

Disadvantages
Maximum task size 32K
words
Task smaller than 32K
words but tod large
for partition or for
available space in
partition

Advantages
Uses the smallest
amount of physical
memory
Uses the least amount
of virtual address
space

Disadvantages
Slowest execution
time; overlay segments
loaded from disk when
needed

Advantages
Faster execution than
disk-resident over
lays
Task resident in
memory at one time

Disadvantages
Uses the most memory
and disk space
May waste virtual
address space
Requires space in
memory to hold the
entire task

OVERLAYING TECHNIQUES

Table 6-1 gives a comparison of the three overlaying methods. In
addition to the various sizes, it also lists the advantages and
disadvantages of each approach. It is also possible to build this
task with memory-resident overlays for the first level (SUBl,SUB2
and SUB3) and disk-resident overlays for one or both of the second
levels (A and B; or C, D and E).

LIBRARIES

Object libraries, when used, must be specified in the .ODL file.
The one exception is the default system library
LB:[l,l]SYSLIB.OLB, which is searched automatically for the root
and each overlay segment. To allow inclusion of any needed
libraries, just specify the library with the /LB qualifier (as in
MCR format for TKB). To force ,the inclusion of a specific module
from a library, use the /LB:module form of the /LB qualifier.

Examples:

1.

2.

CPART:
LIB:

.ROOT

.FCTR

.FCTR

.END

MAINPG-MYLIBl/LB-LIB-(SUBA,SUBB,CPART)
SUBCl-(SUBC2,SUBC3)
MYLIB2/LB

Explanation: Include all needed modules from MYLIBl.OLB
and from MYLIB2.0LB that are referenced in
the root segment MAINPG.

.ROOT

.END
MAIN-MYLIB1/LB:MOD4-MYLIB1/LB-(A,B)

Explanation: Include the module MOD4 from MYLIB1.OLB.
In addition, the second MYLIB1/LB with no
modules listed, causes the inclusion of
any other modules from MYLIB1.OLB that
are referenced in the root segment MAIN.

Note that if you reference additional library routines
from other segments, they will not get resolved properly
unless you specify the library again in each referencing
overlay segment.

211

OVERLAYING TECHNIQUES

3. Including the FORTRAN OTS Library:

LIBRA:
• ROOT
.FCTR
.END

MAIN-LIBRA-(A-LIBRA,B-LIBRA)
LB:[l,l]FOROTS/LB or F4POTS/LB

Include needed modules from FOROTS.OLB (or F4POTS.OLB) in the root
segment, in segment A, and in segment B. Notice that you should
specify the library in each segment which might need it.
Otherwise, if segment A needs a module not already included for
the root segment, the library is not searched again for module A
unless it is specified again in overlay segment A.

Note that in an installation which makes heavy use of FORTRAN, the
appropriate FORTRAN OTS library may have been included in SYSLIB
making it unnecessary to include the OTS library in the TKB
command. Check with your system manager to see if the OTS library
is included in SYSLIB.

Example of Duplicate Code in Overlays

In the above example with a root and two overlay segments, A and
B, it is possible that duplicate code will be forced into the two
segments. If A and B both need module X from' the 1 ibrary, and the
root does not need X, then a copy of X would be placed in both
segment A and in segment B. This adds to the size of segments A
and B but keeps the size of the root smaller. If the size of the
root is critical, you may be willing to have the duplicate code
appear in A and B. If the size of the root is not critical, force
X to be in the root by the following ODL statement:

.ROOT MAIN-LB:[l,l]FOROTS/LB:X-LIB-(A-LIB,B-LIB)
LIB: .FCTR LB:[l,l]FOROTS/LB

.END

In general, it is good practice to include a library reference in
each segment of the task. If you are concerned with the
possibility of duplicate code, you can use the trial and error
approach wherein you specify the library only in the root and then
note the unresolved symbols that occur. Once you determine from
the TKB map which modules are needed in which segments, you can
then determine if you want to place certain modules in the root or
if you are willing to have duplicate code in various segments.

212

OVERLAYING TECHNIQUES

Duplicate code can also be included from SYSLIB, the default
library. If you wish to use the trial and error method on modules
from SYSLIB, use the /LONG qualifier in the LINK command (/MA in
TKB format). This qualifier causes the Task Builder to list
modules included from SYSLIB in the map file.

Note that in the previous example, if X had been required in the
root, duplicate code in the overlay segments would not be
generated; all references to X would be resolved via the root.

An Overlay Example

Example 6-5 is a simple task with a root segment ROOT and 2
overlay segments, P and Q. During the execution of the task, the
following calling sequence is used:

ROOT calls P
ROOT calls Q

Figure 6-5 shows an overlay tree and a memory allocation diagram
for this task.

The code for Example 6-5 is separated into three different
modules, one for" each segment. The source file for the root
segment ROOT contains the startup code and controls the overlay
loading by calls to the subroutines. The source file for each
overlay segment, P and Q, contains the subroutine code.

OVERLAY TREE

MEMORY ALLOCATION DIAGRAM

P Q P Q

T
ROOT ROOT

TK-7755

Figure 6-5 Task with Two Overlay Segments

213

OVERLAYING. TECHNIQUES

Steps in program Development for Example 6-5

1. Compile each module.

>FORTRAN/LIST ROOT
)FORTRAN/LIST P
)FORTRAN/LIST Q

2. Use the editor to create the overlay descriptor file
FEXDOVR.ODL for disk-resident overlays •

• ROOT ROOT-LIB-*(P-LIB,Q-LIB)
LIB: • FCTR LB: [1,1] FOROTS/LB

.END

3. Task-build using the .ODL file as the input file.

)LINK/MAP EXDOVR/OVERLAY_DESCRIPTION

LEARNING ACTIVITY

1. To build the above
memory-resident overlays,
modify the .OOL file?

task with
how would you

2. To build the above task without overlays,
what task-build command would you use?

214

OVERLAYING TECHNIQUES

The following notes are keyed to Example 6-5.

o
o

e
o

o

On initial load only the root segment ROOT is loaded.

With autoload the call to subroutine P causes the autoload
routine to load overlay segment P from disk and then
transfer control to the subroutine.

Subroutine P displays a message and returns.

The call to subroutine Q causes the autoload routine to
load overlay segment Q from disk over segment P and then
transfer control to the subroutine.

Subroutine Q displays a message and returns.

If another call were added to subroutine Q, the autoload routine
would check and see that overlay segment Q is already loaded and
would then just transfer control to Q. If another call were added
to subroutine P, the autoload routine would check and see that
overlay segment P is hot loaded. Hence, it would load segment P
over segmentr Q and then transfer control.

215

o

o

OVERLAYING TECHNIQUES

PI:::OGRAM ROOT
f'
C FILE ROOT.FTN
G
C This task calls each of the subroutines P AND Q
("

C Task-build instructions: Use FEXDOVR.ODL as the input
C' file.
C;

l~50

("

WRITE (5,50) ! Displaw messa~e
FORMAT (' THE ROOT SEGMENT IS NOW RUNNING AND
l.WIL.L CAL.L. P.')
CAL.L. F'
WRITE (5,150) ! Displaw messa~e
FORMAT (' THE ROOT SEGMENT WIL.L NOW CALL. a.')
CALL Q
WRITE (5,250) ! Displaw messa.e
FORMAT (' THE ROOT SEGMENT WILL. NOW EXIT.')
CALL EXIT ! EHit
END

SUBliOUT I NE P

C FILE P.FTN
C
C This subroutine displaws a messa.e and then returns
C

WRITE(5,50) ! Displaw messa~e
50 FORMAT (' SEGMENT P IS NOW LOADED. SUBROUTINE P

lIS EXECUTING.')
RETURN ! Return
END

SUBliOUT I NE Q
c
C FIl.E (1.FTN
C
C Thi~.; subroutine displa~~s a ITleSSaSe and then returns
C

WRITE(S,SO) ! Displaw messase
50 FORMAT (' SEGMENT Q IS NOW l.OADED. SUBROUTINE a

lIS EXECUTING.')
RETURN ! Return
END

>RUN EXDOVR
THE MAIN SEGMENT IS RUNNING AND WILL CALL P.
SEGMENT P IS NOW LOADED. SUBROUTINE P IS EXECUTING.
THE MAIN SEGMENT WILL NOW CALL a.
m~GMENT a IS NOW LOADED. SUBROUTINE a IS EXECUTING.
niE MAIN SEGMENT WILL NOW EXIT.

Example 6-5 A Task with Two Overlay Segments

216

OVERLAYING TECHNIQUES

Changing Example 6-5 to Manual Load

To change the previous example to manual load, the source code in
ROOT must be modified to include the calls to subroutine MNLOAD
which will cause the loading of the segments. The ODL file must
also be modified to remove the autoload indicator (*). The files
MLROOT.FTN and MLEXDOVR.ODL on the tape provided with this course
are modifications of ROOT.FTN and EXDOVR.ODL. Check UFD [202,3]
for these files. See your course administrator if you have
difficulty finding these files.

GLOBAL SYMBOLS IN OVERLAID TASKS

When the Task Builder builds a task, 'each reference to a
subroutine is an unresolved symbol reference which must ultimately
be resolved by finding a corresponding subroutine or by finding an
entry in the system library. (Each subroutine generates a global
symbol definition which can be used to resolve an unresolved
global reference symbol.) If no such subroutine or entry in the
system library is found, the global symbol is unresolved.

The scope of a global symbol is controlled by the overlay
structure. A module can only refer to a global symbol defined on
a path which passes through it. Thus, in Figure 6-6, the
reference to global symbol R (global symbol and subroutine are
used synonymously in this discussion) in segment Al is undefined
because R is not defined' in either A0 or CNTRL. A0 and CNTRL form
the only path passing through AI. The definition in A2 can't be
used because Al and A2 overlay one another.

In a single segment task with no overlays the same global symbol
cannot be defined more than once, or it is multiply defined. With
the rules governing global symbols in overlays, however, the same
name can be used for two different global symbols as long as they
follow these two restrictions:

1. They must be defined on separate paths. Each reference is
resolved to the definition on its own path. Only if the
same symbol is defined more than once on the same path, is
it multiply defined.

2. The two symbols must not be referenced from a segment
closer to the root which has paths through both segments.
An example is a root segment which references a subroutine
N. If the root segment has two overlay segments U and V
and each one defines the subroutine N, the Task Builder
can't tell which subroutine N to use. Therefore, the
reference is ambiguous, since there are several possible
ways to resolve the reference.

217

OVERLAYING TECHNIQUES

Figure 6-6 shows an example overlay tree with a number of global
symbol definitions.
follows:

Q is

R is

S is

T is

defined in

defined in

defined in

defined in

M
O(REF)
R(REF)
S(REF)

A21
T(DEF)
S(REF)

I

AO
O(DEF)
S(DEF)
T(DEF)

I

A0 and

A2

A0 and

A0 and

I
A2

R(DEF)

The various references are resolved

B0

B0

A2l

A22

R(REF)
O(REF)
S(REF)

I

£rill!.!:
S(REF)
R(REF)

Reference in A22 resolved in A0
Reference in Al resolved in A0
Reference in Bl resolved in B0

Reference in A22 resolved to A2
Reference in Al undefined
Reference in CNTRL resolved to A2
(i f autoload, through an autoload
vector)

Reference in Al resolved to A0
Reference in A2l resolved to A0
Reference in A22 resolved to A0
Reference in Bl resolved to B0
Reference in B2 resolved to 80
Reference in CNTRL ambiguous

Symbol multiply defined

.!ll
O(REF)
S(REF)

BO
O(DEF)
S(DEF)

I

B2

S(REF)

TK-7756

Figure 6-6 Resolution of Global Symbols

218

as

OVERLAYING TECHNIQUES

Data References in Overlays

Data loca~ to an overlay segment is only available while the
segment 1S loaded. When the segment is overlaid by another
segment, any updating of local data that had been made while the
segment was loaded will be lost. The next time the same segment
is loaded from the disk, the original data values will be brought
into memory. For this reason it is strongly recommended that data
required by more than one segment be placed in the root.

If you wish to share data between overlay segments, you must use
FORTRAN COMMON or pass arguments in the CALL (discussed below).
Note that if you want to share data between overlay segments A and
B, and if updating of the data can be done by either segment, it
is not sufficient to simply place the COMMON in A and B; it must
also be placed in the root segment.

By placing the same COMMON in the root, you are assured that A and
B will always be referring to the same data in the COMMON since
the root segment is always loaded. In FORTRAN-77 another way to
place a COMMON in the root is to use the FORTRAN SAVE common-name
statement in one of the segments. This will force the
task-builder to place the named common in the root. The .PSECT
ODL statement can also be used to force the placement of a common
in the root segmant.

Another way of sharing small amounts of data between two overlays
is to have the data passed from the root to each overlay as an
argument to the CALL. If the segment changes one of the data
values passed as an argument, it will then be changed in the root
segment. The changed value can then be passed to the next
overlay, etc.

Example 6-6 is a more complex example of the use of overlays. The
program calling sequence is as follows:

MAIN calls A
A calls JOBI or JOB2 (in module JOBXX)
MAIN calls B
Loop through three time

MAIN calls A
A calls JOBI or JOB2

End of loop
MAIN calls TOTAL (in the root segment)

219

OVERLAYING TECHNIQUES

The following notes are keyed to Example 6-6.

ct Task-build instructions.

«t COMMON OTHER is defined in the root segment MAIN, and is
referred to in overlay A and in overlays JOBI and JOBXX.
The entire allocation of space for OTHER is in MAIN; no
space is reserved for OTHER in the overlays.

o

o

o

The use of the COMMON OTHER by
the overlay segments allows
provided by MAIN and to pass a
fourth argument in OTHER.
variously ANS in MAIN, ARG(4)
JOBI and ANS in JOBXX.

the MAIN segemnt and the
the overlays to access data
result back to MAIN via the
This argument is called

in overlay A, SUM in overlay

COMMON TOTCOM is also defined in MAIN and is referenced in
overlays JOBI and JOBXX. Allocation for TOTCOM is in
MAIN. Subroutine TOTAL displays the grand total, which
has been accumulated in TOTCOM in variable TOT, but the
subroutine does not refer to COMMON TOTCOM. Since MAIN
passes the argument TOT to subroutine TOTAL, the
subroutine does not have to use TOTCOM. This illustrates
how shared data may be passed between overlay segments via
the argument list.

Note that subroutine A calls JOB2, which is the name of
the subroutine, and that the OOL file uses JOBXX which is
the file name. File names are always used in OOL; not
subroutine names. In general, file names and subroutine
names should be the same simply to avoid confusion.

Note that neither COMMON OTHER or COMMON TOTCOM appear
segment B since the segment does not refer to
variables in either COMMON.

in
any

() Argument TOT is is COMMON TOTCOM. Since the
passed to subroutine TOTAL, TOTAL does
reference to COMMON TOTCOM.

argument is
not need a

220

0

c
C
C
C
C
C
("' .,
C
f'
C
C
("'

c
c
C

f'

("'

OVERLAYING TECHNIQUES

PROGRAM MAIN

FIl.E MAIN.FTN

This pro~ram prints a messa~e and then calls subroutine
A. Subroutine A asks whether to perform Job 1 or Job 2.P
It then calls either subroutine JOBI or JOB2 which
performs the operation and displ~~s the results. MAIN
then calls subroutine B which displa~s a messaSe. MAIN
then calls subroutine A 3 more times, keepinS a srand
total of the operations. Finall~, it displaws the
srand total and exits.

Task-build instructions: Use FMRMAIN.ODL as the input
file.

COMPLEX DUMMYCI024) ! Leave space to make
! seSment larSer o COMMON IOTHER/OP1,OP,OP2,ANS

INTEGER OP1,OP,OP2,ANS
DATA OP1,OP2/5,21

e COMMON ITOTCOM/TOT
INTEGER TOT ! Total

TYPE *,'THE MAIN SEGMENT IS RUNNING AND WILL
lCALL A'
CALL A ! Call subroutine A
TYPE *,'THE MAIN SEGMENT WILl. NOW CALL B' e CALL B ! Call subroutine B
DO 10, 1=1,3
TYPE *,'THE MAIN SEGMENT WILL NOW CALl. A'
ANS = 0 Clear answer in case

:lO CALL A
of no operation

Call subroutine A
SEGMENT WILL CALL TOTAL'

C

TYPE
G CALL

TYPE
CALL
END

*, ' THE MAIN
TOTALCTOT)

*,'THE MAIN
EXIT

! Call routine to
displa~ srand total

SEGMENT WILL NOW EXIT'
! EXIT

Example 6-6 Complex Example Using Overlays
(Sheet 1 of 4)

221

OVERLAYING TECHNIQUES

SUBROUTINE A
c
C FILE A.FTN
C
C This sub~outine displaws a messa~e and then asks which
C of two Jobs to do. It calls the app~opriate subroutine
C to do the Job, displaws the results, and then returns
C to the main pro~ram
C

f'

o COMMON 10THER/ARG
INTEGER ARG(4)
INTEGER BUFF

TYPE 1
1 FORMAT (T8,'SEGMENT A IS NOW LOADED. SUBROUTINE

1 A IS EXECUTING.')
TYPE 2

2 FORMAT ('$',TS,'DO YOU WANT TO DO JOB 1 OR JOB 2
11 ')

:1.0

1000
:1.001
2000

o

ACCEPT 3,BUFF
FORMAT (16)
IF (BUFF.NE.l) GOTO 10 Is it Job 11
CALL JOBl Call subr to do Job 1
GOTO 20 Branch to displaw code
IF (BUFF.NE.2) GO TO 1000! Is it Job 21
CALL JOB2 Call subr to do Job 2
TYPE 21,ARG
FORMAT (TS,I2,lX,A2,I2,' = ',13/)
GOTO 2000
TYPE 1001
FORMAT (TS,'NO SUCH JOB. SORRY.')
RETURN ! Return
END

Example 6-6 Complex Example Using Overlays
(Sheet 2 of 4)

222

OVERLAYING TECHNIQUES

SUBROUTINE JOB1
("

C FILE .. JOB1.FTN
C
C
C
C'
C

c

("

C

This subroutine performs an addition operation. The
operands, operator, and sum are held in one common
block, and the total in another.

o
e

COMMON /OTHER/NUM1,OPRATR,NUM2,SUM
INTEGER NUM1,OPRATR,NUM2,SUM
COMMON /TOTCOM/TOT
INTEGER TOT

INTEGER DUMMYCI024) Leave space to make
module larger

TYPE 1 Display message
1 FORMAT CT16,'SEGMENT JOB1 IS NOW LOADED.',

1/,T16'SUBROUTINE JOB1 IS EXECUTING.')
SUM :::: NUM1 t NUM2 Calculate sum
TOT = TOT t SUM Add to grand total
OPRATR :::: 't' Move operand for

C output display
RETURN
END

f'
o SUB/i:OUTINE .JOB2

C FILE ..JOBXX.FTN
c
C This subroutine performs a multiplicat{on operation.
C The operands, operator, and product are held in one
r common block, the running total in another.
C o

e
COMMON /OTHER/OP1,OPRATR,OP2,ANS
INTEGER OP1,OPRATR,OP2,ANS
COMMON /TOTCOM/TOT
I NTEGE/;~ TOT
REAL DUMMYCI024) Leave space to make

module larger
TYPE 1 ! Displaw message

1 FORMAT CT16,'SEGMENT JOBXX IS NOW LOADEri.',
1/,T16,'SUBROUTINE ..JOB2 IS EXECUTING.')
ANS :::: OP 1 * OP2
TOT :::: TOT tANS
OP/i:ATR = ' *'
RETURN
END

Calculate product
Add this to grand total
Move operand for
output displaw

Example 6-6 Complex Example Using Overlays

(Sheet 3 of 4)

223

OVERLAYING TECHNIQUES

c
Ct 'SUBROUTINE B

C FILE B.FTN
C
C This subroutine displaws a messa~e and returns
C

TYPE 1
1 FORMAT (Ta,'SEGMENT B IS NOW LOADED. SUBROUTINE

1B IS EXECUTING.')
RETURN
END

r o SUBROUTINE TOTAL (TOT)

C FILE TOTAL.FTN
c
r Subroutine to displaw ~rand total. The ~rand total
r location is passed as a subroutine ar~ument
C

INTEGER TOT
TYPE 1,TOT

1 FORMAT (' THE GRAND TOTAL IS ',13,'.'/)
RETURN
END

Run Session

>RUN MRMAIN
THE MAIN SEGMENT IS RUNNING AND WILL CALL A

SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING.
DO YOU WANT TO DO JOB 1 OR JOB 21 1

SEGMENT JOBI IS NOW LOADED.
SUBROUTINE JOBI IS EXECUTING.

5 + 2 =- 7

THE MAIN SEGMENT WILL NOW CALL B
SEGMENT B IS NOW LOADED. SUBROUTINE B IS EXECUTING.

l~E MAIN SEGMENT WILL NOW CALL A
SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING.
DO YOU WANT TO DO JOB 1 OR JOB 21 2

SEGMENT JOBXX IS NOW LOADED.
SUBROUTINE JOB2 IS EXECUTING.

5 * 2 = 10

THE MAIN SEGMENT WILL NOW CALL A
SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING.
DO YOU WANT TO DO JOB 1 OR JOB 21 2

SEGMENT JOBXX IS NOW LOADED.
SUBROUTINE JOB2 IS EXECUTING.

5 * 2 =- 10

THE MAIN SEGMENT WILL NOW CALL A
SEGMENT A IS NOW LOADED. SUBROUTINE A IS:EXECUTING.
DO YOU WANT TO DO JOB I OR JOB 21 1

SEGMENT JOBI IS NOW LOADED.
SUBROUTINE JOBI IS EXECUTING.

5 + 2 - 7

THE MAIN SEGMENT WILL CALL TOTAL
THE GRAND TOTAL IS 34.

THE MAIN SEGMENT WILL NOW EXIT
>

Example 6-6 Complex Example Using Overlays
(Sheet 4 of 4)

224

CO-TREES

OVERLAYING TECHNIQUES

LEARNING ACTIVITY (Using Example 6-6)

1. Draw an overlay tree or a memory
allocation diagram. Since the questions
below assume a particular overlay
structure, check your answer before doing
questions 2 through 4.

2. What .ODL file would you use for autoload
and all disk-resident overlays?

3. What .ODL file would you use for autoload
and all memory-resident overlays?

4. What .ODL file would you use for autoload
and A and B memory-resident and JOBI and
JOBXX disk-resident?

Sometimes there are subroutines which must be callable from
several or all different overlay segments in a task. One solution
is to place the subroutines in the root. Since they are always
loaded, they are then available from the root and all overlay
segments. If this causes the task to become too large and the
subroutines are logically independent (don't call each other),
another solution is available. You can set up a separate overlay
area and place the subroutines in it so that they overlay each
other.

For example, Figure 6-7 shows an overlaid task with subroutines X
and Y in the root. They are placed there so that the root and
every other segment can call them. If this makes the task too
large, set up a separate overlay area and place X and Y in it 50

they overlay each other (Figure 6-8). X and Yare in a separate
overlay area, therefore, they can overlay each other and still be
called from the root and every other segment in the task.

225

OVERLAYING TECHNIQUES

The two overlay areas, the main one and the separate one for the
extra subroutines, are defined by a multiple tree structure. The
tree for the main code is called the main tree and the other one
is called a co-tree. The co-tree root may contain code but it
does not have to. In the example in Figure 6-8, the root of the
co-tree is null (or is a dummy root) and contains no code. A root
is needed to set up the overlay structure. Only the root of the
main tree is loaded on initial load. The co-tree roots are loaded
when they are first needed and remain loaded after that. Other
than that, loading of overlay segments works just like a
single-tree overlay structure.

The .ODL files are listed above the files for the task without
co-trees and with co-trees. The co-trees are separated in the
.ODL file by a comma. with autoload, an asterisk (*) should be
specified on the co-tree roots as well as in the normal places.
This is necessary because the co-tree roots are loaded like
overlay segments the first time they are needed. Also, note that
the .NAME directive is used to specify that CNTRL2 is just a name
for the null root segment of the co-tree.

For additional information on co-trees and an example, see Section
3.5 (on Multiple-Tree Structures) in the RSX-llM/M-PLUS Task
Builder Manual. In particular, note the use of the /NOFU or /FU
switch used with TKB.

226

OVERLAYING TECHNIQUES

.ODL File with no co-trees:

.ROOT CNTRL-X-Y-*{A0,{Al,A2) ,80-{81,82))

.END

A1 A2

AO

I y
I
X
I

CNTRl

Y

X

CNTRl

B1
B2

BO

TK-8635

Figure 6-7 ~ask Without Co-Trees

227

OVERLAYING TECHNIQUES

.ODL File with Co-Trees
.NAME CNTRL2
.ROOT CNTRL-*(A0-(Al,A2) ,B0-(8l,82)), *CNTRL2- *(X,Y)
.END

The segment CNTRL2 is a dummy root used for loading purposes only.

A1 A2 81 82
I I I I

I I
AO 80 X Y
I

I
I I I

I
CNTRL CNTRL2

X y

NULL ROOT CNTRL2

A2 81
A1 82

AO 80

CNTRL

TK-7768

Figure 6-8 Use of Co-Trees

228

OVERLAYING TECHNIQUES

Now do the tests/exercises for this module in the Tests/Exercises
book. ,They are all lab problems. Check your answers against the
solutions provided, either in that book or in on-line files.

If you think that you have mastered the material, ask your course
administrator to record your progress in your Personal Progress
plotter. You will then'be ready to begin a new module.

If you think that you have not yet mastered the material, return
to this module for further study.

229

STATIC REGIONS

STATIC REGIONS

INTRODUCTION

Logical address space in a task is composed of regions. There are
three basic types of regions: task regions, static regions, and
dynamic regions. Task regions, into which tasks are loaded, are
created using information set up by the Task Builder. Static and
dynamic regions are generally used to share code or data among
several tasks. Static regions are created using the Task Builder;
dynamic regions are created during task execution using executive
directives.

This module discusses static regions. You can use these static
regions to:

• Create memory areas containing code which is shared among
tasks

• Create memory-resident data areas which can be used for
communication between tasks or successive invocations of
the same task.

OBJECTIVES

1. To create and use a resident common region

2. To create and use a resident library

3. To determine whether a position independent or an absolute
shared region should be used in a given situation.

RESOURCE

• RSX-IIM/M-PLUS Task Builder Manual, Chapter 5

• 233

STATIC REGIONS

TYPES OF STATIC REGIONS

Static regions, also called shared regions, are areas of memory
which are shared among tasks. They allow tasks to share data or
code with very little overhead. Unlike send and receive
directives, no executive directives are needed and the area's size
is limited only by virtual address and possibly physical memory
limitations. The virtual addressing limit must be met for both
the region itself and for any tasks which use the region. For a
task using the region, the virtual addressing limit applies to the
total of all regions used plus the task's code.

Static regions also offer very quick access, since the area is
loaded before the tasks which use it are run. Once loaded, it is
available directly in memory. Therefore, it offers much faster
access than disk-resident data.

Table 7-1 summarizes the types of shared regions available on an
RSX-IIM system. A resident common contains data. The data can be
accessed by several different tasks, each with read only access or
with read/write access.

A resident library contains reentrant subroutines, which can be
called by several different tasks. A single copy of each
subroutine can be shared, thus reducing the total memory
requirements of the tasks. The term resident is used because the
shared region is task-built, installed, and I loaded into memory
separately from the tasks which access it.

A third type of shared region is a device common, a special type
of resident common. It occupies physical addresses on the I/O
page, which correspond to I/O device registers instead of physical
memory. Therefore, this kind of common allows a task to reference
an I/O device directly. Unlike other resident commons, a device
common has no true contents because it has no physical memory
associated with it.

235

STATIC REGIONS

Table 7-1 Types of Static Regions
Available on RSX-llM

Type of Region

Resident Common

Resident Library

Device Common

MEMORY ALLOCATION

Contents

Data accessed
by two or more
tasks

Reentrant routines,
used by two or more
tasks (must be wri
ten in MACRO-II but
can be used in a
FORTRAN CALL)

No true "contents"
Region is a range
of physical addresses
within I/O page

Advantages

Serves as com
munications link
Serves as memory
resident data base

One copy of common
routines shared in
memory

Nonprivileged task
can directly access
an I/O device with
out being mapped
to the Executive

Memory is allocated independently to the shared region and to the
individual tasks which use it. We will call the tasks which use
the region referencing tasks. On an RSX-IIM system, the shared
region must reside in a dedicated common type partition. The name
of the partition must be the same as the name of the region. The
partition can be created at SYSGEN time or later by the system
manager or by a privileged user. Once the region is installed and
loaded into the partition, it cannot be checkpointed.

236

STATIC REGIONS

MAPPING

Shared regions can be written and task-built as either position
independent regions or as absolute regions. On a mapped system,
position independent regions can be placed anywhere In a
referencing task's virtual address space. This means that the
virtual addresses used to map to the region can correspond to any
available APR.

Figure 7-1 shows a position independent region POSIND and three
referencing tasks. The region is loaded into memory into the
partition POSINDi the partition name must be the same as the name
of the region. Recall that a virtual address window for mapping
must begin with a base address for an APR on a 4K word boundary.
Because the region is 5K words in length and each APR can only map
at most 4K words, two APRs are needed to map the region.

TASK A maps the shared region using APRs 6 and 7, starting at
virtual address 140000{8). It could in fact use APRs 5 and 6,
beginning at virtual address l20000{8); or APRs 4 and 5,
beginning at virtual address l00000{8).

TASK B maps the shared region at the first available APR above the
task code, using APRs 2 and 3, beginning at virtual address
40000{8). It could use APRs 3 and 4, 4 and 5, 5 and 6, or 6 and 7
as well.

Task C maps the shared region using APRs 6 and 7, starting with
virtual address 140000{8). There is no other possible way for
task C to map the shared region because APR 6 is the first
available APR.

When you task-build a referencing task, you can specify which APR
to use in mapping the region. If you do not specify an APR, the
Task Builder selects the highest set of available APRs. When task
A and task C were built, either the user did not specify an APR,
or APR 6 was specified. When task B was built, the user specified
APR 2.

An absolute shared region has its virtual addresses fixed when it
is task-built. All tasks which reference it must use those
virtual addresses, and the corresponding APRs, to map to the
region. Figure 7-2 shows another region, ABSOLU, and three
referencing tasks A, Band C. The shared region ABSOLU was built
to use virtual addresses 120000 (8) through 147777 (8) (6K words)
with APRs 5 and 6. All referencing tasks must map to the region
using these APRs. Therefore, task A and task B can both map to
the region, since APRs 5 and 6 are available. Task C, on the
other hand, cannot reference ABSOLU, since APR 5 is already used
by its task code.

237

160000 APR7

140000 APR6

120000 APR5

100000 APR4

60000 APR3

40000 APR2

20000 APR1

o APRO

160000 APR7

140000 APR6

120000 APR5

100000 APR4

60000 APR3

40000 APR2

20000 APR1

o APRO

160000 APR7

140000 APR6

120000 APR5

100000 APR4

60000 APR3

40000 APR2

20000 APR1

o APRO

STATIC REGIONS

VIRTUAL
MEMORY

TASK A

TASK
WINDOW

(16K WORDS)

/
I I --

~-......:...;..--....;.....-------..---rt--
II __ ------

------~1T

FJ')'J'J,;~~~~~~".J/ / ///
~~~~~~~/ ,/'/ 

TASK 
WINDOW 

(24K WORDS) 

PHYSICAL 
MEMORY 

TASK 
REGION 
(TASK A) 

TASK 
REGION 
(TASK B) 

TASK 
REGION 
(TASK C) 

TK-7774 

Figure 7-1 Tasks Using a position Independent Shared Region 

238 



160000 APR7 

140000 APR6 

120000 APR5 

100000 APR4 

60000 APR3 

40000 APR2 

20000 APR1 

o APRO 

STATIC REGIONS 

VIRTUAL 
MEMORY 

TASK A 

TASK 
WINDOW 

(16K WORDS) 

----

160000 APR7 

140000 APR6 

120000 APR5 

100000 APR4 

60000 APR3 

40000 APR2 

20000 APR1 ------TASK 
WINDOW ---

o APRO (8K WORDS) _-------------------------

160000 APR7 ~ 

140000 APR6 

120000 APR5 ~ 

100000 APR4 ~ 

60000 APR3 ~ 

40000 APR2 ~ 

20000 APR1 ~ 

TASK C 

TASK 
WINDOW 

(24K WORDS) 

o APRO ....... _________ __ 

CAN'T 
REFERENCE 
ABSOLU 

PHYSICAL· 
MEMORY 

ABSOLU 
(ABSOLUTE REGION) 

TASK 
REGION 

(TASK A) 

TASK 
REGION 
(TASK B) 

TK-7769 

Figure 7-2 Tasks Using an Absolute Shared Region 

239 



STATIC REGIONS 

Because of the added flexibility of a position independent region, 
i.e., any APR can be used to map the region, it might seem that 
there is no reason to ever use an absolute region with its 
attendant APR restrictions. However, there are coding 
restrictions for position independent regions which require the 
use of highly specialized coding techniques. Because of these 
restrictions, the decision to create a position independent or an 
absolute region is usually based on these coding restrictions 
rather than on flexibilty alone. 

In general, resident commons, containing data, are created 
position independent and resident libraries, containing code, are 
created absolute. 

Figure 7-3 shows the program development process for creating a 
shared region and a referencing task. Specific steps for each 
process are discussed later in this module. Compile and 
task-build the shared region separate from the referencing task, 
and before task-building the referencing task. 

Since it is not an executable task, certain task-build switches 
are used to create a task image with no header and no stack. An 
additional file, called a symbol definition file, is also created 
at task-build time. This file contains information about the 
symbols defined in the region which the Task Builder will use when 
it builds the referencing task to set up the linkage to the 
region. 

After task-building the shared region, task-build the referencing 
task. It can be written and compiled earlier, if desired. The 
name of the region is specified to the Task Builder so that it can 
access the symbol definition file and set up the linkage to the 
shared region. The shared region must be installed (causing it to 
be loaded into memory as well) before any referencing task is run. 

REFERENCES TO A SHARED REGION 

The following kinds of references are made to a shared region by a 
referencing task: 

• The task retrieves data from or stores data in a resident 
common. FORTRAN COMMON is used for this purpose. 

• Subroutine call to a subroutine defined in a shared 
region. 

240 



STATIC REGIONS 

PROCEDURE FOR CREATING SHARED REGIONS AND REFERENCING TASKS 

Creating a Resident Common 

1. Code the shared region. 
statement and DATA 
initialize the COMMON. 

Typically consists of a COMMON 
statements which allow you to 

2. Choose position independent for a resident common. 

3. Compile the shared region. 

4. If not already done, create the common type partition. 

• Name must be the same as the name of the region. 

• Best done when the system is SYSGENed. 

• Use the SET PARTITION (SET/MAIN in MCR) command to 
create a partition. 

• Use the SET NOPARTITION (SET/NOMAIN in MCR) command to 
eliminate a partition. 

• Examples: 

)SET PARTITION:MYCOM/BASE:7114/SIZE:200/COMMON 

Creates the common type partition MYCOM with base 
physical address 711400(8) and size 20000(8) bytes. 
no other partition may use this space at the same 
time. 

)SET NOPARTITION:MYCOM 

Eliminates the partition MYCOM. 

NOTE 
Before you create or eliminate any partitions on 
your system, check with your system manager to 
find out what area of memory you may use. 

241 



STATIC REGIONS 

5. Task-build the shared region. 

• Symbol definition file (.STB) required. 

• Build position independent and /SHAREABLE:COMMON. 
This causes the Task Builder to include the COMMON 
names in the .STB file so that references to them in 
the referencing task are properly resolved. The 
/SHAREABLE:LIBRARY switch used in task-building 
resident libraries causes the COMMON (Psect for MACRO) 
names to be omitted from the .STB file. This avoids 
task-builder errors in the case of unintentional 
duplication of Psect names. 

• Use required switches and options (see Table 7-2). 

6. Install the shared region in the common type partition 
before running any referencing task. 

• Not required before task-building the referencing 
tasks. 

• Use the INSTALL (INS in MCR) command to install the 
region. 

This command also loads the region into memory. 
This is unlike an executable task, which is 
usually loaded into memory only when it is 
activated. 

• There is no command to remove a region. It is removed 
by either installing another region or eliminating the 
partition. 

242 



LIBRARY 
FILE{S) 

STATIC REGIONS 

SHARED 
REGION 

CREATE 
SOURCE CODE 

ASSEMBLE 
OR COMPILE 

TASK 
BUILD 

INSTALL 
SHARED 
REGION 

SYMBOL 
DEF'N 
FILE 

TASK REFERENCING 
SHARED REGION 

CREATE 
SOURCE CODE 

ASSEMBLE 
OR COMPILE 

TASK 
BUILD 

RUN 
TASK 

TK-7770 

Figure 7-3 Program Development for Shared Regions 

243 



STATIC REGIONS 

The required switches and options in Table 7-2 are needed for 
various reasons. No header or stack is needed because this is not 
an executable task. The referencing tasks each have their own 
header and stack. The symbol table definition file is needed to 
allow the Task Builder to link referencing tasks to the region. 
The partition name specifies the partition into which the region 
will be loaded. 

For an absolute region you must specify a base address. If you 
specify a nonzero length, that value is used as a maximum, for 
length checking. A task-builder error results if the length of 
the region is longer than the length specified. If you specify a 
length of 0, the region is set up with the size needed for the 
code, so long as it doesn't exceed the normal 32K word virtual 
addressing limit. 

Table 7-2 Required Switches and Options for Building 
a Shared Region 

Switch/Option 
in DCL (MCR) 

/NOHEADER 
(/-HD) 

Effect 

No task 
header 

/SYMBOL TABLE Create a 
(Specify third .STB file 
output file) 

STACK=0 

PAR= 
par [: base: len] 

No space 
for stack 
in .TSK file 

Specify 
partition 
name (set 
base virtual 
address -
required if 
absolute; must 
also specify 
length, 0 or 
maximum) 

Defaults 

/HEADER 

No .STB 
file 

STACK=256 (10) 
words 

PAR=GEN 
If base and 
length not 
specified, 
information 
taken from 
partition on 
the system 

244 

Notes, 

Needed for 
task-building 
referencing task 

Partition name 
must be same as 
name of the .TSK 
and .STB files 

For PI regions, 
if specifying 
base and len, use 
base=0, length=0 
or max 



STATIC REGIONS 

Example 7-1 has the source code for a resident common COMWP and a 
referencing task COMGP. The following procedure is used to create 
the resident common: 

1. Code the shared region. 

See COMWP.FTN in Example 7-1. The following note is keyed 
to the example: 

ctcreate the FORTRAN named COMMON, MYDATA, and put data 
into the array I. 

2. Compile the shared region. 

)FORTRAN/LIST COMWP 

3. If necessary, create the common type partition. 

We will make a partition COMWP, eight blocks = 1000(8) 
bytes long. If the partition TSTPAR already exists on 
your system, you may be able to eliminate it and then set 
up your partition. Be sure to check with your system 
manager before doing this and also be sure to put TSTPAR 
back when you are finished. 

Check current partitions on the system 
>SHOW PARTITIONS 

Record base address and length of TSTPAR and the type 
of partition. Convert the values to blocks by 
dropping the last 2 zeroes. (For example, base 
address 123400(8)=1234 blocks, 
length=20000(8) bytes = 200(8) blocks) 

Eliminate the partition TSTPAR 
)SET NOPARTITION:TSTPAR 

Create the partition COMWP 
)SET PARTITION:COMWP/BASE:1234/SIZE:10/COMMON 

Check to see if this worked correctly 
)SHOW PARTITIONS 

Later, to eliminate the partition and to replace TSTPAR, 
use these commands: 

)SET NOPARTITION:COMWP 
)SET PARTITION:TSTPAR/BASE:1234/SIZE:200/TASK 

245 



STATIC REGIONS 

4. Task-build the sh~red region. 

To build position independent: 

)LINK/OPTIONS/MAP/SHAREABLE:COMMON/NOHEADER -
-)/SYMBOL TABLE/CODE:PIC COMWP,LB:[l,l]FOROTS/LIB 
Option? STACK=0 . 
Option? PAR=COMWP 
Option? <RET) 

The /OPTIONS switch allows you to enter options. /MAP 
indicates that you want a map file. /SHAREABLE:COMMON 
indicates that Psect names are to be placed in the .STB 
file (required to reference with FORTRAN COMMON). 
/NOHEADER indicates that no task header be included in the 
task image since this is not an executable task. 
/SYMBOL TABLE indicates that a .STB file be created. 
(COMWP.STB). /CODE:PIC indicates a position independent 
region. STACK=0 indicates no stack space is needed since 
this is not an executable task. PAR=COMWP indicates the 
partition is COMWP. The Task Builder gets the length (for 
a maximum check) from the partition on the system. 

5. Install the region. 

)INSTALL COMWP 

Installs the region and also loads it into memory. 
Note that this is different from an executable task, 
which usually isn't loaded until it is requested. 

246 



STATIC REGIONS 

BLOCK DATA COMWF' 
C 
C File COMWP.FTN 
C 
C Pro~ram to create and initialize a resident common 
C 
C Task-build instructions: Must include /SHAREABLE:COMMON 
C and /NOHEADER switches; STACK=O and PAR=COMWP options. 
C Must create .STB file. Maw be /CODE:PIC or absolute 
C (the default). OTS librarw NOT reGuired. 
C 

C 

O rCOMMON /MYDATA/ I (256) 
~ATA I /128*5,128*10/ 
END 

PROGRAM COMGP 

C File COMGF'.FTN 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

Task to read data from a static re~ion and print it 
out at TI:. It uses a COMMON to reference the data. 

Task-build instructions: 

o 

LINK/MAP/OPTION COMGP,LB:r1,1JFOROTS/LIBRARY 
Option? RESCOM=COMWF'/RO 
Option? <RET> 

COMMON /MYDATA/ L(256) ! Common to reference 
! shared re~ion 

C Loop throu~h to displaw re~ion, 8 numbers on a line 
DO 50 J = 1,249,8 

10 
50 

WRITE (5,10) (L(K),K::::J,J+7) ! Write vall.Jes 
FORMAT (' ',12,718) 
CONTINUE 
CALL EXIT 
END 

Example 7-1 Resident Common Referenced with FORTRAN COMMON 
(Sheet 1 of 2) 

247 



R'Jn 

>J:NS 
>RUN 
~~ 

:'5 

6 

Sest:;:i,on 

COMWP 
COMGP 

3 
3 

3 
6 
() 

6 

STATIC REGI~ONS 

3 
3 

3 
6 
6 

6 

3 
3 

3 
6 
6 

6 

3 
3 

3 
6 
6 

6 

3 
3 

3 
6 
6 

6 

3 
3 

3 
6 
6 

6 

3 
3 

3 
6 
6 

6 

Example 7-1 Resident Common Referenced with FORTRAN COMMON 
(Sheet 2 of 2) 

248 



STATIC REGIONS 

Creating a Referencing Task 

1. Code the task, using the FORTRAN COMMON used in creating 
the region. 

2. Compile the task. 

3. Task-build the task. 

• Specify shared regions by using one of the following 
options: 

RESCOM=common name - for a user resident common. 
The .STB and .TSK files may be on any device and 
in any UFD, using normal defaults. 

Append /RO or /RW for read-only or read-write 
access. 

COMMON=common name - for a system resident common. 
The .STB and .TSK files must be in LB:[l,l]. 

Append :RO or :RW for read-only or read/write 
access. 

(Note that a colon (:) is used for COMMON and 
a slash (/) is used for RESCOM when appending the 
RO or RW switches.) 

4. After installing the shared region, install and/or run the 
task. 

If the shared region is to be a system shared region, the .STB 
file and the .TSK file should be placed in LB:[l,l]. Otherwise, 
they can reside on any device under any UFO, as long as both files 
are in the same UFO on the same device. 

Read-only or read/write access affects the way the access bits in 
the page descriptor registers (PORs) in the APRs are set up. A 
memory protect violation occurs if a task attempts to write to a 
region when it has read-only access. 

249 



STATIC REGIONS 

COMGP.FTN in Example 7-1 contains the source code for a task' to 
reference the shared region COMWP. Use the following procedure to 
cre~te the task: 

1. Code the task. 

See COMGP.FTN in Example 7-1. The following note is keyed 
to the example: 

o The same FORTRAN named COMMON, MY DATA , is used here as 
in COMWP.FTN to set up referencing. 

2. Compile the task 

3. Task-build the task 

>LINK/OPTION/MAP COMGP 
Option? RESCOM=COMWP/RO 
Option? <RET> 

Link task to resident common COMWP. COMWP.TSK and 
CONWP.STB are in the current UFD on SY:. Set up 
read-only access. Use the highest available APR, APR 
7, if the region was built position independent. 

4. After installing the shared region, install and/or run the 
task. 

To do a temporary install, run, remove: 

>RUN COMGP 

To install and then run: 

>INSTALL COMGP 
>RUN COMGP 

250 



STATIC REGIONS 

Accessing a Region for Read-Only or Read/Write 

Whether read-only or read/write access is required is usually 
straightforward. If a task moves data into the region or changes 
a value in the region, read-write access is required. If a task 
moves data out of the region or just reads values in the region, 
read-only access is required. 

However, when QIOs are issued and the buffer is in the shared 
region, the situation is more involved. Obviously, to do a read 
(e.g., from a terminal) into a buffer in the shared region 
requires write access. A write (e.g., to a terminal) from a 
buffer in the region should only require read access. However, 
because the Executive is designed for very fast, real-time 
applications, it does not check the function code for a QIO 
directive to see whether it is a read or a write. Instead it 
assumes the worst case - that all QIOs involving a buffer in a 
shareo region are reads (from a peripheral device) into a buffer 
in the region, and that therefore all QIOs require read/write 
access. 

This condition causes an I/O error (IO.SPR) for 
buffer. This condition does not cause errors 
because FORTRAN WRITEs create the output string in 
the referencing task area and the QIOs do the 
referencing task area. However, if you issue QIOs 
above problem can exist. 

illegal user 
in the example 

a buffer within 
writes from the 
directly, the 

One solution is to get read/write access to the shared region. 
Another solution is to move the data from the shared region to a 
buffer in the referencing task area and then use that buffer for 
the QIOs. A third solution is to build the task as a privileged 
task. Privileged tasks, similar to privileged terminals, are 
granted certain extra access to the system which nonprivileged 
tasks don't have. Some privileged tasks just gain these extra 
access rights, others map to the Executive as well. Normally, the 
Task Builder builds a task as a nonprivilege~ task. For a 
discussion of privileged tasks and how to task-build them, see 
Appendix D. 

251 



STATIC REGIONS 

CREATING AND REFERENCING A SHARED LIBRARY 

Example 7-2 contains a shared library, LIB.MAC, and a referencing 
task USELIB.FTN. The program LIB.MAC and the associated comments 
ar,e included to illustrate how a MACRO program can be called from 
a FORTRAN program. Some knowledge of MACRO-II is required to have 
a full understanding of the example. The FORTRAN user need only 
know the order of the arguments in the CALL in order to use these 
subroutines. 

The shared library contains four simple arithmetic routines to 
add, subtract, multiply, and divide two numbers. They are all 
written to be reentrant and, in addition, they are written so that 
they can be called from a FORTRAN program with a standard FORTRAN 
subroutine call. 

INTEGER OPI,OP2,ANS 
CALL AADD(OPI,OP2,ANS) 

The argument list is set up as follows: 

******************************* 
* R5 * COUNT=3 * 
******************************* 
* address of OPI * 
******************************* 
* address of OP2 * 
******************************* 
* address of ANS * 
******************************* 

word, word 

longword 

longword 

longword 

Note that subroutines written in FORTRAN cannot be included in a 
resident library because the code generated by FORTRAN is not 
reentrant. For additional information on the FORTRAN/MACRO-II 
interface, see Appendix C. 

252 



STATIC REGIONS 

Each subroutine saves and restores all of the registers, using the 
system library routine $SAVAL. The referencing task, USELIB, 
calls each of the subroutines once, using the operands 8(10) and 
2(10), and displays just the answers for the four operations. The 
following notes are keyed to Example 7-2. 

ct Each subroutine entry point is defined with a global 
symbol. 

o 

e 

o 

e 

o 

Each subroutine is in a Psect of the same name as the 
subroutine. In fact, the Psects are optional since the 
library is built /SHAREABLE:LIBRARY. The specified Psect 
names are not placed in the .STB file. 

For AADD and SUBS, move the first operand to R0, perform 
the operation in R0, then move the answer to the third 
operand for return to the caller. 

For MULL, use R1 instead of R0, so that the product is 
limited to just R1 (16 bits). If R0 were used instead, a 
32-bit product is returned (low-order 16 bits in R1, 
high-order 16 bits in R0). 

For DIVV, a 32-bit dividend is assumed in Rn and Rn+l, so 
here it is R2 and R3 (low-order 16 bits in R3, high-order 
16 bits in R2). Therefore, the 16-bit operand is placed 
in R3 and the high-order word is cleared. The 16-bit 
quotient, returned in R2, is then moved into the third 
operand for return to the caller. 

Task-build instructions needed to 
library. 

253 

tie the task to the 



STATIC REGIONS 

Task-Building the Shared Library and the Referencing Task 

The instructions for task-building the library and the referencing 
task are included in Example 7-2; however one point should be 
emphasized. 

When Task Building the library, you must use the 
/SHAREABLE:LIBRARY switch to avoid task-builder errors when 
building the referencing task. Whether the library is to be a 
system resident library or a user resident library is determined 
strictly by where the .STB and the .TSK file for the library 
reside. If they are in LB:[l,l], the library is a system resident 
library. If the .STB and .TSK files exist in other than LB:[l,l], 
the library is a user resident library. 

When task building a referencing task, the option (not switch) 
RESLIB=library name or LIBR=library name must be used. If the 
option LIBR is used, the search for the library will be done only 
in UFD LB:[l,l]. If the option RESLIB is used, the search for the 
library will be done on the default device and UFD, or on the 
device and UFD specified with the library name; for example: 

)LINK/OPTIONS/MAP COMPG 
Option? RESLIB=DB2:[200,S]LIBAl/RO 

The above comments also apply to the creation and referencing of a 
common region. The only difference is that when the common is 
task-built, the /SHAREABLE:COMMON switch is gener,ally used and 
when the common is referenced, the option COMMON=name is used for 
a system resident common, and RESCOM=name is used for a user 
resident library. 

254 



y+ 

.TITLE 

.IDENT 

.ENABL 

File LIB.MAC 

STATIC REGIONS 

LIB 
lOll 
L.C Enable lower case 

This file contains the FORTRAN callable subroutines 
y AADD, SUBB, MUL.L, and DIVV, which perform the 
y appropriate inte~er operation. 
y 
; Callin~ convention: CALL sub (opl,op2,ans) 

Task-build instructions: Must include ISHAREA8LE:LIBRARY 
y and INOHEADER switches; STACK=O and PAR=LIB options. 
; Must create .ST8 file. Ma~ be ICODE:PIC or absolute 
y (default). Usin~ ISHAREA8LE:LIBRARY avoids Psect 

conflicts. 

.PSECT AADD,RO,I,GBL,REL,CON 
;--0 

o AADn:: CALL rov SSAVAL Save all resisters 
@2(RS),RO Move 1st operand 

0 

0 

0 

e ADD 
MOV 
RETURN 

0 .PSECT 
BUBB: : CALL 

[MOV e SUB 
MOV 
RETURN 

0 .PSECT 
MULL:: CALL 

rOV 0 MUL 

MOV 
RETURN 

0 .PSECT 
rHVV: : CALL 

rOV 0 CLR 
DIV 
MOV 
RETURN 
.END 

@4(R5),RO Add 2nd operand 
RO,@6(RS) store result 

Restore re~s and return 

SUBB,RO,I,GBL,REl,CON 
SSAVAL Save all resisters 
@2(RS),RO Move ls~ operand 
@4(RS),RO Subtract 2nd operand 
RO,@6(R5) Store result 

Restore re~s and return 

MULL,RO,I,GBL,REL,CON 
SSAVAL Save all re~isters 
@2(RS),R1 Move 1st operand 

R1,@6(R5) 

MIJJ.t:i.pl~:I (answer 'in 
,just Rl) 

sto re resu 1 t, 
Restore re~s and return 

DIVV,RO,I,GBL,REL,CON 
SSAVAL Save all re~isters 
@2(RS),R3 Move 1st operand 
R2 Clear hiSh order 16 bits 
@4(R5),R2 Divide 

Restore reSs and return 

Example 7-2 Shared Library (Sheet 1 of 2) 

255 



STATIC REGIONS 

PROGRAM USELIB 
c 
C File USELIB.FTN 
C 
C 
C 
C 
C 
C 

FORTRAN task to use resident librarw LIB 

Task-build instructions: 

C 
C 
C 
C 

o -)OTS/LIBRARY 
[

>LINK/CODE:FPP/MAP/OPTION USELIB,LB:C1,lJFOR-

Option? RESLIB~LIB/RO 
Op·tion? <RET> 

c 

C 

C 

C 

C 

C 
100 

INTEGER ANS,OP1,OP2 
DATA OP1,OP2 18,21 

CALL AADD(OP1,OP2,ANS) 
TYPE 100, ANS 

CALL SUBB(OP1,OP2,ANS) 
TYPE 100, ANS 

CALL MULL(OP1,OP2,ANS) 
TYPE 100, ANS 

CALL DIVV(OP1,OP2,ANS) 
TYPE 100, ANS 

CALL EXIT 

FORMAT ( , THE ANSWER .-
END 

'~un Sess i on 

>INS l.IB 
>RUN USELIB 
THE ANSWER IS 10. 
THE ANSWER IS 6. 
'THE ANSWE'~ IS 16. 
THE ANSWER IS 4. 

Add operands 
Print results 

Subtract operands 
Print reslJl ts 

Multipl~ of,erands 
Print results 

Divide operands 
Print reslJlts 

',I2,'.') 

Figure 7-2 Shared Library (Sheet 2 of 2) 

256 



STATIC REGIONS 

DEVICE COMMONS 

A device common is a special type of common that occupies physical 
addresses on the I/O page. The I/O page does not contain physical 
memory, but peripheral device registers instead. Therefore, a 
device common does not contain data the way a regular resident 
common does. It is really just a way of setting up addressing to 
allow a task to manipulate the device registers directly. This 
might be useful in checking out the proper commands needed to 
control a device or to check what control status registers (CSRs) 
are in use on your system. Obviously, extreme care must be used 
if you manipulate a device which is also referenced by any system 
routines (e.g., a system device driver). 

privileged tasks which map to the Executive can also automatically 
map the I/O page. However, privileged tasks must be written very 
carefully to avoid causing additional problems for the running 
system. Device Commons allow nonprivileged tasks to manipulate 
device registers. 

While a device common region can be created in 
nature, referencing must be done via MACRO-II. 
the RSX-IIM/M PLUS Task Builder Manual. 

FORTRAN, by its 
For an example see 

Appendix F contains information about more advanced shared region 
topics. It includes a discussion of the following topics: 

• Overlaid shared regions 

• Referencing several shared regions, from one referencing 
task 

• Handling interlibrary calls 

• Cluster libraries 

Most of the techniques discussed are more appropriate for the 
MACRO-II programmer who is running into virtual address limitation 
problems. Cluster libraries are designed to save virtual address 
space in tasks which use DIGITAL layered products, such as 
FORTRAN, FMS (Forms Management Services), and FCS (File Control 
Services). If you write FORTRAN programs which use these 
products, you may find it useful to just read the last few pages, 
which cover the procedure for task-building a task which 
references two or more DIGITAL supplied resident libraries as a 
set of cluster libraries. 

257 



STATIC REGIONS 

Now do the Tests/Exercises for this module in the Tests and 
Exercises Book. They are all lab problems. Check your answers 
against the solutions provided, either the on-line file (under UFO 
[202,2]) or the hard copy in the Tests and Exercises Book. 

If you feel that you have mastered the material, have your course 
administrator record your progress on your progress plotter. You 
will then be ready to begin a new module. 

If you feel that you have not yet mastered the material, return to 
the module for further study. 

258 



DYNAMIC REGIONS 





DYNAMIC REGIONS 

INTRODUCTION 

The last module discussed how to use the Task Builder to create 
and access static regions. It is also possible to create and 
access regions while a task is executing. Such regions are called 
dynamic regions. The memory management directives allow a task to 
create and access dynamic regions and access existing static 
regions. In addition, they offer a facility for creating private 
regions and for allowing other tasks to access these regions. 

OBJECTIVES 

1. To write tasks which create a dynamic region and access 
dynamic and/or static regions 

2. To write tasks which dynamically control their mapping 

3. To write tasks which create a private dynamic region and 
allow one or more other tasks to access the region. 

RESOURCE 

• RSX-IIM/M-PLUS Executive Reference Manual, Chapter 3 plus 
specific directives in Chapter 5 

261 





DYNAMIC REGIONS 

SYSTEM FACILITIES 

Sometimes a task's needs for memory and for shared regions aren't 
known until run time, or the needs may change at run time. 
Examples are: 

1. A task, e.g. an editor, needs a temporary work buffer for 
only part of the time the task is active. 

2. A task needs a shared region or work buffer, but its size 
depends upon the needs of the user running the task (e.g., 
the size of an input file). 

3. A task creates a shared region and wants to control access 
to it by other tasks. 

4. A task wants to create a shared region in a system 
controlled partition (e.g., GEN) instead of in a dedicated 
common type partition. Then when the shared region isn't 
needed, the space automatically is available for other 
system needs (tasks, etc.). 

5. A task needs to map to two different shared regions at 
different times, but has only one 4K word virtual address 
window available. 

Special directives, 
available on mapped 
following functions: 

called memory management 
systems to allow tasks 

directives, 
to perform 

• Create regions in system controlled partitions 

• Attach/detach from a region 

• Create/eliminate virtual address windows 

are 
the 

• Map/unmap a virtual address window to an attached region 

• Obtain information about its mapping from the system 

The memory management directives are a SYSGEN option. Therefore, 
if users on a system plan to use them, they must be included in 
the Executive at SYSGEN time. Check with your system manager to 
find out if they have been included on your system. 

263 



DYNAMIC REGIONS 

Table 8-1 lists the memory management directives which are 
available on an RSX-IIM system. 

Table 8-1 Memory Management Directives 

Function FORTRAN Calls 

Attach region ATRG 

Create address window CRAW 

Create region CRRG 

Detach region DTRG 

Eliminate address window ELAW 

Get mapping context GMCX 

Map address window MAP 

Receive-by-reference RREF 

Send-by-reference SREF 

Unmap address window UNMAP 

264 



DYNAMIC REGIONS 

REQUIRED DATA STRUCTURES 

Each memory management directive requires that you set up one of 
two data structures within your task; namely a region definition 
block (RDB) or a window definition block (WDB). The RDB and the 
WDB are the interface between the user task and the Executive. 
Their contents change dynamically as regions are created and 
accessed. In general, once the WDB and/or the RDB are set up, the 
actual memory management directive FORTRAN calls are quite 
straightforward. Their format is either: 

CALL XXXX(wdb,idsw) 

or 

CALL XXX(rdb,idsw) 

where wdb is the name of an 8 word integer array 
for the Window Descriptor Block 

rdb is the name of an 8 word integer array 
for the Region Descriptor Block 

Examples: 
INTEGER WDB(8),RDB(8) 

CALL CRAW(WDB,IDSW) 
CALL CRRG(RDB,IDSW) 

Region Definition Block (ROB) 

An RDB contains information needed to create a region 
attach to a region in a system controlled partition. 
used by the following directives: 

• Attach Region (ATRG) 

• Create Region (CRRG) 

• Detach Region (DTRG) 

265 

and/or to 
The RDB is 



DYNAMIC REGIONS 

Figure 8-1 shows the arguments for the various RDB elements. The 
meaning of the elements is as follows: 

Region ID - a unique number assigned to a region when your 
task attaches to a region. The number associates the task 
with the region. It is ~eturned by the Executive after 
your task attaches to a region. 

Size of Region - the size of a region to be created, in 
32-word blocks. Also used to return a size when attaching 
an existing region. 

Name of Region up to six characters in Radix-50. 
Assigned when a region is created and used when attaching 
to a region. 

Region's Main Partition Name - up to six characters in 
Radix-50. The name of the system controlled partition. 

Region Status Word used by the user task to send 
information to the Executive when creating or attaching to 
a region. Also used by the Executive to return status to 
the task after a memory management directive is executed. 
Table 8-1 lists the various bits and their meanings. 

Region Protection Word - Analogous to the file protection 
word, controlling access to regions. As shown below, it 
is set up with the same format (RWED for Read, Write, 
Extend, Delete) within each category: System, Owner, 
Group, and World: 

World 
DEWR 
1110 

Group 
DEWR 
1110 

Owner 
DEWR 
0000 

System 
DEWR 
0000 = 167000(8) 

A 1 means access is denied, a 0.means access is permitted. 
The example means world and group have read access; owner 
and system have all access. 

266 



DYNAMIC REGIONS 

ARRAY 
ELEMENT ARGUMENTS BLOCK FORMAT 

irdb (1) REGION 10 

irdb (2) siz SIZE OF REGION (32W BLOCKS) 

irdb (3) 

nam NAME OF REGION (RAD50) -
irdb (4) 

irdb (5) 
par REGION'S MAIN PARTITION NAME (RAD50)-

irdb (6) 

irdb (7) sts REGION STATUS WORD 

irdb (8) pro REGION PROTECTION WORD 

TK-9385 

Figure 8-1 The Region Definition Block 

267 



Symbol 

RS.CRR 

RS.UNM 

RS.MDL 

RS.NDL 

RS.ATT 

RS.NEX 

RS.DEL 

RS.EXT 

RS.WRT 

RS.RED 

Octal 
Value 

100000 

40000 

200 

100 

40 

20 

10 

4 

2 

1 

DYNAMIC REGIONS 

Table 8-2 Region Status Word 

Set By 

System 

System 

User 

User 

User 

User 

User 

User 

User 

User 

Definition 

Region successfully created 

At least one window unmapped .on a 
detach 

Mark region for deletion on last 
detach 

Created region not deleted on last 
detach 

Attach to created region 

Created region not extendable 

Delete access de~ired on attach 

Extend access desired on attach 

Write access desired on attach 

Read access desired on atta~h 

Just as in other modules, the symbols shown are those used in the 
documentation and by MACRO programmers. The symbols can be 
converted to FORTRAN acceptable variable names by dropping the 
period in the symbol. Values may be assigned by using the DATA 
statement. 

268 



DYNAMIC REGIONS 

Creating an ROB in FORTRAN 

Example: 

Create an RDB for a region with the following specifications: 

Size in 32(10) word blocks = 2 

Region name = MYREG 

'Partition name = GEN 

Region to be attached on create 

Region to be marked for delete on last detach 

write access desired on attach 

Owner to have all privileges and group to have read privileges 

DIMENSION IRDB(8) 

. . 
DATA IRDB/0,2,3RMYR,3REG ,3RGEN,3R ,"242,"177017/ 

In the above, the region status word (word 7 = 242(8», is the sum 
of 200(8) + 40(8) +2(8). See table 8-2 for meanings. 

The region protection word is 177017(8), which breaks down as 
follows: 

World 
DEWR 
1111 

Group 
DEWR 
1110 

Owner 
DEWR 
0000 

269 

System 
DEWR 
1111 



DYNAMIC REGIONS 

Example: 

Create an RDB for a region with the following specifications: 

Size in 32(10) word blocks = 1000(8) 

Region name = XXXX 

Partition name = sam~ as task is installed in 

Region status = do not delete, desired access to be filled in 
before attaching 

World to have no privileges, all others to have all privileges 

DIMENSION IRDB(8) 

. . 
DATA IRDB/0,"1000,3RXXX,3RX ,0,0,"100,"170000/ 

Note that any value the Region Descriptor Block could be· changed 
dynamically at run time by using input values to change various 
parts of the RDB. 

Window Definition Block (WDB) 

A WDB contains information needed to create a virtual address 
region and to map a virtual address window to an attached region. 
The WDB is required for the following directives: 

• Create Address Window (CRAW) 

• Eliminate Address Window (ELAW) 

• Map Address Window (MAP) 

• Unmap Address Window (UNMAP) 

• Send-by-Reference (SREF) 

• Receive-by-Reference (RREF) 

270 



DYNAMIC REGIONS 

Figure 8-2 shows the layout of the WDB. 

The meaning of the elements is as follows: 

Window ID - A number which identifies the window block, in 
the task header which describes the window. Window 0 is 
used fO,r the task window. Windows 1 through 7 are used 
for additional windows set up by the Task Builder for 
overlays and static regions and for windows created 
dynamically. The window ID is returned by the Executive 
after a Create Address Window directive. The Task Builder 
option WINDWS=n must be used to specify the number of 
additional window blocks needed for dynamic windows. 

Base APR - The base APR to be used in mapping the window, 
which sets the base virtual address. 

Base Virtual Address -- The base virtual address in octal; 
returned by the Executive after a Create Address Window 
directive. 

Region ID - The region ID, used to identify the region 
when mapping a virtual address window to a region; 
returned by the Executive in the RDB after an Attach 
Region directive. You must move the value returned from 
the RDB to the WDB before mapping to the region. 

Offset in Region (32 word blocks) - The offset within the 
region at which mapping is to begin. Allows a task to map 
to different portions of a region. 

Length to Map (32-word block) The length within the 
region to be mapped. Defaults to the shorter of the space 
remaining in the region and the size of the window. 

Window Status Word Used by the user task to -send 
information' to the Executive when creating and mapping 
windows. Also used by the Executive to return status to 
the user task after a directive is executed. Table 8-3 
lists the various bits and their meanings. 

Send/receive buffer address - The address of an eight-word 
buffer for sending or recelvlng data as part of the 
Send-by-Reference and Receive-by-Reference directives. 

271 



DYNAMIC REGIONS 

ARRAY 
ELEMENT ARGUMENTS BLOCK FORMAT 

iwdb (1) BASE APR WINDOW 10 
apr 

iwdb (2) VIRTUAL BASE ADDRESS (BYTES) 

iwdb (3) siz WINDOW SIZE (32W BLOCKS) 

iwdb (4) rid REGION 10 

iwdb (5) off OFFSET IN REGION (32W BLOCKS) 

iwdb (6) len LENGTH TO MAP (32W BLOCKS) 

iwdb (7) sts WINDOW STATUS WORD 

iwdb (8) srb SEND/RECEIVE BUFFER ADDRESS 

TK-9386 

Figure 8-2 The Window Definition Block 

272 



DYNAMIC REGIONS 

Creating a WOB in FORTRAN 

Example: 

Create a WDS to describe a window with the following: 

APR = 7 
Size in 32(10) word blocks = 100(10) 
Region to be mapped in a CALL CRAW or CALL RREF directive 
Map with read access 
Map 100(10) blocks 

DIMENSION IWDB(8) 

DATA IWDB/"3400,0,100,0,0,100,"201,0/ 

Note that the APR number (7 in the example) must be placed in the 
high byte of the first word in the WDB. This can be done by 
putting 3400(8) into IWDB(1). 3400(8) is 00000111 OOOOOOOO(2) 
which puts a 7 in the high byte for the base APR. This can also 
be done by setting IDWB(1)=7*256. 

Word 7 (201(8» is the window status word. See Table 8-3 for the 
definitions of the bits in this word. 

Create a WDB to describe a window with the following: 

APR = 5 
Size in 32(10) word blocks = 200(8) 
Map starting at offset of 5 blocks in region and map 
10(10) blocks 
Send with delete! and write access 

DIMENSION IWDB(8) 

. . 
DATA IWDB/"2400,0,200,0,5,10,"412,0/ 

273 



Symbol 

WS.CRW 

WS.UNM 

WS.ELW 

WS.RRF 

WS.64B 

WS.MAP 

WS.RCX 

WS.DEL 

WS.EXT 

WS.WRT 

WS.RED 

Octal 
Value 

100000 

40000 

20000 

10000 

400 

200 

100 

10 

4 

2 

1 

DYNAMIC REGIONS 

Table 8-3 Window Status Word 

Set By 

System 

System 

System 

System 

User 

User 

User 

User 

User 

User 

User 

Definition 

Address window successfully 
created 

At least one window unmapped by 
a CRAW, MAP or UMAP directive 

At least one window eliminated 
in a CRAW or ELAW directive 

Reference successfully received 

Defines permitted alignment for 
offset start within the region 
o for 256-word alignment (8 blocks) 
1 for 32-word alignment (1 block) 

Window to be mapped in a CRAW or 
RREF directive 

Exit if no references 

Send with delete access 

Send with extend access 

Send or map with write access 

Send with read access (map is 
with read access by default) 

274 



DYNAMIC REGIONS 

CREATING AND ACCESSING A REGION 

Use the following procedure to create and access a region: 

1. Create the region (Create Region directive) 

2. Attach to the region (Attach Region directive) 

3. Move the region ID from the RDB to the WDB 

4. Create a virtual address window (Create Address Window 
directive) 

5. Map the virtual address window to the region (Map Address 
Window directive) 

6. Use the region 

7. Detach from the region (Detach Region directive or task 
exit). It is recommended that a task always issue the 
Detach Region directive rather than depend on the EXIT 
processing code to issue the Detach. The reason for this 
is that if a task is fixed and EXITs, then no detach is 
done. If you run the fixed task over and over, you could 
run out of pool. 

Steps I and 2 and also steps 4 and 5 can each be combined in a 
single directive call. Step 4 can be performed earlier, if 
desired. To access an existing region, begin with step 2. 

If you don't remember what windows and regions are and also what 
attaching and mapping mean, look over the sections on Windows and 
Regions in the last few pages of Module 5, the Memory Management 
module. 

The use of each directive in the procedure above is detailed on 
the following pages. The discussion includes: the purpose of the 
directive, important input and output parameters, plus notes about 
its use. For a complete discussion of each directive, see Chapter 
5 of the RSX-IIM/M-PLUS Executive Reference Manual. For 
additional information on the memory management directives, see 
Chapter 3 of the same manual. 

275 



DYNAMIC REGIONS 

Creating a Region 

When you create a region, the Executive allocates space for it in 
a system controlled partition. Use the Create Region directive 
(CRRG) with the following RDB input parameters: 

1. Size of region (in 32(10) word blocks) 

2. Name of region (becomes a private region if no name) 

3. Name of partition (defaults to partition of task) 

4. Region Status Word - mark for delete or do not delete 
(default is mark for delete) 

5. Region protection word - determines permissible access ,to 
region 

In the following discussion, the MACRO symbols are used for the 
various Window Status Word bits. See Table 8-3 (Window Status 
Word) for definitions and values. 

The only RDB output parameter is the 'RS.CRR bit in the region 
status word. It is set if the region is successfully created, and 
cleared if not. Normal Executive directive status is returned as 
well (carry set for error, clear for success; DSW contains 
directive status word). If the region already exists, success 
status is returned. Therefore, RS.CRR can be used to tell whether 
the region was in fact created or whether it already existed. The 
following code segment illustrates how to examine RS.CPR to see if 
the the region was successfully created. 

INTEGER RSCPR,RDB(8) 
DATA RSCPR/"100000/ 

I=RDB(7) .AND."100000 

Now test I. If I is 0, the region was not created;' otherwise it 
was. 

276 



DYNAMIC REGIONS 

Any task which passes the protection test can attach to a named 
region. For unnamed (private) regions, only tasks which are 
specifically attached by the creator of the region may attach to 
it. Therefore, for a private region, the creator completely 
controls which tasks attach to it, and their access rights as 
well. 

By default, or if RS.MDL is set in the region status word, the 
region is deleted when the last attached task detaches from the 
region. Named regions are left in existence after the last detach 
if RS.NDL is set in the region status word when the region is 
created. Unnamed (private) regions are always marked for delete 
(deleted on last detach). There is no explicit Delete Region 
directive. 

If the RS.ATT bit is set in the region status word, the Executive 
also attempts to attach the task to the region. In this case, 
additional RDB input parameters are required and additional output 
parameters are returned. Attaching to a region is discussed after 
Example 8-1. 

Example 8-1 shows how to create a named region which is left in 
existence on the last detach. The following notes are keyed to 
the example. 

o Set up the RDB. RS.NDL{100(8» in the region status word 
(RDB(7» specifies that the region is to be left in 
existence. 

Region Protection Word = 

World 
DEWR 
1111 

Bit set means access denied 

Group 
DEWR 
0000 

Owner 
DEWR 
0000 

System 
DEWR 
0000(2) 

l70000(8) 

~ Issue directive to create region, specifying the RDB 
address and the DSW as the only arguments. 

t) Check for directive error. 

C» Display message and exit. 

277 



DYNAMIC REGIONS 

PROGRAM CRERG 
c 
C File CRERG.FTN 
C 
C CRERG creates a named re~ion and exits, leayin~ the 

re~ion in existence. C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

RDB = Re~ion Definition Block for re~ion with the 
followinS properties: 

Size 
Name 
Pa'rti tion 
Protection 

= 100 (32. word blocks) 
= MYREG 
= GEN 
= WO:None,SY:RWED 

OW:RWED,GR:RWED 
Do not mark for delete on last detach 

INTEGER RDB(S) 
C Initialize the RDB 

_. IIATA RDS/O, 8100, 3RMYR, 3REG , 3RGEN, 3R 
1 8 000100,8170000/ 

C Create re~ion o CALL CRRG (RDB 51 IDS) 
C Branch on error e IF(IDS.LT.O)GOTO 800 
C Write success messa~e 

WRITE (5,15) 
15 0 FORMAT (~ CRERG SUCCESSFULLY CREATED MYREG ~ ) 
C Go to common exit 

GOTO 1000 
C Write create error messa~e 
800 WRITE(5,850)IDS 
850 FORMAT(~ ERROR IN CREATING REGION, DSW = ~,I4) 

1000 CALL EXIT 
END 

1:::'.Jn Sestsion 

>RUN CRERG 
CRERG SUCCESSFULLY CREATED MYREG 
:::. 

Example 8-1 Creating a Region 

\ 

278 



DYNAMIC REGIONS 

Attaching to a Region 

When you attach your task to a region, the Executive creates a 
logical connection between the two. The region can be either a 
dynamic region or a static region. Use the Attach Region 
directive (ATRG) with the following RDB input parameters: 

Region name 
Region Status Word (indicating R,W,E,D access) 

The following RDB output parameters are returned: 

Region ID 
Region size 

The region ID is needed later in order to map a virtual address 
window to the region. The region size is of interest when 
attaching to an already existing region whose size may not be 
known. 

Attaching can also be done as part of the Create Region directive 
(CRRG), if the RS.ATT bit in the region status word is set when 
the Create Region directive is issued. In fact, for an unnamed 
region, attaching must be done as part of the Create Region 
directive, since there is no region name to be used in a separate 
Attach Region directive. 

A task can detach from a region by using an explicit Detach Region 
directive (DTRG) or by exiting (the Executive detaches the task). 
If a task is changing a region from "do not delete" to "mark for 
delete", an explicit detach is required with RS.MDL set in the 
region status word. If a task exits without issuing an explicit 
detach, and the task is not fixed, the Executive detaches the task 
but does not mark the region for delete. Once a region is marked 
for delete, it is deleted when the last attached task detaches 
from it. Once it is marked for delete it cannot be changed to "do 
not delete". 

If a fixed task exits without issuing a detach, no detach is 
issued by the Executive. 

279 



DYNAMIC REGIONS 

Creating a Virtual Address Window 

When you create a virtual address window for a task, the Executive 
initializes a window block in the task header. It also checks to 
ensure that this is the only window that uses the specified range 
of virtual addresses, unmapping and eliminating any window that 
overlaps that range. Use the Create Address Window directive 
(CRAW) with the following WDB input parameters: 

Base APR number 
Window size (in 32 (10) word blocks) 

The following WDB output parameters are returned: 

Window ID assigned by the system (1-7) 
Base virtual address 

The space for the additional window blocks in the task header must 
be reserved at task-build time using the WNDWS=n option. N is the 
number of additional windows needed for windows created at run 
time. If extra space is not allocated, an address window 
allocation overflow error (IE.WaV= -85.) results when you attempt 
to create a virtual address window. 

The window is also mapped to a region if bit WS.MAP is set in the 
window status word when the Create Address Window directive is 
issued. In that case, additional i~put parameters are needed. 
See the following section on Mapping to a region. 

The Eliminate Address Window (ELAW) directive can be used to 
explicitly eliminate a virtual address window. In general, it is 
not used because creating a new window automatically eliminates 
any overlapping window. 

280 



DYNAMIC REGIONS 

Mapping to a Region 

When you map a virtual address window to a region, the Executive 
creates a logical connection between the virtual address window 
and the region. Any attached region can be mapped. In the 
process, the memory management registers are loaded so that 
references to virtual addresses in the window access the region. 
This assumes, of course, that the task keeps control of the cpu. 
The APRs are reloaded every time a new ta~k takes control of the 
CPU. 

Use the Map Address Window directive (MAP) to map a window to a 
region, with the following WDB input parameters: 

Region ID - Returned to RDB by Attach (move from RDB to 
WDB) • 

Offset into Region - in 32-word blocks, used to start 
mapping at an offset from the start of the region. This 
must be a multiple of 8(10) unless WS.64B is set in the 
window status word. If WS.64B is set, any whole number 
may be specified. 

Length to Map - If specified, must be less than or equal 
to shorter of length of window and length remaining in 
region. If defaulted, is set to the shorter of the two. 

Window status word - actual access desired (read-only, or 
read/write). Read access is always requested by default 
so a request for write access actually requests read/write 
access, and a request for no access actually requests read 
access. 

The only WDB output parameter generally used is the length 
actually mapped. If the window is already mapped, it is first 
unmapped by the Executive. You can also use the Unmap Address 
Window directive to explicitly unmap a window. Mapping can also 
be done as part of the Create Address Window directive (CRAW). 

The access desired is used here in addition to that declared when 
attaching because several windows in the task may map the same 
region. Some of the windows may need read-only access, others may 
need read/write access. In that case, you must attach with 
read/write access, and then you may map each window with either 
read-only access or read/write access. 

281 



DYNAMIC REGIONS 

Example 8-2 shows how to create a region and place data into 
it, leaving it in existence on exit. Example 8-3 shows how to 
attach to that region, read and display the data, and finally 
detach and mark it for delete. One run session covers both 
examples. The following notes are keyed to Example 8-2. 

o 

o 

o 

Task-building with the WNDWS=l option causes the Task 
Builder to allocate space in the task header for one 
additional window block. You must also use the VSECT 
option to create a virtual section starting at 160000(8) 
for an extent of 20000(8). APR 7 must be used to map the 
section because the section's beginning address is 
160000(8). The name of the virtual section is DATA. This 
ties the FORTRAN named COMMON DATA to the virtual section. 

RDB for region. Note that RDB(7), the region status word, 
is 152(8). This is the combination of the following: 

RS.NDL = 100(8) 
RS.ATT = 40(8) 
RS.DEL = 10(8) 
RS.WRT = 2(8) 

------
152(8) 

See Table 8-1 for the above definitions. 

WDB for virtual address window. The third argument is for 
the region ID, which will be filled in at run time after 
the task attaches to the region. In the window status 
word, WS.MAP (200(8» means that the Create Address Window 
directive will both create the window and map it to the 
region. WS.RED (1(8» is automatic, even though not 
specified. WS.WRT (2(8» indicates to map with write 
access. The sum of the two needed octal codes is 202(8). 

Create region and attach. 

ct Move region ID, returned in RDB(l) after attach, into 
WDB(4) for mapping. 

C) Create a virtual address window and map it to the region. 
The virtual address window begins with APR 7, so the base 
address in the window is 160000(8), corresponding to the 
base address in the region. 

282 



o 

DYNAMIC REGIONS 

Place a byte count, 400(10), in the first word in the 
region. This 1S just one way to communicate this 
information to other tasks which access the. reg ion. The 
length of the region is returned when a task attaches to 
the region. You could use this as an alternate way to 
pass the information about the amount of data. 

Move 100(10) words of ASCII "AB" and 100(10) words of 
ASCII "12" into the region. This gives us 200(10) words 
or 400(10) bytes of data. 

Display a successful creation and 
at the terminal. 

initialization message 

CD Detach from the reg ion and then exi t, leaving the reg ion 
in existence. 

283 



DYNAMIC REGIONS 

P/:;:OG/:;:AM C/:;:EURG 
c 
C File CREURG.FTN 
C' 
C 
C' 
C' 
(" 

C 
C 
C 
C 
C 
C 
(" 

C 
(" 

C 
C 

CREURG creates a named resion (attached on creation), 
creates a virtual address window (mapped on creation), 
places ASCII data in the resion, detaches from the 
reSion and exits, leavinS the resion in existence. 
It places a count word in the first word of the 
resion, tellins how man~ b~tes of data follow. 

Task-build instructions: 

o ~
>LINK/MAP/OPTIONS/CODE:FPP CREURG,LB:[l,lJFOROTS
_. > IL I BRARY 
Option? VSECT=DATA:160000:20000 
(h-:,tion'~ WNDWS::::1 
())~t i on? <RET> 

C RDB ::: ReSion Definition Block for resion with the 
(" followinS properties: 
r' Size - 100(S) (32. word blocks) 

.- MYREG C 
( .. . , 
C 
C 
C 
C 
C 

o 
N,:Jme 
Parti ticm 
P rCJtect i on 

.- GEN 
- WO:None,SY:RWED 

OW:RWED,GR:RWED 
Do not mark for delete on last detach 
Attach with write and delete access 

C WDS ::: Window Definition Block for window with the 
C 
C 
C 
C 
C 
C 
C 

fC)l.IOW~~~!~ properties: __ 7 

Size - 1000ctal (32. word blocks) e Offs.et in region _. 0 (32. wc)rd blc)cks) 
Length in reSion - 1000ctal (32. word blocks) 
Map on create with write access 

INTEGER RDB(S),WDB(S) 
COMMON /DATAI IDATA(201) 

C Initialize the RDB ' o DATA RDB/O,"100,3RMYR,3REG ,3RGEN,,3R 
C' Initialize the WDB 

A DATA WDB/"3400,0,"100,0,O,"100,"202,OI 
C C~l routine to create and attach resion o CALL CR/:;:G (F<DB" IDS) 
C Check for error 

IF(IDS.LT.O)GOTO 800 
C Create address window and map to reSion o WDB(4)=RDR( 1) o CALL CRAW (WDB" IPS) 

Example 8-2 Creating a Region and Placing 
Data in It (Sheet 1 of 2) 

284 



DYNAMIC REGIONS 

C Check for error 
IF(IDS.LT.O)GOTO 810 

C Place data in re~ion ~ 1st word is a byte count o IDATA (1) =-400 

[

DO 10 J=2,101 
lO 0 IDATA(.J)='AB' 

. DO 20 K==102,201 
20 IDATA(K)='12' 
C Detach from re~iori 

C!) CAL.L DTr~G (RDB" IDS) 
C Check for error 

IF(IDS.LT.O)GOTO 820 
C W rite mf:?~;Sage o TYPE *" 'CRELJRG HAS CREATED AND INITIALIZED THE 

1REGION' 
C Branch to common exit 

GOTO 1000 
C Write create error message 
800 WRITE(5,805)IDS 
805 FORMAT(' ERROR IN CREATING REGION, DSW - ',14) 
C Go to common exit 

GO TO 1000 
C Write attach error message 
810 WRITE(5,815)IDS 
815 FORMAT(' ERROR IN CREATING WINDOW AND MAPPING, 

lDSW = ',,14) 
GO TO 1000 

C Write detach error messa~e 
820 WRITE(S,825)IDS 
825 FORMAT(' ERROR IN DETACHING FROM REGION, DSW == 

1,,14) 
C Common exit 
1000 CAL.L EXIT 

END 

Rttrl Sess:i em 

>RUN CRELJI~G 

CRELJRGHAS CREATED AND INITIAL.IZED THE REGION 
>RUN ATTLJRG 
ABABABABABABABABABABABABABABABABABABABABABABABABABABABABABABABAB 
ABABABABABABABABABABABABABABABABABABABABABABABABABABABABABABABAB 
ABABABABABABABABABABABABABABABABABABABABABABABABABABABABABABABAB 
ABABABAB12121212121212121212121212121212121212121212121212121212 
1212121212121212121212121212121212121212121212121212121212121212 
1212121212121212121212121212121212121212121212121212121212121212 
1212121212121212 

Example 8-2 Creating a Region and Placing 
Data in It (Sheet 2 of 2) 

285 



DYNAMIC REGIONS 

The following notes are keyed to Example 8-3. 

o 

o 

Again, task-build with the WNDWS=l option so the Task 
Builder allocates space for the window block in the task 
header and with the VSECT option. 

The RDB for attaching to the region. The only required 
information is the region name and the region status word. 
The partition name and the size, although included, are 
not required. RS.MDL (200(8» (set) marks the region for 
delete when we do an explicit detach. We need delete 
access to mark the region for delete (RS.DEL=10(8». In 
addition, attach with read (RS.RED=1(8» and write 
(RS.WRT=2(8» access so we can map with read/write access. 
The sum of the region status codes above is 213(8). 

The WDB for the virtual address window. We map the entire 
region (length = 100 (8) 32-word blocks) starting from the 
beginning (offset = 0). WS.MAP means create the address 
window and map. Map with read (WS.RED) and write (WS.WRT) 
access. The sum of the window status codes is 203(8). 

C» Attach to the region. 

C) Move the region ID to the WDB and create the virtual 
address window and map it to the region. 

o First word in the region contains a character or byte 
count. Convert it to a word count. 

o 

o 

Print the contents of the region, 64(10) characters per 
line. This technique is used to demonstrate how to 
control the width of the 'output and to make the run 
session fit on an 8 1/2 by 11 inch page with margins. If 
the full terminal buffer width (typically 80(10) or 
132(10» is acceptable, the FORMAT could be 39A2 or 6SA2. 

Detach from the region. 
the region for delete. 

Explicit deta¢h required to 

286 

mark 



0 

e 

DYNAMIC REGIONS 

PROGRAM ATTUF~G 

r' 
C File ATTURG.FTN 
C 
C FORTRAN pro~ram to attach the existin~ re~ion MYREG, 
C create a virtual address window (mapped on creation), 
C read ASCII data out of the re~ion, detach from the 
C reSion, and exit. The reSion is marked for delete 
C and will be deleted on last detach. 
("' The first word in the reSion contains a count of how 
C man~ bwtes of data are in the re~ion. 
C 
C Task-build with these options: 
C 0 rVSECT=REG I ON: 160000: 20000 
C ~NDWS=l 
(
., ., 

INTEGER RDB(S),WDB(S) 
INTEGER IDATA(2048) ! Arraw for addressin~ 

C ! reSion (Full 4KW) 
C This common block will alisn with the address window 

COMMON IREGION/IDATA 
c; 
r' ., 
c 
("' ., 
c 
c 
c; 
("' 

C 
C 
C 
c:; 
c 
c; 
r' ., 
c 
G 
C 

RDB = Resion definition block with the followin~ properties: 
Size 0 (32.-word blocks) - returned 

when attached 
Name MYREG 
Partition GEN 

detach Mark for delete on last 
Attach with delete, read and write access 

Initialize the RDB 
DATA RDB 10,0,3RMYR,3REG 
1,01 

,3RGEN,3R ,800021.3 

WDB == Window definition block with the followin~ properties: 
APR 7 
Size 200 octal (32.-word blocks) 
Offset in reSion 0 (32.-word blocks) 
Lensth of window 0 octal (32.-word blocks) -

defaults to shortest 
available len~th 

Map on create with read and write access 
Initialize the WDB 

DATA WDB 1 83400,0,8200,0,0,0,'203,01 

Example 8-3 Attaching to an Existing Region 
and Reading Data From It (Sheet 1 of 2) 

287 



DYNAMIC REGIONS 

c 
C Attach resion o CALL ATr~G (RIIB!' IIIS) 
C Check for error on attach 

IF (IIIS .LT. 0) GOTO 100 
r Move resion id to WDB 

[

J WIIB(4)=RIIB(1) o C Create and mar-" window 
CALL CRAW (WIIB,IIIS) 

C Check for error 
IF (IIIS .LT. 0) GOTO 200 

r Get bwte count and convert to word count o NWORII::::('I[iATA( 1 )+1 )/2 
C Print contents of resion 

0[:1.0 WrnTE (5, :1.1) (IIIATA( I), I=2,NWORn) 
:1.1 FORMAT (' ',32A2) 
C Detach from resion and delete it o CAL.L DTRG (RnB,InS) 
C Check for error 

IF (InS .LT. 0) GOTO 300 
C And Jump to exit 

GOTO 500 
c 
C ET'ror messases 
100 WRITE (5,101) InS 
:1.01 FORMAT (' ERROR ATTACHING TO REGION, DSW ::::',14) 

GOTO 500 
200 WRITE (5,201) IIIS 
201 FORMAT (' ERROR IN CREATING WINnow, nsw =',14) 

GOTO 500 
300 WRITE (5,301) Ins 
301 FORMAT (' ERROR DETACHING FROM REGION, nSW::::',I4) 
C 
500 CALL EXIT 

ENn 

Example 8-3 Attaching to an Existing Region 
and Reading Data From It (Sheet 2 of 2) 

288 



DYNAMIC REGIONS 

SEND- AND RECEIVE-BY-REFERENCE 

If you create a private (unnamed) region, you have complete 
control over whether other tasks can have access to it. You 
specifically attach other tasks to the region by sending a packet 
containing a reference to the region. When you do that, you can 
also specify what access they have to the region. At the time, 
you must be attached with at least that much access yourself. 
Named regions, on the other hand, can be attached by any task that 
knows the name and has the appropriate access privileges to pass 
the protection check. 

Use the Send-by-Reference directive (SREF) to send a region by 
reference, with the following input parameters: 

Receiver task name 
WDB - Region ID 

offset into region - sent unchecked to receiver 
length to map - sent unchecked to receiver 
window status word - determines how receiving 

task is attached 
address of buffer - 8(10) word buffer which is 

sent to the receiver 
Event flag - if specified, set when the reference 

is received, not when it is queued up 
(in the receive-by-reference queue) 

The receiver task is attached to the region when the reference is 
queued. This avoids the problem of the region being deleted if 
the sender exits before the receiver receives the region. 
Remember that private regions are always marked for delete on the 
last detach. 

If you are using an event flag for synchronization, note that the 
flag should be used to notify the sender when the receiver 
receives the region by reference. It is not the same as the Send 
and Receive Data directives, where the flag is set when the 
reference is queued. That flag should be used to notify the 
receiver. 

289 



DYNAMIC REGIONS 

The receiver follows a somewhat modified procedure to access the 
region, as follows: 

1. Create window 

2. After reference is queued, Receive-by-Reference (fills in 
region ID in WDS) 

3. Map to region 

4. Use region 

5. Detach from region 

Use the Receive-by-Reference directive (RREF) to receive a 
reference to a region, with the following WDS input parameters: 

Window Status Word - WS.MAP (200(8)) for receive and map 
WS.RCX (100(8)) for receive data or exit 

Suffer Address - 10(10) word buffer for sender task 
name (in Radix-50 format) and data 

The following WDS output parameters are returned, all as set by 
the sender: 

Region ID 
Offset into region 
Length to map 
Window status word - describes how attached 

If the WS.MAP bit is set, the Executive maps the window to the 
region, using the offset, length, and window status word access as 
sent. If a separate Map directive is used, the receiver can first 
check and/or modify those parameters before mapping to the region. 
WS.RCX set tells the Executive that the task is to EXIT if there 
are no packets in the Receive-by-Reference queue. 

290 



DYNAMIC REGIONS 

Examples 8-4 and 8-5 show how to create a pair of tasks, a sender 
task and a receiver task. The sender, Example 8-4, creates a 
private region, initializes it, and sends a reference to it to the 
receiver. The receiver, Example 8-5, in turn receives the 
reference, displays the data, and then exits. One run session is 
included for both examples. The following notes are keyed to 
Example 8-4. 

o 
o 

o 
o 

The RDB for the region. 
private region.' 

The name is defaulted to create a 

The WDB for the virtual address window. The length 
actually mapped will be returned after mapping. Read 
access is automatic for map, so WS.WRT gets read/write 
access. 

Create and attach to region, create virtual address window 
and map it to the region. 

Fill the region with ASCII M's. 

Send-by-Reference to RCVREF (Example 8-4). Event 
will be set when RCVREF actually 
Receive-by-Reference. 

flag 
does 

1 
a 

() Display message saying region created and sent. Then wait 
for event flag 1 to be set. 

~ Display message saying RCVREF received region. 

C) Exit. The Executive will detach us from the region. Note 
that even if SNDREF exits before REVREF received, the 
region will not be deleted because RCVREF is attached when 
the reference is queued. The region is deleted only after 

.both SNDREF and RCVREF detach. 

291 



DYNAMIC REGIONS 

F'r';:OGRAM SNDREF 
c 
C File SNDREF.FTN 
c 
C This pro~ram creates a 64~word unnamed re~ion and 
C fills it with ASCII characters. It then sends it bw 
C reference to task RCVREF, and waits for RCVREF to 
C receive the re~ion.(This is s1.nalled bw event fla~ 
C tl.) SNDREF then prints a messaSe and exits. Since 
C the area is unnamed, it is automatical1w deleted when 
C the last attached task exits. 
("' 

C Task-build instructions: 
C; 

c 
c 
r' 
c 
c 
c 

>LINK/MAP/CODE:FPP/OPTIONS SNDREF,LB:(l,lJFOROTS
MH)/J...IBI=i:ARY 
O}":Ition? WNDWS::::1 
Option? VSECT=DATA:160000:200 
Or-,tion? <F~ET> 

C Install and run instructions: RCVREF must be installed. 
C Run SNDREF first, then run RCVREF. 
C 
C 
C 
C 

·c 
c 
("' 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

RDB = Re~ion definition block with the followin~ 
properties: 

Size 
Name 
Parti ticm 
Prot(~ction 

2 32-word blc)cks 
none 
GEN 
WO:none,SY:RWED,OW:RWED, 
GR :nor,e 

Attach on creation 
Read and write access desired on attach 

WDB = Window definition block with the followins 
f~ T'C)f·'('~ rt :i. es: 

APR 7 
Size 2 32-word blocks 
Offset in re~ion 0 32-word blocks 
Len~th of re.ion 2 32-word blocks 
Map on create with write access 

INTEGER RDB(S),WDB(S),RCV(2) 
C This common block will ali.n with the address window 

COMMON /DATA/IDATA(64) 
C Initialize the RDB o DATA F~DB/O, -2,0,0, 31:;:GEN, 3~~ , u 43, -1700171 
C Initialize the WDB o DATA WDB/ u 34001'01' u2,0,0, u2, -202,01 
C Name of receiver task 

DATA RCV/3RRCV,3RREFI 

Example 8-4 Send-by-Reference (Sheet 1 of 2) 

292 



DYNAMIC REGIONS 

C CCld(~ 

o [

CALL CRRGCRDB,IDS) 
IF (ID8 .LT. 0) GOTO 
WDB(4)=RDB(1) 
CALL CRAWCWDB,IDS) 
IF (IDS .LT. 0) GO TO 

C Fill region with data 

10 IDATACI)='MM' 

! Creat~~ region 
100 ! Check for error 

! Move region id to 
! Create window 

200 ! Check for error 

WDB 

o [DO :1.0 1:::1,,64 

r Send-b~-reference to receiver task, set event flag 1 
C when T'ec(~i ved o CALL SREF(RCV,l,WDB,,,IDS) 

IF (IDS .LT. 0) GO TO 400 ! Check for error 

[

TYPE *,,' SN.DREF HAS CREATED THE REGION AND HAS o 1 8ENT I T TO RCVF~EF.' ! Di SF' I a~ message 
CALL WAITFR(l,IDS) ! Now wait for reception 
IF (IDS .IT. 0) GOTO 500 ! Check for error 

O [fYPE *,' RCV~~EF HAS RECEIVED IT. SNDREF IS NOW 
lEXITING.' ! Write message 
GO TO 600 ! And go exit 

C Error handling code 
100 WRITE (5,,110)IDS 
110 FOF~MAT (' ERROf~ CREATING REGION, DSW ._. ' ,14) 

GO TO 600 
200 WRITE (5,,2:1.0)IDS 
210 FORMAT (' ERROR CREATING WINDOW, DSW - ',14) 

GOTO 600 
400 WRITE (5,410)ID8 
410 FORMAT (' ERROR IN SEND-BY-REFERENCE, DSW - ',,14) 

GO TO 600 
500 WRITE (5,510)ID8 
510 FORMAT (' ERROR ON WAIT" DSW - ',14) 

(SOO 0 CALL EXIT 
END 

Example 8-4 Send-by-Reference (Sheet 2 of 2) 

293 



DYNAMIC REGIONS 

The following notes are keyed to Example 8-5. 

o 

o 
e 

o 
o 

o 
o 

WDB for virtual address window. The size is 200(8) 
32-word blocks, a full 4K words. The offset into the 
region, the length to map, and the access will be filled 
in on receive. Since the length to map sent by SNDREF is 
two blocks, 2 will be used in mapping. Note that the 
window can be more than two blocks lohg. WS.MAP must be 
left clear until after the window is created. Otherwise, 
the Executive will try to map the window to the region, 
causing an error. See the discussion which follows. 

Create the virtual address window. 

WS.MAP (200(8» must be set in the Window Status Word 
(word 7) of the Window Definition Block, so that the task 
will map as part of the Receive-by-Reference. 

Receive-by-reference and map. 

Get length actually mapped (two blocks, same as length of 
region) and convert from blocks to bytes •. Just display 
that many characters. 

Display all characters with one WRITE. 

Exit. The Executive will detach the task from the region. 
When both tasks have detached, the region will be deleted. 

The receiver may map after the receive-by-reference or as part of 
the receive-by-reference. If the receive-by-reference and the map 
are combined in one directive, issue the Receive by Reference 
directive with the WS.MAP bit set. In that case, the WS.MAP bit 
must be clear when the window is created since you can't map until 
you receive. This is necessary because even though the receiver 
is attached to the region when the reference is queued up, the 
region ID isn't filled in the WDB until the receiver executes the 
Receive-by-Reference directive. So if you receive and map in one 
call, issue the Create Address Window directive with the W8.MAP 
bit clear, and then set it before issuing the Receive-by-Reference 
directive. If you use a separate Map directive, the W8.MAP bit 
can be left clear. 

294 



DYNAMIC REGIONS 

PROGr-i:AM RCVF~EF 
c 
C File RCVREF.FTN 
C 
C ProSram to receive~b~-reference a resion from SNDREF, 
C map to the resionv read ASCII data from the resion, 
r detach from the reSion~ and exit. The resion will be 
C deleted on last detach. 
C 
C Task-build instructions: Include these options 
c 
c 
c 

WNDWS::::1 
VSECT=DATA:160000:20000 

C Install and run instructions: RCVREF 
r Run SNDREF firstv then run RCVREF. 
C 
C WDe - Window definition block with: 
C APR 7 

must be installed. 

C 
r' 
C 
C 
C 

200(8) 32-word blocks 

C 
C 

Allow for full APR use 
These are filled in on receivev as set bw sender: 

Offset in resion 0 32-word blocks 
Lensth of reSion 0 32-word blocks 

reset after mappins 
Access o 

C NOTE: Must m~p after receivinS Cor as part of receive) 
INTEGER WDBCS) o DATA WDB/a3400,0,·200~0,0,0,O~OI 

r This common block will alisn with the address window 
COMMON IDATA/IDATAC R10000) 

r Create address window--do not map at this time o CALL CRAWCWDBv IDS) 
r Check for error on create 

IF CIDS .LT. 0) GOTO 200 
r Now set WDB status for mappins--will be done bw receive-bw-reference e WDB(7)=WDBC7)+R200 
C Receive-bw-reference and map o CALL RREF (WDBv ,IDS) 
C Check for error 

IF CIDS .LT. 0) GO TO 100 

Example 8-5 Receive-by~Reference (Sheet 1 of 2) 

295 



DYNAMIC REGIONS 

C Calculate number of words of data - lensth in blocks 
C returned at WDB(6) e NCHAR :::: ~32*WnB (6) 

O rWRITE(S,10) (ItIATA(I) ,I::::1,NCHAFO 
10 ~ORMAT (' ',32A2) 
C Go eHit 

GOTO 300 
C Error messases 
100 WRITE(S,110)IDS 
110 FORMAT (' ERROR ON RECEIVE-BY-REFERENCE, DSW =',I4) 

GO TO 300 
WJ::::rTE (5,210) IDS 2()0 

~.~10 

~300 0 
FORMAT (' ERROR CREATING WINDOW, DSW ::::',14) 
CALL EXIT 
END 

Run Session 

:>:r NS F~CVJ:::EF 

>J~UN SNDI~EF 
SNDREF HAS CREATED THE REGION AND HAS SENT IT TO RCVREF. 

RUN J~CVJi:EF 

RCVREF HAS RECEIVED IT. SNDREF IS NOW EXITING. 
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM 
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM 

Example 8-5 Receive-by-Reference (Sheet 2 of 2) 

296 



DYNAMIC REGIONS 

THE MAPPED ARRAY AREA 

A large core resident data area may be set up by using the FORTRAN 
VIRTUAL statement. The VIRTUAL statement provides the Task 
Builder with the information required to create a mapped array 
area. The VIRTUAL statement is very similar to the DIMENSION 
statement except that all space reserved for a VIRTUAL array is in 
a separate area within the task region. 

Figure 8-3 shows a task using a mapped array area. The Task 
Builder sets things up so that when the task is initially loaded, 
the task region is larger than normal, with the mapped array area 
set aside in memory jmmediately below the task header. The task 
is automatically attached to the region since it is part of the 
task region. 

The area may be any size as long as the task image and the mapped 
array area fit into the partition. This means that it may be 
larger than 32K words. However, due to the subscript limitation 
of 32767 in FORTRAN, a single array cannot have more than 32767 
elements. Typically, the virtual address window maps only a 
portion of the region at a time using a single APR. Once you have 
referenced an element in a virtual array, the APR is set up to map 
to the nearest 4K boundary in the array. Hence, assuming an 
integer array IARRAY, if your first reference is to IARRAY(I) , 
then any element in the virtual array between IARRAY(I) and 
IARRAY(4096) can be maped with the current setting of the APR. 

However, if a reference is made to an element with a subscript 
higher than 4096, the APR used for the 4K window must be remapped. 
Hence, consecutive references to IARRAY(I) , IARRAY(5000) , 
IARRAY(2), IARRAY(5001), etc., will cause a remapping on each 
reference, thereby inducing some additional overhead. Note that 
all mapping is transparent to the user; however, knowledge of how 
mapping is performed, and when, can aid you in designing your 
programs to reduce the overhead required by remapping. 

Since the area isn't set aside until the task is loaded into 
memory, any initialization of the area must be performed at run 
time. 

297 



DYNAMIC REGIONS 

VIRTUAL 
MEMORY 

WINDOW 
(4K WORDS) 

160000 APR 7 ~------~-

APR 6 I-

APR 5 I-

APR 4 I"-

APR 3 I-

APR 2 I-

APR 1 I-

TASK 
IMAGE 

(28K WORDS) 

\\ 
'\\ 
\\ 
\\ 

APR 0 ... -_-_H_EA_D_E_R_&_S_T_A_CK_-_-_______ ~ __ \\ ___ _ 

\ \ 

CD INITIAL LOAD AND MAP 

CD TOTAL SPACE INITIALLY 
ALLOCATED. 4K WORD 
AREAS MAPPED AS 
NEEDED. 

\ \ 
\ \ 

\ \ 
\ \ 

\ 

PHYSICAL 
MEMORY 

TASK 
IMAGE 

------------
HEADER & STACK 

MAPPED 
ARRAY 
AREA 

(32K WORDS) 

TK-7739 

Figure 8-3 The Mapped Array Area 

298 



DYNAMIC REGIONS 

Example 8-6 shows how to create and use a mapped array area. The 
following notes are keyed to the example: 

o 
o 
e 

o 

Create the virtual array IDATA with 32000 elements. 

Data to be placed into various parts of the virtual array. 

Put 'AI' into IDATA(I) and 'G7' into IDATA(2). After the 
first reference, the mapping is set up to allow reference 
to any element up to IDATA(4096) without remapping. 

Put data into elements IDATA(4097) and IDATA(4098). Note 
that the window had to be remapped to access the second 4K 
of the mapped array. This is transparent to the user. 

C» Put data into the third 4K block. Remapping needed. 

C) Put data into the fourth 4K block. Remapping needed. 

«» Retrieve data from each of the four 4K blocks. Remapping 
required for each reference. The mapping order for 
displaying the data is different just to show that the 
order need not match the original order for placing the 
data into the region. 

299 



DYNAMIC REGIONS 

PROGRAM VIRTAR 
c 
C File VIRTAR.FTN 
c 
C VIRTAR makes use of the mapped arra~ area b~ usinS a 
C FORTAN virtual arra~. It places data in 4 different 
C 4K word blocks of the area and then displa~s the 
C data at the terminal. 
C 

C Set UP the virtual arra~ in the mapped arra~ area o VIRTUAL.. IIIATA(32000) 
C Define data values to be placed in the arra~ 

O rD A TAD AT A , D A T B , DA T C / 1 Al' , 1 B 2 1 '. 1 C 3 1 / 

~ATA DATD,DATG /ID4 / ,/G7 ' / 
C Place data in 1st 4KW block/ IDATA(l) - IDATA(4096) 

- [IDATA (1) ::::DATA o IItATA (~!) ::::DATG 
C-Place data in 2nd 4KW block/ IDATA(4097) - IDATA(8192) 

A [IDATA (4097) ::::DATB 
~ IDATA(4098)::::DATG 

C Place data in 3rd 4KW block/ IDATA(8193) - IDATA(12288) o [IDATA(8j,93)::::DATC 
IDATA(8194)::::DATG 

C Place data in 4th 4KW block/ IDATA(12289) -IDATA(16384) 
• [IDATA (12289) ::::DATD 
~ IDATA(12290)::::DATG 

C Write data from 1st 4KW block 
WRITE (5,100) IDATA(1),IDATA(2) 

(" Write data from 2nd 4KW block 
WRITE (5,100) IDATA(4097),IDATA(4098) 

~: Write data from 4th 4KW block 
WRITE (5,100) IDATA(12289),IDATA(12290) Ole Write data from 3rd 4KW block 
WRITE (5,100) IDATA(8193),IDATA(8194) 

:1.00 FORMAT (' I,A2,A2) 
CALL EXIT 
END 

>F~LJN VIRTA~\: 

A1G'7 
B2G'7 
D4G7 
C:~G'7 

Example 8-6 Use of the Mapped Array Area 

300 



DYNAMIC REGIONS 

Now do the tests/exercises for this module in the Tests/Exercises 
book. They are all lab problems. Check your answers against the 
solutions provided, either in that book or in on-line files. 

If you think that you have mastered the material, ask your course 
administrator to record your progress in your Personal Progress 
Plotter. You will then be ready to begin a new module. 

If you think that you have not yet mastered the material, return 
to this module for further study. 

301 





FILE I/O 





FILE I/O 

INTRODUCTION 

The RSX-IIM file system is composed of three parts. 

• File structures - the organization and data structures 
maintained on the mass storage volumes themselves 

• Ancillary Control Processors (ACPs) - tasks which maintain 
the file structures and provide access to them 

• File access routines - provide user-written tasks with an 
interface to ACPs, which provide and maintain organization 
within files. 

This module reviews some basic information about file storage, and 
provides general information about the RSX-IIM primary file 
structure called FILES-II, and its ACP. This module also presents 
an overview and comparison of the two supplied file access 
subsystems, File Control Services (FCS) and Record Management 
Services (RMS). The following module provides details on 
programming using FCS, which is the more widely used subsystem. 

OBJECTIVES 

1. To describe the steps involved in file I/O 

2. To describe the FILES-II structure and how the FIIACP 
maintains that structure during file I/O 

3. To identify the advantages of using either FCS or RMS for 
file access. 

RESOURCES 

1. IAS/RSX-ll I/O Operations Reference Manual, Chapters 1 and 
5 

2. RMS-ll User's Guide 

305 





FILE I/O 

OVERVIEW 

Quite often in an application you need to store data on a 
peripheral device (disk, magtape, etc.) for later retrieval. To 
write such an application, you must know something about the 
different devices which are on your system. In addition, you must 
understand the file structure and its support systems. Once you 
know that, you can learn the procedure for actually performing I/O 
operations. 

TYPES OF DEVICES 

Record-Oriented Devices 

Record-oriented devices have the following characteristics. 

• Data is handled a record at a time. 
• There is no file structure. 

Terminals, line printers, and card readers are all record-oriented 
devices. They are not designed for storage and fast retrieval of 
data, but are designed instead to support interactive sessions or 
provide hard copies of reports and other data. 

File-Structured Devices 

File-structured 
characteristics. 

devices have the following general 
The data they contain: 

• Can be handled in files 

• Can be stored and retrieved quickly 

• Is typically stored on a storage medium which can be moved 
from one device to another. 

Hard disks, floppy disks, and magtape are examples of 
file-structured devices. The following definitions should prove 
helpful in our discussion. 

a file - a collection of related data; 
logical unit of maSs storage. 

307 

therefore, a 



FILE I/O 

volume - a physical unit of mass storage consisting of a 
recording medium and its packaging. Examples are a disk 
pack, a reel of tape, a diskette, and a DECtape II 
cartridge. 

Types of File-Structured Devices There are two 
file-structures devices, sequential and random-access. 
is determined by the kind of access to data on it. 

Sequential devices have the following characteristics. 

• Data is retrieved in the same order as written 

types of 
The type 

• New data is always appended at the logical end of the 
tape, after the last data written 

• data cannot be written in the middle of the volume without 
losing the data past that point. 

Magtape and cassettes are examples of sequential devices. In 
essence, data is stored in order as written. To access any data, 
all data before it on the tape must be read first. 

Under RSX-lIM, the magtape ancillary control processor (MTAACP) 
supports the ANSI file structure. 

The MTAACP supports the following file setups:' 

• A single file on a single volume 
• A single file on multiple volumes 
• Multiple files on a single volume 
• Multiple files on multiple volumes 

Random-access devices, also 
block-replaceable devices, 
They can: 

called block-structured devices or 
have the following characteristics. 

• Store and retrieve data in units called blocks 

• Write or read blocks in any order 

• Rewrite blocks without interfering with other blocks. 

Hard disks (RL0l/02, RP06, RM02/03), diskettes (RXll, RX2ll) and 
DECtape II are examples of random-access devices. 

308 



FILE I/O 

The FILES-II file structure, the standard RSX file ~ structure, is 
supported by the FILES-II ancillary control processor (FIIACP). 
FIIACP supports multiple files on a volume, but a file may not 
extend across volumes. The COpy command (PIP in MCR) maintains 
the FILES-II structure during transfers of files within a given 
device and between FILES-II devices on a system. 

The ANSI file structure is useful for transfers of files between 
different (possibly non-DIGITAL) systems. FILES-II is useful 
between DIGITAL systems under RSX-IIM, RSX-IIM-PLUS, lAS and VMS 
if the two systems have a device in common (e.g., both systems 
have RL02s). The FLX utility is provided to facilitate transfers 
between RSX and other DIGITAL systems which don't support 
FILES-II, or between systems which support FILES-II (even, between 
two RSX-IIM systems) which do not have a common FILES-II device. 
In that case, the FLX transfer is typically made on magtape, using 
DOS or RT-II format. 

309 



FILE I/O 

COMMON CONCEPTS OF FILE 1/0 

Common Operations 

File I/O is often used to perform the following operations. 

• Creating a file 

• Deleting a file 

• Modifying existing data within a file 

• Appending new data to a file (or extending the file). 

Steps of File 1/0 

Use the following three basic steps to do file I/O. 

1. Open the file. 

Specify a LUN and the file. The ACP connects a task 
LUN to the file. Specify the access rights desired. 
The ACP checks against the file protection code. If 
you are creating a new file, specify the file 
characteristics (e.g., format and initial length). 

2. Perform the I/O operations. 

Use macros to invoke subroutines to store data in the 
file and/or retrieve data from the file. 

3. Close the file. 

Notify the system 
completed, so that 
performed. 

that the file operations are 
appropriate cleanup work can be 

31~ 



FILE I/O 

FILES-11 

In order to use FILES-II, you need to understand its structure and 
how to interact with it. 

FILES-11 Structure 

A block is the smallest unit of storage which is read from, or 
written to, a FILES-II device. Typically, the blocks are 256(10) 
words or 512(10) bytes long. Some devices divide or format their 
volumes into pieces whith are 256(10) words long, and others do 
not. Therefore, the FILES-II structure does some converting or 
mapping so 'that you work with logical blocks which are all 
standard size. When the volume is formatted, logical block 
numbers are assigned to each 256(10) word area on the disk, 
starting with logical block 0. Generally, the position of data on 
a FILES-II volume can be described in three alternate ways, by: 

• Physical location 
• Logical block number 
• Virtual block number 

,Table 9-1 compares the three ways. Figure 9-1 shows an example of 
the mapping among the different methods. Typically, you will 
reference data only within files. The files are referenced by 
virtual block numbers within the file, starting with 1. Logical 
block numbers are assigned to the entire disk, starting from 0. 

The system converts virtual block number references to logical 
block number references. For example, if you request a read of 
virtual block 5, the system looks at the mapping and finds that 
this corresponds to logical block 1622(8). This logical block, in 
turn, is mapped to one or more specific sectors on the disk, which 
are read from the disk. 

311 



FILE I/O 

Table 9-1 Comparison of Physical, Logical and Virtual Blocks 

Type of Block 
Designation 

Physical 

Logical 

Virtual 

Size 

Depends on 
device 

256(10) 
words 

256(10) 
words 

How Designated 

On multi-platter disks, 
designated by cylinder, track 
and sector 

Numbered in increments relative 
to the beginning of the volume, 
starting with 0 

Numbered in increments relative 
to the beginning ofa file, 
starting with 1 

Typically, data is accessed as records, units which are not 
exactly one block or 512(10) bytes long. A record is a unit of 
user specified size, corresponding, for example, to. a single bank 
account or a single line of text at a terminal. 

Figure 9-2 shows how the operating system handles a request to 
read a record using FCS. The first row shows a FORTRAN READ. The 
FORTRAN READ instruction is converted by the compiler to a GET$ 
call to the File Control Services (FCS) to fead that record. In 
MACRO, you will issue the GET$ call yourself. FCS checks to find 
out which virtual block within the file contains that record and 
issues the QlO directive for you. The Executive converts the 
virtual block number to its corresponding logical block number and 
issues a read logical block QlO. The driver then converts the 
logical block number to the appropriate physical locations, and 
reads a block of data into memory. The record itself will then be 
located within the block of data. 

The second row shows a BASlC-PLUS-2 READ under the Record 
Management Services (RMS). The BASlC-PLUS-2 compiler converts the 
READ to aRMS $GET call. RMS converts this to a QlO, to read the 
corresponding virtual block. From that point on, the steps are 
just like those in the FORTRAN example. 

312 



VIRTUAL 
BLOCK #'S 
(IN THE 
FILE) 

PHYSICAL 
LOCATIONS 
(ON THE 
VOLUME) 

FILE I/O 

FILE SAMPLE.TXT;1 

I 1 1 2 1 3 14 1 5 1 6 1 7 1 10 

NOTE: BLOCK NUMBERS ARE IN OCTAL 

TK-7738 

Figure 9-1 Example of Virtual Block to Logical Block, 
to Physical Location Mapping 

313 



FORTRAN 

· · · READ (5,10) COMPILER 
1 DATA 

· · · 
FORTRAN RECORD 

BASIC-PLUS-2 

· · · READ DATA 

· · · 
BASIC-PLUS-2 
RECORD 

COMPILER 

FILE I/O 

MACRO-11 
ENTERS HERE 

· ' . · GET$ ~ 

· · · 
FCS RECORD 

RMS 

· · · $GET 

· · · 
RMS RECORD 

· · · OIOIO.RVB. 

· · · 
VIRTUAL 
BLOCK # 

· ~ ~ 

EXEC · ~ / • F11ACP 
OIOIO.RLB DRIVER 

· · ....... ~ · TRANSFER 

LOGICAL FROM PHYSICA L 

BLOCK # LOCATIONS ON 
DISK 

TK-7743 

Figure 9-2 How the Operating System Converts Between 
Virtual, Logical, and Physical Blocks-

Figure 9-3 shows the FILES-II structures which are used to support 
virtua1-to-10gica1 block mapping. Every FILES-II volume has a 
number of system files on it, one of which is the Index File 
(INDEXF.SYS). The Index File contains certain blocks which are 
for system use, plus a file header block for each file on the 
volume. 

Each file header block contains file retrieval pointers which are 
used in mapping virtual blocks to logical blocks. Each file 
retrieval pointer locates a range of contiguous logical blocks. 
The first byte tells how many contiguous blocks are in the group, 
and the next three bytes specify the logical block number of the 
first block in the group. Therefore, in the figure, there are 
five contiguous blocks, starting with logical block 336851(10). 
Virtual block 1 = logical block 336851(10), vb 2 = 1b 336852(10), 
vb 3 = 1b 336853(10), vb4 = 1b 336854(10), and vb 5 = lb 
336855(10). The next group of blocks, starting with virtual block 
6 has 51(10) blocks and begins at logical block 336900(10) up 
through logical block 336950(10). The last 17(10) virtual blocks 
(v i r t ua 1 b 1 0 c k s 57 ( 10 ) to 73 ( 10) ) beg ina t log i cal b 1 0 c k . 
337006(10) up through logical block 337022(10). These file 
retrieval pointers are updated each time a change in block 
allocation occurs as a result of a file I/O operation. 

314 



VBN 

/" 
/ 

,/' 

2 

/' 
/' 

./' 

3 4 

FILE I/O 

VOLUME 

~~~---f-INDEX FILE 

" " " " " "-
" "

I ~ILE I FILE I FILE I FILE I· .. ~
. HDR . HDR . HDR . HDR _ ~

5 6 / 7 \ 10 N

/ \
/ \

/ \
/ \

FILE HEADER
FILE 3 ~VA4""i-- RETRIEVAL POINTERS

/
/

/
SIZE J

1ST LBN

'----...-----'

SIZE 1ST LBN

5. H:005 L:021723 = 336851.

51. H:005 L:022004 = 336900.

17. H:005 L:022156 = 337006.

Figure 9-3 FILES-II Structures Used to Support
Virtual-to-Logical Block Mapping

315

TK-7741

FILE I/O

Directories

The operating system identifies files by file IDs, which are used
to calculate the location of the file header within the index
file. When you need to locate a file, it is difficult to remember
where it is on the disk, or even what its file ID is. Instead,
you use a file specification, a more English-like way of
identifying a file. An example of a file specification is:
DRI:[5,6]SAMPLE.TXT;I. Tasks you write also usually identify
files with a file specification. Directories are structures set
up on a FILES-II volume that are used to group files together, and
to convert file specifications to file IDs.

A directory is a list of files belonging to a single user, or
grouped together for other organizational purposes. An example of
files grouped together for organization is the libraries in User
File Directory (UFD) [1,1] on the system device. On a FILES-II
volume, a directory is a special file containing a list of the
files belonging to that user or group. For each file, the list
has:

• The file specification: name, type, and version number
• The file ID

The file ID consists of a file number and a sequence number. The
file number identifies the offset within the index file to the
virtual block containing the file's file he~der. The sequence
number is used to distinguish this file from previously deleted
files which used the same file header. There are two levels of
directories on a volume, as follows.

• One Master File Directory (MFD) which is directory [0,0]
• One or more User File Directories (UFDS)

Figure 9-4 shows the relationship between the two levels and the
files. The MFD contains a list of the system file, plus one entry
for each UFD on the volume. Each UFD file has a name of the form
gggmmm.DIR, where [ggg,mmm] is the user identification code (UIC)
of the owner. Each UFD cont~ins a list of the files in that
directory.

316

FILE I/O

MFO
[0,0]

- - - __ -r-\ __ -----1..I ___ ---__

UFO
[200,1]

/
- - - - -,.------L...------'r -----

HIYA.MAC;l FLY.TXT;l

UFO
[303,5]

------/r--------+-------.
I

IZZY.TXT;l OZY.TXT;l LOGIN.CMO;l

TK-3965

Figure 9-4 Directory and File Organization on a Volume

Figure 9-5 shows the steps used in locating and accessing ,the
blocks of the file DR2:[5,6]SAMPLE.TXTil. The device name, DR1:
tells which device or volume to look on. The operating system
reads the MFD file header to find the retrieval pointers for the
MFD file itself. It converts the virtual blocks to logical blocks
and reads the blocks of the MFD file. It searches through the
dlrectory list for the UFD [5,6], namely the file 005006.DIR.

When it finds that name in the list, it uses the file ID to locate
the UFD file header. It reads the retrieval pointers there,
converts the virtual blocks to logical blocks, and reads the
blocks of directory [5,6]. It looks for an entry SAMPLE.TXTil.
When it finds that entry, it uses the file ID to locate the
SAMPLE.TXTs file header. It then reads the retrieval pointers in
the file header, converts the virtual blocks to logical blocks,
and reads the blocks of the file itself.

If this sounds like a lot of work, it is. Later, you will learn
about a way to go directly to the file header using the file ID if
a file is opened a second time during a task's execution.

317

MFD
HEADER

UFD
HEADER

FILE
HEADER

RETRIEVAL.
POINTERS

RETRIEVAL
POINTERS

RETRIEVAL
POINTERS

FILE I/O

DR 1 :[5,6]SAMPLE. TXT; 1

•
•
•

OOSOOS.OIR FILE 10
OOS006.DIR FILE ID

•

•
•

MFO

SAMPLE.TXT;1 FILE ID UFO [S,6]
•

THIS IS A SAMPLE FILE

•
•
•

FILE

SAMPLE.TXT;1

TK-7735

Figure 9-5 Locating a File on a FILES-II Volume

318

FILE I/O

Five Basic System Files

There are five basic system files found on all FILES-II volumes.
They are all created when the volume is initialized and are all
entered in the MFD. Two of these, the Index File and the Master
File Directory, have been mentioned previously. The five files
and their purposes are as follows.

• The Index File: INDEXF.SYS.

Boot block - used when a system volume is bootstrapped

Home block - contains volume identification and other
information

Index file bitmap - a record of which header blocks
are in use; used by FIIACP when allocating header
blocks to files

File header blocks for all files on the volume

• The Storage Map: BITMAP.SYS.

A record of which blocks on the volume are in use

Used by FIIACP when allocating blocks to files

• The Bad Block File: BADBLK.SYS.

A list of blocks on the volume known to be bad

• The Master File Directory: 000000.DIR.

Entries for the five system files

An entry for each UFD file

• The System Checkpoint File: CORIMG.SYS.

Space used for checkpointing if the system manager
allocates space in it.

319

FILE I/O

Functions of the ACP

The FIIACP maintains the FILES-II structure on a volume during its
use.

The most elementary functions performed by the ACP are as follows.

• Maintaining the File Header Bloc~s. This includes:

Allocating and initializing a file header when a file
is created

Recovering a file header for reuse when a file is
deleted

Maintaining file attributes such as protection code,
length, etc.

Maintaining the file retrieval pointers

• Maintaining directories. This includes:

Creating directory entries when a file or UFO is
created, or when a file synonym is created (e.g., by
the PIP /EN switch)

Removing entries from directories when a file is
deleted or a file synonym is removed (e.g., by the PIP
/RM switch)

• Maintaining block allocation. This includes:

Allocating blocks to files when a file is created or
extended

Recovering blocks for reuse when a file is deleted or
truncated

• Controlling and facilitating task access to files.
includes:

This

Checking protection codes to determine access rights

Connecting a task's LUN to a file to allow virtual
block I/O

Controlling shared access to files.

320

FILE I/O

Table 9-2 shows the FIIACP functions performed when you request
some typical file I/O operations.

Table 9-2 Examples of Use of FllACP Functions

Operation Requested

Create a new, permanent file
and write data to the file.

Read data from an existing
file.

Delete a file.

Append data to a file.

Create a temporary (scratch)
file.

FUnctions Performed by FIIACP

1. Allocate a header for the file.

2. Allocate blocks to the file,
when it is opened and/or when
data written requires that ex
tensions be added.

3. Create a directory entry for
the file.

4. Assign a LUN to the file.

5. When the file is closed, write
the updated file attributes to
the file header, deassign the
LUN

1. Assign a LUN to the file.

1. Remove the directory entry for
the file.

2. Deallocate the blocks of the
file.

3. Deallocate the header for the
file.

1. Assign a LUN to the file.

2. Allocate extra blocks to the
file.

1. When file is opened, allocate
a header, allocate blocks, and
assign a LUN. (No directory
entry is created.)

2. When file is closed, de
allocate blocks, deallocate
header, and deassign LUN.

321

FILE I/O

Figure 9-6 shows the flow of control during the processing of an
I/O request. This figure parallels Figure 9-2, which sho'ws how
the operating system converts virtual blocks to logical blocks to
physical locations.

The user task issues a read record request which is converted by
an FCS routine in the user task to a QIO, to read a virtual ,block.
The Executive converts the virtual block number to a logical block
number, using file retrieval pointers in pool. These retrieval
pointers are built by FIIACP from the retrieval pointers in the
file header. The Executive issues a read logical block request to
the driver. The driver converts the logical block number to the
actual physical locations and copies the block into the user
buffer.

For additional information on the FILES-II structure, see Chapter
5 of the IAS/RSX-il I/O Operations Reference Manual.

USER TASK

[
~EAD~ECDRD

FCS OR RMS

QIO IO.RVB

BUFFER

POOL

RETRIEVAL POINTERS

EXEC

F11ACP

-----------.....,

DRIVER

I
I

FILE HEADER

FILE BODY

TK·7737

Figure 9-6 Flow of Control During the Processing of an
I/O Request

322

FILE I/O

OVERVIEW AND COMPARISON OF FCS AND RMS

Common Functions

The File Control Services (FCS) and the Record Management Services
(RMS) both offer easy methods for performing file I/O. The
operator or programmer need not be concerned with all the
nitty-gritty details, but can instead let FCS or RMS take care of
them. Both perform the following functions:

• Serve as an interface to the ACPs

• Allow I/O to the virtual blocks of a file
block-by-block basis (Block I/O)

on a

• Divide files into logical records and allow I/O to
individual records within a file (Record I/O)

• Allow the programmer to process records using one of the
following buffers (Figure 9-7)

A buffer reserved by the programmer with another
buffer transparently used by FCS or RMS (move mode)

Directly in the buffer used by FCS or RMS (locate
mode)

• Allow device independent I/O - the routines are written to
work correctly with terminals, disks, etc.

• Provide mechanisms for controlling shared access to files.

Beyond that, FCS and RMS each offer a
organizations, record types, and access
described in the following sections.

323

variety
modes.

of file
These are

DISK

DISK

FILE I/O

MOVE BLOCK
TO INTERNAL
BUFFER
(I F NECESSARY)

MOVE MODE

TASK
~ __ ~(I.N MEMORY)

rA;;B;;C~.~.~.:----""--!- USER RECORD
BUFFER

MOVE RECORD
TO USER
RECORD BUFFER

.----...,.-+----.

.... __ t--INTERNAL
1----,.-'----.--1......1 BU F FER

LOCATE MODE

TASK
--.:(IN MEMORY)

POINTER
/

/ POINT
/ POINTER

/ TO RECORD
/

1+-----1- INTERNAL
I----,.-L-...;;...;..-..,....-I.,.......I BU F FER

TK-7742

Figure 9-7 Move Mode and Locate Mode

324

FILE I/O

FCS FEATURES

File Organizations

Essentially, all FCS supported £iles are 'sequential, meaning that
new records are added at the end of the file, and records are
stored in the order they are written. Figure 9-8 shows a file
with sequential organization.

CE LL NO. 2 3 4 5
r-~---m~m-~~~

RECORD RECORD
1 2

n

... 1 RECORD I
' n

TK-7748

Figure 9-8 Sequential Files

Supported Record Types

FCS supports two record types, fixed-length records and
variable-length records. Variable-length records may be sequenced
or nonsequenced. An example of each type of file is shown below
with the following three records:

12345
123 1234
AAAA BBBB CC D

The examples are in DMP format; the six-digit number on the left
is the byte count in octal of the first byte in that row. Then
16(10) = 20(8) bytes follow in order in octal. Below each byte in
octal is its equivalent in ASCII. An underscore () stands for an
ASCII blank. Consult the examples as you read the-description of
each record type which follows.

325

FILE I/O

Examples:

Fixed-Length Records (record length = 17(10»

000 061 062 063 064 065 040 040 040 040 040 040 040 040 040 040 040
1 2 3 4 5

020 040 xxx 061 062 063 040 061 062 063 064 040 040 040 040 040 040
pad 1 2 3 1 2 3 4

040 040 040 040 xxx 101 IiI 101 101 040 102 10'2 10'2 10'2 040 10'3 10'3
pad A A A A B B B B C C

060 040 1'04 040 040 040 xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
D pad

Variable-Length Records

000 005 000 061 062 063 064 065 xxx 010 000 061 062 063 040 061 062
1 2 3 4 5 pad 1 2 3 1 2

020 063 064 016 000 101 101 101 101 040 102 102 102 102 040 103 103
3 4 A A A A B B B B C C

040 040 104 xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
D

Sequenced Variable-Length Records

000 007 000 001 000 061 062 063 064 065 xxx 012 000 002 000 061 062
1 2 3 4 5 pad 1 2

020 063 040 061 062 063 064 020 000 003 000 101 101 101 101 040 102
3 1 2 3 4 A A A A B

040 102 102 102 040 103 103 040 104 xxx xxx xxx xxx xxx xxx xxx xxx
B B B C C D

326

FILE I/O

Fixed-length records all contain the same number of bytes.
Therefore, the location of the beginning of any record within the
file can be computed from its record number. With all record
types, each record begins on an even word boundary. This means
that in files with fixed-length records, if each record contains
an even number of bytes, the next record begins immediately after
it. If, on the other hand, each record contains an odd number of
bytes, one byte is unused after each record, and the next record
begins at the next word boundary. This unused byte is called a
pad byte.

Variable-length records may each have different lengths. For all
files with variable-length records, the first word of each record
contains a byte count, telling how many bytes are in that record.
For variable-length nonsequenced records, this count word is
followed by the data itself.

Following this, at the next word boundary, is the byte count for
the next record and then its data. To locate a given record
within the file, you must first read the byte count for the first
record in the file. You can then use the byte count to locate the
second record. You then continue reading byte counts and locating
successive records until you reach the desired record.

Variable-length sequenced records contain a byte count, a user
specified sequence word, and then the data itself. The sequence
word can contain the record number or any other user specified
value. Variable-length sequenced records are not used much under
FCS. They are supported to allow compatibil~ty with RMS
variable-with-fixed-control records.

327

FILE I/O

Table 9-3 compares the different Fes record types.

Table 9-3 Comparison of FCS Record Types

Record
Type

Fixed-Length

Variable~Length
(nonsequenced)

Variable-length
(sequenced)

Characteristics

Record length
set when file
created

Records all
same length
(shorter
records pad
ded)

Records may be
of different
lengths

First word of
each record is
a byte count

Variable length
records, with
an additional
word for a user
specified se
quence number

328

Overhead
in File

None

One word per
record (hold
ing record
length)

Two words per
record (one
for record
length, for
sequence
field)

Common
Applications

Files with
similar data
in each record

Bank account
information,
bad credit
card lists,
etc.

Files with
varying con
tents among
records

Files to be
printed
Source and
list files

Infrequently
used, except
for compati
bility with
RMS.

FILE I/O

Record Access Modes

Fes offers two record access modes, sequential access and random
access. Table 9-4 compares the two access modes. The major
difference is that with random access, the user can process
records in any order (e.g., record 12, then record 4, then record
29). This is possible with fixed length records only, because Fes
can calculate the position of each record within the file from the
record number and the record size.

with variable-length records, on the other hand, Fes can't locate
record 12 unless it reads records 1 through 11 first, using the
record length in the first word of each record to calculate the
starting position of the next record. Therefore, you must use
sequential access with variable length records. You may choose
either of the two access modes for fixed length records, depending
on how your application processes the records.

329

\

FILE I/O

Table 9-4 Comparison of Sequential Access I/O and
Random Access I/O

Characteristics

Devices supporting
this type of access

Record types using
this type of I/O

Sequence of records
in th.e file

Order of processing
records

Overhead if records
are processed in
same order as they
are stored in the
file

Overhead involved
if records are
processed in
order different
from how they are
stored in the file

Sequential

All devices

All record types

Determined by the
order in which they
are written to the
file

Usually the same
order as in the
file (one after
another)

Low

Much higher than
random access I/O

NOTE

Random Access

Block-structured
devices only

Fixed-length
records only

Usually determined'
by the order in
which they are
written to the file

In any order, as
specified by the
user (using the
record number)

Low, but not as
low as sequential

Much lower than
sequential I/O

With sequential
subroutines allow
to a record for
access.

access, special system
the user to save pointers
much faster subsequent

330

FILE I/O

File Sharing

A task which opens a file may choose one of the following options:

• That no other accessor change any data in the file while
it has access ("shared" read, ~exclusive" write).

If this task desires read access, other accessors may
have simultaneous read access, but no other accessor
may have simultaneous write access.

If this task desires write access, no other accessor
may have simultaneous read or write access.

Any access request causing a conflict is rejected.

• That other accessors may change the data while it has
access ("shared" read/write access).

•

If this task requests read or write access, other
accessors may have simultaneous read or write access.

Use extreme care - Any precautions against corrupted
data are the responsibility of the accessors.

That no other accessor changes any block within the file
which has already been accessed (block locking). Shared
access to the file is allowed, but:

Each block which is written to is locked for exclusive
write access.

Each block which is read is locked for shared read
access.

It is not recommended if accessing a large numbers of
blocks, because each block lock uses four words of
pool.

Any attempt to access a block which causes a conflict,
returns an error.

331

FILE I/O

RMS FEATURES

File Organizations

RMS supports three file organizations, sequential, relative and
indexed. See Figure 9-9. Sequential files under RMS are the same
as sequential files under FCS. A relative file is composed of a
series of cells of uniform size. The cell size is greater than or
equal to the largest record to be placed in the file. A single
record may be written to a cell, or the cell can be empty. The
cells may contain variable-length records. Variable-length
records within relative files can be accessed randomly because
each record is contained within a fixed-length cell. Also, when
you read successive records in a relative file, empty records are
automatically skipped.

An indexed file is composed of records, plus one or more indexes
,which are used to access those records. Each index is used to
retrieve records according to the contents of a particular field,
or key, within the record. The data records themselves are
ordered according to a primary key which you declare when you
create the file.

Figure 9-9 shows an indexed file with a single key, namely last
name. In the example, the data records are in the bottom row,
ordered alphabetically by last name. The index for this file
contains two other levels, levelland level 2 (the root level).

A search for a record begins at the root level. For example, to
find the record with key value FRANCIS, search through the root
level, checking for the first value which is greater than or equal
to FRANCIS. The first such value is SMITH. Go to the next level
and again search for the first value greater than or equal to
FRANCIS; it is GROSS, the first value. Now go to the next level
and search again; this time the value FRANCIS is found. Since
this is level 0, we have found the record.

As new records are added to the file, they are inserted in order
at level 0 of the primary index. The primary index structure is
adjusted for the new entry at the same time. In addition, any
alternate index structures for other keys are adjusted as well.
There is always one primary key, and there may be as many as
254(10) alternate keys.

332

LEVEL 2
(ROOT)

LEVEL 1

LEVEL 0

FILE I/O

SEQUENTIAL FILE ORGANIZATION

RELATIVE FILE ORGANIZATION

INDEXED FILE ORGANIZATION

Figure 9-9 RMS File Organizations

Level 0 of the alternate keys contains pointers to the original
location of the data record itself. If a data record· is ever
moved in order to maintain the index structure, a pointer is
created and maintained in the record's original location, which
points to the data record's new location.

One specific advantage of an indexed file over a relative file is
that an indexed file allows you to search for records using
several different key fields, while only the cell number can be
used with relative files. Even with a single key, indexed files
offer keys consisting of any ASCII characters, in contrast to just
a cell number for relative files.

There is, of course, more space overhead required in the file
the index structures. In addition, more execution time
required to insert new records, because the index structures
be updated as well. We are keeping things rather simple in
discussion here. For additional information, see
RMS-II User's Guide.

333

for
is

must
the
the

FILE I/O

Record Formats

RMS supports three record formats; fixed-length records,
variable-length records, and variable-length records with fixed
control. Fixed-length records and variable-length records are the
same as fixed-length records and nonsequenced variable-length
records respectively, under FCS. They are both supported under
all three file organizations.

Variable-length records with fixed-control (VFC) contain a
fixed-length portion, for control, followed by a variable-length
portion. The fixed control portion may be up to 255(10) bytes
long. A sequenced variable-length record under FCS is the same as
a VFC record with a 2-byte (one word) fixed control portion.

An example of the use of VFC records is a bank account file, where
some accounts have both savings and checking, and others have just
one or the other. The fixed control portion could contain the
account number plus an indication of the kinds of accounts
contained in it. The variable portion contains the account
information for those accounts. The length of this portion
varies, depending on how many accounts the person has. VFC
records are supported under sequential and relative file
organizations only.

Record Access Modes

RMS supports three record access modes: sequential access, random
access, and access by Record File Address (RFA). Sequential
access and random access are similar to the FCS access modes,
except that they are applied differently for indexed files.

For sequential access on an indexed file, the "next" record is the
record with the next highest key value using the specified key,
not the next record added to the file. For random access, a key
value for a certain key is specified, and that record is located
and accessed. To access a record by record file address, save
pointers to the record ,(called its record file address or RFA)
from one access, then use the pointers to subsequently access the
record again.

Table 9-5 describes the various access modes supported for each
file organization and how they work. For additional information,
see the RMS-ll User's Guide.

334

FILE I/O

Table 9-5 File Organization, Record Formats, and Access,Modes

Record
Formats
Supported

Access Modes
Supported

Sequential
Access
Techniques

Random
Access
Techniques

Record File
Address
Techniques

sequential
Files

Fixed
Variable
VFC

Sequential
RFA*

writes and
reads subse
quent,records

Not allowed

Task can
store RFA* of
a record for
later return

* Not available in FORTRAN.

Relative
Files

Fixed
Variable
VFC

Sequential
Random
RFA*

Writes to
subsequent
cells
Reads from sub
sequent cells,
skipping empty
ones

User specifies
cell number of
record to be
accessed

I

Indexed
Files

Fixed
Variable

Sequential
Random
RFA*

Accesses cells
in ascending
order accord
ing to user
specified key

User specifies
key and key
value to be
used in
accessing
records

Same as sequen- Same as
tial files sequential

files

335

FILE I/O

File Sharing Features

RMS offers more sophisticated file-sharing options than FCS.
Sequential files can be shared for read access only. Relative and
indexed files can be shared for read and write access. When
opening a relative or indexed file, a task indicates one of the
following options.

• No other accessor can change data in the file while it has
access ("shared" read, exclusive "write").

• Other accessors can change data, but subsets of the file
are protected at a time, while in use.

Relative and indexed files are divided into units called buckets
(of user specified size, each I to 32(10) blocks long). In fact,
all actual I/O tranfers are performed on full buckets only. In
implementing protection of subsets of the file at a time,
protection is on a bucket-by-bucket basis (bucket-locking).

A bucket is locked from the time any task with write access
accesses a record in a bucket, until that task begins operations
on another bucket, or closes the file. This means that ~ecords
within a given bucket can't be accessed by other tasks while
another task with write access is using the bucket. But other
tasks may access other buckets in the file during that time.

336

FILE I/O

Summary

Table 9-6 summarizes our comparison of FCS and RMS. The next
module discusses the details of how to use FCS in a program.

Table 9-6 Comparison of FCS and RMS

Characteristics

supporting
utilities

supporting
languages

Ease of
file design

Ease of
programming

FCS

Standard RSX
utilities

MACRO-II
FORTRAN IV, IV-PLUS,
-77, BASIC-II

Relatively simple

Relatively simple in
high-level languages

Moderate in MACRO-II

Type of data. Virtual block I/O
access supported

Sequential record
access

Random access by
record number with
fixed-length records

Access by record
position pointers,
saved from previous
access of record

337

RMS

Special RMS utilities
to define, convert,
etc.

MACRO-II
FORTRAN IV-PLUS,
-77, BASIC-PLUS-2
COBOL

Relatively complex

Relatively simple in
high-level languages,
issues of efficiency
complex

Relatively difficult
in MACRO-II

Virtual block I/O

Sequential record
access

Random access by
cell number in a
relative file

Random access by
key field within
reco rd, in an
indexed file

Access by record
file address,
saved from previous
access of record

FILE I/O

Table 9-6 Comparison of FCS and RMS (Cont)

Characteristics FCS

Overhead in file Minimal
needed to support
record ~tructure

Execution time
overhead to
support record
access

Shared access
coordination

Low

System protection on
a per-file basis or
on an all blocks
accessed basis

RMS

Minimal for se
quential files

Moderate for
relative files

High for indexed
files

Low for sequential
and relative files

Moderate to high
for indexed files,
depending on file
and program design,
and 'file growth

System protection
on per-file or
per-bucket basis
within a file

Now do the tests/exercises for this module in the Tests/Exercises
book. They are all written problems. Check your answers against
the provided solutions 'in the Tests/Exercises book.

If you think that you have mastered the material, ask your course
administrator to record your progress on your Personal Progress
Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material, return
to this module for further study.

338,

FILE CONTROL SERVICES

FILE CONTROL SERVICES

INTRODUCTION

The File Control Services (FCS) subsystem provides the means
through which tasks perform I/O. In FORTRAN, calls to the FCS
routines are made indirectly through the FORTRAN Object Time
System (OTS).

While the FORTRAN programmer need not know how the the data
structures or the various calls to the FCS subroutines are used,
this module is presented as a brief introduction to FCS.

The first example, illustrating how a FORTRAN
file, also shows the MACRO code needed
function.

program creates a
to perform the same

Further examples illustrate how some of the FCS features can be
incorporated by using the FORTRAN OPEN statement and the
appropriate forms of the READ and WRITE statements.

The major portion of this module contains a brief summary, with
examples, of the FORTRAN READ, WRITE and OPEN statements and the
various file and record types used in writing a FORTRAN program.

The FORTRAN programmer should be aware that each of the above,
READ, WRITE, and OPEN, are translated into FCS data structures at
compile time, and CALLs to FCS routines at e~ecution time.

OBJECTIVES

1. To choose file characteristics for a specific application
and create files with those characteristics

2. To write tasks which read or write data using record I/O.

RESOURCES

1. FORTRAN IV User's Guide

2. FORTRAN IV-Plus User's Guide

3. FORTRAN-77 User's Guide

341

FILE CONTROL SERVICES

FILE ORGANIZATION VS. RECORD ACCESS

A clear distinction must be made between the organization of a
file and the record access to a file •

. A file's organization refers to how the file was created via the
keyword ORGANIZATION in the OPEN.

The two possibilities are:
ORGANIZATION=' SEQUENTIAL'
ORGANIZATION=' RELATIVE ,

'INDEXED' is a third ORGANIZATION, but will not be discussed here.

Once established, the file ORGANIZATION cannot be changed. The
default is 'SEQUENTIAL'.

The record access to a file determines how a particular program
wants to access a file, again via the OPEN. The choices are:

ACCESS='SEQUENTIAL'
ACCESS='DIRECT'
ACCESS='APPEND'
(ACCESS='INDEXED' will not be discussed.)

Figure 10-1 shows the possible combinations of ORGANIZATION and
ACCESS.

ORGANIZATION

SEQUENTIAL
"
"

RELATIVE
"

ACCESS

SEQUENTIAL
APPEND
DIRECT (if fixed

length records)

DIRECT
SEQUENTIAL

Figure 10-1 possible Combinations of ORGANIZATION and ACCESS

343

FILE CONTROL SERVICES

READ AND WRITE ACCESS TO A FILE

When a file is opened via the OPEN statement, the
the file is opened for read and write access.
READONLY is used to restrict a program from write
are the 'WORLD' to a file (i.e., not SYSTEM,
which has 'WORLD' protection set to R (read), and
open that file without using the READONLY keyword
open will fail.

TYPES OF RECORDS IN A FILE

(Sometimes Referred to as 'Record Format')

default is that
The OPEN keyword
access. If you
OWNER, or GROUP)
you attempt to
in the OPEN, the

There are three types of records (record formats) possible in a
file via the OPEN keyword RECORDTYPE:

RECORDTYPE= 'VARIABLE ,
RECORDTYPE='FIXED'
RECORDTYPE='SEGMENTED'

Type VARIABLE consists of variable length records where the record
length is kept in the first two bytes of each record.

Type FIXED consists of records all of the same length as specified
in the RECORDSIZE keyword in the OPEN. Since the size is fixed,
it is not kept as an extra two bytes in the record; it is kept in
the header of the file and is available when the file ~s opened.

Type SEGMENTED consists of records which contain a single logical
record having one or more variable length records (segments). The
length of a segmented record is arbitrary; however, the length of
each segment is determined by the value of the RECORDSIZE keyword.
The default size is 133. The segmented record is unique to
FORTRAN and can be used only with unformatted sequential files
under sequential access.

Because there is no set limit on the size of a segmented record,
each segment contains control information to indicate that the
segment is one of the following:

• The first segment in the segmented record (control word=l)
• The last segment in the segmented record (control word=2)
• The only segment in the segmented record (contol word=3)
• None of the above: i.e., a continuation record (control

word=0)

344

FILE CONTROL SERVICES

The control word is kept as the first two bytes in the segment if
the record is FIXED and in the third and fourth bytes if the
record is VARIABLE.

When you wish to access an unformatted sequential file that
contains fixed length or variable length records, which was not
created by FORTRAN, you must specify RECORDTYPE='FIXED' or
RECORDTYPE='VARIABLE' when you open the file. If you do not
specify a RECORDTYPE, the default OPEN of the file will be
RECORDTYPE='SEGMENTED' and the first word (if FIXED) or the second
word (if VARIABLE) will be treated as a .control word causing
almost certain errors in the data.

FORMATTED AND UNFORMATTED RECORDS

A READ or WRITE statement can be formatted or unformatted. The
main difference in the two is that a formatted READ or WRITE uses
ASCII data while an unformatted READ or WRITE uses untranslated
binary data.

The FORM='FORMATTED' or FORM=' UNFORMATTED' is used as appropriate.
The default is FORMATTED for ORGANIZATION='SEQUENTIAL' and
UNFORMATTED for ORGANIZATION='RELATIVE'.

DECLARING THE SIZE OF A RECORD

The keyword RECORDSIZE is used to declare a specific size for a
record. The defaults are as follows:

FORMATTED
UNFORMATTED (fixed)
UNFORMATTED (variable)

133 bytes
128 bytes
126 bytes

Note that you must specify the TKB option MAXBUF=n if you e~,~ed a
record size of 133, where n is the size in bytes of the record.

345

FILE CONTROL SERVICES

SUMMARY OF KEYWORDS IN THE OPEN STATEMENT

ORGANIZATION = 'SEQUENTIAL'
= 'RELATIVE'

ACCESS = 'SEQUENTIAL'
= 'DIRECT'
= 'APPEND' (sequential only)

READONLY to disallow WRITEs

RECORDTYPE = 'FIXED'
= 'VARIABLE'
= 'SEGMENTED'

FORM = 'FORMATTED'
= 'UNFORMATTED'

RECORDSIZE = n

The remainder of this module is a series of examples illustrating
the various types of files and how they are OPENed and ACCESSed.

346

FILE CONTROL SERVICES

Example 10-1, CRESEQ, creates a file, VARI.ASC, of variable length
records. Since the records are variable in length, the byte count
for each record is kept in the first two bytes of the record
itself.

As can be seen from the run session, the first record contains a
single character, 1. Therefore bytes 0 and 1 are 001 and 000.
The next byte is 61, which is ASCII for 1 followed by a byte of
000. Since the record has an odd number of bytes, the record is
padded with a 000 byte.

The next record contains an even number of bytes (2), so the
record need not be padded.

Although the examples use several defaults, in order to illustrate
the various defaults, it is recommended that no defaults be used
when creating a file with an OPEN statement. Hence, in Example
10-2, the complete OPEN is as follows:

OPEN(UNIT=l,NAME='VARI.ASC',CARRIAGECONTROL='LIST' ,
1 ORGANIZATION='SEQUENTIAL',ACCESS='SEQUENTIAL',
2 TYPE='NEW' ,FORM='FORMATTED')

While it may seem a bit tedious to include all options in the
OPEN, it aids greatly ln the readability of the program and
relieves any question as to what was meant in the OPEN.

347

FILE CONTROL SERVICES

PROGRAM CRESEQ !CREATE FILE SEQUENTIALLY
c
C FILE CRESEQ.FTN
c
C This task creates a file VARI.ASC of variable-len.th
C records usin~ seauential record access. The records
C are input from the terminal and written to the file.
C The process stops when the operator twpes CTRL/Z at
C the terminal.
C

BYTE BUFF(80)
INTEGER LEN

C OPEN FILE - Default access is seauential, default form
C is formatted 1/0 with seauential access

OPEN (UNIT=l,NAME='VARI.ASC',TYPE='NEW',

C Loop
10
11

12

1 CARRIAGECONTROL='LIST')

READ (5,11,END=100) LEN,BUFF
FORMAT (Q,80Al)
WRITE (1,12) (BUFF(I),I=l,LEN)
FORMAT (80Al)
GO TO 10

C Close file and exit
100 CLOSE (UNIT=l)

CALL EXIT
END

Run Session

>RUN CRESEQ
1
22
333
4444
Now is the time for all .ood.

Read record

Write record
to file

Dump of DR2:C305,301JVARI.ASC;6 - File ID 40554,5,0

000000
000020
000040
000060

. Virtual block 0,000001 - Size 512. b~tes

001 000 061 000 002 000 062 062 003 000 063 063 063 000 004 000
064 064 064 064 035 000 116 157 167 040 151 163 040 164 150 145
040 164 151 155 145 040 146 157 162 040 141 154 154 040 147 157
157 144 056 000 000 000 000 000 000 000 000 000 000 000 000 000

Example 10-1 Creating a Sequential File with Variable Length Records

348

FILE CONTROL SERVICES

Example 10-2 shows the equivalent MACRO code to produce the same
file as Example 10-1.

Example 10-3, SEQFOR, reads the first five records from the file
VARI.ASC and displays them on the terminal.

;+

.TITLE

.IDENT

.ENABL

CRESEQ
1011
LC Enable lower case

File CRESEQ.MAC

CRESEQ creates a file VARI.ASC of variable-Iensth
records usin~ seQuential access~ It reads records from

; TI:, and places them in the file. A -Z terminates
input and closes the file.

Assemble and task-build instructions:

MACRO/LIST LB:Cl,lJPROGMACS/LIBRARY,dev:CufdJ
-)CRESEQ
LINK/MAP CRESEQ,LB:[l~lJPROGSUBS/LIBRARY

.MCALL

.MCALL

.MCALL

.MCALL

EXSTSC,QIOWSC~QIOWS,DIRS ~ S~stem macros
FSRSZS,FDBDFS,FDATSA,FDRCSA,FDOPSA ; S~stem

NMBLKS,OPENSW,PUTS,CLOSES; FCS macros
DIRERR,IOERR,FCSERR ; SUPplied macros

FSRSZS 1 ; 1 file for record 1/0
; Define file descriptor block for VARI.ASC
FDB: FDBDFS Allocate the FDB

FNAME:
BUFF:
lOST:

FDATSA R.VAR,FD.CR Variable lensth records,

FDRCSA ,BUFF

FDOPSA 1"FNAME

NMBLKS VARI,ASC
.BLKB 80.
.~LKW 2
.EVEN
.ENABL LSB

Listins - implied
(CR),(LF)

SeQuential access and
record 110 bhl
default, BUFF is
user record buffer

Use LUN 1, file spec
at FNAME

"VARI.ASC"
User Record Buffer
110 status block

Enable local swmbol
block

Example 10-2 MACRO Equivalent of Example 10-1 (Sheet 1 of 2)

349

FILE CONTROL SERVICES

; Open file for write, call ERRl if open fails
START: OPENSW tFDB"""ERRl
; Get record from terminal, put to file.
lOS: QIOWSC IO.RVB,5,1"IOST,,(BUFF,80.>

EXIT:

BCS ERR2D Branch on directive

TSTB
ELT

MOV
PUTS
BCS
DR

lOST
ERR21

IOST+2,Rl
iFDB"R1
ERR3
lOS

CLOSES iFDB,ERR4
EXSTSC EX$SUC

error
Check for lID error
Branch on lID error

Number of b~tes input
Put record to file
Branch on FCS error
Get next record

Close file
Exit with success

9 status
; Error code - Close file if necessary, display error
9 messaSe and exit
8~Rl: FCSERR tFDB,(ERROR OPENING FILE>
ERR2D: DIRERR (DIRECTIVE ERROR ON READ>·
ERR2I: CMPB $IE.EOF,IOST Is it MZ?

BEQ EXIT 9 If eGual, close file

ERRJ:

ERR4:

IOERR

CLOSES
FCSERR
FCSERR
.END

Run Session

>RUN CRESEQ
1
22
333
4444

9 and exit
tIOST,(ERROR ON READ> 9 Display error

messa~e and exit
tFDB,ERR4 ; Close file
iFDB,(ERROR WRITING RECORD>
tFDB,(ERROR CLOSING FILE>
START

Now is the time for all Sood.

Dump of DR2:C305,301JVARI.ASC96 - File ID 40554,5,0
Virtual block 0,000001 - Size 512. bytes

000000 001 000 061 000 002 O()O 062 062 003 000 063 063 063
000020 064 064 064 064 035 000 116 157 167 040 151 163 040
000040 040 164 151 1~~

.~~ 145 040 146 157 162 040 141 154 154
000060 157 144 056 000 000 000 000 000 000 000 000 000 000

000 004 000
164 150 145
040 147 157
000 000 000

Example 10-2 MACRO Equivalent of Example 10-1 (Sheet 2 of 2)

350

FILE CONTROL SERVICES

PROGI~AM SE(~FOI:~

c
C File SEQFOR.FTN
C;

C This task reads the first 5 records from the file
C; VARI.ASC usinS se~uential access and formatted reads.
C It displaws the records at TI:.

INTEGER REC(40)
("' .# Of~en file

OPEN (UNIT=l,NAME='VARI.ASC',TYPE='OLD')
C
f' .#

C

C Read
DO :1.00 I::::l,5

record from file
READ (1,10) N,REC

10 FORMAT (Q,40A2)
C Write record at terminal

I~f a 1..1 1 ts to
se~uential access,
formatted reach;

WRITE (5,20) (RECCK),K=1,(Nfl)/2)
20 FORMAT (' ',40A2)
:1.00 CONTINUE
C Close file and exit

CLOSE (UNIT:::l)
CALL. EXIT
END

Run Session

>RUN SEQFOR
1
22
~:S:33

4444
Now is the time for all ~ood+

Example 10-3 Program to Read File Created in 10-1

351

FILE CONTROL SERVICES

Example 10-4, CRESEQFIX, creates a file,
fixed length records of 16 bytes each. In
records, the size of each record is kept in
rather than in the first two bytes of the
file dump you will see that the first input
1, creates a record consisting of 61
(40(8». The next record is 62, 62, and 14

FIXED.ASC, containing
a file of fixed length
the header of the file
record itself. In the
record, containing a
(ASCII) and 15 blanks
blanks, etc.

One advantage of a file of fixed length records is that the file
may be accessed in 'DIRECT (or random) mode for both READ and
WRITE. The disadvantage of a fixed length record is that,
assuming a l6-byte record, a record containing one byte and a
record containing 16 bytes occupies the same space on the disk.
(Direct access is not available on a tape or cassette.) If you
have a wide disparity in record sizes, say 10 and 80, it may not
be practical to use fixed length records. However, where disk
space is not a problem, using direct access to a sequential file
might be very useful.

352

FILE CONTROL SERVICES

PROGRAM CRESEQFIX !CREATE FILE SEQUENTIALLY
c
C FILE CRESEQFIX.FTN
C
C This task c~eates a file FIXED.ASC of fixed-IenSth
C records usins seGuential record access. The records
C are input from the terminal and written to the file.
C The process stops when the operator twpes CTRL/Z at
C the terminal.
c

BYTE BLJFF(SO)
INTEGEli LEN

C OPEN FILE - Default access is seGuential, default rorm
C is formatted lID with seauential access.
(0,

.1

OPEN (UNIT~l,NAME~'FIXED.ASC',TYPE='NEW',
1 RECORDTYPE='FIXED',RECORDSIZE=16)

C Loop
10
11

:1.2

READ (5,11,END=100) LEN,BUFF
FORMAT (Ch SOA1)
WRITE (1,12) (BUFF(I),I=l,LEN)
FORMAT (SOA1)
GO TO 10

C Close file and exit
100 CLOSE (UNIT=l)

CALL EXIT
END

RIJn Session

1
22
333
4444
Now is the time for all sood.

DumF' of DR2:[305,301JFIXED.ASC~3 - File

I:;:ead raco rd

Write record
tC) file

III 40573,6,0
Virtual bl()clt.:. 0,,000001 - Size 512. b~:rt,es

000000 061 040 040 040 040 040 040 040 040 040 040 040 040
()00020 062 062 040 040 040 040 040 040 040 040 040 040 040
()00040 063 063 06~5 040 040 040 040 040 040 040 040 040 040
000060 064 064 064 064 040 040 040 040 040 040 040 040 040
()00100 122 157 163 145 163 040 1.41 1.62 145 040 162 145 1.44

040
040
040
040
056

Example 10-4 Creating a File With Sequential,
Fixed Length Records

353

040 040
040 04()
040 040
04() 040
04() 040

FILE CONTROL SERVICES

Example 10-5, READFIXED, prompts you for the record number of the
record you want from the file FIXED.ASC, displays the record and
then allows you to replace the record if you wish. Note that the
file was created as a sequential file with fixed length records
and is being accessed as DIRECT. Since the record size is in the
header of the file, it is not necessary to describe the record
size in the OPEN. Note that both the READ and the WRITE to unit 1
use the formatted, direct form, i.e.:

READ (1'NO,10)
and

WRITE (1'NO,10)

One precaution here is that if you attempt to replace a record
with a longer record (in this case 16 bytes) than the original,
the new record will be truncated on the right.

As you can see from the run session in CRESEQFIX, the third record
originally contained 333. This was replaced with "Now is the
Time", as is shown by running READFIXED a second time and
displaying record 3 again.

354

FILE CONTROL SERVICES

PROGRAM READFIXED
c
C File READFIXED.FTN
c
C This task asks YOU which record YOU want from FIXED.ASC~

C and displays the record on the terminal. It then asks if
C ~OIJ wi1!>h to replace the recC"Jrd c:~nd j.f so asks 1"or the new
C record.

CHARACTER*16 REC,NEW
C Open file

OPEN (UNIT=l,NAME='FIXED.ASC',TYPE='OLD',ACCESS='DIRECT',
1 FORM='FORMATTED')

C Read record from file
TYPE *, 'Enter record number ~ou want.'
READ *,NO
READ (1'NO,10)REC !Get record number NO

10 FORMAT (A16)
C Write record at terminal

WI~ITE (5,20) REC
TYPE *, 'Do YOU want to replace the record? Y or N '
READ(5,10)ANS
IF (ANS.EQ.'N'.OR+ANS~EQ.'n') GO TO 100
TYPE *, 'Enter new record.'
READ(5,10)NEW

20 FORMAT (' ',A16)
WRITE(1'NO~10)NEW

:1.00 CONT INLJE
C Close file and exit

CLOSE (UNIT=1)
CALI ... EXIT
END

Run Session

>I~UN READF I XED
Enter record number YOU want.
~'5
333
Do YOU want to replace the record? Y or N
y
Enter new record.
Now is the time.
>RUN READFIXED
Enter record number wou want.
~'5

Now is the time.

Example 10-5 Reading a Fixed Length Record

355

FILE CONTROL SERVICES

Example 10-6, DIRFOR, illustrates the creation of a file via
direct access. The example creates record 1 through record 5, in
order. It is not necessary to create the records in order, nor
must there be a record n-l if record n exists. Hence you may have
a sparse file, containing only those records whose record numbers
are specifically used in a WRITE.

Note that the RECORDSIZE = 10 is used in the OPEN. Since this is
a formatted record, the recordsize of 10 means that each record
will be 10 bytes. Hence the first record, containing 1,1,1,1,1,
is filled with five blanks (40,40,40,40,40). The fifth record,
which contains just a 5, is filled with nine blanks. The rest of
the file is filled with zeros.

356

FILE CONTROL SERVICES

PROGRAM DIRFOR
c
C File DIRFOR.FTN
c
C This task creates a file DIRFOR.DAT usin~ direct
C access formatt~d writes.
C
C Direct access formatted writes are available in
r FORTRAN IV-PLUS and FORTRAN-77 onlw
(~ J

INTEGER REC(10)
c
C Open file

OPEN (UNIT=2,NAME='DIRFOR.DAT',ACCESS='DIRECT't
1 TYPE='NEW',FORM='FORMATTED',RECORDSIZE=10)
DO 100 1=1,5

C Prompt ~or input
WRITE (5,25)

25 FORMAT ('$ INPUT UP'TO 10 DIGITS: ')
C Read record from terminal

READ (5,50)N,REC
SO FORMAT (Q,10Il)
C Write record to disk

WRITE (2'1,80) (REC(K),K=l,N)
80 FORMAT (1011)
100 CONTINUE

CLOSE (UNIT=2)
CALL EXIT
END

Run Session

>RUN DIRFOR
INPUT UP TO 10 DIGITS: 11111
INPUT UP TO 10 DIGITS: 2222
INPUT UP TO 10 DIGITS: 3333333333
INPUT UP TO 10 DIGITS: 444
INPUT UP TO 10 DIGITS: 5
>

Dump of DR2:[305,301JDIRFOR.DATP17 - File ID 40653,10,0
Virtual block 0,000001 - Size 512. b~tes

000000 061 061 061 061 061 040 040 040 040 040 062 062 062
000020 040 040 040 040 063 063 063 063 063 063 063 063 063
000040 064 040 040 ~O 040 040 040 040 065 040 040 040 040
000060 040 040 000 000 000 000 000 000 000 000 000 000 000

Example 10-6 Creating a Direct Access File

357

062 040 040
063 064 064
040 040 040
000 000 000

FILE CONTROL SERVICES

Example l~-7, DIRUNF, creates a file with unformatted, direct
access records. Since the file is unformatted, the record size of
5 does not refer to five bytes but rather to five storage units
where a storage unit is defined as four bytes. Hence each record
is 2~ bytes long. Note that the file dump shows words rather than
bytes. This is because the data type is INTEGER which has two
bytes for each value. The first record contains five words of
~~~~l padded with five words of ~~~~~ to pad out the 2~-byte 
record. 

358 



FILE CONTROL SERVICES 

PROGRAM II I RUNF 
c 
C File DIRUNF.FTN 
C 
C This task creates a file DIRUNF.DAT usin~ direct 
C access unformatted writes. 
C 

I NTEGER F~EC ( 10) 
C Open fil.€~ 

OPEN (UNIT=4,N~ME=/DIRUNF.DAT',ACCESS='DIRECT/, 

1 TYPE='NEW/,RECORDSIZE=5) 
c 

C Promp~ fpr input 
WRITE (55125) 

! Itefaults to 
! 1.lnformatted 

25 FORMAT (' INPUT UP TO 10 DIGITS:') 
C Read record from terminal 

READ (55110) N,REC 
10 FORMAT (Q,10Il) 
C Write record to disk 

WRITE (4'1) (REC(K),K=l,N) 
:1.00 CONTINUE 

CALL EXIT 
END 

RI .. trJ Sess i on 
>RUN IIIRUNF 
INPUT UP TO 10 DIGITS: 11111 
INPUT UP TO 10 DIGITS: 2222 
INOUT UP TO 10 DIGITS: 3333333333 
INPUT UP TO 10 DIGITS: 444 
INPUT UP TO 10 DIGITS: 5 
:::. 

Dump of DR2:C305,301JDIRUNF.DAT;13 - File ID 40661,5,0 
Virtual block 0,000001 - Size 512. bwtes 

000000 000001 000001 000001 000001 OOOOO:!. 000000 000000 
000020 000000 000000 000002 ()00002 000002 000002 000000 
()00()40 000000 000000 000000 000000 000003 000003 OOOOO:~ 

()00060 000003 000003 000003 000003 000003 00O()03 000004 
()00100 000004 000000 000000 000000 000000 000000 000000 
()00120 000005 000000 000000 000000 000000 000000 000000 
()00140 000000 000000 000000 000000 000000 000000 000000 

OOOO()() 
000000 
000003 
O()OOO4 
OOO()OO 
()()()OOO 
O()()OOO 

Example 10-7 Creating an Unformatted, Direct Access File 

359 



FILE CONTROL SERVICES 

Example 10-8, SEQUNF, illustrates the SEGMENTED record type, 
though the OPEN does not contain RECORDTYPE = 'SEGMENTED'. 
is because SEGMENTED is the default record type for 
UNFORMATTED, SEQUENTIAL file. This is the default file 
created by an unformatted WRITE in FORTRAN. Hence, if there 
been no OPEN statement, and the write statement was as shown: 

WRITE(l) (REC(K) ,K=l,N) 

even 
This 

an 
type 

had 

the file created would default to FOR001.DAT (001 because 1 was 
used in the WRITE) and the record type would be SEGMENTED. The 
advantage of a file with segmented records is that there . is no 
limit to its size, i.e., a single record could be many physical 
blocks on a disk. The disadvantage of a file with segmented 
records is that it cannot be read by any other high level 
languages. 

360 



FILE CONTROL SERVICES 

PI=i:OGI=i:AM SEQUNF 
c 
C This task creates a file SEQUNF.DAT usinS seGuentisl 
C unformatted writes 
c 

BYTE REC(10) 
c 
c: e)F-en fil.e~ 

OPEN (UNIT~l,NAME='SEQUNF.DAT',TYPE~'NEW', 
1 FORM='UNFORMATTED',ACCESS='SEQUENTIAL') 

C Loop for 5 records 
DO 100 1::::1,5 

C Prompt for input 
WRITE (5,25) 

25 FORMAT ('$ INPUT UP TO 10 DIGITS: ') 
C Read record from terminal 

READ (5,50) N,REC 
50 FORMAT (Q,10Il) 
C Write record to disk 

WRITE (1) CRECCK),K::::l,N) 
:1.00 CONTINUE 

CLOSE (UNIT::::l.) 
CALL EXIT 

C Error routine 
900 WRITE (5,950) 
950 FORMAT (' THERE WAS A FILE OPEN ERROR') 

CALL EXIT 
END 

RIJn Session 

>RUN SEQUNF 
INPUT UP TO 10 DIGITS: 11111 
INPUT UP TO 10 DIGITS: 2222 
INPUT UP TO 10 DIGITS: 3333333333 
INPUT UP TO 10 DIGITS: 444 
INPUT UP TO 10 DIGITS: 5 

Dump of DR2:C305,301JSEQUNF.DAT;16 ~ File ID 40675,3,0 
Virtual block 0,000001 - Size 512. bytes 

000000 
000020 
000040 
000060 
000100 

000014 
000003 
000003 
000003 
000005 

000003 
000002 
000003 
000010 
000000 

000001 
000002 
000003 
000003 
000000 

000001 000001 000001 000001 000012 
000002 000002 000026 000003 000003 
000003 000003 000003 000003 000003 
000004 000004 000004 000004 000003 
000000 000000 000600 000000 000000 

Example 10-8 Creating a Segmented File 

361 



FILE CONTROL SERVICES 

Example 10-9, FWRITE, illustrates how a Block I/O routine written 
in MACRO can be called by a FORTRAN program. Block I/O is not 
directly available in FORTRAN • 

;+ 

• TITLE 
.IDENT 
.ENABL 

FWRITE 
lOll 
LC ; Enable lower case 

; FWRITE is a FORTRAN-callable block lID subroutine. 

Subroutine call: 

where ilun is 
ibuf is 
isiz is 
ivb is 
iefn is 
iosb is 
ierr is 

+1 
-1 
-2 
-4 

lo~i~al unit number 
block buffer ~ddress 
block buffer size (in bwtes) 
address of 2-word v.b. number 
event fla~ 
lID status block 
a status code 

= 

= 

Success 
SFCHNL ERROR 
CANNOT CHANGE RECORD ACCESS 
WRITES REJECTED 

.MCALL WRITES,FDRCSR Swstem FCS macros 
IOSB: 

FWRITE:: 

.BLKW 

MOV 
MOV 

CALL 
BCS 
ADD 
FDRCSR 

2 

@2(R5),R2 
@iSOTSV,R3 

SFCHNL 
ERRORl 
i14,RO 
,iFD.RWM 

Lun 
Address of FORTRAN 

work area 
Get FORTRAN FDB 
Branch on error 
Point to FCS FDB 
Chan~e record access 
to block 1/0 

BCS ERROR2 ; Branch on error 
WRITES ,4(R5),@6(R5),10(R5),@12(R5),14(R5),iO 

Issue write 
Bes ERROR3 
MOV tl,@16(R5) 
RETURN 

ERROR1: MOV i-l,@16(R5) 

RETURN 
ERROR2: MOV t-2,@16(R5) 

RETURN 
ERROR3: MOV t-4,@16(R5) 

RETURN 
.END 

Branch on error 
Return success code 

Return FCHNL failure 
code 

Return couldn't chan~e 
access code 

Return write rejected 
code 

Example 10-9 Creating a File Using Block I/O (Sheet 1 of 3) 

362 



FILE CONTROL SERVICES 

F'ROGRAM BLOCK1 
c 
C File BLOCK1.FTN 
C 
C BLOCK1 creates a file BLOCK.ASC usinS FWRITE, a 
C FORTRAN callable subroutine Mritten in MACRO-11. 
c: 
C Subroutine call: 
C 
C CALL FWRITE(ilun,ibuff,isize,ivbn,iefn,iosb,ierr) 
c 
C where iltln is the lc)!:.fical unit nl.JlTlbe~ r 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

ibtlff 
isize 
ivbn 
iefn 
iosb 
ierr 

is 
is 
is 
is 
is 
is 
+1 
-1 
-2 
""4 

the arra~:l to b(~ written 
ttl(~ ~:d:.:~e of th(-? buffer' (b~ltes ) 
a 2 .... integer vbn Chigh,lnw) 
an event flas nl.JlTlbC:-1r 
a 2-irlteser 1/0 statlJ~; block 
an status cod€~ , 

:::: SUCCESS 
- $FCHNL ERROR 
- CANNOT CHANGE RECDF~D ACCESS 
"" WRITE$ RE,JECTED 

C Task-btlild instructions: 

C )LINK/MAP/CODE:FPP BLOCK1,FWRITE,LB:Cl,lJF4POTS-
C -)/LIBRARY 
C 

c 

C Get 

5 

I.) 

C Get 

7 

EJ 
C Fill 

9 

INTEGER WDBUFF(256),IVBN(2) 
INTEGER ISIZE,IEFN,IOSB(2),IERR 
BYTE IOST(2),CHAR,CHBUFF(512) 

EQUIVALENCE (IOSB,IOST) ! For accessing liD status 
EQUIVALENCE (WDBUFF,CHBUFF) ! For accessing data 
DATA ILUN,ISIZE,IEFN 11,512,21 

virtual block. :JI: 
TYPE 5 
FORMAT ('$VIRTUAL BLOCK NUMBER (LOW ONLY) : ' ) 

ACCEPT 6,IVBN(2) 
FORMAT (16) 
IVBN(l) .... 0 High VBN " .. 0 

character to irlseT't 
TYPE 7 
FORMAT ("$CHARACTER: ' ) 

ACCEPT 8,CHAR 
FORMAT (lAl) 

buffer with character 
DO 9"I=1"ISIZE 
CHBUFF(I) " .. CHAR 

Example 10-9 Creating a File Using Block I/O (Sheet 2 of 3) 

363 



FILE CONTROL SERVICES 

C Open file 
OPEN (UNIT=ILUN,NAME='BLOCK.ASC',TYPE='NEW') 

C Call subroutine to write block of data 
CALL FWRITE (ILUN,WDBUFF,ISIZE,IVBN,IEFN,IOSB, 
lIERR) 
IF (IERR .LT. 0) GO TO 200 
TYPE 20 

20 FORMAT (' 1 BLOCK BEING WRITTEN TO FILE') 
C Wait for write to complete 

CALL WAITFR(IEFN,IDSW) 
IF (IDSW .LT. 0) GOTO 40 ! Check for dir error 
IF (IOST(l) .LT. 0) GO TO 100 ! Cheek for lID 

C error on write 
WRITE (5,30)IOSB(2) 

30 FORMAT (' WRITE COMPLETED,',I6,' BYTES WRITTEN 
ITO FILE') 
GOTO 300 

C 
40 TYPE 45,IDSW 
45 FORMAT (' DIRECTIVE ERROR. IDSW - ',16) 

GOTO 300 
c 
100 WRITE (5,110) IOST(l) 
110 FORMAT (' lID ERROR. lID STATUS = ',16) 

GOTO 300 
c 
200 TYPE 210,IERR 
210 FORMAT (' FCS ERROR, CODE - ',16) 
C 
300 CLOSE (UNIT=ILUN) 

CALL EXIT 
END 

Run Session 

>RUN BLOCK1 
VIRTUAL BLOCK NUMBER (LOW ONLY) : 2 
CHARACTER e 
1 BLOCK BEING WRITTEN TO FILE 
WRITE COMPLETED, 512 BYTES WRITTEN TO FILE 

Dump of DR2:[305,301]BLOCK.ASC~14 - File ID 40701,2,0 
Virtual block 0,000001 - Size 512. bwtes 

Contains whatever was previousl~ in that block on the disk 

Dump of DR2:[305,301JBLOCK.ASC;14 - File ID 40701,2,0 
Virtual block 0,000002 - Size 512. b~tes 

000000 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 
000020 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 
000040 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 

145 
145 
145 

000760 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 

Example 10-9 Creating a File Using Block I/O (Sheet 3 of 3) 

364 



APPENDICES 





APPENDIX A 
GLOSSARY 

ASYNCHRONOUS SYSTEM TRAP (AST) - A system condition which occurs 
as a result of a specified event such as completion of an I/O 
request. 

On occurrence of the event, control passes to an AST service 
routine, and the AST is added to an Executive first-in first-out 
queue for the task in which the service routine appears. 

ATTACH - Device: Dedicate a physical device unit for exclusive 
use by the task that requested attachment. 

A task attaches a given device by issuing a QIO directive, or QIO 
and WAIT directive, specifying the I/O function IO.ATT. 

Region: Include a region in a task's logical address space. 

A task attaches a region by issuing an Attach Region directive or 
by being the target of another task's Send-By-Reference directive. 

CLUSTER LIBRARIES - A special setup with shared resident libraries 
which permits a task to use the same virtual address window to map 
several difficult libraries. For example, the resident FORTRAN 
Object Time System and the resident FCS libr~ry could use the same 
virtual addresses. The run-time routines map and remap the 
regions as they are needed, somewhat similar to what happens with 
regular memory-resident overlays. 

DATASET DESCRIPTOR - A six-word area in the user task containing 
sizes and addresses of ASCII data strings, which FeS consults in 
order to obtain a run-time file specification. 

A dataset descriptor for a given file is a user-created data 
structure which contains a file specification for that file. 

When the filename block associated with a given file does not 
contain sufficient information to enable FCS to do run-time file 
processing on that file, FCS tries to get the needed information 
from the file's dataset descriptor, if specified. Otherwise, Fes 
consults the file's default filename block, if specified, in order 
to get the desired information. 

DEFAULT FILENAME BLOCK - An area in the user task that supplies 
FCS with those default values that are needed to build a routine 
file specification. 

367 



When the filename block associated with a given file does not 
contain sufficient information to allow FCS to process the file, 
and when a dataset descriptor does not contain the needed 
information, then FCS consults the default filename block 
associated with the file to obtain the missing information. 

A default filename block may be used to supply a default name, 
extension, and/or version for the file. The MACRO programmer uses 
the NMBLK$ macro to create this block at assembly time. 

DETACH - Device: Free an attached physical device unit for use by 
tasks other than the one that attached it. 

A physical device unit can only be detached by means of an IO.DET 
I/O function issued by the task that attached it, or by the 
Executive, if the task is terminated with the device still 
attached. 

Region: Remove a region from a task's logical address space. 

A task detaches a region by issuing 'a Detach Region directive or 
by exiting. 

DIRECTIVE STATUS WORD - A word in the user task header into which 
the Executive returns status information about the most recently 
called directive. 

After processing a directive, the Executive passes the status of 
that directive to the issuing task by putting a success or error 
code into the task's Directive Status Word, which is assigned the 
global label $DSW. If $DSW is negative, the Executive rejected 
the directive; if $DSW is +1, the directive was successful. 

EVENT FLAG - A software flag which can be specified in a program 
r-equest to indicate to the issuing task which of several specified 
events has occurred. 

There are 96(10) event flags. 

Event flags 1 - 32(10) are local 
33(10) - 64(10) are system global flags 
65(10) - 96(10) are group global flags 

Local flags are used for intra-task synchronization, while group 
global and system global flags are used for inter-task 
synchronization and communication. 

EXECUTIVE DIRECTIVE - A program request for Executive services. 

368 



An Executive directive is issued from a FORTRAN program by calling 
a subroutine in the system object library. It is issued from a 
MACRO-II program by invoking a macro in the system macro library. 

FILE DESCRIPTOR BLOCK (FOB) - The tabular data structure which 
provides FCS with information needed to perform I/O operations on 
a file. 

A task must allocate, through calls to the FDBDF$ macro, or 
dynamically through the use of run-time macros. 

FILE STORAGE REGION (FSR) - The area in user task which FCS uses 
to buffer all virtual blocks read or written during record. 
processing. 

FCS requires one FSR block buffer for each file to be opened at 
the same time for record I/O. When the task requests a record 
that is not in the FSR buffer, FCS reads a virtual block from the 
file into the task's file storage region. On the other hand, FCS 
writes virtual blocks in the file storage region to the file when 
a record must be put to the file. 

The user task allocates this area by issuing an FSRSZ$ macro. 

FILENAME BLOCK - The part of a file's File Descriptor Block which 
FCS uses for building, and later using, a file specification. 

The filename block contains the file's UFO, name, extension, 
version number, device name, and unit. When a file is initially 
opened, FCS fills in the filename block from user-supplied 
information in the dataset descriptor and/or default filename 
block. 

I/O STATUS BLOCK - A two-integer array which receives success or 
error codes on completion of an I/O request. If an I/O status 
block has been specified in an I/O request, the Executive clears 
both words when the I/O operation is queued. On completion, the 
low byte of the first word contains +1 if the I/O was successful, 
and a negative error code otherwise. 

If the I/O function involved a transfer, the second word contains, 
on completion, the number of bytes transferred. 

LOGICAL ADDRESS SPACE - The set of all physical addresses to which 
a task has access rights. 

If a task is running on a mapped system that includes support for 
the memory management directives, it may issue directives in order 
to manipulate its logical address space at run time. 

369 



LOGICAL BLOCK - A 512(10) byte (256(10) word) block of data on a 
block addressable volume. 

To achieve device independence, each block addressable volume is 
organized into logical blocks, numbered 0 to n-l, where n is the 
number of logical blocks on the volume. 

The mapping of logical blocks to physical blocks is handled by the 
driver. 

LOGICAL UNIT NUMBER (LUN) - A number associated with a physical 
device unit during a task's I/O operations. 

The association of a LUN in a task with a given physical device 
may be done by the Task Builder, by the operator using the 
REASSIGN command, or at run time by the task, by issuing an Assign 
LUN directive. 

RANDOM ACCESS - A method of I/O to disk files in which records (or 
virtual blocks) are specified by record (or virtual block) number. 

Under IFCS, a file must be organized into fixed length records in 
order for a task to do random acc~ss to the file. 

FCS supports the use of block I/O, in which virtual blocks are 
read from, or written to, the file without regard for the 
structure of those blocks. The FORTRAN language does not support 
block I/O. 

READ/WRITE MODE - An FCS file access method in which the user task 
uses the READ$ and WRITE$ macros to do block-structured I/O to a 
file. 

REGION - An area consisting of one or more contiguous 32.-word 
blocks of physical memory. 

A region may be named or unnamed, but is always assigned a unique 
region ID. A region has an associated protection word which 
specifies the access rights a task may have with respect to that 
region. Any task that satisfies the region protection word may 
attach a named region, but no task can attach an unnamed region 
unless the task has the region ID. 

RESIDENT COMMON - A shared region which contains data. 

RESIDENT LIBRARY - A shared region containing subroutines and/or 
functions. 

SEQUENTIAL ACCESS - A mode of record access in which the n+lth 
record in the file is processed after the nth record in the file. 

370 



Each record is assigned a record number, and each successive GET 
or PUT causes the record number to be incremented. 

SYNCHRONOUS SYSTEM TRAP (SST) 
typically occurs as a result 
executing task. 

A "software interrupt" which 
of an error or fault within the 

On recognition of an SST, the Executive aborts the task, unless 
there is an SST vector table to an SST routine in the task. 

VIRTUAL ADDRESS - A l6-bit address which may be directly specified 
using one of the general purpose registers. 

A task specifies a virtual address whenever it 
addressing modes in executing an instruction. 
word addresses may be specified by a task. 

uses one of the 
Up to 32K virtual 

On a mapped system, the memory management hardware dynamically 
maps virtual addresses to real physical addresses. 

VIRTUAL ADDRESS WINDOW - A contiguous chunk of a task's virtual 
address space. 

Each virtual address window in a task begins on a 4K word boundary 
and consists of one or more 32(10) word blocks of virtual address 
space. Each window has a unique number assigned to it by the 
Executive. Window 0 always maps the task's header, stack, and 
code. A task may divide its virtual address, space into eight 
windows. 

VIRTUAL BLOCK - One of the logical blocks belonging to a file. 

Each file consists of one or more logical blocks. The logical 
blocks belonging to a file are called virtual blocks 1, 2, 3, etc. 
The mapping of virtual blocks in a file to logical blocks on disk 
is performed by the file system. 

WINDOW DESCRIPTOR BLOCK (WOB) - A data structure used in a task in 
order to represent a dynamically created window. 

371 



'. 



APPENDIX B 
CONVERSION TABLES 

Table 8-1 Decimal/Octal, Word/Byte/Block Conversions 

Words (lS)/Words (8) Bytes (lS)/Bytes (8) 

1/1 2/2 

32/40 64/100 

1K =1024/2000 2048/4000 

2K =2048/4000 4096/10000 

4K =4096/10000 8192/20000 

8K =8192/20000 16384/40000 

16K =16384/40000 32768/100000 

32K =32768/100000 65536/200000 

64K =65536/200000 131072/400000 

128K=131072/400000 262144/1000000 

Table B-2 APR/Virtual Addresses/Words 

APR Virtual Addresses 

0 000000-017776 

1 020000-037776 

2 040000-0.57776 

3 060000-077776 

4 100000-117776 

5 120000-137776 

6 140000-157776 

7 160000-177776 

373 

Blocks(10)/Blocks{8) 

1/1 

32/40 

64/100 

128/200 

256/400 

512/1000 

1024/2000 

2048/4000 

4096/10000 

Conversions 

Words 

0-4K 

4-8K 

8-12k 

12-16K 

16-20K 

20-24K 

24-28K 

28-32K 





APPENDIX C 
FORTRAN/MACRO-11 INTERFACE 

CALLING A MACRO-11 SUBROUTINE FROM A FORTRAN PROGRAM 

FORTRAN Program Call: 

CALL SUBNAM (I,J,K) 

MACRO translation: 

1. Set up table of arguments. 

RS ----) Icount=3 

Address of I 

Address of J 

Address of K 

2. Issue subroutine call. 

JSR PC,SUBNAM 

or 

CALL SUBNAM 

The FORTRAN Callable MACRO-II Subroutine 

; Access i ng : 
; Argument count = (RS) 
; Argl = @2(RS) 
; Arg2 = @4(RS) 
; Arg3 = @6(RS) 
SUBNAM: : 

. 
RTS PC ; or RETURN 

375 



CALLING A FORTRAN SUBROUTINE FROM A MACRO-11 PROGRAM 

In the MACRO program: 

LINK: .BYTE 3,O 
• WORD A 
• WORD B 
• WORD C 

A: .WORD 2 
B: .WORD 3 
C: .WORD ((} 

MOV iLINK,R5 
JSR PC,SUB 

In the FORTRAN program: 

SUBROUTINE SUB (L,M,N) 
N=L+M 
RETURN 
END 

NOTE 
This method is also used to call a FORTRAN 
callable subroutine (written in MACRO-II). 

Example 7-3 in the Static Regions module shows a shareable library 
LIB.MAC, which contains FORTRAN callable subroutines. USELIB.MAC, 
also in Example 7-3, shows a referencing task which calls 
subroutines in the library. 

376 



APPENDIX D 
PRIVILEGED TASKS 

RSX-IIM systems have two classes of tasks, privileged and 
nonprivileged. The basic difference is that privileged tasks have 
certain system-access capabilities that nonprivileged tasks do not 
have. These privileges include one or more of the following: 

• Access to Executive routines and data structures 

• Automatic mapping to the I/O page 

• Bypass of system security features. 

NOTE 
privileged tasks may be hazardous to a run
ning system. 

Use one of the following qualifiers (switches) to build a 
privileged task. 

1. /PRIVILEGE:0 qualifier (MCR /PR:0) 

This task is built in the same way as a nonprivileged task 
and does not map to the Executive or the I/O page. It 
can, however, do the following: 

• Bypass file protection 

• Issue directives which require privileges (e.g., Alter 
Priority, QIO for Write Logical Break-through) 

• Issue QIOs to write logical blocks to a mounted 
volume, regardless of who issued the MOUNT or ALLOCATE 
command. 

377 



2. /PRIVILEGE:4 or /PRIVILEGE:5 (MCR /PR:4 or /PR:5) 

This task has the privileges of a /PRIVILEGE:0 task, plus 
it maps to the Executive and the I/O page. The user task 
code is mapped beginning at APR 4 or 5, as specified. The 
APRs below the one specified are used to map to the 
Executi ve, and APR 7 is 'used to map the I/O page. Use 
/PRIVILEGE:4 if the Executive is 16K words or less; use 
/PRIVILEGE:5 if the Executive is between 16K and 29K 
words. If the task code extends beyond the end of the 
addresses mapped by APR 6, then APR 7 is used to map the 
excess code, and the task does not map to the I/O page. 

Privileged tasks are discussed in detail in the RSX-llM Internals 
Course. See also Chapter 6 on Privileged Tasks in the 
RSX-llM/M-PLUS Task Builder Manual. 

378 



APPENDIX E 
TASK BUILDER USE OF PSECT ATTRIBUTES 

The Task Builder collects scattered occurrences of progr~m 
sections of the same name and combines them in a single area In 
your task image. The program section attributes control how the 
Task Builder collects and places each program section. 

See, Chapter 2 of the RSX-llM/M-PLUS Task Builder Manual for a 
complete discussion of program section attributes. 

Example of allocation code attributes: 

CON (concatenate) versus OVR (overlay) 

1. A.OBJ has Psect Q,CON - length 100(10) words 

B.OBJ has Psect Q,CON - length 50(10) words 

When task-built: 

LINK A,B 

Yields 150(10) words in Psect Q 
(first A's 100(10) words, then B1 s 50(10) words). 

2. A.OBJ has Psect Q,OVR - length 100(10) words 

B.OBJ has Psect Q,OVR - length 50(10) words 

When task-built: 

LINK A,B 

Yields 100(10) words in Psect Q 
(A's 100(10) words. B's 50(10) words are the 
same as A's first 50(10) words). 

379 



Example of scope code attributes: 

LCL (local) versus GBL (global) 

Overlay Tree B.ODL file: 

B1 
I 

I 
B 

B3 
I 

B2 
I 

.ROOT B-*I(B1,B2-B3) 

.END 

Task-build command (for all): LINK B/OVERLAY __ DESCRIPTION 

1. B.OBJ has Psect Q,LCL,CON - length 100(10) words 

Bl.0BJhas Psect Q,LCL,CON - length 50(10) words 

When task-built: 

Yields 100(10) words in Psect Q in root segment B 
Yields 50(10) words in Psect Q in overlay segment Bl 

2. B.OBJ has Psect Q,GBL,CON - length 100(10) words 

Bl.0BJ has Psect Q,GBL,CON - length 50(10) words 

When task-built: 

yields 150(10) words in Psect Q in root segment B (in the 
segment closest to the root); B's 100(10) words, then 
Bl's 50(10) words. 

If GBL,OVR instead, yields 100(10) words in Psect Q in the 
root segment. B's 100 words, with Bl's 50(10) words the 
same as B's first 50(10) words. 

380 



3. B2.0BJ has Psect Q (LCL or GBL) - length l00i10) words 

B3.0BJ has Psect Q (LCL or GBL) - length 50(10) words 

When task-built: 

If CON, yields 150(10) words in Psect Q in overlay segment 
B2 (allocation collected, since it is all in the same 
overlay segment). 

If OVR instead, 100(10) words in Psect Q in overlay 
segment B2. B3's 50(10) words are the same as B2's first 
50(10) words. 

LCL and GBL are used only for overlaid tasks. In a non-overlaid 
task or within an overlay segment in an overlaid task, allocations 
are collected when either LCL or GBL is specified, as in Example 
3. 

Example of FORTRAN COMMONs at Psects: 

Psect attributes are always: RW,D,GBL,OVR,REL 

COMMON /RDATA/ I(100) 

Macro translation: 

.PSECT RDATA,RW,D,GBL,OVR,REL 

381 





APPENDIX F 
ADDITIONAL SH,ARED REGION TOPICS 

SHARED REGIONS WITH OVERLAYS 

• Can be referenced using a smaller window in referencing 
task 

• Reuse virtual addresses in the referencing task 

• Must be memory-~esident overlays 

• Have overlay structures which are placed in the .STB file 
and later placed in root segment of referencing task. 

BUILDING A RESIDENT LIBRARY WITH OVERLAYS 

1. Code and assemble library modules. 

2. Write regular .ODL file to define overlay structure. 

• Typical structure has a null root. 

3. Task-build as a shared region. 

• Only symbols defined or referenced in the root are 
included in the .STB file. 

• Force inclusion of global references into root, when 
necessary, usi~g GLBREF option. 

Example .ODL file OVRLIB.ODL (Figure F-l): 

• NAME 
• ROOT 
.END 

OVRLIB 
OVRLIB-*! (H,I-J) 

Example task-build command: 

)LINK/NOHEADER/MAP/SYMBOL TABLE/OPTIONS OVRLIB/OVERLAY-
-) DESCRIPTION -
Option? STACK=f2J 
Option? PAR=OVRLIB:14f2Jf2Jf2Jf2J:4f2Jf2Jf2Jf2J 
Option? GBLREF=H,I,J 
Option? <RET) 

383 



Referencing task is created using regular procedure to reference 
library OVRLIB. 

See section 5.1.4 (on Shared Regions with Memory-Resident 
Overlays) in the RSX-llM/M PLUS Task Builder Manual for additional 
information. 

160000 APR7 

VIRTUAL 
MEMORY 

----------- 1'\~~ '}. 

~ ---- ---__ -- -::.. TIME 1 
140000 APR6 ~.,."..,~ _ _ (MAP)" ----
120000 APR5 

100000 APR4 

60000 APR3 

40000 APR2 G 
(.16K WORDS) 

20000 APR 1 

o APRO '--_______ ........ _ 

-----
INITIAL 
LOAD 

-----

PHYSICAL 
MEMORY 

J 

I 

H 

G 

TK-7773 

Figure F-l A Shared Region With Memory-Resident Overlays 

384 



REFERENCING MULTIPLE REGIONS IN A TASK 

• Use the usual procedure if: 

The number of available APRs in the referencing task 
is sufficient 

Shared regions are logically independent (one library 
does not call the other library) 

• If shared regions are built absolute, APRs (and virtual 
addresses) cannot overlap. 

Example task-build for logically independent libraries (Figure 
F-2): 

Libraries: ARES built absolute at V.A. 160000(8); length 4K 
words 

BRES built absolute at V.A. 120000(8); length 6K 
words 

Referencing task: REF 

>LINK/MAP/OPTIONS REF 
Option? RESLIB=ARES/RO 
Option? RESLIB=BRES/RO 
Option? <RET> 

385 



VIRTUAL 
MEMORY 

.1 

I 
I 

/ 
I .I 

/ I 
I II 

II I 
---1...-- / 

-I J--- __ 
160000 APR7 / •• ~~m.f-/-J.. _____ _ 
140000 APR6 I 

I 

120000 APR5 ~~~~~~~wJI 
100000 APR4 ~~~~~~~~l 

60000 APR3 

40000 APR2 

20000 APR1 

REF 
(16K WORDS) 

o APRO ~ _______ '------------

PHYSICAL 
MEMORY 

BRES 

ARES 

REF 

Figure F-2 Referencing Two Resident Libraries 

386 

TK-7772 



INTERLIBRARY CALLS 

One library can call another library 

FORRES calls FCSRES 

To build libraries with interlibrary calls, use any of these 
techniques. 

• Build as a single combined library, then build referencing 
task (Figure F-3). 

• If referenced library does not contain overlays (Figure 
F-4): 

Build referenced library. 

Build referencing library, 
library to resolve calls. 

~pecifying referenced 

Build referencing task, specifying only referencing 
library. 

• If referenced library has overlays (Figures F-5 and F-6): 

You must revector interlibrary calls to allow access 
to overlay structure and autoload vectors (always in 
root of referencing task). 

Once revectoring is included, build shared regions and 
referencing task as if regions are logically 
independent. 

Example task-build commands for each technique follow. 

Example task-build command for combined libraries (Figure F-3): 

>LINK/MAP/NOHEADER/SHAREABLE:LIBRARY/SYMBOL TABLE
->/OPTIONS F4PRES,LB:[1,1]F4POTS/LIBRARY -
Option? STACK=0 
Option? PAR=F4PRES:120000:60000 
Option? <RET) 

Referencing task is created using normal procedure to reference 
the library F4PRES. 

387 



VIRTUAL 
MEMORY 

----------------~" 
160000 APR7 

F4PRES 

(FCSRES) 
140000 APR6 12K WORDS 

120000 APR5 

100000 APR4 

60000 APR3 

40000 APR2 

USER 
20000 APR1 (12K WORDS) 

o APRO 

/.,/ 
.,......., ......... 

/.,/ 

.,., 

.,., 

.-

... 

PHYSICAL 
MEMORY 

F4PRES 

(FCSRES) 

USER 

TK-7776 

Figure F-3 Referencing Combined Libraries 

388 



Example task~build commands for building one library, then 
building the second (referencing) library (Figure F-4): 

>LINK/MAP/NOHEADER/SHAREABLE:LIBRARY/SYMBOL TABLE-
->/OPTIONS/CODE:PIC FCSRES -
Option? STACK=0 
Option? PAR=FCSRES:0:20000 
Option? <RET> 

>LINK/MAP/NOHEADER/SHAREABLE:LIBRARY/SYMBOL TABLE
->/OPTIONS F4PRES,LB:[1,l]F4POTS/LIBRARY -
Option? STACK=0 
Option? LIBR=FCSRES:RO 
Option? PAR=F4PRES:140000:40000 
Option? <RET> 

Referencing task is created using normal procedure to reference 
just the library F4PRES. F4PRES must be mapped using APRs 6 and 7 
because it is built absolute. FCSRES is mapped at the next 
available APR, namely APR 5, because it is built position 
independent. 

389 



.-----------------------------~-

.... 

------
------------~--------------~c 

------

---------------

PHYSICAL 
MEMORY 

F4PRES 

FCSRES 

USER 

, 

TK-7771 

Figure F-4 Building One Library, Then Building 
a Referencing Library 

390 



FCS1 FCS2 F4PCLS USER 

.FSRPT::-

~ .OPEN:: .GET:: CALL .OPEN 

,OPEN::j 

DISPAT: JMPTBL:: · · · .OPEN~ 
.PUT 
.GET 

· · AUTOLOAD ROUTINE, MAPS TO · FCS1, THEN TRANSFERS CONTROL 

TK-7777 

Figure F-5 Revectoring 

See Section 5.2.1.3 (on User Task Vectors Indirectly Resolve all 
Interlibrary References) in the RSX-IIM/M-PLUS Task Builder Manual 
for additional information on revectoring. See also Section 5.2.3 
on Examples for commented task-build commands for building 
libraries with revectoring. 

391 



Example task-build commands when revectoring is used 
(Figure F-6): 

>LINK/MAP/NOHEADER/SHAREABLE:LIBRARY/SYMBOL TABLE
->/OPTIONS/CODE:PIC FCSRES/OVERLAY DESCRIPTION 
Option? STACK=0 -
Option? PAR=FCSRES:0:20000 
Option? GBLREF=.CLOSE 
Option? GBLREF=.CSIl 
Option? GBLREF=.CSI2 

. 
Option? GBLREF=.WAIT 
Option? <RET> 

>LINK/MAP/NOHEADER/SHAREABLE:LIBRARY/SYMBOL TABLE:
->F4PCLS/TASK:F4PCLS/OPTIONS F4PRES,LB:[l,lTF4POTS-
->/LIBRARY,LB:[l,l]SYSLIB/INCLUDE:FCSVEC 
Option? STACK=0 
Option? PAR=F4PCLS:140000:40000 
Option? GBLINC=.FCSJT 
Option? GBLXCL=.CLOSE 
Option? GBLXCL=.CSIl 
Option? GBLXCL=.CSI2 

Option? GBLXCL=.WAIT 
Option? <RET> 

Referencing task is created using normal procedure to reference 
libraries FCSRES and F4PCLS. 

392 



160000 APR7 

VIRTUAL 
MEMORY 

F4PCLS 

(8K WORDS) 

~ ,........ 

,........ ,........ 
.,..., 

.' -~-
.,/' 

.,/' 

.--.,/' -
..... ~ --140000 APR6 I-----~---__+_e:::::_=::: _ ,,\\AE 2 

FCSl FCS2 -
120000 APR5 (4K WORDS) (4K WORDS) _~ --
100000 APR4 

60000 APR3 

40000 APR2 

20000 APR1 

USER 

(12K WORDS) 

o APRO ~ _______ ......... _ 

---

----
INITIAL 

LOAD AND M _ AP .. 
-----

PHYSICAL 
MEMORY 

F4PCLS 

FCS2 

FCS1 

USER 

TK·7775 

Figure F-6 Using Revectoring When Referenced Library Has Overlays 

393 



CLUSTER LIBRARIES 

• Allow shared libraries to overlay each other (Figure F-7). 

Can use one window for several ,libraries. 

Only enough virtual address space is needed for 
largest library. 

• One library can call another. 

Generally moving in one direction only. 

First library in cluster is initially mapped (no 
autoload). 

When a call is made to another library in cluster: 

Autoload routines save mapping context and map 
called library for a call. 

Original library is remapped for return from 
subroutine. 

• Revectoring is necessary for interlibrary calls (Figure 
F-5). 

Special coding must be included in the resident 
libraries. 

• Some special rules must be followed when building the 
resident libraries. 

• Are useful for FORTRAN tasks using 
time system (FORRES, F4PRES, or 
products. 

the resident object 
F77RES), plus layered 

See Section 5.2 on Cluster Libraries in the RSX-IIM/M-PLUS 
Task Builder Manual for additional information. 

Example of task-build command: 

>LINK/MAP/OPTIONS/CODE:FPP CLSDEM,LB:[I,I]HLLFOR,
->LB:[1,1]F4POTS/LB,LB:[1,1]FDVLIB/LB 
Option? CLSTR~F4PCLS,FMSCLS,FCSRES:RO 
Option? <RET> 

394 



W 
\.0 
U'1 

./ 
.,/ 

./ 
VIRTUAL 

.,/ 

.,/ ,,-
, 

, ~~,,~/ 
MEMORY 

I "AnI" .. 1.,,,£'1" .. WhUI 
160000 APR7 

140000- APR6 

120000 APR5 

100000 APR4 

APR3l 

TASK 
60000 (22K WORDS) 

40000 APR2 

20000 APR1 

o APRO 

.,/ 
./ 

./ 
./ 

'\ 

'\ 

'\ 
'\ 

'\ 
'\ 
'\ 

'\ 
'\ 

" ~ 
-<f'~;,'-?-

<:> -<f'( 

'\ 
'\ 

~..o(O 
:1<::) 

'\ 
"\ 

'\ 

" " 

\ 

\ 

Figure F-7 

PHYSICAL 
MEMORY 

F4PCLS 

FMSCLS 

FCS2 

FCS1 

TASK 

I 

VIRTUAL 
MEMORY 

LAM, .. L"M'] 
160000 APR7 

140000 APR6 

120000 APR5 

100000 APR4 

60000 AP.+ 
TASK 

(22K WORDS) 

40000 APR2 

20000 APR1 

o APRO 

----- ..... 

~ ---'\ --

'\ 

"\ 
"\ 

" " " '\ 
~ 

"9~;,'-?-
<:> :?( 

" " 

~..o(o 
:1<::) 

" " " 

"\ 

" " 

\ 

\ 

Cluster Libraries (Sheet 1 of 2) 

PHYSICAL 
MEMORY 

F4PCLS 

FMSCLS 

FCS2 

FCS1 

TASK 

I 

J 

I 

I 

TK-7815 



VIRTUAL 
MEMORY 

L_u. _ L.h. _~ 
160000 APR7 

140000 APR6 

120000 APR5 

100000 APR4 

W 
60000 APR3l 

TASK 

\.0 (22K WORDS) 
0'\ 

40000 APR2 

20000 APR1 

o APRO 

Figure F-7 

.PHYSICAl 
MEMORY 

F4PCLS 

FMSCLS 

FCS2 

FCS1 

TASK 

160000 APR7 

120000 APR5 

100000 APR4 

60000 APR3 

40000 APR2 

20000 APR1 

o APRO 

VIRTUAL 
MEMORY 

TASK 

(22K WORDS) 

" "~ 
" l/-%"~ 

" «'all >-. 
'\ " 1?-<{~",-
'\ '" '-

'\ 

'\ " 
'\ "'", 

'\ 
'\ 

"'Y'1-, ~ ~ 
"'"~.).. 

<>~ ( 

"'\ 
'\ 

"'Y',.¢ 0"'Y'<:> 

'\ 
'\ 

" " '\ 
'\ 

'\ 

" 

Cluster Libraries (Sheet 2 of 2) 

.... 

.... 

\ 

\ 

PHYSICAL 
MEMORY 

F4PCLS 

FMSCLS 

FCS2 

FCS1 

TASK 

TK-7778 



APPEND,IX G 
ADDITIONAL EXAMPLE 

The following example REAOF.FTN, should be available on-line, 
probably under UFO [202,1]. It is needed for the Tests/Exercises. 
Therefore, it is listed here in case it is not available on-line 
at your site. 

PF~OGRAM REAIIF 
c 
C File READF.FTN 
C 
C This task sets event fla~ 1 and then reads 
C fla~s 1 to 16 and displa~s them. The displa~ is 
C a series of 16 di~its, correspondin~ to fla~ 
C 16 on the left throu~h flaS 1 on the ri~ht. 
CAl indicates that the fla~ is set, a 0 
C indicates that the fla~ is clear. 
c 

IEVF(16),IDSW 
C Set event flas 1. 

CALL SETEF (l,IDSW) 
C Branch on directive error 

IF (IDSW .LT. 0) GO TO 1000 
C Read the event fla~s into the arra~ ievf. Note 
C that in FORTAN, we can onl~ read 1 fla~ at a time 

DO 20 1=1,16 
CALL READEF (I,IIISW) 

C Branch on directive error 
IF (IDSW .LT. 0) GO TO 1100 

C Check IDSW value, 2 means set, 0 means clear 
C Set the ievf value accordin~l~ (1 means set, 0 
C Jflf~anS clear) 

IF (IIISW .EQ. 2) GOTO 10 
IEVF(I):::IDSW 
GOTO 20 

10 IEVF(I)=1 
20 CONTINUE 
C Write out fla~ settin.s, startin~ with fla~ 16. 

WRITE (5,30) 
30 FORMAT (' EVENT FLAGS 16. TO 1. ARE:') 

WRITE (5,40) (IEVF(J), J:::16,1,~1) 

40 FORMAT (' ',1612) 
CALL EXIT 

C Come 
:1.000 
:LOI0 

:l100 
:1.110 

here on directive errors 
WRITE (5,1010) IIISW 
FORMAT (' ERROR SETTING FLAG. ERROR COIlE::: ',15) 
CALL EXIT 
WRITE (5,1110) IIISW 
FORMAT (' ERROR REAIIING FLAG. ERROR COIlE::: ',15) 
CALL EXIT 
END 

Example G-l' Reading the Event Flags (For Exercise 1-1) 

397 





APPENDIX H 
LEARNING ACTIVITY ANSWER SHEET 

Learning Activity 2-1 (Directives) 

1. Either: a) Do some work, then check the flag by using the 
CALL CLREF (35,IDSW) directive. Check the DSW. IS.SET 
(=+2) means the flag was set; IS.CLR (=0) means the flag 
was clear, or b) read flags 4 through 64 using RDAF$ and 
then test bit 2 of the third word in the buffer to read 
flag 35. In either case, keep doing more specific work 
and periodically chec)~' the flag. 

2. The Executive would only set event flag 1 for Task A. It 
would not set Task B's event flag 1; therefore, Task B 
wouldn't realize that the data had been sent. 

3. Local flags are accessible only to the task itself. They 
are specifically provided for synchronization between the 
Executive and a task. 

Learning Activity 6-1 (Overlays) 

(Using Example 6-5) 

1. 

2. 

.ROOT-LIB-*! (P-LIB,Q-LIB) 
LIB: .FACTR LB:[l,l]FOROTS/LB 

.END 

LINK/MAP ROOT,P,Q,LB:[l,l]FOROTS/LB 

399 



Learning Activity 6-2 

(Using Example 6-6) 

1. Overlay tree. 

2. 

LIB: 

3. 

LIB: 

4. 

LIB: 

JOBI JOBXX 
I I 

I 
A 
I 

I 
TOTAL 

I 
MAIN 

B 
I 

.ROOT MAIN-TOTAL-LIB-*(A-LIB-(JOBI-LIB,JOBXX-LIB) ,B-LIB) 

.FACTR LB:[l,l]FOROTS/LIB 

.END 

.ROOT .MAIN-TOTAL-LIB-*!(A-LIB-! (JOBI-LIB,JOBXX-LIB,B-LIB) 

.FACTR LB:[l,l]FOROTS/LIB 

.END 

.ROOT MAIN-TOTAL-LIB-*(A-LIB-(JOBI-LIB,JOBXX-LIB),B-LIB) 

.FACTR LB:[l,l]FOROTS/LB 

.END 

400 



EY-006 1 E-TP-OOO 1 

Programming 
RSX-llM 

in FORTRAN 

Tests /Exercises 

Prepared by Educational Services 
of 

Digital Equipment Corporation 



1 USING SYSTEM SERVICES 

Test/Exercise • • • • 
Sol ut ion. ••• • 

2 DIRECTIVES 

Test/Exercise • 
Sol ut ion. • • 

3 USING THE QIO DIRECTIVE 

Test/Exercise • • •• 
Solution ••••••• 

CONTENTS 

1 
3 

5 
7 

• 21 
• 23 

4 USING DIRECTIVES FOR INTERT ASK COMMUNICATION 

Test/Exercise • • • • • • • • • • • • • • • • • • • • • 35 
Solution. • • • • • • • • • • • • • • • • • • •• • 37 

5 MEMORY MANAGEMENT CONCEPTS. 

Test/Exercise • • • • • 
Solution ••••••• 

6 OVERLAYING TECHNIQUES 

• 59 
• 61 

• • • • •• ••••• 63 Test/Exercise 
Solution ••••• • • • . . • . • • • • . • • • 65 

7 STATIC REGIONS 

Test/Exercise • 
Sol ut ion. • • 

8 DYNAMIC REGIONS 

Test/Exercise 
Sol ut ion. • '. 

iii 

• • • 81 
• • • • 83 

• • • • 93 . . . . . , • • • • • 95 



INTRODUCTION 

This book contains tests/exercises for two different courses, 
Programming RSX-IIM in MACRO and Programming RSX-IIM in FORTRAN. 
Most of the questions apply to both courses. If a question begins 
with "In MACRO" or "In FORTRAN", that question applies only to the 
specified course. Solutions are provided for all tests/exercises. 
Where it is appropriate, separate solutions are provided for MACRO 
and FORTRAN. Solutions which involve programs should also be 
available on-line. 

Check the Student Guide in the Student Workbook for your 
course for information on how to use the tests/exercises. 



Using System Services 

TEST /EXERCISE 

1. Match the function with the type of system service used to 
perform it. 

Function Type of System Service 

a. The tasks send data 1. System and task information 
back and forth to 
each other 2. Task control 

b. The tasks read data 3. Task communication/coordin-
from a file on disk ation 

c. The tasks get input 4. I/O to peripheral devices 
from an operator 
at a terminal 5. File and record access 

6. Memory use 

2. Draw a figure to illustrate a method of providing a system 
service through the Executive. 

1 



Using System Services 

SOLUTION 

1. Match the function with the type of system service used to 
perform it. 

Function Type of System Service 

3 a. The tasks send data 1. System and task information 
back and forth to 
each other 2. Task control 

5 b. The tasks read data 3. Task communication/coordin-
from a file on disk ation 

4 c. The tasks get input 4. I/O to peripheral devices 
from an operator 
at a terminal 5. File and record access 

6. Memory use 

2. Draw a figure to illustrate a method of providing a system 
service through the Executive. 

See Figure I-lor 1-2 

3 



Directives 

TEST IEXERCISE 

1. In MACRO-II 

a. Modify the task READF to use the $C form of the Read Event 
Flags directive. 

b. Modify the task READF to use the $S form of the Read Event 
Flags directive. 

2. In FORTRAN, modify the task READF to set all of the odd 
numbered flags from 1 to 15(10). 

3. Modify WFLAG and SFLAG to use a global event flag instead of a 
group global event flag. Omit any unnecessary code in the 
tasks. Check with your instructor to find out which event 
flag to use. 

4. Write a task which does some work and periodically checks a 
group global event flag. Have it display a message and exit 
when the flag has been set. Write another task, or modify 
SFLAG to set the flag. 

5. Add a requested exit AST routine to WFLAG. 

6. In MACRO-II, add an odd address trap SST routine to the task 
SST. Include an instruction which causes the trap to occur. 

5 



l.a 1 
2 
3 
4 
1=' .. } 
6 
"7 
B 
(1 

10 
:1.1 
:1.2 
13 
14 
:J. ~5 
:I.e> 
:1.7 
:I.B 
19 
2() 
'?l 
'2:~ 

2~5 

24 
'11:" •. _ ,J 

26 
2:7 
2fJ 
29 
3() 

31 
:32 
3~5 
34 
~5~3 
:36 
37 
313 
3(7 
40 
41 
4':> 
43 
414 
4c~ .. I 

46 
47 
413 
4(J 

50 

; .... 

.TITLE 

.IDENT 

.ENABL 

F~EADF 
lOll 
LC 

Directives 

SOLUTION 

Enable lower case 

F:i.le LEX2:I.A. MAC 

Modified to use the $C form of the Read All Event ;;EX 
Fla~.:j~5 directive 

This task starts up, sets event flas Iv reads the 
event flaSs, moves them into reSisters RO-R3 and then 
exits~ It uses the $ form of the directive calls. 

Th€-~ of:l. a~.~s are r(~tl.Jl"'ned a~;; follow~): 

word 0 .". event flags 1-:1.6 
wor'd 1 " .. event fl,3ss :1.7-32 
word 2 .- event flags ~53""48 
word 3 ev(:'nt flags 49-64 

.MCALL RDAFSC,SETFS,EXITSSvDIR$; Swstem macros 
; ; EX 

BUFF: .BLKW 4 Buffer for event flas 
vall.Je~;) 

SETF: SElFS 1 rtF'B for Set Evel-It, Flag 
di rf~ctive 

STAF~T : CLR R4 Clear errrJr' counter 
DIR$ ISETF Sf.~t eVf.~nt 1'1,39 1 
BeS ERR1 Branch 0 .... dir errOl' 
F~[lAF$C BUFF Read th€-~ event, fla9s;;EX 

( 1 - 64) • 
BeB EI~R2 Branch on dir er r'or 
MOV BUFF"RO Move the event, flas 
MOV BUFF+2,R1 values into the 
MOV BUFF+4,R2 r€~9isters 

MOV BUFF+6,R3 
lOT TraF' and displaw 

resisters 

; Come here on directive error~) 
EF~R2 : INC R4 R4=2 for ,'ead err'or 
ERR1: INC R4 R4=1 for set event 

fla9 error 
MOV $DSW"RO Error code into RO 
lOT Trap r:md displaw the 

register's 
.END START 

7 



2. :J. 
.'") 
A.. 

3 
4 
5 
6 
l 
8 
9 

10 
:1.1 
12 
13 
:L4 
1 ~) 
:L6 
17 
:I.B 
19 
20 
21 
,") .. ") 
4_ .,~. 

23 
24 
'")c· 
A· •• ,J 

2(~) 

27 
28 
2.9 
30 
3:1. 
32 
33 
34 
:·55 
36 
37 
38 
J9 
40 
41 
4") ..:. 

43 
44 

C READF.FTN 
C 
C File lEX22.FTN 
C 

Directives 

SOLUTION 

C Modified for exercises. Set odd numbered fla~s. ! !EX 
C 
C This task sets event fla~ 1 and then reads 
C fla~s 1 to 16 and displa~s them 
C 

IEVF(:L6)"IDSW 
C Set odd event fla~s+ 

DO 5 J(~-::1,,1!5,.2 
CALL SETEF (K,IDSW) 

C Branch on directive error 
IF (IDSW .LT. 0) GOTO 1000 

5 CONTINUE 
r Read the event fla~s into the arraw ievf. Note 

! !EX 
! !EX 
! !EX 

! !EX 

C that in FORTAN" we can onl~ read 1 fla~ at a time 
DO 20 1=1,16 
CAll READEF (I"IDSW) 

C Branch on directive error 
IF (IDSW .IT. 0) GOTO 1100 

C Check IDSW value" 2 means set, 0 means clear 
C Set the ievf value accordin~l~ (1 means set, 0 
C means cl€~ar) 

IF (IDSW .EQ. 2) GOTO 10 
IEVF( I )::::IDSW 
GOlD 20 

10 IEVF(I)=l 
20 CONTINUE 
C Write out fla~ settin~s" startin~ with fla~ 16. 

WRITE (5,,30) 
30 FORMAT (' EVENT FLAGS 16. TO 1. ARE:') 

WRITE (5,,40) (IEVF(J)~ J=16,,1,-1) 
40 FORMAT (' ~,16I2) 

CALI ... EXIT 
C Come here on directive errors 
1000 WRITE (5,,1010) IDSW 
1010 FORMAT (' ERROR SETTING FLAG. ERROR CODE - ',15) 

CALL EXIT 
1100 WRITE (S"il10) IDSW 
1110 FORMAT (' ERROR READING FLAG. ERROR CODE = '"IS) 

CALI ... EXIT 
END 

9 



1. 

3 
4 
5 
6 
7 
8 
9 

10 
1.1 
12 
1 ~~ 
14 
:L ~s 
16 
17 
18 
19 
20 
21 
22 
2:~ 

24 
~~~ ~:j 

26
27
28
29
30
31
32
~33
34
35
36
37
38

1

3
4
.::'
,.J

6
7
8
9

10
11
12
13
14
:1.5

Directives

SOLUTION

PF~()GF~AM WFLAG
("'

C FILE LEX23A.FTN
C
C
C
C

Modified to use event fla~ 35(10) " EX

This task creates the Sroup slobal event flass, and
C then clears event fla~ 65. and waits for it to be set.
C When the fiaS is set~ it writes a message and exits
C
C
C
C
C
C
C
C

Install and run instructions:

Run WFLAGy then run SFLAG. At least one of the
tasks must be installed, or else the RUN command
will tr~ to install both tasks under the same
nalTlf-:.' (TTnn)

WRITE (:7;,:20)
20 FORMAT (' CLEAR AND WAIT FOR EF 35. TO BE SET')! !EX

CALL CLREF (35yIDSW) , !EX
IF (IDSW .LT. 0) GOTO 1100
CALL WAITFR (35,IDSW) , 'EX
IF (IDSW .LT. 0) GOTO 1200
WRITE (~;,30)

30 FORMAT (' EF 35. HAS BEEN SET. FWAIT WILL NOW EXIT')
r' , !EX

CALL EXIT
C Error processins
C
1100 WRITE (5~1110) IDSW
1110 FORMAT (' DIRECTIVE ERROR CLEARING EVENT FLAG 35.

1 DSW :::: " IS) , 'EX
CALL EXIT

:1.200
12:J.O

WRITE (5,1210) IDSW
FORMAT (' DIRECTIVE ERROR WAITING FOR EVENT FLAG

;+

1 35. DSW :::: ',IS)
CALL EXIT
END

.TITLE

.IDENT

.ENABL

SFLAG
1011
L.C

FILE LEX2:3B. MAC

Modified to use event flas 35.

Enable lower case

This task sets event flas 65. It assumes that the
Sroup slobal event flass have alreadw been created.

Assemble and task-build instructions:

MACROILIST LB:[:L,:LJPROGMACS/LIBRARY,dev:CufdJSFLAG
LINKIMAP SFLAG,LB:C1,lJPROGSUBS/LIBRARY

11

4. 1
'")
A..

3
4
5
6
7
8
9

10
11
12
13
14
1. ~5
:1.6
17
1.8
19
20
21
,.),.)
A*-

2~3

24
:~5

26
27
28
::.~ <?

30
31
32
33
3~l

35
36
37
38
39
40
41
4':>
43
44
45
46
47
48
4(7
50

,t

; --

.TITLE

.IDENT

.ENABL

FILE LEX24 + M(~C

LEX24
lOll
LC

Directives

SOLUTION

Enable lower case

This pro~ram creates the ~roup ~lo&al event fla~s,
clears event fla~ 65., does some work and periodicallw
cehcks event fla~ 65+ When the fla~ is set it writes a
messa~e and exits.

Assemble and task-build instructions:

MACRO/LIST/OBJEcr:WFLAG LB:C:I.,lJPROGMACS/LIB-,;EX
RARY,dev:CufdJLEX24 ;;EX
LINKIMAP WFLAG,LB:[1,1JPROGSUBS/LIBRARY

Install and Run instructions:

Run WFLAG, then run SFLAG. At least one of the
tasks must be installed, or else the RUN command
will trw to install both tasks under the same
name, TT n.

.MCALL EXITSS,WTSESC,CLEFSC,CRGFSC; S~stem
; ITlc~C T'OS

.MCALL TYPE SuPp lied mac T'O

~)TAF~T : CLR I~O RO used to identif~
p the er'ror

TYPE <LEX24
CRGFSC

IS CREATING THE GROUP GLOBAL EVENT FLAGS>
Create ~roup ~lobal
€·~vent f I (!~9S

BCC OK , Branch on directive ok
If ~roup ~lobal event fla~s alread~ exist,
Just displa~ messa~e and continue

0/\ :

AGAIN:
; Loop
LOOP:

CMP SDSW,*IE.RSU Check for efa alread~

BNE

TYPE
TYPE
CLEFSC
BCS

CLR

in e~d.5tence
ERRl Branch on an~ other

; di r error'
<GROUP GLOBAL EVENT FLAGS ALREADY EXIST>
<CLEAR EF 65. WORK UNTIL IT IS SET>
65. Clear event fla~ 65.
E/~/~2

1:;:1

Branch on directive
e r rcn"'

Clear counter ;,EX
2**16 tilTle~:;, then check fla~ ;;[X

INC r~ 1-
BNE LOOP

13

Increment counter ;;EX
Not ~et c~cled, loop;;EX
a~ain ;;EX

1 (', .Il::'

19
20
2:1.
'')'')
A'- A..

")':1'
""._ \.0 ••

24

:1.0
C

Directives

SOLUTION

WI~:ITE C:=;,10)
FORMAT (' LEX24 IS CREATING THE GROUP GLOBAL EVENT FLAGS')

! !EX
CALL CRGF (,IDSW)
IF (IDSW .L1. 0) GOTO 900
~JRITE (~:;,20)

FORMAT (' CLEAR EF 65. WORK UNTIL IT IS SET')
CALL CLREF (65,IDSW)
IF (InSW .L1. 0) GO TO 1100

26 22 DO 25 K=1,65535 EX
27 25 CONTINUE EX
28 WRITE (5,28) EX
29 28 FORMAT (' COUNTER HAS CYCLED') EX
30 CALL READEF (65,IDSW) EX
31 IF (IDSW .L1. 0) GOTO 1200 EX
32 IF (IDSW .NE. 2) GOTO 22 EX
33 WRITE (5,30)
34 30 FORMAT (' EF 65. HAS BEEN SET. LEX24 WILL NOW EXIT')
35 CALL EXIT
36 C Error processinS
37 C

39
40
41
42
43
44
4~:5

46

C Check for code of -:1.7, meaninS fla~s alreadhl exist
900 IF (IDSW .NE. -:1.7) GOTO 1000
C In that case, Just disla~ a messaSe and continue.

WRITE <:5,9:1.0)
9:1.0 FORMAT (' GROUP GLOBAL EVENT FLAGS ALREADY EXIST')

C Here for fatal errors, di5pla~ messaSe and exit
:I.()OO
t010

:1.:1.00
:1.:1.10

:1,200
1:::,:::1.0

WRITE (5,:1.010) IDSW
FORMAT C' DIRECTIVE ERROR CREATING GROUP GLOBAL
lEF/"n. D~:)W :::: I,I~:5)

Ci~1...1... EXIT
WRITE (5,1:1.10) IDSW
FORMAT (' DIRECTIVE ERROR CLEARING EVENT FLAG 65.
:L DSW :::: I, I~7;)
Ct.LL EXIT
WRITE (5,:1.210) IDSW
FORMAT (' DIRECTIVE ERROR READING EVENT FLAG
:J. 6:~; + DSW :::: " I ~D ! ! EX
CALI... EXIT
END

15

51
52
5:5
54
55
56

Directives

SOLUTION

WTSE$C 65.

BCS ERR3

Wait for event fla~ 65
to be set

Branch on directive
error

TYPE (EF 65. HAS BEEN 8ET. WFLAG WILL NOW EXIT>
EXIT$S

57 ; AST Service routine ;;EX
58 REXAST: TYPE <WHY ME? NOT THIS TIME!!> ; T~pe message
59 ;;EX
60 ASTX$S AST exit to return ;;EX
61 ERR3: INC RO RO = 3 if error on
62 wait for dir
63 ERR2: INC RO RO = 2 if error on
64 clear flas dir
6~5
66
67
68
69
70
71

ERR1. :

ERRO:

INC

MOV

lOT
.END

RO

STAr~T

1 PROGRAM WFLAG
2 C
3 C FILE LEX25.FTN
4 C

RO = 1 if error on
create Sroup fla~s dir

Place DSW in Rl, leave
RO=O for specif~ ;;EX
reauested exit AST err

Trap and dump reSisters

5 C Modified to include a Reauested Exit AST ! !EX
6 C
7 C This task creates the group global event flags, and
8 C then clears event flag 65. and waits for it to be set.
9 C When the flas is set, it writes a message and exits

10 C
11 C Install and run instructions:
12 C
13 r Run WFLAG, then run SFLAG. At least one of the
14 C tasks lTIust be in~,;t,alled, or else t,fle F,LJN command
15 C will tr~ to install both tasks under the same
16 C name (TTnn)
17 C
l8
19
20
21

23
24

26
27
28
29
30
31
32

EXTERNAL REXAST ! !EX
C Set UP Reauested Exit AST ! !EX

CALL SREA (REXAST~ID8W) ! !EX
IF (I DSW .1... T. 0) GOTO 950 ! ! EX
WrnTE (5"lO)

10 FORMAT (' WFLAG IS CREATING THE GROUP GLOBAL EVENT FLAGS')
CALL CRGF (,IDSW)

15
20

IF (ID8W .LT. 0) GOTO 900
WI:;;ITE (5,20)
FORMAT (' CLEAR AND WAIT FOR EF 65. TO BE 8ET')
CALL CLREF (65yIDSW)
IF (ID8W .LT. 0) GO TO 1100
CALL WAITFR (65~IDSW)
IF (IDSW .LT. 0) GOTO 1200
WRITE (5,30)

17

6. 1
'')
.:0.

3
4
5
6
?
8
<7

:to
1,1
12
:t3
14
:L5,
16
1,7
1.8
1.9
20
21
'')'')
.\ ••• .A ...

23
24
25
26
27
28
29
~50
~5 :t.
~~2
3~~
34
35
~56
37
38
~5(~

;

.TITLE

.IDENT

.ENABL

FIl.E LEX26.MAC

SST
lOll
LC

Directives

SOLUTION

Enable lower case

Modified to include an odd address trap ;;EX

This task sets UP an SST vector table to handle SST's
for BPTy lOT, and odd address traps. It then executes
instructions to cause these traps to occur. In each
SST routiney a messa~e is displa~ed and then the task
continues. Finall~, a TRAP instruction is executed.
Since no user SST routine is specified for TRAP, the
Executive aborts the task.

Assemble and task-build instructions:

MACRO/LIST LB:rl,lJPROGMACS/LIBRARY,dev:[ufdJLEX26
LINK/MAP LEX26yLB:rl,:t.JPROGSUBS/LIBRARY

.MCALL SVTK$C,EXIT$S

.MCALL TYPE
External s~stem macros
External supplied macro

VTABLE: • WORD ODDTRP,MPTVIO,BPT,IOT ; SST vector table
; ;EX

STAr.:T: SVTK$C VTABLE,4 Have E~·~ecuti ve set J.JJ~

SST table
BPT BPT instruction
TST 1 Test location 1, ; ;EX

causin~ an odd ; ;EX
addr trap ; ; EX

CLR 120000 Clear l()cation 120000,
caus:in~.:t a JTlemOT'~

protect violaticm
lOT lOT instruction
EXIT$S E~·dt

NEW: TRAP TRAP instruction

19

Using the QIO Directive

TEST IEXERCISE

1. Modify SYNCHQ or ASYNCQ to write prompting text (e.g., "TYPE
SOME TEXT: ") before issuing the read.

2. In MACRO-II, modify NUMER, replacing the error handling code
with code which writes out an error message plus the
appropriate status code. Refer to SYNQER for sample error
messages.

3. Modify NOECHO to use one QIO directive to both write the
prompt and read the input. Also, have the read timeout if no
key is struck for 20(10) seconds, in which case, display a
timeout 'message and ex it.

4. Write a task which prints a message on every terminal in the
system. The task should break through any pending I/O at the
terminal. (Note: This task must be task-built as a
privileged task, using the IPRIVILE~ED:0 qualifier in the
task-build command; /PR:0 in MCR)

21

1. 1.
2
3
4

Using the QIO Directive

SOLUTION

.TITlE SYNCHQ

.IDENT lOll

.ENABL lC Enable lower case

5 FILE LEX31.MAC
6
7
8
9

10
11
12
13
14
15
16
17
18
19
2()
21
22
23
24
25
26
27
28
2(1
30
31
32
33
34
35
36
37
38
39
40
41

Modified to displaw promptins text

This task reads a line of text from the terminal,
converts all upper case characters to lower casey and
prints the converted messaSe back at the terminal. It
uses s~nchronous Qla directives.

IOSB:
BUFF:
F'RMf'T:
LPRMF'T

.MCALL QIOWSC,QIOWSSvEXITSS EwteT'nal s~~)t(:'m

macros

.BtKW 2 110 status Block

.BlKB 80. ; Text buffer

.ASCII ITYf'E SOME TEXT: I ; Prompt
=.-F'RMPT Len~th of prompt
.EVEN

; ; EX
; H·:X
; ; EX

START: CLR
ClR

R5
R4

Error Count
Error indicator - 0

QIOWSC

BCS
T8TB
BlT
QIOWSC

BCS
TSTB
BlT
MOV

ClR

means directive error
(DSW in R3), ne~
means liD error
(liD status in R3)

IO.WVB,5,1,~IOSB,,<F'RMPT,lF'RMPT,40>

Displa~ prompt j;EX
ERR3 Branch on dir error;;EX
10SB Check for liD error;;EX
ERR3A ; Branch on 1/0 error;;EX
IO.RVB,5,1,vIOSB,,<BUFF,80.> ; Issue

ERR1
rOSB
ERR1A
IOSB+2,RO

R1

read
Branch on dir error
Check for liD error
Branch on liD error
Get count of characters
t~ped in

Offset into buffer to
42 character
43 lOOP: CMPB BUFF(Rl),t'A Check for upper case
44 ASCII character
45 BLT NEXT Branch if below ran~e
46 CMPB BUFF(Rl),t'Z
47 BGT NEXT Branch if above ran~e
48 Here if upper case, move to re~ister R2 and convert
49 MOVB BUFF(Rl),R2 Move to register
50 ADD t32.,R2 Convert to lower case
51 MOVB R2,BUF~(R1) Replace in messaSe

23

Using the 010 Directive

SOLUTION

1 PROGRAM ASYNCQ
2 C
3 C FILE LEX31.FTN
4 C
5 C Modified to displa~ promptin~ text ! !EX
6 C
7 C This pro~ram reads a line of text from the terminal,
8 C converts an~ upper case characters to lower case and
9 C prints the converted message back at the terminal.

10 C It uses asynchronous aIDs and an event flas for
11 C synchronization.
12 C'
13 BYTE IOSB(4),IBUF(80)
14 DIMENSION IPAR(6),K(10)
15 EQUIVALENCE (NUM,IOSB(3»
16 REAL PRMPT(4) ! !EX
17 DATA PRMPT I'TYPE',' SOM',,'E TE','XT: '/!!EX
18 DATA IOWVB/ 8 110001
19 DATA IORVB/ R I04001
20 DATA IVFC/·401
21 C Set UP values for the ala
22 IUNIT=5
23
24
25
26
27
28
29
30
31,
32
33
34
35
36
37
38
~~9
40
41

C Set UP for oro to issue prompt
CALL GETADR(IPAR(l),PRMPT(l»
IF'AR(2):::16
IPAR(3):::·40

C Issue as~nchronous write
CALL aIO(IOWVB~IUNIT,5"IOSB,IPAR,IDS)
IF (IDS .LT. 0) GOTO 780
CALL WAITFR(S,IDS)
IF (IDS .LT. 0) GO TO 785
IF (IOSB(l) .LT. 0) GOTO 790

C Set UP for read
IPAR(3):::0
IPAR(2):=80

C Get the address of the liD buffer
CALL GETADR(IPAR(I),IBUF(l»

C Issue the 010
CALL QIO(IORVB,IUNIT,5~,IOSB,IPAR,IDS)

C Check the directive status
IF (IDS .LT. 0) GO TO 800

! !EX
! !EX
! ! EX
! !EX
! !EX
! !EX
! !EX
! !EX
! !EX
! !EX
! !EX
! !EX

42 C Do some work while 1/0 operation is being performed
43 DO 50 1=1,10
44 K(I)=64*1
45 50 CONTINUE
46 C Wait for I/O to complete
47 CALL WAITFR(S,IDS)
48 C Check directive status
49 IF (IDS .LT. 0) GO TO 805
50 C Check the liD status
51 IF (IOSB(l) .IT. 0) GO TO 810

25

2. 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
'28
~~9

~50
31
32
33
34
35
:36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

;+

.TITLE

.IDENT

.ENABL

Using the 010 Directive

NUMER
lOll
LC

SOLUTION

Enable lower case

FILE LEX32.MAC

Modified to include error messa~e code

This task does a simple addition and outputs the
results. It demonstrates the use of $EDMSG for
formattin~ messa~es with numeric data

;-

; Data
A:

B:
c:
;
OUT:

10SB:
;

.MCALL

.MCALL

.NLIST

.WORIt

.WORIt

.BLKW

QIOW$

.BLKW

Q10W$,EXITSS,DIRS
QIOWSS
BEX

10

22
1

; S~:lS tem mac T'OS
; S~stem macros ;;EX
Do not list binar~
eNtensions

1st addend and start
of ar~ument block

2nd adder,d
Location for SIJm

2
; output messaSe
; liD status block

; Set UP for SEDMSG
;
BUF:
FMES:

; Set

ARG:
FMT1It:
FMT1I:

START:

Set

.BLKB

.ASCIZ
80. Output buffer
IXD. WAS ADDED TO %D., GIVING XIt.1

UP for error
FoY'mat stT'in~

messa~es usinS SEDMSG

UP

.EVEN
• Bl.KW
.ASCIZ
.ASCIZ
.EVEN

.LIST

.EVEN
MOV

ADD

; ;EX
1 Ar~ument block;;EX
IDIRECTIVE ERROR ON WRITE, DSW = XDI ;;EX
'1/0 ERROR ON WRITE, liD STATUS = XD';;EX

; ; EX

BEX List binar~ e}·,tens ions
Move to word bO'.Jnda r~1

A,C Move 1st addend to Sl..l",
word

B,C Add 2nd addend to form
sum

for call to $EDMSG
MOV IBUF,RO Addr of output buffer
MOV IFMES,R1 Addr (Jf format strins
MOV tA,R2 Addr of ar~ument block
CALL SEDMSG Make call, ctlaracter

count returned in R1

27

3. 1
2
3
4
5
6
7
8
9

10
1.1
1 ~!
13
14
15
16
17
18
19
20
21
::~:~

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
4C" .. I

46
47
48
49
50

;+

.TITLE

.IDENT

.E:NABL

Using the 010 Directive

SOLUTION

NO ECHO
/01/
LC Enable lower ca~e

FILE l.EX33.MAC

Modified to combine aIOs and include timeout ;;EX

This task writes a prompt and then issues a aIO to read
from the terminal without echo. It then displaws the
word which was entered.

Assemble and task-build instr~ctions:

Data

MES:
LEN
BUFF:

BLEN
BUF:
TMOMS:
LTMOMS

10SB:
LENT:

MACRO/LIST LB:[1,lJPROGMACS/l.IBRARY,dev:CuicJLEX33
LINK/MAP LEX33,PROGSUBS/LIBRARY

.MCALL EXIT$S,aIOW$C,aIOWSS; S~stem macros

.MCALL DIRERR,IOERR ; SUPplied macros

.NLIST BEX Don't list of binar~
e~·{tens i otlf:>

.ASCII /SECRET WORD: / ProlTlPt messese
= .-MES Len!:jth of PT'omF,t
.ASCII <15>/NO LONGER A SECRET WORD: /

; Prf:~cedins T'emark
.- .-BUFF ; Len~th of Remark
• BLKB 80 • ; Input buffer
.ASCII /READ TIMED OUT/ ; Timeout message ; ;E:X
==. --TMOMS ; ;EX
.E:VEN Word align for IOSB
.WORD 0 IOSB is b,'c)ken i.nto
.WORD 0 two pc3rts for

! ; convenience.
; Define functions locall~ to allow us of an assignment
; statement to shorten directive statement
IO.RPR =004400 Define functions
TF.RNE =20
TF • TMO ==200
IO.FNC =<IO.RPR!TF.RNE!TF.TMO> aIO function code

.LIST BEX List binar~ extensions

Code
;
START: aIOW$C IO.FNC,5,1"IOSB,,<BUF,80.,2,MES,LEN,44>

Issue read after ;;EX
prompt ;;EX

Bes DERR:I. Branch on dir error

29

1
2
3
4
:5
6
?
8
9

10
11
12
13
14
15
16
17
:L8
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
~j2

Using the QIO Directive

SOLUTION

PROGRAM NOECHO
C
C File LEX33.FTN
C
C Modified to use read after prompt and to timeout I lEX
c
C This task prompts for input, reads it without echo and
C then skiPS to the next line 'and displa~s the input
C text and exits.
C

C

C
C

C

C
C Set

BYTE BUFF(80),IOSB(4),CR(1)
INTEGER PARM(6)
REAL PROMPT(4) , 'EX

DATA IOFNe I· 46201 QIO! 'EX

DATA

DATA
DATA

function! 'EX
,code , 'EX

ISTMO 121 Timeout "EX
s tatl.Js I! EX

CR IU151 CarriaSe return character
PROMPT I'SECR','ET W','ORD:',' 'I

, Text , ! EX
UP the lID parameter list

CALL GETADR (PARM(1),BUFF(1» buffer address
PARM(2) - 80 Buffer lensth
PARM(3) = 2 Timeout = 2 EX

C * 10 sec EX
CALL GETADR (PARM(4),PROMPT(1» Prompt addr EX
PARM(5) = 13 Prompt lensth !EX
PARM(6) = 844 Vertical 'EX

C , format contr 'EX
C Issue read no echo, read after prompt, with timeout EX

CALL WTQIO (IOFNC~5,1"IOSB~PARMvIDS)
IF (IDS .LT. 0) GO TO 100 Dir error?
IF (IOSB(l) +LT. 0) GO TO 110 1/0 error?

C Check for timeout
IF (IOSB(l) .NE. ISTMO) GOTO 1 Branch if no I ! EX

c

C

1

C

I
tilTleolJt , 'EX

TYPE *,'READ TIMED OUT' Displa~ , 'EX
messaS€~ , 'EX

CALL EXIT and exit , 'EX
WRITE (5,2) CI:;:,(BUFF(I),I=1,IOSB(3» , Echo input
FORMAT (' ',A1,'NO LONGER A SECRET WORD: ',80Al)
CALL EXIT

C Error conditions
C
lOO

110

TYPE *, 'DIRECTIVE ERROR ON READ. STATUS = ',IDS
CALL EXIT
TYPE *, 'I/O ERROR ON READ. CODE = ',IOSB(l)
CALL EXIT
END

31

Using the QIO Directive

1 PROGRAM LEX34
2 C+
3 C FILE LEX34.FTN
4 C

SOLUTION

5 C Solution to Module 3, Lab Exercise 4
6 C
7 C Task does a write breakthrou~h to all terminals.
8 C
9 C Task-build with IPRIVILEGED:O aualifier

10 C-
11 INTEGER TTUNIT,DSW
12 DATA TTUNIT/OI ! First output to TTO:
13 INTEGER PARAM(6),lOSB(2)
14
15
1,6
:L 7
18
19
20
21
'")'")
A"- AO_

C

C
C
c

BYTE 6UCCOD(2) . !
EQUIVALENCE (SUCCOD,IOSB)
INTEGER IEIDU !
DATA IEIDU/-·991
INTEGER lOFCOD

DATA lOFCOD/-5011

110 sticcess codes
! First bytes of 10SB
Mnemonic for Mlilesal
Device or Unit- DSW code

I

1/0 function code
mnemonic

Write lo~ical block,
write breakthrou_h,
and restore cursor

23
24
25

C Load parameter list

26
27
28
29
30
31
~52
~~~5 
:~4 

10 
c 

36 C 

CALL GETADR(PARAM(l),'HELLO THERE') 
PARAM(2) ::: 11 ! Len~th of strin~ 
PARAM(3) ::: -40 ! Blank for carr. ctrl. 
CALL ASNLUN(4,'TT',TTUNIT,DSW) Assi~n LUN 4 to 

TTrd 
IF (DSW.LT.O) GOTO 900 
CALL WTQIO(IOFCOD,4,1,,10SB,PARAM,DSW) 
IF (DSW.LT.O) GOTO 910 ! Directive error 
IF (SUCCOD(1).NE.1) GOTO 920 ! 1/0 error 
TTUNIT = TTUNIT+1 
GOTO to 

37 r Error from ASNLUN. If ASNLUN failed because of ille~al 
38 C unit number, must have passed the last terminal. Exit. 
39 900 IF (DSW.Ea.IEIDU) CALL EXIT 
40 TYPE 905,DSW ! Other error 
41 905 FORMAT (' ERROR ON ASNLUN. DSW ::: ',16) 
42 CALL EXIT 
43 910 TYPE 915,TTUNIT,DSW 
44 915 FORMAT (' DIRECTIVE ERROR ON aIO TO TT',02,':'1 
45 
46 
47 
48 
49 
50 
51 

920 
925 

1 ' DSW ::: ',16) 
CALL.. EXIT 
TYPE 925,TTUNIT,SUCCOD(2),SUCCOD(1),IOSB(2) 
FORMAT (' liD ERROR ON aIO TO TT',02,':'1 
1 ' liD STATUS BLOCK::: ',14,' ,',14,' 1',16) 
CALL EXIT 
END 

33 



Using Directives for Intertask Communication 

TEST IEXERCISE 

1. Modify RECVl and SENDl to synchronize using Suspend and Resume 
directives instead of event flags. 

2. Modify RECV2 so that the display includes the name of the 
sending task in addition to the data. 

3. Write another sender task to send data to RECV2. Modify the 
receiver so that it receives data from ydur task only, not 
from SEND2. 

4. 

5. 

Modify SPAWN so that it 
several different times 
command line each time. 
command- executes. 

spawns CLI ••• , 
and sends a 

Display the exit 

MCR ••• , or ••• DCL 
different MeR or DCL 
status after each 

Write a parent task and an offspring task. Have the 
spawn the offspring. Have the offspring emit status 
parent every five seconds for 30 seconds and then exit. 
the parent display each status value. Optional: Use 
routine in the parent for synchronization. 

35 

parent 
to the 

Have 
an AST 



1. 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1" 
13 
1.4 
15 
lb 
17 
18 
19 
20 
21 
,,"),a) 
A! ...... 

23 
24 
'')c" 
A: • ..J 

26 
27 
28 
29 
30 
31 
32 
:~3 
34 
~55 

36 
37 
38 
~59 
4() 
41 
4'') .:.. 

43 
44 

;+ 

; .... 

; 

Using Directives for Intertask Communication 

.TITL.E SEND1 

.IIIENT lOll 

.ENABl LC 

FILE L..EX41A.MAC 

SOLUTION 

Enable lower case 

Modified to use Suspend and Resume directives for;;EX 
swnchronization ;;EX 

This task prompts at TI: for a line of text and sends 
the data to RECVl for processinS. SYnchronization is 
handled throu~h a common event fla~. 

Assemble and task-build instructions: 

>MACRO/LIST/OBJECT:SENII1 lB:[l,lJPROGMACS/LI-;;EX 
-)BRARY,dev:[ufdJlEX41A 
)LINK/MAP SEND1,LB:[1,lJPROGSUBS/LIBRARY 

Install and run instructions: RECV1 must be install~d 
and run prior to runnins SEND1. RECVl continues to run 
until it receives 3 data packets. 

.MCAlL SDAT$C,EXIT$S,RSUM$C; Swstem macros;;EX 

.MCALl TYPE,INPUT,DIRERR; SUPplied macros 

BUFFER: tBlKB 26. Data buffer to be sent 

.ENABL. lSB Enable local symbol 
blocks 

; 
START:: TYPE 

INPUT 
SDAT$C 
BCC 
DIRERR 

1$: RSUM$C 
BCC 
DIRERR 

5$: EXITSS 

<TYPE A LINE OF TEXT, 2b CHARACTERS OR LESS) 
Type prompt 

tBUFFER,. f.26. ; Get teHt to send 
RECV1,BUFFER ; Send data to RECV1 ;;EX 
1$ ; Branch on directvie ok 
<UNABLE TO QUEUE DATA TO RECV1) ; Displaw 

error messa~e and exit 
RECV1 Resume RECVl ;;EX 
5$ Branch on directive ok;;EX 
<UNABLE TO RESUME RECV1> ;;EX 

Exit ;;EX 
tEND START 

37 



1 

:~ 
4 
5 
6 

;t 

Using Directives for Intertask Communication 

.TITLE RECV1 

.IDENT lOll 

.ENABL l..C 

FILE LEX41B.MAC 

SOLUTION 

Enable lower case 

7 Modified to use Suspend and Resume for synchronization;;EX 
8 
9 This task and receives data from any sender task 

10 (e.S., SEN(1).It prints the data on TI:. Then it 
11 waits for another data packet. It does this until it 
12 has received 3 messaSes and then exits. 
1.3 
14 This task synchronizes with its sender throuSh an 
15 event flas. 
16 
17 Assemble and task-build instructions: 
18 
19 >MACRO/LIST/OBJECr:RECV1 LB:[1,IJPROGMACS/LIB-;;EX 
20 ->RARY,dev:CufdJRECVl ;;EX 
21 LINKIMAP RECV1,LB:r!,lJPROGSUBS/LIBRARY 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
~54 
35 
:36 
~57 

38 
:~9 
40 
4:L 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Install and run instructions: RECV1 must be installed 
and run before runninS SEND!. 

; .-

; 
RBUFF: 

START: 

AGAIN: 

.MCALL RCVD$C,EXIT$S,SPND$S; System macros ;;EX 

.MCALL TYPE,DIRERR ; SUPplied macros 

• BLKW 15 • 

.ENABL LSB 

MOV t3,R5 

Sf'ND$S 

BCC 3$ 
DIRERR <SUSPEND 

Rece i ve buff En' 

Enable local symbol 
blocks 

Initialize messaSe 
counter 

Suspend self until;;EX 
messaSe arrives 

; Branch on directive ok 
DIRECTIVE FAILED> ; Display ~;EX 

; error messaSe and exit 
; We set here when resumed by SENDI ;;EX 
3$: RCVD$C ,RBUFF ; Receive from anyone 

BCC 5$ ; Branch on directive ok 
DIRERR <RECEIVE DIRECTIVE FAILED IN -RECVI-> 

Display error messaSe 
and e~·dt, 

; Successful receipt 
5$: TYPE <DATA RECEIVED BY -RECUI-:> Displa~ 

data 

39 



2. 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 '") .:-

13 
14 
1 ~) 
16 
17 
18 
19 
20 
21 
22 
23 
24 
2!:i 
26 
27 
28 
29 
30 
31 
32 
33 
34 
:~5 

36 
37 
~58 

39 
40 
41 
42 
43 
44 
41:" ... 1 

46 
47 
48 
49 
~jO 

Using Directives for Intertask Communication 

.TITLE 

.IrIENT 

.ENABL 

FILE LEX42.MAC 

SOLUTION 

RECV2 
lOll 
LC Enable lower case 

Modified to displaw the sender task name in addition ;;EX 
to the data ;;EX 

This task receives data from another task. It prints 
the data, alon~ with a header, on TI:. Then it waits 
for another data packet, continuin~ this until it has 
received 3 messaSes. 

This task swnchronizes with its sender usin~ RCSTS. 
Because of this swnchronization, the tasks can be run 
in an~ order, with an~ relative priorities. 

Assemble and task build instructions: 

>MACRO/LIST/OBJECT:RECV2 LS:[1,1JPROGMACS/LIB-;;EX 
->RARY,dev:[ufdJLEX42A ;;EX 
>LINK/MAP RECV2,LB:[1,lJPROGSUBS/LIBRARY 

Install and run instructions: RECV2 ffiust be installed. 

.MCALL RCSTSC,RCVDSC,EXITSS; S~stem macros 

.MCALL TYPE,DIRERR SUPplied macros 

RBUFF: + BLKW 
TASKNM: + BLKW 

15. 
3 

.ENABL LSB 

Rec€~ i ve bufte r 
Buffer for task name;;EX 

Enable local s~mbol 
blocks 

START: MOV 
RECEIV: RCSTSC 

BCC 
DIRERR 

t3,R5 Set UP message counter 
,RBUFF Receive from anyone 
5S Branch on directive ok 
<RECEIVE DIRECTIVE FAILED IN PRECV2 P > 

; 
Successful receipt or unstopped 
check for unstopped after being 
we have to receive the data 

5$: CMP SDSW,tIS.SET 

ENE 6$ 

RCVD$C ,RBUFF 
BCC 6$ 

41 

Displaw error message 
and e~"~i t 

bw another task. First 
stopped, in which case 

Were we stopped due to 
no data 

If not, we have a data 
packet 

Now ~et the packet 
Branch on directive ok 



Using Directives for Intertask Communication 

SOLUTION 

20 C 
21 
22 
23 
24 
:?5 
26 
27 
28 
29 
~50 

31 
32 
33 
34 
35 
:36 
37 
~58 
39 
40 
41 
4') 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

c 

C 
C 

INTEGER RBUFF(15) 
INTEGER DSW,ISSET 
INTEGER TASKNM(3) 

IIATA ISSET/21 

DO 100, 1=1,3 
CALL RCST(,RBUFF,DSW) 
IF (DSW.GE.O) GO TO 50 

Receive buffer 

Buffer for ASCII form! !EX 
of task name ! !EX 

DSW code mnemonic 

Receive from an~one 

T~pe *,/RECEIVE DIRECTIVE FAILED IN -RECV2 u
• 

1 DSW ::: /,DSW 
GOTO 1000 

C 

Displaw error messa~e 
and e~·d t 

C Successful receipt or unstopped bw another task. First 
C check for unstopped after bein~ stopped, in which case 
C we have to receive the data 
50 IF (DSW.NE.ISSET) GO TO 60 
C 
C 
C 
C Stopped due to no data: 

CALL RECEIV(,RBUFF"DSW) 
IF (DSW.EQ.l) GOTO 60 
TYPE *,/RECEIVE DIRECTIVE 
lUNSTOPPED. DSW ::: /,DSW 
GOTO 1000 

C Displaw data 

Were we stopped due 
to no data? If not 
(NE), we hav€~ a 
data F,acket 

Now ~et the packet 

FAILED AFTER nRECV2-
Displa~l E~rr()r 

messa~e and exit 

60 CALL R50ASC (6,RBUFF,TASKNM) ! !EX 
TYPE 75,TASKNM~(RBUFF(J),J=3,15) ! !EX 

7::=; FORMAT (/ DATA RECEIVED BY BRECV2 A ://1X,3 ! !EX 
lA2,1X,13A2) ! !EX 

100 CONTINUE 
54 C Have received 3 messa~es 
55 TYPE *,/BRECV2· HAS RECEIVED 3 MESSAGES AND WILL 
56 1 NOW EXIT' 
~.i7 1000 CALL EXIT ! Exit 
58 END 

43 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
2b 
27 
28 
29 
30 
~3 :L 
~'52 

:~3 
34 
:35 
:36 
37 
38 
39 
40 
41 
42 

Using Directives for Intertask Communication 

SOLUTION 

PROGRAM LEX43A 
C 
C FILE LEX43A.FTN ! !EX 
C 
C A second sender task to send data to RECV2 I lEX 
C 
C This task prompts at TI: for a line of text and sends 
C the data to RECV2 for processin~. The receiver will 
C continue to run until it receives 3 messages. 
C S~nchronization is handled throush RECV2's stop bit. 
C RECV2 and LEX43A ma~ be run in an~ order. 
C 
C Install and run instructions: LEX43B must be ! 'EX 
C installed under the name RECV2. '!EX 
C 

c 

10 

C 
C 
C 

20 

BYTE BUFFER(26) 
INTEGER nsw 
REAL RECV2 
DATA RECV2/SRRECV21 
INTEGER IEITS,IEACT 
DATA IEITS,IEACT/-8,-71 

Sf.~nd buff€~ r 

Receiving task name 
ErT'or mnemonics 

TYPE *,'TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS' 
READ (5,5) BUFFER 
FOf~MAT C.~~6A1) 

CALL SEND(RECV2,BUFFER"DSW) , Send data to RECV2 
IF (DSW.EO.l) GOTO 10 
TYPE *,'UNABLE TO QUEUE DATA TO aRECV2 u

• DSW = ' 
l..,DSW 
CALL USTP(RECV2,DSW) Unstop RECV2 
IF (DSW.EQ.l) GOTO 20 ! Branch on directive ok 
IF (DSW.EQ.IEITS) GOTO 20 ! Isn't he stopped? 

That's ok., he'll pick 
UP data when he 
e~·{ecl.Jt.es Ii:CDS$ 

IF (DSW.EQ.IEACT) GOTO 20 ! Is he not. active? If 
! not, he'll pick UP 

data when activated 
TYPE *,'UNABLE TO UNSTOP aRECV2 a • DSW = ',DSW 

! An~ other error is bad 
CALL EX IT' E~·d. t 
END 

45 



Using Directives for Intertask Communication 

SOLUTION 

47 ; Successful receipt or unstopped by another task. First 
48 ; check for unstopped after bein~ stopped, in which case 
49 ; we have to receive the data 
50 5$: CMP $DSW,tIS.SET Were we stopped due to 
51 no data 
52 BNE 6$ If not, we have a data 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
6~5 

66 
67 
68 
69 
70 
71 
72 
7~5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21, 

RCVD$C 
BCC 
DIRERR 

TYPE 

TYPE 
SOB 

packet 
LEX43A,RBUFF Now get the packet 
6$ ; Branch on directive ok 
(RECEIVE DIR FAILED AFTER "RECV2" UNSTOPPED> 

Display error message 
; and e~·d t 

(DATA RECEIVED BY "RECV2":> Displa~ 

te~·~t and 
; data sent tRBUFFt4,t26. 

R~j,RECEIV pecrement messa~e 
counter. Receive a~ain 
if haven't received 3 
yet 

R5 ;;EX 
DONE ;;EX 
RECEIV ;;EX 

DONE: 

DEC 
BE(~ 

JMP 
TYPE ("RECV2 U HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT> 

TYF'e eHi t 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

meSSfjge 
EXIT$S 
.END START 

PROGRAM RECV2 

FILE LEX43B.FTN ! !EX 

Modified to receive only from LEX43A ! !EX 
NOTE: TASK WILL EXIT WITH A NO DATA QUEUED ERROR IF! !EX 
SEND2 SENDS DATA. MORE COMPLICATED CODE IS NEEDED ! !EX 
TO CHECK FOR SEND2 SENDING DATA AND UNSTOPPING RECV2! !EX 

This task receives data from another task (e.~. SEN(2). 
It prints the data, alon~ with a header, on TI:. Then 
it waits for another data packet, continuin~ this 
until it has received 3 messages.-

This task synchronizes with its sender using RCST. 
Because of this sYnchronization, the tasks can be run 
in any order, with any relative priorities. 

Install and run instructions: LEX43B must be 
installed under the name RECV2. 

47 

! !EX 
! !EX 



4. 1 
2 
3 
4 
c· 
~ 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
1.6 
17 
18 
19 
20 
21 
~~ ~~ 

23 
24 
25 
26 
27 
28 
29 
30 
31 
:32 
33 
~~4 

:35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 r 

~51 

Using Directives for Intertask Communication 

+TITLE 
+IDENT 
+ENABL 

File LEX44.MAC 

SPAWN 
/02/ 
LC 

SOLUTION 

Enable lower case 

This pro~ram spawns MCR ••• , passes it a series of ;;EX 
command lines, waits for each to exit, and ;;EX 
displa~s each command's exit status. ;;EX 

Assemble and task-build instructions: 

MACRO/LIST LS:[1,1JPROGMACS/LIBRARY,dev:(ufdJLEX44 
LINK/MAP LEX44,LB:[1,lJPROGSUBS/LIBRARY 

.MCALL SPWN$,EXITSS,WTSE$C,QIOW$S,QIOW$C 

.MCALL DIRERR,IOERR 

.NLIST BEX 

CMD1: .ASCII -PIP *.MAC/LI-
LEN1 =.-CMD1 
CMD2: • ASCI I /ACT / 
LEN2 :::: + ···CMD2 
CMD3: .ASCII /TIM/ 
LEN3 ~ . .: + -CMD3 

S~stelTl macros 
SUF-P lied mac ros 
Inhibit listin~ of 
binar~ extensions 

Command line 
Len~th of command 

SMES: 

LSMES 

.ASCII 
+ASCII 
::::+-SMES 
.EVEN 
.BLKW 
.BLKW 

/SPAWN IS STARTING AND WILL SPAWNI 
/ MCR COMMANDSI Startup messa~e 

Len~th of messaSe 

lOSB: 
EXSTAT: 

CMDTBL: .WORD 
.WORD 
.WORD 
.WORD 

SPAWN: SPWN$ 

2 
8. 

CMD1,LEN:I. 
CMD2,LEN2 
CMD3,LEN3 
o 

I/O status block 
Exit status block 

Table inde}·dns 
MCR command!5 

End of tctble 

; ;EX 
; ; EX 
; ;EX 
; H::X 
; ;EX 
;;EX 

; ;EX 
; a::x 

; ;EX 
; ;EX 
; ; EX 
; ;EX 

BUFF: .BI ... KB 80. ; Output messa~e buffer 
; Format strin~: 
FMT: .ASCII /XNSPAWN REPORTING: COMMAND I ;;EX 

.ASCIZ I COMPLETED. EXIT STATUS WAS XD.ZNI ;;EX 

.EVEN 
START: QIOW$C IO.WVB,5,1"IOSB~,<SMES,LSMES,40> 

BCS ERR1D Branch on dir error 
TSTB IOSB Check for liD error 
BlT ERR11 Branch on I/O error 

49 



Using' Directives for Intertask Communication 

1 PROGRAM SPWN 
2 C 
3 C File lEX44.FTN 
4 C 

SOLUTION 

5 C This proSram spawns ••• DCL, passes it a series of !!EX 
6 C command lines, waits for each to exit, and ! !EX 
7 C displaws each command's exit status. , 'EX 
8 C 
("l C Data 

10 INTEGER EXSTAT(8),PLIST(6),DSW 
11 BYTE BUFF(80) 
12 
13 
14 
15 
16 
17 
:1.8 
19 
20 
21 

C Commands to be spawned: 

22 
23 

C 
C 
C 
C 
C 

24 C 

DIR *.MAC 
SHOW TASKS/ACTIVE 
SHOW TIME 

REAL CMD(5,3) 
DATA CMD/'DIR ','*.MA','C' , 0 ,0, 
1 'SHOW',' TAS','KS/A','CTIV','E', 
2 'SHOW',' TIM/,'E' ,0 , 0/ 
INTEGER lEN ( :-S) 
DATA LEN/9,17,9/ 

25 REAL DCl 
26 DATA DCl/6R ••• DCl/ 
27 C 
28 C Code 
29 WRITE (5,15) , Write messa~e 
30 15 FORMAT (' SPAWN IS STARTING AND WILL SPAWN " 

, !EX 

! 'EX 
, 'EX 
! !EX 

, !EX 

! !EX 

31 1 ' DCl COMMANDS') ! ! EX 
32 DO 30,1=1,3 
33 CALL SPAWN (DCL , ,',1, , EXSTAT, , CMD ( 1 , I ) , LEN ( I ) 
34 1 ", DSW) , ! EX 
35 Spawn DCl 
36 IF (DSW.lT.O) GOTO 900 Branch on dir error 
37 CAll WAITFR(I,DSW) Wait for task to exit 
38 IF (DSW.lT.O) GO TO 910 Branch on dir error 
39 WRITE (5,25) EXSTAT(I).AND. a 377 , Displaw low 
40 , bwte of exit status 
41 25 FORMAT (' SPAWN REPORTING: COMMAND COMPLETED.', 
42 1 ' EXIT STATUS WAS ',II,'.') 
43 30 CONTINUE 
44 CALL EXIT , Exit 
45 C Error handling code 
46 900 TYPE *,'ERROR SPAWNING DCl. DSW = ',DSW 
47 GOTO 1000 
48 910 TYPE *,~ERROR WAITING FOR EVENT FLAG. DSW - ',DSW 
49 1000 CALL EXIT 
~jO END 

51 



51 
52 
53 
~7i4 
55 
56 
57 
58 
~:)9 

60 
61 
62 
63 
64 
65 
66 
f.,7 

68 
1.,9 

70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
B8 
89 
90 
91 
92 
93 
(~4 

95 
96 
97 
98 
99 

100 

Using Directives for Intertask Communication 

SOLUTION 

DIR$ R4 QIOW$ to TI: 
BCS ERR4 
TST R5 {lid offspring e~·dt'? 

BGE 3$ Yes 
[lIR$ t:CLEF No. Clear EF 1 again 
BCS ERR5 
BR 1$ Wait 

3$: EXIT$S Once offsprins e~·d ts, 
so should parent 

; 
ERR1: DIRERR <ERROR ON INITIAL CLEF$> 
ERR2: DIRERR <ERROR SPAWNING LEX45B> 
ERR3: DH~ERR <ERROR ON WTSE$C> 
ERR4: DIRERR <ERROR ON QIOW$) 
ERR5: DIRERR <ERROR ON CLEF$> 

AST routine, entered when offsprins emits status 
(negative status value) or exits (positive status 
v (!~ 11.JE:~ ) 

ASTRTN: SETF$C 
BCS 
eMP 

BEQ· 
TST 
BGE 

CNCT$C 
BCS 
TST 
ASTX$S 

1 
ERR6 
$[lSW,t:IS.SET 

OVRRUN 
STATUS 
4$ 

Awaken main code 

If set, main code is 
not read!:l !:let 

We've been overrun 
Has offsprins exited? 
If so, don't tr!:l to 

reconnect 
LEX45B"ASTRTN,STATUS 
ERR7 
(SP>+ Clean UP stack from AST 

Let main code run 

If a new status comes in before we're done with the old 
one, somethins is wrons. Stop everwthins. 

; 
OVRNMS: .ASCII /STATUS RECEIVED BEFORE READY. / 

.ASCII / ABORTING BOTH TASKS./ 
OVRNML = .-OVRNMS 

.EVEN 
; 
fJVRRUN: QIOW$C 

ABRT$C 
BCS 
EXIT$S 

ERR6: 
ERR7: 
E:RI~8 : 

{lIRERR 
DIRERR 
DIRERR 
.EN{I 

IO.WVB,5,3",,<OVRNMS,OVRNML,40> 
LEX45B Abort offspring 
ERR8 

E~·dt this task 

<ERROR FROM SETF$ IN AST ROUTINE) 
<ERROR CONNECTING TO OFFSPRING> 
<ERROR ABORTING OFFSPRING> 
START 

53 



1 
,.) 
A., 

3 
4 
5 
6 

;t 

Using Directives for Intertask Communication 

.TITLE 

.IItENT 

.ENABL 

SOLUTION 

LEX45B 
lOll 
LC 

File L.EX45B.MAC 

Enable lower case 

7 Solution to Module 4, Lab Exercise 5 - Part B, 
8 offspring task 
9 

10 This task is spawned bv lEX45A. It emits a negative 
11 status every 5 seconds, then exits after 30 seconds 
12 (6 emits¥ then an exit). 
1.3 
14 If an emit status fails because this task was not 
15 connected to the parent, another emit status will be 
16 tried 5 seconds later. Two consecutive failures cause 
17 this task to exit with an error messa~e. 
:1.8 
19 This task must be installed under task name LEX45B. 
20 ; .... 
21 
22 
2~} 

24 
'')1::' 
,1t: ..... J 

26 
',)'7 . ..:.. ... 

.MCAL.l EMSTSS,QIOWSC,WTSESC,MRKTSC,EXITSS 
+ MCAL.L. D I F~ERR 

NCNCT: .ASCII ILEX45B NOT CONNECTED TO ANY PARENTI 
"BYTE 15,:1.2 
.ASCII /WILL TRY AGAIN IN 5 SECONDSI 

NCNCTI... ::: + .... NCNCT 
.EVEN 

STAF(r: CL.F~ RO = exit status 

:?B 
29 
30 
3:1. 
32 
33 
34 

CL.F~ 
RO 
Rl Rl = 0 means last 

atte~pt to emit status 
suceeded. RO < 0 means 
it failed because we 

35 were not connected 
36 
37 
38 EMST: 
:39 
40 
4:1. 
42 
43 
44 
4~) 

46 
47 
48 1~;: 

49 
50 

MO'v' 

DEC 
BMI 
MRKTSC 
BCS 
DEC 

EMSTSS 
BeS 
CLR 
BR 
eMF' 

BNE 

:fI:611R3 

1:;:3 
EXIT 
1,,5,2 
ERI~:I. 
F~O 

lIRO 
1S 
Fa 
WAIT 
S[lSw,tIE.ITS 

ERR2 

55 

R3 ,- number of emits 
yet to be issued 

Set timer (again)'r 
Nc) , ,just exit 
Set, timer for 5 seconds 

Use status .::: 0 when 
emitting 

Emit to parent 
Failed. Why? 
N(:)te success 
Wait for s:.~ 

o::J sees to pass 
Failed because not 
connected? 

Any other reason, CHJit 



:1,9 C 
20 
21 
22 
2~5 

24 
25 

27 
28 
29 
~50 
:~1 

32 
:3:'5 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

C 
C 

20 
C 
C 

c 

c 
c 

25 

C 
30 

50 

51 C 

Using Directives for Intertask Communication 

SOLUTION 

INTEGER DSW,IEITS 
DATA IEITS/ .... 81 
LOGICAL*1 ERLAST 

DATA ERLAST/.FALSE./ 

Error mnemonic 
Flas if last EMST 
failed because we were 
not connected 

DO 50~I:::1,6 Issue 6 EMSTs 
CALL MARK (1,5,2,DSW) Set timer for 5 seconds 
IF (DSW.LT.O) GOTO 900 
CALL EMST(,(-I),DSW) Emit to parent 
IF (DSW.LT.O) GOTO 20 Failed. Why? 
ERLAST ::: .FALSE. Note success 
GOTO 30 ! Wait for 5 sees to pass 
IF (DSW.NE.IEITS) GOTO 910 ! Failed for reason 

IF (ERLAST) GOTO 910 

ERLAST ::: .TRUE. 

TYPE 25 

othe T' than not 
! connected 

Failed last time too? 
Then sive up. 

Else note we failed 
this time 

And announce the 
PT'oblem: 

FORMAT ('LEX45B NOT CONNECTED TO ANY PARENT'/ 
1 'WILL TRY AGAIN IN 5 SECONDS') 

And try asain in 5 secs 
CALL WAITFR(l,DSW) ! Wait for 5 sees to pass 
IF (DSW.LT.O) GOTO 920 
CONTINUE 
CALL EXIT Exit (with success) 

52 C Directive errors 
53 C 
54 900 TYPE *,'ERROR ON MRKT. DSW::: ',DSW 
55 GO TO 1000 
56 910 TYPE *,'ERROR EMITTING TO PARENT. DSW - ',DSW 
57 GOTO 1000 
58 920 TYPE *,'ERROR ON WAITFR. DSW = ',DSW 
59 1000 CALL EXIT 
60 END 

57 



Memory Management Concepts 

TEST / EXERCISE 

1. Write 'M' if the statement applies to mapped systems, lUI if 
it applies to unmapped systems, or 'M,U' if it applies to 
both. 

a. Physical addresses up to 32K words accessible with 
16-bit addressing. 

b. Physical addresses up to l28K words accessible with 
l8-bit addressing. 

c. Program relocation possible without having to program 
or task-build again. 

d. Detection of memory protection violations. 

e. Program executes only at physical addresses that match 
the virtual addresses created by the task builder. 

f. Virtual address limit of 32K words. 

2. Fill in the headings and the missing values in Figure 1. 

59 



Memory Management Concepts 

SOLUTION 

1. Write 'M' if the statement applies to mapped systems, 'u' if 
it applies to unmapped systems, or 'M,U' if it applies to 
both. 

U a. Physical addresses up to 32K words accessible with 
l6-bit addressing. (M is also acceptable since 32K 
words is the limit of l6-bit addressing even on a 
mapped system.) 

M b. 

M c. 

M d. 

U e. 

M,U f • 

Physical addresses up to l28K words accessible with 
l8-bit addressing. 

Program relocation possible without having to program 
or task-build again. 

Detection of memory protection violations. 

Program executes only at physical addresses that match 
the virtual addresses created by the task builder. 

Virtual address limit of 32K words. 

2. Fill in the headings and the missing values in Figure 1. 

61 



Overlaying Techniques 

TEST IEXERCISE 

The following is an output display from a task. 

MAIN CALLING SUBROUTINE G 
G CALLING SUBROUTINE GI 
Gl RUNNING 
MAIN CALLING SUBROUTINE HI 
HI RUNNING 
MAIN CALLING SUBROUTINE H 
H CALLING SUBROUTINE HI 
HI RUNNING 
H CALLING SUBROUTINE H2 
H2 RUNNING 
MAIN EXITING 

The calling sequence parallels the output display. 

1. Draw an overlay tree diagram or a memory allocation diagram 
for a possible overlay structure for the task. 

2. Write the modules MAIN, G, Gl, H, HI, and H2. 
compile each one. 

Assemble or 

3. Task-build and run the task without overlays. Obtain a map. 

4. Task-build and run the task with all disk-resident overlays. 
Obtain a map. 

5. Task-build and run the task with all memory-resident overlays. 
Obtain a map. 

63 



Overlaying Techniques 

SOLUTION 

The following is an output display from a task. 

MAIN CALLING SUBROUTINE G 
G CALLING SUBROUTINE GI 
Gl RUNNING 
MAIN CALLING SUBROUTINE HI 
HI RUNNING 
MAIN CALLING SUBROUTINE H 
H CALLING SUBROUTINE HI 
HI RUNNING 
H CALLING SUBROUTINE H2 
H2 RUNNING 
MAIN EXITING 

The calling sequence parallels the output display. 

1. Draw an overlay tree diagram or a memory allocation diagram 
for a possible overlay structure for the task. 

OVERLAY TREE 

G1 H1 H2 

Y 
G H 

~ 
MAIN 

65 

MEMORY ALLOCATION 
DIAGRAM 

G 1 H 1 I H2 

G H 

MAIN 

TK-7744 



Overlaying Techniques 

SOLUTION 

1 PROGRAM MAIN 
2 C 
3 C File lEX6A.FTN 
4 C 
5 C Mainline routine for Module 6, Lab Exercises 1-6. 
6 C Illustrate different overlays and their effects. 
7 C 
8 C For each routine, type messaSe then call routine 
9 C 

10 
11 
12 
13 
14 
15 
1.6 
1? 
18 

1 
2 
3 
4 

TYF'E *, ~ MAIN 
CAl.L G 
TYPE *"~MAIN 
CAll H1 
TYPE *,~MAIN 
CALL H 
TYPE *,~MAIN 
CALL EXIT 
END 

.TITLE 
+IDENT 

G 
101/ 

.ENABL LC 

CAl.l.ING SUBROUTINE G~ 

CALLING SUBROUTINE H1~ 

CAl.LING SUBROUTINE H~ 

EXITING~ 

Enable lower case 

5 File LEX6B.MAC 
6 
7 Subroutine for Module 6, Lab Exercises 1-6. 
8 Illustrate different overla~s and their effects. 
9 

:1.0 
11 
12 
13 
14 
:1.5 
:1.6 
17 
:LB 
:1.9 

; 
CG1MS: 
CG1ML _ .. 

.GLOBl 

.GLOBL 

.MCALL 

Gl 
IOFAIL 
QIOW$C 

Subroutine called 
Error T'outine 

.ASCII IG CALLING SUBROUTINE G11 

.-CG1MS 

.EVEN 

20 Type messaSe then call routine 
21 
22 
2~5 

24 

26 
27 

( ' .. ,. + 

ERROR: 

CHDW$C 
BCS 
CALL 
RETURN 
..JMP 
.END 

IO.WVB,5,1",,(CG1MS,CG1ML,40> 
E I:;: I:;: OR 
G1 

IOFAIL 

67 



1 
.~) 

~ 

:~ 
-4 
I~' 
,.1 

6 
l 
8 
9 

lO 
11 
1.2 

1 
2 
3 
4 

(' 

c 
C 
r 
C 
C 
C 
C 

Overlaying Techniques 

SOLUTION 

SUBJ~OLJT I NE G 1 

Fi l€~ LEX6C. FTN 

Subroutine for Module 6, Lab Exercises 1-6. 
Illustrate different overlaws and their effects. 

T~pe messa~e then return 

TYPE *,'G1 RUNNING' 
I:~ETURN 

END 

.TrTLE 

.IDENT 

.ENABL 

H 
lOll 
LC Enable lower case 

5 File LEX6D.MAC 
6 
7 Subroutine for Module 6, Lab Exercises 1-6. 
8 Illustrate different overla~s and their effects. 
9 

10 
:L 1 
12 
13 
14 
15 ; 

tGLOBL Hl,H2 
tGL.OBL. IOFAIL 
.MCALL QIOW$C 

Subroutines called 
Error' routine 

16 CHIMS: .ASCII IH CALL.ING SUBROUTINE Hil 
17 CH1ML = .-CH1MS 
18 CH2MS: .ASCII IH CALLING SUBROUTINE H21 
19 CH2ML - .-CH2MS 
20 .EVEN 
21 
22 T~pe messaSe then call routine 
23 
24 

26 
27 
28 
29 
30 
31 
3':) 

ERROR: 

QIOW$C 
BCS 
CALL.. 
QIOW$C 
BCS 
CALL 
I~ETURN 

JMF' 
.END 

IO.WVB,5,1",,<CH1MS,CH1ML,40> 
ERROR 
H1 
IO.WVB,5,l",,<CH2MS,CH2ML,40> 
ERROR 
H2 

IOFAIL 

69 



Overlaying Techniques 

1 SUBROUTINE Hi 
2 C 
3 C File LEX6E.FTN 
4 C 

SOLUTION 

5 C Subroutine for Module 6, la~ Exercises 1-6. 
6 C Illustrate different overlays and their effects. 
7 C 
8 C T~pe messa~e then return 
9 C 

10 TYPE *,'Hl RUNNING' 
11 RETURN 
1:2 END 

1 
:2 
3 
4 
c
d 

.TITlE 

.I[tENT 

.ENABL. 

File L.EX6F.MAC 

H2 
lOll 
I ... C Enable lower case 

6 
7 
8 
9 

Subroutine for Module 6, lab Exercises 1-6. 
Illustrate different overlays and their effects. 

.GLOBI... IOFAIl 
+ MCALL CHOW$C 

H2RUN: .ASCII IH2 RUNNINGI 
H:2FUJNL.. :::: • ~"H2RUN 

.EVEN 

T~pe messa~e then return 

; Error routine 10 
11 
12 
13 
14 
l ~) 

lb 
:1.7 
18 
19 
20 
21 H2:: QIOW$C IO.WVB,5,1",,<H2RUN,H2RUNL,40> 
'.,,.) 
".O.h BCS ERROR 

RETURN 
ERROR: JMP IOFAIL 

.END 

1 SUBROUTINE H2 
:2 C 
3 C File LEX6F.FTN 
4 C 
5 C Subroutine for Module 6, Lab Exercises 1-6. 
6 C Illustrate different overlays and their effects. 
7 C 
8 C T~pe messa~e then return 
9 C 

10 TYPE *,'H2 RUNNING' 
11 RETURN 
12 END 

71 



Overlaying Techniques 

SOLUTION 

4. Module 6, Lab Exercise 4 

.ODL file for buildin~ MACRO-11 with all disk resident 
ove r 1 a~:,~;; 

.R()()T 
OVFUH 

l.EX6A 
LEXt)B 
1 ... EX6C 
LEX6D 
LEX6E 
LEX6F 

.FCTR 

.. ~ MAIN 
G 

M •• G1 
H 

- H1 
H2 

.END 

LEX6A-PROGSUBS/LB-*(LEX6B-LEX6C,OVRH) 
LEX6D-(LEX6E,LEX6F) 

Module 6y Lab Exercise 4 

.ODL file for buildins FORTRAN with all disk-resident 
overla~s 

.ROOT 
HSEGS: • FCTF~ 
Fl.IB: .FCTR 

LEX6A .- MAIN 
LEX6B .- G 
LEX6C - Ot 
LEX6D -- H 
I...EX6E H:I. 
LEX~)F .. M H2 

.END 

LEX6A-FI...IB-*(I...EX6B-l.EX6C-FLIB,HSEGS) 
LEX6D-FLIB-(I...EX6E-FLIB,LEX6F-FLIB) 
LB:[I,lJF4POTS/LB 

5. Module 6, Lab Exercise 5 

.ODL file for MACRO-11 with all memor~-resident 
OVf:? r 1 ('=l!:I~:; 

OVRH: 

L.EX6A 
LEX6B 
LEX6C 
I...Ex(~)rr 

1 ••• EX6E 
LEX6F 

+ F.:()OT 
.FCTR 

.... MAIN 

.... G 
•• M 81 

H 
Ht 
H2 

.END 

LEX6A-PROGSUBS/LB-*!(LEX6B-LEX6C,OVRH) 
LEX6D-!(LEX6E,LEX6F) 

73 



Overlaying Techniques 

SOLUTION 

7. Use the map to fill in the following table: 

Type of 
Overlay 

No Overlays 

Starting Virtual 
Address of G 

Starting Virtual 
Address of HI 

All 
Disk-Resident 
Overlays 

Answers will vary depending on 
students' particular solution. 

All 
Memory-Resident 
Overlays 

Disk-Resident 
and Memory
Resident 
Overlays 

8. Module 6, Lab Exercise 8 

.ODL file in MACRO-I! to place TOTAL in an overlaw 

All overlaws are disk-resident 
.ROOT MAIN-*eA-eJOB1,JOBXX),B,TOTAL) 
.END 

Module 6v Lab Exercise 8 

.ODL file in FORTRAN to place TOTAL in an overlaw 
sf~~ment • 
All overlays are disk-resident 

.ROOT MAIN-FLIB-*(OVRAyB-FLIB,TOTAL-FLIB) 
DVRA: .FCTR A-FLIB-eJOB1-FLIBvJOBXX-FLIB) 
FLIB: .FCTR LB:[!,lJF4POTS/LB 

.END 

75 



51 
~52 
~:;:~ 

54 

56 
57 
:58 
59 
60 
61 
62 
b:~ 

64 
b~5 

66 
67 
68 
69 
70 
7:1. 
72 
73 
74 

1 
2 
3 
4 
1:." 
.J 

6 
7 
8 
~:> 

:1.0 
1t 
12 
13 
14 
1 C~ . .J 

16 
1.7 
18 
19 
20 

Overlaying Techniques 

SOLUTION 

START: QIOW$C 
CAl.L 
CALL 

IO.WVB,5,1",,{MES1,LMES1,40> ;Write MES1 

QIOW$C 
CALL 

A Call subroutine A 
RTOTAL Call routine to 

d i sp I a~ runrd rig 
; total 

IO.WVB,5,1",,{MES2,LMES2,40> ;Write 
B Call subroutine B 

; ; EX 
; ; EX 
; ; EX 
MES2 

; Set UP for loop 
MOV i3,R4 ;'Counter 

LOOP: QIOW$C IO.WVB,5,1",,{MES3,LMES3,40>; Write MES3 

C 
C 
C 
r 
f' 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

CLR ANS Clear answer in case 

CALL 
CALL 

A 
RTOTAl. 

of no operation 
Call subroutine A 
Call routine to 
displa~ running ;;EX 
total ;;EX 

SOB R4,LOOP Decrement counter and 
; loop back until done 

QIOW$C IO.WVB,5,:I.",,{MES4,LMES4,40>; Write MES4 
CALl. TOTAL .; Ca 11 rout i ne to 

; display grand total 
QIOW$C IO.WVB,5,1",,{MES5,LMES5,40>; Write MES5 
EXITSS ; Exit 
.END START 

PROGRAM MAIN 

FILE LEXb9A.FTN ! !EX 

Modified to call RTOTAL to display the running ! !EX 
after each call to A ! !EX 

This program prints a messaSe and then calls subroutine 
A. Subroutine A asks whether to perform Job :I. or Job 2.P 
It then calls either subroutine JOBl or JOB2 which 
performs the operation and displaws the results. MAIN 
then calls subroutine B which displaws a message. MAIN 
then calls subroutine A 3 more times, keeping a grand 
total of the operations. Finally, it displays the 
grand total and exits. 

Task-build instructions: Use LEX69A.ODL as the input! !EX 
file for RTOTAL in the root. Use LEX69B.ODL as the ! !EX 
input file for RTOTAL in the best overlay seSment ! !EX 

77 



1 
2 
3 
4 

.TITLE 

.IDENT 

.ENABL 

Overlaying Techniques 

SOLUTION 

RTOTAL 
lOll 
LC Enable lower case 

5 FILE LEX69B.MAC 
6 
7 Subroutine to print the running total 
8 
9 

10 
11 
12 
13 
1.4 
15 
16 
17 
lB 
19 
20 
21 
22 
23 
24 

6 
7 
8 
9 

1.0 
11 
12 

.MCALL 

.NLIST 
QIOW$S 
BEX 

External s~stem macros 
Do not list binar~ 
e~·~t,ens:i. ons 

RTOFMT: • ASell 
RTOTBF: • BU"B 

.EVEN 

ITHE TOTAL SO FAR IS %D.I ;Format string 
100. Output buffer 

.NLIST BEX List binar~ extensions 

RTOTAL::MOV tRTOTBF,RO Set UP for SEDMSG 
MOV #RTOFMT,Rl 
MOV ITOT,R2 
CALL SEDMSG ; Edit messaSe 
QIOWSS tIO.WVB,iSvily"y(#RTOTBF,Rly#40> 

C 

RETURN 
.END 

SUBROUTINE RTOTAL 

C FILE LEX69B.FTN 
C 

y P l' i nt it 

C Subroutine to print the running total 
C 

COMMON ITOTCOM/TOT 
INTEGEF~ TOT 
TYPE 5,TOT 

5 FORMAT(' THE TOTAL SO FAR IS', 14,'.') 
RETURN 
END 

Module 6, Lab Exercise 9 

.ODL file in MACRO-ll, placinS RTOTAL in the root 
segment for testins 

; All overla~s are ffiemor~-resident 
.ROOT LEX69A-LEX69B-*!CA-!(JOB1,JOBXX),B,TOTAL) 

LEX69A = MAIN modified to call RTOTAL 
LEX69B :::: RfOTAL 

• ENl) 

79 



Static Regions 

TEST / EXERCISE 

1. Create an initialized resident common (size: 32(10) blocks = 
1024(10) words, contents: 25(10) in each word). Check with 
your course administrator to find out where to place the 
common type partition. Write two tasks, one that modifies all 
values in the common, and one that reads the values and 
displays them. 

2. Create a resident library using the supplied FORTRAN callable 
subroutines AADD, SUBB, MULL and DIVV (all in LIB.MAC). Write 
a task that calls one or more of the routines. For example, 
write a task that asks for four numbers (A, B, C, and D) and 
then computes' and displays (A * B) + (C * D) = answer. 

81 



1. :I. 
2 
3 
4 
I::" 
.... ' 
6 
"l 
B 
9 

10 
11 
1 ') 
1:3 
14 
:I. ~5 
11.> 
:1.:7 
lB 
:1.9 
20 
21 
r)",) 
4° ••• 0 .. 

2~3 

1 
,.) 
A" •• 

3-
4 
5 
6 
7 
B 
9 

:1.0 
11 
:I. ') 
1] 
1.4 
:L ~j 
16 

;+ 

Static Regions 

SOLUTION 

.TITLE LEX71A 

.IDENT lOll 

.ENABL LC 

File LEX71A.MAC 

Enable- lower case 

ProSram which creates and initializes a common region 
which will be referenced using overlaid Psects. 

Size 1024. words, contents all 25's 

Task-build instructions: Must include ISHAREABLE:COMMON 
and INOHEADER switches; STACK=O and PAR=COMWP options. 
Must create .STB file. Ma~ be ICODE:PIC or absolute 
(default). 

; The code is placed in a Psect named MYDATA 
; .... 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

• r~EPT 
• WOr';:D 
.ENDR 
.END 

1024. 
25. 

BLOCK DATA LEX7:1.A 

ReF,eat count 
Word of 25(10) 
End repeat range 

Pro~ram to create and initialize a resident common 

Size is 1024 words, initialized with all 25's 

Task-build instructions: Must include ISHAREABLE:COMMON 
and INOHEADER switches; STACK=O and PAR=COMWP options. 
Must create .STB file. Ma8 be ICODE:PIC or absolute 
(the default). OTS librarw NOT reGuired. 

COMMON IMYDATA/·I(:l.024) 
DATI~ I 11024*25/ 
END 

83 



50 
51 
c:- r ) ,J.:.. 

~j~J 

~54 

~:55 

56 
57 
:5B 
59 
60 

1 
r) 
.:.. 

3 
4 
0::. 
... 1 

6 
7 
B 
<l 

10 
11 
:1.2 
13 
14 
1 ~:j 
16 
l7 
18 
19 
20 
21 
I")r) 
Il. ..... 

23 
2·4 
'")c:" 
.(..J 

Static Regions 

SOLUTION 

EF~ROI:;:l : MOVB Extend si~n on I/O 
MOV RO~ARG status and place in 

ar~j block 
MOV tFERR2,Rl Addr of format strins 

SETUP: MOV tBUFF,RO Addr of output buffer 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

f' 
C 

5 

lO 

MDV tARG,R2 Addr of ar~ument block 
CALL. $EDMSG Edit messaSe 
CnOW$S iID~WVB,t5~il"y~<tBUFF,Rl,#40> ; Write 

EXIT$S 
.END 

F'ROCH-;;AM L.EX71B 

Task to decrement each word in the static common 
reSion L.EX71A. It uses a COMMON to reference 
the data. 

Task-build instructions: 

LINK/MAP/OPTION L.EX71B~LB:[1,1]FOROTS/LIBRARY 
Option? RESCOM=LEX71A/RW 
Opti on'r <RET> 

COMMON /MYDATA/ L(1024)! Common to reference 
shared re~ion 

DE.'crement values 
DO 5 K::::1, 1024 
L (K ):::L (K) -··1 
CONTINUE 
WRITE (5,10) ! Displa~ done messa~e 
FORMAT (' LEX71B HAS MODIFIED THE VALUES IN THE 
1 COMMON LEX71A/) 
CALL EXIT 
END 

85 



1 
") 
h.. 

3 
4 
I::' 
,J 

6 
'7 
8 

10 
11 
1 ':) 
13 
14 

Static Regions 

; E T' rc:) r CCH:if? 

Em~(H;:: MDV 
MDV 
BI~ 

ERI~C)f;: 1: MDVB 
MDV 

MOV 
SETUP: MDV 

SOLUTION 

SDSW,ARG 
:IJ:FEI~I:;::I. ,1:;::1. 
SETUP 
I OSB, 1:;;0 
I:~O y ARG 

tFEI:~R2!1 F~:I. 
:I=BlJFF y RO 

Move DSW to ar~ block 
Addr of format strinS 
Branch to SEDMSG code 
Extend siSn on I/O 
status and ~lace in 
ar'~j block 

Addr of format strins 
Addr of output buffer 

MOV 
CALI... 
CHOW$S 

#ARGyR2 Addr of ar~ument block 
SEDMSG Edit messaSe 
IIO.WVBlIIS,#1",,<tBUFF,R:I.,i40) ; Write 

EXITSS 
.END START 

PROGRAM LEX71C 

C File LEX71C.FTN 
(" 

IT! f..~ ~:; !:; a ~:j (.:.~ 
; E:·dt 

C Task to read data from the static common region LEX71A 
C and print it out at TI:. It uses a COMMON to reference 
C the data. 
C 
r Task-build instructions: 
C 
CLINK/MAP/OPTION LEX71C,LB:[1,lJFOROTS/LIBRARY 
C Option? RESCOM=LEX71A/RO 
C Option? <RET) 
C 

15 COMMON /MYDATA/ L(1024)! Common to reference 
16 r shared region 
17 C Loop through to display regiony 8 numbers on a line 
18 DO 50 J :::: 1,1024,8 
19 WRITE (5,10) (L(K),K::::J,J+7) ! Write values 
20 10 FORMAT (' '~I2Y7I8) 

21 50 CONTINUE 
22 CALL EXIT 
23 END 

87 



Static Regions 

51 
52 
53 
54 

!7i6 

ADDARG: 

ASCII 

.WORD 

.WORD 

.WORD 

.WORD 

buffer 

SOLUTION 

3 
MURESl 
MULRES 
GRTOT 

table. Irti tiall~ 

For ADD 
First MUL result 
Second result 
Grand total 

each entr~ in this table 
57 consists of the address of a prompt strins followed b~ 
58 the address of the buffer to store the input. After a 
59 string is input, however, the prompt strinS address is 
60 replaced b~ the length of the input string. This 
61 table, with the addition of the final value GRTOTv then 
6? ; serves as the SEDMSG argument block. 
63 EDMAI:;:G: 
64 
6~5 

66 
6°?' 
68 
6<"1 
70 
71 
72 

AnTElL.: 

CDTBL.: 

GPTOT! 

~ WOF:D APRMTl'ASCA 
.WOHD BF'RMT,ASCB 
~ ~JORD CF'RMT,ASCC 
.WOHD DPRMT,ASCD 
v WOr~D 

73 
74 
75 
76 
77 
78 
79 
80 
81 

Other numeric values 

fJ2 

M1: .WOt,D 
M2: .WORD 
MUHES 1: . WORD 
MULRES: • WORD 

RDF'RMT: QIOWS 
IOSB! .BL.KW 

B3 Code 
84 , 

2 

Grand total (numeric 
value is inserted 
directl~ into SEDMSG 
block) 

First MUL ar~ument 
Second MUL argument 
First MUL result 
MUL result 

85 START: QIOWSC IO.WVB,5,1'l',,{HDRMS,HDRML,40>; Identif~ 

B6 
87 
88 
89 
<"10 
91 
92 
9~5 

94 
9~5 
96 
(rl 
98 
99 

100 

MOV 

MDV 

MOV 
CAL.L 
CAL.L 
MOV 
CALL 
MOl,,' 
MOV 
MOV 
MOV 

tRDPRMTvR4 

tABTBL, f~3 
GETINF' 
GETINF' 
tMUl.ARG,R5 
MULL 
MULRES,MURESl 
IM1 , F.:5 
IRDF'RMT,R4 
tCDTBL,R3 

89 

R5 => location to store 
binar~ input values 

R4 => -read with 
p romF,t· Df'B 

R3 => ASCII buffer table 
Gf?t A 
Get B 
R5 => MUL ar~ block 
Do first multipl~ 
Save reslJI t 
Reset re~isters 

(FORTRAN calling 
convention does not 
~uarantee the~ are 
p rese rved. ) 



Static Regions 

1 PROGRAM LEX72 
2 C+ 
3 r File LEX72.FTN 
4 C 

SOLUTION 

5 C Solution to Module 7, Lab Exercise 2 
6 C 
7 C Task computes sum of products usin~ resident library 
8 C routines. 
9 C 

10 r Task build instructions: 
11 C 
1? CLINK/MAP/OPTIONS LEX72,LB:C1,1JF4POTS/LIB 
13 C Option? RESLIB=LIB/RO 
14 c·~· 

15 INTEGER A,B,C,D,MURES1,MURES2,GRTOT 
16 C ASCII bytes to make promptins code cleaner 
17 BYTE ASCA,ASCB,ASCC,ASCD 
18 
:1.9 C 

TYPE ~) 20 
21 
'")'"') 
.~.: .. 

5 FORMAT (' TASK WILL COMPUTE (A*B)+(C*D)'/ 
1 ' ENTER NUMBERS IN DECIMAL.') 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
:36 
~57 

38 
39 
40 

C FORMAT statements used repeatedly below: 
15 FORMAT ('SENTER ',Al,': ') 
25 FORMAT (16) 

35 

TYPE 15,ASCA 
ACCEPT 25,A 
TYPE 15,ASCB 
ACCEPT 25,B 
CALL MULL(A,B,MURES1) 
TYPE 15,ASCC 
ACCEPT 25,C 
TYPE 15,ASCD 

ProlTJPt for 
and input A 

P rOITJF,t fa r 

and input B 
MURESl ::: A*B 
ProlTJPt fOT' 

and inF'ut C 
P rCHT,pt fo r 

ACCEPT 25,D and input D 
CALL MULL(C,D,MURES2) MURES2 = C*D 
CALL AADD(MURES1,MURES2,GRTOT) ! GRTOT 
TYPE 35, A,B,C,D,GRTOT 
FORMAT (' (',16,' * ',16,') + (',16,' * 
CALL EXIT 
END 

91 

::: SUITJ 



Dynamic Regions 

TEST IEXERCISE 

1. Referring to Exercise 1 of Module 7 (Static Regions), modify 
the tasks that reference the common so that they both map to 
the common dynamically using the memory management directives. 

2. Write a task that creates a dynamic region two blocks long, 
fills it with a character typed in at the terminal, and leaves 
it in existence on exit~ Write a second task that modifies 
one value in the region, then displays all the values in the 
reg i-on a t the terminal, and fi nally deletes the reg ion. 

3. Modify SNDREF so that it sends the region by reference to a 
second receiver task, in addition to RCVREF. Write the second 
receiver task, which should modify values in the region and 
then display the values in the region at the terminal. 

93 



1. 1 
2 
3 
4 
c· 
;;J 

6 
7 
8 
9 

:to 
11 
1 ':> 
1:-5 
:1.4 
1 c· • ..J 

:1.1.) 
17 

.:LB 
19 
20 
21 
::!::! 
23 
24 
'")1::-•. _ ,J 

26 
27 
28 
29 
30 
31 
32 
33 
34 
:35 
~S6 
37 
38 
39 
40 
41 
42 
4~5 

44 
4 c ' .. J 

46 
47 
48 
49 
50 

;+ 

Dynamic Regions 

SOLUTION 

.TITLE LEX81B 

.IDENT lOll 

.ENABL LC Enable lower case 

File LEX81B.MAC 

LEX71B modified to use memor~ mana~ement directives 

Pro~ram to attach to the existins re~ion LEX71A, create 
a virtual address window (mapped on creation), decrement 
all values in the resion b~ 1, detach from the reSion 
and e~d t + 

Assemble and task~build instructions: 

RDB: 

; 
WIN: 
WDB: 

; 
IOSB: 
W 
DONE: 

LDONE 
START: 

>MACRO/LIST LB:[1,lJPROGMACS/LIBRARY,dev:[ufdJLEX81B 
>LINK/MAP/OPTION LEX81B~LB:[1,1]PROGSUBS/LIBRARY 
>Option? WNDWS==1 
>Option? <RET> 

.MCALL. 

.MCALL 

.MCALL 
RDBBK$ 
Define 

CRAWS 
WDBBKS 

EXITSS,RDBBKS,WDBBKS,ATRGSC ; S~stem 
CRAW$"DTRGSS"DII~$,(HOWSS ;. macros 
DIRERR,IOERR ; SUPplied macros 
32.,LEX71A,LEX71A,<RS.WRT!RS.RED> 

T'esicm with: 
Size ::: 32. (32. word blocks) 
Name ::: LEX71A 
Partition - LEX71A 
Attach with read and write access 

WDB ;DPB for create address window 
7,32.,0,0,32.,<WS.MAP!WS.RED!WS.WRT> 

Define window with: 

.BLKW 
=1024. 
.ASCII 
.ABCII 
==. ·-DONE 
ATRGSC 
BCS 
MDV 

DIF,$ 
BeS 

APR 7 
Size 32. (32. word blocks) 
Offset in re~ion ::: ° (32. word blocks) 
Len~th in re~ion ::: 32. (32. word blocks) 
Map on create with read and write access 

; lID status block 
; t of words in re~ion 

ILEXBIB HAS MODIFIED THE VALUESI ; Done 
I IN LEX71AI . mes~aSe 

RDB ; Attach to re~ion 
ERR1 ; Check for error 
RDBtR.GID,WDBtW.NRID ; Move re~ion ID 

; into WDB 
tWIN Create window 
ERR2 Check for error 

95 



Dynamic Regions 

SOLUTION 

29 C WDB - Window definition block with the followin~ properties: 
30 C APR 7 
31 C Size 32 (10) (32.-word blocks) 
32 C Offset in reSion 0 (32.-word blocks) . 
33 r Lensth of window 32 (10) (32.-word blocks) 
34 C Map on create with read and write access 
35 C Initialize the WDB 
36 DATA WDB /-3400,0,32,0,0,32,-203,0/ 
37 C 
38 C Attach resion 
39 CALL ATRG (RDByIDS) 
40 
41 
42 
4:3 
44 
45 
46 
47 
48 
49 
50 
~51 

5~~ 

C 

C 

C 

C 

C 

50 
C 

Cht~ck for error' on attach 
IF (IDS .LT. 0) GOTO 100 

Move resion id to.WDB 
WDB(4)=RDB(1) 

Cr(=ate and llIap window 
CALI ... CRAW (WDB,IDS) 

Chf~ck for eT'ror 
IF (IDS .LT. 0) GOTO 200 

Dec r'r.~ment values 
DO 50 K=I,1024 
IDATA(K)=IDATA(K)-1 
CONTINUE 

Detach frolll reSion and delete it 
CALL DTRG (RDB,IDS) 

54 C Check for error 
55 IF (IDS .LT. 0) GOTO 300 
56 
57 
~)8 

~59 

60 
61 
62 
63 
64 
6~~ 

66 
67 
68 
6("} 

70 
71 
".72 
·73 

C And Jump to exit 
WRITE (5,60) 

60 FORMAT (' LEX81B HAS MODIFIED THE VALUES IN 
1 THE COMMON LEX71A') 
GOTO 500 

C 
C Error messaSes 
100 WRITE (5,101) IDS 
101 FORMAT (' ERROR ATTACHING TO REGION, DSW =',14) 

GOTO 500 
200 WRITE (5,201) IDS 
201 FORMAT (' ERROR IN CREATING WINDOW, DSW =',14) 

GOTO ~:;OO 

300 WRITE (5,301) IDS 
301 FORMAT (' ERROR DETACHING FROM REGION, DSW =',14) 
C 
500 CALL EXIT 

END 

97 



52 
53 
54 
55 
56 
57 
58 
59 
60 
{,1 
62 
63 
64 
6~) 

66 
67 
68 
69 
70 
71 
7~? 
7:1 

1 

3 
4 
5 
6 
7 
B 
9 

1. () 
11 
1.2 
13 
14 
1~i 

16 
17 
:L8 
19 
20 
21 

23 
24 
25 
'1£ 
11-\ •• ' 

27 

Dynamic Regions 

SOLUTION 

ERR2 
t160000"R2 

Check for error 
Set base addr in re~ion 

tN,R5 Loop count 
LOOP: 

BCS 
MOV 
MOV 
MOV 
MOV 
CALL 
QIDW$S 

tBUFF,RO Set UP for $EDMSG 
tFMT,R1 
$EDMSG ; Edit data 
tIO.WVB,t5,t1"tIOSB,,(tBUFF,R1,t40) 

Write data 

DONE: 

BCS 
TSTB 
BLT 
SOB 
DTRG$S 
BCS. 
EXIT$S 

ERR3D 
IOSB 
EI:;:R3I 
R5"LOOP 
:fI:RDB 

Check for dir error 
Check for 1/0 error 
Branch on error 
Print the line 
Detach from re~ion 
Check for error ERR4 

; Error handlin~ code 
ERR1: DIRERR (ERROR ATTACHING TO REGION) 
ERR2: DIRERR (ERROR CREATING WINDOW AND MAPPING) 
ERR3D: DIRERR (ERROR WRITING DATA) 
ERR3I: IOERR tIOSB,(ERROR WRITING DATA) 
ERR4: DIRERR (ERROR DETACHING FROM REGION) 

~END START 

PI~OGRAM LEX81C 
c 
C File LEX81C.FTN 
C 
C 
f' 
C 
C 
C 
C 
C 
C 
C 
C 

LEX71C modified to use memor~ mana~ement directives 

Prosram to attach resion LEX71A in partition LEX71A 
create a window and map it to the region upon creation, 
read data out of the reSiony and detach from it 

Task-build with these options: 
VSECT=DATA:160000:20000 
WNDWS=::1 

INTEGER RDB(8),WDB(8) 
C This common block will aliSn with the address window 

COMMON IDATA/IDATA(1024) 
C RDB = ReSion definition block with the followin~ 
C proF'ertie~:;: 
C SL--=e 32 (10) (32.-word blocks) 

LEX71A C Name 
C Partition LEX71A 
C 
C 
C 

Protection WO:none,SV:RWED,OW:RWED,GR:RWED 
Attach with read access 

Initialize the RDB 
DATA RDB 10,32,3RLEX,3R71A,3RLEX,3R71A,·000001, 
:1. • 1700001 

99 



2. 1 
2 
;-5 
4 
~5 

6 
7 
8 
9 

:J.O 
11 
1 ':> 
:1.3 
14 
15 
16 
17 
18 
19 
20 
21 
'·)/·) 
~:- .... 
23 
24 
25 
26 
27 
28 
29 
30 
3:L 
32 
33 
34 
31:.~ , ,J 

36 
37 
:~8 

39 
40 
4:L 
42 
43 
44 
41::" ,J 

46 
47 
48 
49 
~:;O 

Dynamic Regions 

SOLUTION 

.TITlE lEX82A 

.IDENT lOll 

.ENABl lC Enable lower case 

File LEX82A.MAC 

Pro~ram to create an named re~ion (attached on 
creation), create a virtual address window (mapped on 
creation), place ASCII data in to resion, detach from 
the re~ion and exit¥ leavins th~ re~ion in existence. 

Task-build instructions: 

REG: 

Include WNDWS=l option 

.MCALL EXITSS,RDBBKS,WDBBKS,CRRG$,CRAW$ 

.MCALl DTRGS,DIRS¥QIOWSS,QIOW$C 

CRRG$ RDB ;DPB for create resion 
Define resion with: 

Si::-~e 
Name 
Parti tic>n 
Protection 

= 2 (32. word blocks) 
- MYREG 

GEN 
= WO:None,SY:RWED, 

OW:RWED,GR:RWED 
Do not mark for delete on last detach 

; Attach with write and delete access 
RDB: RDBBK$ 2,MYREG,GEN,(RS.NDl!RS.DEl!RS.WRT!RS.ATT),170000 
; 
WIN: CRAWS WDB ; DPB for create address window 

Define window with: 
APR = 7 
Size - 2 (32. word blocks) 
Offset in re~ion ° (32. word blocks) 
Lensth in resion 2 (32. word blocks) 

; Map on create with write access 
WDB: WDBBK$ 7,2,O,O,2,(WS.MAP!WS.WRT) 

DET: 
IOSB: 
BUFF: 
ME!:): 
LEN 

DTRG$ 
.BLKW 
.BlKB 
.ASCII 

RDB DPB for detach ins reSion 
lID status block 

80. Input/Output buffer 
IENTER ASCII CHARACTER: I 
• -~-MES 

DNMES: .ASCII (15)/lEX82A HAS CREATED AND INITIALIZEDI 
.ASCII I THE REGIONI 

LDNMES :::: + ---DNMES 
; Error format strin~s 
FCRRER: .ASCIZ IERROR CREATING REGION. DSW = %D.I 
FCRWER: .ASCIZ IERROR CREATING WINDOW. DSW = %D.I 
FDETER: .ASCIZ IERROR DETACHING FROM REGION. DSW = %D.I 

101 



101 
102 
103 
104 
10!) 
106 
107 
108 
109 
110 
111 
112 

1 
'") 
..:~ 

:3 
4, 
c:· 
.. 1 

6 
7 
8 
9 

:to 
:I.:t 
12 
:I. ~5 
14 
1 ~) 
16 
II 
lB 
1.9 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
~52 

3:~ 
34 
35 
~:S6 

Dynamic Regions 

SOLUTION 

MOV 
BR 

ERR5: MOV 

:f.FaI2IE,R:L 
SHOERR 
tFDETEF.:" R:L 

aIO write err messa~e 
Branch to common code 
Detach reSion messaSe 

SHOERR: MDV tBUFF,RO Set UP for $EDMSG 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

MOV 
CALl.. 
CHOW$S 

EXIT$S 

.END 

:t$DSW,R2 
$EDMSG ; Edit messaSe 
tIO.WVB,t5,tl",,<tBUFF,Rl,t40> 

START 

; Displaw message 
; E~·d t 

PROGRAM l..EX82A 

F :i.l e LEX82A. FTN 

LEX82A creates a named region (attached on creation), 
creates a virtual address window (mapped on creation), 
places an ASCII character input at TI: at all locations 
in the resion, detaches from the region and exits, 
leavins the region in existence. 

Task-build instructions: 

>LINK/MAP/OPTIONS/CODE:FPP LEX82A,LB:rl,lJFOROTS
.M.:> IL I BRAr':Y 
Option? VSECT=DATA:160000:20000 
Option? WNDWS::::1 
Option? <RET> 

RDB = Region Definition Block for reSion with the 
following properties: 

WDB M~ 

Si:<::e 
Name 
Partition 
Protection 

:: 2 (32. word blocks) 
:: MVREG 
:: GEN 

WO:None,SV:RWED 
OW:RWED,GR:RWED 

Do not mark for delete on last detach 
Attach with write and delete access 

Window Definition Block for wir,dow with 
following properties: 

APR _. 7 
Size .. M 2 (32 • word blocks) 
Offset in resion :: 0 (32. word blocks) 
Length in region .. M 2 (32 • word blocks) 
Map on create with write access 

103 

the 



1 .TITLE 
.IDENT 
.ENABL 

Dynamic Regions 

SOLUTION 

LEX8~~B 
/01/ 
LC Enable lower case 

5 File LEX82B.MAC 
6 
7 ProSram to attach to an existin~ reSionv create a 
8 vi T'tua I add T'es-:;; 1;..1 :i. nciDw (mapped on c rE~atj. c)n) v mod :i. f~~ 
9 the first b~te of the re~iDn, read ASCII data from the 

10 resion, detach from the re~ion and mark it for deletev 
11 and finall~ exit. The resion will be deleted on last 
12 detach. 
:L ~~ 
14 Assemble and task-build instructions: 
:1. !7.i 
16 >MACRO/LIST LB:[1,1JPROGMACS/LIBRARY,dev:CufdJ-
17 ->LEX82B 
18 >LINK/MAP/OPTION LEX82B,LB:[1,1JPROGSUBS/LIBRARY 
19 >Option? WNDWS=:L 
20 >Option? (RET> 

:~5 

26 
27 
28 
29 
30 
31 
32 
33 
:34 
3~j 

:'56 
37 
:'58 
3~~ 

40 
41 
42 
43 
44 
4!5 
46 
47 
48 
49 
50 

RnB: 

; 
WIN: 
WDB: 

IOSB: 
I~SIZ 
STAI:n' : 

+MCALL 
.MCALL 
.MCALL 
RDBBK$ 

EXITSS,RDBBK$,WDBBK$,ATRGSC ; S~stem 

CRAWS,DTRG$S,DIR$,QIOW$S ; macros 
DIRERR,IOERR ; SUPplied macros 
O,MYREG,GENv(RS+WRT!RS+RED!RS+MDL!RS.DEL> 

Define resion with: 

Nam€·~ 

Parti t:i.on 

- 0 (32. word blocks) 
ret~rned after attach 

.... MYREG 

.- GEN 
Mark for delete on last detach 
Attach with ready write and delete access 

CRAWS WDB ;DPB for create address window 
WDBBK$ },200,O,O,O,(WS.MAP!WS.RED!WS+WRT> 
Define window with: 

.BLKW 
=128. 
ATRGSC 
BC~) 

MOV 

DIRt 

API:~ 

Size 
Off~:;(-?t il". re~:HDn 

l..en~:jth in T'f:~~.~~ion 

= 7 
200 (32. word blocks) 

- 0 (32. word blocks) 
o (32. word blocks) 

returned when mapped 
Map on CT'eate with read and wT'ite access 

2 liD status block 
R~Sion size in b~tes 

RDB Attach to reSion 
ERRl ; Check for error 
RDB+R~GID,WDB+W.NRID ; Move reSion ID 

, into WDB 
tWIN ; CT'eate window 

105 



:1. ~j 

16 
17 
18 
19 
20 
21 
22 
23 
24 
2~i 

26 
27 
2B 
2(1 
30 
3:1. 
32 
33 
34 
3~:; 

31.) 
37 
38 
39 
40 
41 
4':> 
4:"5 
44 
45 
46 
47 
48 
49 
~jO 

5:1. 

5:~ 

54 
55 
!:i6 
!:;7 
58 
59 
60 
61 
b2 
63 
64 

Dynamic Regions 

SOLUTION 

C 
INTEGER RDB(8),WDB(S) 
BYTE IDATA(1.2S) 

C This common block will align with the address'window 
COMMON IDATA/IDATA 

r RDB = Resion definition block with the followins 
C p r(),Pf~ rt :i. (·?S : 

C Si ~.:,:\:? 
C 

Name 
Part.:i.1',:i.on 

o (32.-word blocks) 
filled in when attached 

MYI:~EG 

GEN 
C 
C 
C Protection WO:none,SY:RWED,OW:RWED,GR:RWED 
C Mark for delete on last detach 
C Attach with delete, write and read access 
C Initialize the RDB 

DATA RDB IO,O,3RMYR,3REG v3RGEN~3R 

1.1:L700001 
C 
r WDB = Window definition block with the followins 
C F' roP€'~ T'1', :i. e~;; : 
C APR 7 
("' Size 200(S) (32.-word blocks) 
C Offset in reSion o (32.-word blocks) 
C Lensth of window 
C 

o (32.-word blocks) 
filled in when mapped 

C Map on create with read access 
C Initialize the WDB 

DATA WDB 1·3400,O,·200,O,O,O~1203,OI 
c 
C At tach rf.·~~:.H on 

CALL ATRG (RDB,IDS) 
C Check for error on attach 

IF (IDS .LT. 0) GOTO 100 
C Move reSion id to WDB 

WDB (4) :=;RDB ( 1. ) 
C Create and map windoW 

CALL CRAW (WDB,IDS) 
C Check for error 

IF (IDS .LT. 0) GOTO 200 
C Place ASCII Z in first b~te 

IDATA(1.)~-::/Z/ 

C Print contents of resion 
10 WRITE (5,11) IDATA 
11 FORMAT (/ /,64A1) 
C Detach from ~esion and delete it 

CALL DTRG (RDB,IDS) 
C Check for error 

IF (IDS .LT. 0) GOTO 300 
C And Jump to exit 

GOTO !500 

107 



3. 1 
,") 
.:.. 

:3 
4 
I::" .. ,' 
b 
7 
B 
9 

1.0 
11 
12 
1] 
14 
1!5 
16 
1.7 
lB 
1,9 
20 
21 
2:~~ 
2~5 

24 
:~~ ~j 

26 
27 
2B 
2<1 
]() 

:31 
32 
3:3 
34 
:!;S 
36 
:'57 
:H? 
39 
40 
41 
42 
43 
44 
45 
46 
47 

, .. -

.TITLE 

.IIrENT 

.ENABL 

Dynamic Regions 

SOLUTION 

SNDREF 
lOll 
LC ; Enable lower case 

File LEX83A.MAC 

Modified to send to a 2nd receiver RCVRF2 in ;;EX 
addition to RCVREF ;;EX 

LEX83A creates a 64-word (2 block) unnamed reSion and 
fills it with ASCII characters. It then sends the 
reSion to RCVREF, and then waits for RCVREF to receive 
the reSion. (This is sisnalled by event fla~ t1.) It 
then prints a messaSe and exits. Since the area is 
unnamed, it is autDmaticall~ deleted when the last 
attached task exits. 

Assemble and task-build instructions: 

>MACRO/LIST LB:C1.,1.JPROGMACS/LIBRARY,dev:[ufdJ-;;EX 
-- >LEXB:'5A 
>LINK/MAP/OPTION LEX83A,LB:[1,1.JPROGSUBS/LIBRARY 
Option? WNDWS=1 

Install and run instructions: RCVREF must be installed. 
LEX83B must be installed as RCVRF2. Run LEX83A first, 
then run RCVREF and RCVRF2 (either one first) 

~MCALI... 

• MCALI... 
.MCALL. 
~MCAI...I... 

"NI...IST 

QIOWtC,QIOWSS,RQSTSC ; S~stem macros 
WTSESC,EXITSS,RDBBKS,WDBBKS 
CRRGSS,CRAWSSvSREFSC 
DIRERR ; SUPplied macro 
BEX , ; SUPPRESS DATA 

Define region with: 
Siz(;~ 

Nam€~ 
Partj, tion 
Protection 

Attach on cl"eate 

,- 2 
none 

00- GEN 

32--WORD BLOCKS 

- WO:none,GR:RWED 
OW: I~WED, SY: none 

Rpr~() 

F~STAT 

Read and write ac~ess desired on attach 
.... 170()17 
= RS.ATT!RS.RED!RS.WRT 

109 



99 
100 
101 
102 
103 
104 
105 
106 
107 
lOB 
109 
:L10 
111 
112 

l 
~ 
.(.. 

3 
4 
c· 
J 

6 
7 
8 
9 

10 
11 
12 
13 
14 
1'~' .... } 
1,6 
17 
18 
19 
20 
21 
22 
2:3 
24 
25 
26 
27 
2E1 
29 
30 
31 
32 
~53 
34 
35 
36 
37 
38 

Dynamic Regions 

SOLUTION 

QIOW$C IO.WVB,5,2",,~MES2,LMES2,40> ; Dif:)pla~ 
y me!:.;~;age 

Bes 6$ BT'anch on dir e T' T'O T' 
EXIT$S E:d.t 

~ ET'r(:)r code 
1$: DIREFH~ <EI~RCJF~ ON CREATE OR ATTACH I~EGION> 
2$: DJr';:ERR <EI~F:()I~ ON CREATE OR MAP WINDOW> 
:3$: DIRERR <ERI=i:OR ON SEND BY I:;:EFERENCE> 
4$: It IF~EI:~R <EI:;:I:;:OR ON lST W~-;:ITE> 

5'* : DH~EF~R <EI:;:/:;:OR ON WAIT FOR> 
6$: DIRERR <ERROR ON 2ND WRITE> 
?~; : DIRERR <ERROR ON 2ND SEND BY REFERENCE> ;; EX 
8!1; : DIRE~:R <ERROR ON 2ND WAIT FOR> ;; EX 

C 
C 
C 
f' 
C 
C 
C 
C 
C 
C 
C 
r 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
f' 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

+END START 

PROGRAM SNDREF· 

Fil€~ l.EX83A.FTN 

Modified to send the region b~ reference to RCVRF2 ! !EX 
in addition to RCVREF ! !EX 

This program creates a 64-word unnamed region and 
fills it with ASCII characters. It then sends it bw 
reference to task RCVREF, and waits for RCVREF to 
receive the region+(This is signalled bw event flag 
41.) SNDREF then prints a message and exits. Since 
the area is unnamed, it is automaticallw deleted when 
the last attached task exits+ 

Task-build instructions: 

>LINK/MAP/CODE:FPP/OPTIONS LEX83A,LB:[1,lJFO-! !EX 
->ROTS/LIBRARY ! !EX 
Option'? WNDWS=l 
Option? VSECT=DATA:l60000:200 
Option"~ <RET} 

Install and run instructions: RCVREF must be installed. 
LEX83B must be installed under the name RCVRF2. ! !EX 
Run LEX83A first, then run RCVREF and RCVRF2 (in ! !EX 
e:ith(.~r order) 

RDB = Resion definition block with the followin~ 
propeT'ties: 

Si ~·~e 
Name 
Partiticm 
Protection 

2 32-word blocks 
none 
GEN 
WO:none,SY:RWED,OW:RWED, 
GR:none 

Attach on creation 
Read and write access desired on attach 

III 



85 
86 
87 
88 
89 
90 
91 

C ErT'or 
100 
110 

2()() 

210 

Dynamic Regions 

SOLUTION 

h<~ndling code 
WRITE (5,110)IDS 
FORMAT (' ERROR CREATING REGION, DSW - ',14) 
GOTD 600 
WRITE (5,210)ID9 
FORMAT (' ERROR CREATING WINDOW, DaW = ',14) 
GO TO 600 
WRITE (5,410)ID8 '7'2 

93 
400 
410 FORMAT (I' Ef,ROR IN SEND-BY'-REFERENCE, DSW ::: /,14) 

GOTO 600 
WRITE (5,460)IDS 

94 
95 
96 

45() 
460 FORMAT (' ERROR IN 2ND SEND-BY-REFERENCE, DSW 

97 
98 
99 

100 
101 
102 
103 
104 
105 
106 

1 
2 
3 
4 

500 
510 

~=j~50 

560 
C 
600 

1 == ',14) 
GOTO 600 
WRITE (5,510)IDS 
FORMAT (' ERROR ON 
GOTD 600 
WRITE (5,560)IDS 
FORMAT (I' ERROR ON 

CAll EXIT 
END 

.TITlE 

.IDENT 

.ENABL. 

L.EX8~5B 
101/ 
lC 

5 File LE~83B.MAC 
6 

WAIT, DSW ',14) 

2ND WAIT, DSW - ',14) 

Enable lower case 

7 Second reciever for SNDREF (modifed to LEX83A). 

! !EX 
! !EX 

! !EX 
! !EX 
! !EX 

8 Program to receive-bY-reference (mapped on creation), 
9 modify the first data byte in the region, 

10 read ASCII data from the region, detach from the 
1~ region and exit. The region will be deleted on last 
12 detach. 
13 
14 The first word in the region contains the count of the 
15 number of bytes of data in the resion. 
16 
.17 Assemble and task build instructions: 
:1.8 
19 >MACRO/LIST LB:[l,lJPROGMACS/LIBRARY,dev:[ufdJ 
20 ->LEX83B 
21 LINK/MAP/OPTIONS LEX83B,LB:C1,lJPROGSUBS/LIBRARY 
22 option? WNDWS=l 

113 



Dynamic Regions 

SOLUTION 

1 PROGRAM LEX83B 
2 C 
3 C File LEX83B.FTN 
4 C 
5 C LEX83B receives bw reference a re~ion from the task 
6 r LEX83A. It maps to the re~ion, modifies the ~irst 
7 C b~te, prints out the contents, and exits. The re~ion 

8 C is deleted on last detach. 
9 C 

10 C Task-build instructions: Include these options 
11 C WNDWS=l 
12 C VSECT=DATA:160000:20000 
13 C 
14 r Install and run instructions: LEX83B must be installed. 
15 C as RCVRF2. RCVREF must be installed. Run LEX83A first, 
16 C then run LEX83B and RCVREF (in either order). 
:L7 C 
18 C WDe = Window definition block with: 
19 C APR 7 
20 C Size 200(8) 32-word blocks 
21 C Allow for full APR 
22 r Offset in re~ion 0 32-word blocks 
23 C Len~th of region 0 32-word blocks (to be filled 
24 C in on receive) 
25 r Read and write access 
26 INTEGER WDB(8) 
27 DATA WDB/-3400,0,-2,0,0,·0,·3,O/ 
28 BYTE DATA(128) 
29 C This common block will ali~n with the address window 
30 COMMON /DATA/DATA 
3:1. C 
32 C Create address window--do not map at this time 
33 CALL CRAW(WDB,IDS) 
34 C Check for error on create 
35 IF (IDS .LT. 0) GOTO 200 
36 C Now set WDB status for mappin~--will be done bw 
37 r r(·:~cf.~' i. ve--b~- refe renee 
38 WDB(7)=WDB(7)+-200 
39 C Receive data and map 
40 CALL RREF(WDB"IDS) 
41 C Check for error 
42 IF (IDS .LT. 0) GOTO 100 
43 C Modify first value 
44 DATA(1)='9' 
45 C Calculate number of bwtes of data - length in blocks 
46 C returned at WDB(6) 
47 NCHAR = 64*WDB(6) 
48 WRITE(S,10) (DATA(I),I=l,NCHAR) 
49 10 FORMAT (' ',64Al) 
~j 0 C Go e :.~ i t 
51 GOTO 300 

115 



1. 

File I/O 

TEST /EXERCISE 

Next to each activity, write 0 for open, I for I/O 
or C for close, to identify which step of 
involved. 

a. Records are read from the file. 

b. Access rights to the file are checked. 

c. Existing file is located on disk. 

operation, 
file I/O is 

d. Internal buffers are placed in a pool for re-use. 

e. Records are written to a file. 

2. Describe three functions performed by the Files-II ancillary 
control processor (FllACP) when a task creates a new file 
containing seven blocks~ 

117 



File I/O 

TEST /EXERCISE 

b. A company has a file of customer records. Each record 
contains the company name, the address, the contact 
person, and the equipment bought. At different times, the 
records are accessed using company name, city, or contact 
person. 

c. A company uses COBOL for its applications. It has a 
payroll file which is processed in order every two weeks. 

119 



1 • 

File I/O 

SOLUTION 

Next to each activity, write 0 for open, I for I/O 
or C for close, to identify which step of 
involved. 

I a. Records are read from the file. 

0 b. Access rights to the file are checked. 

0 c. Existing file is located on disk. 

C d. Internal buffers are placed in a pool for 

I e. Records are written to a file. 

operation, 
file I/O is 

re-use. 

2. Describe three functions performed by the Files-II ancillary 
control processor (FllACP) when a task creates a new file 
containing seven blocks. 

Any three of the following: 

Allocate a file header 

Initialize the file header 

Set up file retrieval pointers 

Create a directory entry 

Allocate blocks to the file 

Connect a task's LUN to the file 

121 



File 1/0 

SOLUTION 

b. A company has a file of customer records. Each record 
contains the company name, the address, the contact 
person, and the equipment bought. At different times, the 
records are accessed using company name, city, or contact 
person. 

Best answer is RMS only since an indexed 
multiple keys is needed for fastest access. 
used, but access by key value is impossible. 
have to step through the file, checking all 
locate the one you want. 

file with 
FCS can be 
You would 

records, to 

c. A company uses COBOL for its applications. It has a 
payroll file which is processed in order every two weeks. 

RMS only; COBOL is supported under RMS, but not under 
FeS. 

123 



File Control Services 

TEST / EXERCISE 

1. Modify CRESEQ so that each record in the file contains the 
text input from the terminal preceded by "AAAA". 

2. Write a task that appends records to a file you have created 
(using one of the FCS example programs or the editor). 

3. In MACRO-II, modify the task CREFXA so that input from the 
terminal uses FCS routines instead of QIO directives. 

4. Write a task that requests input from a terminal of the form: 

n, text 

Use the input to update the nth record of FIXED.ASC, which has 
fixed length records. Use random access and do not truncate 
the file. 

5. In MACRO-II, modify the task BLOCKI or BLOCK2 so that it 
writes or displays two virtual blocks ata time. 

6. (Optional) In MACRO-II, modify the task CSI so that the 
subroutines DISPLY and DELETE actually display and delete the 
file. Caution: DELET$ delete the highest version of a file 
if no version number is specified. (See Chapter 6 of the 
IAS/RSX I/O Operations Reference Manual for information about 
the routines GCML and CSI.) 

125 



1. 1 
,.) 
.:.0 

~5 

4 
5 
6 
7 
8 
9 

10 
11 
:L2 
13 
14 
15 
16 
17 
18 
19 
2() 
21 
22 
2~5 

24 
1")1::' 
A-<t..' 

2b 
,.) .... 
.:.0/ 

28 
29 
:'50 
:'51 
3'') 
~ 

33 
34 
3~5 

3b 
37 
38 
39 
40 
41 
4':) 
43 
44 
4~; 

4b 
47 
48 
49 
50 

;+ 

;-

.TITLE 

.IDENT 

.ENABL 

File Control Services 

SOLUTION 

CI:;:ESEO 
/()l/ 
L.C 

File LEX:l.Ol.MAC 

Modified to preced each record with AAAA 

CRESEO creates a file VARI.ASC. It reads 
records from TI:, and places them in the file. 
A -Z terminates input and closes the file. 

Assemble and task-build instructions: 

MACRO/LIST LB:[1,1]PROGMACS/LIBRARY,dev:CufdJ
.... >CRESE[~ 
LINK/MAP CRESEQ,LB:[1,1]PROGSUBS/LIBRARY 

• MCAL..L 
.MCALL 
.MCALL 
.MCALL. 

EXSTSC,QIOWSC,QIOWS,DIRS ; S~stem macros 
FSRSZS,FDBDFS,FDATSA,FDRCSA,FDOPSA ; 
NMBLKS,OPENSW,PUTS,CL.OSES ; 
DIRERR,IOERR,FCSERR ; SUPplied macros 

FSRSZS 1 ; 1 file for record I/O 

Define file descriptor block for VARI.ASC 

FDB: FDBDFS Al1ocat(,:~ the FDB 
Variable lensth records, 
Listins - implied 
carria~e return, line 
feed 

FDATSA R.VAR,FD.CR 

FDRCSA ,BUFF 

FIIOF'SA 1"FNAME 

FNAME: NMBLKS VARI,ASC 

; Local Data 
BUFF: .ASCII /AAAA/ 
INBUF: .BLKB SO. 
lOST: .BL.KW 2 

.LI9T BEX 

.EVEN 

.ENABI... LSB 

127 

Seauential access and 
reco T'd I /0 b~ 
default, BUFF is 
user record buffer 

Use LUN 1, file spec 
at FNAME 

·VARI.ASC a 

USER RECORD BUFFER ;;EX 
; H::X 

I/O STATUS BLOCK 



File Control Services· 

SOLUTION 

1 PROGRAM CRESEQ !CREATE FILE SEQUENTIALLY 
2 C 
3 C FILE LEXI01.FTN 
4 C 
5 C Modified to precede each record with AAAA· ! !EX 
6 C 
7 C This task creates a file of VARI.ASC of 
8 C variable-Ien~th records usin~ seauential record access. 
9 C The records are input from the terminal and copied to 

10 C the file. The process stops when the operator twpes 
11 C CTRL/Z at the terminal. 
12 C 
13 BYTE BUFF(84),INBUF(80) ! !EX 
14 E(~UIVI~LENCE (BUFF(5)"INBUF(1» '!EX 
15 INTEGER LEN 
16 DATA BUFF(1)"BUFF(2),BUFF(3),BUFF(4) 
17 l/'A','A','A','A'1 
18 C 
19 C 
20 C OPEN FILE 
21 C 
22 C Default access is seauential 
23 C Default is formatted liD for seauential files 
24 C 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

c 

C Loop 
10 
11 
C 

C 

OPEN 
:t. 

(UNIT=l,NAME='VARI.ASC',TYPE='NEW', 
CARRIAGECONTROL='LIST') 

TYPE *,'TYPE IN TEXT, TERMINATE EACH RECORD 
1 WITH A CARRIAGE RETURN' 
TYPE *,'TERMINATE INPUT WITH A CTRL/Z' 

READ (5,11,END=100) LEN"INBUF 
FORMAT (Q,80A1) 

LEN ::: LEN+4 

WRITE (1,12) (BUFF(I),I=1,LEN) 

Read reco T'd' 'EX 

Add 4 fOT' A's 
, 'EX 

Write record 
12 FORMAT (BOA1) to file 

GO TO 10 
C Close file and exit 
100 CLOSE (UNIT=1) 

CALL EXIT 
END 

129 



File Control Services 

SOLUTION 

51 CHOW$C IO.RVB,5,1"IOST,,(BUFF,80.); Read a 
52 line from TI: 
53 Bec ItIROK Branch on [Ii T'ective ok 
54 MOV tEF'ICHO,Rl Set IJP for $EItMSG 
55 MOV t.IISW,R2 
56 BR SHOERR Branch to show €:'T'ro r 
57 and e~·dt 
58 DIROK: TSTB lOST Check for 1/0 errOl' 
59 BGT OKlO BT'anch if 1/0 ok 
60 CMF'B tIE.EOF"IOST Check for EOF 
61 BEO EXIT If EO, close and e~·~ it 
62 MOVB 10ST,RO 1/0 status is sign 
63 e~·ctended and F,laced 
64 in argument block 
65 MOV RO,ARG for $EDMSG call 
66 MOV tARG,R2 Set '.J? for $EDMSG call 
67 MOV tEFDCHO"Rl 
68 BR SHOERR Branch to show error 
69 and e~·dt 
70 OKlO: MOV IOST+2,Rl Length of l'ecord to FU 
71 PUT$ tFDB"Rl,ERR2 Write neNt record 
72 BR 10$ Get ne~·~t record 
73 
74 EXIT: CLOSE$ tFDB Close file 
71:: ,J BeS EI:':R3 BT'anch on FCS En' 1'0 r 
76 EXST$C EX$SUC E~·dt with status of :I. 
77 
78 ; Error Processing 
79 ERR1: 
80 ERR2: 
81 ERI:':3: TSTB F.ERR+l(RO) Iii rf.~ct, i ve error or 110 
82 error 
83 BEQ 10 Branch on 1/0 errOl' 
84 MOV tEFCDIR,R1 Set UP for $EDMSG, 
85 directive error 
86 BR FINSET Branch to finish setup 
87 10: MOV tEFCSIO"Rl Set UP for $EDMSG" lID 
88 error 
89 FINSET: MOVB F.ERR(RO),RO FCS error code 
90 MOV RO, Ar~G is sign e~·~tended and 
91 MOV tARG,R2 placed in ars block 
92 $EDMSG argument block. 
9:~ SHOERR: MOV tOBUFF,RO OutPIJt buffer 
94 CALL $EDMSG Format err'or messasE' 
91:: ,J MOV R1,PRINT+Q.IOPL+2 ; Size of message 
96 DIR$ tPRINT Print erT'OT' ITleSSage 
97 CLOSE$ tFDB Close file 
9EJ EXST$C EX$ERR E~·d t, with statu~; of '") 

A.. 

99 .END START 

131 



3. 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
1 C" ... } 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3() 
31 
32 
33 
~54 
~55 

:36 
37 
38 
39 
4() 
41 
42 
43 
44 
45 
46 
47 

;+ 

.TITLE 

.IDENT 

.ENABL 

File Control Services 

SOLUTION 

CREFXA 
/01/ 
LC Enable lower case 

~':'ile LEXI03.MAC 

Modified to use FCS instead of aID's to ~et ;;EX 
input from TI: ;;EX 

CREFXA opens FIXED.ASC for write, inputs records 
from TI: and puts them seGuentiallw to the file. 
A ~z terminates input and closes the file. 

RSIZ 
lOST: 
PRINT: 
BUFF: 
OBUFF: 

ARG: 

EFDaIO: 
EFlaIO: 
EFCDIR: 
EFCSIO: 

FDB: 

FILE: 

.MCALL EXSTSC,aIOWSC,QIOWS,DIR$ 

.MCALL FSRSZS,FDBDFS,NMBLKS 

.MCALL FDRCSA,FDATSA~FDOP$A 

.MCALL OPENSW,GETS,PUTS,CLOSES 

.MCALL OPENSR 

.NLIST 
:::: 30. 
• BLI<W 
QIOWS 
.BLKB 
.BLKB 

.BLKW 

.ASCIZ 

.ASCIZ 

.ASCIZ 

.ASCIZ 

.EVEN 

.LIST 

FSRSZS 

FDBDFS 

BEX 

2 

; SUPF"ress ASCI I 
; Record size (bwtes) 
; aIO status block 

IO.WVB,5,1",,{OBUFF,O,40> 
RSIZ User record buffer 
80. Output buffer for 

error messages; 
1 Ar~ument block for 

SEDMSG 
IDIRECTIVE ERROR ON QIO. ERROR CODE :::: %D.I 
1110 ERROR ON QIO. ERROR CODE:::: %D.? 
IFCS DIRECTIVE ERROR. ERROR CODE:::: %D.I 
?FCS liD ERROR CODE. ERROR CODE:::: %D.? 

BEX 

2 

Show offsets 

2 files for record liD 
; H~X 

; File descriptor block 
FDRCSA ,BUFF,RSIZ ; User buffer and size 
FDATSA R.FIX,FD.CR,RSIZ; Fixed len~th records, 

FDOPSA 1"FILE 
NMBLKS FIXED,ASC 

133 

implied <CR><LF> 
l.Jse LUN 1 
FIXED.ASC 



File Control Services 

SOLUTION 

98 ; Error Processing 
99 ERR1: 

100 ERR2: 
101 ERR3: 
102 ERR4: TSrB F.ERRtl(RO) Directive error or lID 
103 error 
104 BEQ 10 Branch 01"1 lID error 
105 I1IRERR: MOV tEFCDIR,Rl Set U? for $EDMSG, ; ;EX 
106 di rectiv(-? eT'rOT' 
107 BR FINSEr Branch to finish setup 
108 10: MOV tEFCSIO"Rl Set UP for $EDMSG, 110 
109 error 
110 FINSEr: MOVB F.ERR(RO),RO FCS error code 
111 MOV RO,ARG is sign e~·,tend€~d and 
112 MOV tARG,R2 placed in aT'g block 
113 $EDMSG argument block 
114 SHOERR: MOV tOBUFF,RO Output buffc-?T' 
115 CALL $EDMSG Format error messcs!,je 
116 MOV Rl,PRINTtQ.IOPLt2 ; Size of lTIeSSc~gf:~ 

117 I1IR$ tP~~INr PT'int eT'T'C)r ITlessa~ie 

118 CLOSE$ iFDB Close file 
119 CLOSE$ iFDBI Close -file- at T1: ~ ; EX 
120 EXST$C EX$ERR E~·:i t, with status of 2 
121 .END START 

135 



50 
51 
52 
53 
54 
~;5 

56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
'70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
B2 
83 
84 
85 
86 
87 
88 
89 
90 
91 
(12 
93 
(14 
95 
96 
(17 
98 
99 

lOO 
l01 

START: 

; Clear 
lOS: 

20$: 

File Control Services 

SOLUTION 

.ENABL LSB Allow local symbols 
to cross Psect 
bOI.Jndaries 

OF'EN$U 

buffer 
MOV 
MOV 
MOVB 
SOB 

tC) all blanks 
:J:~-;:SIZ,Rl 

tBUFF"R2 
i ~ , (R2) t 
Rl,20$ 

Open file for update 
; (includes extend) 

each time 
Record size 
R2 =) buffer 
Move in a blank. 
Continue until done 

QIOWSC IO.RPR,5,1"IOST"(BUFF,RSIZ,,INPT,LINPT,'S) 
Prompt and ~et input 

CMPB tIE.EOF,IOST Check for ~Z 
BEQ EXIT If -Z, exit 
MOV tBUFF,RO Set UP to convert 
CALL SCDTB ; record t to binar~ 

Check for ~ood conversion, character after t is 
returned in R2 (it should be a M,M) 

CMPB t'"R2 ; Is it a comma 
BEQ GOOD ; Branch on ~ood 

conveT'sion 
QIOWSC IO.WVB,5,1",,(CNVER,LCNVER,40) 

Display error messaSe 
BCS ERR4 Branch on directive 

error 
BR lOS Get next input 

GOOD: PUTSR tFDB",Rl"ERR2 Write record to output 
file 

BR lOS ; Get next input 
; Close file, display message, and exit 
EXIT: CLOSES tFDB,ERR3 ; Close file 

QIOWSC IO.WVB,5,1",,(BUFF1,LEN1,40> ;Write 

BCS ERR4 

ERr~ 1 : 
ERR2: 
ERR3: 

EXITSS 

CLOSES 
MOVB 
MOV 

MOV 
T8TB 
BEQ 
MOV 

BR 
IOERR: MOV 

tFDB,ERR3 
F • ERR (RO) , r~o 
RO,IOST 

tIOST,R2 
F.ERRtl(RO) 
10ERR 
tEMESD,R1 

COMME 
tEMESI,R1 

137 

; messaSe to operator 
; Branch on error 

Close t'ile 
Move FCS error code 

to arSument block 
for SEDMSG 

Set UP for SEDMSG 
1/0 or directive error 
Branch on 1/0 error 
Set UP for dir error 

ITlessase 
Branch to common code 
Set UP fdr 1/0 error 

message 



5. 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
l3 
14 
15 
:16 
17 
18 
19 
20 
21 
'")1") .' ...... 
23 
24 
25 
26 
27 
2B 

,29 
30 
31 
3'" .:.. 

33 
34 
3 c 

... 1 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

;t 

.TITLE 

.IDENT 

.ENABL 

File Control Services 

SOLUTION 

BLOCK2 
lOll 
LC Enable lower case 

File LEX105.MAC ; ;EX 

Modified to work on 2 virtual blocks at a time ;;EX 

**-BLOCK2 prompts at TI: for a virtual block number 
and then reads and displa~s that block of -BLOCK.ASC· 

;-

CR 
LF 
MESl. : 
LENl 
MES2: 
; 
LEN2 
MES3I: 
MES:3D: 
MES4I: 
MES4D: 
MES5I: 
MES5D: 
BUFF: 

FDB: 

FIl.E: 

.MCAl.L 

.MCALl. 

.MCALL 

.SBTTl. 

.NLIST 
:::: 15 
:::: 12 

QIOWS,DIRS,QIOWSS,EXSTSS 
FDBDFS,FDRCSA,FDBKSA,FDOPSA,NMBLKS 
FSRSZS,OPENSR,READS,WAITS,CLOSES 

MESSAGES 
BEX 

.ASCII IFIRST VIRTUAL BLOCK: I 
:::: • - MESl 
.ASCII <CR><LF>/HERE ARE THE BLOCKS I<CR><LF> 

; ; EX 
:::: • - MES2 
.ASCIZ /1/0 ERROR 
.ASCIZ IDIRECTIVE 
.ASCIZ /1/0 ERROR 
.ASCIZ IDIRECTIVE 
.ASCIZ /1/0 ERROR 
.ASCIZ IDIRECTIVE 
.BLKB 80 • 

.LIST BEX 

.EVEN 

FROM OPENSR, CODE:::: XD./ 
ERROR FROM OPENSR, CODE:::: XD.I 
FROM READS, CODE:::: XD.' 
ERROR FROM READS, CODE - XD.I 
FROM WAITS, CODE:::: %D.' 
ERROR FROM WAITS, CODE = XD.I 

; STORE RESPONSE HERE 

.SBTTL LOCAL STORAGE 

FSRSZS 

FDBDFS 
FDRCSA 
FDBKSA 

FDOPSA 
NMBLKS 

0 NO FSR BUFFER NEEDED 
FOR BLOCK 1/0 

FDB FOR INPUT FILE 
FD.RWM ; READ/WRITE MODE 
BLOCK,1024.,,1,IOSB ; EF 1, BUFFER ADR,;;EX 

SIZE 
1"FILE LUN 1, DFNB 
BLOCK,ASC NAME IS BLOCK.ASC 

VBN: • WORD 
BLOCK: • BLKW 
IOSB: .BLKW 

0,1 
512. 
2 

DEFAULT VBN 
BLOCK BUFFER 

139 



File Control Services 

SOLUTION 

101 IOERR2: MOV tMES4I,Rl =:> I/O error messar.je 4 
102 BR FCSERR Branch to common codf-? 
103 ERR3: 
104 TSTB F.ERR+l(RO) 1/0 or di r~~ct,ive errC)f' 
l()S BEC~ IOERR3 Efrarlch on I/C) errOT' 
1()6 MOV tMES5IhR1 =:;:. Di T' error messagf.~ 5 
107 BR FCSERR Brcmch to common code 
108 IOERR3: MOV tMES5I,Rl :::::> I/O error lTte~;~;age I::-

,.1 

1()9 FALL INTO COMMON CODE 
110 FCSERR: 
111 MOVB F.ERR(RO),R2 Sign eNtend error code 
112 MOV R2,IOSB and lTtove into lOSB 
113 MOV tEX$ERf\,R5 E~·dt status in R5 
114 FORMAT: 
115 MOV tIOSB,R2 Set, UP for $EDMSG 
116 MOV tBUFF,RO 
117 CALl. $EDMSG 
118 aIOW$S tIO.WVB,t5~tl",,<tBUFF,Rl,t40> Di!:;pla~ 

119 lTtessa~:.~e 

120 EXIT: 
121 CLOSE$ tFDB Close the file 
122 EXST$S R5 E~·dt with status 
123 .END START 

141 



51 
52 
53 
~)4 

55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
(72 
93 
94 
95 
96 
97 
98 
99 

100 

File Control Services 

CBLK: 

SWTBL: 

SOLUTION 

CSI$ 
.BLKB 
.EVEN 

C.SIZE 

[tEMSK _. 1 
[lIMSK = 2 

CSI$SW DE,DEMSK 
CSI$SW DI,DIMSK""NUM 

CSI$ND 

Define CSI offsets 
allocate CSI storase 

Delete mask 
Displa~ mask 
Switch descriptor table 
Delete switch - DE 
Displa~ switch = DI, 
also allow DI:N 

End of switch table 

CSI$SV OCTAL,COPY,2,NUM; Value N for IDI:N is 
in octal and will 
be stored in COpy 

CSI$ND End of switch value 
table 

;GET COMMAND LINE BLOCK DEFINITIONS 

FSRSZ$ 3 

GBLK: GCMLB$ ,CSI,,5 

FItB: FDBItF$ 

FDRC$A ,TBUFF,132. 

FItOP$A 1,CBLKtC.DSDS 

; NOTE: Need a 2nd FItB for display 

FItBO: FDBDF$ 
FDAT$A R.VAR,FD.CR 

FDRC$A ,TBUFF,132. 

FDOP$A 2,DSPTO 

DSPTO: .WORIt LDEV,DEV 
.WORD 0,0 
.WORD 0,0 

DEV: .ASCII ITI:I 
LDEV=.-DEV 

GCML uses record I/O;;EX 

Prompt with 'eSI' on 
LUN 5 

FDB for file to delete 
or display. 

URB AT TBUFF, lensth 
132. 

LUN 1, dataset 
descriptor from csr 

FDB for output to TI:;;EX 
Var len~th records, ;;EX 
list format ;;EX 

URB at TBUFF, lensth;;EX 
132. ;;EX 

LUN 2, dataset ;;EX 
descriptor at DSPTO ;;EX 
Dataset descriptor ;;EX 
for TI:. No Ule or ;;EX 
name needed. ;;EX 

;; EX 
;; EX 

.EVEN 
JMPTBL: • WORD NONE,DELETE,DISPLY ; Jump table for 

subroutines dependin~ 
; on switches 

COpy: .WORD 1 ; Value for N in IDI:N 

143 



151 
152 
1~)3 

154 

File Control Services 

CALL OUTMS 

RETURN 

SOLUTION 

Call OUTMS, as a 
subroutine 
Return 

;; EX 
; ; EX 
; ; EX 

155 Common displa~ messa~e code - a subroutine since it ;;EX 
156 is not a common return point ;;EX 
157 
158 
159 
160 
161 
162 
163 
164 

OUTMS: MOV 
MOV 
MOV 

iBUFF, I~() 
tFMT,I~j, 

tDATA,R2 

Set UP for SEDMSG 

CALL SEDMSG ~ Edit message 
QIOWSS tIO.WVB,t5,tl",,<tBUFF,Rl,t40> 
RETURN ; Return 

165 Subroutine DELETE 
166 
167 ***WARNING - THE HIGHEST VERSION NUMBER OF THE FILE *** 
168 ***WILL BE DELETED IF NO VERSION NUMBER IS SPECIFIED *** 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 

DELETE: MOV 

CALL 

DELETS 
RETURN 

; Delete err'or 
ERRD: MOVB 

MOV 
MOV 

COMME: TSTB 

BEa 
MOV 
BR 

IOERR: MOV 
DISf'ER: MOV 

MOV 
CALL 
MOV 
DIRS 
EXITSS 

tDELTXT,DATA 

OUTMS 

tFDB,ERRD 

code 
F.ERR(RO),R5 
R5,DATA+2 
tDELTXT,DATA 

F.ERR+1(RO) 

IOERR 
tFMTERD,R1 
DISf'ER 

tFMTERI,R:L 
tBUFF, I~O 
tDATA,R2 
SEDMSG ; 
R1,TYPE4+a.IOf'L+2 
tTYF'E4 

Set UP for Dutput of 
/Tlessa~e 

Call displa~ ;;EX 
subroutine ;;EX 

Delete file ;;EX 
Return 

Extend sign on error;;EX 
and move to ars block;;EX 

Move pointer to delete;;EX 
text ;;EX 

Check for directive ;;EX 
error or I/O error ;;EX 

Branch on I/O error ;;EX 
Get format string ;;EX 
Branch to common ;;EX 
error displa~ code ;;EX 

Get format strin~ ;;EX 
Set UP for SEDMSG ;;EX 

; ;EX 
Edit messaSe ;;EX 
; Size of messase ;;EX 
Displa~ messa~e ;;EX 
Exit ;;EX 

Subroutine DISPLY - Just displa~ a messa~e 

DISF'LY: CALL 
MOV 

CALL 

SSAVAL 
tDITXT,DATA 

OUTMS 

145 

Save all reSisters 
Set UP for output of 

message 
Branch to common 
displa~ code 




