
Monitor Calls
User's Guide

Order No. DEC-20-0MUGA-A-D

Monitor Calls
User's Guide

Order No. DEC-20-0MUGA-A-D

digital equipment corporation · maynard, massachusetts

First Printing, May 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL .•

Copyright ~ 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
docum.ent requests the user's critical evaluation to assist us in pre
paring future docwnentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM.

DECsystem-lO
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECsystem-20

5/76-14

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-IO
TYPESET-ll

PREFACE

CHAPTER 1

1.1
1.2
1.2.1
1.2.2
1.3

CHAPTER 2

2.1
2.2
2.3
2.4
2.5
2.6
2.6.1
2.6.2
2.7
2.8
2.9
2.10

CHAPTER 3

3.1
3.2
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.4
3.4.1
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.6.1
3.5.6.2
3.5.6.3
3.6
3.6.1
3.7
3.7.1
3.7.2

CONTENTS

INTRODUCTION

OVERVIEW
MONITOR CALLS

Calling Sequence
Returns

PROGRAM ENVIRONMENT

INPUT AND OUTPUT USING THE TERMINAL

OVERVIEW
PRIMARY I/O DESIGNATORS
PRINTING A STRING
READING A NUMBER
WRITING A NUMBER
INITIALIZING AND TERMINATING THE PROGRAM

RESET Monitor Call
HALTF Monitor Call

READING A BYTE
WRITING A BYTE
READING A STRING
SUMMARY

USING FILES

OVERVIEW
JOB FILE NUMBER
ASSOCIATING A FILE WITH A JFN

GTJFN Monitor Call
Short Form of GTJFN
Long Form of GTJFN
Summary of GTJFN

OPENING A FILE
OPENF Monitor Call

TRANSFERRING DATA
File Pointer
Source and Destination Designators
Transferring Sequential Bytes
Transferring Strings
Transferring Nonsequential Bytes
Mapping Pages
Mapping File Pages to a Process
Mapping Process Pages to a File
Unmapping Pages in a Process

CLOSING A FILE
CLOSF Monitor Call

ADDITIONAL FILE I/O MONITOR CALLS
GTSTS Monitor Call
JFNS Monitor Call

iii

Page

vii

1-1
1-2
1-2
1-3
1-4

2-1
2-2
2-2
2-3
2-4
2-6
2-6
2-6
2-6
2-7
2-7
2-11

3-1
3-2
3-2
3-4
3-4
3-10
3-14
3-14
3-15
3-17
3-17
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3':'23
3-23
3-24
3-25
3-25
3-26

3.7.3
3.8
3.9

CHAPTER 4

4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.4.3
4.5
4.6
4.7
4.7.1
4.8
4.9
4.9.1
4.9.2
4.9.3
4.9.4
4.9.5
4.9.6
4.10
4.11

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.4
5.5
5.5.1
5.6

5.6.1
5.6.2
5.7
5.8
5.9
5.10
5.11
5.12

CHAPTER 6

6.1
6.2
6.3
6.4
6.4.1

CONTENTS (CONT.)

GNJFN Monitor Call
SUMMARY
FILE EXAMPLES

USING THE SOFTWARE INTERRUPT SYSTEM

OVERVIEW
INTERRUPT CONDITIONS
SOFTWARE INTERRUPT CHANNELS AND PRIORITIES
SOFTWARE INTERRUPT TABLES

Channel Table
Priority Level Table
Specifying the Software Interrupt Tables

ENABLING THE SOFTWARE INTERRUPT SYSTEM
ACTIVATING INTERRUPT CHANNELS
PROCESSING AN INTERRUPT

Dismissing an Interrupt
TERMINAL INTERRUPTS
ADDITIONAL SOFTWARE INTERRUPT MONITOR CALLS

SKPIR Monitor Call
RIR Monitor Call
DIR Monitor Call
DIC Monitor Call
DTI Monitor Call
CIS Monitor Call

SUMMARY
SOFTWARE INTERRUPT EXAMPLE

PROCESS STRUCTURE

USES FOR MULTIPLE PROCESSES
PROCESS COMMUNICATION

Direct Process Control
Software Interrupts
IPCF and ENQ/DEQ Facilities
Memory Sharing

PROCESS IDENTIFIERS
OVERVIEW OF MONITOR CALLS FOR PROCESSES
CREATING A PROCESS

Process Capabilities
SPECIFYING THE CONTENTS OF THE ADDRESS
SPACE OF A PROCESS

GET Monitor Call
PMAP Monitor Call

STARTING AN INFERIOR PROCESS
INFERIOR PROCESS TERMINATION
INFERIOR PROCESS STATUS
PROCESS COMMUNICATION
DELETING AN INFERIOR PROCESS
PROCESS EXAMPLES

ENQUEUE/DEQUEUE FACILITY

OVERVIEW
RESOURCE OWNERSHIP
PREPARING FOR THE ENQ/DEQ FACILITY
USING THE ENQ/DEQ FACILITY

Requesting Use of a Resource

iv

Page

3-28
3-31
3-32

4-1
4-3
4-3
4-6
4-6
4-7
4-7
4-7
4-8
4-8
4-9
4-9
4-11
4-12
4-12
4-12
4-13
4-13
4-13
4-13
4-14

5-2
5-3
5-3
5-3
5-3
5-4
5-4
5-5
5-6
5-7

5-8
5-8
5-9
5-10
5-10
5-11
5-12
5-13
5-14

6-1
6-2
6-3
6-5
6-5

CHAPTER

APPENDIX

INDEX

6.4.1.1
6.4.1.2
6.4.2
6.4.2.1
6.4.2.2
6.4.3
6.5
6.6

7

7.1
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.4
7.4.1
7.4.2
7.5
7.5.1
7.5.2
7.6

A

FIGURES 4-1

TABLES

4-2
6-1
6-2
7-1

2-1
2-2
3-1

3-2
3-3
3-4
3-5
3-6
3-7

CONTENTS (CONT.)

ENQ Functions
ENQ Argument Block
Releasing a Resource
DEQ Functions
DEQ Argument Block
Obtaining Information About the Resources

SHARER GROUPS
AVOIDING DEADLY EMBRACES

INTER-PROCESS COMMUNICATION FACILITY

Page

6-5
6-7
6-10
6-10
6-11
6-11
6-13
6-14

OVERVIEW 7-1
QUOTAS 7-1
PACKETS 7-1

Flags 7-2
PIDs 7-4
Length and Address of Packet Data Block 7-5
Directories and Capabilities 7-5
Packet Data Block 7-5

SENDING AND RECEIVING MESSAGES 7-6
Sending a Packet 7-6
Receiving a Packet 7-8

SENDING MESSAGES TO <SYSTEM>INFO 7-10
Format of <SYSTEM>INFO Requests 7-10
Format of <SYSTEM>INFO Responses 7-11

PERFORMING IPCF UTILITY FUNCTIONS 7-12

ERROR CODES AND MESSAGE STRINGS A-I

FIGURES

Basic Operational Sequence of the
Software Interrupt System
Channels and Priority Levels
Deadly Embrace Situation
Use of Sharer Groups
IPCF Packet

TABLES

NOUT Format Options
RDTTY Control Bits
Standard System Values For
File Specifications
GTJFN Flag Bits
Bits Returned on GTJFN Call
Long Form GTJFN Argument Block
OPENF Access Bits
Bits Returned on GTSTS Call
JFNS Format Options

v

Index-l

4-2
4-5
6-4
6-13
7-2

2-5
2-8

3-3
3-4
3-8
3-10
3-15
3-25
3-27

4-1
4-2
5-1
5-2
6-1
6-2
7-1
7-2
7-3
7-4
7-5
7-6

CONTENTS (CONT.)

Software Interrupt Channel Assignments
Terminal Codes and Conditions
Process Handles
Process Status Word
ENQ Functions
DEQ Functions
Packet Descriptor Block Flags
Flags Meaningful on a MSEND Call
Flags Meaningful on a MRECV Call
<SYSTEM>INFO Functions and Arguments
<SYSTEM>INFO Responses
MUTIL Functions

vi

Page

4-4
4-10
5-4
5-11
6-5
6-10
7-2
7-7
7-8
7-11
7-11
7-12

PREFACE

The DECsystem-20 Monitor Calls User's Guide is written for the
assembly language user who is unfamiliar with the DECsystem-20. The
manual introduces the user to the functions that he can request of the
monitor from within his assembly language programs. The manual also
teaches him how to use the basic monitor calls for performing these
functions.

As such, this User's Guide is not a reference document, nor is it
complete documentation on the entire set of monitor calls. It is
organized according to functions, starting with the simple and
proceeding to the more advanced. Each chapter should be read from
beginning to end. A user who skips around in his reading will not
gain the full benefit of this manual. Once the user has a working
knowledge of the monitor calls in this document, he should then refer
to the DECsystem-20 Monitor Calls Reference Manual (DEC-20-0MRMA-A-D)
for the complete descriptions of all the calls.

To understand the examples in this manual, the user is assumed to be
familiar with the MACRO language and the DECsystem-20 machine
instructions. The DECsystem-20 MACRO Assembler Reference Manual
(DEC-20-LMRMA-A-D) contains the documentation on the MACRO language.
The Hardware Reference Manual (EK-DECIO-RF-OOI) contains the
information on the machine instructions. These two manuals should be
used in conjunction with the Monitor Calls User's Guide and should be
referred to when questions arise on the MACRO language or the
instruction set.

In addition, some of the examples in this manual contain macros and
symbols (e.g., MOVX, TMSG, JSERR, JSHLT) from the MACSYM system file.
This file is a universal file of definitions available to the user as
a means of producing consistent and readable programs. The user
should obtain a listing of this file for more information on its
contents.

Finally, the user should be familiar with the TOPS-20 Command Language
to enter and run the examples. The DECsystem-20 User's Guide
(DEC-20-0UGAA-A-D) describes the TOPS-20 commands and system programs.

vii

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

A program written in MACRO assembly language consists of a series of
statements, each statement usually corresponding to one or more
machine language instructions. Each statement in the MACRO program
may be one of the following types:

1. A MACRO assembler directive, or pseudo-operation (pseudo-op),
such as SEARCH or END. These pseudo-ops are commands to the
MACRO assembler and are performed when the program is
assembled. Refer to the DECsystem-20 MACRO Assembler
Reference Manual for detailed descriptions of the MACRO
pseudo-ops.

2. A MACRO assembler direct assignment
statements are in the form

symbol=value

statement. These

and are used to assign a specific value to a symbol.
Assignment statements are processed by the MACRO assembler
when the program is assembled. These statements do not
generate instructions or data in the assembled program.

3. A MACRO assembler constant declaration statement, such as

ONE:EXP 1

These statements are processed when the program is assembled.

4. An instruction mnemonic, or symbolic instruction code, such
as MOVE or ADD. These symbolic instruction codes represent
the operations performed by the central processor when the
program is executed. Refer to the Hardware Reference Manual
for detailed descriptions of the symbolic instruction codes.

5. A monitor call, or JSYS, such as RESET or BIN. These calls
are commands to the monitor and are performed when the
program is executed. This manual describes the commonly-used
monitor calls. However, the user should refer to the
DECsystem-20 Monitor Calls Reference Manual for detailed
descriptions of all the calls.

When the MACRO program is assembled, the MACRO assembler processes the
statements in the program by

translating symbolic instruction codes to binary codes.

1-1

INTRODUCTION

relating symbols to numeric values.

assigning relocatable or absolute memory addresses.

The MACRO assembler also converts each symbolic call to the monitor
into a Jump-to-System (JSYS) instruction.

1.2 MONITOR CALLS

Monitor calls are used to request monitor functions, such as
input/output, error handling, and number conversions, during the
execution of the program. These calls are accomplished with the JSYS
instruction (operation code 104), where the address portion of the
instruction indicates the particular function. This instruction is
the only instruction that requests monitor functions at the assembly
language level.

Each monitor call has a predefined. symbol indicating the particular
monitor function to be performed (e.g., OPENF to indicate opening a
file). The symbols are defined in a system file called MONSYM.
(Refer to DECsystem-20 Monitor Calls Reference Manual for a listing of
the MONSYM file.) To use the symbols and to cause them to be defined
correctly, the user's program must contain the statement

SEARCH MONSYM

at the beginning of the program. During the assembly of the program,
the assembler replaces the monitor call symbol with an instruction
containing the operation code 104 in the left half and the appropriate
function code in the right half.

The JSYS instruction itself contains no data, nor does it contain
space for returned data. Arguments for a JSYS instruction are placed
in accumulators (ACs). Any data resulting from the execution of the
JSYS instruction is returned in the accumulators or in an address in
memory pointed to by an accumulator. Therefore, before the JSYS
instruction can be executed, the appropriate arguments must be placed
in the specific accumulators.

1.2.1 Calling Sequence

Arguments for the calls are placed in accumulators 1 through 4
(ACl-AC4) • If more than four arguments are required for a particular
call, the arguments are in a list pointed to by an accumulator. The
arguments for the calls are specific bit settings or values. These
bit settings and values are defined in MONSYM with symbol names, which
can be used in the program. In fact, it is recommended that the user
write his program using symbols whenever possible. This makes the
program easier to read by another user. Use of symbols also allows
the values of the symbols to be redefined without requiring the
program to be changed. In this manual, the arguments for the monitor
calls are described with both the bit settings and the symbol names.
All program examples are written using the symbol names.

The set of instructions that place the arguments in the accumulators
is followed by one line of code giving the particular monitor call
symbol. During the program's execution, control is transferred to the
monitor when this line of code is reached.

1-2

INTRODUCTION

1.2.2 Returns

After the execution of the call, control returns to the user's program
at one of two places. If an error occurs during the call's execution,
control generally returns to the instruction immediately following the
monitor call. In addition, an error code is stored in an accumulator
to indicate the exact cause of the failure. This error code can be
obtained by the program and translated into its corresponding error
mnemonic and message string (refer to Appendix A for the list of error
codes, mnemonics, and message strings). If the execution of the call
is successful, control generally returns to the second instruction
following the monitor call. Data returned from the execution of the
call is stored in an accumulator or in an address pointed to by an
accumulator.

However, for some monitor calls, only a single return to the
instruction following the call occurs. On a successful return, that
instruction is executed. If an error occurs during the execution of
the call, the monitor examines the instruction following the call. If
the instruction is a JUMP instruction with the AC field specified as
either 16 or 17, the monitor transfers control to a user-specified
address. If the instruction is not a JUMP instruction, the monitor
generates a software interrupt indicating an illegal instruction,
which the user's program can process via the software interrupt system
(refer to Chapter 4). If the user's program is not prepared to
process the interrupt, it is terminated, and a message is output
stating the reason for failure.

To place a JUMP instruction in his program, the
statement using one of two predefined symbols.

ERJMP
ERCAL

address
address

user can include
These symbols are

a

and cause the assembler to generate a JUMP instruction. The JUMP
instruction is a non-operation instruction (i.e., a no-op) as far as
the hardware is concerned. However, the monitor executes the JUMP
instruction by transferring control to the address specified, which is
normally the beginning of an error processing routine written by the
user. If the user includes the ERJMP symbol, control is transferred
as though a JUMPA instruction had been executed, and control will not
return to his program after the error routine is finished. If the
user includes the ERCAL symbol, control is transferred as though a
PUSHJ 17, address instruction had been executed. If the error routine
executes a POPJ 17, instruction, control will return to the user's
program at the location following the ERCAL.

The ERJMP and ERCAL symbols can be used after all monitor calls,
regardless of whether the call has one or two returns. To handle
errors consistently, users are encouraged to employ these symbols with
all calls. The ERJMP or ERCAL is a no-op unless it immediately
follows a monitor call that fails.

The following is an example of executing a monitor call (BIN, refer to
Chapter 3) that has a single return. If the execution of the call is
successful, the program reads and stores a character. If the
execution of the call is not successful, the program transfers control
to an error routine. This routine processes the error and then
returns control back to the main program sequence. Note that the
ERCAL stores the return address.

1-3

INTRODUCTION

MOVE Tl,INJFN iobtain JFN for input file
BIN iinput one character

ERCAL [PUSH P,T2 isave character that was input
GTSTS iread file status
TXNE T2,GS%EOF iend of file?
JRST EOF iyes, process end-of-file condition
HRROI Tl,[ASCIZ/ ino, data error
?INPUT ERROR, CONTINUING
/]
PSOUT
POP P,T2
RET]

ltlOVEM T2, CHAR

1.3 PROGRAM ENVIRONMENT

iprint message
iretrieve character that was input
ireturn to program (POPJ 17,)
istore character

The user program environment in the TOPS-20 operating system consists
of a job structure that may contain many processes. A process is a
runnable or schedulable entity capable of performing computations in
parallel with other processes. This means that a runnable program is
associated with at least one process.

Each process has its own independent 256K address space for storing
its computations. This address space is called virtual space because
it is actually a "window" into physical storage. Because the TOPS-20
operating system operates on pages, address spaces and storage are
divided into 512 (decimal) pages, each of which is 512 words. (A word
on the DECsystem-20 is 36 bits.)

A process can communicate with other processes

explicitly by software interrupts or system facilities (e.g.,
I PCF) .

implicitly by changing parts of its environment (i.e., its
address space) that are being shared with other processes.

A process can create other processes inferior to it, but there is one
control process from which the chain of creations begin. A process is
said to exist when a superior process creates it and is said to end
when a superior process deletes it. Refer to Chapter 5 for more
information on the process structure.

A set of one or more related processes, normally under control of a
single user, is a job. Each active process is part of some job on the
system. A job is defined by a user name, an account number, some open
files, and a set of running and/or suspended processes. This means
that a job can be composed of several running or suspended programs.

1-4

INTRODUCTION

The following diagram illustrates a job structure consisting of four
processes.

-------~ / "-
/'" "

/// ~
/ CONTROL PROCESS ", '\

\ job
/ \

/ \
I \ I process A \

I
\ I
\ process C /

\ /
\ /
\ II
~ / " / "'-.. //

'-.......-- ./" ------
Both process A and process B are created by the control process and
thus are inferior to it. Process C is created by process B and thus
is inferior to process B only.

In summary, processes can be considered as independent virtual
machines with well-defined relationships to other processes in the
system, and a job is a collection of these processes.

1-5

CHAPTER 2

INPUT AND OUTPUT USING THE TERMINAL

One of the main reasons for using monitor calls is to transfer data
from one location to another. This chapter discusses moving data to
and from the user's terminal.

2.1 OVERVIEW

Data transfers to and from the terminal are in
individual bytes or text strings. The bytes
strings are ASCII strings ending with a 0 byte.
called ASCIZ strings (i.e., a string of up to
per word followed by a 7-bit character of zero).

the form of either
are 7-bit bytes. The

These strings are
five 7-bit characters

To designate the desired string, the user's program must include a
statement that points to the beginning of the string being read or
written. The MACRO pseudo-op, POINT, can be used to set up this
pointer, as shown in the following sequence of statements:

MOVE ACl,PTR

PTR: POINT 7,MSG
MSG: ASCIZ/TEXT MESSAGE/

Accumulator 1 contains the symbolic address (PTR) of the pointer. At
the address specified by PTR is the pointer to the beginning of the
string. The pointer is set up by the POINT pseudo-op. The general
format of the POINT pseudo-op is:

POINT decimal-byte-size,address,decimal-byte-position

(Refer to the MACRO Assembler Reference Manual for more information on
the POINT pseudo-op.) In the example above, the POINT pseudo-op has
been written to indicate 7-bit bytes starting at the left-most bit in
the address specified by MSG.

Another way of setting up an accumulator to contain the address of the
pointer is with the following statement:

HRROI ACI,[ASCIZ/TEXT MESSAGE/]

The instruction mnemonic ERROl causes a -1 to be placed in the left
half of accumulator 1 and the address of the string to be placed in
the right half. However, in the above statement, a literal (enclosed
in square brackets) has been used instead of a symbolic address. The
literal causes the MACRO assembler to:

2-1

INPUT AND OUTPUT USING THE TERMINAL

store the data within brackets (i.e., the string) in a table.

assign an address to the first word of the data.

insert that address as the operand to the HRROI instru~tion.

Literals have the advantage of showing the data at the point in the
program where it will be used, instead of showing it at the end of the
program.

As far as the I/O monitor calls are concerned, a word in this format
(-1 in the left half and an address in the right half) designates the
system's standard pointer (i.e., a pointer to a 7-bit ASCIZ string
beginning at the leftmost byte of the string). The HRROI statement is
interpreted by the monitor to be functionally equivalent to the word
assembled by the POIN~ 7, address pseudo-op and is the recommended
statement to use. However, byte manipulation instructions (e.g.,
ILDB, IBP, ADJBP) will not operate properly with this type of pointer.

After a string is read, the pointer is advanced to the character
following the terminating character of the string. After a string is
written, the pointer is advanced to the character following the last
non-null character written.

2.2 PRIMARY I/O DESIGNATORS

To transfer data from one location to another, the user's program must
indicate the source from which the data is to be obtained and the
destination where the data is to be placed. The two designators used
to represent the user's terminal are:

1. The symbol .PRIIN to represent the user's terminal as the
source (input) device.

2. The symbol .PRIOU to represent the user's terminal as the
destination (output) device.'

These symbols are called the primary input and output designators and
by convention are used to represent the terminal controlling the
program. They are defined in the symbol file MONSYM and do not have
to be defined in the user's program as long as the program contains
the statement

SEARCH MONSYM

2.3 PRINTING A STRING

Many times a program may need to print an error message or some other
string, such as a prompt to request input from the user at the
terminal. The PSOUT (Primary String Output) monitor call is used to
print such a string on the terminal. This call copies the designated
string from the program's address space. Thus, the source of the data
is the program's address space, and the destination for the data is
the terminal. The program need only supply the pointer to the string
being printed.

Accumulator I (ACl) is used to contain the address of the pointer.
After ACI is set up with the pointer to the string, the next line of
code is the PSOUT call. Thus, an example of the PSOUT call is:

2-2

INPUT AND OUTPUT USING THE TERMINAL

HRROI ACl,[ASCIZ/TEXT MESSAGE/]
PSOUT

;string to print
;print TEXT MESSAGE

The ASCIZ pseudo-op specifies an ASCII string terminated with a null
(i.e., 0) byte. The PSOUT call prints on the terminal all the
characters in the string until it encounters a null byte. Note that
the string is printed exactly as it is stored in the program, starting
at the current position of the terminal's print head or cursor and
ending at the last character in the string. If a carriage return and

-line feed are to be output, either before or after the string, these
characters should be inserted as part of the string. For example, to
print TEXT MESSAGE on one line and to output a carriage return-line
feed after it, the user's program includes the call

/]
HRROI ACl,[ASCIZ/TEXT MESSAGE

PSOUT

After the string is printed, the instruction following the PSOUT call
in the user's program is executed. Also, the pointer in ACI is
updated to point to the character following the last non-null
character written.

If an error occurs during the execution of the call, the monitor looks
for an ERJMP or ERCAL instruction as the next instruction following
the call. If the next instruction is either one of these, the monitor
transfers control to the address specified. If the next instruction
is not an ERJMP or ERCAL, the monitor generates a software interrupt.

2.4 READING A NUMBER

The NIN (Number Input) monitor call is used to read an integer. This
call does not assume the terminal as the source designator;
therefore, the user's program must specify this. The NIN call accepts
the number from any valid source designator, including a string in
memory. This section discusses reading a number directly from the
terminal. Refer to Section 2.9 for an example of using the NIN call
to -read the number from a string in memory. The destination for the
number is AC2, and the NIN call places the binary value of the number
read into this accumulator. The user's program also specifies a
number in AC3 that represents the radix of the number being input.
The radix given cannot be greater than base 10.

Thus, the setup for the NIN monitor call is the following:

MOVEI ACl,.PRIIN

MOVEI AC3,~DIO

NIN

;ACI contains the primary input designator
i(i.e., the user's terminal}

;AC3 contains the radix of the number being
;input (i.e., decimal number)

iThe call to input the number

After completion of the NIN call, control returns to the program at
one of two places (refer to Section 1.2.2). If an error occurs during
the execution of the call, control returns to the instruction
following the call. This instruction should be a jump-type
instruction to an error processing routine. Also, an error code is
placed in AC3 (refer to Appendix A for the error codes). If the
execution of the NIN call is successful, control returns to the second
instruction following the call. The number input from the terminal is
placed in AC2.

2-3

INPUT AND OUTPUT USING THE TERMINAL

The NIN call terminates when it encounters a nondigit character (e.g.,
a letter, a punctuation character, or a control character). This
means that if 32Xl were typed on the terminal, on return AC2 would
contain a 40 (octal) because the NIN call terminated when it read the
x.

The following program prints a message and then accepts a decimal
number from the user at the terminal. Note that the NIN call
terminates reading on any nondigit characteri therefore, the user
cannot edit his input with any of the editing characters (e.g.,
DELETE, CTRL/W). The RDTTY call (refer to Section 2.9) should be used
in programs that read from the terminal because it allows the user to
edit his input as he is typing it.

SEARCH MONSYM
HRROI ACl,[ASCIZ/Enter # of seconds: /]
PSOUT ioutput a prompt message
MOVEI ACl,.PRIIN iinput from the terminal
MOVEI AC3,~DIO iuse the decimal radix
NIN iinput a decimal number

ERJMP NINERR ierror-go to error routine
MOVEM AC2, NUMSEC isave number entered

NUMSEC:BLOCK 1

2.5 WRITING A NUMBER

The NOUT (Number Output) monitor call is used to output an integer.
The number to be output is placed in AC2. The user's program must
specify the destination for the number in ACI and the radix in which
the number is to be output in AC3. The radix given cannot be greater
than base 36. In addition, the user's program can specify certain
formatting options to be used when printing the number.

Thus, the general setup for the NOUT monitor call is as follows:

ACl: output designator

AC2: number being output

AC3: format options in left half and radix in right half

The format options that can be specified in the left half of AC3 are
described in Table 2-1.

Bit

o

1

2

3

4

5

6-10

11-17

INPUT AND OUTPUT USING THE TERMINAL

Symbol

NO%MAG

NO%SGN

NO%LFL

NO%ZRO

NO%OOV

NO%AST

NO%COL

Table 2-1
NOUT Format Options

Meaning

Print the number as a positive 36-bit
number. For example, -1 would be printed
as 777777 777777.

Print the appropriate sign (+ or -) before
the number. If bits NO%MAG and NO%SGN are
both on, a plus sign is always printed.

Print leading filler. If this bit is not
set, trailing filler is printed.

Use O's as the leading filler if the
specified number of columns allows filling.
If this bit is not set, blanks are used as
the leading filler if the number of columns
allows filling.

Use the setting of bit 5 (NO%AST) if column
overflows and give an error return. If
this bit is not set, column overflow is not
printed.

Print asterisks when the column overflows.
If this bit is not set, and bit 4 (NO%OOV)
is set, all necessary digits are printed
when the columns overflow.

Reserved for DEC (must be zero).

Print the number of columns indicated.
This value includes the sign column. If
this field is 0, as many columns as
necessary are printed.

Like the NIN call, the NOUT call returns control to the user's program
at one of two places. Control returns to the instruction following
the call if an error is encountered, and an error code is placed in
AC3. Control returns to the second instruction following the call if
no error is encountered.

The following example illustrates the use of the three monitor calls
described so far. The RESET and HALTF monitor calls are described in
Section 2.6.

2-5

INPUT AND OUTPUT USING THE TERMINAL

SEARCH MONSYM
START: RESET

HRROI ACI,[ASCIZ/PLEASE TYPE A DECIMAL NUMBER: /]
PSOUT
MOVEI ACI,.PRIIN
MOVEI AC3,~DIO
NIN

ERJMP ERROR

;source designator
;decimal radix

HRROI ACl,[ASCIZ/THE OCTAL EQUIVALENT IS /]
PSOUT
MOVEI ACl,.PRIOU
MOVEI AC3,~D8
NOUT

;octal radix

ERJMP ERROR
HALTF
JRST START

;return to command language
;begin again, if continued

ERROR: HRROI ACl,[ASCIZ/
?ERROR-TYPE START TO BEGIN AGAIN/]

PSOUT
HALTF
JRST START
END START

2.6 INITIALIZING AND TERMINATING THE PROGRAM

Two monitor calls that have not yet been described were used in the
above program - RESET and HALTF.

2.6.1 RESET Monitor Call

A good programming practice is to include the RESET monitor call at
the beginning of every assembly language program. This call
initializes the program's address space and closes any existing open
files. The format of the call is

RESET

and Control always returns to the next instruction following the call.

2.6.2 HALTF Monitor Call

To stop the execution of his program and to return control to the
TOPS-20 Command Language, the user must include the HALTF monitor call
as the last instruction performed in his program. He can then resume
execution of his program at the instruction following the HALTF call
by typing the CONTINUE command after control has been returned to
command level.

2.7 READING A BYTE

The PBIN (Primary Byte Input) monitor call is used
byte (i.e., one character) from the terminal. The
not have to specify the source and destination for
this call uses the primary input designator
terminal) as the source and accumulator 1 as the
execution of the PBIN call, control returns

2-6

to read a single
user's program does

the byte because
(i.e., the user's

destination. After
to the instruction

INPUT AND OUTPUT USING THE TERMINAL

following the PBIN. If execution of the call is successful, the byte
read from the terminal is right-justified in ACI. If execution of the
call is not successful, a software interrupt (refer to Chapter 4) is
generated if the user's program does not have, immediately after the
PBIN call, an ERJMP qr ERCAL instruction to an error routine.

2.8 WRITING A BYTE

The PBOUT (Primary Byte Output) monitor call is used to write a single
byte to the terminal. This call uses the primary output designator
(i.e., the user's terminal) as the destination for the byte; thus,
the user's program does not have to specify the destination. The
source of the byte being written is accumulator 1; therefore, the
user's program must place the byte right-justified in ACI before the
call.

After execution of the PBOUT call, control returns to the instruction
following the PBOUT. If ex~cution of the call is successful, the byte
is written to the user's terminal. If execution of the call is not
successful, a software interrupt is generated if the user's program
does not have, immediately after the PBOUT call, an ERJMP or ERCAL
instruction to an error routine.

2.9 READING A STRING

Up to this point, monitor calls have been presented for printing a
string, reading and writing an integer, and reading and writing a
byte. The next call to be discussed obtains a string from the
terminal and, in addition, allows the user at the terminal to edit his
input as he is typing it.

The RDTTY (Read from Terminal) monitor call reads input from the
user's terminal (i.e., from .PRIIN) into the program's address space.
Input is read until the user either types an appropriate terminating
(break) character or inputs the maximum number of characters allowed
in the string, whichever occurs first. Output generated as a result
of character editing is printed on the user's terminal (i.e., output
to .PRIOU).

The RDTTY call handles the following editing functions:

1. Delete the last character in the string if the user presses
the DELETE key while typing his input.

2. Delete back to the last punctuation character in the string
if the user types CTRL/W while typing his input.

3. Delete the current line if the user types CTRL/U while typing
his input.

4. Retype the current line if the user types CTRL/R while typing
his input.

Because the RDTTY call can handle these editing functions, a program
can accept input from the terminal and allow this input to be
corrected by the user as he is typing it. For this reason, the RDTTY
call should be used to read input from the terminal before processing
that input with calls such as NIN.

2-7

INPUT AND OUTPUT USING THE TERMINAL

The RDTTY call accepts three words of arguments in ACI through AC3.

ACl: pointer to area in program's address space where input is
to be placed. This area is called the text input buffer.

AC2: control bits in the left half, and maximum number of bytes
in the text input buffer in the right half.

AC3: pointer to buffer for text to be output before the user's
input if the user types a CTRL/R, or 0 if only the user's
input is to be output on a CTRL/R.

The control bits in the left half of AC2 specify the characters on
which to terminate the input. These bits are described in Table 2-2.

Bit Symbol

o RD%BRK

1 RD%TOP

2 RD%PUN

3 RD%BEL

4 RD%CRF

Table 2-2
RDTTY Control Bits

Meaning

Terminate input when user types a
CTRL/Z or presses the ESC key.

Terminate input when user types one of
the following:

CTRL/G
CTRL/L
CTRL/Z
ESC key
RETURN key
Line feed key

Terminate input when user types one of
the following:

CTRL/A-CTRL/F
CTRL/H-CTRL/I
CTRL/K
CTRL/N-CTRL/Q
CTRL/S-CTRL/T
CTRL/X-CTRL/Y
ASCII codes 34-36
ASCII codes 40-57
ASCII codes 72-100
ASCII codes 133-140
ASCII codes 173-176

The ASCII codes listed above represent
the punctuation characters in the
ASCII character set. Refer to an
ASCII character set table for these
characters.

Terminate input when user types the
RETURN or line feed key (i.e., end of
line) .

Store only the line feed
buffer when the user
RETURN key. A carriage

·2-8

in the
presses
return

input
the

will

Bit

5

6

7

8-9

10

11

12-17

Symbol

RD%RND

RD%RIE

RD%RAI

RD%SUI

INPUT AND OUTPUT USING THE TERMINAL

Table 2-2 (Cont.)
RDTTY Control Bits

Meaning

still be output to the terminal
will not be stored in the buffer.
this bit is not set and the
presses the RETURN key, both
carrlage return and the line feed
be stored as part of the input.

but
If

user
the

will

Return to program if the user attempts
to delete past the beginning of his
input. This allows the program to
take control if the user tries to
delete all of his input. If this bit
is not set, the program waits for more
input.

Reserved for DEC (must be zero).

Return to program when there is no
input (i.e., the text input buffer is
empty). If this bit is not set, the
program waits for more input.

Reserved for DEC (must be zero).

Convert lower case input to upper
case.

Suppress the CTRLjU indication on the
terminal when a CTRLjU is typed by the
user. This means that if the user
types a CTRLjU, xxx will not be
printed and, on display terminals, the
characters will not be deleted from
the screen. If this bit is not set
and the user types a CTRLjU, XXX will
be printed and, if appropriate, the
characters will be deleted from the
screen. In neither case is the CTRLjU
stored in the input buffer.

Reserved for DEC (must be zero).

If no control bits are set in the left half of AC2, the input will be
terminated when the user presses the RETURN or line feed key (i.e.,
terminated on an end-of-line condition only) .

The count in the right half of AC2 specifies the number of bytes
available for storing the string in the program's address space. The
input is terminated when this count is exhausted, even if a specified
break character has not yet been typed.

The pointer in AC3 is to the beginning of a buffer containing the text
to be output if the user types a CTRLjR. When this happens, the text
in this separate buffer is output, followed by any text that has been
typed by the user. The text in this buffer cannot be edited with any

2-9

INPUT AND OUTPUT USING THE TERMINAL

of the editing characters (i.e., DELETE, CTRL/W, or CTRL/U). If the
contents of AC3 is zero, then no such buffer exists, and if the user

. types CTRL/R, only the text in the input buffer will be output.

If execution of the RDTTY call is successful, the input is in the
specified area in the program's address space. The character that
terminated the input is also stored. (If the terminating character is
a ~arriage return followed by a line feed, the line feed is also
stored.) Control returns to the user's program at the second location
following the call. The pointer in ACI is advanced to the character
following the last character read. The count in the right half of AC2
is updated, and appropriate bits are set in the left half of AC2. The
bits that can be set on a successful return are:

Bit 12 RD%BTM

Bit 13 RD%BFE

Bit 14 RD%BLR

The input was terminated because one
of the specified break characters was
typed. This break character is placed
in the input buffer. If this bit is
not set, the input was terminated
because the byte count was exhausted.

Control was returned to the program
because there is no more input and
RD%RIE was set in the call.

The limit to which the user can backup
for editing his input was reached.

If execution of the RDTTY call is not successful, an
returned in ACI. Control returns to the user's
instruction following the RDTTY call.

error code is
program at the

The following example illustrates the recommended method for reading
data from the terminal. This example is essentially the same as the
one in Section 2.5; however, the RDTTY call is used to read the
number before the NIN call processes it.

START:
SEARCH MONSYM
RESET
HRROI ACl,PROMPT
PSOUT
HRROI ACl,BUFFER
MOVEI AC2,BUFLEN*5
HRROI AC3,PROMPT
RDTTY

ERJMP ERROR
HRROI ACl,BUFFER
MOVEI AC3,A DIO
NIN

ERJMP ERROR
HRROI ACl,[ASCIZ/THE OCTAL EQUIVALENT IS /]
PSOUT
MOVEI ACl,.PRIOU
MOVEI AC3,A D8
NOUT

ERJMP ERROR
HALTF
JRST START

2-10

INPUT AND OUTPUT USING THE TERMINAL

PROMPT: ASCIZ/PLEASE TYPE A DECIMAL NUMBER: /
BUFLEN==lO

BUFFER: BLOCK BUFLEN
ERROR: HRROI ACl,-[ASCIZ/
?ERROR-TYPE START TO BEGIN AGAIN/]

PSOUT
HALTF
JRST START
END START

2.10 SUMMARY

Data transfers of sequential bytes or text strings can be made to and
from the terminal. The monitor calls for transferring bytes are PBIN
and PBOUT and for transferring strings are PSOUT and RDTTY. The NIN
and NOUT monitor calls can be used for reading and writing a number.
In general, the user's program must specify a source from which the
data is to be obtained and a destination where the data is to be
placed. In the case of terminal I/O, the symbol .PRIIN represents the
user's terminal as the source, and the symbol .PRIOU represents the
user's terminal as the destination.

2-11

CHAPTER 3

USING FILES

3.1 OVERVIEW

All information stored in the DECsystem-20 is kept in files.
basic unit of storage in a file is a page containing bytes from
36 bits in length. Thus, a sequence of pages constitutes a file.
most cases, files have names. Although all files are handled in
same manner, certain operations are unavailable for files
particular devices.

Programs can reference files by several methods:

In a sequential byte-by-byte manner.

In a multiple byte or string manner.

The
1 to

In
the

on

In a random byte-by-byte manner
file-storage device allows it.

if the particular

In a page-mapping manner for files on the disk.

Byte and string input/output are the most common types of operations.

Generally, all programs perform I/O by moving bytes of data from one
location to another. For example, programs can move bytes from one
memory area to another, from memory to a disk file, and from the
user's terminal to memory. In addition, a program can map multiple
5l2-word pages from a disk file into memory or vice versa.

Data transfer operations on files require four steps:

1. Establishing a correspondence between a file and a Job File
Number (JFN) , because all files are referenced by JFNs.

2. Opening the file to establish the data mode, access mode, and
byte size and to set up the monitor tables that permit data
to be accessed.

3. Transferring data either to or from the file.

4. Closing the file to complete any I/O, to update the directory
if the file is on the disk, and to release the monitor table
space used by the file.

Some operations on files do not require the execution of all four
steps above. Examples of these operations are: deleting or renaming
a file, or changing the access code or account of a file. Although
these operations do not require all four steps, they do require that
the file has a JFN associated with it (step 1 above).

3-1

USING FILES

It is possible for disk files on the DECsystem-20 to be simultaneously
read or written by any number of processes. To make sharing of files
possible, all instances of opening a specific file in a specific
directory cause a reference to the same data. Therefore, data written
into a file by one process can immediately be seen by other processes
reading the file.

Access to files is controlled by the 6-digit file access code assigned
to a file when it is created. This code indicates the types of access
allowed to the file for the three classes of users: the owner of the
file, the users with group access to the file, and all other users. A
user has group access to a file if he is in the same group as the
directory in which the file resides is in. (Refer to the DECsystem-20
User's Guide for more information on the file access codes.) If the
user is allowed access to a file, according to its file access code,
he requests the type of access desired by including an OPENF monitor
call (refer to Section 3.4) in his program. If the access requested
in the OPENF call does not conflict with the current access to the
file, the user is granted access. Essentially, the current access to
the file is set by the first user who opens it.

Thus, for a user to be granted access to a specific file, two
conditions must be met:

1. The file access code must allow the user to access the file
"in the desired manner (e.g., read, write).

2. The file must not be opened for a conflicting type of access.

3.2 JOB FILE NUMBER

The Job File Number (JFN) is one of the more important concepts in the
operating system because it serves as the unique identifier of a
particular file on a particular device during a process' execution.
It is a small integer assigned by the system upon a request from the
user's program. JFNs are usually assigned sequentially starting with
1.

The JFN is valid for the job in which it is assigned and therefore,
may be used by any process in the job. The system uses the JFN as an
index into the table of files associated with the job and thus, always
assigns a JFN that is unique to the job. Even though a particular JFN
within the job can refer to only one file, a single file can be
associated with more than one JFN. This occurs when two or more
processes are using the same file concurrently. In this case, each of
the processes will probably have a different JFN for the file, but all
of the JFNs will be associated with the same file.

3.3 ASSOCIATING A FILE WITH A JFN

In order to reference a file, the first step the user program must
complete is to associate the specific file with a JFN. This
correspondence is established with the GTJFN (Get Job File Number)
monitor call. One of the arguments to this call is the string
representing the desired file. The string can be specified within the
program (i.e., come from memory) or can be accepted as input from the
user's terminal or from another file. The string can represent the
complete specification for the file:

3-2

USING FILES

dev:<directory>name.typ.gen;T(temporary) ;P(protection) ;A(account)

If any fields of the specification are omitted, the system can provide
values for all except the name field. Refer to the DECsystem-20
User's Guide for a complete explanation of the specification for a
file.

Table 3-1 lists the values the system will assign to fields not
specified by the input string.

Table 3-1
Standard System Values For File Specifications

Field Value

Device DSK:

Directory Directory to which user is currently
connected.

Name No default; this field must be
specified.

Type Null.

Generation number The highest existing generation number
if the file is an input file. The
next higher generation number if the
file is an output file.

Protection Protection of next lower generation of
file, if one exists; otherwise,
protection as specified in the
directory.

Account Account specified when user logged in.

If the string specified identifies a single file, the monitor returns
a JFN that remains associated with that file until either the process
releases the JFN or the job logs off the system. After the assignment
of the JFN is complete, the user's program uses the JFN in all
references to that file.

The user's program can set up either the short or the long form of the
GTJFN monitor call. The short form indicates that the file
specification is to be obtained from a string in memory or from a
file, but not from both. Fields not specified by the input are taken
from the standard system values for those fields (refer to Table 3-1).
This form is sufficient for most uses of the call. The long form
indicates that the file specification is to be obtained from both a
string in memory and a file. If both are given as arguments, the
string is used first, and then the file is used if more fields are
needed to complete the specification. This form also allows the
user's program to specify nonstandard values to be used for fields not
given and to request the assignment of a specific JFN.

3-3

USING FILES

3.3.1 GTJFN Monitor Call

The GTJFN monitor call assigns a JFN to the specified file. It
accepts two 'words of arguments. These argument words are different
depending on the form of GTJFN being used. The user's program
indicates the desired GTJFN form by setting bit 17 of ACI to 1 for the
short form or by clearing bit 17 to 0 for the long form.

3.3.1.1 Short Form Of GTJFN - The short form of the GTJFN monitor
call requires the following two words of arguments.

o 17 18 35
1===1

ACI 1 flag bits 1 default generation number 1
1===1

o 35
1===1

AC2 1 source designator for file specification per 1
1 bit 16 (GJ%FNS) of ACI 1
1===1

The flag bits that can be specified in ACI are described in Table 3-2.

Bit Symbol

o GJ%FOU

1 GJ%NEW

2 GJ%OLD

3 GJ%MSG

Table 3-2
GTJFN Flag Bits

Meaning

The file specification given is to be
assigned the next higher generation
number. This bit indicates that a new
version of a file is to be created and
is normally set if the file is for
output use.

The file specification given must not
refer to an existing file (i.e., the
file must be a new file).

The file specification given must
refer to an existing file (i.e., the
file must be an old file).

One of the appropriate messages is to
be printed after the file
specification is obtained. The
message is printed only if the user
types the ESC key to\. end his file
specification (i.e., he is using
recognition input).

[NEW FILE]
[NEW GENERATION]
[OLD GENERATION]

3-4

Bit Symbol

4 GJ%CFM

5 GJ%TMP

6 GJ%NS

7 GJ%ACC

8 GJ%DEL

9-10 GJ%JFN

11 GJ%IFG

12 GJ%OFG

USING FILES

Table 3-2 (Cont.)
GTJFN Flag Bits

Meaning

[OK] if GJ%CFM (bi t 4) is off
[CONFIRM] if GJ%CFM (bit 4) is on

Confirmation from the user will be
required to verify that the file
specification obtained is correct. To
confirm the file specification, the
user can press the RETURN key.

The file specified is
temporary file.

to be a

Only the first file specification in a
multiple logical name assignment is to
be searched for the file.

The JFN specified is not to be
accessed by inferior processes in this
job. However, any process can access
the file by acquiring a different JFN.
To prevent the file from being
accessed by other processes, the
user's program can set OF%RTD (bit 29)
in the OPENF call (refer to Section
3.4.1) .

The file specified is not to be
considered as deleted, even if it is
marked as deleted.

These bits are off in the short form
of the GTJFN call (refer to Section
3.3.1.2 for their description) .

The file specification given is
allowed to have one or more of its
fields specified with a wildcard
character (* or %). This bit is used
to process a group of files and is
generally used for input files. The
monitor verifies that at least one
value exists for each field that
contains a wildcard and assigns the
JFN to the first file in the group.
The monitor also verifies that fields
not containing wildcards represent a
new or old file according to the
setting of GJ%NEW and GJ%OLD.

The JFN is to be associated with the
given file specification string only
and not to the· actual file. The
string may contain a wildcard
character (* or %) in one or more of
its fields. It is checked for correct
punctuation between fields, but is not
checked for the validity of any field.

3-5

Bit Symbol

13 GJ%FLG

14 GJ%PHY

15 GJ%XTN

16 GJ%FNS

17 GJ%SHT

18-35

USING FILES

Table 3-2 (Cont.)
GTJFN Flag Bits

Meaning

This bit allows a JFN to be associated
with a file specification even if the
file specification does not refer to
an actual file. The JFN returned
cannot be used to refer to an actual
file (e.g., cannot be used in an OPENF
call) but can be used to obtain the
original input string via the JFNS
monitor call (refer to Section 3.7.2).

Flags are to be returned in the left
half of ACI on a successful return.

Logical names specified for the
current job are to be ignored and the
physical device is to be used.

This bit is off in the short
the GTJFN call (refer to
3.3.1.2 for its description).

The contents of AC2 are
interpreted as follows:

form of
Section

to be

1. If this bit is on, AC2 contains an
input JFN in the left half and an
output JFN in the right half. The
input JFN is used to obtain the
file specification to be
associated with the JFN. The
output JFN is used to indicate the
destination for printing the names
of any fields being recognized.
To omit either JFN, the user's
program must specify the symbol
. NULlO (377777).

2. If this bit is off, AC2 contains a
pointer to a string in memory that
specifies the file to be
associated with the JFN.

This bit must be on for the short form
of the GTJFN call.

The generation number of the file.
The following values are permitted;
howeve~, 0 is the normal case.

o to indicate that the next
higher generation number is to
be used if GJ%FOU (bit 0) is

3-6

.on, or to indicate that the
highest existing generation
numbe~ is to be used if GJ%FOU
is off.

USING FILES

Table 3-2 (Cont.)
GTJFN Flag Bits

Bit Symbol Meaning
~

I- to indicate that the specified
377777 number is to be used as the

generation if no generation
number is supplied.

-1 to ind icate that the next
higher generation number is to
be used if no generation
number is supplied.

-2 to indicate that the lowest
existing generation number is
to be used if no generation
number is supplied.

-3 to indicate that all
generation numbers are to be
used and that the JFN is to be
assigned to the first file in
the group if no generation
number is supplied. (Bit
GJ%IFG must be set.)

If the GTJFN call is given with the appropriate flag bit set (GJ%IFG
or GJ%OFG), the file specification given as input can have a wildcard
character (either an asterisk or a percent sign) appearing in the
directory, name, type, or generation number field. (The percent sign
cannot appear in the generation number field.) The wildcard character
is interpreted as matching any existing occurrence of the field. For
example, the specification

<LIBARY>*.MAC

identifies all the files with the file type .MAC in the directory
n~med <LIBARY>. The specification

<LIBARY>MYFILE.FO%

identifit~ all the files in
and a three-character file
.FO. Upon completion of
associated with the first
following:

directory <LIBARY> with the name MYFILE
type in which the first two characters are
the GTJFN call, the JFN returned is
file found in the group according to the

in numerical order by directory number

in alphabetical order by filename

in alphabetical order by file type

in ascending numerical order by generation number

The GNJFN (Get Next JFN) monitor call can then be given to assign the
JFN to the next file in the group (refer to Section 3.7.3). Normally,
a program that accepts wildcard characters in a file specification
will successively reference all files in the group using the same JFN
and not obtain another JFN for each one.

3-7

USING FILES

If execution of the GTJFN call is not successful because problems were
encountered in performing the call, the JFN is not assigned and an
error code is returned in the right half of ACI. The execution of the
program continues at the instruction following the GTJFN call.

If execution of the GTJFN call is successful, the JFN assigned is
returned in the right half of ACI and various bits are set in the left
half, if flag bits 11, 12, or 13 were on in the call. (The bits
returned on a successful call are described in Table 3-3.) If bit 11,
12, or 13 was not on in the call, the left half of ACI is zero. The
execution of the program continues at the second instruction after the
GTJFN call.

Bit Symbol

0-1

2 GJ%DIR

3 GJ%NAM

4 GJ%EXT

5 GJ%VER

6 GJ%UHV

7 GJ%NHV

8 GJ%ULV

9 GJ%PRO

10 GJ%ACT

11 GJ%TFS

12 GJ%GND

Table 3-3
Bits Returned on GTJFN Call

Meaning

Reserved for DEC.

The directory
specification
characters.

The filename
specification
characters.

The file type
specification
characters.

field of
contained

field of
contained

field of
contained

the file
wildcard

the file
wildcard

the file
wildcard

The generation number field of the
file specification contained wildcard
characters.

The file used has the highest
generation number because a generation
number of 0 was given in the call.

The file used has the next higher
generation number because a generation
number of 0 or -1 was given in the
call.

The file used has the lowest
generation number because a generation
number of -2 was given in the call.

The protection field of the
specification was given.

The account field of the
specification was given.

The file specification is
temporary file.

file

file

for a

Files marked for deletion will not be
considered when assigning JFNs in
subsequent calls.

3-8

USING FILES

Examples of the short form of the GTJFN monitor call are shown in the
following paragraphs.
-
The following sequence of instructions is used to obtain, from the
user1s terminal, the specification of an existing file.

MOVSI ACI,(GJ%OLD+GJ%FNS+GJ%SHT)
MOVE AC2,[.PRIIN".PRIOU]
GTJFN

The bits specified for ACI indicate that the file specification given
must refer to an existing file (GJ%OLD), that the file specification
is to be accepted from the input JFN in AC2 (GJ%FNS), and that the
short form of the GTJFN call is being used (GJ%SHT). Because the
right half of ACI is zero, the standard generation number algorithm
will be used. In this GTJFN call, the file with the highest existing
generation number will be used/a Because GJ%FNS is set in ACl, the
contents of AC2 are interpreted as containing an input JFN and an
output JFN. In this example, the file specification is obtained from
the terminal (.PRIIN).

The following sequence of instructions is used to obtain, from the
user1s terminal, the specification of an output file and to require
confirmation from the user once the file specification has been
obtained.

MOVSI ACI,(GJ%FOU+GJ%MSG+GJ%CFM+GJ%FNS+GJ%SHT)
MOVE AC2,[.PRIIN".PRIOU]
GTJFN

In this example, the bits specified for ACI indicate that

the file obtained is to be an output file (GJ%FOU),

after the file specification is obtained, a message is to be
typed (GJ%MSG),

the user is required to confirm the file specification that
was obtained (GJ%CFM),

the file specification is to be obtained from the input JFN
in AC2 (GJ%FNS),

the short form of the GTJFN call is being used (GJ%SHT).

Because the right half of ACI is zero, the gener~tion number given to
the file will be one greater than the highest generation number
existing for the file. The contents of AC2 are interpreted as
containing an input JFN and an output JFN because GJ%FNS is set in
ACI.

The following sequence of instructions is used to obtain the name of
an existing file from a location in the user's program.

MOVSI ACI,(GJ%OLD+GJ%SHT)
MOVE AC2,[POINT 7,NAME]
GTJFN

NAME:ASCIZ/MYFILE.TXT/

3-9

USING FILES

The bits specified for ACI indicate that the file obtained is to be an
existing file (GJ%OLD) and that the short form of the GTJFN call is
being used (GJ%SHT). Since the right half of ACI is zero, the file
with the highest generation number will be used. Because GJ%FNS is
not set, the contents of AC2 are interpreted as containing a pointer
to a string in memory that specifies the file to be associated with
the JFN. The setup of AC2 indicates that the string begins at
location NAME in the user's program. The file specification obtained
from location NAME is MYFILE.TXT.

An alternate way of specifying the same file is the sequence

MOVSI ACl,(GJ%OLD+GJ%SHT)
HRROI AC2,[ASCIZ/MYFILE.TXT/]
GTJFN

3.3.1.2 Long Form Of GTJFN - The long form of the GTJFN monitor call
requires the following two words of arguments.

o 17 18 35
1===1

ACI 1 0 1 address of argument table 1
1===1

o 35
!===!

AC2 1 pointer to ASCIZ file specification string, or 0 1
1==========~==1

The argument table for the long form is described in Table 3-4 below.

Word Symbol

o .GJGEN

1 .GJSRC

2 .GJDEV

3 .GJDIR

Table 3-4
Long Form GTJFN Argument Block

Meaning

Flag bits appear in the left half and
generation number appears in the right
half.

An input JFN appears in the left half
and an output JFN appears in the right
half. To omit either JFN, the user's
program must specify the symbol .NULIO
(377777) •

Pointer to ASCIZ string that specifies
the device to be used when none is
given. If this word is 0, DSK will be
used.

Pointer to ASCIZ string that specifies
the directory to be used when none is
given. If this word is 0, the user's
connected directory will be used.

3-10

USING FILES

Table 3-4 (Cont.)
Long Form GTJFN Argument Block

Word Symbol Meaning

4 .GJNAM Pointer to ASCIZ string that specifies
the filename to be used when none is
given. If this word is 0, the input
must specify the filename.

5 .GJEXT Pointer to ASCIZ string that specifies
the file type to be used when none is
given. If this word is 0, a null type
will be used.

6 .GJPRO Pointer to ASCIZ string or 3B2+octal
protection code. This word indicates
the protection to be used when none is
given. If this word is 0, the
protection as specified in the
directory will be used.

7 .GJACT Pointer to ASCIZ string or 3B2+decimal
account number. This word indicates
the account to be used when none is
given. If this word is 0, the account
specified when the user logged in will
be used.

10 .GJJFN The JFN to assign to the file
specification if flag bit GJ%JFN is
set in word .GJGEN (word 0) of the
argument block.

11-15 Additional words allowed if flag bit
GJ%XTN (bit 15) is set in word .GJGEN
(word 0) of the argument block. These
additional words are used when
performing command input parsing and
are described In the DECsystem-20
Monitor Calls Reference Manual.

The flag bits accepted in the left half of .GJGEN (word 0) of the
argument block are basically the same as those accepted in the short
form of the GTJFN call. The entire set of flag bits is listed below.
For further explanations of the bits, refer to Table 3-2.

Bit Symbol Meaning

0 GJ%FOU A new version of the file is to be
created.

1 GJ%NEW The file must not exist.

2 GJ%OLD The file must exist.

3 GJ%NSG A message is to be typed if the user
terminates his input with the ESC key.

3-11

4 GJ%CFM

5 GJ%TMP

6 GJ%NS

7 GJ%ACC

8 GJ%DEL

9-10 GJ%JFN

11 GJ%IFG

12 GJ%OFG

13 GJ%FLG

14 GJ%PHY

15 GJ%XTN

16 GJ%FNS

17 GJ%SHT

USING FILES

The user must
specification.

confirm

The file is temporary.

the file

Only the first file specification is
to be searched in a multiple logical
name definition.

The JFN cannot be accessed by other
processes in the job.

The "file deleted" bit is to
ignored.

be

The JFN supplied in .GJJFN(word 10) of
the argument block is to be associated
with the file specification given.
The settings of bit 9 and 10 are
interpreted as follows:

1. If bit 9 is on and bit 10 is off,
an attempt is made to assign the
JFN. An error return is given if
the JFN is not available.

2. If bit 9 is on and bit 10 is on,
an attempt is made to assign the
JFN. If it is not available, some
other JFN is assigned.

3. For any other combinations of
these bits, the JFN supplied is
ignored.

The file specification is allowed to
contain wildcard characters.

The JFN is to be associated with the
file specification string and not the
file itself.

Flags are to be returned in ACI on
successful completion of the call.

The physical device is to be used.

The argument block contains more than
10 (octal) words. Refer to the
DECsystem-20 Monitor Calls Reference
Manual.

This bit is ignored for the long form
of the GTJFN call.

This bit must be off for the long form
of the GTJFN call.

The generation number values accepted in the right half of .GJGEN
(word 0) of the argument block can be 0, -1, -2, -3, or a specified
number, although 0 is the normal case. Refer to Bits 18-35 of Table
3-2 for explanations of these values.

3-12

USING FILES

If execution of the GTJFN call is successful, the JFN assigned is
returned in the right half of ACI and various bits are set in the left
half if flag bits 11, 12 or 13 were on in the call. Refer to Table-
3-3 for the explanations of the bits returned. Execution of the
program continues at the second instruction following the call.

If execution of the GTJFN call is not successful, the JFN is not
assigned and an error code is returned in the right half of ACI. The
execution of the program continues at the instruction following the
GTJFN call.

The following sequence of instructions obtains a specification for an
existing file from the user's terminal, assigns the JFN to the next
higher generation of that file, and specifies default fields to be
used if the user omits a field when he gives his file specification.

JFNTAB:

MOVEI ACl,JFNTAB
SETZ AC2,
GTJFN

GJ%FOU
XWD .PRIIN,.PRIOU
o
POINT 7, [ASCIZ/TRAIN/]
o
POINT 7, [ASCIZ/MEM/]
o
o
o

;default directory

;default file type

The address of the argument table for the GTJFN call (JFNTAB) is given
in the right half of ACI. AC2 contains 0, which means no pointer to a
string is given; thus, fields for the file specification will be
taken only from the user's terminal. The first word of the argument
block contains a flag bit for the GTJFN call. This bit (GJ%FOU)
indicates that the next higher generation number is to be assigned to
the file. The second word of the argument block indicates that the
file specification is to be obtained from the user's terminal, and any
output generated because of the user employing recognition is to be
printed on his terminal. If the user does not supply a directory name
as part of his file specification, the directory <TRAIN> will be used.
And if the user does not give a file type, the type MEM will be used.
If the user omits other fields from his specification, the system
standard value (refer to Table 3-1) will be used.

3-13

USING FILES

3.3~1.3 Summary Of GTJFN - The GTJFN monitor call is required to
associate a JFN with a particular file. In most cases, the short form
of the GTJFN call is sufficient for ,establishing this association.
However, the long form is more powerful because it provides the user's
program more control over the file specification that is obtained.
The following summary compares the characteristics of the two forms of
the GTJFN monitor call.

Short Form

Assigns a JFN to a file.
System decides the JFN
to assign.

Accepts the file specification
from a string in memory
or a file.

Uses standard system values
for fields not given
in the file
specification.

3.4 OPENING A FILE

Long Form

Assigns a JFN to a file.
User program may request
a particular JFN.

Accepts the file specification
from a string in memory
and a file.

Allows user-supplied values
to be used for fields not
given in the file
specification.

Once a JFN has been obtained for a file, the user's program must open
the file in order to transfer data. The user's program supplies the
JFN of the file to be opened and a word of bits indicating the desired
byte size, data mode, and access to the file.

The desired access to the file is specified by a separate bit for each
type of access. The file is successfully opened only if the desired
access does not conflict with the current access to the file (refer to
Section 3.1). For example, if the user requests both read and write
access to the file, but write access is not allowed, then the file is
not opened for this user. The allowed types of access to a file are:

Read access. The file can be read with byte, string, or
random input.

write access. The file can be written with byte, string, or
random output.

Append access. The file can be written only with sequential
byte or dump output, and the current byte pointer (refer to
Section 3.5.1) cannot be changed.

Frozen access. The file can be concurrently accessed by at
most one user writing the file, but by any number of users
reading the file. This is the default access to a file.

Thawed access. The file can be accessed even if other users
are reading and writing the file.

Restricted access. The file cannot be accessed if another
user already has opened the file.

3-14

USING FILES

3.4.1 OPENF Monitor Call

The OPENF (Open File) monitor call opens a specified file. It
requires the following two words of arguments.

o 17 18 35
1===1

ACI 1 0 1 JFN of file to be opened 1
1===1

o 5 6 9 18 30 31 35
1===1

AC2 1 byte 1 da ta 1 0 1 access bi ts 0
1 size !mode 1
1===1

If the left half of ACI is not zero, the contents of ACI is
interpreted as a pointer to a string and not as a JFN of a file.
Therefore, if the user's program requested bits to be returned in ACI
from the GTJFN call, it must clear these bits before executing the
OPENF call.

The byte size (OF%BSZ) in AC2 specifies the number of bits in each
byte of the file and can be between 1 and 36 (decimal). This field
can be 0 if subsequent I/O to the file will be performed with the PMAP
call (refer to Section 3.5.6).

The file data mode field (OF%MOD) can be one of two values:

Value

o

17

Meaning

Normal data mode of the file (i.e., byte
I/O). Dump I/O is illegal.

Dump mode (i.e., unbuffered word I/O). Byte
I/O is illegal and the byte size is ignored.

The access bits are described in Table 3-5.

Bit Symbol

18 OF%HER

19 OF%RD

20 OF%WR

21

22 OF%APP

23-24

Table 3-5
OPENF Access Bits

Meaning

Halt on the occurrence of
device or medium error
subsequent I/O to the file.

an I/O
during

If this
bit is not set, a software interrupt
is generated if a' device or medium
error occurs during subsequent I/O.

Allow read access.

Allow wr i te access'.

Reserved for DEC.

Allow append access.

Reserved for DEC.

3-15

Bit Symbol

25 OF%THW

USING FILES

Table 3-5 (Cont.)
OPENF Access Bits

Meaning

Allow thawed access. If this bit is
not set, the file is opened for frozen
access.

26 OF%AWT Block (i.e., temporarily suspend) the
program until access to the file is
permitted.

27 OF%PDT Do not update the access dates of the
file.

28 OF%NWT Return an error if access to the file
cannot be permitted.

29 OF%RTD Allow access to the file to only one
process (i.e., restricted access) .

30 OF%PLN Do not check for line numbers in the
file.

If bits OF%AWT and OF%NWT are both off, an error code is returned if
access to the file cannot be permitted (i.e., the action taken is
identical to OF%NWT being on).

If execution of the OPENF monitor call
opened, and the execution of the
instruction after the OPENF call.

is successful, the file is
program continues at the second

If execution of the OPENF call is not successful, the file is not
opened, and an error code is returned in ACI. The execution of the
program continues at the next instruction after the OPENF call.

Two samples of the OPENF call follow.

The sequence of instructions below opens a file for input.

HRRZ ACI,JFNEXT
MOVE AC2,[44BS+OF%RD+OF%PLN]
OPENF

The JFN of the file to be opened is contained in the location
indicated by the address in ACI (JFNEXT). The bits specified for AC2
indicate that the byte size is one word (44B5), that read access is
being requested to the file (OP%RD), and that no check will be made
for line numbers in the file; i.e., the line numbers will not be
discarded (OF%PLN). Because bit OF%THW is not set, the file can be
accessed for reading by any number of processes.

The following sequence of instructions can be used to open a file for
output.

MOVE ACl,JFN
MOVE AC2,[7B5+0F%HER+OF%WR+OF%AWT]
OPENF

3-16

USING FILES

The right half of ACI contains the address that has the JFN of the
file to be opened. The bits specified for AC2 indicate that the byte
size is 7-bit bytes (7B5), that the program is to be halted when an
I/O error occurs in the file (OF%HER), that write access is being
requested to the file (OF%WR), and that the program is to be blocked
if access cannot be granted (OF%AWT). Because bit OF%THW is not set,
if another user has been granted write access to the file, this user's
program will be blocked until access can be granted.

3.5 TRANSFERRING DATA

Data transfers of sequential bytes are the most common form of
transfer and can be used with any file. For disk files, nonsequential
bytes and entire pages can also be transferred.

3.5.1 File Pointer

Every open file is associated with a pointer that indicates the last
byte read from or written to the file. When the file is initially
opened, this pointer is normally positioned before the beginning of
the file so that the first data operation will reference the first
byte in the file. The pointer is then advanced through the file as
data is transferred. However, if the file is opened for append-only
access (bit OF%APP set in the OPENF call), the pointer is positioned
after the last byte of the file. This allows the first write
operation to append data to the end of the fil~.

For disk files, the pointer may be repositioned arbitrarily throughout
the file, such as in the case of nonsequential data transfers. When
the pointer is positioned beyond the end of the file, an end-of-file
indication is returned when the program attempts a read operation
using byte input. When the program performs a write operation beyond
the end of the file using byte output, the end-of-file indicator is
updated to point to the end of the new data. However, if the program
writes pages beyond the end of the file with the PMAP monitor call
(refer to section 3.5.6), the end-of-file indicator is not updated.
Therefore, it is possible for a file to contain pages of data beyond
the end-of-file indicator. To allow sequential I/O to be performed
later to the file, the program should update the end-of-file indicator
before closing the file. (Refer to the CHFDB monitor call description
in the DECsystem-20 Monitor Calls Reference Manual.)

3.5.2 Source And Destination Designators

Because I/O operations occur by moving data from one location to
another, the user's program must supply a source and a destination for
any I/O operation. The most commonly-used source and destination
designators are the following:

1.

2.

A JFN associated with a particular file. The JFN must be
previously obtained with the GTJFN or GNJFN monitor call
before it can be used.

The primary input and output designators .PRIIN
respectively (refer to Section 2.2). These
should be used when referring to the terminal.

3-17

and .PRIOU,
designators

USING FILES

3. A byte pointer to the beginning of the string of bytes in the
program's address space that is being tead or written. The
byte pointer can take one of two forms:

A word with a -1 in the left half and an address in the
right half. This form is used to designate a 7-bit ASCIZ
string starting in the left-most byte of the specified
address. A word in this form is functionally equivalent
to a word assembled by the POINT 7,ADR pseudo-oPe

A full word byte pointer with a byte size of 7 bits.

Most monitor calls dealing with strings deal specifically with
strings. Normally, ASCII strings are assumed to terminate with
of 0 (i.e., are assumed. to be ASCIZ strings). However some
optionally accept an explicit byte count and/or terminating
These calls are generally ones that handle non-ASCII strings and
sizes other than 7 bits.

3.5.3 Transferring Sequential Bytes

ASCII
a byte
calls
byte.
byte

The BIN (Byte Input) and BOUT (Byte Output) monitor calls are used for
sequential byte transfers. The BIN call takes the next byte from the
given source and places it in AC2. The BOUT call takes the byte from
AC2 and writes it to the given destination. The size of the byte is
that given in the OPENF call for the file.

The BIN monitor call accepts a source designator in ACl, and upon
successful execution of the call, the byte is right-justified in AC2.
If execution of the call is not successful, a software interrupt is
generated (refer to Chapter 4). Control returns to the user's program
at the instruction following the BIN call.

The BOUT monitor call accepts a destination designator in ACI and the
byte to be output, right-justified in AC2. Upon· successful execution
of the call, the byte is written to the destination. If execution of
the call is not successful, a software interrupt is generated (refer
to Chapter 4). Control returns to the user's program at the
instruction following the BOUT call~

The following sequence shows the transferring of bytes from an input
file to an output file. The bytes are read from the file indicated by
INJFN and written to the file indicated by OUTJFN.

LOOP: MOVE 1,INJFN
BIN
JUMPE 2,DONE

LOOP2: MOVE 1,OUTJFN
BOUT
JRST LOOP

DONE: GTSTS
TLNN 2, (GS%EOF)
JRST NOTYET

NOTYET:MOVEI 2,0
JRST LOOP2

iget source designator from INJFN
iread a byte from the source
icheck for end of file, if 0
iget destination from OUTJFN
iwrite the byte to the destination
icontinue until 0 byte is found
iobtain status of source
itest for end of file
ino, test for 0 in input file
iyes, process end of file condition
iO in input file

3-18

USING FILES

3.5.4 Transferring Strings

The SIN (String Input) and SOUT (String Output) monitor calls are used
for string transfers. These calls transfer either a string of a
specified number of bytes or a string terminated with a specific byte.

The SIN monitor call reads a string from the specified source into the
program's address space. The call accepts four words of arguments in
ACI through AC4.

ACl: source designator

AC2: pointer to area in program's address space

AC3: count of number of bytes to read, or 0

AC4: byte on which to terminate input (optional)

The contents of AC3 are interpreted as the number of characters to
read.

If AC3 is 0, then reading continues until a 0 byte is found
in the input.

If AC3 is positive, then reading continues until either the
specified number of bytes is read, or a byte equal to that
given in AC4 is found in the input, whichever occurs first.

If AC3 is negative, then reading continues until minus the
specified number of bytes is read.

The contents of AC4 needs to be specified only if the contents of AC3
is a positive number. The byte in AC4 is right-justified.

The input is terminated when one of the following occurs:

The byte count becomes zero.

The specified terminating byte is reached.

The end of the file is reached.

An error occurs during the transfer (e.g., a data error
occurs) .

Control returns to the user's program at the instruction following the
SIN call. If an error occurs (including the end of the file is
reached), a software interrupt is generated (refer to Chapter 4). In
addition, several locations are updated:

1. The position of the file's pointer is updated for subsequent
I/O to the file.

2. The pointer to the string in AC2 is updated to reflect the
last byte read or, if AC3 contained 0, the last nonzero byte
read.

3. The count in AC3 is updated, if pertinent, by subtracting the
number of bytes actually read from the number of bytes
requested to be read (i.e., the count is updated toward
zero). From this count, the user's program can determine the
number of bytes actually transferred.

3-19

USING FILES

The SOUT monitor call writes a string from the program's address space
to the specified destination. Like the SIN call, this call accepts
four words of arguments in ACI through AC4.

AC1: destination designator

AC2: pointer to string to be written

AC3: count of the number of bytes to write, or 0

AC4: byte on which to terminate output (optional)

The contents of AC3 and AC4 are interpreted in the same manner as they
-are in the SIN monitor call.

The transfer is terminated when one of the following occurs.

The byte count becomes zero.

The specified terminating byte is reached. This terminating
byte is written to the destination.

An error occurs during the transfer.

Control returns to the user's program at the instruction following the
SOUT call. If an error occurs, a software interrupt is generated
(refer to Chapter 4). In addition, the position of the file's
pointer, the pointer to the string in AC2, and the count in AC3, if
pertinent, are also updated in the same manner as in the SIN monitor
call.

The following sequence of instructions shows transferring a string
from an input file to an output file. It is the same procedure as at
the end of Section 3.5.3, but it uses SIN and SOUT calls instead of
BIN and BOUT calls.

LOOP: MOVE I,INJFN
HRROI 2,BUF128

MOVNI 3,~D128*5
SIN

ERCAL EOFQ
ADDI 3,~D128*5

MOVN 3,3
MOVE I,OUTJFN
HRROI 2,BUF128
SOUT

EOFQ: MOVE I,INJFN
GTSTS
TLNN 2, (GS%EOF)
RET

iget source from INJFN
ipointer to string to read into (128
iword buffer)
iinput a maximum of 640 bytes
itransfer until end of buffer or end of
ifile
ierror occurred
idetermine number of bytes transferred

iget destination from OUTJFN
ipointer to string to write from
itransfer as many bytes as read

iobtain status of source
itest for end of file
ino; continue copying

3.5.5 Transferring Nonsequential Bytes

As discussed in Section 3.5.3, the BIN and BOUT calls transfer bytes
sequentially, starting at the current position of the file's pointer.
The RIN (Random Input) and ROUT (Random Output) monitor calls allow
the user's program to specify where the transfer will begin by
accepting a byte number within the file. The size of the byte is the
size given in the OPENF call for the file. The RIN and ROUT calls can
only be used when transferring data to or from disk files.

3-20

USING FILES

The RIN monitor call takes a byte from the specified location in the
file and places it into the accumulator. The call accepts the JFN of
the file in ACI and the byte number within the file in AC3. Upon
successful completion of the call, the byte is right-justified in AC2,
and the file's pointer is updated to point to the byte following the
one just read. If an error occurs, a software interrupt is generated
(refer to Chapter 4). Control returns to the user's program at the
instruction following the RIN call.

The ROUT monitor call takes a byte from the accumulator and writes it
into the specified location in the file. The call accepts the JFN of
the file in ACl, the byte to write right-justified in AC2, and the
byte number within the file in AC3. Upon successful completion of the
call, the byte is written into the specified byte in the file, and the
file's pointer is updated to point to the byte following the one just
written. If an error occurs, a software interrupt is generated (refer
to Chapter 4). Control returns to the user's program at the
instruction following the ROUT call.

3.5.6 Mapping Pages

Up to this point, monitor calls have been presented for transferring
bytes of data. The next call to be discussed is used to transfer
entire pages of data between a file and a process.

Both files and process address spaces are divided into pages of
5l2(decimal) words. A page within a file can be identified by one
word, where the JFN of the file is in the left half and the page
number within the file is in the right half. A page within a process
address space can also be identified by one word, where the identifier
of the process (refer to Section 5.3) is in the left half and the page
number within the process' address space is in the right half. Each
one-word identifier for the pages in the process address space is
placed in what is called the process page map. When identifiers for
file· pages are placed in the process page map, references to the
process page actually refer to the file page. The following diagram
illustrates a process map that has identifiers for pages from two
files.

File 1

Process Map

JFNl I PAGEA PAGEA

File 2

JFN2 I PAGEB PAGEB

3-21

USING FILES

The PMAP (Page Mapping) monitor call is used to map one or more entire
pages from a file to a process (for input), from a process to a file
(for output), or from one process to another process. In general,
this call changes the entries in the process map by accepting file
page identifiers and process page i~entifiers as arguments. Mapping
pages between a file and a process is described below; mapping pages
between two processes is described in Chapter 5.

3.5.6.1 Mapping File Pages To A Process - This use of the PMAP call
changes the map of the process so that references to pages in the
process reference pages in a file. This does not actually cause data
to be transferred; it simply changes the contents of the map. Later
when changes are made to the actual page in the process, the changes
will also be made to the page in the file, if write access has been
specified for the file. .

The PMAP call accepts three words of arguments in ACI through AC3.

ACl: JFN of the file in the left half, and the page number in
the file in the right half

AC2: process identifier (refer to Section 5.3) in the left
half, and page number in the process in the right half

AC3: repetition count and access

The repetition count and access bits that can be specified in AC3 are
described below.

Bit Symbol

o PM%CNT

2 PM%RD

3 PM%WR

9 PM%CPY

18-35

Meaning

Repeat the mapping operation the number of times
specified by the right half of AC3. The file page
number and the process page number are incremented

-by 1 each time the operation is performed.

Allow read access to the page.

Allow write access to the page.

Create a private copy of the page if the process
writes into the page. This is called
copy-on-write and causes the map to be changed so
that it identifies the copy instead of the
original. write access is allowed to the copy
even if it was not allowed to the original. This
allows a process to change a page of data without
changing the data for other processes that have
also mapped the page.

The number of times to repeat
operation if bit O(PM%CNT) is set.

the mapping

With this use of the PMAP call, the present contents of the page in
the process are removed. If the page in the file is currently
nonexistent, it will be created when it is written.

This use of the PMAP call is valid only if the file is opened for at
least read access. If write access is requested in the PMAP call, it
is not granted unless it was also specified in the OPENF call when the
file was opened.

3-22

USING FILES

A file cannot be closed while any of its pages are mapped into any
process. Thus, before a file is closed, its pages must be unmapped
(refer to Section 3.5.6.3).

After execution of the PMAP call, control returns to the user's
program at the instruction following the call. If an error occurs, a
software interrupt is generated (refer to Chapter 4).

3.5.6.2 Mapping Process Pages To A File - This use of the PMAP call
actually transfers data by moving the specified page in the process to
the specified page in the file. The process map for the page is now
empty. Both the page in the process and the page in the file must be
private; that is, no other process can have the page mapped into its
address space. The ownership of the process page is transferred to
the file page. The previous contents of the page in the file are
deleted.

The three words of arguments are as follows:

ACl: process identifier (refer to Section 5.3) in the left
half, and page number in the process in the right half

AC2: JFN of the file in the left half; and the page number in
the file in the right half

AC3: repetition count and access (refer to Section 3.5.6.1)

The access requested in the PMAP call is granted only if it does not
conflict with the access specified in the OPENF call when the file was
opened.

This use of the PMAP call does not automatically update the
end-of-file indicator and the file's byte size. To allow the file to
be read later with sequential I/O monitor calls, the program should
update the end-of-file indicator and the byte size. (Refer to the
CHFDB monitor call in the DECsystem-20 Monitor Calls Reference
Manual) .

3.5.6.3 Unmapping Pages In A Process - As stated previously, a file
cannot be closed if any of its pages are mapped in any process. To
unmap a file's pages from a process, the program must execute the
following form of the PMAP call:

ACl: -1

AC2: process identifier in the left half, and page number in
the process in the right half.

AC3: the repeat count for the number of pages to remove from
the process (refer to Section 3.5.6.1).

3.6 CLOSING A FILE

Once data has been transferred to or from a file, the user's program
must close the file. When a file is closed, the system automatically
performs the following:

3-23

USING FILES

1. Updates the directory information for the file. For example,
for a file to which sequential bytes had been written, the
byte size and byte count are updated when the file is closed.

2. Deassigns the JFN associated with the file. However, the
user's program can request to close the file, but retain the
JFN assignment. This is useful if the program plans to
reopen the same file later, but does not want to execute
another GTJFN call.

3.6.1 CLOSF Monitor Call

The CLOSF (Close File) monitor call closes either the specified
or all files that are opened for the process executing the call.
CLOSF call accepts one word of arguments in ACI - flag bits in
left half and the JFN of the file to be closed in the right half.
flag bits are as follows:

Bit Symbol Meaning

CO%NRJ Do not disassociate the JFN from the file.

file
The
the
The

o

6 CZ%ABT Abort any output operations currently being done.
That is, close the file but do not perform normal
cleanup operations (e.g., do not output any data
remaining in the buffers). If output to a new
disk file that has not been closed is aborted, the
file is closed and then deleted.

If the contents of ACI is -1, all files that are opened for this
process are closed.

If the execution of the CLOSF call is successful, the specified file
is closed, and the JFN associated with the file is released if CO%NRJ
was not set in the call. The execution of the user's program
continues at the second location after the CLOSF call.

If the execution of the CLOSF call is not successful, the file is not
closed and an error code is returned in the right half of ACI. The
execution of the user's program continues at the instruction following
the CLOSF call.

The following sequence illustrates the closing of two files.

CLOSIF: MOVE 1,INJFN
CLOSF

ERJMP FATAL
CLOSOF: MOVE 1,OUTJFN

CLOSF
ERJMP FATAL

iobtain input JFN
iclose input file
iif error, print message and stop
iobtain output JFN
iclose output file
iif error, print message and stop

3-24

USING FILES

3.7 ADDITIONAL FILE I/O MONITOR CALLS

3.7.1 GTSTS Monitor Call

The GTSTS (Get Status) monitor call obtains the status of a file.
This call accepts one argument word - the JFN of the file in the right
half of the ACI. The left half of ACI is zero.

Control always returns to the user's program at the instruction
following the GTSTS call. Upon return, appropriate bits reflecting
the status of the specified JFN are set in AC2. These bits, and their
meanings, are described in Table 3-6. Note that if the JFN is illegal
or unassigned, bit 10 (GS%NAM) will not be set.

Table 3-6
Bits Returned on GTSTS Call

Bit Symbol Meaning

0 GS%OPN The file is open. If this bit is not
set, the file is not open.

1 GS%RDF If the file is open (e.g. , GS%OPN is
set) , it is open for read access.

2 GS%WRF If the file is open, it is open for
write access.

3 Reserved for DEC.

4 GS%RND If the file is open, it is open for
non-append access (i.e. , its pointer
can be reset) .

5-6 Reserved for DEC.

7 GS%LNG File has pages in existence beyond
page number 511.

8 GS%EOF The last read operation to the file
was at the end of the file.

9 GS%ERR The file may be in error (e.g., the
bytes read may be erroneous) .

10 GS%NAM A file specification is associated
with this JFN. This bit will not be
set if the JFN is in any way illegal.

11 GS%AST One or more fields of the file
specification associated with this JFN
contain a wildcard character.

12 GS%ASG The JFN is currently being assigned
(i.e. , a process other than the one
executing the GTSTS call is assigning
this JFN) .

13 GS%HLT An I/O error is considered to be a
terminating condition for this JFN.
That is, the OPENF call for this JFN
had bit OF%HER set.

3-25

USING FILES

Table 3-6 (Cont.)
Bits Returned on GTSTS Call

Bits Symbol Meaning

14-16 Reserved for DEC.

17 GS%FRK Access to the file is restricted to
only one process.

18-31 Reserved for DEC.

32-35 The data mode of the file (refer to
the OPENF call) .

Value Symbol Meaning
0 .GSNRM Normal (sequential) I/O
10 .GSIMG Image (binary) I/O
17 .GSDMP Dump I/O

An example of the GTSTS call is shown in the first program in Section
3.9.

3.7.2 JFNS Monitor Call

The JFNS (JFN to String) monitor call returns the file specification
currently associated with the specified JFN. The call accepts three
words of arguments in ACI through AC3.

ACl: destination designator where the
associated with the JFN is to
specification is an ASCIZ string.

AC2: JFN or pointer to string (see below)

file
be

specification
written. This

AC3: format to be used when returning the specification (see
below) .

The contents of ACI can be any valid destination designator (refer to
Section 3.5.2).

The contents of AC2 can be one of two formats. The first format is a
word with either flag bits or 0 in the left half and the JFN in the
right half. The bits that can be given in the left half of AC2 are
the ones returned from the GTJFN call (refer to Table 3-3). When the
left half of AC2 is nonzero (i.e., contains the bits returned from the
GTJFN call), the string returned will contain wildcard characters for
appropriate fields and 0, -1, or -2 as a generation number if the
corresponding bit is on in the JFNS call. When the left half of AC2
is 0, the string returned is the exact specification for the file
(e.g., wildcard characters are not returned for any fields). If the
JFN is associated only with a file specification and not with an
actual file (i.e., bit GJ%OFG was set in the GTJFN call), the string
returned will contain null fields for unspecified fields and the
actual values for specified fields. The second format allowed for AC2
is a pointer to the string in the program's address space that is to
be returned upon execution of the call. Refer to the DECsystem-20
Monitor Calls Reference Manual for the explanation of this format.

3-26

USING FILES

The contents of AC3 specify the format in which the specification is
written to the destination. Bits 0 through 20 are divided into 3-bit
bytes, each byte representing a field in the file specification. The
value of the byte indicates the format for that field. The possible
values are:

0 Do not return this field when returning the file
specification.

1 Always return this
specification.

field when returning the file

2 Suppress this field if it is the standard system value for
this field (refer to Table 3-1) .

If the contents of AC3 is zero, the file specification is written in
the format

dev:<directory>name.typ.geni T

with fields the same as the standard system value (see Table 3-1) not
returned and protection and account fields returned only if bit 9 and
bit 10 in AC2 are on, respectively. The temporary attribute (iT) is
returned only if the file is temporary.

Table 3-7 describes the bits that can be set in AC3.

Bit Symbol

0-2 JS%DEV

3-5 JS%DIR

6-8 JS%NAM

9-11 JS%TYP

12-14 JS%GEN

15-17 JS%PRO

18-20 JS%ACT

21 JS%TMP

22 JS%SIZ

23 JS%CRD

24 JS%LWR

25 JS%LRD

Table 3-7
JFNS Format Options

Meaning

Format for device field.

Format for directory field.

Format for filename field. A value of
2 (i .e., bit 7 set) for this field is
illegal.

Format for file type field. A value
of 2 (i. e., bi t 10 set) for this field
is illegal.

Format for generation number field.

Format for protection field.

Format for account field.

Return temporary file indication iT if
the file specification is for a
temporary file.

Return size of file in pages (see
below) .

Return creation date of file (see
below) .

Return date of last write operation to
file (see below) .

Return date of last read operation
from file (see below).

3-27

Bit

26

27-31

32

33

34

35

Symbol

JS%PTR

JS%PSD

JS%TBR

JS%TBP

JS%PAF

USING FILES

Table 3-7 (Cont.)
JFNS Format Options

Meaning

AC2 contains a pointer to the string
containing the field to be returned
(refer to the DECsystem-20 Monitor
Calls Reference Manual for a
description of this use of the JFNS
call) •

Reserved for DEC.

Punctuate the size and date fields
(see below) in the file specification
returned.

Place a tab before all fields returned
(i.e., fields whose value is given as
1 in the 3-bit field) in the file
specification, except for the first
field.

Place a tab before all fields that may
be returned (i.e., fields whose value
is given as I or 2 in the 3-bit field)
in the file specification, except for
the first field.

Punctuate all fields (see below)
returned in the file specification
from the device field through the ;T
field.

If bits 32 through 35 are not set, no
punctuation is used between the
fields.

The punctuation used on each field is shown below.
is underscored.)

(The punctuation

dev:<directory>name.typ.gen;A(account) ;P(protection) ;T(temporary)
~size~creation-date~wriEe dateLread date -

Control always returns to the user's program at the instruction
following the JFNS call. If an error occurs, a software interrupt is
generated (refer to Chapter 4).

3.7.3 GNJFN Monitor Call

Occasionally a program may be written to perform similar operations on
a group of files instead of only on one file. However, the program
should not require the user to give a file specification for each
file. Because the GTJFN call associates a JFN with only one file at a
time, the program needs a method of assigning a JFN to all the files
in the group. By using the GTJFN call to initially obtain the JFN and
the GNJFN call to assign the same JFN to each subsequent file in the
group, a program can accept a specification for a group of files and
process each file in the group individually. After the user gives the
initial file specification, the program requires no additional input.

3-28

USING FILES

Before an example showing the interaction of these two calls is given,
a description of the GNJFN (Get Next JFN) monitor call is appropriate.

The GNJFN monitor call assigns a JFN to the next file in a group of
files that have been specified with wildcard characters. The next
file is determined by searching the directory in the order described
in Section 3.3.1.1 using the current file as the first file. This
call accepts one argument word in ACI - the flags returned from the
GTJFN call in the left half and the JFN of the current file in the
right half. In other words, the information returned in ACI from the
GTJFN call is given as an argument to the GNJFN call. Therefore, the
program must save this information for use with the GNJFN call.

If execution of the GNJFN call is successful, the same JFN is assigned
to the next file in the group. The left half of ACI contains various
flags and the right half contains the JFN. The execution of the
program continues at the second instruction after the GNJFN call.

The following bits can be returned in ACI on a successful GNJFN call.

Bit

14

15

16

Symbol

GN%DIR

GN%NAM

GN%EXT

Meaning

A change in directory occurred between
the previous file and this file.

A change in filename occurred between
the previous file and this file.

A change in file type occurred between
the previous file and this file. If
GN%NAM is on, this bit will also be on
because the system considers two files
with different filenames but with the
same file type as a change in both the
name and type.

If execution of the GNJFN call is not successful, an error code is
returned in the right half of ACI. Conditions that can cause an error
return are:

1. The file currently associated with the JFN must be closed,
and it is not. This means that the program must execute a
CLOSF call (with CO%NRJ set to retain the JFN) before
executing a GNJFN call.

2. There are no more files in this group. This return occurs on
the first GNJFN call if no flags indicating wildcard fields
are on in ACI of the call. The JFN is released when there
are no more files.

The execution of the program continues at the next instruction after
the GNJFN call.

Consider the following situation. The user wants to write a program
that will accept from his terminal a specification for a group of
files and then perform an operation on each file individually without
requiring additional input. Assume the user's directory <TRAIN)
contains the following files:

FIRST.MAC.l
FIRST.REL.l

3-29

SECOND.REL.l
THIRD.EXE.l

USING FILES

As discussed in Section 3.3.1.1, a group of files can be given to the
GTJFN call by supplying a specification that contains wildcard
characters in one or more of its fields. Thus, the specification

<TRAIN>*.*

would refer to all four files in the user's directory <TRAIN>.

In his program, the user includes a GTJFN call that will accept the
above specification.

The call is

MOVSI ACl,(GJ%OLD+GJ%IFG+GJ%FLG+GJ%FNS+GJ%SHT)
MOVE AC2,[.PRIIN".PRIOU]
GTJFN

and indicates that

1. The file specification given must refer to an existing file
(GJ%OLD) .

2. The file specification given is allowed to contain wildcard
characters (GJ%IFG).

3. Flags will be returned in ACI on a successful call (GJ%FLG).
The flags must be returned because they will be given to the
GNJFN call as arguments.

4. The contents of AC2 will be interpreted as containing an
input and output JFN (GJ%FNS).

5. The short form of the GTJFN call is being used (GJ%SHT).

6. The file specification is to be read from the user's terminal
(.PRIIN".PRIOU) .

When the user types the specification <TRAIN>*.* as input, the system
associates the JFN with one file only. This file is the first one
found when searching the directory in the order specified in Section
3.3.1.1. Thus the JFN returned is associated with the file
FIRST.MAC.l.

After the GTJFN call is successfully executed, ACI contains
appropriate flags in the left half and the JFN assigned in the right
half. The flags that will be returned in this particular situation
are:

GJ%NAM (bit 3)

GJ%EXT (bit 4)

GJ%GND (bit 12)

A wildcard character appeared in the name
field of the file specification given.

A wildcard character appeared in the type
field of the file specification given.

Any files marked for deletion will not be
considered.

These flags inform the program of the fields that contained wildcard
characters.

3-30

USING FILES

The user's program must now save the contents of ACI because this word
will be used as the argument to the GNJFN call. The program then
performs its desired operation on the first file. Once its processing
is completed, the program is ready for the specification of the next
file. But instead of requesting the specification from the user, the
program executes the GNJFN call to obtain it. The argument to the
GNJFN call is the contents of ACI returned from the previous GTJFN
call. Thus, the call in this case is equivalent to:

MOVE ACl,[GJ%NAM+GJ%EXT+GJ%GND"JFN]
GNJFN

Upon successful execution of the GNJFN call, the JFN is now associated
with the next file in the group (i.e., FIRST.REL.l). ACI contains
appropriate flags in the left half and the same JFN in the right half.
In this example, the flag returned is GN%EXT (bit 16) to indicate that
the file type changed between the two files.

After processing the second file, the user's program executes another
GNJFN call using the original contents of ACI returned from the GTJFN
call. The original contents must be used because this word indicates
the fields containing wildcard characters. If the current contents of
ACI (i.e., the flags returned from the GNJFN call) are used, a
subsequent GNJFN call would fail because there are no flags set
indicating fields containing wildcard characters. This second GNJFN
call associates the JFN with the file SECOND.REL.l. The flags
returned in ACI are GN%NAM (bit 15) and GN%EXT (bit 16) indicating
that the filename and file type changed between the two files.
(Remember that a change in filename implies a change in file type even
if the two file types are the same.)

After processing this
GNJFN call using the
call, the JFN is now
returned are GN%NAM
and file type.

third file, the user's program executes another
original contents of ACI. Upon execution of the

associated with THIRD.EXE.l, and the flags
and GN%EXT, indicating a change in the filename

After processing the file THIRD.EXE.l, the user's program executes a
final GNJFN call. Since there are no more files in the group, the
call returns an error code and releases the JFN. Execution of the
user's program continues at the instruction following the GNJFN call.

3.8 SUMMARY

To read from or write to a file, the user's program must:

1. Obtain a JFN on the file with the GTJFN monitor call (refer
to Section 3.3.1).

2. Open the file with the OPENF monitor call (refer to Section
3.4.1) •

3. Transfer the data with byte, string, or page I/O monitor
calls (refer to Section 3.5).

4. Close the file with the CLOSF monitor call (refer to Section
3.6.1) .

3-31

USING FILES

3.9 FILE EXAMPLES

Example 1 - This program assigns JFNs, opens an input file and an
output file, and copies data from the input file to the output file.
Data is copied until the end of the input file is reached. Refer to
the DECsystem-20 Monitor Calls Reference Manual for explanation of the
ERSTR monitor call.

;*** PROGRAM TO COPY INPUT FILE TO OUTPUT FILE~ ***
(USING BIN/BOUT AND IGNORING NULL'S)

TITLE FILEIO
~:>EI:~I:;:CH rlONSYM

;TITLE OF PROGRAM
;SEARCH SYSTEM JSYS-SYMBOL LIBRARY

:I. N,..Ifi\j t BLOCI<:I.
DUT,.JFN;: BLOCI;; :I.

;STORAGE FOR INPUT JFN
;STORAGE FOR OUTPUT JFN

pnl",EN::::~5

PDLST: BLOCK POLEN
ii bTtlCK HI:~S LENGTH :3
~ ~:;ET tl~;) I DE f>TOF;;(:lGE FDI:;; ST tICI~;

tl:::::::::I,
:0,:::::::2

C:::::::::'5

l),::,:::4

T:i. '::::;:~S

P:,:::::::I.? ;PUSH DOWN POINTER

ST(ir;:Tt I:~E~;;E'I' ~CLO~:~E FII...Eb:! ["rev
1'10 I,) E P:, I:: I [) l·J It F'1:I /... EN:, P I.I L S 'r ::I :; EST {~B L I ~;; H n T 1:1 C I';;

I ~,!F II,,, t HF;;F;O 1 {):J [(',UI:,: I:Z: ./
J N P 1..J T F I I,,, E:t / ::I

P~:;CJUT

;PROMPT FOR INPUT FILE
;ON CONTROLLING TERMINAL

"'IOt)[(.:j!' I:: G,..!:!;:c)L:O+G"I:~.:FN;;;+GJ:!;,;SHT J :1 ~;:'E(IF':CH 1'/iOfiES For;; GT ,..IFN
;CEXISTING FILE ONLY :J FILE-NR'S IN B
i! !;;HOr;;'I' CtlLI... J

MOVE B'[vPRIIN".PRIOIJJ GTJFN'S I/O WITH CONTROLLING TERMINAL
CiT ,..IFI",! GE"r ,JOB F T L.E NUhBER (,.JFN)

,.I I,;: ~::: T I:: PUS H ..J F':, l,'/,') r;: N I F E F: h' U j=;: :' c; :r VEt·; (i F;: N :[j',} G
",II·: ~::; "I" ::: I",j F II", J PI 1'-1 II L. E T H J I"i T I:;: '{ (I G (:~i I N

hUl)E('j 1~1:1 J ""J,.JFN GI..JCCE!:;;~:)!, ~;;tll)E THE ,..IFN

3-32

USING FILES

;*** GET OUTPUT-FILE ***
OUTFIL: HRROI A,CASCIZ /
OUTPUT FII ... E~ /::1 ;PF;:OhPT FOR OUTPUT FII ... E

PSOUT ;PRINT IT
MOVE A~CGJ%FOU+GJ%MSG+GJ%CFM+GJ%FNS+GJ%SHT::I;GTJFN SEARCH MODES

;CDEFAULT TO NEW GENERATION? PRINT
; MESSAGE , REQUIRE CONFIRMATION
t FILE-NR'S IN B ? SHORT CALL ::I

MO'')E B?[~PF;:IIN:l:l .pr;:IOU::I ;1/0 vJITH CDNTROI ... I ... ING TEr;:jviIN()i ...
GT,JFI'i ; GET ,..I0n····FILE NUi"lBEr;:

JRST C PUSHJ P,WARN ;IF ERROR? GIVE WARNING
JRST OUTFIL::I SAND LET HIM TRY AGAIN

i"'iU')EM ,,':,:, DUT,.JFN ; ~:)j:;,lJE THt JFN

;NOW, OPEN 'rHE FILES WE JUST GOT

I NF'I . ..IT

1",0 V E (i:' I I"-'! ,.1 F (1
i···jOt.)!::. :G:, I:: ?B~::i··:··OF:X:F;:D::J

Of'Ei\lF
, •• 1 H ~:) T F (i 'r (~I...

OU'} PUT

;RETRIEVE THE INPUT JFN
SDECLARE MODES FOR OPENF 1::7-BIT BYTES +
;INPUTJ
; OPEN THE FII ... E
SIF ERROR? GIVE MESSAGE AND STOP

MOVE A,OUTJFN ;GET THE OUTPUT JFN
MOVE B,[7B5tOF%WRJ ;DECLARE MODES FOR OPENF [7-BIT BYTES +

~: OUTPUT]

!. .. DOP :~: i"iUl.)E {'J:' II'--I.JFi·,!
t·,:1 j"-,l

...iUj\'iPE B!, DUNE
(iU t.)!::: j:':'l:' ULITJFN
r':U1JT
. ..IF~ST LOOP

!JUNE:: UT~:;T~::;

TLi"!N n:,'; G~;;:;';:[OF)

..IF·:~:;;l 1 ... UOP

C !...I) b IF:';: I"'j (.) I.) E: 1'\ ~ I (I J F N
C.:L.LI:·::,F

.. .JHn·r ;::·ti T (,L.

CI...O!:;CF i~ (·iOI.)[(i:' nUl' . ..IF i····J

CI ... O~:;r:
. .Jr;::::; ·1' r I:) T ()I ...

HF;:F;:O I (:1' I:: (.~i~:)C I Z:./

~ UE'r 'fHE I NF'UT .. JFN
;'fAKE A BYTE FROM THE SOURCE
;IF o~ CHECK FOR END OF FILE •
;GET THE OUTPUT JFN
;JUTPUT THE BYTE TO DESTINATION
~; I ... DOP:, STOP ONI ... Y ON j:) 0 :OYTE ': FOUND
~; (iT I...CiOP+2)

tuc')' fHE BT(:)TU~:) OF Ji\!PUT FII ... Ev
:) ('IT END OF FILE?
;) (·10:, FI ... l.l!::'H i··,IUI...L (lNfI COi\lT I j--·1UE COpy

;YES, RETRIEVE INPUT JFN
;CLOSE INPUT FILE
;IF ERROR, GIVE MESSAGE AND STOP

;RETRIEVE OUTPUT JFN
;CLOSE OUTPUT FILE
;IF ERROR? GIVE MESSAGE AND STOP

[DONE]/] BUCCESSFULLY DONE
psnUf PRINT IT

3-33

;*** ERROR HANDLING ***
FATAL: HRROI A~[ASCIZ/
1/]

WARN:
%/J

PUSHJ P,ERROR
JRST ZAP

HRROI A,[ASCIZ/

ERROR: PSOUT
MOVE Av[.PRIOUJ

MOVE BvC.FHSLFv,-lJ
SETZ C,
ERSTR

JFCL
JFCL

POPJ P,

ZAP: HALTF
JRST START
END START

USING FILES

;FATAL ERRORS PRINT? FIRST
;THEN PRINT ERROR MESSAGE,
~AND STOP

;WARNINGS PRINT % FIRST
; AND FALL THRU 'ERROR' BACK TO CALLER

;PRINT THE? OR X
;DECLARE PRINCIPAL OUTPUT DEVICE FOR
;ERROR MESSAGE
;CURRENT FORK" LAST ERROR
;NO LIMIT,? FULL MESSAGE
;PRINT THE MESSAGE
PIGNORE UNDEFINED ERROR NUMBER
;IGNORE ERROR DURING EXECUTION OF ERSTR
;RETURN TO CALLER

;STOP
;WE ARE RESTARTABLE
;TELL LINKING LOADER START ADRESS

3-34

USING FILES

Example 2 - This program accepts input from a user at the terminal and
then outputs the data to the line printer. Refer to Section 2.9 for
explanation of the RDTTY call.

TITLE LPTPNT - PROGRAM TO PRINT TERMINAL INPUT ON THE PRINTER

BplL.L
SEARCH MACBYM?MONSYM
.REQUIRE SYS:MACREL.

T:I.:::::I.
T2::::2
T:3::::;3
T4::::·4

P:::::I.?

B l.J F G I Z :::: :::: 2 () 0
P D LEN :::: :::: !'S ()

COUNTt BLOCK 1
BUFFEF;:: oCI ... DCI;; HUF~:) I Z
PDL: BLOCK PDL~N

START: RESET ;REBET lID, ETC.

/J

0/]

HRROI Tl,CASelZ/ENTER TEXT TO BE PRINTED (END WITH ~Z):

P~:)OUT

HF;:I=;:01 T:I., BUFFEI=;:

; GEoio POINTEF~ TCJ PI:;:ClhPTING TEXT
!i UUTPUT P/:;:ClloiiPT J 1'10 j·'lESn{oIGE
;GET POINTER TO BUFFER

MOVE T2,CRDXBRKfBUFSIZ*5J ;GET FLAG AND MAX I OF CHARACTERS TO

SETZi'l T~5

F;:DTTY
• ..I~:)HI ... T

(IDn T2v BUFG I Zlj~:!~j
i"'10 1jEH T2 v CDUio"lT

; I~E(.U:I
;NU BE-TYPE BUFFER
;lNPUT TEXT FROM lH[°fERM1NAL
; EI:;:I=;:OI:;:, STOP
~ C01"lPUTE ro·IUl"-'iBEF;: OF CHi:~RtlCTEHB r;:EtlD
;SAVE * OF CHARACTERS INPUT

GET A JFN FOR THE PRINTER AND OPEN THE PHINTER

NO lj ~:) I T:I.,·: G • ..1 ::0;; n H T 1 G . ..1 :;~: F D U ::0 v 0 U T PUT I:: I L E!1 ~) H c) F: r c {\ 1 ... 1...
H r;: 1=;: 0 I "I 2 , I:: I:) SCI Z: / !... P T t / :1 :1 C·] [: T P Cl J NT 1::: I:;: lO N (I N I·; U F F I L. E
GTJFN ;GET A JFN FOR THE PRIN1ER

hOVE T2,[?B5tOF%WRJ
CiPENF

• ../ F;: ~:) ·r 0 P N E r;: F;:

lo/iCJljN T;05!! COUN·r
!:)c}UT

PSOUT
HtlJ ... ·fF
.) r;: S T ~:) T i~l f;: T

iERRDR, PRINl o ERROR MESSAG~
~7-BIT BYTES~ WRITE ACCESS WANTED
;OPEN THE PRINTER FOR OUTPUT
;ERRORv PRINT ERROR MESSAGE

;GET POINTER TO TEXT (PRINTER JFN STILL
yIN T:I.)
:1 GET NUr·1I:EF: OF CHtiF;:tICTEF·:G TO OUTPUT
;OUTPUT STRING OF CHARACTERS TO THE
, PI=i:INTEI:;:
;ERROR, PRINT ERRUR MESSAGE

OUTPUT CONFIRMATION MESSAGE
FINISHED
IF CDNT I NUED v GO DtiClo,; TO GT(i/:;: r

3-35

USING FILES

JFNERR: HRROI Tly[ASCIZ/
? COULD NOT GET A JFN FOR THE PRINTER
/:J

HI~LTF

OPNERR: HRROI Tl,CASCIZ/
? COUL.D NOT OPENfHE I:'F;; INTEF;; FOr;: OUTPUT
/J

HI~I ... TF
,.JF;;ST ~:)T (.)F;:T

DATERR: HRROI Tl,lASCIZI
? DATA ERROR DURING OUTPur TO PRINTER
/]

Hi:·~II...TF

,.JF;;~:)T BT(-)RT

END ST(~F;T

3-36

CHAPTER 4

USING THE SOFTWARE INTERRUPT SYSTEM

4.1 OVERVIEW

Program execution usually occurs in a sequential manner, whereby one
instruction is executed immediately followed by the next one.
However, there are many occasions when a program must be able to
receive asynchronous signals from terminals or other programs or as a
result of its own execution. By using the software interrupt system,
the user can specify certain conditions that will cause his program to
deviate from its sequential method of execution.

An interrupt is defined as a break in the normal flow of control
during a program's execution. The break, or interrupt, is caused by
the occurrence of a prespecified condition. By specifying the
conditions that can cause an interrupt, the program has the capability
of dynamically responding to external events and error conditions and
of generating requests for services. Because the program can respond
to special conditions as they occur, it does not have to explicitly
and repeatedly test for them. In addition, the program's size is
reduced and its execution is faster because the program does not have
to include a special test after the possible occurrence of the
condition.

When an interrupt occurs, the system transfers control from the main
program sequence to a previously-specified routine that will process
the interrupt. After the routine has completed its processing of the
interrupt, the system can transfer control back to the program at the
point it was interrupted, and execution can continue. See Figure 4-1.

4-1

USING THE SOFTWARE INTERRUPT SYSTEM

user
program
is
executing

interrupt
condition
occurs

Has program
enabled for
condition on
this channel?

No

perform
system
default
action
(e.g.,
stop job,
print
message)

user
program
continues
if job has

Yes

not been terminated

.. Is an interrupt 'rof higher priority No
being processed?

Yes

Wait until
higher priority
interrupt finishes

execute
user's
interrupt
routine

1.....-__--__ ...1

Figure 4-1 Basic Operational Sequence of the Software Interrupt System

4-2

USING THE SOFTWARE INTERRUPT SYSTEM

4.2 INTERRUPT CONDITIONS

Conditions that cause the program to be interrupted when the interrupt
system is enabled are:

1. Conditions generated when specific terminal keys are typed.
There are 36 possible codes; each one specifies the
particular terminal character or condition on which an
interrupt is to be initiated. Refer to Table 4-2 for the
possible codes.

2. Invalid instructions (e.g., I/O instructions given in user
mode) or privileged monitor calls.

3. Memory conditions, such as a reference to unassigned memory.

4. Arithmetic processor conditions, such as arithmetic overflow
or underflow.

5. Certain file or device conditions, such as end of file.

6. Program-generated software interrupts.

7. Termination of an inferior process.

8. System resource unavailability.

9. Interprocess
interrupts.

communication (IPCF)

4.3 SOFTWARE INTERRUPT CHANNELS AND PRIORITIES

and Enqueue/Dequeue

Each condition is associated with one of 36 software interrupt
channels. Most conditions are permanently assigned to specific
channels; however, the user's program can associate some conditions
(e.g., conditions generated by specific terminal keys) to anyone of
the assignable channels. (Refer to Table 4-1 for the channel
assignments.) When the condition associated with a channel occurs, and
that channel has been activated, an interrupt is generated. Control
can then be transferred to the routine responsible for processing
interrupts on that channel.

The user program assigns each channel to one of three priority levels.
Priority levels allow the occurrence of some conditions to suspend the
processing of other conditions. The levels are referred to as level
1, 2, or 3 with level 1 having the highest priority. Level 0 is not a
legal priority level. l

IIf an interrupt is generated in a process where the priori~y level
is 0, the system considers that the process is not prepared to handle
the interrupt. The process is then suspended or terminated according
to the setting of bit 17 (SC%FRZ) in its capability word.

4-3

Channel

0-5

6

7

8

9

10

11

12-14

15

16

17

18

19

20

21

22

23-35

USING THE SOFTWARE INTERRUPT SYSTEM

Table -4-1
Software Interrupt Channel Assignments

Symbol

. ICAOV

.ICFOV

.ICPOV

.ICEOF

.ICDAE

.ICILI

.ICIRD

.ICIWR

.ICIFT

.ICMSE

.ICNXP

Meaning

Assignable by user program

Arithmetic overflow

Arithmetic floating point overflow

Reserved for DEC

Pushdown list (PDL) overflow l

End of file condition

Data error file condition l

Reserved for DEC

Illegal instruction l

Illegal memory read l

Illegal memory write l

Reserved for DEC

Inferior process termination

System resources exhausted l

Reserved for DEC

Nonexistent page reference

Assignable by user program

lThese channels (called panic channels) cannot be completely
deactivated. An interrupt generated on one of these channels
terminates the process if the channel is not activated.

The software interrupt system processes interrupts on activated
channels only, and each channel can be activated and- deactivated
independently of other channels. When activated, the channel can
generate an interrupt for its associated priority level. An interrupt
for any priority level is initiated only if there are no interrupts in
progress for the same or higher priority levels. If there are, the
system remembers the interrupt request and initiates it after all
equal or higher priority level interrupts finish. This means that a
higher priority level request can suspend a routine processing a lower
level interrupt. Thus, the user must be concerned with several items
when he assigns his priority levels. He must consider 1) when one
interrupt request can suspend the processing of another and 2) when
the processing of a second interrupt cannot be deferred until the
completion of the first. See Figure 4-2.

4-4

.t::.
I

U1

level 1 channel 4
interrupt
routine

~--------1 .. ~I- - -- - - - - - - - - --J ... ,

level 2 channel 6
interrupt
routine

---------......... ~I - - - - - - - - -

user program
execution

interrupt
on chan
nel 6
that has
a prior
ity level
of 2

waiting
channel 6 interrupt
routine continues

- - - - --I
leve 1 3! - waiting

waiting

channel 35
interrupt
routine

---------------~-------~ ..

interrupt on
channel 4
that has a
priority level
of 1

channel 4
interrupt
completes

interrupt
on channel
35 that has
a priority
level of 3

Figure 4-2 Channels and Priority Levels

channel 6
interrupt
completes

user program
continues

channel 35
interrupt
completes

c
((l
H
Z
G)

1-3
:I::
ttl

U)

o
i"tJ
1-3
~
~
~
ttl

H
Z
1-3
ttl
~
~
C
"'C
t-3

U)

...::
U)

1-3
ttl
:s:

USING THE SOFTWARE INTERRUPT SYSTEM

4.4 SOFTWARE INTERRUPT TABLES

To process interrupts, the user includes, as part of his program,
special service routines for the channels he will be using. He must
then specify the addresses of these routines to the system by setting
up a channel table. In addition, the user must also include a
priority level table as part of his program. Finally, he must declare
the addresses of these tables to the system.

4.4.1 Channel Table

The channel table, CHNTAB 1 , contains a one-word entry for each
channel; thus the table has 36 entries. Each entry corres~onds to a
particular channel, and each channel is associated at any g1ven time
with only one interrupt condition. (Refer to Table 4-1 for the
interrupt conditions associated with each channel.)

The CHNTAB table is indexed by the channel number (a through 35). The
left half of each entry contains the priority level to which the
channel is assigned. The right half of each entry contains the
address of the interrupt routine for that channel. If a particular
channel is not planned to be used, the corresponding entry in the
channel table should be zero.

The following is an example of a channel table.

CHNTAB: 2, ,CHNOSV ;channel a
2, ,CHNlSV ;channel 1
2, ,CHN2SV ;channel 2
2"CHN3SV ;channel 3
0, , a ;channel 4
0, ,0 ;channel 5
1, ,APRSRV ;channel 6
0, , a ;channel 7
0, , a ;channel 8
1"STKSRV ;channel 9
0, , a ;channel 10

0, , a ;channel 35

In this example, channels a through 3 are assigned to priority level
2, with the interrupt routine at CHNOSV servicing channel 0, the
routine at CHNlSV servicing channell, the routine at CHN2SV servicing
channel 2, and the routine at CHN3SV servicing channel 3. Channels 6
and 9 are assigned to priority levell, with the routine at APRSRV
servicing channel 6 and the routine at STKSRV servicing channel 9.
All remaining channels are not assigned.

lThe user can call his channel table any name he desires;
it is a good practice to call the table CHNTAB.

4-6

however,

USING THE SOFTWARE INTERRUPT SYSTEM

4.4.2 Priority Level Table

The priority level table, LEVTAB 1
, contains a one-word entry for

each of the three priority levels. The left half of each entry is
zero. The right half of each entry contains the address in the user's
program where the system will store the flags and program counter (PC)
for the associated priority level. The system must save the value of
the program counter so that it can return control at the appropriate
point in the program once the interrupt routine has completed
processing an interrupt. If a particular priority level is not used,
its corresponding entry in the level table should be zero.

The following is a sample of a level table.

LEVTAB: O"PCLEVI
0"PCLEV2
0,,0

;Addresses to save PC for interrupts
;occurring on priority levels I and 2.
;No priority level 3 interrupts are
;planned.

4.4.3 Specifying The Software Interrupt Tables

Before using the software interrupt system, the user's program must
set up the contents of the channel table and the priority level table.
The program must then specify their addresses with the SIR monitor
call.

The SIR monitor call accepts two words of arguments - the identifier
for the program (or process) in ACI and the table addresses in AC2.
Refer to Section 5.3 for the description of process identifiers.

MOVEI 1,.FHSLF
MOVE 2,[LEVTAB"CHNTAB]
SIR

;identifier of current process
;addresses of the tables

Control always returns to the user's program at the instruction
following the SIR call. If the call is successful, the table
addresses are stored in the monitor. If the call is not successful, a
software interrupt is generated.

Any changes made to the contents of the tables after the SIR call has
been executed will be in effect at the time of the next interrupt.

4.5 ENABLING THE SOFTWARE INTERRUPT SYSTEM

Once the interrupt tables have been set up and their addresses defined
with the SIR monitor call, the user's program must enable the
interrupt system. When the interrupt system is enabled, interrupts
occurring on activated channels are processed by the user's interrupt
routines. When the interrupt system is disabled, interrupts are
processed by the monitor as if the channels for these interrupts were
not activated.

IThe user can call his priority level table any name he desires;
however, it is good practice to call it LEVTAB.

4-7

USING THE SOFTWARE INTERRUPT SYSTEM

The EIR monitor call, used to enable the system, accepts one argument
the identifier for the process in ACI.

MOVEI 1,.FHSLF
EIR

;identifier of current process

Control always returns to the instruction following the EIR call.

4.6 ACTIVATING INTERRUPT CHANNELS

Once the software interrupt system is enabled, the channels on which
interrupts can occur must be activated (refer to Table 4-1 for the
channel assignments). The channels to be activated have a nonzero
entry in the appropriate word in the channel table.

The AIC monitor call is used to activate one or more of the 36
interrupt channels. This call accepts two words of arguments - the
identifier for the process in ACI and the channels to be activated in
AC2. The channels are indicated by setting the appropriate bits
(i.e., setting bit n indicates channel n is to be activated). The
current state of any channel not specified in the AIC call is not
changed.

MOVEI 1,.FHSLF
MOVE 2, [lB<.ICAOV>+lB<.ICPOV>]
AIC

;identifier of current process
;activate channels 6 and 9

Control always returns to the instruction following the AIC call.

Some channels, called panic channels by convention, cannot be
deactivated by disabling the channel or the entire interrupt system
(refer to Table 4-1 for these channels). This is because the
occurrence of the conditions associated with these channels cannot be
completely ignored by the monitor. If one of these conditions occurs,
an interrupt is generated whether the channel is activated or not. If
the channel is not activated, the process is terminated, and usually a
message is output before control returns to the monitor. If the
channel is activated, control is given to the user's interrupt routine
for that channel.

4.7 PROCESSING AN INTERRUPT

When a software interrupt occurs on a given priority level, the
monitor stores the current program counter (PC) word in the address
indicated in the priority level table (refer to Section 4.4.2). The
monitor then transfers control to the interrupt routine associated
with the channel on which the interrupt occurred. The address of this
routine is specified in the channel table (refer to Section 4.4.1).

Since the user's program cannot determine when an interrupt will
occur, the interrupt routine is responsible for preserving the state
of the program so that the program can be resumed properly. Thus, the
first action taken by the routine is to store the contents of any user
accumulators that will be used during the processing of the interrupt.
After the accumulators are saved, the interrupt routine processes the
interrupt.

Occasionally, an interrupt routine may need to alter locations in the
main section of the program. For example, a routine may change the
stored PC word to resume execution at a location different from where

4-8

USING THE SOFTWARE INTERRUPT SYSTEM

the interrupt occurred. Or it may alter a value that caused the
interrupt. It is important that care be used when writing routines
that alter data because any changes will remain when control is
returned to the main program. For example, if data is inadvertently
stored in the PC word, return to the main section of the program would
be incorrect when the system attempted to use the word as the value of
the program counter.

If a higher priority interrupt occurs during the execution of an
interrupt routine, the executing routine is suspended. The value of
its program counter is stored at the location indicated in the
priority level table for the new interrupt. When the routine for this
new interrupt is completed, the suspended routine is resumed. If an
interrupt of the same or lower priority occurs during the execution of
a routine, the monitor holds the interrupt until all higher or equal
level interrupts have been processed.

The system considers the user's program unable to process an interrupt
on an activated channel if:

1. The priority level associated with the channel is o.

2. The program has not defined its interrupt tables by executing
a SIR monitor call.

3. The process has not enabled the interrupt system by executing
an EIR monitor call, and the channel on which the interrupt
occurs is a panic channel.

In any of the above cases, the occurrence of an interrupt terminates
the user'~ program.

4.7.1 Dismissing An Interrupt

Once the processing of an interrupt is complete, the interrupt routine
should restore the user accumulators to their initial values. Then it
returns control to the interrupted code via the DEBRK monitor call.
This call restores the PC word and resumes the program. The call has
no arguments and must be the last statement in the interrupt routine.

The user's program is restored to its state prior to the interrupt if
the stored PC word has not been changed. For example, if the program
was interrupted while waiting for I/O to complete, it is restored to
that state after execution of the DEBRK call. If the PC word was
changed, the program resumes execution at the new PC location.

4.8 TERMINAL INTERRUPTS

The user's program can associate channels 0 through 5 and channels 24
through 35 with occurrences of various conditions, such as the
occurrence of a particular character typed at the terminal or the
receipt of an IPCF message. This section discusses terminal
interrupts; refer to Chapters 6 and 7 for other types of assignable
interrupts.

There are 36 codes used to specify terminal characters or conditions
on which interrupts can be initiated. These codes, along with their
associated conditions, are shown in Table 4-2.

4-9

USING THE SOFTWARE INTERRUPT SYSTEM

Table 4-2
Terminal Codes and Conditions

Code Symbol Character or Condition

0 .TICBK CTRL/@ or break

1 .TICCA CTRL/A

2 .TICCB CTRL/B

3 .TICCC CTRL/C

4 .TICCD CTRL/D

5 .TICCE CTRL/E

6 .TICCF CTRL/F

7 .TICCG CTRL/G

8 .TICCH CTRL/H

9 .TICCI CTRL/I

10 .TICCJ CTRL/J

11 .TICCK CTRL/K

12 .TICCL CTRL/L

13 .TICCM CTRL/M

14 .TICCN CTRL/N

15 .TICCO CTRL/O

16 .TICCP CTRL/P

17 .TICCQ CTRL/Q

18 .TICCR CTRL/R

19 .TICCS CTRL/S

20 .TICCT CTRL/T

21 .TICCU CTRL/U

22 .TICCV CTRL/V

23 .TICCW CTRL/W

24 .TICCX CTRL/X

25 .TICCY CTRL/Y

26 .TICCZ CTRL/Z

27 .TICES ESC key

28 .TICRB Delete (or rubout) key

4-10

USING THE SOFTWARE INTERRUPT SYSTEM

Table 4-2 (Cont.)
Terminal Codes and Conditions

Code Symbol Character or Condition

29 .TICSP Space

30 .TICRF Dataset carrier off

31 .TICTI Typein

32 .TICTO Typeout

33-35 Reserved

To cause terminal interrupts to be generated, the
assign the desired terminal code to one of the
The ATI monitor call is used to assign this code.
one word of arguments - the terminal code in the
the channel number in the right half.

user's program must
assignable channels.

This call accepts
left half of ACI and

MOVE 1,[.TICCE"INTCHl]
ATI

;assign CTRL/E to channel INTCHI

Control always returns to the instruction following the ATI call. If
the current job is not attached to a terminal (i.e., there is no
terminal controlling the job), the terminal code assignments are
remembered; they will be in effect when a terminal is attached.

The monitor handles the receipt of a terminal interrupt character in
either immediate mode or deferred mode. In immediate mode, the
terminal character causes the system to initiate an interrupt as soon
as the user types the character (i.e., as soon as the system receives
it). In deferred mode, the terminal character is placed in the input
stream in sequence with other characters of the input, unless two of
the same character are typed in succession. In this case, an
interrupt occurs at the time the second one is typed. If only one
character enabled in deferred mode is typed, the system initiates an
interrupt only when the program attempts to read the character.
Deferred mode allows interrupt actions to occur in sequence with other
actions specified in the input (e.g., when characters are typed ahead
of the time that the program actually requests them). In either mode,
the character is not passed to the program as data. The system
assumes that interrupts are to be handled immediately unless a program
has issued the STIW (Set Terminal Interrupt Word) monitor call.
(Refer to DECsystem-20 Monitor Calls Reference Manual for a
description of this call.)

4.9 ADDITIONAL SOFTWARE INTERRUPT MONITOR CALLS

Additional monitor calls are available that allow the user's program
to check and to clear various parts of the software interrupt system.
Also, there is a call useful for multiple process communication (refer
to the IIC call in Section 5.10).

4-11

USING THE SOFTWARE INTERRUPT SYSTEM

4.9.1 SKPIR Monitor Call

The SKPIR monitor call is used to test the software interrupt system
to see if it is currently enabled. The call accepts in ACI the
identifier of the process. After execution of the call, control
returns to the next instruction if the system is off or returns to the
second instruction if the system is on.

MOVEI 1,.FHSLF
SKPIR
return

return

4.9.2 RIR Monitor Call

;identifier of current process
;test interrupt system
;system is off
;system is on

The RIR monitor call is used to read the channel and priority level
table addresses for the process as set by the SIR monitor call. This
call is useful when several processes in one job want to share the
interrupt tables. The call accepts in ACI the identifier of the
process and returns in AC2 the table addresses. The left half of AC2
contains the priority level table address and the right half contains
the channel table address. If the SIR monitor call has not been
executed by the process, AC2 contains zero.

MOVEI 1,.FHSLF
RIR

;identifier of current process
;return the table addresses

Control always returns to the instruction following the RIR call.

4.9.3 OIR Monitor Call

The OIR monitor call is used to disable the software interrupt system
for the process. It accepts in ACI the identifier of the process.

MOVEI 1,.FHSLF
OIR

;identifier of current process
;disable system

Control always returns to the instruction following the OIR call.

If interrupts occur while the interrupt system is disabled, they are
remembered until the system is reenabled. At that time, the
interrupts take effect unless an intervening CIS monitor call (refer
to Section 4.9.6) has been issued. Software interrupts assigned to
panic channels are not completely disabled by the OIR call. These
interrupts terminate the process, and the superior process is notified
if it has enabled channel .ICIFT. In addition, if the terminal code
for CTRL/C (.TICCC) is assigned to a channel, it still causes an
interrupt that cannot be disabled by the OIR call. However, the
CTRL/C interrupt can be disabled by deactivating the channel assigned
to the CTRL/C terminal code.

4-12

USING THE SOFTWARE INTERRUPT SYSTEM

4.9.4 DIC Monitor Call

The DIC monitor call is used to deactivate one or more of the 36
interrupt channels. The call accepts two words of arguments - the
identifier for the process in ACI and the channels to be deactivated
in AC2. The channels are indicated by setting the appropriate bits
(i.e., setting bit n indicates channel n is to be deactivated).

MOVEI 1,.FHSLF
MOVE 2, [lB<.ICAOV>+IB<.ICPOV>]
DIC

;identifier of current process
;deactivate channels 6 and 9

Control always returns to the instruction following the DIC call.

when a channel is deactivated, interrupt requests for that channel are
ignored except for interrupts generated on panic channels (refer to
Section 4.6).

4.9.5 DTI Monitor Call

The DTI monitor call is used to deassign a terminal code from a
particular channel. This call accepts one argument word - the
terminal code in the left half of ACI and the channel number in the
right half.

MOVE 1,[.TICCE"INTCHI]
DTI

;deassign CTRL/E from channel INTCHI

Control always returns to the instruction following the DTI call.
This monitor call is ignored if the specified terminal code has not
been defined by the current job.

4.9.6 CIS Monitor Call

The CIS monitor call is used to clear the interrupt system for the
current process. This causes interrupts in progress and all waiting
interrupts to be cleared. This call has no arguments, and control
always returns to the instruction following the CIS call. The RESET
monitor call (refer to Section 2.6.1) performs these same actions as
part of its initializing procedures.

4.10 SUMMARY

To use the software interrupt system, the user's program must:

1. Supply routines that will process the interrupts.

2. Set up a channel table containing the addresses of the
routines (refer to Section 4.4.1) and a priority level table
containing the addresses for storing the program counter (PC)
values (refer to Section 4.4.2).

3. Specify the addresses of the tables with the SIR monitor call
(refer to Section 4.4.3).

4. Enable the software interrupt system with the EIR monitor
call (refer to Section 4.5).

4-13

USING THE SOFTWARE INTERRUPT SYSTEM

5. Activate the desired channels with the AIC monitor call
(refer to Section 4.6).

4.11 SOFTWARE INTERRUPT EXAMPLE

This program copies one file to another. It accepts the input and
output filenames from the user. The end of file is detected by a
software interrupt, and CTRL/E is enabled as an escape character.

TITLE SOFTWARE INTERRUPT EXAMPLE
BE(~IHCH p'jONE:;YM
T:l :::::1.
T2::::2
I NTCH:I. :::: :1.

ST(~F;:T: ;:;:EbET ;HELEASE FILEb, ETC.
; CUr;:F~ENT PF;:OCESS
;INTEHRUPT TABLES

riOtJE I T:I.:, ~ FHSI ... F
MOVE T2,[LEVTAB"CHNTABJ
B J:I:~
Ell:;:
MOVE T2,[lB<INTCH:I.>+:l.B<.ICEOF>J

MOVE T:I.,[.TICCE"INTCH1J
(ITl

G E 'r J F ;: H r;: F~ (} .I. ·r:l.:.' C tl !:) C I Z / I N F' U T F II ... E l: ./ J

~ ENi:~lBI...E SY~:)TEN

;ACTIVATE CHANNELS

;ABSIGN CTRL/E TO CHANNEL :I.

!::'bClUT :! F'1:;.~Oi'''IPT UBEI:;: FOF;: I NF'UT NtlhE
p'j 0 1.,,1 S I ·r:l.:,': G,..I:~;:OL:CI+G,..I~~·;M~:)G+G,J:;~:CI· jVi+G,.J:;;:FNS+G,Ji;·;:::;HT)
MOVE T2,C.PRIIN".PRIOUJ
G·I, .. IF,../ y GEl FILENI':lhE FF;:OH U~3EI:;:

E F: , .. ~ i'/i F:' E F: r;: Cl F;: :I.
!·:jCll .. 'EH T 1 :1 J N,,lFN

GET () F :; H r;: F;: U I T:I., I:: () ~:) ell: / U l.J T I::' U '1" F I I ... E l~ / ::I
P~;;O!...i·l· ;PRONPT USER FOR OUTPUT NAME
HOVSI Tl,(GJ%FOU+GJ%MSGtGJ%CFMtGJ%FNStGJ%SHT)
l'/i 0 t) E '1' ::;.~ :1 [,. P I·;: I J 1"·1 :1 l' " ,.:. r;: J U 1...1 J
Ur...lFH

I:::r·: JI'-'~P EF;:FOF:2
1"iO l) EiVj 'J':I.:, (ju'r ,..IFN

MOVE T2~[7B5tOF%RDJ

OPEi···:F
E F~1 ;"j F' E F;: r;: 0 r;: :3

(i I .. ' N (] F ;: j .. j U lJ E T:!.:1 Cl U "I' "" F N
MOVE 12,[7B5tOF%WRJ
lJ I:'!::: r'olF

EF;:,.JHP EF;:EOF;:3
CPYByr: MGVE 'fl,INJFN

DIN

DONE:::

('lot'}E T:i.:, OU'I' ""FN
E:CIU l
,.JI:;:~:)T CP'(BYT
('i Ci I) E "r:i. ~I I (! ...I F (.)
C:LU:;:;F

"..1 F C::I...
"'i C) ;) E T:!.:1 (] ur ,..I F N
CI...U~:;F

· . ..IFe!...
Htll...TF

;GET FILENAME FROM USER

~ OPEN I NPI...IT FILE

;OPEN OUTPUT FILE

;WRITE OUTPUT BYTE

:/ LOOP UNT I L [OF

;elOSE INPUT FILE

;CLOSE OUTPUT FILE

4-14

USING THE SOFTWARE INTERRUPT SYSTEM

;ROUTINE TO HANDLE ~E - ABORTS OPERATION

CTRLE: MOVEI Tl,.PRIOU
CFOBF
HRROI Tl,CASCIZ/ABORTED./J
PSOUT
C1 ~:)
,../ j:;: ~~: T ~::, T (~ F;: T

;CLEAR OUTPUT BUFFER

; I NFOr;:i"l U~:)EI:;:

!I CI...E(.~H SY~:)TEi"l

;ROUTINE TO HANDLE EOF - COMPLETES OPERATION NOHMALI...Y

EOFINT: MOVEM Tl,INTACl
l"lUVE 1 ·r:l.:or DONE
hOVEh T l·!, PC2
hOVE T:I.!, INT(.)Cl
DEDr;:I<

; LEVEL TtlBLE
LE!)TI:"1f:{: 0

PC2
()

Ft c.~ ::.~ : I:{ L. (J C: l{ 1
~ CHI~)NNEL. T .. ;BLE
CHNT(.iV: 0

2!, !' CTF;:LE
REPEAT "'DB, <0>
2"EDFINT
1:;:EPEtIT "'D2~::i, <(»

I N,../FN? BI ... OCI<:t
OUT ,JFN<: I{I...OCI' :I.
INT(.iC:I t BLOCK :L
EF:F;:or;:.l t TiO'lE)(3 <:
TIN I) (.:11... J II F I I... E !:) PEe I FIe 1:"1 T :r [) N >

Htll...TF
ERr~OF:2: n"H:;G <:
?JNVtII...ID FILE GPECIFICI~ITION>

Ht,LTF
EI~:i:;:DF;:::): Tf'lSG <:
Tefl N N 0 Of 0 F' E NFl L E >

Htfl...TF
LIT

4-15

!/ SflVE (-)C! S

:I CHtlNGE PC
flO DONE
; RESTor;:E I:"1C! S
9DISMISS INTERRUPT

;UNUSED CHANNELS HAVE 0
;CHANNEL 1 IS CTRL/E
;CHANNEL 2-9 NOT USED
;CHANNEL :1.0 IS EOF
;CHANNEL 11-35 NOT USED

CHAPTER 5

PROCESS STRUCTURE

As stated in Chapter 1, the DECsystem-20 operating system allows each
job to have multiple, simultaneously-runnable processes. Each proces~
has its own environment called its address space. Associated with the
environment is the program counter (PC) of the process and a
well-defined relationship with other processes in the job.

The DECsystem-20 operating system schedules the running of processes,
not entire jobs. A process can be scheduled independent of other
processes because it has a definite existence: its beginning is the
time at which it is created, and its end is the time at which it is
killed. At any point in its existence, a process can be described by
its state, which is represented by a status word and a PC word (refer
to Section 5.9).

The relationships among processes in a job are shown in the diagram
below. Each process has one immediate superior process (except for
the top-level process) and can have one or more inferior processes.
Two processes are parallel if they have the same immediate superior.
A process can create an inferior process but not a parallel or
superior process.

top-level
process

I
I I I

process process process
1 2 3

I I
process process

4 5

Process 1 is the superior process of process 4, and process 3 is the
superior of process 5. Processes 4 and 5 are the inferiors of
processes 1 and 3, respectively. Process 2 has no inferior process.
Processes 1, 2 and 3 are parallel because they have the same superior
process (i.e., the top-level process). Processes 4 and 5, although at
the same depth in the structure, are not parallel because they do not
have the same superior process. Process 1 created process 4 but could
not have created any other process shown in the structure above.

5-1

PROCESS STRUCTURE

5.1 USES FOR MULTIPLE PROCESSES

A multiple-process job structure allows:

1. One job to have more than one program runnable at the same
time. These programs can be independent programs, each one
compiled, debugged, and loaded separately. Each program can
then be placed in a separate process. These processes can be
parallel to each other, but are inferior to the main process
that created them. This use allows parallel processing of
the individual programs.

2. One process to wait for an event to occur (e.g., the
completion of an I/O operation) while another process
continues its computations. Communication between the two
processes is such that when the event occurs, the process
that is computing can be notified via the software interrupt
system. This use allows two processes within a job to
overlap I/O with computations.

One application of a multiple-process job structure is the following
situation: a superior process is responsible for accepting input from
various terminals. After receiving this input, the process sends it
to various inferior processes as data. These inferior processes can
then initiate other processes, for example, to write reports on the
data that was received.

Process that
accepts input
from terminals

I

I

Processes that
receive the
input as data.

Processes that
write reports
on the data.

Another application is that used for the user interface on the
DECsystem-20. On the DECsystem-20, the top-level process in the job
structure is the Command Language. This process services the user at
the terminal by accepting input. When the user runs a program (e.g.,
MACRO, FORTRAN), the Command Language process creates an inferior
process, places the requested program in it, and executes it. The
Command Language can then wait for an event to occur, either from the
program or from the user. An event from the program can be its
completion, and an event from the user can be his typing of a certain
terminal key (e.g., CTRL/C).

5-2

PROCESS STRUCTURE

5.2 PROCESS COMMUNICATION

A process can communicate with other processes in the system in
several ways:

direct process control

software interrupts

IPCF and ENQ/DEQ facilities

memory sharing

5.2.1 Direct Process Control

A process can create and control other processes inferior to it within
the job structure. The superior process can cause the inferior
process to begin execution and then to suspend and later resume
execution. After the inferior process has completed its tasks, the
superior process can delete the inferior from the job structure.

Some of the monitor calls used for direct process control are: CFORK,
to create a process; SFORK, to start a process; WFORK, to wait for a
process to terminate; RFSTS, to obtain the status of a process; and
KFORK, to delete a process. Refer to the DECsystem-20 Monitor Calls
Reference Manual for descriptions of additional monitor calls dealing
with process control.

5.2.2 Software Interrupts

The software interrupt facility enables a process to receive
asynchronous signals from other processes, the system, or the terminal
user or to receive signals as a result of its own execution. For
example, a superior process can enable the interrupt system so that it
receives an interrupt when one of its inferiors terminates. In
addition, processes within a job structure can explicitly generate
interrupts to each other for communication purposes.

Some of the monitor calls used when communication occurs via the
software interrupt system are: SIR, to specify the interrupt tables;
EIR, to enable the interrupt system; AIC, to activate the interrupt
channels; and IIC, to initiate an interrupt on a channel. Refer to
Chapter 4 and Section 5.10 for more information.

5.2.3 IPCF And ENQ/DEQ Facilities

The Inter-Process Communication Facility (IPCF) enables processes and
jobs to communicate by sending and receiving informational messages.
The MSEND call is used to send a message, the MRECV call is used to
receive a message, and the MUTIL call is used to perform utility
functions. Refer to Chapter 7 for descriptions of these calls.

The ENQ/DEQ facility allows cooperating processes to share resources
and facilitates dynamic resource allocation. The ENQ call is used to
obtain a resource, the DEQ call is used to release a resource, and the
ENQC call is used to obtain status about a resource. Refer to Chapter
6 for descriptions of these calls.

5-3

PROCESS STRUCTURE

5.2.4 Memory Sharing

Each page in a process' address space is either private to the process
or shared with other processes. Pages are shared among processes when
the same page is represented in more than one process address space.
This means that two or more processes can identify and use the same
page of physical storage. Even when several processes have identified
the same page, each process can have a different access to that page,
such as access to read or write that page.

A type of page access that facilitates sharing is the copy-on-write
access. A page with this access remains shared as long as all
processes read the page. As soon as a process writes to the page, the
system makes a private copy of the page for the process doing the
writing. Other processes continue to read and execute the original
page. This access provides the capability of sharing as much as
possible but still allows the process to change its data without
changing the data of other processes. A monitor call used when
sharing memory is PMAP. Refer to Section 5.6.2 for more information.

5.3 PROCESS IDENTIFIERS

In order for processes to communicate with each other, a process must
have an identifier, or handle, for referencing another process. When
a process creates an inferior process, it is given a handle on that
inferior. This handle is a number in the range 400001 to 400777 and
is meaningful only to the process to which it is given (i.e., to the
superior process). For example, if process A creates process B,
process A is given a handle (e.g., 400003) on process B. Process A
then specifies this handle when it uses monitor calls that refer to
process B. However, process B is not known by this handle to any
other process in the structure, including itself. The handle 400003
may in fact be known to process B, but it would describe a process
inferior to process B.

There are several standard process handles that are never assigned by
the system but have a specific meaning when used by any process in the
structure. These handles are used when a process needs to communicate
with a process other than its immediate inferior or with multiple
processes at once. These handles are described in Table 5-1.

Number Symbol

400000 . FHSLF

-1 .FHSUP

-2 .FHTOP

-3 .FHSAI

-4 .FHINF

-5 .FHJOB

Table 5-1
Process Handles

Meaning

The current process (or self) •

The immediate superior of the current
process.

The top-level process in the job
structure.

The current process and all of its
inferiors.

All of the inferiors of the current
process.

All processes in the job structure.

PROCESS STRUCTURE

Consider the job structure below.

The following indicates the specific process or processes being
referenced if process E gives the handle:

.FHSLF refers to process E

.FHSUP refers to process D

.FHTOP refers to process A

.FHSAI refers to processes E, G, and H

.FHINF refers to processes G and H

.FHJOB refers to processes A through H

The process must have the appropriate capability enabled in its
capability word to use the handles .FHSUP and .FHTOP (refer to Section
5.5.1) .

Process E can reference one of its inferiors (e.g., G) with the handle
it was given when it created the inferior. Process E can reference
other processes in the structure (e.g., F) by executing the GFRKS
monitor call to obtain a handle on the desired process. Refer to the
DECsystem-20 Monitor Calls Reference Manual for a description of the
GFRKS call.

5.4 OVERVIEW OF MONITOR CALLS FOR PROCESSES

Monitor calls exist for creating, loading, starting, suspending,
resuming, interrupting, and deleting processes. When a process is
created, its address space is assigned, and the process is added to
the job structure of the creating process. The contents of its
address space can be specified at the time the process is created or
at a later time. The process can also be started at the time it is
created. A process remains potentially runnable until it is
explicitly deleted or its superior is deleted.

A process may be suspended if one of the following conditions occurs:

1. The process executes an instruction that causes a software
interrupt to occur, and it is not prepared to process the
interrupt.

2. The process executes the HALTF monitor call.

5-5

PROCESS STRUCTURE

3. The superior process requests suspension of its inferior.

4. The superior process is suspended. When a process is
suspended, all of its inferior processes are also suspended.

5.5 CREATING A PROCESS

A process creates an inferior process by executing the CFORK
Process) monitor call. (The term fork is synonymous with
process.) This monitor call can also be used to specify the
space, capabilities, ACs, and PC for the inferior process and
the execution of the inferior.

(Create
the term
address

to start

The CFORK call accepts two words of arguments in ACI and AC2.

ACl: characteristics for,the inferior in the left half, and PC
address for the inferior in the right half.

AC2: address of a 20(octal) word block containing the AC values
for the inferior.

The characteristics for the inferior 'process are defined by the
following bits:

Bit Symbol

o CR%MAP

1 CR%CAP

2

3 CR%ACS

4 CR%ST

Meaning

Set the map of the inferior process to the
same as the map of the superior (i.e.,
creating) process. This means that the
superior and the inferior will share the
same address space. Changes made by one
process will be seen by the other process.

If this bit is not on in the call, the
inferior's map will contain all zeros.

Set the capability word of the inferior
process to the same as the capability word
of the superior process. (Refer to Section
5.5.1 for the description of the capability
word.)

If this bit is not on in the call, the
inferior will have no special capabilities.

Reserved for DEC (must be zero).

Set the ACs of the inferior process to the
values beginning at the address given in
AC2.

If this bit is not on in the call, the
inferior's ACs will be set to zero, and the
contents of AC2 is ignored.

Set the PC for the inferior process to the
address given in the right half of ACI and
start execution of the inferior.

5-6

PROCESS STRUCTURE

If this bit is not on in the call, the
right half of ACI is ignored, and· the
inferior is not started.

If execution of the CFORK call is not successful, the inferior process
is not created and an error code is returned in ACI. The execution of
the program in the superior process continues at the instruction
following the CFORK call.

If execution of the CFORK call is successful, the inferior process is
created and its process handle is returned in the right half of ACI.
This handle is then used by the superior process when communicating
with its inferior process. The execution of the program in the
superior process continues at the second instruction following the
CFORK call.

Assume that process A executes the CFORK monitor call twice to create
two parallel inferior processes. This is represented pictorially
below.

Process A
creates process B
by executing a CFORK

I
Process B is created
and its handle is
given to process A

Process A executes
another CFORK to
create process C

I
I I

Process B Process C is created
and its handle
given to process A

Note that process A has been given two handles, one for process Band
one for process C. Process A can refer to either of its inferiors by
giving the appropriate handle or to both of its inferiors by giving a
handle of -4.

5.5.1 Process Capabilities

When a new process is created, it is,given the same capabilities as
its superior, or it is given no special capabilities. This is
indicated by the setting of the CR%CAP bit in the CFORK call. The
capabilities for a process are indicated by two capability words. The
first word indicates if the capability is available to the process,
and the second word indicates if the capability is enabled for the
process. This second word is the one being set by the CR%CAP bit in
the CFORK call.

5-7

PROCESS STRUCTURE

Types of capabilities represented in the capability words are
process, and user capabilities. Each capability corresponds
particular bit in the capability words and thus can be activated
protected independently of the other capabilities. Refer to
DECsystem-20 Monitor Calls Reference Manual for more information
the capability words.

job,
to a

and
the

on

5.6 SPECIFYING ~HE CONTENTS OF THE ADDRESS SPACE OF A PROCESS

Once a process is created, the contents of its address space can be
specified. This can be accomplished by one of three ways. As
mentioned in Section 5.5, bit CR%MAP can be set in the CFORK call to
indicate that the address space of the inferior process is to be the
same as the address space of the creating process. In addition, the
creating process can execute the GET monitor call to map specified
pages from a file into the address space of the inferior process.
Finally, the creating process can execute the PMAP monitor call to map
specified pages from another process into the address space of the
inferior process.

If the creating process does not specify the contents of the
inferior's address space, the address space will be filled with zeros.

5.6.1 GET Monitor Call

The GET monitor call is used to map pages from a file into the address
space of the specified process. The file must be a saved file that
was created with either the SAVE or SSAVE monitor call (refer to the
DECsystem-20 Monitor Calls Reference Manual).

The GET monitor call accepts two words of arguments in ACI and AC2.
The first word specifies the handle of the desired process and the JFN
of the desired file. The second word specifies where the pages from
the file are to be placed in the address space of the process. Thus,

ACl:

AC2:

process handle in the left half, and JFN in the right
half. If GT%ADR (bit 19) is on, AC2 is used for the
memory limits. If GT%ADR is not on, all existing pages in
the file are mapped into the process.

number of lowest page in the left half and number of
highest page in the right half. These page numbers are
for the address space of the process and are used to
control the portions of memory that are loaded. These
values are specified only if GT%ADR is on in ACI.

When the pages of the file are mapped into pages in the process'
address space, the previous contents of the process pages are
overwritten. Any full pages in the process that are not overwritten
are unchanged. Any portions of process pages for which there is no
data in the file are filled with zeros.

For example, a GET call executed for a file that contains 2 1/2 pages
sets up the process' address space as shown in the following diagram.

5-8

page 1

page 2

page 3

page 4-
page 512

PROCESS STRUCTURE

Process

Data

GET
Call

Data

Data --------

a

unchanged

File

Data page 1

Data page 2

Data page 3
EOF

After execution of the GET call, control returns to the user's program
at the instruction following the call. If an error occurs, a software
interrupt is generated, which the program can process via the software
interrupt system.

5.6.2 PMAP Monitor Call

The PMAP monitor call is used to map pages from one process to the
address space of a second process. Data is not actually transferred;
only the contents of the page map of the second (i.e., destination)
process are changed.

The PMAP monitor call accepts three words of arguments in ACI through
AC3. The first word contains the handle and page number of the first
page to be mapped in the source process (i.e., the process whose pages
are being mapped). The second word contains the handle and page
number of the first page to be mapped in the destination process
(i.e.,the process into which the pages are being mapped). The third
word contains a count of the number of pages to map and bits
indicating the access that the destination process will have to the
pages mapped. Thus,

ACl: source process handle in the left half, and page number in
the process in the right half.

AC2: destination process handle in the left half, and page
number in the process in the right half.

AC3: count of number of pages to map and the access bits.

The count and access bits that can be specified in AC3 are described
below.

Bit Symbol

a PM%CNT

Meaning

Repeat the mapping operation the
number of times specified by the right
half of AC3. The page numbers in both

5-9

2 PM%RD

3 PM%WR

9 PM%CPY

18-35

PROCESS STRUCTURE

processes are incremented by 1 each
time the operation is performed.

Allow read access to the page.

Allow write access to the page.

Allow copy-on-write access to
page.

the

The number of times to repeat the
mapping operation if bit 0 (PM%CNT) is
set.

Upon successful execution of the PMAP call, addresses in the
destination process actually refer to addresses in the source process.
The contents of the destination page previous to the execution of the
call have been deleted. The access requested in the PMAP call is
granted if it does not conflict with the current access of the
destination page (i.e., an AND operation is performed between the
specified access and the current access). Control returns to the
user's program at the instruction following the PMAP call. If an
error occurs, a software interrupt is generated, which the program can
process via the software interrupt system.

5.7 STARTING AN INFERIOR PROCESS

A program in an inferior process can be started in one of two ways.
As mentioned in Section 5.5, the superior process can specify in the
CFORK call the PC for the inferior process and start its execution.
Alternatively, the superior process, after executing the CFORK call to
create an inferior process, can execute the SFORK (Start Process)
monitor call to start it.

The SFORK monitor call accepts two words of arguments in ACl and AC2.
The first word contains the handle of the desired process. The
address of the PC word at which the process is to be started is in the
second word. Thus,

ACl: process handle

AC2: address of inferior's PC

The process handle given in ACI cannot refer to a superior process, to
more than one process (e.g., .FHINF), or to a process that has already
been started.

After execution of the SFORK call, control returns to the user's
program at the instruction following the call. If an error occurs, a
software interrupt is generated, which the program can process via the
software interrupt system.

5.8 INFERIOR PROCESS TERMINATION

The superior process has one of two ways in which it can be notified
when its inferiors terminate execution: via the software interrupt
system or by executing the WFORK monitor call. An inferior process
will terminate normally when it executes a HALTF monitor call.

5-10

PROCESS STRUCTURE

Alternatively, the process will terminate abnormally when it executes
an instruction that generates a software interrupt, such as an illegal
instruction, and it has not activated the appropriate channel.

By activating channel .ICIFT (channel 19) for inferior process
termination and enabling the software interrupt system, the superior
process will receive an interrupt when one of its inferiors
terminates. (Refer to Section 4.6 for information on activating
channel .ICIFT.) The interrupt occurs when the first process
terminates. Use of the interrupt system allows the superior to do
other processing until an interrupt occurs, indicating that an
inferior process has terminated.

In some cases, however, the superior cannot do additional processing
until either a specific process or all of its inferior processes have
completed execution. If this is the case, the superior process can
execute the WFORK (Wait Process) monitor call. This call blocks the
superior until one or all of its inferiors have terminated.

The WFORK monitor call accepts one argument in ACl, the handle of the
desired process. This handle can be .FHINF (-4) to block the superior
until all inferiors terminate, but cannot be a handle on a superior
process.

After execution of the WFORK monitor call, control returns to the
user's program at the instruction following the call, when the
specified process or all of the inferior processes terminate. If an
error occurs, it generates a software interrupt, which the program can
process via the software interrupt system.

5.9 INFERIOR PROCESS STATUS

The superior process can obtain the status of one of its inferiors by
executing the RFSTS (Read Process Status) monitor call. This call
returns the status and PC words of the given inferior process.

The RFSTS monitor call accepts one argument in ACl, the handle of the
desired process. This handle cannot refer to a superior process or to
more than one process.

After execution of the RFSTS call, control returns to the user's
program at the instruction following the call. If the RFSTS call is
successful, ACI contains the status word of the given process and AC2
contains the PC word. The status word is shown in Table 5-2.

Bit Symbol

0 RF%FRZ

1-17 RF%STS

Table 5-2
Process Status Word

Meaning

The process is suspended (i.e., frozen) .
If this bit is not on, the process is not
suspended.

The status of the process.

Value Symbol Meaning

0 .RFRUN The process is
runnable.

5-11

Bit Symbol

18-35 RF%SIC

PROCESS STRUCTURE

Table 5-2 (Cont.)
Process Status Word

Meaning

1 .RFIO

2 .RFVPT

3 .RFFPT

4 .RFWAT

5 .RFTIM

The process is halted
waiting for I/O

The process is halted
by a HFORK or HALTF
monitor call or was
never started.

The process is halted
by the occurrence of a
software interrupt for
which it was not
prepared to handle.
The right half of the
status word contains
the number of the
channel on which the
interrupt occurred.

The process is halted
waiting for another
process to terminate.

The process is halted
for a specified amount
of time.

The channel number on which an interrupt
occurred, which the process was not
prepared to handle (see process status code
.RFFPT above).

If an error occurs during execution of the RFSTS call, a software
interrupt is generated, which the program can process via the software
interrupt system.

5.10 PROCESS COMMUNICATION

A superior process can communicate with its inferiors by sharing the
same pages of memory. This sharing is accomplished with the CFORK
(bit CR%MAP) or the PMAP monitor call. When the superior executes
either of these calls, both the superior and the inferior share the
same pages. Changes made to the shared pages by either process will
be seen by the other process.

Alternatively, processes can communicate via the software interrupt
system. The superior process can cause a software interrupt to be
generated in an inferior process by executing the IIC (Initiate
Interrupt on Channel) monitor call. For this type of communication to
occur, the inferior's interrupt channels must be activated and its
interrupt system enabled.

5-12

PROCESS STRUCTURE

The IIC monitor call accepts two words of arguments in ACI and AC2.
The handle of the process to receive the interrupt is given in the
right half of ACI. AC2 contains a 36-bit word, with each bit
representing one of the 36 software channels. If a bit is on in AC2,
a software interrupt is initiated on the corresponding channel. For
example, if bit 5 is on in AC2, an interrupt is initiated on channel
5. Thus,

ACl: process handle in the right half

AC2: 36-bit word, with bit n on to initiate a software interrupt
on channel n

The process handle given cannot refer to a superior process or to more
than one process.

After execution of the IIC call, control returns to the user's program
at the instruction following the call. If an error occurs, it
generates a software interrupt, which the program can process via the
software interrupt system.

5.11 DELETING AN INFERIOR PROCESS

A process is deleted from the job structure when the superior process
executes the KFORK (Kill Process) monitor call. When a process is
deleted, its address space, its handle, and any JFNs acquired by the
process are released. If the process being deleted has processes
inferior to it, the inferiors are also deleted. For example, in the
structure:

process A

I

process B

I

process C

if process A deletes process B by executing a KFORK call, process C is
also deleted.

The KFORK monitor call accepts one argument in the right half of ACl,
the handle of the process to be deleted. This handle cannot refer to
a superior process, to more than one process (e.g., .FHINF), or to the
process executing the call (i.e., .FHSLF). The RESET monitor call is
used to reinitialize the current process; refer to Section 2.6.1.

After execution of the KFORK call, control returns to the user's
program at the instruction following the call. If an error occurs, a
software interrupt is generated, which the program can process via the
software interrupt system.

5-13

PROCESS STRUCTURE

5.12 PROCESS EXAMPLES

Example 1 - This program creates an inferior process to provide timing
interrupts.

TITLE TIMINT - EXAMPLE OF USING AN INFERIOR PROCESS TO PROVIDE TIMING INTERRUPTS

SEARCH MONSYM, MACSYM
+REQUIRE SYS:MACREL

Tl::::l
T2::::2
T;'~::::;3

T4::::4
P:~::I. '7

STAI:;:T r. I:;:ESET
MOVE P,[IOWD 50,PDLJ
MOI..'X l 1 , Cr.::Y.M()P
CFOI:~I-<

..JSHI...T
~10VEI'1 T:I.? HANDI ... E

~RELEASE FILES, ETC.
;INIlIALIZE PUSH-DOWN LIST IN CASE OF ERRORS
;MAKE NEW PROCESS SHARE THIS PROCESS'S MEMORY
;CREATE A NEW PROCESS
;UNEXPECTED ERROR •
;SAVE PROCESS HANDLE

f HERE TO START THE INFERIOR PROCESS

STPROC: SElZB T4,FLAG
NOVE T:I.!I Hf~NDI...E
r"iOVEI 12? SLEEP
SFOr;:I';;

; MAIN PROCESSING LOOP

LOOP: ('~Cln T4
SI{IPN FL(.IG
,JI~:S1 LOOP

;INITIALIZE COUNTER AND FLAG
;GET PROCESS HANDLE
;GET ADDRESS AT WHICH TO START NEW PROCESS
;START THE NEW PROCESS

;INCREMENT COUNTER
;HAS TIME ELAPSED YET?
;NO, GO DO MORE PROCESSING

; HERE WHEN LOWER PROCESS HAS INTERRUPTED

TI"lSG <:
COl..lnt(·:'r' ha~::, r'(~~aC:'hed :>

i"10 t,}X ll!1 .PRIOU
hOVE T2,T4
110VE1 T3:1 "'D:i.O
NOUT

\.JBEF;:F~

Tr'iBG <

;OUTPUT FIRST PART OF MESSAGE
;GET PRII"lARY OUTPUT ..JFN
;GET COUNTER VALUE
;UBE DECIMAL RADIX
;OUTPUT CURRENT COUNTER VALUE
;UNEXPECTED ERROR

;CONfINUE COUNTING

PROGRAM PERFORMED BY INFERIOR PROCESS TO WAIT FOR ONE-HALF MINUTE

SLEEP: MOVX Tl,~D30*~D1000
DISHS
SETUl',! Fl...tlG
Hi:~LTF

PDI...: BLOCK 50
Hf~NDLE t BI..OCI< :1
F l..(:IG :!: BI...OCI<:I.

;SI...EEP FOR ONE-HALF MINUTE
;DISMISS FOR SPECIFIED TIME
;1EI...1.. SUPERIOR PROCESS 30 SECONDS HAVE EI...ASPED
~ F Ii\IJ GHED

5-14

PROCESS STRUCTURE

Example 2 - This program illustrates how an inferior process may be
used as a source of timer interrupts. The main program increments a
counter. It has an inferior process running for the sole purpose of
timing 10 second intervals. Each time the inferior process has timed
10 seconds, it stops and interrupts the main program. The main
program then reports how many more times it has incremented the
counter since the last 10 second interrupt.

SEARCH MONSYM, MACSYM
.REQUIRE SYS:MACREL

T:I.::::1
T2::::2
T;'·):::::':')

'(4::::4

; SET UP THE INTERRUPT SYSTEM

;RELEASE FILES, ETC.

MOVX T:I.,.FHSLF ;GET OUR PRbcESS HANDLE
MOVE T2,[LEVTAB"CHNTAB];GET TABLE ADDRESSES
SIR ;SET INTERRUPT TABLE ADDRESSES
MOVX T2,lB<.ICIFT) ;GET PROCESS-TERMINATION-CHANNEL BIT
AIC ;ACTIVATE PROCESS TERMINATION CHANNEL
EIR ;ENABLE THE SYSTEM.

f"iDVX T:l!, Cr::i.;i···1tIP+Cr:::i;:UT ":"!;;L.EEP
CFORK ;CREATE AND START TIMER AT "SLEEP"

ERJMP [JSHL.T] ;UNEXPECTED ERROR.
MDVEM T1,HANDLE ;SAVE PROCESS HANDL.E

;INITIAL.IZE THE COUNTER

STPROC: SETZD T4,OLDT4 ;CL.EAR THE COUNTER

;MAIN LOOP OF PROGRAM WHICH JUST KEEPS COUNTING. (REAL
;APPLICATION WOULD PRESUMABLY HAVE A MORE USEFUL. MAIN PROGRAM.)

;JUST KEEP INCREMENTING •••

PROINT: MOVEM 17,IACS+17 ;SAVE AC 17
MOVEI 17,IACS ;MAKE POINTER FOR REST OF ACS
BLT 17,IACSt16 ;SAVE REST OF ACS
TMSG <NUMBER OF COUNTS: >
MOVEI Tlq.PRIOU ;GET PRIMARY OUTPUT JFN
EXCH T4,OLDT4 ;SAVE NEW COUNTER VALUE.
SUB T4,OLDT4 ;FIND NUMBER OF COUNTS SINCE LAST TIME
hOI)j-'! T2, T4
i'-'!OI)EI T;') !,· .. ··D:l.O
NOUT

EF:CtIL [JSEr::r::
r::ET ::/

ThBG <:

j"iOI..JE T:I., HtlNDI...E
~'iClI)E I T2!, SLEEP
~:)FUr::i<

l"!OI)~:~ 1 1 7 !' I (:)CS
Bi...f 1)'!11,?

;MAKE IT POSITIVE
;USE DECIMAL RADIX
;TYPE NUMBER OF COUNTS SINCE LAST TIME
;UNEXPECTED NOUT FAILURE
? HETUr::N

!lEND THE LINE
;GET HANDLE ON TIMER PROCESS.
;GET THE PC WE WANT TO START IT AT.
;RESTART THE TIMER~

;OET POINTER TO SAVED ACS
;RESTORE SAVED ACS

5-15

PROCESS STRUCTURE

DEBRK ;DISMISS INTERRUPT

;THE FOLLOWING LOOP IS EXECUTED AS A LOWER PROCESS TO DO THE
;TIMING. IT SLEEPS FOR 10 SECONDS AND THEN STOPS.

SLEEP: MOVX Tl~"D10*~Dl000

DrSMS
HALTF

CONSTANTS AND VARIABLES

CHNTAB: REPEAT ~D19y <EXP 0)
l~,PROINT

REPEAT ~D15Y<EXP 0)
LEVTAB: RETPCl

'0
o

HANDLE: BLOCK 1
RETPC1: BLOCK 1
OLDT4: BLOCK 1
lACS: BLOCK 20

END START

;GET 10 SECONDS
;SLEEP
;STOP AND-INTERRUPT THE MAIN PROGRAM

;CHANNELS 0-18 ARE NOT USED
;PROCESS TERMINATION INTERRUPT CHANNEL
;REMAINING CHANNELS ARE NOT USED
;RETURN pC STORED AT RETPC1 FOR LEVEL 1
;LEVEL 2 NOT USED
;LEVEL 3 NOT USED
;PROCESS HANDLE
;RETURN PC STORED HERE ON INTERRUPTS
;HOLDS TIMER VALUE AT LAST INTERRUPT
;STORAGE FOR ACS DURING INTERRUPTS

5-16

PROCESS STRUCTURE

Example 3 - This program creates an inferior process which waits until
a line has been typed on the terminal.

TITLE FRKDOC - EXAMPLE OF USING AN INFERIOR PROCESS TO WAIT UNTIL A LINE IS TYPED

SEARCH MONSYM, MACSYM
.REQUIRE SYS:MACREL

T:/.:::::I.
T::~:::;::2

T:':)::;:~!)

)"4:::'4
F':::: :I.?

:::>'I'(IF;:T ~ F;;E~:)ET

MOVE P,[IDWD 50,PDl...J
1'''i0 1.)X T:I., CF;::i.:,'''it,P
CFOr;:I<

,..I~:)HLT

~:)ETZB '''''4, FL()G
j\"OV[I T?, GETCOh
SFO;:;:i<

; MAIN PROCESSING LOOP

L.OCJP ;~ (:iO~3 T4
S I{ I P NFL. tl G
,..IF;:~:)·r L.OOP

~RELEASE FILES, ETC~
:i INJTI(~l...IZE PU~:)H""DO!!JN 1 ... IB·r IN CASE OF EI:;;j=;;O/:;;S
!11'''itll<E 1"·1 El,} PHDCEB~:) SH(:~F;:E 'fHIS Pf;:OCEBH I H i''1Ei10j=;;Y
y CI:;:EtITE tl NEt,} PHDCEGb
;UNEXPECTED ERROR.
;INITIAl...IZE COUNTER AND FLAG
;GET ADDRESS AT WHICH TO START NEW PROCESS
;START THE NEW PROCESB

;INCREMENT COUNTER
;HAS A L.INE BEEN INPUT YET?
;NO, GO DO MORE PROCESGING

~ HERE WHEN INFERIOR PROCESS NAB INPUT A LINE OF TEXT

TNGG -<
Counter has reached >

,·jDVX T 1 ~. ,. FF: I OU
,··iOi)[T:?!, 'fA
l"iOI)E:r T3!, · .. ·:010
"'·101..1')"

,..I~:)EF;:F;:

Th~3G <:

HF;:F:OI T:/.!! BUFFEF
F'~::;OUT

H(:;l...TF
,..IF;:E~T ST(lF;:T

; OUTPUT F II:;:ST PtlRT OF r"IES~:)(1GE

:1 GET P/~:I1"it'IF;:Y OUTPUT ,.IFN
; GE'r COUNTEr;: t)(,LUE
;USE DECINAL. RADIX
~ OUTPUT CUF;:F;:ENT COUr'!TEr;: t)(\I...UE
;UNEXPECTED ERROR

~OUTPUT FIRST PART OF MESSAGE
iGET POINTER TO BUFFER
;OUTPUT TEXT JUST ENTERED
!ISTOP
;IN CASE PROGHAM CONTINUED

P80GRAM PERFORMED BY INFERIOR PROCESS TO INPUT A LINE OF TEXT

GE1CUM: HRROI Tl,BUFFER
j'V'iDl,)!:::I T:? !1 .. ···.D:l.20
SETZh T::)
j=;:DTT'{

,..IbEI:;:F;:
:3ETON Fl...tlG
Hi::)I...TF

CONSTANTS AND VARIABLES

F' .0 l.. g B l... D C 1< :5.;)
:C:UFFEF;: i: BL DCI":: ::.',0
F I... () C-:i ~)J L. 0 C 1< ::.

iGET POINTER TO TEXT BUFFER
iGET COUNT OF MAX * OF CHARACTERS
;NO RETYPE BUFFER
;READ A LINE FROM THE TERNINAI...
;UNEXPECTED EHROR
!1 TELL. ;:~UF'EF;: I OF;: PF:OCE~:~~:l (:\ I... I NE H{:,H BEEN INPUT
:,; FINI~)HED

5-17

CHAPTER 6

ENQUEUE/DEQUEUE FACILITY

6.1 OVERVIEW

Many times users are placed in situations where they must sha~e files
with other users. Each user wants to be quaranteed that while reading
a file, other users are reading the same data and while writing a
file, no users are also writing, or even reading, the same portion of
the file.

Consider a data file used by members of an insurance company. When
many agents are reading individual accounts from the data file, they
can all access the file simultaneously because no one is changing any
portion of the data. However, when an agent desires to modify or
replace an individual account, that portion of the file should be
accessed exclusively by that agent. None of the other agents wants to
access accounts that are being changed until after the changes are
made.

By using the ENQ/DEQ facility, cooperating users can insure that
resources are shared correctly and that one user's modifications do
not interfere with another user IS. Examples of resources that can be
controlled by this facility are devices, files, operations on files
(e.g., READ, WRITE), records, and memory pages. This facility can be
used for dynamic resource allocation, computer networks, and internal
monitor queueing. However, control of simultaneous updating of files
by multiple users is its most common application.

The ENQ/DEQ facility insures data integrity among processes only when
the processes cooperate in their use of both the facility and the
physical resource. Use of the facility does not prevent
non-cooperating processes from accessing a resource without first
enqueueing it. Nor does the facility provide protection from
processes using it in an incorrect manner.

A resource is defined by the processes using it and not by the system.
Because there is competition among processes for use of a resource,
each resource is associated with a queue. This queue is the ordering
of the requests for the resource. When a request for the resource is
granted, a lock occurs between the process that made the request and
the resource. For the duration of the lock, that process is the owner
of the resource. Other processes requesting access to the resource
are placed in the queue until the owner relinquishes the lock.
However, there can be more than one owner of a resource at a time;
this is called shared ownership (refer to Section 6.2).

Processes obtain access to a specific resource by placing a request in
the queue for the resource. This request is generated by the ENQ
monitor call. When finished with the resource, the process then
issues the DEQ monitor call. This call releases the lock by removing
the request from the queue and makes the resource available to the

6-1

ENQUEUE/DEQUEUE FACILITY

next waiting process. This cycle continues until" all requests in the
queue have been satisfied.

6.2 RESOURCE OWNERSHIP

Ownership for a resource can be requested as either exclusive or
shared. Exclusive ownership occurs when a process requests sole use
of the resource. When a process is granted exclusive ownership, no
other process will be allowed to use the resource until the owner
relinquishes it. This type of ownership should be requested if the
process plans on modifying the resource (e.g., the process is updating
a record in a data file). Shared ownership occurs when a process
requests a resource, specifying that it will share the use of the
resource with other processes. When a process is given shared
ownership, other processes also specifying shared ownership are
allowed to simultaneously use the resource. Access to a resource
should be shared as long as anyone process is not modifying the
resource.

Two conditions determine when a lock to a resource is given to a
process:

1. The position of the process' request in the queue for the
resource.

2. The type of ownership specified by the process' request.

Because each resource has only one queue associated with it, requests
for both exclusive and shared ownership of the resource are placed ~n
the same queue. Requests are placed in the queue in the order 1n
which the ENQ facility receives them, and the first request in the
queue will be the first one serviced (except in the case of single
requests for multiple resources; refer to Section 6.4.1). In other
words, the ENQ facility processes requests on a first in, first out
basis. If this first request is for shared ownership, that request
will be serviced along with all following shared ownership requests up
to but not including the first exclusive ownership request. If the
first request is for exclusive ownership, no other processes are
allowed use of the resource until the first process has released the
lock.

Consider the following queue for a particular resource.

===
request 1 (shared)

request 2 (shared)

request 3 (exclusive)

request 4 (shared)

request 5 (shared)
===

Request I will be serviced first because it is the first request in
the queue. However, since this request is for shared ownership,
request 2 can also be serviced. Request 3 cannot be serviced until
the processes with request 1 and request 2 release the lock on the
resource. Eventually the lock is released by the two processes, and

6-2

ENQUEUE/DEQUEUE FACILITY

the first two requests are removed from the queue. The queue now has
the following entries:

===

request 3 (exclusive)

request 4 (shared)

request, 4 (shared)
===

Request 3 is now first in the queue and is given a lock on the
resource. Because the request is for exclusive ownership, no other
requests will be serviced. Once the process associated with request 3
releases the lock, both request 4 and request 5 can be serviced
because they both are for shared ownership.

6.3 PREPARING FOR THE ENQ/DEQ FACILITY

Before using the ENQ/DEQ facility, the user must obtain an ENQ quota
from the system administrator and must obtain the name of the resource
desired, the type of protection required, and the level number
associated with the resource.

The ENQ quota indicates the total number of requests that can be
outstanding for the user at any given time. Any request that would
cause the quota to be exceeded results in an error. The user cannot
use the ENQ facility if the quota is set to zero.

The resource name has a meaning agreed upon by all users of the
specific resource and serves as an identifier of the resource. The
system makes no association between the resource name and the physical
resource itself; it is the responsibility of the user's process to
make that association. The system merely uses the resource name to
process requests and handles different resource names as requests for
different resources.

The resource name has two parts. In most cases, the first part is the
JFN of the file being accessed. Before using the ENQ facility, the
user must initialize the file using the appropriate monitor calls
(refer to Section 3.1). The second part of the name is a modifier,
which is either a pointer to a string or a 33-bit user code. The
string uniquely identifies the resource to all users. The pointer can
either be a standard byte pointer or be in the form

-1"ADR

where ADR is the location of the left-justified ASCIZ text string.
The 33-bit user code similarly identifies the resource by representing
an item such as a record number or block number. The ENQ facility
considers these modifiers as logical strings and does not check for
cooperation among the users. Thus, users must be careful when
assigning these modifiers to prevent the occurrence of two different
modifiers referring to the same resource.

6-3

ENQUEUE/DEQUEUE FACILITY

The type of protection desired for the resource is indicated by the
first part of the resource name. This part of the name can be one of
four values. When the user specifies the JFN of the desired file, the
file is subject to the standard access protection of the system. This
is the most typical case. When the user specifies -1 instead of a
JFN, it means that resources defined within a job are to be accessed
only by processes of that job. Other jobs requesting resources of the
same name are queued to a different resource. When the user specifies
-2 instead of a JFN, it means that the resource can be accessed by any
job on the system. A process must have bit SC%ENQ enabled in its
capability word to specify this type of protection. If the user
specifies -3 instead of a JFN, it means the same type of protection as
that given when -2 is specified. However, this is reserved for the
monitor and requires that the process have WHEEL or OPERATOR
capability enabled. Quotas are not checked when -3 is given instead
of a JFN.

In addition to specifying the resource name and type of protection,
the user also assigns a level number to each resource. The use of
level numbers prevents the occurrence of a deadly embrace situation:
the situation where two or more processes are waiting for each to
complete, but none of the processes can obtain a lock on the resource
it needs for completion. This situation is represented by Figure 6-1.

Process A is
waiting for a

+ resource process
B has.

Process B is
waiting for a
resource process
C has.

Process C is I waiting for a
resource process
A has.

Figure 6-1 Deadly Embrace Situation

Each process is in the queue waiting for the resource it needs, but no
request is being serviced because the desired resources are
unavailable.

The use of level numbers forces cooperating processes to order their
use of resources by requiring that processes request resources in an
ascending numerical order and that all processes assign the same level
number to a specific resource. This means that the order in which
resources are requested is the same for all processes ,and therefore,
requests for the first resource will always precede requests for the
second one.

If both of the above requirements are not met, the process requesting
the resource receives an error, unless the appropriate flag bit is set
(refer to Section 6.4.1.2), and the request is not placed in the
queue. Thus, instead of waiting for a resource it will never get, the
process is informed immediately that the resource is not available.

6-4

ENQUEUE/DEQUEUE FACILITY

6.4 USING THE ENQ/DEQ FACILITY

There are three monitor calls available for the ENQ/DEQ facility:
ENQ, to request use of a resource; DEQ, to release a lock on a
resource; and ENQC, to obtain information about the queues and to
specify access to these queues.

6.4.1 Requesting Use Of A Resource

The user issues the ENQ monitor call to place a request in the queue
associated with the desired resource. This call is used to specify
the resource name, level number, and type of protection required.

A single ENQ monitor call can be used to request any number of
resources. In fact, when desiring multiple resources, the user should
request all of them in one call. This method of requesting resources
guarantees that the user gets either none or all of the resources
requested because the ENQ/DEQ facility never allocates only some of
the resources specified in one call. Because all resources in a
single call must be available at the same time, the first user
requesting a resource (i.e., the first user in the queue for the
resource) may not be the first user obtaining it if other resources in
the request are currently not available.

A single call for multiple resources is not functionally the same as a
series of single calls of those resources. In a single call, the
entire request is rejected if an error is returned for one of the
resources specified. In a series of single calls, each request that
did not return an error will be queued.

The ENQ monitor call accepts two words of arguments in ACI and AC2.
The first word contains the code of the desired function, and the
second contains the address of the argument block. Thus,

ACl: function code

AC2: address of argument block

6.4.1.1 ENQ Functions - The functions that can be requested in the
ENQ call are described in Table 6-1.

Code Symbol

o .ENQBL

1 .ENQAA

Table 6-1
ENQ Functions

Meaning

Queue the requests and block the
process until all requested locks are
acquired. This function returns an
error code only if the ENQ call is not
correctly specified.

Queue the requests and acquire the
locks only if all requested resources
are immediately available. If the
resources are available, all will be
allocated to the process. If anyone
of the resources is not available, no
requests are queued, no locks are

6-5

Code Symbol

2 .ENQSI

3 .ENQMA

ENQUEUE/DEQUEUE FACILITY

Table 6-1 (Cont.)
ENQ Functions

Meaning

acquired, and an
returned in ACI.

error code is

Queue the requests for all specified
resources. If all resources are
available, this function is identical
to the .ENQBL function. If all
resources are not immediately
available, the requests. are queued,
and a software interrupt is generated
when all requested resources have been
given to the process.

Change the ownership access of a
previously-queued request (refer to
bit EN%SHR below). The access for
each lock in this request is compared
with the access for each lock in the
request already queued. No action is
taken if the two accesses are the
same. If the access in this request
is shared and the access in the
previous request is exclusive, the
ownership access is changed to shared
access. Otherwise, an error is
returned if:

1. The process tries to change
the ownership access from
shared to exclusive. If this
is desired, the process should
issue a DEQ monitor call for
the shared request and then
issue another ENQ monitor call
for exclusive ownership.

2. Anyone of the specified locks
does not have a pending
request.

3. Anyone of the specified locks
is a pooled resource (refer to
Section 6.4.1.2).

Each lock specified is checked, and
the access is changed for all locks
that were correctly given. On
receiving an error, the process
should issue the ENQC monitor call to
determine the current state of each
lock (refer to Section 6.4.3).

6-6

ENQUEUE/DEQUEUE FACILITY

6.4.1.2 ENQ Argument Block - The format of the argument block is
described below.

Word

o

1

2

3

4

o 8 9 17 18 35
===

\
\
\

Number of locks Length of block

Interrupt channel Request ID

Flags !Level number ! JFN, -1, -2, or -3

Pointer to string or user code

Number in pool Number requested

Repetition of each lock specification

Flags !Level number ! JFN, -1, -2, or -3

Pointer to string or user code

Number in pool Number requested
===

Symbol

.ENQLN

.ENQID

.ENQLV

.ENQUC

.ENQRS

Meaning

Number of locks being requested in the left
half, and length of argument block
(including this word) in the right half.

Number of software interrupt channel in the
left half, and request 10 in the right
half.

Flags and level number in the left half,
and JFN, -1, -2 or -3 (refer to Section
6.3) in the right half.

Pointer to string or 5B2+33-bit user code
(refer to Section 6.3).

Number of resources in the pool in the left
half, and number of resources requested in
the right half.

\
\
\

Words .ENQLV, .ENQUC, and .ENQRS (words 2 through 4) are repeated for
each lock being requested. These three words are called the lock
specification.

Software Interrupts

The software interrupt system is used in conjunction with the .ENQSI
function (refer to Section 6.4.1.1). If all locks are not available
when the user requests them, the .ENQSI function causes a software
interrupt to be generated when the locks become available. The user
specifies the software channel on which to receive the interrupt by
placing the channel number in the left half of word .ENQID in the
argument block.

6-7

,ENQUEUE/DEQUEUE FACILITY

When the user is waiting for more than one lock to become available,
he will receive an interrupt when the last lock is available. If he
desires to be informed as each lock becomes available, he can assign
the locks to separate channels by issuing multiple ENQ calls. The
availability of each lock will then be indicated by the occurrence of
an interrupt on each channel.

When the user requests the .ENQSI function, he must initialize the
interrupt system first or else an interrupt will not be generated when
the locks become available (refer to Chapter 4).

Request ID

The 18-bit request ID is currently not used by the system, but is
stored for use by the process. Thus, the process can supply an ID to
use as identification for the request. This ID IS useful on the
.DEQID function of the DEQ monitor call (refer to Section 6.4.2.1).

Flags and Level Numbers

The left half of the first word of each lock specification (.ENQLV) is
used for the following flags.

Bit Symbol

o EN%SHR

1 EN%BLN

2-8

9-17 EN%LVL

Meaning

Ownership for this resource is to be
shared. If this bit is not on,
ownership for this resource is to be
exclusive.

Ignore the level number associated
with this resource. If this bit is
set, sequencing errors in level
numbers are not considered fatal, and
execution of the call continues. On
successful completion of the call, ACI
contains either an error code if a
sequencing error occurred or zero if a
sequencing error did not occur.

WARNING

A deadly embrace situation may
occur when level numbers are
not used. Use of these
numbers guarantees that such a
situation cannot arise;
therefore, this bit should not
be set.

Reserved for DEC.

Level number associated with this
resource. This number is specified by
the user and must be agreed upon by
all users of the resource. In order
to eliminate a deadly embrace
situation, users must request
resources in numerically increasing
order.

6-8

ENQUEUE/DEQUEUE FACILITY

The request is not queued, and an error is given, if EN%BLN is not set
and

1. The user requests a resource with a level number less than or
equal to the highest numbered resource he has requested so
far.

2. The level number of this request does not match the level
number supplied in previous requests for this resource.

Pooled Resources

Word .ENQRS of each lock specification is used to allocate multiple
copies from a pool of identical resources. Bit EN%SHR, indicating
shared ownership, is meaningless ~or pooled resources because each
resource in the pool can be owned by only one process at a time. A
process can own one or more resources in the pool; however, it cannot
own more than there are in the pool or more than there are unowned in
the pool.

The left half of word .ENQRS contains
existing in the pool. This number
users of the pooled resource. The
resource sets this number, and all
the same number or an error is given.

the total number of resources
is previously agreed upon by all
first user who requests the

subsequent requests must specify

The right half of word .ENQRS contains the number of resources being
requested by this process. This number must be greater than zero if a
pool of resources exists and cannot be greater than the number in the
left half. This means that if a pool of resources exists, the user
must request at least one resource, but cannot request more than are
in the pool.

Once the number of pooled resources is determined, the resources are
allocated until the pool is depleted or until a request specifies more
resources than are currently available. In the latter case, the user
making the request is not given any resources until his entire request
can be satisfied. Subsequent requests from other users are not
granted until this request is satisfied even though there may be
enough resources to satisfy these subsequent requests. As users
release their resources, the resources are returned to the pool. When
all resources have been returned, they cease to exist, and the next
request completely redefines the number of resources in the new pool.

The system assumes that the resource is in a pool if the left half of
word .ENQRS of the lock specification is nonzero. Thus the user
should set the left half to zero if only one resource of a specific
type exists. If this is the case, then the right half of this word is
a number defining the group of users who can simultaneously share the
resource. This means that when the resource is allocated to a user
for shared ownership, only other users in the same group will be
allowed access to the resource. The use of sharer groups restricts
access to a resource to a set of processes smaller than the set for
shared ownership (which is sharer group 0) but larger than the set for
exclusive ownership. (Refer to Section 6.5 for more information on
sharer groups).

6-9

ENQUEUE/DEQUEUE FACILITY

6.4.2 Releasing A Resource

The user issues the DEQ monitor call to remove a request from the
queue associated with a resource. The request is removed whether or
not the user actually owns a lock on the resource or is only waiting
in the queue for the resource.

The DEQ monitor call can be used to remove any number of requests from
the queues. If one of the requests cannot be removed, the dequeueing
procedure continues until all lock specifications have been processed.
An error code is then returned for the last request found that could
not be dequeued. The process can then execute the ENQC call (refer to
Section 6.4.3) to determine the status of each lock. Thus, unlike the
operation of the ENQ call, the DEQ call will dequeue as many resources
as it can, even if an error is returned for one of the lock
specifications in the argument block. However, when a user attempts
to dequeue more pooled resources than he originally allocated, an
error code is returned and none of the resources are dequeued.

The DEQ monitor call accepts two words of arguments in ACI and AC2.
The first word contains the code for the desired function, and the
second word contains the address of the argument block. Thus,

ACl: function code

AC2: address of argument block

6.4.2.1 DEQ Functions - The DEQ functions are described in Table 6-2.

Code Symbol

o .DEQDR

1 .DEQDA

2 .DEQID

Table 6-2
DEQ Functions

Meaning

Remove the specified requests from the
queues. This function is the only one
that requires an argument block.

Remove all requests for this process
from the queues. This action is taken
on a RESET monitor call. An error
code is returned if this process has
not requested any resources (i.e., if
this process has not issued an ENQ).

Remove all requests that correspond to
the specified request identifier.
When this function is specified, the
user must place the IS-bit request ID
in AC2 on the DEQ call. This function
allows the user to release a class of
locks in one call without itemizing
each lock in an argument block. The
function should be used when
dequeueing in one call the same locks
that were enqueued in one call. For
example, with this function the user
can specify the ID to be the same as
the JFN used in the ENQ call and thus
remove all locks to that file at once.

6-10

ENQUEUE/DEQUEUE FACILITY

6.4.2.2 DEQ Argument Block - The format of the argument block for
function .DEQDR is described below.

Word Symbol Meaning

o .ENQLN

1 .ENQID

2 .ENQLV

3 .ENQUC

4 .ENQRS

Number of locks being requested in the left
half, and length of argument block
(including this word) in the right half.

Number of software interrupt channel in the
left half, and request ID in the right
half.

Flags and level number in the left half,
and JFN, -1, -2 or -3 (refer to Section
6.3) in the right half.

Pointer to string or 5B2+33-bit user code
(refer to Section 6.3).

Number of resources in the pool in the left
half, and number of resources requested in
the right half.

Words .ENQLV, .ENQUC, and .ENQRS (words 2 through 4) are repeated for
each request being dequeued. These three words are called the lock
specification.

6.4.3 Obtaining Information About The Resources

The user issues the ENQC monitor call to obtain information about the
current status of the given resources. This call can also be used by
privileged users to perform various utility functions on the queue
structure. The format of the ENQC call is different for these two
uses. (Refer to the DECsystem-20 Monitor Calls Reference Manual for
the explanation of the privileged use of the ENQC call.)

The ENQC monitor call accepts three words of arguments in ACI through
AC3:

ACl: function code (.ENQCS)

AC2: address of argument block

AC3: address of area to receive status information

The format of the argument block is identical to the format of the ENQ
and DEQ argument blocks. The area in which the status is to be
returned should be three times as long as the number of locks
specified in the argument block.

On successful execution of the ENQC call, the current status of each
lock specified is returned as a 3-word entry. This 3-word entry has
the following format.

6-11

ENQUEUE/DEQUEUE FACILITY

===
Flag bits indicating status of lock

36-bit time stamp

Reserved Request ID
===

The following flag bits are defined.

Bit

a

1

2

3

4

5-8

9-17

18-35

Symbol

EN%QCE

EN%QCO

EN%QCQ

EN%QCX

EN%QCB

EN%LVL

EN%JOB

Meaning

An error has occurred in the
corresponding lock request. Bits
18-35 contain the appropriate error
code.

The process issuing the ENQC call is
the owner of this lock.

The process issuing the ENQC call is
in the queue waiting for this
resource. This bit will be on when
EN%QCO is on because a request remains
in the queue until a DEQ call is
given.

The lock has been allocated for
exclusive ownership. When this bit is
off, there is no way of determining
the number of sharers of the resource.

The process issuing the ENQC call is
in the queue waiting for exclusive
ownership to the resource. This bit
will be off if EN%QCQ is off.

Reserved for DEC.

The level number of the resource.

The number of the job that owns the
lock. For locks with shared
ownership, this value will be the job
number of one of the owners. However,
this value will be the current job's
number if the current job is one of
the owners. If this lock is not
owned, the value is -1.

If EN%QCE is on, this field
the appropriate error code.

contains

The 36-bit time stamp indicates the last time a process
resource. The time is in the universal date-time standard.
currently has a lock on the resource, this word is zero.

locked the
If no one

The request ID returned in the right half of the third word is either
the request ID of the current process if that process is in the queue
or the request ID of the owner of the lock.

6-12

ENQUEUE/DEQUEUE FACILITY

6.5 SHARER GROUPS

Processes can specify the sharing of resources by using sharer group
numbers (refer to Section 6.4.1.2). The use of sharer groups
restricts the ownership for a resource to a set of processes smaller
than the set for shared ownership but larger than the set for
exclusive ownership.

Sharer group number 0 is used to indicate the group of all cooperating
processes of the resource. This group number is assumed when no group
is specified in the ENQ call. To restrict use of the resource, a
group number other than 0 must be explicitly specified in the call.

Consider the following example. The resource is the WRITE operation
on a file. There are four types of uses of this resource as shown in
Figure 6-2.

Process' own use of
the resource

WRITE Not allowed
to write

Other
process' use
of the resource

WRITE 1 2

Shared, group 0 No need to use
ENQ/DEQ

Not allowed 3 4
to write

Exclusive Shared, group 1

Figure 6-2 Use of Sharer Groups

In block 1 of the figure, the process owning the lock wishes to allow
all cooperating processes to also lock the resource (i.e., to perform
the WRITE operation). Therefore, in the ENQ call, the process
specifies the resource can be locked by all cooperating processes. In
block 2 of the figure, the process does not plan on locking the
resource and does not care if other processes lock it. Thus, there is
no need for the process to use the ENQ/DEQ facility. In block 3 of
the figure, the process desires to lock the resource exclusively and
does not want other processes to lock it. Thus, the process obtains
exclusive ownership for the resource. In block 4 of the figure, the
process does not want to lock the resource immediately but also does
not want other processes to lock it because it soon plans to request a
lock on the resource. If the process were the only one requesting
this type of use, exclusive ownership would be sufficient, because the
resource would be unavailable to others as long as the process owned
the lock. However, if other processes desire this same type of use,
exclusive ownership is not sufficient, because once one process
releases the lock, another process with a different type of use could

6-13

ENQUEUE/DEQUEUE FACILITY

obtain its own lock. Thus, in this example, sharer group I is defined
to include all processes with the same type of use (i.e., all
processes who do not want to lock the resource immediately but also do
not want other processes to lock it). This elimates the problem of
another user obtaining the re~ource for a different type of use.

Sharer group 0 should be sufficient for most uses of the ENQ/DEQ
facility. Additional groups should only be needed in those situations
where a subset of the cooperating processes must have a specific use
of a resource, as in the above example.

6.6 AVOIDING DEADLY EMBRACES

Processes can interact in many undesirable ways if improper
communication occurs among the processes or if resources are
incorrectly shared. An example of one undesirable situation is the
occurrence of a deadly embrace: when two processes are waiting for
each other to complete but neither one can gain access to the resource
it needs for completion. This situation can be avoided when processes
consider the following guidelines.

1. Processes should request resources at the time they need
them. If possible, processes should request resources one at
a time and release each resource before requesting the next
one.

2. Processes should request shared ownership whenever possible.
However, the process should not request shared ownership if
it plans on modifying the resource.

3. When a process needs more than one resource, it should
request these resources in one ENQ call instead of multiple
calls for each resource. The process should also release the
entire set of resources at once with a single DEQ call.

4. When the use of one resource depends on the use of a second
one, the process should define the two resources as one in
the ENQ and DEQ calls. However, there is no protection of
the resources if they are also requested separately.

5. Occasionally processes use a set of resources and require a
lock on the second resource while retaining the lock on the
first. In this case, the order in which the locks are
obtained should be the same for all users of the set of
resources. The same ordering of locks is accomplished by the
processes assigning level numbers to each resource. The
requirements that processes request resources in ascending
numerical order and that all processes use the same level
number for a specific resource ensure that a deadly embrace
situation will not occur.

6-14

CHAPTER 7

INTER-PROCESS COMMUNICATION FACILITY

7.1 OVERVIEW

The Inter-Process Communication Facility (IPCF) allows communication
among jobs and system processes. This communication occurs when
processes send and, receive information in the form of packets. Each
sender and receiver has a Process I. O. (PIO) assigned to it for
identification purposes.

When the sender sends a packet of information to another process, the
packet is placed into the receiver IS input queue. The packet remains
in the queue until the receiver checks the queue and retrieves the
packet. Instead of periodically checking its input queue, the
receiver can enable the software interrupt system (refer to Chapter 4)
to generate an interrupt when a packet is placed in its input queue.

The <SYSTEM>INFO process is the information center for the
Inter-Process Communication Facility. This process performs system
functions related to PIOs and names, and any process can request these
functions by sending <SYSTEM>INFO a packet.

7.2 QUOTAS

Before using IPCF, the user must obtain two quotas from the system
administrator: a send packet quota and a receive packet quota. These
quotas designate, on a per process basis, the number of sends and
receives that can be outstanding at anyone time. For example, if the
process has a send quota of two and it has sent two packets, it cannot
send any more until at least one packet has been retrieved by its
receiver. A send packet quota of two and a receive packet quota of
five are assumed as the standard quotas. If these quotas are zero,
the process cannot use IPCF.

7.3 PACKETS

Information is transferred in the form of packets. Each packet is
divided into two portions: a packet descriptor block of four to six
words and a packet data block the length of the message. The format
of the packet is shown in Figure 7-1.

7-1

INTER-PROCESS COMMUNICATION FACILITY

Packet Descriptor Block

.IPCFL

.IPCFS

.IPCFR

.IPCFP

.IPCFD

.IPCFC

===
flags

PID of sender

PID of receiver

length of message
n

sender's connected
directory

address of message
ADR

sender's logged in
directory

enabled capabilities of sender
===

Packet Data Block

!===!
ADR ! message word 1 !

!==~======!

!===!
message word n

!===!

Figure 7-1 IPCF Packet

7.3.1 Flags

There are two types of flags that can be set in word .IPCFL of the
packet descriptor block. The flags in the left half of the word are
instructions to IPCF for packet communication, and the flags in the
right half are descriptions of the data message. The flags in the
right half are returned as part of the associated variable (refer to
Section 7.4.2). The packet descriptor block flags are described in
Table 7-1.

Table 7-1
Packet Descriptor Block Flags

Bit Symbol Meaning

0 IP%CFB Do not block the process if there are no
messages in the queue. If this bit is on,
the process receives an error if there are
no messages.

1 IP%CFS Use the PID obtained from the address in
word .IPCFS of the packet de"scr iptor block
as the sender's PID.

7-2

INTER-PROCESS COMMUNICATION FACILITY

Bit Symbol

2 IP%CFR

3 IP%CFO

4 IP%TTL

5 IP%CPD

6 IP%JWP

7 IP%NOA

8-17

18 IP%CFP

19 IP%CFV

20-23

24-29 IP%CFE

Table 7-1 (Cont.)
Packet Descriptor Block Falgs

Meaning

Use the PID obtained from the address in
word .IPCFR of the packet descriptor block
as the receiver's PID.

Allow the process one send above the send
quota. (The standard send quota is two.)

Truncate the message if it is longer than
the area reserved for it in the packet data
block. If this bit is not on, the process
receives an error if the message is too
long.

Create a PID to use as the sender's PID.
The PID created is returned in word .IPCFS
of the packet descriptor block.

Make the PID created be permanent until the
job logs out (if both bits IP%CPD and
IP%JWP are on). Make the PID created be
temporary until the process executes a
RESET monitor call (if bit IP%CPD is on and
bit IP%JWP is not on). If bit IP%CPD is
not on, bit IP%JWP is ignored.

Do not allow other processes to use the PID
created when bit IP%CPD is on. If bit
IP%CPD is not on, bit IP%NOA is ignored.

Reserved for DEC.

The packet is privileged. This bit can be
set only by a process with WHEEL capability
enabled. Refer to the DECsystem-20 Monitor
Calls Reference Manual for a description of
this bit.

The packet is a page of 512 (decimal) words
of data.

Reserved for DEC.

Field for error code returned from <SYSTEM>
INFO.

Code Symbol Meaning

15 .IPCPI insufficient privileges

16 .IPCUF invalid function

67 .IPCSN <SYSTEM>INFO needs name

72 .IPCFF <SYSTEM>INFO free space
exhausted

74 .IPCBP PID has no name or is invalid

7-3

INTER-PROCESS COMMUNICATION FACILITY

Bit Symbol

30-32 IP%CFC

33-35 IP%CFM

7.3.2 PIDS

Table 7-1 (Cont.)
Packet Descriptor Blocks Flags

75

76

77

Meaning

.IPCDN duplicate name has
specified

.IPCNN unknown name has
specified

.IPCEN invalid name has
specified

been

been

been

System and sender code. This code can be
set only by a process with WHEEL capability
enabled, but the monitor will return the
code so a nonprivileged process can examine
it.

Code Symbol Meaning

1 .IPCCC Sent by <SYSTEM>IPCF

2 .IPCCF Sent by system-wide
<SYSTEM>INFO

3 .IPCCP Sent by receiver's
<SYSTEM>INFO

Field for special messages. This code can
be set only by a process with WHEEL
capability enabled, but the monitor will
return the code so that a nonprivileged
process can examine it.

Code Symbol Meaning

1 .IPCFN Process' input queue contains
a packet that could not be
delivered to intended PID.

Any process that wants to send or receive a packet must obtain a PID.
The process can obtain a PID by sending a packet to <SYSTEM>INFO
requesting that a PID be assigned. The process must also include a
symbolic name that is to be associated with the assigned PID.

The symbolic name can be a maximum of 29 characters and can contain
any characters as long as it is terminated by a zero word. There
should be mutual understanding among processes as to the symbolic
names used in order to initiate communication. Once the name is
defined, any process referring to that name must specify it exactly
character for character.

Before a process can send' a packet, it must know the receiver's
symbolic name or PID. If only the receiver's name is known, the
sender must ask <SYSTEM>INFO for the PID associated with the name,
since all communication is via PIDs.

7-4

INTER-PROCESS COMMUNICATION FACILITY

The association between a PID and a name is broken:

1. On a RESET monitor call.

2. When the process is killed or the job logs off the system.

3. When a request to disassociate the PID from the name is made
to <SYSTEM>INFO.

<SYSTEM>INFO will not allow a name already associated with a PID to be
assigned again unless the owner of the name makes the request. Nor
will <SYSTEM>INFO assign a PID once it has been used. This action
protects against messages being sent to the wrong receiver by
accident.

The PIDs of the sender and the receiver are indicated by words .IPCFS
and .IPCFR, respectively, of the packet descriptor block.

7.3.3 Length And Address Of Packet Data Block

Word .IPCFP of the packet descriptor block contains the length and the
beginning address of the message. The length specified is one of two
types, depending on the type of message (refer to Section 7.3.5). If
the message is a short-form message, the length is the actual word
length of the message. If the message is a long-form message, the
length is 1000 (octal), i.e., one page.

The address specified is either an address or a page number, depending
on the type of message (refer to Section 7.3.5). When a message is
sent, it is taken from this address. When a message is received, it
is placed in this address.

7.3.4 Directories And Capabilities

Words .IPCFD and .IPCFC describe the sender at the time the message
was sent and are used by the receiver to validate messages sent to it.
These two words are not used when a message is sent, and if the sender
of the packet supplies them, they are ignored. However, when a
message is received, if the receiver of the packet has reserved space
for these words in the packet descriptor block, the system supplies
the appropriate values of the sender of the packet. The receiver of
the packet does not have to reserve these words if it is not
interested in knowing the sender's directories and capabilities.

7.3.5 Packet Data Block

The packet data block contains the message being sent or received.
The message can be either a short-form message or a long-form message.

A short-form message is one to n words long, where n is defined by the
installation. (Usually, n is assumed to be 10 words.) When a
short-form message is sent or received, word .IPCFP of the packet
descriptor block contains the actual word length of the message in the
left half and the address of the first word of the message in the
right half. A process always uses the short form when sending
messages to <SYSTEM>INFO.

7-5

INTER-PROCESS COMMUNICATION FACILITY

A long-form message is one page in length (512 decimal words). When a
long-form message is sent or received, word .IPCFP of the packet
descriptor block contains 1000 (octal) in the left half and the page
number of the message in the right half. To send and receive a
long-form message, both the sender and receiver must have bit IP%CFV
(bit 19) set in the first word of the packet descriptor block, or else
an error code is returned.

7.4 SENDING AND RECEIVING MESSAGES

To send a message, the sending process must set up the first four
words of the packet descriptor block. The process then executes the
MSEND monitor call. After execution of this call, the packet is sent
to the intended receiver's input queue.

To receive a message, the receiving process must also set up the first
four words of the packet descriptor block. The last two words for the
directories and capabilities of the sender can be supplied, and the
system will fill in the appropriate values. The process then executes
the MRECV monitor call. After execution of this call, a packet is
retrieved from the receiver's input queue. The input queue is emptied
on a first-message-in, first-message-out basis.

7.4.1 Sending A Packet

The MSEND monitor call is used to send a message via IPCF. Messages
are in the form of packets of information and can be sent to a
specified PID or to the system process <SYSTEM>INFO. Refer to Section
7.5 for information on sending messages to <SYSTEM>INFO.

The MSEND call accepts two words of arguments. The length of the
packet descriptor block is given in ACl, and the beginning address of
the packet descriptor block is given in AC2. Thus,

ACl: length of packet descriptor block. The length cannot be
less than 4.

AC2: address of packet descriptor block

The packet descriptor block consists of the following four words:

.IPCFL

.IPCFS

.IPCFR

.IPCFP

Flags
Sender's PID
Receiver's PID
Pointer to packet data block containing the
message being sent.

Refer to Section 7.3 for the details on the packet descriptor and
packet data blocks.

The flags that are meaningful when sending a packet are described
below. Refer to Table 7-1 for the complete list of flag bits.

7-6

Bit

1

2

3

5

6

7

18

19

INTER-PROCESS COMMUNICATION FACILITY

Symbol

IP%CFS

IP%CFR

IP%CFO

IP%CPO

IP%JWP

IP%NOA

IP%CFP

IP%CFV

Table 7-2
Flags Meaningful on a MSENO Call

Meaning

The sender IS PIO is given in word .IPCFS of
the packet descriptor block.

The receiver IS PIO is given in word .IPCFR
of the packet descriptor block.

Allow the sender to send one message above
its send quota.

Create a ~IO for the sender and return it
in word .IPCFS of the packet descriptor
block. The PIO created is to be permanent
and useable by other processes according to
the setting of bits IP%JWP and IP%NOA.

The PIO created is to be job wide and
permanent until the job logs out. If this
bit is not on, the PIO created is to be
temporary until the process executes the
RESET monitor call.

The PIO created is not to be used by other
processes.

The message being sent is privileged (refer
to the OECsystem-20 Monitor Calls Reference
Manual) •

The message being sent is a long-form
message (i.e., a page). The page the
message is being sent to cannot be a shared
page; it must be a private page.

When bit IP%CFS is on in the flag word, the sender IS PIO is taken from
word .IPCFS of the packet descriptor block. This word is zero if bit
IP%CPO is on in the flag word, indicating that a PIO is to be created
for the sender. In this case, the PIO created is returned in word
.IPCFS.

When bit IP%CFR is on in the flag word, the receiver's PIO is taken
from word .IPCFR of the packet descriptor block. If this word is 0,
then the receiver of the message is <SYSTEM>INFO. Refer to Section
7.5 for information on sending messages to <SYSTEM>INFO.

On successful execution of the MSENO monitor call, the packet is sent
to the receiver IS input queue. Word .IPCFS of the packet descriptor
block is updated with the sender IS PIO. Execution of the user's
program continues at the second location after the MSENO call.

If execution of the MSENO call is not successful, the message is not
sent, and an error code is returned in ACI. The execution of the
user's program continues at the instruction following the MSENO call.

7-7

INTER-PROCESS COMMUNICATION FACILITY

7.4.2 Receiving A Packet

The MRECV monitor call is used to retrieve a message from the process'
input queue. Before a process can retrieve a message, it must know if
the message is a long-form message and also must set up a packet
descriptor block.

The MRECV monitor call accepts two words of arguments. The length of
the packet descriptor block is given in ACl, and the beginning address
of the packet descriptor block is given in AC2. Thus,

ACl: length of packet descriptor block. The length cannot be
less than 4.

AC2: address of packet descriptor block

The packet descriptor block can consist of the following six words.
The last two words are optional, and if supplied by the receiver, the
values of the sender will be filled in by the system.

.IPCFL

.IPCFS

.IPCFR

.IPCFP

. IPCFD

. IPCFC

Flags
Sender's PID
Receiver's PID
Pointer to packet data block where the message is
to be placed.
Connected and logged-in directories of the sender .
Enabled capabilities of the sender •

Refer to Section 7.3 for the details on the packet descriptor and
packet data blocks.

The flags that are meaningful when receiving a packet are described
below. Refer to Table 7-1 for the complete list of flag bits.

Bit Symbol

o IP%CFB

2 IP%CFR

4 IP%TTL

19 IP%CFV

Table 7-3
Flags Meaningful on a MRECV Call

Meaning

If there are no packets in the receiver's
input queue, do not block the process and
return an error code if the queue is empty.
If this bit is not on, the process waits
until a packet arrives, if the queue is
empty.

The receiver's PID is given in word .IPCFR
of the packet descriptor block.

Truncate the message if it is larger than
the space reserved for it in the packet
data block. If this bit is not on and the
message is too large, an error code is
returned and no message is received.

The message is expected to be a long-form
message (i.e., a page). The page the
message is being stored into cannot be a
shared page; it must be a private page.

7-8

INTER-PROCESS COMMUNICATION FACILITY

The information in word .IPCFS is not supplied by the receiver when
the MRECV call is executed. The system fills in the PID of the sender
of the packet when the packet is retrieved.

Word .IPCFR is supplied by the receiver. If bit IP%CFR is on in the
flag word, then the PID receiving the packet is taken from word .IPCFR
of the packet descriptor block. If bit IP%CFR is not on in the flag
word, then word .IPCFR contains either -1, to receive a packet for any
PID belonging to this process, or -2, to receive a packet for any PID
belonging to this job. When -lor -2 is given, packets are not
received in any particular order except that packets from a specific
PID are received in the order in which they were sent. Any other
values in this word cause an error code to be returned.

The information in words .IPCFD and .IPCFC is also not supplied by the
receiver. If these two words have been specified by the receiver, the
system fills in the information when the packet is retrieved. Word
.IPCFD contains the sender's connected directory in the left half and
the sender's logged-in directory in the right half. Word .IPCFC
contains the enabled capabilities of the sender. These words describe
the sender at the time the message was sent.

On successful execution of the MRECV monitor call, the packet is
retrieved and placed into the packet data block as indicated by word
.IPCFP of the packet descriptor block. ACI contains the length of the
next packet in the queue in the left half and flags from the next
packet in the right half (see below). This word returned in ACI is
called the associated variable of the next packet in the queue. If
there is not another packet in the queue, ACI contains zero.
Execution of the user's program continues at the second instruction
after the MRECV call.

The flags returned in the right half of ACI on successful execution of
the MRECV monitor call are described below.

Bit Symbol

30-32 IP%CFC

33-35 IP%CFM

Meaning

System and sender code, set only by a
privileged process. The packet was sent by
<SYSTEM>IPCF if the code is I (. IPCCC) • The
packet was sent by the system-wide
<SYSTEM>INFO if the code is 2 (. IPCCF). The
packet was sent by the receiver's
<SYSTEM>INFO if the code is 3(.IPCCP).

Field for return of special messages. If
the field contains 1(.IPCFN), then the
process' input queue contains a packet that
was sent to another PID, but was returned
to the sender because it could not be
delivered.

If execution of the MRECV call is not successful, a packet is not
retrieved, and an error code is returned in ACI. The execution of the
user's program continues at the instruction following the MRECV call.

7-9

INTER-PROCESS COMMUNICATION FACILITY

7.5 SENDING MESSAGES TO <SYSTEM>INFO

The <SYSTEM>INFO process is the central information utility for IPCF.
It performs functions associated with names and PIDs, such as,
assigning a PID or a name or returning a name associated with a PID.

A process can request functions to be performed by <SYSTEM>INFO by
executing the MSEND monitor call (refer to Section 7.4.1). The
message portion of the packet (i.e., the packet data block) sent to
<SYSTEM>INFO contains the request being made. In other words, the
total request to <SYSTEM>INFO is a packet consisting of a packet
descriptor block and a packet data block containing the request.

Packet Descriptor Block

===,
o flag word

sender's PID

o

pointer to request
===

Packet Data Block

===
code function

PID

function argument
===

Refer to Section 7.4.1 for the descriptions of the words in the packet
descriptor block. The receiver's PID (word .IPCFR) is 0 when sending
a packet to <SYSTEM>INFO.

7.5.1 Format Of <SYSTEM>INFO Requests

As mentioned previously, the packet data block (i.e., the message
portion) of the packet contains the request to <SYSTEM>INFO.

The first word (word .IPCIO) contains a user-defined code in the left
half and the function being requested in the right half. The
user-defined code is used to associate the response from <SYSTEM>INFO
with the correct request. The functions that the process can request
of <SYSTEM>INFO are described in Table 7-4.

The second word (word .IPCIl) contains a PID associated with a process
that is to receive a duplicate of any response from <SYSTEM>INFO. If
this word is zero, the response from <SYSTEM>INFO is sent only to the
process making the request.

The third word (word .IPCI2) contains the argument for the function
specified in the right half of word .IPCIO. The argument is different
depending on the function being requested. The arguments for the
functions are described in Table 7-4.

7-10

Function

.IPCIW

.IPCIG

.IPCII

INTER-PROCESS COMMUNICATION FACILITY

Table 7-4
<SYSTEM>INFO Functions and Arguments

Argument

name

PIO

name in
ASCIZ

Meaning

Return the PIO associated with the
given name (refer to Section 7.3.2 for
the description of the name).

Return the name associated with the
given PID.

Assign the given name to the PID
associated with the process making the
request. The PIO is permanent if
IP%JWP was set in the flag word when
the PIO was originally created (refer
to Table 7-1).

7.5.2 Format Of <SYSTEM>INFO Responses

Responses from <SYSTEM>INFO are in the form of a packet sent to the
process that made the request. A copy of the response is sent to the
PIO given in word .IPCIl, if any.

The message portion (i.e., the packet data block) of the packet
contains the response from <SYSTEM>INFO. The format of this response
is

===
code function

response

response
===

The first word (word .IPCIO) contains the user-defined code in the
left half and the function that was requested in the right half.
These values are copied from the values given in the request.

The second and third words (words .IPCII and .IPCI2) contain the
response from the function requested of <SYSTEM>INFO. The response is
different depending on the function requested. The responses from the
functions are described in Table 7-5.

Function Requested

.IPCIW

.IPCIG

.IPCII

Table 7-5
<SYSTEM>INFO Responses

Response

The PIO associated with
the request is returned

The name associated with
the request is returned

No response is returned.

7-11

the name given in
in word .IPCII.

the PID given in
in word .IPCII.

INTER-PROCESS COMMUNICATION FACILITY

7.6 PERFORMING IPCF UTILITY FUNCTIONS

A process can request various functions to be performed by executing
the MUTIL monitor call. Some of these functions are enabling and
disabling PIOs, creating and deleting PIOs, and returning quotas.
Several of the functions that can be requested are privileged
functions. These are described in the OECsystem-20 Monitor Calls
Reference Manual.

The MUTIL monitor call accepts two words of argument. The length of
the argument block is given in ACl, and the beginning address of the
argument block is given in AC2.

The argument block has the following format:

!===
! function code
!---

argument for function
!---

argument for function
1===

The arguments are different, depending on the function being
requested. Any values resulting from the function requested are
returned in the argument block, starting at the second word.

Table 7-6 describes the functions that can be requested, the arguments
for the functions, and the values returned from the functions.

Function

.MUENB

. MUOIS

Table 7-6
MUTIL Functions

Meaning

Allow the PIO given to receive packets. If the
process executing the call is not the owner of
the PID, the process must be privileged.

Argument
PID

Value Returned
None

Disable the PIO given from
If the process executing
owner of the PIO, the
privileged.

Argument
PIO

Value Returned
None

7-12

receiving packets •
the call is not the
process must be

Function

. MUGTI

.MUDES

.MUCRE

.MUFOJ

. MUFJP

INTER-PROCESS COMMUNICATION FACILITY

Table 7-6 (Cont.)
MUTIL Functions

Meaning

Return the PID associated with <SYSTEM>INFO .

Argument
PID or job number

Value Returned
PID of <SYSTEM>INFO

Delete the PID given. The process executing the
call must own the PID being deleted.

Argument
PID to be deleted

Value Returned
None

given. If
the process

must be
specified

Create a PID for the process or job
the job number given is not that of
executing the call, the process
privileged. The flag bits that can be
are IP%JWP and IP%NOA (refer to Table
their descriptions).

7-1 for

Argument
flag bits in the left half, and process
handle or job number in the right half

Value Returned
PID that was created

Return the number of the job associated with the
PID given.

Argument
PID

Value Returned
Job number associated with PID given

Return all PIDs associated with the job given .

Argument
job number or PID belonging to the job

Values Returned
Two-word entries for each PID belonging to
the job. The first word of the entry is the
PID, and the second word has bits IP%JWP and
IP%NOA set if appropriate (refer to Table
7-1 for the descriptions of these bits).
The list of entries returned is terminated
by a zero word.

7-13

Function

.MUFSQ

.MUFFP

.MUFPQ

.MUQRY

. MUAPF

INTER-PROCESS COMMUNICATION FACILITY

Table 7-6 (Cont.)
MUTIL Functions

Meaning

Return the send quota and the receive quota for
the PIO given.

Argument
PIO

Values Returned
Send quota in bits 18-26 and receive quota
in bits 27-35.

Return all PIOs associated with the process of
the PIO given.

Argument
PIO

Values Returned
Two-word entries for each PIO belonging to
the process. The first word of the entry is
the PIO, and the second word has bits IP%JWP
and IP%NOA set if appropriate (refer to
Table 7-1 for the descriptions of these
bits) . The list of entries returned is
terminated by a zero word.

Return the maximum number of PIOs allowed for
the job given.

Argument
Job number or PIO belonging to the job

Value Returned
Number of PIOs allowed for the job given

Return the packet descriptor block for the next
packet in the queue of the PIO given.

Argument
PIO, -1 to return the next descriptor block
for the process, or -2 to return the next
descriptor block for the job

Values Returned
Packet descriptor block of next packet in
queue.

Associate the PIO given with the process given .

Arguments
PIO
process handle

Value Returned
None

7-14

Function

.MUPIC

.MUMPS

INTER-PROCESS COMMUNICATION FACILITY

Table 7-6 (Cont.)
MUTIL Functions

Meaning

Place the PIO given on the software channel
given in order to cause an interrupt to be
generated when a packet is received in the input
queue of the PIO given.

Argument
PIO
channel number, or -1 to remove the given
PIO from its current channel

Value Returned
None

Return the maximum packet size for the PIO
given.

Argument
PIO

Value Returned
Maximum packet size for PIO

On successful completion of the MUTIL monitor call, the function
requested is performed, and any value is returned in the argument
block. Execution of the user's program continues at the second
location following the MUTIL call.

If execution of the MUTIL monitor call is not successful, no requested
function is performed and an error code is returned in AC1. Execution
of the user's program continues at the location following the MUTIL
call.

7-15

APPENDIX A

ERROR CODES AND MESSAGE STRINGS

Many monitor calls return an error number (usually in the right half
of ACl) on a failure return. This error number indicates the reason
that the call could not perform its intended function. The error
number is associated with a unique error symbol and message string,
all three of which are defined in the MONSYM file. The ERSTR monitor
call can be used to translate the returned number into its
corresponding message string. Refer to the DECsystem-20 Monitor Calls
Reference Manual for the description of this call.

Symbol

LGINXI
LGINX2
LGINX3
LGINX4
LGINX5
LOUTXl
LOUTX2
CACTXl
CACTX2
EFCTXl
EFCTX2
EFCTX3
GJFXl
GJFX2
GJFX3
GJFX4
GJFX5
GJFX6
GJFX7
GJFX8

GJFX9
GJFXIO
GJFXll
GJFX12
GJFX13
GJFX14
GJFX15
GJFX16
GJFX17
GJFX18
GJFX19
GJFX20
GJFX2l
GJFX22
GJFX23
GJFX24

Code Message String

600010 Invalid account identifier
600011 Directory is "files-only" and cannot be logged in to
600012 Internal format of directory is incorrect
600013 Invalid password
600014 Job is already logged in
600035 Illegal to specify job number when logging out own job
600036 No such job
600045 Invalid account identifier
600046 Job is not logged in
600050 WHEEL or OPERATOR capability required
600051 Entry cannot be longer than 64 words
600052 Fatal error when accessing FACT file
600055 Desired JFN invalid
600056 Desired JFN not available
600057 No JFN available
600060 Invalid character in filename
600061 Field cannot be longer than 39 characters
600062 Device field not in a valid position
600063 Directory field not in a valid position
600064 Directory terminating delimiter is not preceded by a

valid beginning delimiter
600065 More than one name field is not allowed
600066 Generation number is not numeric
600067 More than one generation number field is not allowed
600070 More than one account field is not allowed
600071 More than one protection field is not allowed
600072 Invalid protection
600073 Invalid confirmation character
600074 No such device
600075 No such directory
600076 No auch filename
600077 No such file type
600100 No such generation number
600101 File was expunged
600102 Job Storage Block full
600103 Directory full
600104 File not found

A-I

GJFX27
GJFX28
GJFX29
GJFX30
GJFX3l
GJFX32
GJFX33
GJFX34
GJFX35
OPNXI
OPNX2
OPNX3
OPNX4
OPNX5
OPNX6
OPNX7
OPNX8
OPNX9
OPNXIO
OPNX12
OPNX13
OPNX14
OPNX15
OPNX16
OPNX17
OPNX18
OPNX19
OPNX20
OPNX2l
OPNX22
DESXl
DESX2
DESX3
DESX4
DESX5
DESX6

·DESX7
DESX8
CLS.Xl
CLSX2
RJFNXI
RJFNX2
RJFNX3
DELFXl
SFPTXl
SFPTX2
SFPTX3
CNDIXI
CNDIX3
CNDIX5
SFBSXl
SFBSX2
IOXI
IOX2
IOX3
IOX4
IOX5
IOX6
PMAPXl
PMAPX2
SPACXl
FRKHXl
FRKHX2
FRKHX3

ERROR CODES AND MESSAGE STRINGS

600107 File already exists (new file required)
600110 Device is not on-line
600111 Device is not available to this job
600112 Account is not numeric
600113 Invalid wildcard designator
600114 No files match this specification
600115 Filename was not specified
600116 Invalid character "?" in file specification
600117 Directory access privileges required
600120 File is already open
600121 File does not exist
600122 Read access required
600123 write access required
600124 Execute access required
600125 Append access required
600126 Device assigned to another job
600127 Device is not on-line
600130 Invalid simultaneous access
600131 Entire public disk full
600133 List access required
600134 Invalid access requested
600135 Invalid mode requested
600136 Read/write access required
600137 File has bad index block
600140 No room in job for long file page table
600141 Reserved
600142 Reserved
600143 Reserved
600144 Reserved
600145 Reserved
600150 Invalid source/destination designator
600151 Terminal is not available to this job
600152 JFN is not assigned
600153 Invalid use of terminal designator or string pointer
600154 File is not open
600155 Device is not a terminal
600156 JFN cannot refer to output wildcard designators
600157 File is not on disk
600160 File is not open
600161 File cannot be closed by this process
600165 File is not closed
600166 JFN is being used to accumulate filename
600167 JFN is not accessible by this process
600170 Delete access required
600175 File is not open
600176 Illegal to reset pointer for this file
600177 Invalid byte number
600200 Incorrect password
600202 Invalid directory number
600204 Job is not logged in
600210 Illegal to change byte size for this opening of file
600211 Invalid byte size
600215 File is not opened for reading
600216 File is not opened for writing
600217 File is not open for random access
600220 End of file reached
600221 Device or data error
600222 Illegal to write beyond absolute end of file
600240 Invalid access requested
600241 Invalid use of PMAP
600245 Invalid access requested
600250 Invalid process handle
600251 Illegal to manipulate a superior process
600252 Invalid use of multiple process handle

A-2

FRKHX4
FRKHX6
SPLFXl
SPLFX2
SPLFX3
GTABXl
GTABX2
GTABX3
RUNTXl
STADXl
STADX2
ASNDXl
ASNDX2
ASNDX3
ATACXl
ATACX2
ATACX3
ATACX4
ATACX5
STDVXl
DEVXl
DEVX2
DEVX3
MNTXl
MNTX2
MNTX3
TERMXl
TLNKXl
ATIXI
ATIX2
TLNKX2
TLNKX3
TTYXI
RSCNXI
CFRKX3
KFRKXI
KFRKX2
RFRKXI
HFRKXl
GFRKXI
GETXI
GETX2
SFRVXI
NOUTXI
NOUTX2
IFIXXI
IFIXX2
IFIXX3
GFDBXI
GFDBX2
GFDBX3
CFDBXI
CFDBX2
CFDBX3
CFDBX4
DUMPXI
DUMPX2
DUMPX3
DUMPX4
RNAMXI
RNAtvlX2
RNAMX3
RNAMX4
BKJFXI

ERROR CODES AND MESSAGE STRINGS

600253 Process is running
600255 All relative process handles in use
600260 Process is not inferior or equal to self
600261 Process is not inferior to self
600262 New superior process is inferior to intended inferior
600267 Invalid table index
600270 Invalid table number
600271 GETAB privileges required
600273 Invalid process handle -3 or -4
600275 WHEEL or OPERATOR capability required
600276 Invalid date or time
600300 Device is not assignable
600301 Illegal to assign this device
600302 No such device
600320 Invalid job number
600321 Job already attached
600322 Incorrect user number
600323 Incorrect password
600324 This job has no controlling terminal
600332 No such device
600335 Invalid device designator
600336 Device already assigned to another job
600337 Device is not on-line
600345 Invalid directory format
600346 Device is not on-line
600347 Device is not mountable
600350 Invalid terminal code
600351 Illegal to set remote to object before object to remote
600352 Invalid channel number
600353 Control-C capability required
600356 Link was not received within 15 seconds
600357 Links full
600360 Not a terminal or no such terminal
600361 Overflowed rescan buffer, input string truncated
600363 Insufficient resources available
600365 Illegal to kill top level process
600366 Illegal to kill self
600367 Processes are not frozen
600370 Illegal to halt self with HFORK
600371 Invalid process handle
600373 Invalid save file format
600374 System Special Pages Table full
600377 Invalid position in entry vector
600407 Radix is not in range 2 to 10
600410 Column overflow
600414 Radix is not in range 2 to 10
600415 First character is not a digit
600416 Overflow (number is greater than 2**35)
600424 Invalid displacement
600425 Invalid number of words
600426 List access required
600430 Invalid displacement
600431 Illegal to change specified bits
600432 Write or owner access required
600433 Invalid value for specified bits
600440 Command list error
600441 JFN is not open in dump mode
600442 Address error (too big or crosses end of memory)
600443 Access error (cannot read or write data in memory)
600450 Files are not on same device
600451 Destination file expunged
600452 Write or owner access to destination file required
600453 Insufficient resources to rename file
600454 Illegal to back up terminal pointer twice

A-3

TIMEXI
ZONEXI
ODTNXI
DILFXl
TILFXl
DATEXI
DATEX2
DATEX3
DATEX4
DATEX5
DATEX6
SMONXI
SACTXl
SACTX2
SACTX3
SACTX4
GACTXl
GACTX2
FFUFXl
FFUFX2
FFUFX3
DSMXl
RDDIXI
SIRXI
SSAVXl
SSAVX2
SEVEXI
WHELXl
CAPXl
PEEKX2
CRDIXI
CRDIX2
CRDIX3
CRDIX4
CRDIX5
CRDIX7
GTDIXI
GTDIX2
FLINXI
FLINX2
FLINX3
FLINX4
FLOTXl
FLOTX2
FLOTX3
HPTXl
FDFRXI
FDFRX2
RNAMX5
RNAMX6
RNAMX7
RNAMX8
RNAMX9
RNMXIO
RNMXll
RNMX12
GJFX36
ILINSI
ILINS2
ILINS3
CRLNXI
INLNXI
LNSTXl
MLKBXl

ERROR CODES AND MESSAGE STRINGS

600460 Time cannot be greater than 24 hours
600461 Time zone out of range
600462 Time zone must be USA or Greenwich
600464 Invalid date format
600465 Invalid time format
600466 Year out of range
600467 Month is not less than 12
600470 Day of month too large
600471 Day of week is not less than 7
600472 Date out of range
600473 System date and time are not set
600516 WHEEL or OPERATOR capability required
600530 File is not on multiple-directory device
600531 Job Storage Block full
600532 Directory requires numeric account
600533 Write or owner access required
600540 File is not on multiple-directory device
600541 File expunged
600544 File is not open
600545 File is not on multiple-directory device
600546 No used page found
600555 File(s) not closed
600560 Illegal to read directory for this device
600570 Table address is not greater than 20
600600 Illegal to save files on this device
600601 Page count is not less than or equal to 1000
600610 Entry vector is not less than 777
600614 WHEEL or OPERATOR capability required
600615 WHEEL or OPERATOR capability required
600617 Read access failure on monitor page
600620 WHEEL or OPERATOR capability required
600621 Illegal to change number of old directory
600622 Job Storage Block full
600623 Sub index full
600624 Directory name not given
600626 File(s) open in directory
600640 WHEEL or OPERATOR capability required
600641 No such directory number
600650 First character is not blank or numeric
600651 Number too small
600652 Number too large
600653 Invalid format
600660 Column overflow in field 1 or 2
600661 Column overflow in field 3
600662 Invalid format specified
600670 Undefined clock number
600700 Not a multiple-directory device
600701 No such directory number
600750 Destination file is not closed
600751 Destination file has bad page table
600752 Source file expunged
600753 Write or owner access to source file required
600754 Source file is empty
600755 Source file is not closed
600756 Source file has bad page table
600757 Illegal to rename to self
600760 Internal format of directory is incorrect
600770 Undefined operation code
600771 Undefined JSYS
600772 UUO simulation facility not available
601000 Logical name is not defined
601001 Index is beyond end of logical name table
601002 No such logical name
601003 Lock facility already in use

A-4

MLKBX2
MLKBX3
MLKBX4
VBCXl
ROTXl
GFKSXl
GTJIXI
GTJIX2
GTJIX3
IPCFXl
IPCFX2
IPCFX3
IPCFX4
IPCFX5
IPCFX6
IPCFX7
IPCFX8
IPCFX9
IPCFIO
IPCFll
IPCF12
IPCF13
IPCF14
IPCF15
IPCF16
IPCF17
IPCF18
IPCF19
IPCF20
IPCF21
IPCF22
IPCF23
IPCF24
IPCF25
IPCF26
IPCF27
IPCF28
IPCF29
IPCF30
GNJFXl
ENQXl
ENQX2
ENQX3
ENQX4
ENQX5
ENQX6
ENQX7
ENQX8
ENQX9
ENQXIO
ENQXll
ENQX12
ENQX13
ENQX14
ENQX15
ENQX16
ENQX17
ENQX18
ENQX19
ENQX20
ENQX21
IPCF31
IPCF32
PMAPX3

ERROR COOES ANO MESSAGE STRINGS

601004 Too many pages to be locked
601005 Page is not available
601006 Illegal to remove previous contents of user map
601007 Oisplay data area not locked in core
601010 Invalid string pointer
601011 Area too small to hold process structure
601013 Invalid index
601014 Invalid terminal line number
601015 Invalid job number
601016 Length of packet block cannot be less than 4
601017 No message for this PIO
601020 Oata too long for user's buffer
601021 Receiver's PIO invalid
601022 Receiver's PIO disabled
601023 Send quota exceeded
601024 Receiver quota exceeded
601025 IPCF free space exhausted
601026 Sender's PIO invalid
601027 WHEEL capability required
601030 WHEEL or IPCF capability required
601031 No free PIO's available
601032 PIO quota exceeded
601033 No PIO's available to this job
601034 No PID's available to this process
601035 Receive and message data modes do not match
601036 Not enough arguments
601037 Invalid MUTIL JSYS function
601040 No PIO for [SYSTEM] INFO
601041 Invalid process handle
601042 Invalid job number
601043 Invalid software channel
601044 [SYSTEM] INFO already exists
601045 Invalid message size
601046 PIO does not belong to this job
601047 PIO does not belong to this process
601050 PIO is not defined
601051 PID not accessible by this process
601052 PIO already being used by another process
601053 Job is not logged in
601054 No more files in this specification
601055 Invalid function code
601056 Level number too small
601057 Request and lock level numbers do not match
601060 Number of pool and lock resources do not match
601061 Lock already requested
601062 Requested locks are not all locked
601063 No ENQ on this lock
601064 Invalid access change requested
601065 Invalid number of blocks specified
601066 Invalid argument block length
601067 Invalid software interrupt channel number
601070 Invalid number of resources requested
601071 Indirect or indexed byte pointer not allowed
601072 Invalid byte size
601073 ENQ/DEQ capability required
601074 WHEEL or OPERATOR capability required
601075 Invalid JFN
601076 Quota exceeded
601077 String too long
601100 Locked JFN cannot be closed
601101 Invalid job number or job not logged in
601102 Invalid page number
601103 Page is not private
601104 Illegal to move shared page into file

A-5

PMAPX4
PMAPX5
PMAPX6
SNOPXl
SNOPX2
SNOPX3
SNOPX4
SNOPX5
SNOPX6
SNOPX7
SNOPX8
SNOPX9
SNOPI0
SNOPll
SNOP12
SNOP13
SNOP14
SNOP15
SNOP16
IPCF33
SNOP17
OPNX23
GJFX37
CRLNX2
INLNX2
LNSTX2
ALCXl
ALCX2
ALCX3
ALCX4
ALCX5
SPLXl
SPLX2
SPLX3
SPLX4
SPLX5

CLSX3
CRLNX3
ALCX6

CKAXl
CKAX2
CKAX3
TIMXl
TIMX2
TIMX3
TIMX4
SNOP18
GJFX38
GJFX39
CRDIX8
CRDIX9
CROII0

DELOXl
DELDX2
GACTX3
DIAGXl
DIAGX2
DIAGX3
DIAGX4
DIAGX5
DIAGX6

ERROR CODES AND MESSAGE STRINGS

601105 Illegal to move file page into process
601106 Illegal to move special page into file
601107 Disk quota exceeded
601110 WHEEL or OPERATOR capability required
601111 Invalid function code
601112 .SNPLC function must be first
601113 Only one .SNPLC function allowed
601114 Invalid page number
601115 Invalid number of pages to lock
601116 Illegal to define breakpoints after inserting them
601117 Breakpoints is not set on instruction
601120 No more breakpoints allowed
601121 Breakpoints already inserted
601122 Breakpoints not inserted
601123 Invalid format for program name symbol
601124 No such program name symbol
601125 No such symbol
601126 Not enough free pages for snooping
601127 Multiply defined symbol
601130 Invalid index into system PID table
601131 Breakpoint already defined
601132 Disk quota exceeded
601133 Input deleted
601134 WHEEl or OPERATOR capability required
601135 Invalid function code
601136 Invalid function code
601137 Invalid function code
601140 WHEEL or OPERATOR capability required
601141 Device is non-assignable
601142 Invalid job number
601143 Device not available
601144 Invalid function code
601145 Invalid argument block length
601146 Invalid device designator
601147 WHEEL or OPERATOR capability required
601150 Illegal to specify 0 as generation number for first

file
601151 File still mapped
601152 Invalid function code
601153 Device assigned to user job, but will be given to

allocator when released
601154 Not enough arguments
601155 Invalid directory number
601156 Invalid access code
601157 Invalid function code
601160 Invalid process handle
601161 Time limit already set
601162 Illegal to clear time limit
601163 Data page is not private or copy-on-write
601164 File not found because output-only device was specified
601165 Logical name loop detected
601166 Invalid directory number specified
601167 Invalid format directory file encountered
601170 Maximum directory number exceeded; index table needs

expanding
601171 WHEEL or OPERATOR capability required
601172 Invalid directory number
601173 Bad block type in directory
601174 Invalid function
601175 Device is not assigned
601176 Too few arguments
601177 Invalid device type
601200 WHEEL, OPERATOR, or MAINTENANCE capability required
601201 Invalid channel command list

A-6

DIAGX7
DIAGX8
DIAGX9
DIAGI0
SYEXI
SYEX2
MTOXI
IOX7
IOX8
MTOX5
DUMPX5
DUMPX6
IOX9
CLSX4
MTOX2
MTOX3
MTOX4
MTOX6
OPNX25
GJFX40
MTOX7
LOUTX3
LOUTX4
CAPX2
SSAVX3
SSAVX4
TDELXl
TADDXl
TADDX2
TLUKXl
IOXI0
CNDIX2
CNDIX4
CNDIX6
SJBXl
SJBX2
SJBX3
TMONXI
SMONX2
SJBX4
SJBX5
SJBX6
GTJIX4
ILINS4
ILINS5
COMNXI
COMNX2
COMNX3
COMNX4
PRAXI
PRAX2
COMNX5
COMNX6
COMNX7
PRAX3
CKAX4
GACCXl
GACCX2
MTOX8
DBRKXl
SJPRXI
GJFX41
GJFX42
GACCX3

ERROR CODES AND MESSAGE STRINGS

601202 Illegal to do I/O across page boundary
601203 No such device
601204 Unit does not exist
601205 TU16 does not exist
601206 Unreasonable SYSERR block size
601207 No buffer space available for SYSERR
601210 Invalid function
601211 No room in Job Storage Block
601212 Monitor internal error
601213 Invalid hardware data mode for magnetic tape
601214 No-wait dump mode not supported for this device
601215 Dump mode not supported for this device
601216 Function legal for sequential write only
601217 Device still active
601220 Record size was not set before I/O was done
601221 Function not legal in dump mode
601222 Invalid record size
601223 Invalid magnetic tape" density
601224 Device is write locked
601225 Undefined attribute in file specification
601226 WHEEL or OPERATOR capability required
601227 WHEEL or OPERATOR capability required
601230 LOG capability required
601231 WHEEL or OPERATOR capability required
601232 No job storage available
601233 Directory area of EXE file is more than one page
601234 Table is empty
601235 Table is full
601236 Entry is already in table
601237 Internal format of table is incorrect
601240 Record is longer than user requested
601241 WHEEL or OPERATOR capability required
601242 Invalid job number
601243 Job is not logged in
601244 Invalid function code
601245 Invalid magnetic tape density
601246 Invalid magnetic tape data mode
601247 Invalid TMON function
601250 Invalid SMON function
601251 No such job
601252 Job is not logged in
601253 WHEEL or OPERATOR capability required
601254 No such job
601255 UUO simulation is disabled
601256 DMS facility is not available
601257 Invalid COMND function code
601260 Field too long for internal buffer
601261 Command too long for internal buffer
601262 Invalid character in input
601263 Invalid PRARG function code
601264 No room in monitor data base for argument block
601265 Invalid string pointer argument
601266 Problem in indirect file
601267 Error in command
601270 PRARG argument block too large
601271 File is not on disk
601272 Invalid job number
601273 No such job
601274 Argument block too long
601275 No breaks in progress
601276 Nonexistent job
601277 File name must not exceed 6 characters
601300 File type must not exceed 3 characters
601301 Confidential Information Access Capability required

A-7

TIMEX2 601302
DELFX2 601303
DELFX3 601304
DELFX4 601305
DELFX5 601306
DELFX6 601307
DELFX7 601310
DELFX8 601311
FRKHX7 601312
DIRXI 601313
DIRX2 601314

DIRX3 601315
UFPGXl 601316
LNGFXl 601317
IPCF34 601320
COMNX8 601321
MTOX9 601322
MTOXIO 601323
M'I'OXll 601324
MTOX12 601325
MTOX13 601326
MTOX14 601327
SAVXl 601330
MTOX15 601331
LPINXI 601333
LPINX2 601334
LPINX3 601335
MTOX17 601336
LGINX6 601337
DESX9 601340

ERROR CODES AND MESSAGE STRINGS

Downtime cannot be more than 7 days in the future
File cannot be deleted because it is currently open
System scratch area depleted~ file not deleted
Directory symbol table could not be rebuilt
Directory symbol table needs rebuilding
Internal format of directory is incorrect
FOB formatted incorrectly~ file not deleted
FOB not found; file not deleted
Process page cannot exceed 777
Invalid directory number
Not enough internal system resources to open directory
file
Internal format of directory is incorrect
File is not open for write
Page table does not eXist and file not open for write
Cannot receive into an existing page
Number base out of range 2-10
Output still pending
VFU or RAM file cannot be OPENed
Data too large for buffers
Input error or not all data read
Argument block too small
Invalid PSI channel
Illegal to save files on this device
Device does not have Direct Access (programmable) VFU
Invalid unit number
WHEEL or OPERATOR capability required
Illegal to load RAM or VFU while device is OPEN
Device is off-line
No more jobs available for logging-in
Illegal operation for this device

A-8

Aborting output operations,
3-24

AC setup, 1-2
Access,

Copy-on-write, 3-22, 5-4
File, 3-14

Access bits,
OPENF, 3-15

Access code,
File, 3-2

Accumulators, 1-2
ACs, 1-2

Setting process, 5-6
Activated channels, 4-4
Activating interrupt

channels, 4-8
Address space, 1-4, 5-1
Address space,

Sharing, 5-6
Address space of processes,

Specifying, 5-8
AIC monitor call, 4-8, 4-13
Append access, 3-14
Applications of multiple

processes, 5-2
Argument block,

DEQ, 6-11
ENQ, 6-7
GTJFN, 3-10
MUTIL, 7-12

ASCIZ pseudo-op, 2-3
ASCIZ strings, 2-1, 3-18
Assembly language programs,

1-1
Assigning JFNs, 3-2, 3-4,

3-10, 3-28
Assigning priority levels,

4-4
Assigning terminal codes,

4-11
Associating JFN to next

file, 3-28
Asynchronous signals, 4-1,

5-3
ATI monitor call, 4-11
Avoiding deadly embrace,

6-14

BIN monitor call, 3-18
Bits,

CFORK flag, 5-6
ENQ flag, 6-8
GTJFN, 3-8

INDEX

Bi ts (cent)
GTJFN flag, 3-4, 3-11
GTSTS, 3-25
IPCF flag, 7-2
MRECV flag, 7-8
MSEND flag, 7-7
OPENF access, 3-15
PMAP flag, 3-22, 5-9
Process status, 5-12
RDTTY control, 2-8
Resource status, 6-12

Block,
DEQ argument, 6-11
ENQ argument, 6-7
GTJFN argument, 3-10
MUTIL argument, 7-12
Packet data, 7-2, 7-5
Packet descriptor, 7-2

Block specification, 6-7
BOUT monitor call, 3-18
Break,

Execution, 4-1
Break characters, 2-7, 2-8
Buffer,

CTRL/R, 2-8, 2-9
Byte I/O example, 3-18
Byte input, 3-18, 3-21
Byte output, 3-18, 3-21
Byte pointer, 3-18
Byte size, 3-15, 3-23
Bytes, 2-1, 3-1
Bytes,

Reading, 2-6
Transferring

nonsequential, 3-20
Transferring sequential,

3-18
Writing, 2-7

Calling sequence, 1-2
Capability word, 5-6, 5-7
CFORK flag bits, 5-6
CFORK monitor call, 5-6
Changing access to

resources, 6-6
Channel,

.ICIFT software, 5-11
Channel numbers, 4-6
Channel table, 4-6
Channels,

Activating interrupt, 4-8
Deactivating interrupt, 4-13

Index-l

Channels (cont)
Panic, 4-8, 4-12
Placing PIDs on, 7-15
Software interrupt, 4-3

Characteristics,
Process, 5-6

Characters,
Break, 2-7, 2-8
Edi ting, 2-7
Wildcard, 3-5, 3-7, 3-26,

3-29, 3-30
CHNTAB table, 4-6
CIS monitor call, 4-13
Clearing the interrupt

system, 4-13
CLOSF example, 3-24
CLOSF monitor call, 3-24
Closing files, 3-23
Code,

Error, 1-3, A-I
File access, 3-2
Symbolic instruction, 1-1

Codes,
Assigning terminal, 4-11
Deassigning terminal,

4-13
Terminal interrupt, 4-10

Communication,
Process, 1-4, 5-3, 5-12,

7-1
Conditions,

Interrupt, 4-3
Termina1~ 4-3, 4-10

Confirming file
specification, 3-5

CONTINUE command, 2-6
Control bits,

RDT'rY, 2-8
Copy-on-write access, 3-22,

5-4
Copying files, 3-32, 4-14
Creating PIDs, 7-3, 7-4,

7-13
Creating processes, 5-6
CTRL/R, 2-7
CTRL/R buffer, 2-8, 2-9
CTRL/U, 2-7, 2-9
CTRL/W, 2-7

Data mode, 3-15, 3-26
Data transfers, 3-1, 3-17,

3-31
Dates,

File, 3-27
Deactivating interrupt

channels, 4-13

INDEX (CaNT.)

Deadly embrace, 6-4, 6-8
Deadly embrace,

Avoiding, 6-14
Deassigning JFNs, 3-24
Deassigning terminal codes,

4-13
DEBRK monitor call, 4-9
Default file specification

fields, 3-3
Default GTJFN fields, 3-10
Deferred mode interrupt,

4-11
Deferring interrupts, 4-12
DELETE key, 2-7
Deleting PIDs, 7-13
Deleting processes, 5-13
DEQ argument block, 6-11
DEQ functions, 6-10
DEQ monitor call, 6-10
Designators, 3-17

Primary I/O, 2-2
Destination designators,

3-17
DIR monitor call, 4-12
Direct process control, 5-3
Directive, 1-1
Directory order, 3-7, 3-29
Disabling PIDs, 7-12
Disabling the interrupt

system, 4-12
Dismissing interrupts, 4-9
DTI monitor call, 4-13

Editing,
Terminal, 2-7

Editing characters, 2-7
EIR monitor call, 4-8
Enabling PIDs, 7-12
Enabling the interrupt

system, 4-7
End-of-file pointer, 3-23
ENQ argument block, 6-7
ENQ flag bits, 6-8
ENQ functions, 6-5
ENQ monitor call, 6-5, 6-11
ENQ quotas, 6-3
ENQ requests,

Removing, 6-10
ENQ/DEQ, 5-3, 6-1
ENQ/DEQ,

Using, 6-3, 6-5
Environment,

Program, 1-4
ERCAL, 1-3
ERCAL example, 1-4
ERJMP, 1-3
Error code, 1-3, A-I

Index-2

Error returns, 1-3
Errors,

Handling, 1-3
I/O, 3-15, 3-25

Example,
Byte I/O, 3-18
CLOSF, 3-24
ERCAL, 1-4
File, 3-32, 3-35
GNJFN, 3-30
GTJFN, 3-9, 3-13, 3-30
OPENF, 3-16
Process, 5-14, 5-15, 5-17
Software interrupt, 4-14
String I/O, 3-20
Terminal I/O, 2-6, 2-10
Terminal input, 2-4

Exclusive ownership, 6-2
Execution break, 4-1

.FHSLF process handle, 5-4
Field punctuation, 3-28
Fields,

Default file
specification, 3-3

Default GTJFN, 3-10
File,

Associating JFN to next,
3-28

MONSYM, 1-2, 2-2
File access, 3-14
File access code, 3-2
File dates, 3-27
File example, 3-32, 3-35
File I/O, 3-1
File pages,

Mapping, 3-22, 5-8
File pointer, 3-17
File sharing, 3-2
File size, 3-27
File specification, 3-2

Confirming, 3-5
Formatting, 3-27
Returning, 3-26

File specification fields,
Default, 3-3

File status,
Obtaining, 3-25

File summary, 3-31
Files, 3-1

Closing, 3-23
Copying, 3-32, 4-14
Opening, 3-14, 3-15

Fillers, 2-5
Flag bits,

CFORK, 5-6
ENQ, 6-8
GTJFN, 3-4, 3-11

INDEX (CONT •)

Flag bits (cont)
IPCF, 7-2
MRECV, 7-8
MSEND, 7-7
PMAP, 3-22, 5-9

Flow chart,
Interrupt system, 4-2

Fork, 5-6
Format of <SYSTEM>INFO

requests, 7-10
Format of <SYSTEM>INFO

responses, 7-11
Format options,

JFNS, 3-27
NOUT, 2-5

Formatting file
specification, 3-27

Frozen access, 3-14
Functions,

DEQ, 6-10
ENQ, 6-5
Monitor, 1-2
MUTIL, 7-12
Performing IPCF, 7-12
<SYSTEM>INFO, 7-11

Generating terminal
interrupts, 4-11

Generation numbers, 3-4,
3-6

GET monitor call, 5-8
GNJFN example, 3-30
GNJFN monitor call, 3-7,

3-28
Groups, 3-2

Sharer, 6-13
GTJFN,

Long form of, 3-3, 3-10
Short form of, 3-3, 3-4

GTJFN argument block, 3-10
GTJFN bits, 3-8
GTJFN example, 3-9, 3-13,

3-30
GTJFN fields,

Default, 3-10
GTJFN flag bits, 3-4, 3-11
GTJFN monitor call, 3-2,

3-4, 3-10, 3-29
GTJFN returns, 3-8, 3-13
GTJFN summary, 3-14
GTSTS bits, 3-25
GTSTS monitor call, 3-25

HALTF monitor call, 2-6,
5-5, 5-10

Index-3

Handles,
Process, 5-4

Handling errors, 1-3
HRROI instruction, 2-1

I/O,
File, 3-1
Page, 3-21
Terminal, 2-1
Types of, 3-1

I/O designators,
Primary, 2-2

I/O errors, 3-15, 3-25
.ICIFT software channel,

5-11
10,

Process, 7-1
Request, 6-8, 6-10, 6-12

Identifiers,
Process, 3-21, 5-4

IIC monitor call, 5-12
Immediate mode interrupt,

4-11
Inferior process, 5-1
Information about resources,

Obtaining, 6-11
Initializing programs, 2-6
Initiating software

interrupts, 5-12
Input,

Byte, 3-18, 3-21
String, 3-19
Terminal, 2-3, 2-6, 3-35

Instruction,
HRROI, 2-1
JSYS, 1-2
JUMP, 1-3

lnstruction mnemonic, 1-1
Interrupt channels,

Activating, 4-8
Deactivating, 4-13
Software, 4-3

Interrupt codes,
Terminal, 4-10

Interrupt conditions, 4-3
Interrupt priorities,

Software, 4-3
Interrupt routine, 4-6, 4-8
Interrupt routine,

Suspending, 4-9
Interrupt system,

Clearing the, 4-13
Disabling the, 4-12
Enabling the, 4-7
Testing the, 4-12
Using the, 4-1

Interrupt system flow chart,
4-2

INDEX (CONT •)

Interrupt table addresses,
Obtaining, 4-12

Interrupt tables, 4-6
Interrupts,

Deferring, 4-12
Dismissing, 4-9
Generating terminal, 4-11
Initiating software, 5-12
Processing, 4-8
Software, 1-3, 4-1, 5-3,

6-7
Terminal, 4-9

Introduction, 1-1
IPCF, 5-3, 7-1
IPCF .flag bits, 7-2
IPCF functions,

Performing, 7-12
IPCF messages,

Long-form, 7-6
Receiving, 7-8
Sending, 7-1, 7-6
Short-form, 7-5

IPCF quotas, 7-1
Returning, 7-14

IPCF symbolic name, 7-4

JFN, 3-2
JFN to next file,

Associating, 3-28
JFNs,

Assigning, 3-2, 3-4, 3-10,
3-28

Deassigning, 3-24
JFNS format options, 3-27
JFNS monitor call, 3-26
Job, 1-4
Job file numbers, 3-2
Job structure, 1-5, 5-2,

5-5
JSYS, 1-1
JSYS instruction, 1-2
JUMP instruction, 1-3

Key,
DELETE, 2-7

KFORK monitor call, 5-13

Length,
Word, 1-4

Level numbers, 6-4, 6-8
Levels,

Assigning priority, 4-4

Index-4

Levels (cont)
Priority, 4-3, 4-9

LEVTAB table, 4-7
Literals, 2-1
Lock, 6-1
Lock specification, 6-11
Long form of GTJFN, 3-3,

3-10
Long-form IPCF messages,

7-6

Map,
Page, 3-21
Process, 5-6

Mapping file pages, 3-22,
5-8

Mapping pages, 3-21
Mapping process pages, 3-23,

5-9
Memory sharing, 5-4
Message strings, A-I
Messages,

Long-form IPCF, 7-6
Receiving IPCF, 7-8
Sending IPCF, 7-1, 7-6
Sending <SYSTEM>INFO,

7-10
Short-form IPCF, 7-5

Mode,
Data, 3-15, 3-26

Monitor call, 1-1, 1-2
Monitor call,

AIC, 4-8, 4-13
A'rI, 4-11
BIN, 3-18
BOUT, 3-18
CFORK, 5-6
CIS, 4-13
CLOSF, 3-24
DEBRK, 4-9
DEQ, 6-10
DIR, 4-12
DTI, 4-13
EIR, 4-8
ENQ, 6-5, 6-11
GET, 5-8
GNJFN, 3-7, 3-28
GTJFN, 3-2, 3-4, 3-10,

3-29
GTSTS, 3-25
HALTF, 2-6, 5-5, 5-10
IIC, 5-12
JFNS, 3-26
KFORK, 5-13
MRECV, 7-8
MSEND, 7-6
MUTIL, 7-12
NIN, 2-3

INDEX (CONT .)

Monitor call (cont)
NOUT, 2-4
OPENF, 3-15
PBIN, 2-6
PBOUT, 2-7
PMAP, 3-22, 5-9
PSOUT, 2-2
RDTTY, 2-4, 2-7
RESET, 2-6, 4-13, 5-13
RFSTS, 5-11
RIN, 3-21
RIR, 4-12
ROUT, 3-21
SFORK, 5-10
SIN, 3-19
SIR, 4-7
SKPIR, 4-12
SOUT, 3-20
WFORK, 5-10, 5-11

Monitor calls,
Process, 5-5

Monitor functions, 1-2
MONSYM file, 1-2, 2-2
MRECV flag bits, 7-8
MRECV monitor call, 7-8
MSEND flag bits, 7-7
MSEND monitor call, 7-6
Multiple process structure,

5-2
Multiple resources, 6-5
MUTIL argument block, 7-12
MUTIL functions, 7-12
MUTIL monitor call, 7-12

Name,
IPCF symbolic, 7-4
Resource, 6-3

NIN monitor call, 2-3
NIN termination, 2-4
Nonsequential bytes,

Transferring, 3-20
NOUT format options, 2-5
NOUT monitor call, 2-4
Numbers,

Channel, 4-6
Generation, 3-4, 3-6
Job file, 3-2
Level, 6-4, 6-8
Reading, 2-3
Writing, 2-4

Obtaining file status, 3-25
Obtaining information about

resources, 6-11

Index-5

Obtaining interrupt table
addresses, 4-12

OPENF access bits, 3-15
OPENF example, 3-16
OPENF monitor call, 3-15
Opening files, 3-14, 3-15
Options,

JFNS format, 3-27
NOUT format, 2-5

Output,
Byte, 3-18, 3-21
Str ing, 3-20
Terminal, 2-2, 2-4, 2-7

Ownership,
Resource, 6-2, 6-8

Packet data block, 7-2, 7-5
Packet descriptor block,

7-2
Packets, 7-1

Retrieving, 7-8
Sending, 7-6

Page I/O, 3-21
Page map, 3-21
Pages, 1-4, 3-1
Pages,

Mapping, 3-21
Mapping file, 3-22, 5-8
Mapping process, 3-23,

5-9
Shared, 3-22, 5-4
Unmapping, 3-23

Panic channels, 4-8, 4~12
Parallel process, 5-1
Parallel processing, 5-2
PBIN monitor call, 2-6
PBOUT monitor call, 2-7
PC word, 4-7, 5-1, 5-10
PC word,

Setting process, 5-6
Performing IPCF functions,

7-12
PIDs, 7-1, 7-4
PIDs,

Creating, 7-3, 7-4, 7-13
Deleting, 7-13
Disabling, 7-12
Enabling, 7-12

Placing PIDs on channels,
7-15 .

PMAP flag bits, 3-22, 5-9
PMAP monitor call, 3-22,

5-9
POINT pseudo-op, 2-1
Pointer, 2-1, 2-2
Pointer,

Byte, 3-18
End-of-file, 3-23

INDEX (CONT.)

Pointer (cont)
File, 3-17

Pooled resources, 6-9
.PRIIN, 2-2, 3-17
Primary I/O designators,

2-2
Printing strings, 2-2
Priorities,

Software interrupt, 4-3
Priority level table, 4-7
Priority levels, 4-3, 4-9
Priority levels,

Assigning, 4-4
.PRIOU, 2-2, 3-17
Process, 1-4, 5-1
Process ACs,

Setting, 5-6
Process capabilities, 5-7
Process characteristics,

5-6
Process communication, 1-4,

5-3, 5-12, 7-1
Process example, 5-14, 5-15,

5-17
Process handles, 5-4
Process ID, 7-1
Process identifiers, 3-21,

5-4
Process map, 5-6
Process monitor calls, 5-5
Process pages,

Mapping, 3-23, 5-9
Process PC word,

Setting, 5-6
Process status bits, 5-12
Process status word, 5-11
Process structure, 5-1

Multiple, 5-2
Processes,

Creating, 5-6
Deleting, 5-13
Specifying address space

of, 5-8
Starting, 5-10
Status of, 5-11
Suspending, 5-5
Termination of, 5-10

Processing,
Parallel, 5-2

Processing interrupts, 4-8
Program counter, 4-7, 5-1
Program environment, 1-4
Programs,

Initializing, 2-6
Terminating, 2-6

Protection,
Resource, 6-4

Pseudo-op, 1-1
ASCIZ, 2-3
POINT, 2-1

PSOUT monitor call, 2-2

Index-6

Queue,
Resource, 6-1, 6-2

Quotas,
ENQ, 6-3
IPCF, 7-1
Returning IPCF, 7-14

Radix, 2-3, 2-4
Random I/O, 3-20
RDTTY control bits, 2-8
RDTTY monitor call, 2-4,

2-7
Read access, 3-14
Reading bytes, 2-6
Reading numbers, 2-3
Reading strings, 2-7
Reading table addresses,

4-12
Receiving IPCF messages,

7-8
Releasing resources, 6-10
Removing ENQ requests, 6-10
Request ID, 6-8, 6-10, 6-12
Requesting resources, 6-5
Requests,

Format of <SYSTEM>INFO,
7-10

Removing ENQ, 6-10
RESET monitor call, 2-6,

4-13, 5-13
Resource name, 6-3
Resource ownership, 6-2,

6-8
Resource protection, 6-4
Resource queue, 6-1, 6-2
Resource status, 6-11
Resource status bits, 6-12
Resources,

Changing access to, 6-6
Multiple, 6-5
Obtaining information

about, 6-11
Pooled, 6-9
Releasing, 6-10
Requesting, 6-5

Responses,
Format of <SYSTEM>INFO,

7-11
Restricted access, 3-14
Retrieving packets, 7-8
Returning file

specification, 3-26
Returning IPCF quotas, 7-14
Returns, 1-3

Error, 1-3
GTJFN, 3-8, 3-13
Successful, 1-3

RFSTS monitor call, 5-11
RIN monitor call, 3-21

INDEX (CONT •)

RIR monitor call, 4-12
ROUT monitor call, 3-21
Routine,

Interrupt, 4-6, 4-8
Suspending interrupt, 4~9

Sending IPCF messages, 7-1,
7-6

Sending packets, 7-6
Sending <SYSTEM>INFO

messages, 7-10
Sequential bytes,

Transferring, 3-18
Setting process ACs, 5-6
Setting process PC word,

5-6
Setup,

AC, 1-2
SFORK monitor call, 5-10
Shared ownership, 6-2
Shared pages, 3-22, 5-4
Sharer groups, 6-13
Sharing,

File, 3-2
Hemory, 5-4

Sharing address space, 5-6
Short form of GTJFN, 3-3,

3-4
Short-form IPCF messages,

7-5
SIN monitor-call, 3-19
SIR monitor call, 4-7
Size,

Byte, 3-15, 3-23
File, 3-27

SKPIR monitor call, 4-12
Software channel,

.ICIFT, 5-11
Software interrupt channels,

4-3
Software interrupt example,

4-14
Software interrupt

priorities, 4-3
Software interrupt summary,

4-13
Software interrupts, 1-3,

4-1, 5-3, 6-7
Software interrupts,

Initiating, 5-12
Source designators, 3-17
SOUT monitor call, 3-20
Space,

Address, 1-4, 5-1
Sharing address, 5-6

Specification,
Block, 6-7
Lock, 6-11

Specifiying table addresses, 4-7

Index-7

Specifying address space of
processes, 5-8

Starting processes, 5-10
Status,

Obtaining file, 3-25
Resource, 6-11

Status bits,
Process, 5-12
Resource, 6-12

Status of processes, 5-11
Status word,

Process, 5-11
String I/O example, 3-20
String input, 3-19
String output, 3-20
Strings, 2-1

ASCIZ, 2-1, 3-18
Message, A-I
Printing, 2-2
Reading, 2-7
Transferring, 3-19

Structure,
Job, 1-5, 5-2, 5-5
Multiple process, 5-2
Process, 5-1

Successful returns, 1-3
Summary,

File, 3-31
GTJFN, 3-14
Software interrupt, 4-13
Terminal, 2-11

Superior process, 5-1
Suspending interrupt

routine, 4-9
Suspending processes, 5-5
Symbolic instruction code,

1-1
Symbolic name,

IPCF, 7-4
Symbols, 1-2
<SYSTEM>INFO, 7-1, 7-10
<SYSTEM>INFO functions,

7-11
<SYSTEM>INFO messages,

Sending, 7-10
<SYSTEM>INFO requests,

Format of, 7-10
<SYSTEM>INFO responses,

Format of, 7-11

Table,
Channel, 4-6
CHNTAB, 4-6
LEVTAB, 4-7
Priority level, 4-7

Table addresses,
Reading, 4-12
Specifiying, 4-7

INDEX (CONT •)

Tables,
Interrupt, 4-6

Terminal codes,
Assigning, 4-11
Deassigning, 4-13

Terminal conditions, 4-3,
4-10

Terminal editing, 2-7
Terminal I/O, 2-1
Terminal I/O example, 2-6,

.2-10
Terminal input, 2-3, 2-6,

3-35
Terminal input example, 2-4
Terminal interrupt codes,

4-10
Terminal interrupts, 4-9
Terminal output, 2-2, 2-4,

2-7
Terminal summary, 2-11
Terminating programs, 2-6
Termination of processes,

5-10
Testing the interrupt

system, 4-12
Thawed access, 3-14
Transferring nonSequential

bytes, 3-20
Transferring sequential

bytes, 3-18
Transferring strings, 3-19
Transfers,

Data, 3-1, 3-17, 3-31
Types of I/O, 3-1

Unmapping pages, 3-23
Updating directory

information, 3-24
Using ENQ/DEQ, 6-3, 6-5
Using the interrupt system,

4-1

WFORK monitor call, 5-10,
5-11

Wildcard characters, 3-5,
3-7, 3-26, 3-29, 3-30

Word,
Capability, 5-6, 5-7
PC, 4-7, 5-1, 5-10
Process status, 5-11
Setting process PC, 5-6

Word length, 1-4
Write access, 3-14
Writing bytes, 2-7
Writing numbers, 2-4

Index-8

Monitor Calls
User's Guide
DEC-20-0MUGA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

Name Date ________________________ __

Organization __ ___

Street __ ___

City ____________________________ State _____________ Zip Code ______________ _
or

Country

If you require a written reply, please check here. []

---Fold lIere------------------------------------~-----------------------

-- Do Not Tear - Fold lIere and Staple ---~---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

