

000

so~tware
handbook

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corpo·
ration. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in this manual.

Copyright © 1978, by Digital Equipment Corporation

PDP, UNIBUS
are trademarks of

Digital Equipment Corporation

This handbook was designed, produced, and typeset
by DIGITAL's Sales Support Literature Group

using an in-house text-processing system
operating on a DECSYSTEM-20.

ii

CONTENTS

CHAPTER 1 INTRODUCTION TO PDP-11 SOFTWARE
OVERViEW 1

HARDWARE/SOFTWARE SYSTEMS 2
OPERATING SYSTEMS 2

COMMUNICATIONS SOFTWARE4

DATA MANAGEMENT SERVICES 4

LANGUAGES AND LANGUAGE PROCESSORS 4

PDP-11 CENTRAL PROCESSORS 5

CPU/OPERATING SYSTEM COMPARATIVE CHART 6

CHAPTER 2 OPERATING SYSTEMS
OVERViEW 9

COMPONENTS AND FUNCTIONS 10

PROCESSING METHODS 12

DATA MANAGEMENT 14

DATA STORAGE 17

I/O DEVICES AND PHYSICAL
DATA ACCESS CHARACTERISTICS 19
FILE PROTECTION/FILE NAMING 23
USER INTERFACES 26
PHYSICAL DEVICE CHARACTERISTICS 27

FILE STRUCTURES AND ACCESS METHODS 29

DIRECTORIES AND DIRECTORY ACCESS
TECHNIQUES 33

I/O COMMANDS 36

MONITOR AND COMMAND LANGUAGE
COMMANDS 37

SYSTEM UTILITIES41
OPERATING SYSTEM COMPARATIVE CHART44

CHAPTER 3 LANGUAGE PROCESSORS
OVERVIEW 47

LANGUAGE TRANSLATION SYSTEMS
DEFINITION48

ASSEMBLERS 48

COMPiLERS 49
MODULARITY 50
ASSEMBLY LANGUAGE ROUTINES 50

LIBRARY ROUTINES 50

iii

PROGRAM DEVELOPMENT FACILITIES 51

ASSE~"lBLERS AND LANGUAGE COMPILERS 52
PDP-11 COBOL COMPILER 56

INCREMENTAL COMPILERS 57

CHAPTER 4 FOREGROUND/BACKGROUND OPERATING
SYSTEM RT-11
OVERVIEW 61

FUNCTIONS AND FEATURES 62

OPERATING ENVIRONMENTS 63
RT-11 Single Job Monitor 63
RT-11 Foreground/Background Monitor 63
RT -11 Extended Memory Monitor 64

FACILITIES AVAILABLE IN RT-11 FB/XM 64

SYSTEM COMMUNiCATION 65
Indirect Files 66
Keyboard Monitor Commands 66

TEXT EDITOR 75

UTILITY PROGRAMS 76

ASSEMBLED PROGRAM ALTERATION 79

SYSTEM SUBROUTINE LIBRARY 80

SYSTEM SUMMARY

CHAPTER 5 RESOURCE-SHARING TIMESHARING SYSTEM
RSTS/E
OVERVIEW 83

FUNCTIONS AND FI::ATURES 84

SYSTEM CONFIGURATION AND OPERATION 88
System Code 88
Language Processors (BASIC-PLUS) 89
Timesharing Operations Overview 90
SySGEN .. 91

SYSTEM MANAGEMENT UTILITY PROGRAMS 94
DEVICE AND FILE CONVENTIONS 97
USER INTERFACE 103
System and Installation Defined
(CCL) Commands 103
General System Utility Programs 107
Batch Processing 108

SYS SYSTEM FUNCTIONS AND
THE PEEK FUNCTION 114

RSTS/E SYSTEM SUMMARY 115

iv

CHAPTER 6 REAL-TIME MULTIPROGRAMMING SYSTEM
RSX-11M AND RSX-11S
OVERVIEW 123

FUNCTIONS AND FEATURES 124

SYSTEM ORGANIZATION 132

RSX-11S SYSTEM COMPONENTS 138
SYSTEM CONVENTIONS 140
DEVICES 140

FILE STRUCTURES 141
FILE SPECiFIERS 143

RSX-11 MCR COMMANDS 146

INDIRECT FILES 150

RMS-11 RECORD MANAGEMENT SERVICES 160
SYSTEM UTILITY PROGRAMS 162

RSX-11M SYSTEM SUMMARy 165

CHAPTER 7 INTERACTIVE APPLICATION SYSTEM lAS
OVERViEW 167

FUNCTIONS AND FEATURES 168

lAS EXECUTIVE ORGANIZATION 170
Active Task List 170
Timesharing Scheduler 172
Batch Processing 173
COMMAND LANGUAGE INTERPRETERS 176
Program Development System 177
PDS Commands 180
SYSTEM CONTROL INTERFACE 183

TIMESHARING CONTROL PRIMITIVES 184

lAS SYSTEM SUMMARy 190

CHAPTER 8 DIGITAL'S STANDARD MUMPS-11
OVERViEW 193
FUNCTIONS AND FEATURES 194

EXECUTIVE AND SYSTEM FEATURES 196
Job Scheduling 196
I/O Monitor 197

USER INTERFACE 197

TERMINALS AND ANCILLARY I/O DEViCES 200

DATA MANAGEMENT 203

DATA STORAGE ELEMENTS 205
DSM DISK STRUCTURE AND

v

GLOBAL ARRAYS 207
LANGUAGE AND UTILITIES 209
THE MUMPS LANGUAGE 212
Expressions 212
DSM-11 Commands Summary 215
DSM-11 SYSTEM SUMMARY 225

CHAPTER 9 TRAX
OVERVIEW 227
AN APPLICATION EXAMPLE 228
TRAXSYSTEM ORGANIZATION 232
APPLICATION TERMINAL LANGUAGE/
FORMS CONTROL 237
BASIC TRAX TERMINOLOGY 241
SUPPORT ENVIRONMENT FEATURES 245

SYSTEM GENERATION 248
FILE ACCESS/RECOVERY METHODS 254
TST LIBRARY 256
TRAXCOMMUNICATIONS 257

CHAPTER 10 DECNET PHASE II
OVERViEW 261
TECHNICAL INTRODUCTION 262
DECNET AND THE PDP-11 PRODUCTS 262
DECNET/RT 263
DECNET/E 263
DECNET-11M 264
DECNET-11D 265
DECNET-11S 265
DEC NET-lAS 266
DECNET /PDP-11 OPERATING SYSTEMS CHART 267

CHAPTER 11 SORT-11
OVERViEW 271
FUNCTIONS AND FEATURES 272
DATA FILES 273
COMMAND STRING AND SPECIFICATION FILE .. 274
SORT FILE PROCESSING OPTIONS 278

CHAPTER 12 RECORD MANAGEMENT SYSTEM RMS
OVERViEW 281
FUNCTIONS AND FEATURES 282
FILE ORGANIZATION 283

vi

RMS FILE ORGANIZATIONS 284
Sequential/Relative 284
Indexed 285
RMS ACCESS MODES 288
Sequential Access 289
Random Access 290
Record's File Address 291
Dynamic Access 291

FILE ATTRIBUTES 292
RECORD FORMATS 293
PROGRAM OPERATIONS ON RMS FILES 298

CHAPTER 13 DATA BASE MANAGEMENT SYSTEM DBMS
OVERVIEW 307

FEATURES 308

DATA ORGANiZATION 309

PHYSICAL SPACE MANAGEMENT 310
DATA BASE UTILITIES 312

DATA MANIPULATION LANGUAGE 316

COBOLlDML COMPiLATION 319
PROGRAMMING REQUiREMENTS 320

CHAPTER 14 DATATRIEVE-11
OVERViEW 323

QUERY/REPORT GENERATION/
DATA DEFINITION FEATURES 324

BASIC COMMANDS 325
ESSENTIAL TERMINOLOGy 326

SPECIAL SYNTACTICAL SYMBOLS 329
SUMMARY OF COMMANDS 335
A SAMPLE DATATRIEVESESSION 338

CHAPTER 15 MACRO-11
OVERVI EW 343

LANGUAGE 344
SYMBOLS AND SYMBOL DEFINITIONS 345

DIRECTIVES 348

MACRO DEFINITIONS/REPEAT BLOCKS 355
MACRO CALLS AND STRUCTURED MACRO
LIBRARIES 356

ASSEMBLER OPERATION 357

ASSEMBLER ENVIRONMENTS 361

vii

CHAPTER 16 BASIC
OVERViEW 365
FUNCTIONS AND FEATURES 366

LANGUAGE ELEMENTS 367
FUNCTIONS 371
PROGRAMMING EXAMPLE 372

GRAPHICS AND LABORATORY
PERIPHERALS SUPPORT 373

BASIC FILES 374

COMPILER OPERATION 376

BASIC OPERATING ENViRONMENTS 377

CHAPTER 17 BASIC-PLUS (V6C)
OVERViEW 383
FUNCTIONS AND FEATURES 384

BASIC-PLUS LANGUAGE SUMMARy 385

SUMMARY OF BASIC-PLUS STATEMENTS 390

IMMEDIATE MODE OPERATIONS 394

DATA FORMATS AND OPERATIONS 395

CHAPTER 18 BASIC-PLUS-2
OVERVIEW 399
FEATURES 400
CONST ANTS 400

VARIABLES 401

FORMING EXPRESSIONS 403

SUBPROGRAMS 405

MODIFYING STATEMENTS 406
FILES .. 407

SUMMARY OF STATEMENTS 409

CHAPTER 19 COBOL
OVERVI EW 415

FUNCTIONS AND FEATURES 416

STRI N G MAN I PU LA TI 0 N 418

ON-LINE PROGRAM EXECUTION 418

FILE ORGANIZATION 419

LIBRARY FACILITY 419
DEBUGGING FEATURES 419
COMPILER IMPLEMENTATION 420

COBOL OPERATING ENVIRONMENTS 421

viii

UTILITY PROGRAMS 422

LANGUAGE IMPLEMENTATION 424

CHAPTER 20 DIBOL-11/DECFORM
OVERVIEW437

DIBOL FEATURES 438
PROGRAM STRUCTURE 438

DIBOL-11 STATEMENTS 438
SUBROUTINE LIBRARY 443

DECFORM FEATURES 443

DECFORM TECHNICAL OVERVIEW 444

APPLICATION EXAMPLE 448

CHAPTER 21 FORTRAN
OVERViEW 451
SPECIFICATIONS AND STANDARDS 452

PDP-11 FORTRAN LANGUAGE DESCRIPTION 453
FORTRAN IV FUNCTIONS AND FEATURES 462

FORTRAN IV COMPiLER 462

FORTRAN IV OPERA'ijNG SYSTEM
ENVIRONMENTS .. :469

FORTRAN IV-PLUS FUNCTIONS AND FEATURES 471

FORTRAN IV-PLUS COMPILER 475
FORTRAN IV-PLUS OPERATING SYSTEM
ENVIRONMENTS479

CHAPTER 22 APL
OVERVIEW 481

FEATURES AND FUNCTIONS 482

LANGUAGE ELEMENTS 485

INPUT IOUTPUT OPERATIONS 491

SYSTEM COMMANDS 494

APL STATEMENT EXECUTION 495

CHAPTER 23 RPG II
OVERVIEW499

DESCRIPTION 500

LANGUAGE SPECIFICATIONS 500

FEATURES 500
File Supportfor Peripherals 501
File Organizations 501
Record Access Methods 501

ix

CHAPTER 24 FOCAL
OVERViEW 503
FEATURES 504
GRAPHICS SUPPORT 505
MINIMUM FOCAL SYSTEM REQUIREMENTS 506
COMMAND INTERPRETER 506
PROGRAM STORAGE AREA 507
VARIABLE STORAGE AREA 507
FOCAL COMMANDS 508
FOCAL FUNCTIONS 510

APPENDIX A GLOSSARY

x

PREFACE

This handbook describes the major operating systems, communica
tions software, data management services, and programming lan
guages available for the PDP-11 family of computers. It is intended for
the system manager or programmer who needs a brief introduction to
the range of PDP-11 software products and who is interested in deter
mining which products best suit a particular processing environment.

The technical descriptions provided in this handbook are not intended
to be functional descriptions or operating procedures. This handbook
is intended to be used in conjunction with the PDP-11 Processor
Handbooks and the PDP-11 Peripherals Handbook to introduce the
PDP-11 family's products. Complete technical information can be
found in the set of software manuals that accompany each product.

Because DIGITAL is constantly developing new products and improv
ing current ones, the information in this document is subject to
change. In this connection, version numbers have been provided for
each software product that specify what release of the software is
being discussed. Users should consult their sales and software sup
port representatives to obtain the latest information about a product's
features and characteristics.

xi

CHAPTER 1

INTRODUCTION TO PDP-11 SOFTWARE

OVERVIEW
Upward compatibility is the star feature of PDP-11 software. This fami
ly of interactive software products has been designed to be compati
ble with DIGITAL's line of PDP-11 processors-ranging from board
microcomputers to full multi-purpose computer systems. All of these
processors are built upon a common architecture that uses a Similar
instruction set and input/output system; programs developed on one
PDP-11 processor may therefore run on any other PDP-11 processor
without major conversion.

This is the first of three chapters dealing with basic PDP-11 concepts.

FEATURE TOPICS

• Hardware/Software Systems

• Operating Systems

• Communications Software

• Data Management Services

• Languages and Language Processors

• PDP-11 Central Processors

• CPU/Operating System Comparative Chart

1

INTRODUCTION

HARDWARE/SOFTWARE SYSTEMS
The PDP-11 computer family is a wide range of compatible processors
complemented by a variety of peripheral devices, software, and ser
vices.

This handbook discusses the software that is available for the PDP-11
family of computers. Operating systems and programming languages
may be available on either large or small hardware/software systems,
but not .both. For example, COBOL is available only on the larger
systems. Other languages may be available on a wide range of sys
tems, but may vary in characteristics signficant for a particular appli
cation. For example, FORTRAN IV is available on both large and small
systems, but compilation speed may vary from system to system, de
pending on the hardware configuration.

The flexibility of PDP-11 hardware/software systems allows the user to
select both the most appropriate hardware for a particular applica
tion's needs, and the operating system and languages that can serve
immediate needs and still allow for possible growth.

DIGITAL offers a variety of operating systems, languages, data
management services and communications software for the PDP-11
computer family. This handbook is structured around these major
aspects of PDP-11 software:

BASIC CONCEPTS Discusses the essential terms connected
wuth PDP-11 operating systems and lan
guage processors.

OPERATING
TEMS

SYS- Discusses individual PDP-11 operating sys
tems in detail.

DECnet

DATA MANAGERS

LANGUAGES

Discusses the family of PDP-11 software
products used by the major operating sys
tE:ms to form communications networks.

Discusses the major PDP-11 data manage
ment services individually and in depth.

Discusses individual PDP-11 language op
tions in detail.

It is assumed that the reader is familiar with operating system software
and programming languages in general.

OPERATING SYSTEMS
An operating system not only provides access to the features of a
processor in its size range, it also organizes a processor and peripher-

2

INTRODUCTION

als into a useful tool for a certain range of applications. For example,
the operating systems that run on the small processors are generally
intended for dedicated applications. The operating systems that run
on large processors are multi-purpose, and can provide a variety of
services. The major operating systems to be discussed are:
RT -11 Real-Time Operating System for PDP-11 Proces

sors.

DSM-11

RSTS/E

RSX-11M

RSX-11S

lAS

A small, single-user foreground/background system
that can support a real-time application job's
execution in the foreground and an interactive or
batch program development job in the background.

DIGITAL Standard Mumps Operating System for
PDP-11 Processors.

A small to large sized timesharing system that offers
a unique fast access data storage and retrieval sys
tem for large data base processing.

Resource-sharing Timesharing System/Extended
Operating System for PDP-11 Processors.

A moderate to large sized timesharing system that
can support up to 63 concurrent jobs, which in
cludes interactive terminal user jobs, detached jobs,
and batch processing.

Real-Time Multiprogramming Executive Operating
System for PDP-11 Processors.

A small to moderate sized real-time multiprogram
ming system compatible with RSX-11 D that can be
generated for a wide range of application environ
ments - from small, dedicated systems to large,
multi-purpose real-time application and program
development systems.

Real-Time Multiprogramming Executive Operating
System for PDP-11 Processors.

A small, execute-only member of the RSX-11 family
for dedicated real-time multiprogramming applica
tions (requires a host RSX-11 M or VMS system).

Interactive Application System for PDP-11 Proces
sors.

A large, multi-user timesharing system, allowing
real-time applications execution concurrent with
timeshared interactive and batch processing.

3

TRAX

INTRODUCTION

A dedicated high-volume transaction processing
system offering real time and batch in a multi-user
commercial environment.

Included in each chapter describing the operating systems are: a gen
eral description of the requirements for the system, the moni
tor/executive characteristics, the file structures and data handling fa
cilities, the user interfaces, the programmed monitor services, the
system utilities, and the language processors supported.

COMMUNICATIONS SOFTWARE
DIGITAL has provided the PDP-11 family of computers with a particu
larly useful range of communication software products. DECnet is a
set of software tools that allows all DIGITAL systems to communicate
programs and data among themselves. DECnetl11 software is de
signed specifically to connect he major PDP-11 operating systems
together in a communications network.

DATA MANAGEMENT SERVICES
The PDP-11 family provides a full range of data management tools.
The choice extends from the input/output support; to sequential and
relative logical file/record support with a multi-key index sequential
option; to a complete CODASYL-standard data base management
system. The four main PDP-11 data managers discussed in this
handbook are:

• SORT-11

• RMS-11

• DBMS
• DATATRIEVE-11

LANGUAGES AND LANGUAGE PROCESSORS
All PDP-11 operating systems offer a variety of programming lan
guage processors. A programming language is a tool that enables the
user to state a problem that a computer can solve. A programming
language is designed to be easily understood and manipulated by
humans, while a language processor translates the problem into the
machine's language.

In general, the language processors available to run under an operat
ing system are commensurate with the kind of applications for which
the operating system is designed. For example, a real-time application
environment could be a laboratory in which a scientific programming
language is useful for problem solving.

4

INTRODUCTION

The programming languages discussed in this handbook are: APL,
BASIC, BASIC-PLUS, BASIC-PLUS-2, COBOL, DIBOL, FORTRAN IV,
FORTRAN IV-PLUS, MACRO, RPG II, FOCAL, and DSM.

Table 1·1 Language Table

MACRO RT -11, RSX-11, RSX-11 D, lAS, TRAX, VAXIVMS

FORTRAN IV RT-11, RSX-11, RSX-11D, lAS, RSTS/E, VAXIVMS

FORTRAN IV- RSX-11, RSX-11D, VAXIVMS
PLUS

BASIC-11 RT-11, RSX-11, lAS

BASIC-PLUS-2 RSX-11, RSX-11D, lAS, TRAX, VAXIVMS

BASIC-PLUS RSTS/E

RPG II RSX-11M, RSTS/E

DIBOL RT-11, RSTS/E

COBOL RSX-11, RSX-11 D, RSTS/E, TRAX, VAXIVMS

PDP-l1 CENTRAL PROCESSORS
The PDP-11 family of processors is ordered in incremental steps of
speed and size, and organized into four groups by their typical appli
cations:

• PDP-11 microcomputers (LSI-based) for stable, programmable
dedicated applications.

• PDP-11 minicomputers (11/04) for dedicated applications which
may be planned for upward growth.

• PDP-11 system computers (11/34, 11145) for multiple application
tasks.

• PDP-11 high-throughput computers (11/55, 11160, 11/70) for multi-
purpose simultaneous application tasks.

This handbook uses these processor groups as the basis for discuss
ing the range of hardware and software systems available in the PDP-
11 family. An operating system that is designed to make maximum use
of a particular processor is normally available on any processor in the
same group. In addition, an operating system that runs on a particular

5

INTRODUCTION

group of processors can often also run on processors in the group
above or below it. As a general guide to size range, each processor
group supports certain amounts of memory which will enable a system
to possess specific operating capabilities:

In the following table, for example, the relationship between specific
operating systems and the central processing units they may run on is
charted. The features and capabilities listed there are intended as
general guidelines and do not constitute strict rules for configuration.

LSI-11 BASED
11/04
11/34
11/45
11/55
11/60
11170

11/04
11/34
11/45
11/55
11/60
11170

RT-11 Foreground/Background or Single
Job Operating System

16K to 256K bytes of memory. In 16K bytes:
Single-Job (SJ) operation; subset MACRO in
cluded; BASIC, FORTRAN IV, FOCAL as op
tions. In 32K bytes: Foreground/Background
(FB) or SJ operation; languages can support
string operations, laboratory and graphics per
ipherals; full MACRO assembler included;
multi-user BASIC available as option support
ing as many as 4 users (under SJ monitor). MU
BASIC supports as many as 8 users in 48K
bytes under SJ monitor and as many as 4 in
56K bytes under FB monitor.

Languages: MACRO included; FORTRAN IV;
BASIC, MU BASIC, FOCAL, and APL are op
tions

DSM-11 DIGITAL Standard MUMPS-11 (Mul
ti-User)

64K to 1Mb of memory. 64K bytes will allow
approximately 2 to 4 users to operate simulta
neously. A maximum of 63 jobs may be sup
ported depending on processor and partition
size, supports many users accessing a
common data base for easy applications de
velopment.

Languages: DSM-11 included.

6

11/34
11/45
11/55
11/60
11/70

LSI-11 BASED
11/04
11/34
11/45
11/55
11/60
11170
VAX-111780

11/04
11/34
11/55
11/60
11/70

INTRODUCTION

RSTS/E General Purpose Timesharing Sys
tem

96K to 248K bytes of memory, or 96K to 3840K
bytes on 11170. Depending on disk and memo
ry configuration, RSTS/E can support a maxi
mum of 63 jobs.

Languages: BASIC-PLUS and MACRO includ
ed; COBOL, BASIC-PLUS-2, FORTRAN IV,
DIBOL, RPG II, DATATRIEVE-11, and APL are
options.

RSX-11S Execute-Only Real-Time Multi-Pro
gramming System

16K to 3840K bytes of memory. 8K-byte sys
tem allows 4K for user tasks. 16K bytes re
quired for on-line task loading or support for
tasks written in FORTRAN.

Languages: Program development on host
RSX-11 DIM, lAS, or VAXIVMS.

RSX-11 M Small-to-Moderate-Sized Real
Time Multi-Programming System

32K to 248K bytes of memory or 32K to 3840K
bytes on 11170. At least 48K bytes are required
for full MACRO support, concurrent program
development and application tasks execution
or memory management support. Error log
ging supported.

Languages: MACRO included; FORTRAN IV
and FORTRAN IV-PLUS, BASIC, BASIC
PLUS-2, COBOL, RPG, DATATRIEVE, and
CORAL 66 are options.

7

11/45
11/55
11/60
11/70

11/04
11/34
11/45
11/60
11/70

INTRODUCTION

lAS Multi-Purpose Multi-Programming Sys
tem

128K to 248K bytes of memory or 128K to
3840K bytes on 11/70. Timeshared interactive
and batch job processing with concurrent real
time applications execution. Depending on
disk and memory configuration, as many as 10
interactive users can be supported on an
11/60; as many as 20 interactive users on an
11/70. Error logging supported.

Languages: MACRO included; FORTRAN IV,
FORTRAN IV-PLUS, COBOL, BASIC, BASIC
PLUS-2, RPG, and CORAL 66 are options.

TRAX Dedicated Transaction Processing
System

192K to 3840K bytes on 11170. Interactive
transaction processing characterized by sets
of predefined procedures with multi-user pro
tection built in.

Languages: COBOL, BASIC-PLUS-2,
FORTRAN IV, APL, and DATATRIEVE are op
tions.

8

OVERVIEW

CHAPTER 2

OPERATING SYSTEMS

The success of the PDP-11 family of operating systems is largely attri
butable to its ability to handle many diverse data processing applica
tions. For example, RT -11 provides a single-user environment with
foreground/background processing; RSTS/E provides a multi-user
environment with economical timesharing; RSX-11 M provides a multi
user on-line environment with data collection and process control;
DSM-11 (MUMPS) provides the same with data base information sys
tems; and lAS provides a multi-user environment with simultaneous
timesharing, real-time, and batch processing.

Basic concepts pertaining to the structure of these systems are pre
sented in this chapter.

FEATURE TOPICS

• Components and Functions

• Processing Methods

• Data Management

• Data Storage and Transfer Mode

• I/O Devices and Physical Data Access Characteristics

• Physical Device Characteristics

• File Structures and Access Methods

• Directories and Directory Access Techniques

• File Protection/File Naming

• User Interfaces
- Special Terminal Commands
- I/O Commands
- Monitor and Command Language Commands

• System Utilities

• Operating System Comparative Chart

9

OPERA TlNG SYSTEMS

INTRODUCTION
Operating systems have two basic functions: they provide services for
application program development and act as an environment in which
application programs run. The character that an operating system
has, that is, the services and environment it supplies, is appropriate
only for a certain range of program development and application re
quirements, in order to serve selected needs effiCiently. Operating
systems for the PDP-11 family of computers, however, share many
similar program development techniques and processing environ
ments.

COMPONENTS AND FUNCTIONS
An operating system is a collection of programs that organizes a set of
hardware devices into a working unit that people can use. Figure 2-1
illustrates the relationship between users, the operating system, and
the hardware. PDP-11 operating systems basically consist of two sets
of software: the monitor (or executive) software and the system utili
ties.

~------------------,

APPLICATION
PROGRAMS HARDWARE

L __________________ ~

Figure 2-1 Computer System

An operating system monitor is an integrated set of routines that acts
as the primary interface between the hardware and a program running
on the system, and between the hardware and the people who use the
system. The monitor's basic functions can be divided among the rou
tines that provide the following services:

• device and data management

• user interface

• programmed processing services

• memory allocation

• processor time allocation

In general, a monitor can have two distinct operating components: a
permanently resident portion and a transient portion. When a monitor

10

OPERA T1NG SYSTEMS

is loaded into memory and started, all of the monitor is resident in
memory. Its first duty is to interface with the operator running the
system. The monitor simply waits until an operator requests some
service, and then performs that service. In general, these services
include loading and starting programs, controlling program execution,
modifying or retrieving system information, and setting system param
eters. In most systems, these functions are serviced by transient
portions of the monitor.

In some cases, when the monitor initiates another program's execu
tion, the transient portion of the monitor can be over-written by the
loaded program or swapped out. The permanently resident portion
remains in memory to act on requests from the program. These gener
ally include I/O services such as file management, device dependent
operations, blocking and unblocking data, allocating storage space,
and managing memory areas. In large systems, these services might
also include inter-task communication and coordination, memory pro
tection and parity checking, and task execution scheduling.

The dividing line between permanently resident and transient portions
of the monitor, however, is not strictly based on user-interface func
tions and program-interface functions. In some systems, special mon
itor routines that service either the operator or programs might be
stored on the system device, and are called into memory only as
needed. The concern for space in small systems usually determines
what portions of the monitor are resident at any time. The programmer
or operator can control the size of the monitor, based on the needs for
memory.

In some cases, the user can adjust the size of the monitor by
eliminating features that are not needed in an application environ
ment. RSTS/E, RSX-11 M, and RSX-11 S are examples of such sys
tems. The RSX-11 S system's monitor (called an executive) is always
permanently resident when the system is operating. In this case, the
user concerned with size can eliminate routines that perform unneed
ed operations. In general, however, all PDP-11 operating systems are
designed to be flexible enough to operate in a relatively wide range of
hardware environments.

System utilities are the individual programs that are run under control
of the monitor to perform useful system-level operations such as
source program assembly or compilation, object program linking, and
file management.

System utility programs enhance the capabilities of an operating sys
tem by providing users with commonly performed general services.
There are three classes of system utilities: those used solely or primar-

11

OPERA TlNG SYSTEMS

ily for program development, those used for file management, and
those used to perform special system management functions.

Program development utilities include text editors, assemblers and
compilers, linkers, program librarians, and debuggers. File manage
ment utilities include file copy, transfer, and deletion programs, file
format translators, and media verification and clean-up programs.
System management utilities vary from system to system, depending
on the purpose and functions the system serves. Some examples are
system information programs, user accounting programs, and error
logging and on-line diagnostic programs.

PROCESSING METHODS
The basic distinctions among operating systems are in the processing
methods they use to execute programs. The distinctions to be dis
cussed here are:

• single-user vs. multi-user

• single-job vs. foreground/background

• foreground/background vs. muiti-programmming

• timesharing vs. event-driven multi-programming

A single-user operating system views demands upon its resources as
emanating from a single source. It has only to manage the resources
based on these demands. As a result, these systems do not require
account numbers to access the system or data files. RT -11 is a single
user operating system.

A multi-user operating system receives demands for its resources
from many different individuals. The system must manage its re
sources based on these demands. For example, several users may
want sole access to the same device at the same time. The system
must control access to these devIces. In addition, the individuals may
be using the system for different purposes, implying that some privacy
must be maintained. As an effect, a multi-user system normally has an
account system to manage different user's files. The lAS, RSTS/E, and
RSX-11 M systems are all multi-user systems, and all provide device
allocation control and file accounts. In the case of the lAS, RSTS/E
and systems, the file account structure is also used to keep track of the
amounts of system resources an individual uses. Furthermore, the
RSTS/E system extends privacy by protecting individual users at a
system level from the effects of any other users of the system.

An RT -11 system can operate in two modes: as a single-job system, or
as a foreground/background system. In a foreground/background
system, memory for user programs is divided into two separate re-

12

OPERA T/NG SYSTEMS

gions. The foreground region is occupied by a program requiring fast
response to its demands and priority on all resources while it is pro
cessing; for example, a real-time application program. The back
ground region is available for a low-priority, preemptable program; for
example, a compiler.

Two independent programs, therefore, can reside in memory, one in
the foreground region and one in the background region. The fore
ground program is given priority and executes until it relinquishes
control to the background program. The background program is al
lowed to execute until the foreground program again requires control.
The two programs effectively share the resources of the system. When
the foreground program is idle, the system does not go unused. Yet,
when the foreground program requires service, it is immediately ready
to execute. I/O operations are processed independently of the
requesting job to ensure that the processor is used efficiently as well
as to enable fast response to all I/O interrupts.

The basis of foreground/background processing is the sharing of a
system's resources between two tasks. An extension of fore
ground/background processing is multiprogramming .. In multipro
grammed processing, many jobs, instead of only two, compete for the
system's resources. While it is still true that only one program can
have control of the CPU at a time, concurrent execution of several
tasks is achieved because other system resources, particularly I/O
device operations, can execute in parallel. While one task is waiting for
an 1/0 operation to complete, for example, another task can have
control of the CPU.

The RSX-11 family of operating systems employs multi programmed
processing based on a priority-ordered queue of programs demand
ing system resources. In this case, memory is divided into several
regions called partitions, and all tasks loaded in the partitions can
execute in parallel. Program execution, as in the RT -11 fore
ground/background system, is event-driven. That is, a program re
tains control of the CPU until it declares a significant event-normally
meaning that it can no longer run, either because it has finished
processing, or because it is waiting for another operation to occur.
When a significant event is declared, the RSX-11 executive gives con
trol of the CPU to the highest priority task ready to execute. Further
more, a high-priority task can interrupt a lower-priority task if it re
quires immediate service.

The RSTS/E and MU MPS-11 systems also perform concurrent execu
tion of many independent jobs. RSTS/E and MUMPS-ii, however,
process jobs on a timesharing rather than an event-driven basis, since

13

OPERA TlNG SYSTEMS

this is best suited for an interactive processing environment. Each job
is guaranteed a certain amount of CPU time (a time slice), and jobs
receive time one after another, in a round-robin fashion based on job
priority levels set by the system. The system itself manages timeshar
ing processing to obtain the best overall response depending
generally on whether jobs are compute-bound or If a-bound. The sys
tem manager or privileged users can also specify the minimum guar
anteed time for a particular job when it gets service, as well as mOdify
ing its priority.

The lAS system effectively combines event-driven and timeshared
processing in order to handle both real-time processing needs and
interactive timesharing needs. In lAS, If a tasks and any user-desig
nated real-time tasks are assigned high priorities and receive service
on an event-driven basis. All other tasks run at lower priorities on a
timeshared basis, using any CPU time remaining after real-time, high
priority tasks have been serviced.

DATA MANAGEMENT
Digital computers deal with binary information only. The way in which
people interpret and manipulate the binary information is called data
management.

This section describes PDP-11 software data management structures
and techniques, from the physical storage and transfer level to the
logical organization and processing level. This includes:

• ASCII and binary storage f9rmats - how binary data can be in
terpreted

• physical and logical data structures - the difference between how
data storage devices operate and how people use them

• file structures - how physical units of data are logically organized
for easy reference

• file directories - how files are located and retrieved

• file protection - how files are protected from unauthorized users

• file naming conventions - how files are identified

Physical and Logical Units of Data
Physical units of data are the elements which digital computer devices
use to store, transfer and retrieve binary information. A bit (binary
digit) is the smallest unit of data that computer systems handle. An
example of a bit is the magnetic core used in some processor memo
ries that is polarized in one direction to represent the binary number 0
and in the opposite direction to represent the binary number 1.

14

OPERA TlNG SYSTEMS

In PDP-11 computers, a byte is the smallest memory-addressable unit
of data. A byte consists of eight binary bits. An ASCII character code
can be stored in one byte. Two bytes constitute a 16-bit word. A word
is the largest memory-addressable unit of data. Some machine in
structions are stored in one word.

The smallest unit of data that an 1/0 peripheral device can transfer is
called its physical record. The size of a physical record is usually fixed
and depends on the type of device being referenced. For example, a
card reader can read and transfer 80 bytes of information, stored on
an 80-column punched card. The card reader's physical record length
is 80 bytes.

A block is the name for the physical record of a mass storage device
such as disk, DECtape or magnetic tape. An RK05 disk block consists
of 512 contiguous bytes. Its physical record length is 512 bytes.

Physical blocks can be grouped into a collection called a device or a
physical volume. This collection generally has a size equal to the ca
pacity of the device medium. The term physical volume is generally
used with removable media, such as disk packs or magnetic tape.

Logical units of data are the elements manipulated by people and user
programs to store, transfer and retrieve information. The information
has logical characteristics, for example, data type (alphabetic, deci
mal, etc.) and size. The logical characteristics are not device
dependent; they are determined by the people using the system.

A field is the smallest logical unit of data. For example, the field on a
punched card used to contain a person's name is a logical unit of data.
It can have any length determined arbitrarily by the programmer who
defines the field.

A logical record is a collection of fields treated as a unit. It can contain
any logically related information, in anyone of several data types, anC!
it can be any user-determined length. Its characteristics are not device
dependent, but can be physically defined. For example, a logical rec
ord can occupy several blocks, or it can reside in a single block, or
several logical records can reside in a single block. Its characteristics
are determined by the programmer.

A file is a logical collection of data that occupies one or more blocks on
a mass storage device such as a disk, DECtape or magnetic tape. A
file is a system-recognized logical unit of data. Its characteristics can
be determined by the system or the programmer.

A file can be a collection of logical records treated as a unit. An exam
ple is a employee file which contains one logical record in the file for
each employee. Each record contains an employee's name and ad-

15

OPERA TlNG SYSTEMS

dress and other pertinent information. If the logical record length is 50
bytes and there are 200 employees, the complete employee file could
be stored in 20 512-byte blocks. Depending on the file structure used
in the system, the blocks could be scattered over the disk, or could be
located one after the other.

A logical volume is a collection of files that reside on a single disk or
DECtape. It is the logical equivalent of a physical device unit (a physi
cal volume) consisting of physical records, such as a disk pack. The
files on a volume may have no specific relationship other than their
residence on the same magnetic medium. In some cases, however,
the files on a volume may all belong to the same user of the system.

Figure 2-2 illustrates some of the kinds of physical and logical units of
data that PDP-11 computer systems handle.

PHYSICAL UNITS OF DATA

8 OR ~ BIT

ON OFF
SET NOT SET

I I I I I I I ByrE
8-BITS 7 6 5 4 3 2 1 0

16 I I I I I I I I I I I I I I I I I WORD

BITS

HIGH-ORDER ByrE lOW-ORDER BYTE

F!4D PHYSICAL
RECORD

e.g. A DISK BLOCK
: 256 WORDS
: (512 BYTES)

225

~", vOlUME

8 1·· A
DISK G. PHYSICAL

..... a

LOGICAL UNITS OF DATA

JONES fiElD

JONES I J I 122-76-5931 I ~~~6~~L
'-----...----J'-----'~

FIELD fiELD fJELD

LOGICAL
RECORDS

1 JONES

CHAO
BEAN

J

M

5

122-76-5931

224-62-1892
298-67-1976

:

i

riLE

,--------------, LOGICAL
FilE ABC OAT VOLUME

FILE XFER. FOR

FILE SYS. AV

FilE XFER OBJ

Figure 2-2 Physical and Logical Data Storage

16

OPERA TING SYSTEMS

Data Storage and Transfer Modes
All PDP-11 operating systems use two basic methods of data storage:
ASCII and binary. Data stored in ASCII format conform to the Ameri
can National Standard Code for Information Interchange, in which
each character is represented by a 7-bit code. The 7-bit code
occupies the low-order seven bits of an 8-bit byte. Depending on the
operating system's storage techniques, the high-order bit may be
used for parity checking and special formatting, or it may be ignored.
Text files such as source programs are examples of data stored in
ASCII format.

Binary storage always uses all eight bits of a byte to store information.
The significance of any bit varies depending on the kind of information
to be stored. Machine instructions, 2's complement integer data, and
floating pOint numeric data are some examples of data stored in bina
ry format.

Figure 2-3 illustrates the way in which binary data can be interpreted
as either ASCII data or machine instructions. The figure shows two
examples of a word of storage containing the same sequence of bits,
interpreted first as two ASCII characters and second as a machine
instruction. When a word of storage is interpreted as two ASCII char
acters, the binary digits are grouped into octal digits in a bytewise
manner. Each byte is grouped into three octal digits. The low-order
two octal digits contain three binary digits. The high-order octal digit
contains two binary digits. When a word of storage is interpreted as a
machine instruction, the binary digits are grouped into six octal digits
in a wordwise manner. Proceeding from the low-order binary digit,
each group of three binary digits is interpreted as an octal digit. The
single remaining high-order binary digit is interpreted as an octal digit.

17

DATA

• III • 15 7
I I

15

INSTRUCTION
(SINGLE OPERAND)

I I I I I I I 1 I J
6 5 3 2 0

t '- -;-BIT ASCII CODE) f L 7-BITASCII CODE

LpARITY BIT

'--------~ -------!~ ~

LPARITY BIT

OP CODE MODE REGISTER

SAME
/ BIT '--

~~~==~~=I=N;TE=R=PR~ET=E~D==A~S=TW=O~B=Y~TE=S=;==~~~==~'~FPATTER~N=="T==r==r=~~==INTT=ER=P~RE=TE~D~A=S~A==W~O=R=DT==r==r==r~==l 
1 0 I 0 I 0 I 0 11 I 0 11 I 0 1 0 11 I 0 I 0 I 0 I 0 11 11 r II 0 I 0 I 0 I 0 11 I 0 11 I 0 I 0 11 1 0 I 0 I 0 I 0 11 11 11 

~~~~~~ 
OCTAL 0 1 2 1 0 3 OCTAL a

----------~--------I ,~ ________ _
HIGH-ORDER BYTE
LF (LINE FEED)

LOW-ORDER BYTE
C (UPPER CASE C)

SAME
/' BIT

OP CODE
COMPLEMENT

INSTRUCTION: COM R3

MODE
DIRECT

REGISTER
3

, PATTERN"'...

Ir-0---'--1-0 -'-1 0-,1-0,-1 ----'1 1-0'--1-1 '-1 0--'-1-0 -'--1 0-'1-0 '-1 0----,1-1,--1-1 '-1 0'--1 ~1 II r-O~I-O -'--1 0-,1-0 -.-: ----'1 1-0'--1-1 '-1 0'--1-0 '-1 O-YI-O -'-1 0-'1-1---'1 ---'1 1'----0'--1------'1 I
~~~~~~ 

OCTAL 0 1 2 0 1 5 OCTAL 0 __________ __----! , I 

HIGH-ORDER BYTE 
CR (CARRIAGE RETURN) 

LOW-ORDER BYTE 
LF (LINE FEED) 

Figure 2-3 ASCII and Binary Storage 

OP CODE 
CLEAR 

MODE 
DEFFERED 

INSTRUCTION: CLR @> 5 

REGISTER 
5 



OPERA TlNG SYSTEMS 

In large, sophisticated systems such as RSTS/E, RSX-11, and lAS, the 
way in which data are stored on the byte or bit level is rarely a concern 
of the application programmer. The operating system handles all data 
storage and transfer operations. I n smaller systems such as RT -11, the 
programmer can become involved in data storage formats. A particu
lar application may require the selection of a particular storage format. 

The data storage format is related to the way in which data are trans
ferred in an liD operation. 

Formatting can also be applied at a higher level to define the type of 
data file being processed. In the RT -11 system, there are four types of 
binary files; each type signifies that a special interpretation applies to 
the kind of binary data stored. For example, a memory image file is an 
exact picture of what memory will look like when the file is loaded to be 
executed. A relocatable image file, however, is an executable program 
image whose instructions have been linked as if the base address 
were zero. When the file is loaded for execution, the system has to 
change all the instructions according to the offset from base address 
zero. 

I/O Devices and Physical Data Access Characteristics 
In a PDP-11 computer system, data moves from external storage de
vices into memory, from memory into the CPU registers, and out 
again. The window from external devices to memory and the CPU is 
called the liD page. Each external liD device in a computing system 
has an external page address assigned to it. Figure 2-4 illustrates the 
data movement path in a PDP-11 computing system. 

19 



OPERA TlNG SYSTEMS 

PHYSICAL ORGANIZATION 

FROM THE PROGRAM'S VIEWPOINT 

110 PAGE 

. . MAIN 
MEMORY 

VECTORS 

Figure 2-4 Memory and I/O Devices 

Although all external devices transmit and receive data through the 
UNIBUS, devices differ in their ability to store, retrieve or transfer data. 
Almost all PDP-11 operating systems provide device independence 
between devices that have similar characteristics and, where possible, 
between differing devices in situations where the data manipulation 
operations are functionally identical. Primarily, PDP-11 operating sys
tems differentiate between: 

• file-structured and non-file-structured devices 

• block-replaceable and non-block-replaceable devices 

Terminals, card readers, paper tape readers, paper tape punches and 
line printers are examples of devices that do not provide any means to 
store or retrieve physical records selectively. They can transfer data 
only in the sequence in which they occur physically. 

In contrast, mass storage devices such as disk, DECtape, floppy disk, 
magnetic tape and cassette have the ability to store and retrieve physi
cal records selectively. For example, an operating system can select a 
file from among many logical collections of data stored on the medi
um. 

20 



OPERA T1NG SYSTEMS 

Mass storage devices are called file-structured devices since a file, 
consisting of a group of physical records, can be stored on and re
trieved from the device. Terminals, card readers, paper tape read
ers/punches and line printers are called non-file structured devices 
because they do not have the ability selectively to read or write the 
physical records constituting a file. 

Finally, mass storage devices differ in their ability to read and write 
physical records. Disk and DECtape devices are block-replaceable 
devices because a given block can be read or written without 
accessing or disturbing all the other blocks on the medium. Magnetic 
tape and cassette are not block-replaceable devices. 

A device's physical data access characteristics determine which data 
transfer methods are possible for that device. Non-file structured de
vices allow sequential read or write operations only. Non-block re
placeable devices allow sequential or random read operations, but 
allow sequential write operations only. Block-replaceable devices al
low both sequential and random read or write operations. Figure 2-5 
summarizes the read/write capabilities of each category of I/O device. 

21 



OPERA TlNG SYSTEMS 

~"" ,I. ' 
:'','. 

CARDS PAPER TAPE 

SEQUENTIAL READ OR WRITE ONLY 

NON- FILE -STRUCTURED 
FILE-STRUCTURED 

MAGNETIC TAPE AND CASSETTE 

READ AND WRITE SEQUENTIAL 

NON- BLOCK REPLACEABLE 
-auJCKREPLACEABU: --- --- ------ --- --- --- --- --- --- --- ----

COl m-l 
aOOOOOOD 

DECTAPE DI SK 

~-------------------~--------------------------~ 
READ & WRITE SEQUENTIAL OR RANDOM 

22 



OPERA TlNG SYSTEMS 

File Protection 
Master File and User File Directories form the basis for file access 
protection in multi-user systems. Unauthorized users cannot access a 
file unless they know the account under which it is stored and can 
obtain access to that account. Account systems and file access pro
tection techniques are related. 

Multi-user systems identify the individuals who use the system by 
account numbers called User Identification Codes (UIC). The system 
manager normally gives a user an account number under which the 
user can log in to the system and obtain access to its services. In 
general, a UIC consists of two numbers: the first number is used to 
identify a group of users, the second number is used to uniquely 
identify an individual user in the group. 

In RSTS/E systems, an individual file can be protected against read 
access or write access where distinctions are made on the basis of the 
UIC account number under which a file is stored. For example, a file 
can be read protected against all users who are not in the same ac
count group and write protected against all users except the owner. 

The RSX-11 liAS file system provides a protection scheme for both 
volumes and files. It is possible to specify protection attributes for an 
entire volume as well as for the files in the volume. A file or an entire 
volume can be read-, write-, extend- or delete-protected. Distinctions 
are made on the basis of account number, where the system recog
nizes four groups of users: privileged system users, owner, owner's 
group, and all others. 

File Naming 
The most common way users communicate their desire to process 
data is through file specifications. A file specification uniquely identi
fies and locates any logical collection of data which is on-line to a 
computer system. 

A compiler, for example, needs to know the name and location of the 
source program file that it is to compile; it also needs to know the 
name that the user wants to use for the output object program and 
listing files it produces. Most PDP-11 operating systems share the 
same basic format for input and output file specifications. 

In the RT -11 system, a file specification consists of the name of the 
device on which the file resides, a file name, and a file name extension 
in the following format: 

dev:filnam.ext 

The colon is part of the device name, separating it from the file name 

23 



OPERA TlNG SYSTEMS 

on the right. The period is part of the file name extension, separating it 
from the file name on the left. 

PDP-11 operating systems use the same device names for the devices 
they can access. A device name consists of a two-letter mnemonic 
and, for multiple devices of the same kind, a one-digit number indicat
ing the device unit number. For example, the name "DK1:" is used to 
identify the RK11 disk drive unit number 1. The name "DPO:" identifies 
the RP11 disk drive unit number O. 

In the RT -11 system, a file name is a 1- to 6-character alphanumeric 
name designated by the user. For example, "SYMBOL", "RL 12", and 
"NORT 4" are examples of file names. In the RSTS/E and RSX-11 M 
systems, a file name can be up to nine characters long. 

A file name extension is a 1- to 3-character alphanumeric name 
preceeded by a period. The extension can either be assigned by the 
user or, if unspecified, assigned by the system. The extension general
ly indicates the format of a file. System-assigned and recognized ex
tensions make it easy for the user and the system to distinguish 
between different forms of a file. For example, a file having the exten
sion ".FOR" is recognized by the FORTRAN compiler as a source 
program written in FORTRAN. A file with the extension ".OBJ" is re
cognized by the Linker as an object program, a legal input file. When 
in the process of compiling and linking a FORTRAN program, the user 
has only to specify a file name to the compiler and Linker. The 
FORTRAN compiler will compile the file whose extension is ".FOR" 
and produce a file with the same file name whose extension is ".OBJ". 
The Linker will link the file whose extension is ".OBJ". 

In multi-user systems such as RSTS/E and RSX-11 M, a distinction 
must be made between files stored under various accounts on a de
vice. Two different users can have a file named "REFER.OBJ" on a 
disk. In these systems, therefore, a file specification has an additional 
component to identify the user file directory or account under which 
the file is stored. The basiC file specification is expanded to use the 
following format: 

dev:[ufd]filnam.ext 

The account number or user file directory is always enclosed in brack
ets. It consists of the project or group number followed by a comma 
and a programmer or user number. For example, "[12,4]" is an exam
ple of an account or user file directory. 

RSTS/E systems also include a protection code as part of the file 
speCification, to indicate the protection that the file receives. A com
plete RSTS/E file specification could be: 

24 



OPERA TlNG SYSTEMS 

DK1 :[200,21 O]BINFOR.DAT <60> 

RSX-11 systems extend the basic file specification format by adding a 
version number identification after the file name extension. For exam
ple, when a file is first created using the editor, it is assigned a version 
number of 1. If the file is subsequently opened for editing, the editor 
keeps the first version for backup and creates a new file using the 
same file specification, but with a version number of 2. A complete 
RSX-11 file specification could be: 

DPO:[15,7]PREPT.MAC;1 

I n most cases, the user does not have to issue a complete file 
specification. The PDP-11 operating systems use default values when 
a portion of a file specification is not supplied. The file name extension 
defaults, as indicated previously, depend on the kind of operation 
being performed. 

The device name, if omitted, is normally assumed to be the system 
device. For example, the file specification "FILE.DA T" is equivalent to 
the specification "DKO:FILE.DA T", if the system device is RK11 drive 
unit o. Most systems also allow the user to omit the unit number. If 
omitted, the unit number is assumed to be unit number O. For exam
ple, DT: is equivalent to DTO:; it signifies DECtape drive unit O. 

If the account number is omitted from the file specification, the system 
assumes that it is the same as the UIC under which the user logged in 
or under which the operation is being performed. For example; if the 
user logged in under UIC 200,200 and issues a file specification "DK3: 
SAMPL.DAT", it is interpreted as "DK3:[200,200]SAMPL.DAT". 

If the version number is omitted from an RSX-11 liAS file specification, 
the system assumes that the file specification refers to the latest ver
sion of the file. 

For references to file-structured devices, a file specification must in
clude a file name. The device mnemonics, however, are also used to 
refer to non-file structured devices. In this case, a file name is irrele
vant. For example, an operation to read through a deck of cards and 
print the information on a line printer is issued in most systems as 
follows: 

#LP:=CR: 

The # indicates that an input/output command is being issued; it is 
printed on the terminal by the program that requests the 110 com
mand. The user types the command LP:=CR:. The = separates the 
input file specification on the right from the output file specification on 
the left. The device name LP: signifies that the line printer is to be used 
as the output device, and the device name CR: signifies that the card 

25 



OPERA TlNG SYSTEMS 

reader is to be used as the input device. A file name, if used, would be 
ignored, since the system can not symbolically reference data on non
file structured devices. 

I n addition to relying on defaults in the file specification, the user can 
also put an asterisk in place of a file name, file name extension, 
account number, or version number to indicate a class of files. The 
asterisk convention, also called the wildcard convention, is commonly 
used in PDP-11 operating systems when performing the same opera
tion on related files. For example, the file specification DP1: 
[2, 1]PROG. * refers to all files on DP1: under account [2,1] with a file 
name PROG and any extension. The file specification DK:[*,* 
]FILE.SAV refers to the files under all accounts on RK11 drive unit 0 
named FILE.SAV. The file specification DT:*.OBJ refers to all files on 
the DECtape mounted on drive unit 0 that have the extension .OBJ. 

USER INTERFACES 
A user interface refers to both the software that passes information 
between an operator and a system and the language that a system and 
an operator use to communicate. In the latter sense, a user interface 
consists of commands and messages. Commands are the instructions 
that the user types on a terminal keyboard (or gives to a batch proces
sor) to tell the system what to do. Messages are the text that a system 
prints on a terminal (or line printer) that tells the operator what is going 
on; for example, prompting messages, announcements and error 
messages. This section discusses commands, the portion of the user 
interface that tells the system what to do, and prompting messages, 
the messages the system prints wher. it is ready to receive commands. 

There are basically four types of commands used in PDP-11 operating 
systems: 

• monitor or command language commands - used to request ser
vices from the system as a whole 

• 1/0 commands - used to direct any kind of 1/0 operation (often a 
part of monitor commands) 

• special terminal commands - these use keys on a terminal for 
special functions 

• system program commands - commands used in system pro
grams that perform operations relevant only for the individual pro
gram 

Since system program commands are relevant only for individual sys
tem programs, and not for operating systems in general, this section 
discusses monitor and command language commands, 1/0 com
mands and special terminal commands only. 

26 



OPERATING SYSTEMS 

Special Terminal Commands 
Special terminal commands are a set of keys or key combinations 
that, when typed on a terminal, are used to perform special functions. 
For example, a user normally types the carriage return key at the end 
of an input command string to send the command to the system, 
which responds immediately by performing a carriage return and line 
feed on the terminal. The key labeled RUBOUT or DELETE is used to 
delete the last character typed on the input line. 

The most significant special terminal commands are those used with 
the key labeled CTRL (control). When the CTRL key is held down (like 
the shift key) and another key is typed, a control character is sent to 
the system to indicate that an operation is to be performed. 

For example, a line currently being entered (whether as part of a 
command or as text) will be ignored by the system by typing a CTRLlU 
combination (produced by holding down the CTRL key and typing a U 
key). The user can then enter a new input line. The CTRLlU function is 
the same as typing successive RUBOUT keys to the beginning of a 
line. CTRLlU is standard on PDP-11 operating systems. 

Another example is the CTRLlO function. If, during the printing of a 
long message or a listing on the terminal, the user types a CTRLlO, the 
teleprinter output will stop. The program printing the output, however, 
will still continue. The user can type a CTRLlO again to resume output. 
CTRLlO is a standard function on PDP-11 operating systems. 

Physical Device Characteristics 
and Logical Data Organizations 
One of the most important services an operating system provides is 
the mapping of physical device characteristics into logical data or
ganizations. Users do not have to write the software needed to handle 
input and output to all standard peripheral devices, since appropriate 
routines are supplied with the operating system. 

There are generally two sets of routines provided in any operating 
system, depending on its complexity: 

• device drivers or handlers 

• file management services 

Device drivers and handlers can perform the following operations to 
relieve the user of the burden of 1/0 services, file management, over
lapping 1/0 considerations and device dependence: 

• drive 1/0 devices 

• provide device independence 

• block and unblock data records for devices, if necessary 

27 



OPERATING SYSTEMS 

• allocate or deallocate storage space on the device 

• manage memory buffers 

These routines may exist in the system as part of the monitor or execu
tive, as in RT -11, MU MPS-11, RSTS/E, RSX-11 M or RSX-11 S, or they 
may be provided as separate tasks, as in lAS. 

An operating system can also provide a uniform set of file manage
ment services. For example, the RT-11 system provides file manage
ment services through the part of the monitor calted the User Service 
Routine (USR). The User Service Routine provides support for the RT-
11 file structure. USR loads device handlers, opens files for read/write 
operations, and closes, deletes and renames files. 

In summary, an operating system maps physical device 
characteristics into logical file organizations by providing routines to 
drive I/O devices and to interface with user programs. Figure 2-6 
illustrates the transition between the user interface routines and the 
I/O devices. 

USER INTERFACE 

OPERATING SYSTEM 

HARDWARE INTERFACES 

Figure 2-6 Device Control and File Management Services 

As an example of the mapping of physical characteristics into logical 
organizations, the RSX-11 and lAS systems' device drivers and 
handlers and file management services allow the user application pro
gram to treat all file-structured devices in the same manner. All of 
these devices appear to the user program to be organized into files 
consisting of consecutive 512-byte blocks which are numbered start-

28 



OPERA TlNG SYSTEMS 

ing from block one of the file to the last block of the file. In reality, the 
blocks may be scattered over the device and, in some cases, the 
device's actual physical record length may not be 512 bytes. 

In RSX-11IIAS terminology, the actual physical records on the device 
(for example, the sectors on a disk) are called physical blocks. At the 
device driver or handler level, the system maps these physical blocks 
into logical blocks. Logical blocks are numbered in the same relative 
way that physical blocks are numbered, starting sequentially at block 
zero as the first block on the device to the last block on the device. At 
the user interface level, the operating system maps logical blocks into 
virtual blocks. Virtual block numbers become file relative values, while 
logical block numbers are volume relative values. 

Figure 2-7 illustrates the mapping between physical, logical and virtual 
blocks in RSX-11 and lAS systems. The figure shows two disk device 
types which have different physical record lengths. In this case, the 
blocks constituting a file are scattered over the disk. The file is a total 
of 5 blocks long. At the logical block level, the operating system views 
the file as a set of non-contiguous blocks. At the virtual block level,the 
user software views the file as a set of contiguous, sequentially num
bered blocks. 

SYSTEM SOFTWARE USER LEVEL SOFTWARE 

5 PHYSICAL BLOCKS r-;;;BLO=CK'-;;2"'"9 -, 5 LOGICAL BLOCK 0 12 BYTES/BLOCK~ 512 BYTES/BLOCK 
\\ __________ --"' BLOCK 30 

Tf~~~ f"I \1 \) BLOCK 31 <:~== 
U BLOCK 32 

~ =:;)!J !) BLOCK 33 

S BLOCK 1 5 
51 

BLOCK 2 

> BLOCK 3 
BLOCK 4 

BLOCK 5 

VIRTUAL BLOCKS 
2 BYTES/BLOCK 

BLOCK 1 
S VIRTUAL BLOCKS 
512 BYTES/BLOCK 

DISK 
TYPE 2 

BLOCK 30 

BLOCK 31 <:~=:::::::::> 
BLOCK 32 

BLOCK 33 

BLOCK 2 

BLOCK 3 
BLOCK 4 

BLOCK 5 

Figure 2-7 Physical, Logical and Virtual Blocks 

File Structures and Access Methods 
A file structure is a method of organizing logical records into files. It 
describes the relative physical locations of the blocks constituting a 
file. The file structure or structures that a particular operating system 
employs is a product of the way in which the system views the particu
lar liD devices and the kinds of data processing requirements the 
system fulfills. 

29 



OPERA TlNG SYSTEMS 

File structure is important because a file can be effective in an applica
tion only if it meets specific requirements involving: 

SIZE Growth of the file may require a change in the file 
structure or repositioning of the file. 

ACTIVITY 

VOLATILITY 

The need to access many different records in a file or 
frequently access the same file influences data 
retrieval efficiency. 

The number of additions or deletions made to a file 
may affect the access efficiency. 

An access method is a set of rules for selecting logical records from a 
file. The simplest access method is sequential: each record is pro
cessed in the order in which it appears. Another common access 
method is direct access: any record can be named for the access. The 
non-block replaceable devices, such as paper tape and magnetic 
tape, can only be processed sequentially. The block-replaceable de
vices, such as disk and DECtape, can be processed by either access 
method, but direct access takes greatest advantage of the device 
characteristics. 

PDP-11 operating systems provide a variety of file structures and ac
cess methods appropriate to their processing services. All PDP-11 file 
structures are, however, based on some form of the following basic file 
structures: 

FILE STRUCTURE 

Linked 
Contiguous 
Mapped 

ACCESS METHODS 

Sequential 
Sequential or Direct Access 
Sequential or Direct Access 

Linked files are a self-expanding series of blocks which are not physi
cally adjacent to one another on the device. The operating system 
records data blocks for a linked file by skipping several blocks 
between each recording. The system then has enough time to process 
one block while the medium moves to the next block to be used for 
recording. In order to connect the blocks, each block contains a point
er to the next block of the file. Figure 2-8 shows the format of a linked 
file. 

30 



OPERA TlNG SYSTEMS 

i[iIRECTCiRY-ENrRY~ 
: (4 BLOCKS FROMr--, 
, #1046) I I 
L _________ ..J : 

START 1052 ---1 BLOCK # 1046: ~ 
DATA I 

1 
1 
1 
1 

BLOCK #1052: ~060--....• ~ 
DATA I 

1 
1 
1 

",0" #>OW, [~r: 
DATA : 

1 
1 

I 

,we, "'''', E:r·' FINISH 

:DiRECTORY ENTRY:; 
1(6 BLOCKS FROM ~- --, 
: #7352) J : L_________ I 

• BLOCK #7352: 

DATA 

BLOCK # 7353: 

DATA 

BLOCK # 7354: 

DATA 

BLOCK # 7355: 

DATA 

BLOCK #7356 

DATA 

BLOCK #7357 

DATA 

Figure 2-8 Linked and Contiguous File Structures 

Linked file structure is especially suited for sequential processing 
where the final size of the file is not known. It readily allows later 
extension, since the user can add more blocks in the same way the file 
was created. In this way, linked files make efficient use of storage 
space. Linked files can also be joined together easily. 

The blocks of contiguous files are physically adjacent on the recording 
medium. This format is especially suited for random (direct access) 
processing, since the order of the blocks is not relevant to the order in 
which the data is processed. The system can readily determine the 
physical location of a block without reference to any other blocks in 
the file. Figure 2-8 also shows the format of a contiguous file. 

Mapped files are virtually contiguous files; they appear to the user 
program to be directly addressable sets of adjacent blocks. The files 
may not, however, actually occupy physically contiguous blocks on the 
device. The blocks can be scattered anywhere on the device. Separate 
information, called a file header block, is maintained to identify all the 

31 



OPERA TlNG SYSTEMS 

blocks constituting a file. This method provides an efficient use of 
storage space and allows files to be extended easily, while still main
taining a uniform program interface. Figure 2-9 illustrates a mapped 
file format. 

DATA 
LOGICAL AREA 1 

BLOCK VIRTUAL 

FILE HEADER BLOCU 

FILE 1.D 

DATA AREA PTR 1 

#221 BLOCK 
#1 

#222 #2 

DATA AREA PTR 2 f--
DATA AREA PTR 3 f-- #223 #3 

#224 #4 

#225 #5 

DATA 
LOGICAL AREA 2 
BLOCK VIRTUAL 
#172 BLOCK 

#6 

#173 #7 

#174 #8 

DATA 
LOGICAL AREA 3 
BLOCK 

#450 

Figure 2-9 Mapped File Structure (Non-Contiguous File) 

If desired, a mapped file can be created as a contiguous file to ensure 
the fastest random accessing, in which case it is both virtually and 
physically contiguous. 

The basic file structures discussed above can be modified or com
bined to extend the features of each type for special-purpose logical 
processing methods. Some examples are indexed files and global 
array files. 

Indexed files are actually two contiguous files. One file acts as an 
ordered map of a second file containing the target data. The index 
portion or map contains either an ordered list of key data selected 
from the target data records or pOinters to data records in the second 

32 



OPERA TlNG SYSTEMS 

file, or both. The target data records can be processed in the order of 
the index portion, or the target data records can be selected by 
searching through the index portion for the key data identifying the 
records. These methods of logically processing the target data are 
called indexed sequential access and random access by key, respec
tively. 

Global DSM-11 (MUMPS) array files display a special form of linked 
file structure. The arrays themselves are a logical tree-structured or
ganization consisting of one or more subscripted levels of elements. 
All elements on a particular subscripting level are stored in a single 
chain of linked blocks. At the end of each block in the chain is a 
pointer to the next block in the chain. The levels of the array (all the 
block chains) are linked together through pointers in the first block of 
each chain. This file structure ensures that the time it takes to access 
any element of the array is minimal. 

Directories and Directory Access Techniques 
Just as file structure and access methods are required to locate rec
ords within files, directory structures and directory access techniques 
are required to locate files within volumes. 

A directory is a system-maintained structure used to organize a vol
ume into files. It allows the user to locate files without specifying the 
physical addresses of the files. It is a direct access method applied to 
the volume to locate files. 

RT -11 supports the simplest kind of file directory. When disk and tape 
media are initialized for use, the system creates a directory on the 
device. Each time a file is created, an entry is made in the directory 
that identifies the name of the file, its location on the device, and its 
length. When access to the file is requested thereafter, the system 
examines the directory to find out where the file is actually located. 
The system can access the file quickly without having to examine the 
entire device. 

In multi-user systems such as RSTS/E, lAS, and RSX-11 M, two differ
ent kinds of directories are used to enable the system to differentiate 
between files belonging to different users. They are the Master File 
Directory and the User File Directories. These directories are 
maintained as files themselves, stored on the volume for which they 
provide a directory. 

A Master File Directory (MFD) is a directory file containing the names 
of all the possible users of a particular device. A User File Directory 
(UFD) is a directory file containing the names of all the files created by 
a particular user on a device. The system first checks the Master File 

33 



OPERA TlNG SYSTEMS 

Directory to locate the User File Directory for the particular user, and 
then checks the User File Directory to locate the file. Figure 2-10 illu
strates the use of the Master and User File Directories. 

FILE LIST 

r---
f------

r----
'--

~G 
f------
f------

UFD TOM 

r 

f------
FILE LIST 

FILE PROG L_ 

FILE MAP ~ 
I I r----
'--

~G 

MASTER I 
FILE f------

DIRECTORY UFD MARY 

UFD TOM FILE PROG L---

UFD MARY FILE DATA ~A 

UFD MIKE FILE OSS ~ 
r-----
'-----

~ 
1=== 
f------

UFD MIKE L---

~L~ ~ 
f------

FILE LOAD f------

'-----

~ 
1=== 

, -

Figure 2-10 Master and User File Directories 

RSTS/E creates an MFD on each disk when it is initialized. On all disks 
except the system disk, the MFD catalogs other user accounts on the 
disk. The MFD on the system disk has a special purpose, since it 
maintains a catalog of the accounts under which users can log in, in 
addition to the user accounts on the disk. A UFD exists on each disk 
for each account under which files are created. A UFD for an account 

34 



OPERA TlNG SYSTEMS 

is not created until a file is created by the user under that account. 
DECtape devices are considered to be single-user devices, and the 
RSTS/E system maintains only a single directory on DECtapes. 

The RSX-11 M and lAS systems also employ MFD and UFD files on file
structured volumes. As with RSTS/E systems, the number of directory 
files required depends on the number of users of the volume. For 
single-user volumes, only an MFD is needed. For multiple-user vol
umes, an MFD and one UFD for each user are required. An MFD is 
automatically created when the volume is initialized for use. A UFO is 
created only by the system manager or priviledged user. 

File access in RSX-11 M and lAS systems, however, is not limited to 
using the MFD and UFD files. The basis of file access using the MFD 
and UFD in these systems is a special file called the index file. Like the 
MFD, an index file is created on each volume when it is initialized. Files 
in these systems are mapped files, and the Index File contains the file 
header for each file stored on the volume, including the M FD. Each file 
is uniquely identified by a file ID. A file header contains the file's ID and 
the physical location (logical record number) of each series of contigu
ous blocks constituting a file. By knowing a file's ID and searching 
through the index file, a program can locate a file (and any block within 
the file) without having to use the MFD and UFD directories. Figure 2-
11 illustrates how an index file is used to access files on a volume. 

INDEX FILE 
FILE HEADER # 1 
FILE HEADER#2 

FILE HEADER #3 

• 
• 
• 
• 

FILE HEADER BLOCK 

~D-"" 
________ FILE HEADER BLOCK 

"" -----D-FILE 

FILE HEADER BLOCK 

D-FILE 

Figure 2-11 Index File Access 

35 



OPERA TlNG SYSTEMS 

All of these operating systems also permit non-block replaceable 
media, such as cassettes and magnetic tape, to be given a file struc
ture. These media have no directory because a directory could not be 
updated and replaced. Instead, each file is preceded by one or more 
header records which contain the directory information such as the 
file's name. The operating system can locate a file by scanning the 
volume and reading each file header until the correct one is found. The 
file can then be processed by a sequential access method. 

I/O Commands 
As mentioned above, users communicate their intentions to process 
data files by issuing 1/0 commands consisting of at least one file 
specification. Normally, the 1/0 commands used in a system are stan
dard throughout that system; in addition, most PDP-11 operating sys
tems share the same basic 110 command string format. 

For example, in RT -11 systems, the monitor includes a command 
string interpreter routine that parses and validates 110 command 
strings. The command string interpreter routine is used both by the 
monitor and the system programs to obtain a definition from the user 
of the input file or files to be processed and a definition of the output 
file or files to be created. User-written programs can also call the 
command string interpreter to obtain 110 specifications from the oper
ator at a terminal. 

A standard 1/0 command string consists basically of one or more 
input andlor output file specifications. In all systems except lAS, an 
1/0 command string uses the following general format: 

filespec =filespec 

where filespec is a file specification and the equal sign (=) represents 
a character (usually equal sign or less-than sign) that separates an 
input file specification on the right from an output file specification on 
the left. If there is more than one input file specification or output file 
specification, they are separated from each other by commas. For 
example, if there are two output file specifications and three input file 
specifications: 

fi lespec, filespec = filespec, filespec, fi lespec 

If the program requesting an 1/0 command string does not need either 
an input or output file specification, the equal sign (or less-than sign) is 
not present in the 1/0 command string. 

As an example, the user can run the RT -11 operating system's Linker 
system utility to link one or more object program files and produce an 
executable program file and a load map. The 1/0 command issued to 
the Linker could be: 

36 



OPERA TlNG SYSTEMS 

*DK:RESTOR.SAV, DK1 :RESTOR.MAP = DK:RESTOR.OBJ/B:500 

Where: 

DK:RESTOR.SAV 

DK1 :RESTOR.MAP 

DK:RESTOR.OBJ 

IB:500 

Is the prompting character printed by the 
Linker program indicating that it wants an 
1/0 command string. After it is printed, the 
user types the remaining characters on the 
line. 

Is the name of the executable program file 
to be created. It will be stored on the disk 
cartridge mounted on the RK11 drive unit 
zero. 

Is the name of the load map file to be creat
ed. It will be stored on the disk mounted on 
RK11 drive unit 1. 

Is the name of the object module (input file) 
to be used to create RESTOR.SAV. 

Is a command string switch indicating that 
the RESTOR.SAV program is to be linked 
with its starting address at location 500. 

Command string switches are simply ways of appending qualifying 
information to an 1/0 command string. The switches used vary from 
program to program. They are not usually required in an 1/0 com
mand string, since most programs assume default values for any 
switch. 

Monitor and Command Language Commands 
The primary systemluser interface is provided in PDP-11 operating 
systems by either monitor software or special command language 
interface programs that run under the monitor. The monitor software 
and command languages allow the user to request the system to set 
system parameters, load and run programs, and control program exe
cution. 

An input command line consists of the command name (an English 
word that describes the operation to be performed) followed by a 
space and a command argument. For example, the command to run a 
program is the word RUN followed by the name of the file containing 
the program. If the command name is long, it can usually be abbreviat
ed. For example, the command to set the system's date to August 15, 
1984 could be DA 15-AUG-84. The system could also accept "DA 27-
AUG-75". A command input line is normally terminated by typing the 

37 



OPERA TING SYSTEMS 

carriage return key on the console keyboard, although in some sys
tems the key labeled Al TMODE is also used. Typing the carriage 
return key (or Al TMODE key) tells the system that the command line 
is ready to be processed. 

In the RT -11 system, a monitor component called the keyboard moni
tor performs the function of notifying the user that the monitor is ready 
for input by printing a period at the left margin. The user enters a 
command string on the same line following the period, and terminates 
the command string by typing the carriage return key. 

In the RSTS/E system, the monitor and the BASIC-PLUS language 
processor share the responsibility for interpreting commands. The 
system prints the word READY on the terminal and then spaces down 
two lines. The user then enters a command on the new line and termi
nates the line by typing the carriage return key. There are three types 
of commands the user can issue: RSTS/E monitor commands, such 
as RUN, ASSIGN, or RENAME; BASIC-PLUS immediate mode 
statements, such as PRINT, INPUT, or OPEN; or Concise Command 
language commands. 

A Concise Command language (CCl) command is used to run and 
pass arguments automatically to designated programs stored in the 
system library. The programs can be system utilities supplied with the 
operating system, or can be user-written console routine programs 
that perform special application operations. For example, RSTS/E in
cludes a system utility called PIP that performs a variety of file manipu
lation operations, including a file copy operation. The dialog normally 
used to run the PIP utility and issue a copy command is: 

READY The system prints READY. 

RUN $PIP 
PIP Vnnn 
*FllEB.DAT=FllEA.DAT 
*tc 

READY 

The user runs PIP. 
PIP announces itself. 
PIP prints an asterisk to request 
an I/O command and the user is
sues a copy command. PIP prints 
an asterisk, indicating that the 
operation was performed and 
that it is ready to accept another 
command; the user types a 
CTRLlC to abort PIP and return 
to the monitor. 

The system prints READY. 

The standard RSTS/E system also includes a CCl command named 
PIP that can be issued to perform any of PIP's normal functions. If 

38 



OPERA T1NG SYSTEMS 

used as a CCl command, the dialog to perform the same copy opera
tion is: 

READY 

PIP FllEB.DAT=FllEA.DAT 

READY 

The system prints READY. 

The user issues the CCl com
mand and the argument that tells 
PIP to copy FILEA.DAT to FI
lEB.DAT. 

The system prints READY. 

A CCl command not only provides an easy-to-use command inter
face, it can also provide protection from unauthorized use of certain 
programs. For example, if a particular program performs several op
erations, some of which should not be available to unauthorized users, 
the system manager can prevent those users from issuing the RUN 
command to run the program, but can allow them to perform safe 
operations by using CCl commands. 

I n the RSX-11 systems, a command interface called the Monitor 
Console Routine (MCR) allows the user to perform system level opera
tions. When MCR is activated, it prints the characters MCR> on the 
terminal. The user enters a command on the same line as the prompt, 
and terminates the line with a carriage return or an Al TMODE. If the 
line is terminated with a carriage return, MCR prints a prompt and is 
ready to receive another command. If the line is terminated with an 
Al TMODE, MCR does not reactivate. To reactivate MCR at a terminal, 
the user types a CTRLlC. 

There are two kinds of commands that MCR accepts: general user 
commands and privileged user commands. General user commands 
provide system information, run programs, and mount and dismount 
devices. Privileged user commands control system operation and set 
system parameters. 

To run a system utility, the user can type the utility's name in response 
to an MCR prompt. When the utility is loaded, it prints a prompt to 
request a command string. The user can then enter a command string. 
When it completes the operation, the user can enter another com
mand or type CTRLlZ to terminate the program. For example, to run 
the PIP utility program: 

MCR>PIP 
PIP>command string 
PIP>tZ 
MCR> 

39 



OPERA TlNG SYSTEMS 

If the user wants to issue only one command to the utility, the user can 
type the command string on the same line with the MCR request to run 
the utility. For example: 

MCR>PIP command string 
MCR> 

In the lAS system, system/user interfaces are provided by programs 
called Command Language Interpreters (CLI). The standard system 
includes a CLI called the Program Development System. When it is 
activated, it prints the prompt PDS> on the terminal to indicate it is 
ready to accept and process commands. The user has several options 
for command string formats. If the user is uncertain about a com
mand's syntax, the user can simply type the command name and a 
carriage return. PDS will ask the user to supply each portion of the 
command string individually. Users can write their own Command 
Language Interpreters. 

PROGRAMMED SYSTEM SERVICES 
All PDP-11 operating systems provide access to their services through 
requests that programs or tasks can issue during execution. 

The RT -11 system provides a variety of programmed requests. There 
are programmed requests that perform file manipulation, data trans
fer and other system services such as loading device handlers, setting 
a mark time for asynchronous routines, suspending a program, and 
calling the Command String Interpreter. Monitor services are request
ed through macro instructions in assembly language programs, or 
through calls to the system library in FORTRAN programs. The basis 
of the programmed requests in RT -11 are the Emulator Trap (EMT) 
instructions. When an EMT is executed, control is passed to the 
monitor, which extracts appropriate information from the EMT instruc
tion and executes the operation requested. When the operation is 
performed, the monitor returns control to the program. 

In the RSTS/E system, users writing BASIC-PLUS programs have ac
cess to the monitor's services through system function calls. The func
tion calls allow a program to control terminal operation, to read and 
write core common strings, and to issue calls to the system file proces
sor. The file processor calls enable a program to set program run 
priority and privileges, scan a file specification, assign devices, set 
terminal characteristics, and perform directory operations. A system 
function is called in a manner similar to normal BASIC-PLUS language 
calls. When the function operation is performed, the program contin
ues execution. 

The RSX-11 and lAS executives include programmed services called 

40 



OPERA TlNG SYSTEMS 

executive directives. Directives can be executed in MACRO programs 
using system macro calls provided with the system. The FORTRAN or 
BASIC-PLUS-2 programmer can invoke directives through a 
subroutine call. The system uses only the EMT 377 instruction to im
plement directives. The directives allow the program to obtain system 
information, control task execution, declare signficant events, and 
perform 1/0 operations. After the directive is processed, control is 
normally returned to the instruction following the EMT. 

The RSX-11 M and lAS systems also include programmed file control 
services. The file control services enable the programmer to perform 
record-oriented and block-oriented 1/0 operations. These services 
are provided as macro calls. 

The lAS system includes a special set of programmed services called 
Timesharing Control Primitives. These are available for use by any 
program that is written as a Command Language Interpreter (CLI). 
They enable a CLI to start or control execution of other timesharing 
tasks, and share access to devices with other timesharing users. 

SYSTEM UTILITIES 
PDP-11 operating systems provide, in general, three kinds of system 
utility programs: program development utilities, file management utili
ties, and special system management utilities. 

Most PDP-11 operating systems include the following kinds of 
program development utilities: 

Text Editor 

Assembler 

Linker 

An editor is used for on-line interactive creation and 
editing of source programs or data files. An editor 
uses several sets of commands that search for char
acter strings, insert, move or delete characters or 
lines, and insert, move, delete or append whole buff
ers of data. Although a text editor is designed for 
interactive use, it can also usually be run under a 
batch processor if the operating system supports 
batch processing. 

An assembler accepts a source program written in 
PDP-11 machine language and produces an object 
module as output. 

A linker is a program that accepts relocatable object 
programs created by an assembler or compiler and 
produces an executable program module. Some 
linkers provide facilities for overlaid program seg
ments to enable a large program to execute in a 
small memory area. 

41 



Librarian 

Debugger 

OPERA T1NG SYSTEMS 

A librarian is a program that enables a programmer 
to create, update, modify, list and maintain library 
files. A library file is an object module (or modules) 
that is used several times in a program, used by 
more than one program, or routines that are related 
and simply gathered together to incorporate easily 
into a program. 

A debugger is a program which enables a user to 
troubleshoot program errors dynamically through a 
terminal keyboard. It is normally linked with a pro
gram and runs as part of the program. 

Some of the file management utilities available on many operating 
systems include: 

PIP The Peripheral Interchange Program (PIP) is a gen
eral-purpose file utility package for both the general 
user and programmer and the system manager. PIP 
normally handles all files with the operating systems 
standard data formats. In general, the program 
transfers data files from any device in the system to 
any other device in the system. PIP can also delete 
or rename any existing file. Some operating systems 
include special file management operations in the 
PIP utility, such as directory listings, device initializa
tion and formatting, and account creation. 

FILEX 

DUMP 

VERIFY 

The File Exchange program is a special-purpose file 
transfer utility similar in operation to PIP. It provides 
the ability to copy files stored in one kind of format to 
another format. This enables a user to create data on 
one system in a special format and then transfer the 
data to a device in a format that another system can 
read. 

DUMP displays all or selected portions of a file on a 
terminal or line printer. In general, DUMP enables 
the user to inspect the file in any of three modes: 
ASCII, byte, and octal. In ASCII mode, the content of 
each byte is printed as an ASCII character. In byte 
mode, the content of each byte is printed as an octal 
value. In octal mode, the content of each word is 
printed as an octal value. 

In general, a VERIFY program checks the readability 
and validity of data on a file-structured device. 

42 



OPERA TlNG SYSTEMS 

Most system management utilities included in an operating system are 
dependent on the function the operating system serves. The RSX-11 M, 
lAS, and RSTS/E systems provide special system management 
utilities. For example, RSX-11 M and RSTS/E include system 
error logging and report programs. RSTS/E, and lAS and include user 
accounting programs. 

43 



RT-11 

Is 

• Foreground/ 
background (multi
tasking) 

• Single user 
• Sensor based 
• Operating on small 

CPUs 

• Protected environ
ment 

• Easy to install and 
use 

• High real-time 
throughput 

• Batch processing 
• Highiy reliable 

• Full development fa
cilities 

Is not 

• Transaction pro
cessing 

• Record manage
ment 

• Data base manage
ment 

Languages 

• BASIC-11 
• FORTRAN IV 

• MACRO-11 

• FOCAL 

• APL 

OPERA TlNG SYSTEMS 

RSTS/E 

Is 

• General purpose 
timesharing 

• High performance 
timesharing BASIC 

• Interactive environ-
ment 

• Multi-language 

• Batch processing 

• Basis of most com
mercial applications 

Is not 

• Real-time 
• High volume 

transaction process
ing 

• Block mode applica
tion terminals 

Includes Data Mgr./ 
Utilities 

• RMS-11 
·SORT-11 
.DATATRIEVE-11 
.DMS-SOO 

Languages 

• BASIC-PLUS 

• BASIC-PLUS-2 

• COBOL 
• FORTRAN IV 

• MACRO-11 

• RPG II 
.DIBOL-11 

RSX-11M 

Is 

• Real-time process
ing 

• Sensor based 
• Data base manage

ment 

• Multi-user develop
ment 

• Building block 
operating system 
for: 
- Communications 
- Commercial ap-

plications 
- Turn-keyappli-

cations 

Is not 

• Batch processing 

• Timesharing 
• Protected environ

ment 

Includes Data Mgr./ 
Utilities 

• RMS-11 

• DBMS 
.DATATRIEVE-11 

• SORT-11 

Languages 

• COBOL 
• FORTRAN IV 
• FORTRAN IV-PLUS 

• MACRO-11 
• BASIC-11 
• BASIC-PLUS-2 

• RPG II 

Figure 2-12 Operating System Chart 
44 



lAS 

Is 

• Real-time 
• Timesharing 
• Batch processing 
• Data base manage-

ment 

• Multi-function 
• Multi-language 
• Extensible executive 
• High RSXIVAX/ 

TRAX compatibility 

• Protected environ
ment 

OPERA T1NG SYSTEMS 

DSM-11 

Is 

• Interactive. high
productivity applica
tions development 
for data base man
agement system 

• Highly approachable 
• Integrated lan-

guage/command 
environment 

• Powerful language 
structure for text 
processing 

• Large numer of ter
minals-up to 80 

Is not Is not 
• High capacity (dedi- • General timesharing 

cated) timesharing • Real-time 

• High capacity (dedi- • Computational or 
cated) real-time batch 

• Operating on small • Multi-language 
CPUs 

Includes Data Mgr./ 
Utilities 

• DBMS 
• RMS-11 
• DATATRIEVE-11 

• SORT-11 

Languages 

• BASIC-11 
• BASIC-PLUS-2 

• COBOL 
• FORTRAN IV 
• MACRO-11 

Languages 

• DSM-11 

TRAX-11 

Is 

• High volume tran
saction processing 

• Batch processing 
• Protected environ

ment 

• Application develop
menttools: 
- Debug utility 
- Terminal screen 

language 

• Distributed function
ality 

• RSXIVAX compati
bility 

• Easy systems design 

Is not 

• Timesharing 
• Sensor based 
• For smaller CPUs 
• Large scale batch 

(IBM) 

Includes Data Mgr./ 
Utilities 

• RMS-11 
• DATATRIEVE-11 

• SORT-11 

Languages 

• COBOL 
• BASIC-PLUS-2 

• MACRO-11 

Figure 2-12 Operating Systems. cont. 

45 



46 



OVERVIEW 

CHAPTER 3 

LANGUAGE PROCESSORS 

DIGITAL's high-level languages let you move freely among operating 
systems. These languages span the breadth of the PDP-11 operating 
systems, and conform to the industry standards that have been estab
lished. In some cases, more than one version of a particular language 
is available on a single operating system, each optimized to meet 
particular requirements. 

The basic concepts behind language assemblers and compilers and 
the common functions and features of PDP-11 language processors 
are presented in this chapter. 

FEATURE TOPICS 
• Language Translation Systems Definition 

• Assemblers 

• Compilers 

• Modularity 

• Assembly Language Routines 

• Library Routines 

• Libraries and Object Time Systems 

• Assemblers and the Language Compilers 

• Program Development Facilities 

• COBOL Compiler 

• Incremental Compilers 

• PDP-11 Assemblers and Language Compilers 

47 



LANGUAGE PROCESSORS 

LANGUAGE TRANSLATION SYSTEMS 
A programming language is a system of symbols and syntax that can 
be used to describe a procedure that a computer can execute. A 
language processor is a program that translates one programming 
language into another. A language processor reads a program written 
in a language easily understood by people and translates it into a 
program written in the binary language of a digital computer. The 
program that the processor reads is called the source program. The 
program that the processor writes is called the object program. 

ASSEMBLERS 
An assembler is a language processor written for a particular digital 
computer. The source language it translates is called assembly lan
guage. There is a one-to-one correspondence between most of the 
mnemonics used as the assembly language operators and the binary 
instructions of the computer. Some exceptions are macro calls and 
assembler directives. 

During the language translation process, an assembler performs a 
number of error checking operations. When an error is detected, the 
assembler notes the error and attempts to continue processing. At the 
end of processing, the assembler produces an error listing showing all 
the occurrences of errors, with substantial messages to the program
mer. In addition to an error listing, the programmer can obtain an 
assembly listing in any of several formats and a symbol table listing. In 
addition, some assemblers can provide a cross reference listing for all 
symbols used in the program. 

Most assemblers produce an object program by making one or more 
passes over the source program (reading the original source code 
several times). The resultant object program is in relocatable binary 
format. That is, the first instruction appears to be located in the first 
word of processor memory. Since in most cases the program is not to 
be loaded into the bottom of memory, the object program must be 
linked to the proper memory addresses before it can be executed. 

The linking program is provided as a standard program development 
utility with an operating system. Figure 3-1 illustrates the fundamental 
steps in producing an executable program from assembly source 
code. 

48 



LANGUAGE PROCESSORS 

OBJECT CODE 

EXECUTABLE CODE 

Figure 3-1 Fundamental Assembly or Compilation Procedure 

COMPILERS 
A compiler is a language processor written to translate a higher-level 
language whose structure, syntax, and symbols are independent of 
any particular machine. The higher-level language operators most of
ten do not correspond directly to binary instructions. It is the compi
ler's job to provide algorithms for ~heir translation. 

Most compilers do not translate the source code until the entire source 
program is read at least once. The translation of the source code into 
object code takes place during several passes over the source code 
or, if only one pass over the original source code is made, during 
several phases of the compilation process. This allows the compiler to 
examine the code it produces as a whole to eliminate unnecessary 
instructions (code optimization). In addition, the compiler can perform 
many levels of error checking and it can produce several kinds of 
compilation listings, including source code listings, code generation 
listings, and diagnostics. 

An incremental compiler is a compiler that immediately translates 
source statements into an internal format. Each source statement is 
translated (and therefore can be executed) before the following state
ment is translated. Although this method of source translation does 
not enable possible object code optimization, it allows the compiler to 
provide program development services not possible in multi-pass or 
multi-phase compilers. For example, a syntax error detected in a 

49 



LANGUAGE PROCESSORS 

source statement can be reported to the programmer immediately, 
and the programmer can correct the statement before proceding. 

One significant difference between a general compiler and an incre
mental compiler is the characteristics of the resulting object program. 
The object code produced by the general compiler requires a separ
ate step of linking before it can be executed, as shown in Figure 3-1. 
This approach enables the programmer to combine several object 
programs into one executable program. This provides several advan
tages: 

Modularity 
A source program may be too large to be compiled successfully as a 
single unit, but, if divided into modular sections, can be compiled as 
several separate units. The separate sections can be combined at the 
object level to produce the resultant program. In addition, programs 
that are extremely complex can be divided into several sections so 
that they can be easily manipulated, debugged or modified. A change 
in one module of the program will only require recompilation of that 
section. 

Assembly Language Routines 
The compiler's object code can be combined with the object code 
produced by the operating system's assembler. Algorithms which are 
most easily written in assembly language, such as user-defined 1/0 
processing, can be incorporated into a program written primarily in a 
higher-level language. 

Library Routines 
Libraries of commonly used routines and functions written in either 
assembly or the higher-level lar,guage can be maintained in object 
format. These routines can be selectively included in the resultant 
program by the linking utility. This not only eliminates repetitive source 
coding and associated errors, it also decreases the size of the source 
and object programs. 

The object code produced by an incremental compiler does not re
quire an intermediate step of linking before it can be executed. The 
incremental compiler actually serves two purposes: it translates the 
source code into object code and it provides the environment in which 
to execute the object code. That is, the steps of source code transla
tion, linking, and execution are all provided by the translator. Figure 3-
2 illustrates this type of translator operation. 

50 



LANGUAGE PROCESSORS 

THE SOURCE CODE IS 
TRANSLATED IMMEDIATELY 

COMPILATION 
PHASE 

RUN-TIME 
PHASE 

, ________ ...J 

OPTIONAL: AN OBJ ECT 
FilE CAN BE CREATED AND 
SAVED FOR LATER EXECUTION 

Figure 3-2 Fundamental Incremental Compiler Operation 

PROGRAM DEVELOPMENT FACILITIES 
A complete language translation system requires facilities for creating 
and editing source programs, linking object programs into executable 
programs, and debugging programs. Most PDP-11 operating systems 
provide an Editor utility for source program creation and editing, and a 
Librarian utility for library file creation. Operating systems also provide 
a Linker utility to link and combine object modules produced by multi
pass compilers and assemblers. Finally, operating systems also 
include debugging utilities. 

Some of these facilities mayor may not be incorporated into the lan
guage translator program itself. For example, an incremental compiler 
may include an editing facility as part of the language translation code. 
This allows the programmer to edit the program interactively as it is 
being compiled and executed. 

LIBRARIES AND OBJECT TIME SYSTEMS 
Also included in most language translation systems is a library of the 
most commonly used functions and routines. The system library is 
generally a part of the language processor's Object Time System 
(OTS). 

A multi-pass or multi-phase compiler does not usually generate all of 
the machine language code required by the program at run time. 
Common sequences of code required by the program can be main
tained in the OTS file. The compiler then flags the places where the 
desired sequences are needed. The linker utility, during its pass over 
the object program, selects those sequences from the OTS file and 
incorporates them into the executable program module. 

An incremental compiler may also have an OTS. In this case, however, 
the OTS is generally part of the run-time code of the translator. When 
the object code is executed by the incremental compiler's run-time 
code, the OTS is used to provide common library code sequences. 

51 



LANGUAGE PROCESSORS 

PDP-11 ASSEMBLERS AND THE LANGUAGE COMPILERS 
With three exceptions, all the operating systems described in this 
handbook include the MACRO assembly language. RSTS/E does not 
include MACRO, but supports it fully; DSM-11 and TRAX do not sup
port any assembly language processor. 

Two FORTRAN IV compilers are available: FORTRAN IV and 
FORTRAN IV-PLUS. FORTRAN IV is available on all the operating 
systems described in this handbook except MUMPS-11. FORTRAN 
IV-PLUS is available on the RSX-11 and lAS operating systems. 

The MACRO assembler, FORTRAN IV compiler and FORTRAN IV
PLUS compiler display the same external operating characteristics. In 
general, they accept source code from any valid input device and 
produce an object file on any valid file-structured device. If the input 
device is a file-structured device, the assembler or compiler can ac
cept several source files. If desired, an assembly or compilation listing 
can also be produced as output, either as a file or on a line printer or 
terminal. MACRO can also generate both a symbol table listing and a 
Cross Reference Listing (CREF) if desired. 

As shown in Figure 3-3, there are several methods for creating 
sources. A source program can be punched on cards if a card reader 
is available, or it can, in some cases, be entered directly on the termi
nal. The common method is to create a file on a file-structured device. 
The file can be created from a deck of punched cards, using the PIP 
file transfer utility to copy it onto disk or DECtape. The file can also be 
created on a terminal, using tile operating system's editor utility to 
store it on disk or DECtape. 

52 



SOURCE 
DECK 

LANGUAGE PROCESSORS 

( SOURCE L DECK 

CHOICE OF 
~------------------------ -----------

Figure 3-3 Building an Executable User Program 
Written in MACRO or FORTRAN 

In addition to source program files, the MACRO assembler accepts 
source library files as input. The operating system provides a system 
library for MACRO containing the macro definitions for the system's 
monitor calls or executive directives. The assembler selects those 
macro definitions required by the source program from the system 
library file. 

In RSX-11, lAS and RSTS/E systems, the MACRO assembler can also 
accept a user-created macro library as input. The sources for the 

53 



LANGUAGE PROCESSORS 

user-defined macro libraries are created in the same manner as nor
mal source programs. The operating system's librarian utility program 
is used to create the library files. Figure 3-4 illustrates this procedure. 

Figure 3-4 Building User MACRO Libraries 

Once the assembler or compiler produces an object file, the object file 
can be linked by the linker utility. The linker can accept several object 
files as input. In addition, when linking object files produces a 
FORTRAN compiler, the linker accepts the FORTRAN system object 
library for the given compiler as input. The linker automatically selects 
the required routines from the library. 

Users can also create their own object library files. The source code is 
created in the same manner as normal source programs. The librarian 
utility is used to build the library file. Figure 3-5 illustrates the pro
cedure. 

54 



LANGUAGE PROCESSORS 

SOURCE CODE 
AS IN FIGURE 3-3 

Figure 3-5 Building User Object Libraries from 
Sources Written in MACRO or FORTRAN 

PDP-11 assemblers and compilers differ in their internal operation_ 
The MACRO assembler is a two-pass assembler. It makes a first pass 
over the source input to collect the symbol references, expand macros 
and produce preliminary object code. A second pass is made to re
solve symbol references and produce the completed object code and 
listings. 

The FORTRAN IV compiler is a multiple-phase compiler. Instead of 
making multiple passes over the source program, it reads the source 
program once and manipulates the source code in memory. The com
piler operates in multiple phases. An overlay is read into memory for 
each phase of the compilation process. This method enables the com
piler to compile relatively large programs very quickly. 

The FORTRAN IV-PLUS compiler is a multiple-pass compiler. It reads 
the source program several times, using a work file to build the object 
code. The work file is deleted when the compilation process is com
plete. Figure 3-6 illustrates the compilation methods of the two 
FORTRAN compilers. 

55 



LANGUAGE PROCESSORS 

(
SOURCE 

fiLE 
~ 

COMPILER 
fiLE 

MULTI-PHASE COMPILATION 

MEMORY AREA 

SPACE FOR 
SOURCE 

MANIPULATION 

COMPILER 
OVERLAYS 

MULTI· PASS COMPILATION 

(~ __ S_O_F~_~_CE ___ ~.-______ -.~----~_IL_~K--~( 
[

BUFfERS fOR 
SOURCE 

ME~~~ ll--M_AN_I_PU_LA_T_IO_N-j 

COMPILER ~ 
CODE OBJECT 

'-------------' __ FILE ( 
Figure 3-6 Compilation Methods 

The FORTRAN IV-PLUS compiler's work file not only makes it possible 
to compile relatively large programs, but it also allows the compiler to 
examine thoroughly the object code it produces. The compiler refines 
the code it produced during the initial compilation to ensure that the 
program, when executed, will run as fast as possible. Therefore, al
though the disk accesses required to read and write a work file de
crease the speed of the compiler, the work file enables the FORTRAN 
IV-PLUS compiler to produce highly optimized code. 

PDP-11 COBOL COMPILER 
The PDP-11 COBOL compiler can accept source input from cards, 
from the terminal, or from a file created using cards or an interactive 
editor. The compiler produces both an object file and an overlay de
scription language (ODL) file which describes the overlay tree struc
ture associated with the generated object file. 

56 



LANGUAGE PROCESSORS 

The compiler is properly termed a multi-phase, multi-pass compiler. 
The compiler makes several passes over the source program, using a 
work file to contain various tables built during the compilation pro
cess. Utilization of the work file permits compilation of large COBOL 
programs consisting of approximately 6000 or more source lines. The 
last pass of the compilation process produces the object and OOL 
files. Figure 3-7 illustrates the COBOL compiler's external operating 
characteristics. 

Once the compiler produces an object file, the object file can be linked 
by the Linker utility. However, in the likely event that more than one 
COBOL-produced object file must be linked to produce an executable 
task, it is necessary to perform the "OOL merge" operation prior to the 
linking process. The merge operation is performed by the MRG utility. 
This utility merges the OOL files from more than one compilation into a 
single, composite ODL file. Subsequently, the object files, together 
with the composite OOL file, are linked together by the system linker to 
produce an executable image. In addition to linking the object files 
output by the COBOL compiler, the system linker automatically selects 
the required routines from the COBOL and RMS-11 object libraries. 

CHOI(EOf: 

,------H,--------,I)--('---S~~L__'RECE CHOICE OF' 
(

SOURCE PIP 
_ DECK UTILITY 

C SOURCE 
DECK 

COMPILER 

OBJECT 
TIME 

SYSTEM 

COBOL 
TASK 

Figure 3-7 COBOL Language Processor Operation 

INCREMENTAL COMPILERS 
Some of the languages available in the POP-11 software systems 
described in this handbook are processed by incremental compilers. 

The BASIC language processors can accept source input from a ter
minal or from a file generated using an Editor utility, as illustrated in 
Figure 3-8. The most common method of creating a source program is 

57 



LANGUAGE PROCESSORS 

by giving the source statements to the compiler directly through an 
interactive terminal. For this reason, the BASIC language processors 
include an editing facility, which allows the programmer to create, test, 
and modify the source program interactively. 

EDITOR 

COMPILER 

RUN-TIME 
SYSTEM 

BASIC SYSTEM 

r---------, 
I OBJECT I 

- -~ FILE ~ 
'-----T-----.l 

______ -.J 

[SOME LANGUAGE 
PROCESSORS ONLY) 

Figure 3-8 BASIC Language Processor Operation 

58 



59 



60 



OVERVIEW 

CHAPTER 4 

RT-11 (V3b) 

RT -11 is an efficient, single-user, real-time disk operating system for 
interactive program development and dedicated on-line applications. 
It supports both single-job and foreground/background monitors. The 
foreground handles real-time functions and has priority on system 
resources; program development or batch jobs can operate in the 
background whenever the foreground is not busy. The system offers 
optional support for FORTRAN IV, FOCAL, BASIC, APL, and MACRO 
assembler. 

RT -11 is the first of the six main PDP-11 operating systems to be 
presented in this section. 

FEATURE TOPICS 

• Functions and Features 

• Operating Environments 
- RT -11 Single-Job Monitor 
- RT -11 Foreground/Background Monitor 
- RT -11 Extended Memory Monitor 
- Facilities available in RT -11 FB/XM 

• SYSTEM COMMUNICATION 

• Indirect Files 
- Keyboard Monitor Commands 
- Programmed Requests 

• TEXT EDITOR 

• Utility Programs 

• Assembled Program Alteration 

• System Subroutine Library 

• RT -11 System Summary 

61 



RT-11 

FUNCTIONS AND FEATURES 
RT-11 is an operating system designed to function in a single-user 
environment. In the commercial environment it can be bundled into 
variously packaged software known as CTS-300. The system uses a 
wide range of peripherals and accesses up to 124K words of either 
solid state or core memory. Three system monitors are provided by 
RT -11: the single-job monitor (SJ), the foreground/background moni
tor (FB), and the extended memory monitor (XM). 

The single-job monitor allows one program at a time to reside in mem
ory. The program executes until it completes or until it is interrupted 
with a keyboard command. 

The foreground/background monitor allows two independent pro
grams to reside in memory at one time. The foreground program, 
however, takes priority over the background program. RT -11 allows 
the background program to execute whenever the foreground pro
gram is in a wait state. Typically, the foreground program performs a 
time-dependent task, such as sampling material every few seconds 
and then analyzing the resultant data. A background program, on the 
other hand, usually performs a time-independent task, such as file 
maintenance or program development. This sharing of resources 
between two tasks greatly increases the efficiency of the RT -11 sys
tem. 

The extended memory monitor provides all the features of the fore
ground/background monitor and, in addition, allows the user to ac
cess up to 124K words of memory. The other two monitors are restrict
ed to 28K words of main memory. 

The three monitors are upward compatible. That is, the fore
ground/background monitor provides all the features of the single-job 
monitor, and the extended memory monitor offers all the features of 
the foreground/background monitor. Error logging is supported as a 
SYSGEN option by all three RT -11 monitors. 

In addition to the three monitors, RT -11 provides a full complement of 
system programs that can perform some more specific tasks than the 
keyboard monitor commands can. 

RT -11 also supports a variety of language processors including 
MACRO-11, an assembly language, and several high level languages, 
such as FORTRAN IV, BASIC, APL, DIBOL, and FOCAL. 

62 



RT-11 

OPERATING ENVIRONMENTS 

RT-11 Single-Job Monitor 
The RT -11 single-job monitor provides a single-user, single-program 
system that can operate in as little as 8K words of memory. The SJ 
monitor is useful for extensive program development; since the moni
tor itself requires only 2K words of memory, there are at least 6K 
words left for the program, its buffers and its tables. The SJ environ
ment is also suitable for running programs that require a high data 
transfer rate, since the SJ monitor services interrupts quickly. 

All the system programs can be used under the SJ monitor. Monitor 
commands and programmed requests are also available to the SJ 
user. The single-job monitor does not support extended memory. 

In summary, the SJ monitor is smaller and faster than the FB and the 
XM monitors; it is most useful when the user is concerned with pro
gram size versus available memory and when a dedicated system is 
needed. 

RT-11 Foreground/Background Monitor 
Often, the central processor of a computer system spends much of its 
time waiting for some external event to occur. Usually, this event is a 
real-time interrupt or the completion of an I/O transfer. This situation 
is particularly true of real-time jobs. The foreground/background en
vironment lets the user take advantage of the unused processor ca
pacity to accomplish lower-priority tasks. 

In a foreground/background system, the foreground job is the time
critical, real-time job, and the FB monitor gives it priority over the 
background job. Whenever the foreground job reaches a state in 
which no useful processing can be done until some external event 
occurs, the monitor executes the background job, if possible. The 
background job then runs until the foreground job is again ready to 
execute. The processor then interrupts the background job and re
sumes the foreground job. 

In effect, the RT-11 foreground/background monitor allows a time
dependent job to run in the foreground while a time-independent job, 
such as program development, runs in the background. All RT-11 
system programs can run as the background job in a FB system. Thus 
the user can run FORTRAN, BASIC, or MACRO, for example, in the 
background while the foreground is collecting, storing, and analyzing 
data. In addition, the FB monitor gives the user the ability to set timer 
routines, suspend and resume foreground jobs, and send data and 
messages between the two jobs. The FB monitor is most often used for 
laboratory work, data acquisition, and real-time applications. 

63 



RT-11 

RT-11 Extended Memory Monitor 
The extended memory monitor (XM) is an extension of the fore
ground/background (FB) environment. Generally, comments about 
the FB operation also apply to XM operation. The XM monitor permits 
either foreground or background jobs to extend their effective logical 
program space beyond the 32K word restriction imposed by the 16-bit 
address word of the PDP-11 processors. The XM monitor manages 
extended memory space as a system resource and dynamically allo
cates it as the user program requests. A program can map selected 
partitions of its addressing space, called windows, into extended 
memory areas called regions. 

Facilities Available Only in RT-11 FB and XM 

1. Mark Time - The .MRKT programmed request allows a program 
to set clock timers for specified amounts of time. When the timer 
runs out, the system enters the routine that the user has specified. 
The user can enter as many mark time requests as needed, provid
ing that system queue space has been reserved. The mark time 
feature is available to SJ monitor users as a SYSGEN option. 

2. Timed Wait - The.TWAIT programmed request allows a program 
to "sleep" until the period of time that the user has specified 
elapses. A foreground program, for example, may need to act on 
sample data and write it to mass storage once every few minutes. 
While the foreground program is idle, the background program can 
run. 

3. Send Data, Receive Data - The .SDAT and .RCVD programmed 
requests permit the foreground and background programs to com
municate with each other. The send and receive data functions let 
one program send messages or data of variable size blocks to the 
other program. For example, data can be transferred directly from 
a foreground collection program to a background analysis pro
gram. 

4. Channel Copy - The .CHCOPY programmed request allows two 
programs to share the same data file. 

5. Device - The .DEVICE programmed request allows the user to 
turn off specific devices upon program termination. 

6. Protect - The .PROTECT programmed request protects the vec
tors that one program uses from interference by another program. 

7. Channel Status - The .CSTAT programmed request returns stat
us data about an open channel. 

8. Multi-terminal support - The multi-terminal support programmed 
request allows for multi-terminal systems featuring: 

64 



.MTATCH 

.MTDTCH 

.MTGET 

.MTIN 

.MTOUT 

.MTPRNT 

.MTRCTO 

RT-11 

Facilities Available Only in RT -11 XM 
An optional extension of the FB environment is the extended memory 
monitor (XM), which permits extension of the logical address space for 
either foreground or background jobs. Some features available to the 
user only when using the XM monitor are: 

1. Create a Region - The .CRRG programmed request alows the 
user to allocate a region in extended memory for the current pro
gram. 

2. Eliminate a Region - The .ELRG programmed request eliminates 
an extended memory region and returns it to the free list so it can 
be used by other programs. 

3. Create an Address Window - The .CRAW programmed request 
unmaps and eliminates conflicting address windows, creates new 
windows to address extended memory, and maps new windows to 
the regions the user specifies. It directs the monitor to find the 
program a window into the region it has created. This request 
allows the program to access the physical memory as if it were local 
to the program. 

4. Eliminate an Address Window - The .ELAW programmed re
quest unmaps and eliminates address windows. 

5. Map - The .MAP programmed request lets the user map address 
windows. 

6. Status - The .GMCX programmed request returns status data 
about window mapping. 

7. Unmap - The .UNMAP programmed request lets the user unmap 
awindow. 

SYSTEM COMMUNICATION 
The monitor is the center of RT-11 system communications; it pro
vides access to system and user programs, performs input and output 
functions, and enables control of background and foreground jobs. 
The user communicates with the monitor through programmed re
quests and keyboard commands. 

65 



RT-l1 

Keyboard commands load and run programs, start or restart pro
grams at specific addresses, modify the contents of memory, and 
assign and de-assign alternative device names, to mention only a few 
functions. A series of keyboard commands may be placed in a file 
(called an indirect command file) if they are to be used frequently. The 
series of commands can be invoked with a single keyboard command. 

Indirect Files 
The user can group together, as a file, a collection of keyboard 
commands to be executed sequentially. This collection is called an 
indirect command file, or indirect file. Indirect files are best suited for 
tasks that require a significant amount of computer time and do not 
require user supervision or intervention. Any series of commands that 
a user is likely to type often can also run easily as an indirect file. The 
indirect file concept is similar to BATCH processing. Although indirect 
files lack some BATCH capabilities, they are easier to use, use the 
same commands as normal operations, and generally require less 
memory overhead than the BATCH processor. RT -11 BATCH is de
scribed below. 

Keyboard Monitor Commands 
Table 4-1 shows the RT -11 keyboard commands and their results. 

APL 

ASSIGN 

B 

BASIC 

BOOT 

CLOSE 

COMPILE 

COpy 

Table 4-1 RT-11 Keyboard Monitor Commands 

Invokes the APL 1anguage interpreter. 

Associates a logical device name with a physical de
vice. 

Sets a relocation base. 

Invokes the BASIC language interpreter. 

Directs a monitor to take control of the system. 

Makes permanent all output files that are currently 
open after the background job terminates. 

Invokes one or more language processors to assem
ble or compile the files specified. 

Performs a variety of file transfer and maintenance 
operations. 

66 



D 

DATE 

DEASSIGN 

DELETE 

DIBOL 

DIFFER
ENCES 

DIRECTORY 

DUMP 

E 

EDIT 

EXECUTE 

FOCAL 

FORTRAN 

FRUN 

GET 

GT 

HELP 

INITIALIZE 

INSTALL 

RT-11 

Deposits values in memory beginning at the location 
specified. 

Sets or displays the current system date. 

Disassociates a logical device name from a physical 
device. 

Deletes the files specified. 

Invokes the DIBOL compiler to compile one or more 
source programs. 

Compares two files and lists the differences between 
them. 

Lists information requested about a device, a file, or 
a group of files. 

Lists all or any part of a file in octal words, octal 
bytes, ASCII characters, or Radix-50 characters. 

Prints in octal the contents of a memory address. 

Invokes a text editor. 

Invokes one or more language processors to assem
ble or compile the files specified; it also links object 
modules and initiates execution of the resultant 
program. 

Invokes the FOCAL language interpreter. 

Invokes the FORTRAN IV compiler to compile one or 
more source programs. 

Initiates execution of foreground jobs. 

Loads a memory image file into memory. 

Enables or disables the use of the VT11 or VS60 
display hardware as the console terminal. 

Lists useful information about keyboard monitor 
commands and other RT -11 capabilities. 

Clears and initializes a device directory. 

Installs the device specified into the system. 

67 



LIBRARY 

LINK 

LOAD 

MACRO 

PRINT 

R 

REENTER 

REMOVE 

RENAME 

RESET 

RESUME 

RUN 

SAVE 

SHOW 

RT-11 

Lets you create, update, modify, list, and maintain 
library files. 

Converts object modules produced by an RT-11 
supported language processor into a format suitable 
for loading and execution. 

Makes a device handler resident in memory for use 
with BATCH or foreground/background jobs. 

Invokes the MACRO assembler to assemble one or 
more source files. 

Lists the contents of one or more files on the line 
printer. 

Loads a memory image file into memory and starts 
execution. 

Starts the program at its reentry address (the start 
address minus 2). 

Removes a device from the system tables. 

Changes the name of a specified file or files. 

Resets several background system tables and does 
a general clean-up of the background area. 

Continues execution of the foreground job at the 
point the SUSPE~D command was issued. 

Loads a memory image file into memory and starts 
execution. 

Writes memory areas in memory image format to the 
file and device specified. 

Prints on the terminal all the devices known to the 
system and any logical names assigned to those de
vices. It has three options that all call the RESORC 
program: 

• CONFIGURATION 
Displays information about the monitor status, 
USR SWAPINOSWAP, type of processor, special 
hardware, and SYSGEN options that are in effect. 

• DEVICES 
Displays device information, including current 
status and vectors. 

68 



SQUEEZE 

START 

SUSPEND 

TIME 

TYPE 

UNLOAD 

RT-11 

• TERMINALS 
Displays terminal information, including unit num
ber, type, and SET options enabled for multi-ter
minal systems. 

Consolidates in a single area all unused blocks on 
the device specified. 

Initiates execution of the program currently in mem
ory at the address specified. 

Stops execution of the foreground job. 

Sets or displays the current time of day. 

Lists the contents of one or more files on the termi
nal. 

Makes handlers that were previously loaded non
resident, thus freeing the memory space they occu
pied. 

Programmed Requests 
Programmed requests are source program instructions that request 
the monitor to perform monitor services. These instructions allow as
sembly language programs to use the available monitor features. A 
running program communicates with the monitor through pro
grammed requests. FORTRAN programs have access to programmed 
requests through the system subroutine library. Programmed re
quests can, for example, manipulate files, perform input and output, 
and suspend and resume program operations. 

Table 4-2 shows the RT -11 programmed requests and their action. 

.CDFN 

. CHAIN 

Table 4-2 Programmed Requests 

Defines new I/O channels . 

Allows background program to transfer control to 
another background program that is specified in lo
cations 500-507 (RAD50) without operator interven
tion; saves words 500-777. 

69 



.CHCOPY 

.CLOSE 

. CMKT 

.CNTXSW 

.CRAW 

. CRRG 

.CSIGEN 

.CSISPC 

. CSTAT 

.DATE 

RT-11 

Opens a channel for input and logically connects it to 
a channel on another job open for either input or 
output. 

Terminates activity on the specified channel and 
frees it for use in another operation . 

Cancels one or more outstanding mark time re
quests. 

Specifies locations to be included in context switch; 
addr is terminated with a 0 word; valid locations are 
2-476, user job area, and 160000-177776. 

Defines a virtual address window and optionally 
maps it into a physical memory region . 

Allocates a dynamic region in physical memory for 
use by the current requesting program. 

Calls Command String Interpreter (CSI) in general 
mode to accept input and output file specifications; 
.CSIGEN automatically opens input and output files 
and loads required device handlers; gets command 
string from terminal, in core string, or indirect com
mand file; returns command line to the user if the 
user so specified. 

Calls Command String Interpreter (CSI) in special 
mode to accept input and output file specifications; 
works like .CSIGEN, but does not open files; instead, 
builds a table of file specifications to simplify later 
file operations; gets command string from terminal, 
in core string, or indirect command file; returns com
mand line to the user if the user so specified . 

Furnishes 6 information words about an I/O channel: 
word 1 channel status 
word 2 file starting block 
word 3 file length 
word 4 highest block writtten 
word 5 device unit number 
word 6 device name (RAD50) 

Moves current date word into RO: 
bits 14-10 month (1-12.) 
bits 9-5 day(1-31.) 
bit 4-0 year (72.-99) 

70 



. DELETE 

.DEVICE 

.DSTATUS 

. ELAW 

.ELRG 

.ENTER 

.EXIT 

. FETCH 

. GMCX 

.GTIM 

.GTJB 

.GTLlN 

RT-11 

Deletes named file from indicated device . 

Sets up list of addresses to be loaded with specified 
values upon program termination; creates a linked 
list if specified. 

Provides information about device characteristics: 
word 1 device status 
word 2 
word 3 
word 4 

handler size 
handler entry point 
device size 

Cancels a defined window and permits redefinition . 

Deallocates a dynamic memory region and returns it 
to the free list. 

Allocates space on specified device and creates ten
tative directory entry for the named file. 

Terminates user background program and returns 
control to the monitor, when used from a back
ground program under FB; when used under SJ, 
causes KMON to run in background area . 

Loads device handler into memory from the system 
device . 

Returns the mapping status of a specified window. 

Returns current time of day in ticks past midnight. 

Passes certain job parameters back to the user pro
gram: 
word 1 job number (O=B, 2=F) 
word 2 high memory limit 
word 3 low memory limit 
word 4 start of I/O channel space 
word 5 address of job's impure area 

with FB and XM monitors 
word 6-8 reserved 

Obtains a line of input from the console terminal or 
an indirect command file; allows the user to specify a 
text string which will be printed on the terminal to 
prompt the operator for input. 

71 



.GVAL 

.HERR 

.HRESET 

.INTEN 

.LOCK 

.LOOKUP 

.MAP 

. MFPS 

.MRKT 

.MTATCH 

.MTDTCH 

.MTGET 

.MTIN 

.MTOUT 

. MTPRN 

.MTPS 

.MTRCTO 

RT-11 

Returns a monitor fixed offset value in RO. 

Disables user error interception and allows the mon
itor to detect and act on fatal errors. 

Resets channels, releases device handlers, and 
stops all 1/0 transfers in progress. 

Notifies monitor that an interrupt occurred and 
switches to "system state"; lowers processor priority 
to device priority level. 

Locks USR (system file processor) in memory; the 
USR normally swaps into memory only when it is 
needed (to open or close a file), and swaps out when 
it is not needed (to read or write an open file). 

Associates specified channel with a device and ex
isting file. 

Maps a previously defined address window into a 
region of extended memory . 

Reads priority bits from the processor word. 

Schedules completion routine to be entered after a 
specified time interval. 

Attaches a terminal for exC(lusive use by the request
ingjob. 

Detaches a terminal from one job and makes it avail
able for other jobs. 

Returns the status of the specified terminal to the 
caller. 

A multi-terminal form of .TTYIN; transfers one or 
more characters to a buffer. 

A multi-terminal form of .TTYOUT; prints one or 
more characters from a buffer. 

A multi-terminal form of .PRINT . 

Sets priority bits, condition codes, and T bit in the 
processor status word. 

Resets CTRLlO for the specified terminal. 

72 



.MTSET 

.MWAIT 

.PRINT 

.PROTECT 

.PURGE 

. QSET 

. RCTRLO 

.RCVD 

.RCVDC 

.RCVDW 

.READ 

.READC 

.READW 

. RELEAS 

. RENAME 

.REOPEN 

.RSUM 

. SAVESTA
TUS 

RT-11 

Allows the user program to set terminal and line 
characteristics. 

Suspends execution until all messages are transmit
ted or received. 

Outputs an ASCII string to the terminal. 

Used by a job to obtain exclusive control of a vector 
pair in the range 0-476. 

Deactivates a channel without closing the file (tenta
tive output file is lost). 

Enlarges 1/0 queue for the monitor . 

Enables console terminal printing (resets CTRLlO) . 

Posts a request to receive message and continues 
execution. 

Posts a request to receive message and enters spec
ified completion routine when message is received. 

Posts a request to receive message and waits until it 
is received. 

Initiates transfer of words from specified channel in
to memory and continues execution. 

Initiates transfer from channel to memory; continues 
executing user program; enters specified routine 
when transfer completes. 

Transfers words from specified channel into memo
ry; returns control to user program when the transfer 
completes or when an error is detected. 

Removes a device handler from memory . 

Changes a file name . 

Reassociates a channel with a file on which a SAVE
STATUS was performed. 

Resumes execution of a foreground job after it was 
suspended . 

Stores 5 words containing data concerning file defi
nition into memory; frees channel for use: 

73 



.SCCA 

.SDAT 

.SDATC 

.SDATW 

. SERR 

.SETTOP 

.SFPA 

.SPFUN 

. SPND 

.SRESET 

.SYNCH 

.TLOCK 

.TRPSET 

word 1 
word 2 
word 3 
word 4 
word 5 

RT-11 

channel status 
starting block of file 
length of file 
reserved 
even byte -I/O count; 
odd byte - device unit 

number 

Inhibits CTRLlC abort; indicates that CTRLlC was 
typed at the keyboard; distinguishes between single 
and double CTRLlC. 

Initiates message transfer; returns control to user 
program immediately. 

Initiates message transfers; transfers control to 
specified routine when message is received. 

Initiates message transfer; returns control to user 
program when message is received. 

Inhibits monitor from aborting jobs after fatal errors . 

Requests additional memory for program and re
turns the highest memory address available. 

Sets user interrupt for floating point processor ex
ceptions. 

Provides special device-dependent functions to 
magtape, cassette, diskette, and other mass storage 
devices . 

Suspends a foreground job. 

Resets certain memory areas, dismisses device 
handlers, purges currently open files, resets to 16 
channels, resets I/O queue to one element. 

Enables the user program to perform certain moni
tor programmed requests from within an interrupt 
service routine. Requests requiring the USR may not 
be issued. 

Attempts to gain ownership of USR; if unsuccessful, 
returns control with C bit set. 

Allows user job to intercept processor traps to 4 and 
10. 

74 



RT-11 

.TTINR Inputs a character from the terminal; returns if none 
available . 

. TTOUTR Outputs a character to the terminal; returns if no 
room in buffers . 

. TTYIN Inputs a character from the terminal and waits until 
operation is done . 

. TTYOUT Outputs a character to the terminal and waits until 
operation is done . 

. TWAIT Suspends the running job for the specified amount 
of time (number of ticks); requires queue element. 

.UNLOCK Releases USR from memory . 

. UNMAP Unmaps a window and flags that portion of address 
space as being inaccessible . 

. UNPROTECT Cancels a protected vector pair in the range 0-476 . 

. WAIT Suspends program execution until 1/0 completes to 
the specified channel. 

.WRITC Transfers words from memory to specified channel; 
when complete, passes control to specified routine . 

. WRITE Initiates transfer from memory to channel; returns 
control to user program immediately . 

. WRITW Transfers words from memory to channel; when 
transfer is complete, returns control to user pro
gram. 

TEXT EDITOR 
The text editor (EDIT) is a program that creates or modifies ASCII 
source files for use as input to other system programs such as the 
MACRO assembler or the FORTRAN compiler. EDIT, which accepts 
commands from the user at the terminal, reads ASCII files from any 
input device, makes specific changes, and writes on any output de
vice. EDIT allows efficient use of VT11 or VS60 display hardware, if 
they are part of the system configuration. 

EDIT considers a file to be divided into logical units called pages. A 
page of text is generally 50-60 lines long (delimited by form-feed char
acters) and corresponds approximately to a physical page of a pro
gram listing. The editor reads one page of text at a time from the input 
file into its internal buffers, where the page becomes available for 
editing. EDIT is used to: 

75 



RT-11 

• Locate text to be changed. 

• Execute and verify the changes. 

• List an edited page on the console terminal. 

• Output a page of text to the output file. 

Normally, the editor operates in either command mode or text mode. 
In command mode, the editor interprets all input typed on the key
board as commands to perform some operation. In text mode, the 
editor interprets all typed input as text to replace, insert into, or 
append to the contents of the text buffer. 

UTILITY PROGRAMS 
The following sections describe the RT -11 system programs available. 
The user can take advantage of nearly all of the capabilities of the RT -
11 system by using the keyboard monitor commands. However, it is 
the system utility programs (and not the monitor itself) that actually 
perform many of the system's functions. 

Command String Interpreter 
The Command String Interpreter (CSI) is the part of the RT -11 system 
that accepts a line of ASCII input, usually from the user at the console 
terminal, and interprets it as a string of input specifications, output 
specifications, and options for use by a system utility program. 

The Peripheral Interchange Program (PIP) 
The peripheral interchange program (PIP) is a file transfer and file 
maintenance utility program for RT -11. PIP is used to transfer files 
between any of the RT -11 devices and to merge, rename, and delete 
files. 

Device Utility Program (DUP) 
The device utility program (DUP) is a device maintenance utility pro
gram. DUP creates files on file-structured RT -11 devices. It can also 
extend files on certain file-structured devices (disks and DECtape), 
and it can compress, image copy, initialize, or boot RT-11 file struc
tured devices. DUP does not operate on non-file structured devices 
(line printer, card reader, terminal, and paper tape). 

Directory Program (DIR) 
The directory program (DIR) performs a wide range of directory listing 
operations. It can list directory information about a specific device, 
such as the number of files stored on the device, their names, and 
their creation dates. DIR can list details about certain files, too, includ
ing their names, their file types, and their size in blocks. DIR can also 

76 



RT-11 

print a device directory summary, and it can organize its listings in 
several ways, such as alphabetically or chronologically. 

Linker (LINK) 
The RT -11 linker (LINK) converts object modules produced by an RT-
11 supported language translator into a format suitable for loading 
and execution. The linker processes the object modules of the main 
program and subroutines to: 

• Relocate each object module and assign absolute addresses. 

• Link the modules by correlating global symbols that are defined in 
one module and referenced in another. 

• Create the initial control block for the linked program that the 
GET,R,RUN, and FRUN commands use. 

• Create an overlay structure if specified and include the necessary 
run-time overlay handler and tables. 

• Search libraries specified by the user, to locate any unresolved glo
bals. 

• Automatically search a default system library to locate any remain-
ing unresolved globals. 

• Produce a map showing the layout of the executable module. 

• Produce a symbol definition file. 

The RT-11 linker requires two passes over the input modules. During 
the first pass it constructs the symbol table, including all program 
section names and global symbols in the input modules. After it pro
cesses all non-library files, the linker scans the library files to resolve 
undefined globals. It links only those modules that are required into 
the root segment (that part of the program that is never overlaid). 
During the final pass, the linker reads the object modules, performs 
most of the functions listed above, and produces a load module (which 
is memory image format for background jobs or for jobs that run in the 
single-job environment, relocatable format for foreground jobs, and 
formatted binary for use with the Absolute Loader). 

The linker runs in a minimal RT -11 system of 8K words of memory; the 
linker uses any additional memory to facilitate efficient linking and to 
extend the size of the symbol table. The linker accepts input from any 
random access device on the system; there must be at least one ran
dom-access device (disk or DECtape) for memory image or relocata
ble format output. 

77 



RT-11 

Librarian (L1BR) 
The librarian utility program (LlBR) lets the user create, update, 
modify, list, and maintain object library files. A library file is a direct 
access file (a file that has a directory) that contains one or more mod
ules of the same module type. The librarian organizes the library files 
so that the linker and MACRO assembler can access them rapidly. 
Each library contains a library header, library directory (or global sym
bol or macro name table), and one or more object modules or macro 
definitions. 

The object modules in a library file can be routines that are repeatedly 
used in a program, routines that are used by more than one program, 
or routines that are related and simply gathered together for conve
nience. The contents of the library file are determined by the user's 
needs. Object modules in a library file from another program can be 
accessed from another program by making calls or references to their 
global symbols; the user then links the object modules with the pro
gram that uses them, producing a single load module. 

DUMP 
DUMP is the RT-11 program that prints on the console or line printer, 
or writes to a file, all or any part of a file in octal words, octal bytes, 
ASCII characters, or Radix-50 characters. DUMP is particularly useful 
for examining directories and files that contain binary data. 

File Exchange Program (FILEX) 
The file exchange program (FILEX) is a general file transfer program 
that converts files from one format to another so that they can be used 
with other operating systems. Transfers between any block-replace
able RT -11 directory-structured devices can be initiated. 

Source Compare (SRCCOM) 
The RT -11 source compare program (SRCCOM) compares two ASCII 
files and lists the differences between them. SRCCOM can either print 
the results or store them in a file. SRCCOM is particularly useful when 
it is necessary to compare two similar versions of a source program. A 
file comparison listing highlights the changes made to a program 
during an editing session. 

Format Program (FORMAT) 
The format program has several functions. It can be used to write 
headers for an RK05 disk as well as write single or double density 
sectors for an RX02 diskette. 

78 



RT-11 

Resource Program (RESORC) 
The resource program allows for the display of information about the 
system configuration. This command is accessed through the SHOW 
monitor command. 

ASSEMBLED PROGRAM ALTERATION 
Three RT-11 programs help the user debug programs and make 
changes to programs that are already assembled. They are: the on
line debugging technique (ODT), PATCH, and the object module 
patching utility (PAT). 

RT-11 On-Line Debugging Technique 
RT -11 on-line debugging technique (ODT) is a program (supplied with 
the system) that aids in debugging assembly language programs. 
From the terminal, the user can direct the execution of programs with 
ODT. ODT performs the following tasks: 

• Prints the contents of any location for examination or alteration. 

• Runs all or any portion of an object program using the breakpoint 
feature. 

• Searches the object program for specific bit patterns. 

• Searches the object program for words that reference a specific 
word. 

• Calculates offsets for relative addresses. 

• Fills a single word, block of words, byte or block of bytes with a 
designated value. 

PATCH 
The PATCH utility program is used to make modifications to any RT-
11 file. PATCH can be used to examine and then to change words or 
bytes in the file. 

Object Patch Utility (PAT) 
The RT -11 object module patch utility (PAT) allows the user to patch or 
update any code in a relocatable binary object module. PAT does not 
permit the examination of the octal contents of an object module; that 
is a function of PATCH. An advantage to using PAT is that relatively 
large patches can be added to an object module without performing 
any octal calculation. PAT accepts a file containing corrections or 
additional instructions and applies these corrections and additions 
to the original object module. 

79 



RT-11 

BATCH 
RT -11 BATCH is a complete job control language that allows RT -11 to 
operate unattended. RT-11 BATCH processing is ideally suited to fre
quently run production jobs, large and long-running programs, and 
programs that require little or no interaction with the user. 

RT -11 BATCH permits the user to: 

• Execute aRT -11 BATCH stream from any legal RT -11 input device. 

• Output a log file to any legal RT-11 output device (except magtape 
or cassette). 

• Execute the BATCH stream with the single-job monitor or in the 
background of the foreground/background monitor or with the ex
tended memory monitor. 

• Generate and support system-independent BATCH language jobs. 

• Execute RT -11 monitor commands from the BATCH stream. 

SYSTEM SUBROUTINE LIBRARY 
The RT -11 FORTRAN System Subroutines (SYSF4) are a collection of 
FORTRAN-callable routines that allow a FORTRAN user to utilize vari
ous features of RT -11 foreground/background(FB)and single-job(SJ) 
monitors. SYSF4 also provides various utility functions, a complete 
character string manipulation package, and a 2-word integer support. 
This collection of routines is usually placed in a default system library, 
which is an object module library file called SYSLlB.OBJ. This library 
file is the default library that the linker uses to resolve undefined glo
bals and is resident on the system device (SY:). This concatenated set 
of routines is in a file called SYSF4.0BJ. The installation procedures 
describe how to make these routines into a library. 

The following are some of the functions provided by SYSF4. 

• Complete RT -11 I/O facilities, including synchronous, asynchro
nous, and completion-driven modes of operation. FORTRAN 
subroutines may be activated upon completion of an input/output 
operation. 

• Timed scheduling of asynchronous sub jobs (completion routines). 
This feature is standard on FB and optional on the SJ monitor. 

• Complete facilities for interjob communication between foreground 
and background jobs (FB and XM only). 

• FORTRAN interrupt service routines. 

• Complete timer support facilities, including timed suspension and 
time-of-day information. These timer facilities support either 50 or 
60 cycle clocks. 

80 



RT-11 

• All auxiliary input/output functions provided by RT -11, including the 
capabilities of opening, closing, renaming, creating, and deleting 
files from any device. 

• All monitor-level informational functions, such as job partition para
meters, device statistics, and input/output channel statistics. 

• Access to the RT -11 Command String Interpreter (CSI) for accep
tance and parsing of standard RT -11 command strings. 

• A character string manipulation package supporting variable-length 
character strings. 

• INTEGER*4 support routines that allow 2-word integer computa
tions. 

SYSF4 allows the FORTRAN user to write almost all application pro
grams completely in FORTRAN with no assembly language coding. 

LANGUAGES 
Languages that run under RT -11, such as MACRO, FORTRAN, APL, 
FOCAL, and BASIC, are described in individual chapters in this hand
book. 

81 



RT-11 SYSTEM SUMMARY 

Is 

• Foreground/background 
(multi-tasking) 

• Single user 

• Sensor based 

• Operating on small CPUs 

• Protected environment 

• Easy to install and use 

• High real-time throughput 

• Batch processing 

• Highly reliable 

• Full development facilities 

Is not 

• Transaction processing 

• Record management 

• Data base management 

Languages 
• BASIC-11 

• FORTRAN IV 

• MACRO-11 

82 



CHAPTERS 

RESOURCE-SHARING TIMESHARING SYSTEM 
RSTS/E (V6C) 

OVERVIEW 
RSTS/E is a resource-sharing timesharing system supporting many 
language processors. This system can also support general purpose 
timesharing as well as batch processing. Each RSTS/E user can have 
virtually the entire system's processing power, utilities and peripherals 
at his command during program development or execution. Its dy
namic scheduling algorithm allocates processor time, memory space, 
file space and peripherals to continually keep processing efficient. 

FEATURE TOPICS 

• Functions and Features 

• System Configuration and Operation 
- System Code 
- language Processors (BASIC-PLUS) 
- Timesharing Operations Overview 
- SYSGEN 

• System Management Utility Programs 

• Device and File Conventions 

• User Interface 
- System and Installation Defined (CCl) Commands 
- General System Utility Programs 
- Batch Processing 

• SYS System Functions and the PEEK Function 

• RSTS/E System Summary 

83 



RSTSIE 

FUNCTIONS AND FEATURES 
The RSTS/E operating system allows multiple users to interact with 
the system and its data structures. RSTS/E supports up to 63 users 
simultaneously processing data using the BASIC-PLUS, COBOL, BA
SIC-PlUS-2, FORTRAN IV, APl, or RPG II language processors. BA
SIC-PLUS jobs may vary in size up to 16K-word programs, and can 
use chaining and interjob communication features to execute even 
larger programs. Programs using other languages can have a maxi
mum size of 28K words. RSTS/E also includes a comprehensive set of 
easy-to-use system utilities for the system manager and timesharing 
users. The system also supports line printer spooling and execution of 
up to 8 batch streams. It may also be offered as part of variously 
packaged commercial hardware/software systems as CTS-500. When 
RSTS/E is packaged as CTS-500, certain otherwise optional software 
is bundled into the system. 

RSTS/E can support a maximum of 63 concurrent jobs. The actual 
number of jobs a configuration can support depend.s on the character
istics of the application(s), the processor, processor options, disk 
drives, and the amount of memory available. As a general rule, 
RSTS/E can support up to 63 jobs on a PDP-11 170. On a PDP-11 /34, 
11/35,11/40,11/45,11/50,11/55, or 11/60 processor, RSTS/E can 
be expected to support less than the 63 job maximum. In most cases, 
the practical maximum is 32 jobs or fewer on these processors. 

RSTS/E requires at least 64K words of memory for most configura
tions. Installations making use of the commercial features of COBOL, 
BASIC-PlUS-2, RPG II, DIBOl with CTS-500, and/or RMS-11 K will 
generally need at least 80-96K words of memory. For those installa
tions that need only BASIC-PLUS and a limited subset of the RSTS/E 
utilities, it may be possible to operate with as little as 48K words of 
memory. To support more than a few multiusers simultaneously, addi
tional memory may be required. 

A minimum peripheral complement includes a console terminal and a 
disk system. The system device can be a single RP02, RP03, RP04, 
RP05, RP06, RM02, or RM03 disk system or a dual drive RK05, RK06, 
RKO?, or Rl01 disk system. A TE10, TE16, or TS03 magnetic tape 
system is required for system generation and back up unless the disk 
system includes three RK05s, two Rl01s, two RK06s, or two RKO?s. 

On a PDP-11/34, PDP-11/35, PDP-11/40, PDP-11/45, PDP-11/50, 
PDP-11/55, or PDP-11 /60, memory can expand up to 124K words; on 
a PDP-11170, up to 1920K words. In addition, RSTS/E can support 
multiple disk, DECtape, magnetic tape and floppy disk drives, multiple 
line printers, a card reader, a paper tape reader/punch, and a variety 

84 



RSTSIE 

of terminal interfaces. All of these devices can be available to any 
terminal user. The terminals can be accessed under program control 
for input and output. A single program can control any number of 
terminals up to a maximum of 127. 

RSTS/E users can expect efficient operation because the operating 
system dynamically allocates processor time, memory space, file 
space and peripherals to best suit changing demands. The system 
manager and designated privileged users have access to the moni
tor's system management commands either interactively using system 
utilities or under program control. Additional system commands and 
utility programs are also available to all users. 

The RSTS/E file system provides a wide range of on-line processing 
capabilities. Files can be accessed randomly or sequentially, either 
through BASIC-PLUS, or through the RMS-11 (Record Management 
Services) subsystem. Single and multi-key ISAM is optionally avail
able with RMS-11 K software. Files can contain alphanumeric string, 
integer numeric, floating point numeric or binary data. Files can be 
created, updated, extended or deleted interactively either from the 
user's terminal or under program control. Files can be sorted by the 
SORT -11 program. Files can be protected from access on an individu
al, group or system basis. Files can also be accessed by many users 
while being updated on-line. 

RSTS/E provides the ability to back up files selectively or totally. Back
up can be done on-line without disrupting users or it can be done off
line. 

DECnetiE provides the RSTS/E system with communications software 
for programs written in BASIC-PLUS and BASIC-PLUS-2. This soft
ware offers point-to-point, task-to-task, and network file transfer 
communications facilities. 

RSTS/E also supports an emulator for the IBM 2780 terminal and 
permits communication between DIGITAL systems and IBM Remote 
Job Entry programs supporting as/HASP, as/ASP, DOS POWER 
and OS/RJE or a second DIGITAL-supplied 2780 emulator. 

DATATRIEVE-11 provides RSTS/E with a file maintenance, report 
generation and query facility. 

Table 5-1 summarizes the components of RSTS/E. A complete list of 
the hardware and software supported by RSTS/E is provided in the 
RSTS/E Software Product Description. 

85 



System type 

CPUs supported 

Memory ranges 

Minimum peripherals 

RSTSIE 

Table 5-1 RSTS/E System 

General timesharing system using the BA
SIC-PLUS interpreter with optional lan
guage support of COBOL, FORTRAN IV, 
RPG II, BASIC-PLUS-2, and APL. (DIBOL is 
also available in CTS-500 systems.) 

PDP-11/40 with Extended Instruction Set 
and Memory Management; PDP-11/34, 
PDP-11/45 or PDP-11/60 with Memory 
Management Unit; PDP-11170 

Minimum: 64K words memory for most in
stallations, though it is possible to configure 
an adequate 48K system if only the BASIC
PLUS interpreter is to be used. 

Maximum: 124K words on PDP-11/34, 35, 
40,45,50,55,60 
1920K words on PDP-11 170 

Console terminal 

Disk system: RP02, RP03, RP04, RP05, 
RP06, RM02, RM03 
Dual drive RK05, RK06, RK07, or RL01 
TS03, TU45, TE10, or TE16 magnetic tape 
systems (not required if at least three 
RK05s, three RL01 s, two RK06s, or two 
RK07s are included) 

Additional CPU hard- PDP-11 134,45,60 or PDP-11 170 FP11 Float-
ware ing Point Processor 

PDP-11/40 KE11-F Floating Instruction Set 
PDP-11/34 KK11-A Cache Memory Option 

86 



Additional peripherals 

Optional software 

RSTSIE 

Up to eight line printers (LP11, LP05, LS11, 
LVii or LA11). 
Up to a total of eight RK05s; up to four 
RL01s; up to eight RK06s and RK07s; up to 
a total of eight RP02s, RP03s, RP04s, 
RP05s, or RP06s; up to a total of eight 
RM02, or RM03 disk drives. 
Up to a total of eight RS03 or RS04 disk 
drives, or up to eight RS-11 disk drives. 
Up to a total of eight TS03, TE10, TE16, and 
TU45 magnetic tape drives. 
Up to four RX11 floppy disk systems for a 
maximum of eight RX01 drives. 
Card reader (CR11 punched, CM11 marked 
or C011 high-speed punched card reader). 
PC11 paper tape reader/punch. 
Up to a total of 127 terminal line interfaces, 
of which up to 16 can be single-line (KL ii, 
OL11, LC11, OC11, or DJ11), and the re
mainder multi-line interfaces (OZ11s or 
DH 11 s with or without OM 11 s). 
Up to a total of 127 terminals: LA30, LA36, 
LA180, VT05, VT50, VT52, VT55, LT33, 
LT35, RT02, or IBM 2741-compatibletermi
nals. 

COBOL, RPG II, BASIC-PLUS-2, APL, 
FORTRAN IV Language Processors (01-
BOLlOECFORM is also available on CTS-
500 systems); 
SORT -11 File and Index Sort Program; 
RMS-11 K Record Management Services. 
OMS-500 RSTS/E Commercial Extensions 
Package, 
RSTS/2780 Remote Job Communications 
Package, 
OECnetlE Communications System. 
OATATRIEVE-11 Query and Report Gener
ator. 

87 



RSTSIE 

SYSTEM CONFIGURATION AND OPERATION 
RSTS/E system software exists as system code, language processing 
code, and system program code. The system code and language pro
cessing code are tailored at system generation time according to the 
hardware configuration on which the system runs and the software 
features which are chosen by the system manager. Once the system is 
generated, the system code language processing code are frozen and 
alterable only by patching or generating new code. The system pro
gram code exists in a library of programs executable by the system 
software or by individual users on the system. The library of programs 
is alterable and expandable during timesharing without requiring re
generation of the system. 

System Code 
The RSTS/E system code is stored on the system disk as a save
image library (SIL). A save-image library, when loaded into memory, is 
immediately executable by the PDP-11 computer. The system code 
comprises many distinct elements which are either resident in memo
ry or on disk during timesharing. Permanently resident elements are 
the following: 

• interrupt and trap vectors 

• small and large system buffers 

• system information and data tables 

• disk and device drivers 

• file processor modules 

Optionally, the following are also resident modules: 

• RJ2780 - Remote Job Entry handler 

• DECnetiE - Network Communications handler 

The following are either permanently resident or disk resident (over
lay) elements, the choice to be selected at system generation time. 

• file processor modules 

• infrequently used utility routines 

The following is loaded only at system start-up time. 

• system initialization code 

RSTS/E operations start when the system disk is bootstrapped. The 
bootstrap routine loads the initialization code which determines the 
hardware configuration and performs many consistency checks to 
ensure the integrity of the software. When checking is completed, the 
initialization code remains resident and allows many options, some of 
which are described below. 

88 



RSTSIE 

When timesharing operations are started, the initialization code is 
overlaid by the permanently resident system code and the system 
default run-time system. As timesharing operations proceed, infre
quently used overlay code and system and user programs are loaded 
from disk as needed. 

Language Processors 
The BASIC-PLUS language processor generally serves as the system 
default run-time system. However, any of the languages mentioned 
above may also be used for applications programs. The language 
processors reside on the system disk in machine executable form and 
can be either permanently resident in memory or temporarily resident 
(swappable). If, for example, BASIC-PLUS were the system default 
RTS operating under RSTS/E, the system disk would contain the fol
lowing sets of elements: 

1. Permanently resident elements 
- BASIC-PLUS text editor and analyzer 
- BASIC-PLUS incremental compiler 
- BASIC-PLUS run-time system 

2. Temporarily resident elements 
- auxiliary run-time systems for other language processors 
- object time systems 
- language processors 
- object time systems run as user jobs 

In this example, the BASIC-PLUS code is loaded into memory at the 
start of timesharing operations and remai ns resident during the ses
sion. The code analyzes all BASIC-PLUS statements and generates 
and executes intermediate (compiled) code. Many monitor services 
are available to a BASIC-PLUS program through system function 
calls. 

The auxiliary run-time system associated with a given language pro
cessor or object time system is loaded into memory only when a re
quest is made to execute that language compiler or to execute a com
piled program written in that language. The language compiler is 
swapped out to disk as required, just as any normal user job would be. 

The run-time system may vary in size from 2K words to 16K words, 
and is generally shared among users. 

System Program Code 
A library of programs is produced and stored on disk during the sys
tem library build procedures of system generation. Both the system 
and users execute these programs to perform system housekeeping 
and common utility functions. The system manager can use the pro-

89 



RSTSIE 

grams to monitor and regulate system usage. Some library programs 
can be tailored by altering the source statements supplied by DIGITAL 
and recompiling to replace the current copy on the system disk. 

Timesharing Operations Overview 
To begin a timesharing session, a user logs in to the system byenter
ing an account number and password at a terminal. The user is as
signed an account number and password by the system manager. 

Immediately after the user logs in, his terminal is under the control of 
the keyboard monitor of the system default run-time system. The ter
minal is also in edit mode, and is returned to edit mode when any 
program execution is completed or whenever a CTRLlC is typed at the 
terminal. If, for example, BASIC-PLUS is the main language 
processor, the terminal edit mode would be the BASIC-PLUS com
mand level. In edit mode, the system examines each ASCII text line 
entered by the user and determines whether that line is a system or an 
installation-defined command, an immediate mode statement, or a 
program statement. (Installation-defined commands are made possi
ble by the concise command language (CCl) facility described below.) 
System and installation-defined commands are executed immediately 
after being entered. Immediate mode statements are first translated 
into an intermediate code, which is placed in the user's job area, and 
are executed immediately by the run-time system. Program state
ments (lines of ASCII text preceded by line numbers) are stored in 
their ASCII form in a temporary disk file under the user's account. 
Each program statement is also compiled into its intermediate code 
representation, which is placed in the user's area of memory. 

A user job area is initialized at log-in time and set to a size of 1 K or 2K 
words, depending on the run-time system being used. When BASIC
PLUS is used, the user job area is initially 2K words. The job area can 
grow in increments of 1 K words to a maximum size set by the system 
manager at the start of timesharing operations. Intermediate code 
created in the user's job area upon entry of program statements in edit 
mode is not executed automatically. The related program statements 
being created can be changed. A copy of the intermediate code of the 
program can be transferred to disk storage or to an external storage 
medium. 

A user changes from edit mode to run mode by typing the RUN system 
command or the CHAIN immediate mode statement. In run mode, the 
run-time system interpretively executes the intermediate code stored 
in the user's job area. When a program finishes execution, the terminal 
is returned to edit mode, signaled by the printing of the READY mes
sage. The user can interrupt the run-time system by typing CTRLlC, 

90 



RSTSIE 

which also returns the terminal to edit mode. Note: "edit mode" is so 
named because at that point the current BASIC-PLUS program can be 
edited by retyping any line. When a language other than BASIC-PLUS 
is used, an editing program must be run to make any changes in the 
programs. 

When the terminal is in run mode, a privileged user can detach the 
running job from the terminal. This allows the user to login again, open 
up another job area, and run another job. The detached job runs 
unattended, but is still associated with the account under which the 
user logged in. To regain control of a detached job running under 
account, the user can log in on any free terminal and attach the job to 
that terminal. 

The RSTS/E system allows jobs to run (in either edit mode or run 
mode) one at a time. A job runs until it either enters an 1/0 wait state or 
exhausts the time quantum which either the system or the system 
manager has assigned to it. At the point when the currently running 
job ceases to run, the scheduler finds the next job that is ready to run 
and begins running that job. Meanwhile, the interrupt-driven 1/0 de
vice handlers are processing requested data transfers. Upon 
completion of a transfer, the scheduler marks the job that requested 
the transfer as ready to run again and starts it from the point at which 
execution ceased. 

RSTS/E attempts to keep as many jobs in memory as possible. When 
more memory is required to run a job than is available, the system 
temporarily swaps some jobs out of memory and stores them in one of 
the swap files defined by the system manager. 

When it is again their turn to run, the jobs in the swap files are 
swapped back into memory. Jobs waiting for keyboard input and jobs 
waiting for device 1/0 completion are most likely stored in the swap 
files, While jobs currently running or involved in disk or magtape data 
transfers are necessarily in memory. 

As the system processes each job, it maintains accounting information 
in memory concerning that job. When the job is logged off the system, 
this information is used to update the accounting information stored 
on the disk for that account. 

System Generation 
System generation is normally a one-time operation in which the sys
tem manager defines the hardware configuration and selects the basic 
software options. The system manager needs to perform a system 
generation only when the system is first installed or when the hard
ware configuration changes. Both the monitor and the BASIC-PLUS 

91 



RSTSIE 

code can be generated in one operation or either can be generated 
separately. Software options can be included in the system to increase 
processing power or can be excluded from the system to conserve 
memory. 

In addition to defining the number and kinds of peripherals and pro
cessing hardware during system generation, the system manager de
fines special configuration options. Some of these options are dis
cussed below. 

Pseudo Keyboards 
The system manager can define the system to have one or more 
pseudo keyboards. A pseudo keyboard is a non-physical device that 
has the characteristics of a physical terminal but that has no terminal 
associated with it. As such, a pseudo keyboard has both input and 
output buffers from which a program can extract output and to which a 
program can force input. Using a pseudo keyboard as a 
communications device, a user can write a program to control other 
jobs. In addition, each copy of the BATCH system program requires 
one pseudo keyboard to run jobs in a batch stream. If the installation 
plans to run several copies of BATCH simultaneously, at least that 
number of pseudo keyboards must be defined. 

Multiple Terminal Service 
The multiple terminal service option allows one BASIC-PLUS program 
to interact with several users simultaneously by servicing their termi
nals on one I/O channel. This eliminates the need to run separate 
copies of the same program when several terminals must perform a 
similar function. 

Maximum Number of Jobs 
With sufficient hardware, RSTS/E can support up to 63 simultaneous 
jobs. The maximum number of jobs that can be run efficiently de
pends on the available memorv space and the number and types of 
disks and processor options on the system. When a job is started, it is 
given a number by the system. Jobs are numbered sequentially from 
one to the maximum number of jobs the system can handle. Jobs 
include both attached jobs and detached jobs. The maximum number 
of jobs must be specified at system generation since it determines the 
size of some monitor tables. The number can be lowered during sys
tem initialization to adjust to changing requirements, but it can not be 
increased above the configured maximum unless the system is regen
erated. 

Floating Point Precision and Scaled Arithmetic 
The system manager can select either single precision (2-word) or 
double precision (4-word) floating point numeric format. If the system 

92 



RSTSIE 

has floating point hardware, the system manager can select a floating 
point math package that will increase processing speed by using the 
hardware instructions. The scaled arithmetic feature is included in all 
4-word floating point math packages. Scaled arithmetic avoids loss of 
precision in floating pOint calculations; it is therefore very useful in 
calculating sums of money that cannot be manipulated easily as integ
er quantities. 

System-Wide Logical Names 
RSTS/E allows the system manager to assign up to 50 logical names 
on a system-wide basis. Any user can type a system-wide logical name 
to access the device (and, optionally, the account) it represents. 

File Processor Buffering 
The optional file processor (FIP) buffering module accelerates file 
processing on the RSTS/E system. The module reduces the number 
of accesses to disk by maintaining more than one disk directory block 
in memory. The system manager can enhance FIP buffering byallo
cating additional memory to extended buffer space for use as a cache 
for disk directory blocks. 

System Initialization 
After generating the system, the system manager bootstraps the 
RSTS/E system to load the initialization (IN IT) code into memory. The 
INIT code is a collection of routines used to create the file structures, 
system files, and start up conditions required for normal operation of 
the RSTS/E system. The INIT code is essentially one large stand-alone 
program with many functions. Immediately after a system generation, 
several options must be used before the RSTS/E system can be 
brought up for timesharing. Thereafter, the initialization code prC\lvides 
the mechanism for altering critical system files and parameters as 
installation requirements change. INIT includes routines which ensure 
the integrity of disk file structures and perform many checks on the 
hardware configuration. Options are provided which enable the sys
tem to function even when certain hardware elements are inoperative. 
Finally, the initialization code is responsible for loading the RSTS/E 
Monitor into memory for normal timesharing operations. 

Once the default system initialization and start-up parameters are set 
up, the system manager does not have to repeat manual start-up each 
time the system is started. Using the automatic restart feature, the 
RSTS/E system can recover and restart the timesharing session auto
matically after a system malfunction or power failure. When the system 
is started in automatic restart mode, control by-passes all parts of the 
start-up code that call for operator intervention. 

93 



RSTSIE 

After system generation, however, or if the system manager chooses 
to reset system parameters, the system manager must run the ini
tialization code options. Some of these options are: 

HARDWARE Reports on the survey of the hardware system taken 
when the system disk was booted. Also lets the sys
tem manager provide more information about the 
hardware (e.g., non-standard addresses of devices). 

DSKINT 

REFRESH 

DEFAULT 

START 

Initializes a disk cartridge or disk pack to contain a 
RSTS/E file structure and removes bad blocks from 
the user available space on the volume. 

Creates or rebuilds the system files in account [0,1] 
on any initialized RSTS/E disk; rebuilds the storage 
allocation table for a disk; adds blocks to the 
BADB.SYS system file, the system list of bad blocks. 

Establishes or changes the default start up condi
tions such as the maximum number of jobs which 
can be run and the maximum size of a job. It also 
allows the user to change the system default run
time system or to put it into high-speed semiconduc
tor memory if it is available. 

Brings the RSTS/E system up for normal timeshar
ing operations. In addition, START allows the user to 
set the maximum number of jobs, maximum job size 
and memory relocation parameters to override the 
DEFAULT specifications for this timesharing session 
only. 

System Management Utility Programs 
RSTS/E includes system utility :Jrograms for both the system manager 
and general user. Some system management utilities are privileged 
programs and can be run only by the system manager. Other utilities 
are not privileged and can be run by the general user, but have privi
leged features that can be executed only by the system manager. 

System management utilities include: initialization and maintenance 
programs, resource management and accounting programs, system 
error logging and analysis programs, operator services and spooling 
programs, and user communication programs. 

94 



RSTSIE 

System Initialization and Maintenance 

INIT 

SHUTUP 

UTllTY 

TTYSET 

SYSTAT 

VT5DPY 
VT50PY 

PRIOR 

Controls system startup operations. This includes 
mounting disks, adding system files, defining CCl 
commands, establishing auxiliary run-time systems, 
setting terminal characteristics, enabling lOGINs, 
starting system programs, and sending messages to 
terminals. The system manager can create control 
files that perform timesharing start-up automatically. 

Performs an orderly system shut down operation. 

Allows the system manager to: enable/disable lOG
INs, broadcast messages, kill, suspend, or detach a 
job; reset system date and time; enable and disable 
disk caching; mount and dismount private disks; add 
and remove system files; lock and unlock disks; 
clean disks; zero user accounts; control run-time 
systems; add and delete CCl commands; and add 
and remove system logical names. 

Sets terminal characteristics. 

Monitors system status, including active jobs, device 
assignments, auxiliary run-time systems and de
tached jobs. 

or Displays the system status on a VT05, VT50, or VT52 
DECscope and updates the status at given intervals. 

Reports and allows the system manager to change 
the priority, run burst and maximum size assigned to 
an existing job. 

Resource Management and Accounting 

DSKINT Initializes a disk for use on a RSTS/E system. 

REACT 

UMOUNT 

SYSCAT 

Creates or deletes user accounts on disks. 

Allows the user to mount or dismount disk packs and 
magtapes. 

Prints a current directory listing of any disk. 

95 



MONEY 

RSTSIE 

Extracts system accounting information for any se
lected account or all accounts; accounting informa
tion includes amount of CPU time used, the KCT 
factor (use of 1 K words of memory for one-tenth of a 
second), amount of connect-time, device usage 
time, and disk storage usage. 

Operator Services and Spooling Programs 

OPSER Establishes interjob communications on which the 
controlled (on-line) programs QUEMAN, SPOOL, 
BATCH and BACKUP depend. Provides the means 
by which an operator can interact with the controlled 
jobs. Defines a terminal (the operator services con
sole - OSC) on which OPSER broadcasts informa
tion. 

QUEMAN 

SPOOL 

BATCH 

Manages the queuing of jobs to spooling programs. 
Collects queue requests, maintains a file of all pend
ing requests and a table of all on-line spooling pro
grams. 

Handles requests made for line printer output and 
maintains communications paths with both OPSER 
and QUEMAN. 

Executes files containing batch job commands that 
have been queued on a batch device and maintains 
communication paths with both OPSER and QUE
MAN. 

Error Logging and Analysis 

ERRCPY Retrieves error-related data logged automatically by 
the RSTS/E monitor. Upon occurrence of a 
hardware error, monitor routines save the contents 
of the device registers and send a message to 
ERRCPY to retrieve the data and store it in a special
ly formatted disk file (the error logging file). 

ERRINT 

ERRDIS 

Initializes and validates the error logging file. 

Produces summaries of error-related data and for
mats them for output to a terminal or line printer. 
Allows the system manager to obtain a summary or 
detailed report of the error-related data preserved 
by the ERRCPY program; to zero the contents of the 
error logging file; or to obtain a list of potentially bad 
disk blocks. 

96 



ANALYS 

OOT 

RSTSIE 

Retrieves and reports on the critical contents of 
memory obtained when a system crash occurs. 

Allows the system manager to open a file, a device, 
or memory as an address space and examine or 
change word or byte contents. The user can also list 
the contents of system table locations. 

User Communication 

GRIPE 

PLEASE 

TALK 

Allows the general user to communicate comments 
about the system to the system manager. 

Communicates directly with the operator services 
program OPSER and, when OPSER is not running, 
sends text to the system console terminal (KBO:). 
Operators may run PLEASE to send commands to 
OPSER. Users who are not valid operators may run 
PLEASE to send text to the operator services con
sole (OSC). 

Enables users to broadcast messages to other users 
terminals. 

DEVICE AND FILE CONVENTIONS 
RSTS/E provides a device access structure that allows many users to 
share the resources of the system in a consistent manner. This section 
describes the device and file naming conventions, the public and pri
vate disk structures, and the account system used by RSTS/E. 

File Specifications 
The file specification for any user-identifiable collection of data is 
completely described by some or all of the following information: 

dev: [proj, progjfilnam.ext< prot> loption(s) 

where "dev:" is a physical or logical device name, "[proj,prog]" is a 
user account number, "filnam" is a user-specified file name, ".ext" is a 
file name extension, "<prot>" is a file protection code and "Iop
tion(s)" is one or more file specification options. 

For non-file structured devices such as paper tape, line printer, or 
terminal devices, only the device designator is required in a file speci
fication. For file-structured devices such as disk, OECtape or magnetic 
tape, RSTS/E requires that the user at least specify a file name in 
addition to the device designator. File name extension, account num
ber and protection code all have system defaults, and need only be 
specified if the system default is not to be used to identify the file. 

97 



RSTSIE 

RSTS/E recognizes the following default extensions: 

.B2S B.ASIC-PlUS-2 source file 

.BAC 

.BAS 

.CBl 

.CMD 

.CTl 

.DAT 

.DIR 

.FOR 

.LOG 

.LST 

.MAC 

.OBJ 

.ODL 

.SAV 

.TMP 

.TSK 

WRK 

BASIC-PLUS compiled program (binary format) 

BASIC-PLUS source program file (ASCII format) 

COBOL source program file (ASCII format) 

Indirect command input file for running a system 
. program 

Batch control file containing batch commands 

Data file 

Directory file 

FORTRAN source program file (ASCII format) 

Batch output log file 

Listing file 

MACRO source subprogram file (ASCII format) 

Compiled or assembled object program file (binary 
format) 

Overlay Description Language input file 

Executable program file (binary format) 

Temporary file created by a system program 

Executable program file (binary format) 

Utility program work file 

The account number field (containing the project and programmer 
numbers) identifies the owner of the file. If it is omitted, the owner is 
assumed to be the current user. This field is meaningful only for disk 
and magtape files; it has no significance for DECtape files or files on 
non-file structured devices. 

98 



RSTSIE 

The account number can be represented by special characters to 
indicate special system or user-defined accounts. For example, use of 
the $ character (dollar sign) in the project-programmer field indicates 
that the file is stored under the system library account ([1 ,2]), where all 
standard utility programs are stored. Other special account number 
characters are: 

% 

& 

# 

@ 

Account [1,3] or installation-defined account 

Account [1,4] or installation-defined account 

Account [1,5] or installation-defined account 

Account [n,O] where "n" is the current account pro
ject number 

Assignable account 

The accounts associated with the !, % and & characters can be 
changed during system installation. The # character is unique because 
the system interprets it according to the account under which the user 
is running. For example, if the user is running under account [10,20] 
and specifies the # character, the system interprets it to mean account 
[10,0]. This feature allows each project on the system to have its own 
library of files. 

When creating or renaming a file, a protection field can be specified. 
Files can be protected against reading, writing, and deleting for three 
classes of users where distinctions are made on the basis of the pro
ject and programmer number of the user attempting to access the file. 
The three classes of users are: 

owner 

project group 

others 

the individual user 

all users having the same project number as the 
owner (termed the owner's project group) 

all other users not in the owner's group 

The protection code assigned to a file consists of a selected sum of the 
following numbers: 

Read protect against owner 

2 Write protect against owner 

4 Read protect against owner's project group 

99 



RSTSIE 

8 Write protect against owner's project group 

16 Read protect against all others 

32 Write protect against all others 

64 Executable program; can be run only 

128 Program with temporary privileges (normally occurs 
only when file's protection includes <64» 

For example, in creating a compiled BASIC-PLUS file, a default pro
tection code of <124> is supplied. This permits only the owner to 
access the file, since 124 = 64 + 32 + 16 + 8 + 4. 

However, when any of the above protection codes are combined with 
code 64, they may take on different meaning. If code 64 is combined 
with code 1, for example, the new meaning is "Read/Write protected 
against owner." 

A file specification option or options may be included as the final 
element of the specification. These options may specify the size to 
which a disk file is pre-extended, the minimum number of contiguous 
disk blocks forming a cluster, and the read/write mode in which the 
file's data is passed to the device driver. 

System Accounts and Libraries 
RSTS/E systems have three system accounts that are integral to the 
operation of the system and have auxiliary accounts for more efficient 
operation of the system. The MFD account is used on the system 
device and other disk devices in the system to control system access. 
The system library account is used by the RSTS/E system to manage a 
library of generally available and restricted use system programs and 
message and control files. A third special system account contains 
RSTS/E Monitor files and routines which are critical to the operation of 
the system. 

Of particular interest to the system manager is the accounting infor
mation maintained on each user account in the MFD on the system 
device. This accounting information is normally accessed through the 
system accounting utility programs. The system manager or privileged 
users can also access and change this information in BASIC-PLUS 
using the SYS monitor functions. Table 5-2 summarizes the account
ing information maintained in the MFD. 

100 



RSTSIE 

Table 5-2 Account Information Stored in the MFD on the System 
Device 

TYPE 

Identification 

DESCRIPTION 

Project-program
mer number 

Password 

Accumulated Usage CPU time 

Connect time 

Kilo-core ticks 

Device time 

EXPLANATION 

Account number 
under which a user 
logs in and creates 
files. 

Password required 
to gain access to the 
system. 

Processor time the 
account used to 
date 

Number of minutes 
the user has been 
connected to the 
system via a termi
nal or remote line. 

Core use factor. 
One KCT is the 
usage of 1 K words 
of memory for one 
tenth of a second. 

Peripheral device 
time the account 
has used. 

Disk Storage Quota Number of 256-
word blocks the 
user is allowed to 
retain at logout time. 

Privileged Capabilities and System Operation 
Privilege is a special condition for a user job. With privilege, a job has 
capabilities not available to other, non privileged jobs. These capabili
ties are: 

• unlimited access on the system 

• ability to designate privileged programs 

• use of privileged aspects of system programs 

101 



RSTS/E 

• use of privileged SYS system functions and the PEEK function 

A job has privilege under one of the following conditions: 

• It is a logged-out job (a job without an account). 

• It is running under a privileged account. 

• It is running a privileged program. 

A logged-out job has privilege because the system must perform cer
tain privileged operations to log a job in to the system. The privilege 
remains in effect as long as the job remains logged out. 

A job running under a privileged account has privilege. A privileged 
account is one whose project number is 1. The system library account 
[1,2) is an example of a privileged account. Such a job running under a 
privileged account has permanent privilege. The privilege remains in 
effect until the job is logged out or the job changes to a non privileged 
account (one whose project number is not 1). 

A privileged program is an executable file with a protection code of 
<192> (the sum of the privileged protection <128> and the compiled 
file protection <64» or greater. A job running such a privileged pro
gram has temporary privilege unless it is running under an account 
which has permanent privilege. The job gains the temporary privilege 
when it runs a privileged program. The privilege remains until the 
pogram exits or until the program drops its temporary privilege. 

This last type of privilege is necessarily temporary because users of 
both privileged and non privileged accounts may be able to run a privi
leged program. If the privilege were not temporary, an unexpected 
halt in the job would leave the system vulnerable to unwarranted 
tampering. 

A temporarily privileged job can rely on the normal protection mecha
nisms built into the system. Uncler programmed control, the job can 
either permanently or temporarily relinquish (drop) its temporary pri
vilege. This ability allows a job to perform privileged operations selec
tively. For example, a job could set itself up initially USing privileged 
capabilities and then drop its privilege permanently because further 
processing does not require privilege. Alternatively, a job could tem
porarily drop and later regain its temporary privilege depending on the 
type of processing required. 

The following paragraphs summarize privileged capabilities. 

Unlimited Access 
No file in the RSTS/E system can be protected against a privileged 
job. A privileged job can create and delete files under any account 

102 



RSTSIE 

number on any disk. Such unlimited access does not generate the 
normal PROTECTION VIOLATION error. 

Ability to Designate Privileged Programs 
A program is privileged when it is an executable file and has a protec
tion code of <192> or greater. Only the system manager or other 
users running under privileged accounts can create or modify 
privileged programs. 

Use of Privileged Features of System Programs 
If a program is designated privileged and is not protected against 
execution, any user can run the program with temporary privilege. 
Temporary privilege means that system operations normally reserved 
to a user of a privileged account can be executed while running under 
a nonprivileged account. 

The ability to designate a program as privileged allows the system 
manager to extend use of privileged functions to non-privileged users. 
For example, the program TTYSET allows general users to change 
characteristics of their terminals. Such an action is a privileged system 
function executable only by owners of privileged accounts. With tem
porary privilege, however, execution of the function by the owner of a 
non privileged account does not generate the normal PROTECTION 
VIOLATION error. 

The same TTYSET program additionally allows a privileged user to 
change characteristics of other terminals. A check is built into the 
program to ensure that a user attempting to change the characteristics 
of a terminal other than his own is indeed a permanently privileged 
user. In effect, the execution of some privileged functions is made 
available to the nonprivileged user but other privileged features are 
available only to those users logged into the system under privileged 
accounts. 

USER INTERFACE 
This section describes the system facilities available to the general 
user, including the system and installation-defined commands, the 
system utility programs and the batch processing commands. 

System and Installation-Defined (CCl) Commands 
The RSTS/E system commands issued by the user at a terminal are 
easy-to-use English words or abbreviations. The system accepts both 
long and short command formats for inexperienced and experienced 
users. It responds with understandable statements and, if a command 
does not supply complete information, prompts the user for remaining 
data. 

103 



RSTSIE 

RSTS/E system commands include the following: 

Table 5-3 lists the standard system commands. 

Table 5-3 RSTS/E System Commands 

Login/logout Commands 

HELLO These commands allow the user to log in to the sys-
LOGIN tem by specifying an account number and password. 
LOG The system also notifies the user what job number is 
I assigned, whether any other users are logged into 
ATTACH, ATT the system under the same account, and what, if any, 

jobs are running detached under the account. The 
user can choose to attach to a detached job. If the 
user is already logged in and issues a HELLO com
mand, the user can change accounts or attach to 
another job without logging off the system. 

BYE Allows the user to log off the system. Checks the 
user's disk quota to ensure that the user does not 
exceed the limit allowed by the system manager. 
Closes and saves any files remaining open. 

Device Assignment Commands 

ASSIGN 

DEASSIGN 

REASSIGN 

Allows the user to reserve a device for use by a sin
gle job, associate one or more logical names with a 
particular .device, assign a specific account to the 
assignable account number "@," or change the de
fault protection code given to files created under an 
account. 

Allows the user to release a device or all devices 
previously reserved for user by a job, cancel a logi
cal name for a device, or cancel the association 
between the @ account and a specific account. 

Transfers the control of a particular device to anoth
er job. 

Program Execution and File Manipulation Commands 

RUN 

RUNNH 

Executes a specified compiled program. If the pro
gram does not exist as a compiled program, RUN 
loads the BASIC-PLUS source program into the job 
area, compiles and runs it. 

Executes the program currently in the job area. 

104 



CaNT 

CCONT 

RSTSIE 

Restarts execution of the program currently in the 
user's job area where it was interrupted (either by a 
STOP statement in the program or a CTRLlC issued 
from the terminal). 

Same as CaNT but detaches job. 

In addition to the standard commands, some system programs can be 
run by typing a unique system command called a Concise Command 
language (CCl) command. CCl commands allow a user to enter one 
command that runs a system utility and specifies a single command 
for the utility to execute. The number of CCl commands which can be 
defined varies from system to system, depending on the number of 
"small buffers" configured into the system. An average system prob
ably includes a fairly standard set of CCl commands for certain 
RSTS/E utility programs. The system manager has the option of freely 
adding to, deleting from, or modifying the standard set of CCl com
mands. 

The precedence of eCl commands is above that of RSTS/E com
mands and BASIC-PLUS immediate mode statements. As a result, the 
system manager can control the use of a command or immediate 
mode statement. For example, the system manager could define a 
CCl command named BYE that performs certain operations before 
allowing a user to log off the system. As another example, the system 
manager could define a PRINT command that performs operations 
different from those of the BASIC-PLUS immediate mode PRINT 
statement. The CCl command has no effect on a BASIC-PLUS state
ment preceded by a line number since numbered lines can contain 
only valid BASIC-PLUS statements. 

The user types the Cel command and the program command on one 
line and enters it to the system. For example, the user can run the PIP 
system utility to print a copy of a file on the line printer in either of two 
ways: 

1. RUN $PIP 

*lP:=FllE 

*tc 

The user issues the RUN command for the PIP pro
gram stored in the system library account ($ = [1,2)). 

PIP requests a command by printing "*". The user 
issues the request to print a copy of FILE on the line 
printer. When PIP finishes the request, it prints 
another "*,, to prompt another command. 

The user types a CTRLlC to terminate PIP and re
turn to system command level. 

105 



READY 

2. PIP lP:= 
FilE 

RSTSIE 

The system prints READY on the terminal to indicate 
that it is ready to accept a system command. 

The user issues the CCl command PIP to run the 
PIP program and issues the request to print a copy 
of FilE on the line printer. 

READY When PIP finishes executing the request, the system 
prints READY on the terminal to indicate that it is 
ready to accept a system command. 

Although CCl commands are installation dependent, DIGITAL defines 
a standard set of commands which are listed below. Note that the 
UMOUNT system program is designed to be run only through the 
MOUNT and DISMOUNT CCl commands. 

CCLCommand 

ATTACH 
BYE 
CREATE 
DISMOUNT 
DIRECTORY 
EDIT 
HEllO 
HELP 
lOGIN 
MOUNT 
PIP 
PLEASE 
QUEUE 
SET 
SYSTAT 
UTllTY 

Associated Program 

lOGIN 
lOGOUT 
EDIT 
UMOUNT 
DIRECT 
EDIT 
lOGIN 
PIP 
lOGIN 
UMOUNT 
PIP 
PLEASE 
QUE 
TTYSET 
SYSTAT 
UTllTY 

In addition to the system commands and CCl commands, RSTS/E 
supports the following special control character commands: 

CTRLlC 

CTRLlO 

CTRLlS 

CTRLlQ 

CTRLlU 

Stops any current program execution and returns 
the system to command mode. 

Suppresses or enables output to the user terminal. 

Suspends output on a terminal until a CTRl/Q is 
received. 

Resumes output interrupted by a CTRLlS. 

Deletes the current line entered. 

106 



RSTSIE 

CTRUZ Used as an end-ot-file character. 

CTRUR Retypes current terminal input line. 

General System Utility Programs 
In addition to the system management utility programs, RSTS/E in
cludes several utility programs available to the general user. These 
programs include system information and terminal utility programs, 
file utility programs, and special service programs. Like the system 
management utilities, they are stored in the system library account 
and are called and executed by issuing the RUN system command or, 
if it is available, the appropriate CCl command. 

General system utilities include the following: 

System Information Programs 

SYSTAT 

QUOlST 

MONEY 

GRIPE 

TTYSET 

INUSE 

Provides current system information concerning job, 
device, and buffer status. This includes identifying 
the active jobs in the system, the accounts under 
which they are running, their size, their associated 
keyboard if attached, and their current activity. It al
so identifies which devices are assigned and to 
which job they are assigned. 

Provides current system information, including the 
number of free blocks remaining on the system 
structure, the number of blocks used by an account, 
the number ot free blocks remaining in an account, 
and its disk quota. 

Prints the current account status, including the 
amount of CPU time, connect time, kilo-core ticks 
and disk blocks used. 

Allows the user to communicate comments to the 
system manager. 

Allows a user to establish terminal characteristics for 
the terminal. The user can call a macro command 
that establishes the standard characteristics for a 
selected type of terminal or select an individual com
bination of characteristics. 

Prints the message "IN USE" at a terminal to allow a 
user to leave the terminal momentarily. 

107 



RSTSIE 

File Manipulation Programs 

EDIT 

PIP 

COpy 

BACKUP 

DIRECT 

FILCOM 

Allows the user to create or modify text or program 
files. 

Allows the user to transfer files from one device to 
another, merge files, delete files, zero a device direc
tory or list a device directory. 

Copies all the information on a disk, DECtape or 
magtape device. 

This comprises a package of programs which allow 
the user to preserve and recall files stored under one 
or more user accounts by transferring multiple files 
from the private or public disk structure to a private 
disk, a DECtape or a magtape. 

Prints directories of selected file-structured devices. 

Compares two text files line by line and prints any 
differences found. 

Special Service Programs 

MAC Assemble MACRO-11 source code into object for-
MACRO mat. MAC operates under the RSX-11 run-time sys

tem; MACRO operates under the RT -11 run-time 
system. 

LINK Links object modules produced by FORTRAN or 
MACRO into an executable image which runs under 
the RT -11 run-time system. 

TKB Builds an executable image by linking object mod-
(Task Builder) ules produced by the MAC assembler or language 

processors other than FORTRAN. The resulting task 
image runs under the RSX run-time system specified 
by the user. 

QUE Creates jobs that are to be executed by spooling 
programs such as BATCH and SPOOL. It also lists 
pending requests and kills pending requests. 

RUNOFF Generates a formatted listing of a text file containing 
special RUNOFF text format commands. 

Batch Processing 
The capability to execute a batch of commands allows the user to 
submit jobs to be run without terminal dialog. Batch processing is 

108 



RSTSIE 

particularly useful in executing large data processing operations for 
which interactive requirements are not a factor. 

Batch input can be submitted from standard job control files on a 
random access file-structured device or from an 1/0 device such as 
the card reader. Such input consists of elements of the batch control 
language and is collectively referred to as a batch stream. It is possible 
to execute multiple streams simultaneously by running multiple copies 
of the BATCH program. The capability to run more than a single batch 
stream is controlled by the system manager. 

To request the running of a batch job, the user runs the library pro
gram QUE and specifies the batch control file or files as in the follow
ing example: 

RUN $QUE 
QUE Vnnnn - RSTS Vnnnn 
#Q BA:BAT JOB=FILE1,FILE2,FILE3.DAT 
# 

Or, if QUE is available as a CCL command: 

QUE BA:BATJOB=FILE1,FILE2,FILE3.DAT 

The user normally queues a batch job to device BA:. The job and log 
files in this example will be named BAT JOB, and the files FILE1.CTL, 
FILE2.CTL, and FILE3.DAT will be concatenated to form the batch 
control file. The log file BAT JOB.LOG will be printed after the job is 
complete. 

The BATCH command set consists of the following control com
mands: 

$JOB 

$EOJ 

$BASIC 

$RUN 

$CREATE 

$DATA 

$EOD 

$DELETE 

Marks the beginning of a job and assigns a job 
name. 

Marks the end of a job. 

Calls the BASIC-PLUS compiler to compile a source 
program. 

Executes a specified program. 

Creates a file consisting of data in the input stream. 

Marks the beginning of an input stream. 

Marks the end of an input stream. 

Deletes a specified file. 

109 



RSTSIE 

$COPY Copies a specified file. 

$PRINT Prints a specified file on the line printer using the 
spooler. 

$DIRECTORY Produces a directory listing. 

$MESSAGE Logs a message on the system console terminal. 

$MOUNT Requests system operator to logically mount a de
vice. 

$DISMOUNT 

Data Formats 

Cancels a logical device assignment and requests 
operator to dismount a device. 

Under BASIC-PLUS, RSTS/E allows users to store data in any of three 
formats. 

STRING 

INTEGER 

FLOATING 
POINT 

A sequence of ASCII characters treated as a unit. 
One ASCII character is stored in one byte and 
strings are normally variable length. 

A number in the range -32768 to +32767. Integers 
are stored in two bytes in 2's complement represen
tation. Integer operations provide economies in 
space as well as increases in processing speed over 
floating-point operations. 

A number approximately in the range of 10-38 to 1038 • 

Floating point numbers can be stored either in 2-
word format, which allows up to seven decimal digits 
of precision, or 4-word format, which allows up to 17 
decimal digits of precision. 

To perform decimal calculation on a system having 4-word floating 
point numeric storage, the user has an option to scale the numbers 
stored in the system. The user can specify the number of decimal 
places in fractional numbers by use of the SCALE system command. 

With the scaled arithmetic feature, the scale factor can be set to an 
integer value between 0 and 6. The system uses the scale factor to 
preserve the accuracy of fractional numbers to the selected number of 
decimal places. The value 0 is used to disable the scale factor, and 
allow the system to perform calculations using standard double preci
sion floating point arithmetic. 

110 



RSTSIE 

With a scale factor between 1 and 6 in effect, the system, upon input of 
a floating point number, internally moves the decimal place the select
ed number of places to the right and rounds it to an integer. The 
system performs all subsequent calculations with the floating point 
integers and, in turn, translates the result of each arithmetic operation 
into a floating point integer with the selected scale factor. On output 
the system moves the decimal point to the left of the selected number 
of places and passes the result to the output format routines. 

Scaled arithmetic conversion thus avoids the loss of precision inher
ent in representing fractional numbers in binary notation, since the 
system can represent the integer accurately in floating point format. 

File Access Techniques 
Under BASIC-PLUS, RSTS/E provides three methods of file access: 

Formatted For standard sequential 1/0 operations. 
ASCII 

Virtual Arrays For random access of large data files. A virtual array 
is stored on disk and can contain string, integer and 
floating point matrices. 

Record 1/0 Allows the user to have complete control over I/O 
operations. 

Formatted ASCII data files are the simplest method of data storage, 
involving a logical extension of the BASIC-PLUS PRINT and INPUT 
statements. The INPUT statement allows data to be entered to a run
ning program from an external device, for example; the user's key
board, a disk, DECtape, or paper tape reader. The PRINT statement 
causes the output of a specified string of characters to a selected 
device. 

The PRINT-USING statement allows the user to control output format
ting. A special set of formatting characters allows the user to format 
strings and numeric fields with tabs, special characters and punctua
tion. For example, the user can format check amounts with asterisk-fill 
for protection. 

The RSTS/E virtual array facility provides the means for a BASIC
PLUS program to operate on data structures that require fast random 
access processing yet are too large to be accommodated in memory 
at one time. To accomplish this, RSTS/E uses the disk file system for 
storage of data arrays, and maintains only portions of these files in 
memory at any given time. 

All references to virtual arrays are ultimately located via file addresses 

111 



RSTSIE 

relative to the start of the file. No symbolic information concerning 
array names, dimensions, or data types is stored within the file. Thus, 
different programs may use different array names to refer to the data 
contained within a single virtual array file. 

Virtual arrays are stored as unformatted binary data. This means that 
no 110 conversions (internal form to ASCII) need to be performed in 
storing or retrieving elements in virtual storage. Thus, there is no loss 
of precision in these arrays, and no time wasted performing conver
sions. 

Any data element in a virtual array is completely contained within a 
single element (256 words) of disk storage. This restriction has no 
effect on integers and floating-point items, where the size of data items 
is fixed (1-word integer, 2- or 4-word floating point numbers), but does 
limit the maximum length of a virtual string to 512 characters (512 
bytes). The number of data elements stored in each disk segment is a 
function of the size of each element. 

Strings in virtual storage occupy pre-allocated space in the virtual file, 
and thus differ from strings in memory, where space is allocated 
dynamically. A disk segment containing virtual strings can be consid
ered to be a succession of fields, each of the maximum string length. 
When a virtual string is assigned a new value, it is stored left-justified 
in the appropriate field. If the new string value is shorter than the 
maximum length, the remainder of the field is filled with zeros. When 
the string is retrieved, its length is computed as the maximum string 
length minus the number of zero-filled bytes. 

The third type of 110, record 110, permits a program to have complete 
control of 110 operations. Record 110 is the most flexible and efficient 
technique of data transfer available under BASIC-PLUS, although it is 
less simple to use than formatted ASCII 110 or virtual array 1/0. 

Input and output to record 1/0 files is performed by the BASIC-PLUS 
GET and PUT statements. These statements allow the user to read or 
write specific blocks (physical records) of a file, where the block size is 
dependent on the type of device being accessed. For example, disk 
file blocks are always 512 bytes long, while records from a keyboard 
device are one line long, where a line is delimited by a carriage return 
or similar terminating character. With disk files, the program has the 
capability of performing random access 110 to any block of the file. 
Furthermore, using record 1/0 operations, the user can create a logi
cal organization for file formats by controlling record length. 

Normally, the system permits only one user at a time to have write 
privileges on any given file, to prevent loss of data if two users try to 

112 



RSTSIE 

write the same block of a file. However, in certain applications (for 
example, sales order-entry applications) it might be normal for several 
users to be updating a single master file. For this reason, a special 
UPDATE option is available with RSTS/E Record I/O operations that 
permits multiple users to have write access to a file while guarding 
against simultaneous writing of a single physical record. In this case, 
write privileges are gained on a record-by-record basis, and no two 
users can have write access to the same record simultaneously, al
though multiple users can open the file for write operations. 

Logical Disk Structures 
Access to all executable code and to system and user data on the 
RSTS/E system is accomplished through a logical structure of files. 

The logical disk structure is divided into two types: public and private. 
The file structure on a disk, whether it is designated public or private, 
is the same. 

A public disk is a disk on which any user can create files. Every user 
has an account on a public disk. There is always at least one public 
disk on the system, which is called the "system disk." All public disks 
together on a system are called the "public structure" because the 
system itself treats all of the public disks together as a unit. For exam
ple, when a program creates a file in the public structure, that file is 
placed on the public disk with the most space available. This is done to 
ensure proper distribution of files across the disks in the public struc
ture. The actual determination of which disks on a particular system 
are public and which are private is left to the system manager. 
Therefore, this allocation will vary from system to system. 

The system disk contains the system code. Language processors and 
the library of system programs are contained on the public structure. 
Storage of active user jobs which are temporarily swapped out of 
memory are in swapping files, at least one of which is on the system 
disk. When a system includes one or more fixed head disks in its 
configuration, it is frequently advantageous to put some swapping files 
on a fixed head disk. Remaining space on the system disk and all 
space on other public disks is available for general storage of user 
programs and data files. 

Any remaining disk drives in the RSTS/E disk structure can be devot
ed to private disk packs or disk cartridges. A private disk is one that 
belongs to a few user accounts, conceivably to a single user account. 
Files can be created only under these accounts, and can be read (or 
written) by other users only if the protection code of the file permits. A 
user who does not have an account on a private disk cannot create a 
file on it. 

113 



RSTSIE 

Private disks are always referenced by a physical or logical device 
name, for example, "DK1:" for the RK05 disk drive unit 1, or "CREDIT:" 
for the device assigned the logical name CREDIT. The public structure 
is normally referenced by default; when no device name is given, the 
system assumes the public structure. It also has the specific name 
"SY:". The system will not allow two files of the same name to exist in 
the public structure for a single user. 

All public disks must be physically on-line and logically mounted 
whenever the system is running and must be accessible to all users 
during timesharing operations. Private disks can be logically mounted 
and dismounted and interchanged as needed during timesharing op
erations. 

Control of and access to files in the RSTS/E system is accomplished 
by two structures called a Master File Directory and a User File Direc
tory. A Master File Directory, or MFD, exists on each disk initialized for 
use on the RSTS/E system. The MFD is treated as an account on the 
disk, has a project-programmer number [1,1], and catalogs other ac
counts on the disk. The MFD on the system disk is a special case, 
since it maintains a catalog of the accounts which can be used to log in 
to the system. MFD accounts on other disks contain entries of ac
counts which can create files on that disk. Any user gains access to 
any file on a private disk if the protection code of the file permits. 
However, only those users whose accounts are entered in the MFD of 
the private disk can create files on the disk. 

A user File Directory, or UFO, exists for each account under which files 
are created. The UFO contains accounting and retrieval information 
for each file stored under that account. A UFD for an account on a 
public disk is not created until a file is created under that account on 
that disk. 

SYS SYSTEM FUNCTIONS AND THE PEEK FUNCTION 
SYS system function calls allow a user program written in BASIC
PLUS to perform special liD functions, to establish special character
istics for a job, to set terminal characteristics, and to request execution 
of special monitor operations. The function calls are available in the 
BASIC-PLUS and BASIC-PLUS-2 languages. They are system depen
dent and their format allows a variable number of parameters through 
the use of concatenated strings of binary values. 

There are twelve SYS functions. With one exception, all the functions 
can be called by nonprivileged user programs. A special SYS function 
can be used to issue calls to FIP, the file processor. SYS calls to FIP 
allow the user to select a FIP function. Some of the FIP functions can 
be called only by privileged user programs. 

114 



RSTSIE 

The twelve SYS functions are listed below: 

Cancel CTRLlO Cancels the effect of the user's typing a 
CTRLlO on a specified terminal. 

Enter tape mode Disables the terminal echo feature (useful 
when reading a paper tape with the low 
speed teletypewriter paper tape reader). 

Enable echoing Reverses the effects of an enter tape mode 
function call or a disable echoing function 
call. 

Disable echoing Prevents the system from echoing informa
tion typed on a specified terminal. For ex
ample, information such as a password is 
not displayed but is accepted as input by 
the system. 

Enable delimiterless Allows less than a full line to be accepted as 
character input mode input from the terminal. Normally, the sys

tem waits until a line terminated by a car
riage return, line feed, form feed, CTRLlD 
combination or escape character has been 
typed before accepting input. In delimiter
less character mode, one or more charac
ters typed at the terminal are passed im
mediately to the program by the next 
keyboard input request statement without 
waiting for a delimiting character. 

Exit to Editor with no Exits from the program but does not clear 
prompt message the program from memory, does not print a 

prompting message and does not close 
files. Thus, this exit allows the user to con
tinue running the program. 

Get core common Allows a program to extract a single string 
from a data area loaded by another pro
gram previously run by the same job. The 
data area is called the core common area. 

115 



Put core common 

RSTSIE 

Allows a program to load a single string in a 
string common data area called core com
mon. This string can be extracted later by 
another program, running under the same 
job and called by the CHAIN statement. This 
function allows a program to pass a limited 
amount of information when a CHAIN state
ment is executed. 

Exit and clear program Clears the current program from memory 
and returns control to the user's private 
run-time system. Optionally, transfers con
trol to a specified run-time system and es
tablishes it as the job's private default run
time system. Cancels all type-ahead. Re
turns information on last open file. 

Call to FIP Causes a dispatch call to the system file 
processor. 

Cancel all type-ahead 

Return information on 
last opened file 

Allows a program to clear all unsolicited in
put from a terminal's buffers. This is partic
ularly useful for screen-oriented applica
tions where the echoing of unsolicited input 
would ruin the visual effect of "painted" 
templates. 

Allows a program to determine the device 
and account on which it is stored, or to de
termine where the most recently opened file 
resides. 

FIP calls allow the user program to perform a variety of file, device, job 
and system operations. Nonprivileged user programs can issue the 
following FIP function calls: 

Monitor Information Calls 

Read Accounting Data Reports the following accounting data for 
the program's account: 

Account number - project number, pro
grammer number 
CPU time - amount of processor time used 
KCT use - one KCT (kilo-core tick) is the 
use of 1 K words of memory for one-tenth of 
a second 

116 



Get Monitor Tables 

Return Error Message 

Device Assignments 

RSTSIE 

Connect time - amount of time the termi
nal has been connected 
Device use time - amount of time spent 
using devices excluding the public disks 
Disk storage - number of disk blocks allo
cated 
Logout quota - number of disk blocks al
lowed to retain at logout time 

Reports Monitor information such as the 
number of configured terminals, maximum 
number of jobs, address of the memory al
location table, address of the job status ta
ble, etc. 

Extracts the error message text corres
ponding to an error code. 

Assign/Reassign De- Reserves an I/O device for use by a job, if it 
vice is available. Reassign transfers device con

trol to another job. 

Deassign a Device Releases a device to the device pool for use 
by other jobs. 

Deassign all Devices Releases all devices previously assigned to 
ajob. 

Directory and File Control Calls 

Filename String Scan 

Directory Lookup on 
Index 

Determines whether file naming syntax is 
valid. For example, it can check whether a 
given file name is valid. 

Searches for and reports a directory entry 
by its index position in the directory. 

Magtape 
Lookup 

Directory Searches for and reports a directory entry 
on a magnetic tape device. 

Disk Directory Lookup 

Disk Wild Card 
Directory Lookup 

Searches for and reports a directory by 
filename entry on a disk device for a speci
fied file. 

Searches for and reports directory entries 
on a disk device for all files with (a) speci
fied character(s) occurring in the file name 
or extension. 

117 



Job Control Call 

CTRLlC Trap Enable 

Communications Call 

Send a Message 

RSTSIE 

Allows a program to control processing 
when a CTRLlC is typed on the terminal. 

Allows a job to send a message to an eligi
ble receiving job. 

FIP calls that can be used by privileged programs are: 

Monitor Information Calls 

Read or Reset Ac- Allows a program to reset accounting data 
counting data for any job after reading the data. 

Accounting Dump Allows a program to dump accumulated ac
counting data. 

Change Date and Time Changes the date and time values main
tained by the system. 

Job Control Calls 

Change Password or 
Quota 

Change priority, run 
burst or maximum size 

Set Special Run Priori
ty 

Lock/Unlock Job in 
Memory 

Drop and Regain 
(Temporary) Privileges 

Allows a program to change a user's pass
word or logout disk space quota. 

Allows a privileged user to give a running 
job an increased or decreased chance of 
gaining ru n time in relation to other running 
jobs, and to determine how much CPU time 
the job can have if it is compute bound. 

Allows a program to raise the priority of a 
job slightly above that of other jobs in its 
priority class. 

Prevents unnecessary swapping by forcing 
the job executing the call to remain in mem
ory. The call eliminates swapping time 
between run bursts. 

Allows an executable program to either 
temporarily or permanently drop temporary 
privileges. A program normally issues this 
call after it has used temporary privilege to 
set itself up. If a program temporarily drops 
its temporary privilege, it can use this call to 
regain the privilege. 

118 



Create Job 

Kill Job 

Login 

Logout 

Detach 

RSTSIE 

Creates a new job and causes it to run a 
specified program. 

Terminates a job under program control. 

Logs a job in to the system. 

Logs out a job that was initiated by a user at 
a terminal. 

Dissociates the calling job or another speci
fied job from its terminal. This frees the ter-
minal for other use and makes the noninter
active job immune from interruption by 
someone typing a CTRLlC at the terminal. 

Reattach Attaches a detached job to a terminal. 

Set Terminal Charac- Performs the same functions as the system 
teristics program TTYSET. Allows a user to set lower 

case, baud rate, scope operation, etc., on a 
specified terminal. 

System Control Calls 

Set Logins 

Enable Logins 

Disable Logins 

System Shutdown 

Broadcast 

Force Terminal Input 

Sets the number of allowable logins to a 
specified number. 

Sets the number of log ins allowed to the 
maximum number possible. 

Sets the number of logins allowed on the 
system to one. If no jobs are active on the 
system, one user can log in. Once one user 
is logged in, no other users can log in to the 
system. The exception is the console termi
nal, from which it is possible to log in de
spite having the number of logins restricted. 

Logs the current (and only) job off the sys
tem and bootstraps the initialization code 
from the system disk. 

Allows the user program to print a message 
on another user's terminal. 

Allows the user program to force data entry 
on another user's terminal. The forced data 
is seen as input by the system. 

119 



File Management Calls 

Create User Account 

Delete User Account 

Change File Statistics 

Set Disk Access 

Clean a Disk 

Communication Calls 

RSTSIE 

Allows the user program to create an entry 
in the MFD on a disk for an account. 

Allows the user program to remove a MFD 
entry for an account on a disk. 

Allows the program to change a file's crea
tion date or time or date of last access in the 
UFD entry for the file. 

Allows tile program to logically mount or 
dismount a disk pack and to lock or unlock 
a disk pack (allow or prevent access). 

Rebuilds the Storage Allocation Table on a 
disk. 

Declare a Message Re- Notifies the system that an eligible receiver 
ceiver job is ready to receive messages. The sys-

tem sets up a message queue and relays 
messages sent from other jobs when the 
program asks for a message. 

Remove a Receiver Notifies the system that a receiving job is no 
longer eligible to receive messages. 

The PEEK function allows a privileged user to examine any word loca
tion in the monitor part of memory. The program can examine words 
in small or large buffers, in the resident portion of the file processor, 
and in the low core and tables section of memory. The function does 
not allow a user program to examine the contents of another user's 
program. 

The PEEK function is normally used to examine either addresses re
turned by Get Monitor Table calls or addresses of fixed monitor loca
tions. 

120 



RSTS/E SYSTEM SUMMARY 

Is 

RSTSIE 

• General purpose timesharing 

• High performance timesharing BASIC 

• Interactive environment 

• Multi-language 

• Batch processing 

• Basis of most commercial applications 

Is not 

• Real-time 

• High volume transaction processing 

• Block mode application terminals 

Includes Data Management/Utilities 

• RMS-11 

• SORT-11 

• DATATRIEVE-11 

• DMS-500 

Languages 

• BASIC-PLUS 

• BASIC-PLUS-2 

• COBOL 

• FORTRAN IV 

• MACRO-11 

• RPGII 

• DIBOL-11 

121 



122 



CHAPTER 6 

REAL-TIME MULTI-PROGRAMMING SYSTEMS 
RSX-11M (V3.1)AND RSX-11S (V2.1) 

OVERVIEW 
RSX-11 M is the primary PDP-11 real-time operating system. It 
supports multi-tasking, dynamic memory management, multiple pro
gramming languages, interactive program development and a wide 
range of equipment interfaces. Task scheduling in RSX-11 M is event 
driven, in contrast to systems which use a static scheduling mecha
nism to determine a task's eligibility to execute. RSX-11S, a subset of 
RSX-11 M, provides a dedicated execute-only environment for moni
toring and controlling many real-time processes concurrently. 

FEATURE TOPICS 

• Functions and Features 
- Common RSX-11 Operating System Concepts 
- Multiprogramming 
- Priority Scheduling 

• System Organization 
- RSX-11 M Executive and Memory Structures 

• RSX-11S System Components 

• System Conventions 

• Devices 

• File Structures 

• File Specifiers 

• RSX-11 MCR Commands (Table 6-1) 

• Indirect Files (Command Files) 

• System Directives 

• File Control Services (FCS) 

• RMS-11 Record Management Services 

• System Utility Programs 

• RSX-11 M System Summary 

123 



RSX-11M AND RSX-11S 

FUNCTIONS AND FEATURES 
RSX-11 is a unique family of compatible real-time multiprogramming 
operating systems for the PDP-11 computers. The RSX-11 family in
cludes RSX-11 M, a compact, efficient operating system, and RSX-
11 S, a sma", execute-only operating system for dedicated application 
environments. The RSX-11 operating systems comprise a compatible 
hierarchy. RSX-11S is a memory-based proper subset of RSX-11M, 
fully compatible internally. A program written to execute as a task 
under RSX-11 S wi" execute under RSX-11 M without change. 

RSX-11 M includes an executive, MCR services, FCS or RMS file sys
tem, and a complete set of system utility programs. Under RSX-11 M, 
programs can be written in MACRO, FORTRAN IV or FORTRAN IV
PLUS, COBOL-11, BASIC-11, or BASIC PLUS II. 

RSX-11 M is a multi-user system. More than one terminal user can 
interface with the Monitor Console Routine (MCR) services simulta
neously. An MCR facility allows users to create a file containing execu
table commands to control common sequences of operations. The 
MCR facility in RSX-11 M systems also allows the user to create indi
rect command files using a procedure control language to effect a 
multi-stream batch capability. 

RSX-11S requires a host RSX-11M, RSX-11D or VAX system for 
program development and system generation. Tasks can be written in 
MACRO, FORTRAN IV, or FORTRAN IV-PLUS, assembled or com
piled, subsequently linked on the host system, and then transported to 
an RSX-11S system for execution. The minimum RSX-11S system 
includes an executive (with incorporated device drivers) and a special 
FCS that contains no support for file-structured devices. The user can 
also add a subset of RSX-11 M's MCR services if the hardware configu
ration includes a terminal. If on-line task loading is desired, the user 
can include an On-line Task Loader (OTL) utility. If the user wants to 
save a system image for subsequent re-booting, the user can include 
the System Image Preservation (SIP) utility. 

Since RSX-11 S is a memory-only system, it does not support a file 
system, non-resident tasks, task checkpointing, dynamic memory al
location or program development. It does, however, support data stor
age on a" devices supported by RSX-11 M. Its purpose is to provide a 
run-time environment for the execution of tasks on a sma" system with 
a very modest complement of peripherals. 

RSX-11 M runs on any of the PDP-11 processors except the LSI-11. 
The minimum system requires a console terminal and either one of the 
larger disks plus a magnetic tape system, or an RK05 disk system with 
a secondary storage device. Without a Memory Management Unit, the 

124 



RSX-11M AND RSX-11S 

system can support between 16K and 28K words of memory. With 
memory management, memory can range between 24K and 124K 
words or up to 1920K words with a PDP-11 170. At least 24K of memory 
is required for concurrent applications execution and program devel
opment. A program or shared data area may be anywhere from 32 
words in size to as large as the system memory size minus the size of 
the operating system. 

The minimum configuration for an RSX-11S system is a PDP-11 
processor (including the LSI-11) with at least 8K words of memory and 
one load device. At least 16K words are required for on-line task 
loading or the execution of tasks written in FORTRAN IV-PLUS. With a 
Memory Management Unit, memory can expand up to 124K words or 
1920K words with a PDP-11 /70. 

The operating systems support a broad range of peripherals including 
card readers, line printers, fixed-head disks and a variety of laborato
ry, industrial control, and communications equipment. Note that al
though the maximum configuration for an RSX-11S system is the 
same as that for an RSX-11M, RSX-11S is a memory based system 
and does not support disks or magnetic tape as file-structured de
vices. 

COMMON RSX-11 FAMILY OPERATING SYSTEM CONCEPTS 
The RSX-11 family of operating systems is designed to provide a re
source-sharing environment ideal for multiple real-time activities. The 
basic facilities that the RSX-11 family provides for handling multiple 
requests for services while maintaining real-time response to each 
request are: 

• multiprogramming 

• priority scheduling 

• contingency exits 

• power-fail shutdown and auto-restart 

In addition, RSX-11 M provides: 

• disk based operation 

• checkpointing 

• dynamic memory allocation (optional) 

The basic unit of work which these operating system facilities service 
is called the task. A task consists of one or more programs written in a 
source language such as MACRO or FORTRAN, assembled or com
piled into an object format, and then built into a task image by the 
linker utility called the Task Builder. In addition to the normal linkage 

125 



RSX-11M AND RSX-11S 

functions of combining object modules or creating overlays, the Task 
Builder sets up the basic task attributes that determine the task's 
resource requirements and relationship to other tasks in the system. 
The significant task attributes that affect a task's operation in a real
time multiprograming environment are: 

• Partition - the section of memory where the task will reside when it 
executes. 

• Priority - the task's relationship to other tasks competing for sys
tem resources. 

• Checkpointability - the task's ability to be swapped out of memory 
when it is not executing to make room for a task of higher priority 
that is ready to run. 

Once a task is built, it can be installed in the system and executed. 
Task installation simply registers a task's attributes with the system. 
The task is not in memorx, nor is it in competition for system re
sources. An installed task can be put in active competition for system 
resources by the operator or by another active task in the system. 

When an installed task is activated, the system will allocate necessary 
resources, bring the task into memory for execution, and place it in 
competition with other active tasks. Task installation is the basis for 
efficient task operation. An installed task uses very little memory 
resource; yet, when the task is needed to service a real-time event, it 
can be introduced into the system quickly since its basic parameters 
are already known to the system. 

Tasks can also share code and data among themselves through the 
common partition facility. A common partition is made accessible to 
the system and to tasks by installing the common partition and the 
tasks which intend to use it. 

The following paragraphs describe how task execution is handled by 
the RSX-11 systems. 

Multiprogramming 
Multiprogramming is the concurrent execution of two or more tasks 
residing in memory. In a single processor, only one task can have 
control of the CPU at a time. When that task does not need CPU time 
(for example, when it is waiting for input from a terminal), another task 
that needs CPU time can execute. In the RSX-11 family, the multipro
gramming of tasks is accomplished by logically dividing available 
memory into a number of named partitions. Tasks are built to execute 
out of a specific partition, and all partitions in the system can operate 
in parallel. 

126 



RSX-11MAND RSX-11S 

I n general, RSX-11 systems can have two kinds of partitions: system 
controlled and user controlled. System controlled partitions are in
tended for the execution of tasks where the user wishes the system to 
implicitly handle the allocation of memory. User controlled partitions 
are intended for the execution of tasks where the user wants to handle 
the allocation of memory. 

A system controlled partition is dynamically allocated by the system to 
contain as many tasks as will fit simultaneously in the partition. Tasks 
are allocated a contiguous region in the partition, and are relocated 
using the hardware Memory Management Unit. The Memory Manage
ment Unit provides the facilities necessary for memory management 
and task relocation and protection. Systems using the Memory Man
agement Unit are called mapped systems because the hardware al
lows the system to map virtual memory addresses into direct physical 
addresses. Only mapped RSX-11 M systems can have system con
trolled partitions. 

A user controlled partition is allocated to only one task at a time. The 
user has complete control over system activity in this type of partition. 
As a result, it provides an ideal environment for a real-time task's 
execution. 

In RSX-11 M or RSX-11 S systems, a user controlled partition can be 
subdivided into as many as seven non-overlapping subpartitions. The 
subpartitions occupy the identical physical memory occupied by the 
main partition. Tasks built to execute in the subpartitions can execute 
in parallel. Tasks cannot, however, be resident in a main partition and 
its subpartitions simultaneously. If a main partition is occupied, the 
subpartitions can not be. All subpartitions can have tasks residing in 
them; therefore, up to seven potentially parallel task executions can 
exist within a pre-empted user-controlled main partition. The goal of 
subpartitioning is to reclaim large memory areas when a task 
requiring a main partition is no longer active. 

Furthermore, RSX-11 M and RSX-11 S systems can be mapped or un
mapped systems. If the hardware configuration does not include a 
Memory Management Unit, the RSX-11 M system is an unmapped sys
tem. If a Memory Management Unit is available, the RSX-11 M or RSX-
11S system can be a mapped system. Mapped systems can have both 
system controlled and user controlled partitions. Unmapped systems 
can have only user controlled partitions. 

From the operator's point of view, almost no differences exist between 
mapped and unmappped RSX-11 systems. One difference exists, 
however, in installing tasks into a partition. In unmapped systems, a 
task is linked to be installed and run in a partition with a specific base 

127 



RSX-11M AND RSX-11S 

address. It can not run in any partition whose base address is not the 
same. In mapped systems, a task can be installed into any partition 
large enough to contain it. 

Mapped RSX-11 M or RSX-11 S systems provide automatic memory 
protection. The memory area assigned to a task is protected from 
other tasks executing in the system. Each task has an absolute ad
dress range in which to execute. A task can reference and alter memo
ry only within that specific task area which it owns. 

Priority Scheduling 
Task scheduling in the RSX-11 family is primarily event-driven, in con
trast to systems which use a time slice mechanism for determining a 
task's eligibility to execute. The basis of event-driven task scheduling 
is the software priority assigned to each active task. A task's default 
priority is set when the task is built. It can be altered once it is installed 
by an MCR command from the console. Priorities can also be changed 
dynamically from within a task. 

Tasks are run at a software priority level ranging from a low of 1 to a 
high of 250. The executive grants central processor resources to the 
highest priority task capable of execution. That task retains control of 
the central processor until it declares a significant event. 

A significant event occurs when a task issues a system directive that 
implicitly or explicitly suspends a task's execution, or when an external 
interrupt occurs that can affect a task's execution. For example, a task 
can issue a directive that indicates it wants to wait until an I/O opera
tion is complete before contin.uing execution; a significant event is 
declared when the I/O operation is complete. A special system direc
tive also exists that allows a task to stimulate the event-driven task
scheduling mechanism explicity. 

When a significant event is declared, the executive interrupts the exe
cuting task and searches for a task capable of executing. The highest 
priority task that has all the resources it needs to run and can make 
use of the resources it needs will be the task that gains control of the 
CPU. 

Event flags are associated with significant events. When a significant 
event occurs, the event flag indicates the speCific cause of the inter
rupt. 

There are 64 event flags: 1 through 32 are local to the task, while event 
flags 33 through 64 are common to all tasks. A task can set, clear, test, 
and wait for any event flag or combination of event flags to achieve 
efficient synchronization between itself and other tasks in the system. 

128 



RSX-11M AND RSX-11S 

For example, upon completion of I/O requests, the executive normally 
sets a requester-indicated event flag and declares a significant event. 
If a requesting task instructs the system that it cannot run until an 
event flag is set (signaling task I/O completion), other eligible tasks of 
lower priority may run. In the scan of the active task list, a task that is 
awaiting I/O completion is bypassed until a significant event is 
declared, usually upon task I/O completion. 

Although event-driven scheduling is the primary RSX-11 task-sche
duling mechanism, it is not the only mechanism available. As an option 
during system generation, RSX-11 systems allow the user to supple
ment event-driven task scheduling with time-based round robin sche
duling for some or all tasks. 

In RSX-11M and RSX-11S systems, round robin scheduling is based 
on a priority range specified by the user during system generation. All 
tasks that have priorities within the specified range are scheduled 
using a time-slice algorithm. Tasks with higher or lower priorities than 
the specified range receive service in an event-driven manner. As a 
whole, the task range also receives service in an event-driven manner, 
but CPU time is shared among the tasks within the range. 

Traps 
Subroutines entered automatically as the result of an unanticipated 
synchronous condition (for example, an attempt to execute an illegal 
instruction) or as the result of an asynchronous condition anticipated 
or unanticipated (for example, an I/O completion) are called task trap 
routines. 

Task traps are another means of governing task execution. While sig
nificant events have a system-wide scope, traps are local to a task. 
Traps interrupt the sequence of instruction execution in the task and 
cause control to be transferred to a pre-specified point in the pro
gram. In this way, traps provide the ability to service certain conditions 
without continuously testing for their existence. 

When a task plans to use the trap facility, it must contain a trap service 
routine. This routine is automatically entered when the trap occurs 
using the task's normal priority and privilege. If a service routine is not 
supplied, the action taken by the executive is dependent upon the type 
of trap. 

There are two types of traps: Synchronous System Traps (SSTs) and 
Asynchronous System Traps (ASTs). 

SSTs provide a means of servicing fault conditions within a task, such 
as memory protection violation and floating point unit exceptions. 
These conditions, which are internal to a task and are not significant 

129 



RSX-11M AND RSX-11S 

events, occur synchronously with respect to task execution. In these 
cases, if an SST service routine is not included in the task, the task's 
execution is aborted. 

ASTs commonly occur as the result of a significant event and thus 
occur asynchronously with respect to a task's execution. A task does 
not have direct or complete control over when ASTs occur. ASTs are 
for information purposes, such as signifying an I/O completion that a 
task wants to know about immediately. 

If an AST service routine in not provided, a trap does not occur and 
task execution is not interrupted. 

It should be emphasized that SSTs are only initiated by the executive; 
no further action is taken. That is, they appear to the executive just like 
normal task execution. The executive, having initiated an SST, cannot 
determine that the task is in the SST service routine. Thus, an SST 
service routine can be interrupted by another SST or an AST. SSTs 
can be nested. 

SSTs are caused by activities internal to the task, while ASTs occur as 
a result of an external event. The executive keeps track of all ASTs, 
queues them first-in, first-out, and is aware that a task is executing an 
AST. 

Power Failure Restart 
Power failure restart is the ability of a system to smooth out intermit
tent short-term power fluctuations with no apparent loss of service and 
without losing data, all the while maintaining logical consistency within 
the system itself and the application tasks. Power failure affects abso
lute response time and peak load capacity differently from the facili
ties previously discussed, since it applies to the aggregate system 
performance rather than to increasing performance when the system 
is actually in operation. A system is not performing when it is shut 
down, and if the executive can reduce the shutdown periods with 
power failure restart, aggregate performance is increased. 

1. When power begins to fail, the processor traps to the executive 
which stores all register contents. 

2. When power is restored, the executive again receives control and 
restores the previously preserved state of the system. 

3. The executive then informs any tasks that have requested power 
failure restart notifications through the Asynchronous System Trap 
mechanism that a power failure has occurred. These tasks can 
then, if required, make the restorations of state they deem neces
sary. 

130 



RSX-11M AND RSX-11S 

4. The executive schedules all device drivers that were active at the 
time the power failure occurred at their powerfail entry point. Dri
vers have the option of always being scheduled on power recovery, 
or of being scheduled only when the driver has outstanding I/O. 

These drivers can then, if required, make those restorations of state 
(for example, repeating I/O requests) that they deem necessary. This 
approach is quite efficient because the repeating of I/O is placed 
nearest the source most likely to contain instructions on how to make 
the restoration. 

Disk-Based Operation (RSX-11 M) 
Except in some dedicated applications, the total code in a system 
always exceeds the available main memory. A disk-based system 
uses random access peripherals both as an extension of executive 
main memory and as the principal data interchange medium. The use 
of disk as the system data storage medium provides the base for 
program development facilities, a common file system, check pointing, 
and rapid initiation of tasks. The Task Builder makes it possible for the 
user to bu ild overlaid tasks and call these overlays from disk. The total 
effect is to extend significantly the achievable peak load while still 
maintaining system response time requirements. 

Task Checkpointing (RSX-11 M) 
Effective multiprogramming is achieved when many tasks reside in 
memory Simultaneously, spending some of their residency waiting for 
I/O completion, waiting for synchronization with other tasks, or being 
unable in some way to continue execution. While one or more tasks 
are waiting, another task can utilize the central processor's resources. 

This multiprogramming scheme normally applies only to memory-re
Sident tasks. Once a task is in memory, the executive allows it to run to 
completion in a multiprogrammed fashion even if its memory is re
quired for the execution of a higher priority, non-resident task. How
ever, if it is desirable to free memory for execution of a higher priority 
task, a task can be declared checkpointable when it is task built or 
installed. 

A checkpointable task can be swapped out of memory when a higher 
priority task requests the partition in which it is active. Checkpointing 
is another way of making it possible to load the processor with as 
much work as it can possibly absorb, and still meet its real-time com
mitments. 

In RSX-11 M systems, task priority normally determines which tasks 
can checkpoint other tasks. A checkpointable task currently active in a 
partition, but of a lower priority than another task requesting the parti
tion, can be pre-empted and rolled-out to disk. Later, after the higher 

131 



RSX-11M AND RSX-11S 

priority task has completed its execution, the lower priority task can be 
rolled-in and restored to active execution at the pOint where it was 
previously interrupted. 

The system extends the checkpoint capability by disregarding the 
priority of a task in cases where the task currently active in a partition 
is waiting for terminal input. A task requesting a partition can check
point a task of higher priority if that task is waiting for terminal input. 

Dynamic M emory Allocation (RSX-11 M) 
Dynamic memory allocation is an extension of the RSX-11 multipro
grammed partition structure. Dynamic memory allocation allows the 
system to respond rapidly to changing requirements for system re
sources. 

RSX-11 M allows the user to load and execute more than one task in a 
system-controlled partition. If a task loaded into a system-controlled 
partition does not fill the entire partition, another task can be loaded 
into the space either above or below it, as long as the remaining 
contiguous physical space is large enough to contain it. 

The executive keeps an internal list of the available areas of memory in 
the system-controlled partitions, together with a list of all tasks re
questing to run in those partitions. Tasks are brought in from the disk 
on a priority basis and are loaded into the first available memory area 
in the partition. The executive continues to load tasks as long as there 
is sufficient contiguous physical memory available in the partition. 
When a task terminates, the memory it occupies becomes available 
again. 

If the dynamic memory allocation option is included in an RSX-11 M 
system, the user can also include the automatic memory compaction 
option. Normally, a task can not be loaded into a system-controlled 
partition unless there is sufficient contiguous space for it between 
other tasks loaded in the partition. When a task terminates, it can leave 
a space which is insufficient to load another task, but, considered 
together with other unused areas, can be used to contain a task. If 
automatic memory compaction is included in the system, the tasks in a 
system-controlled partition will be moved to obtain a large enough 
area in the partition to load another task. 

SYSTEM ORGANIZATION AND COMPONENTS 
The following sections discuss the basic design elements of RSX-11 M 
and RSX-11 S operating systems. In RSX-11 systems, total system 
structure is essentially dependent on the decisions that the user 
makes during system generation. The user defines the system or
ganization and chooses the executive services appropriate for the 

132 



RSX-11M AND RSX-11S 

particular applications environment. This procedure is referred to as 
system generation (SYSGEN). 

There are three basic functional uses for which memory is allocated. 
The amount of memory allocated to each function is specified by the 
user during system generation. The the functional memory spaces are 
for: 

• the RSX-11 executive and system dynamic memory 

• the partition space for tasks and shared commons 

RSX-11 M and RSX-11 S systems are designed to provide the most 
efficient use of system resources during system operation. To be use
ful to a wide range of applications and still obtain maximum system 
performance for a given operating environment, RSX-11 MIS systems 
require the user to become reasonably involved in system generation. 

System generation for RSX-11 MIS systems provides the user with 
absolute control over system features and capabilities. Users con
cerned about size can eliminate the executive services that are not 
essential to a particular applicaton. 

RSX-11 M Executive and Memory Structures 
For RSX-11 MIS system generation, the user specifies the sizes and 
base addresses of the partitions, and selects the executive services 
and amount of dynamic memory needed for the particular application. 
System generation is performed in two phases: the first phase defines 
the hardware configurations and software options, the second phase 
builds the complete system. Some system generation parameters can 
be changed on-line, for example, partition configuration. If executive 
services are to be changed, however, the user must regenerate the 
system. 

RSX-11 M system generation requires the user to allocate partitions. In 
RSX-11 M systems, the user can define and delete partitions on-line. 
RSX-11 M systems have two kinds of shared commons: libraries and 
global common blocks. The shared commons require their own parti
tions, and are not loaded automatically when tasks require them. 
Commons are fixed and must be explicitly loaded before a task requir
ing them. 

MCR Command Buffer 
The MCR command buffer holds the data for a requested MCR func
tion task. The buffer is set up by the MCR dispatch task. The dynamic 
memory required for the buffer is returned to the pool after the GET 
MCR COMMAND LINE directive passes the command line to the MCR 
function task. 

133 



RSX-llM AND RSX-llS 

The RSX-11 M basic executive organization is illustrated in Figure 6-1. 
The individual regions are explained below; most of the regions are 
directly affected by system generation parameters. 

Trap Vectors 
This region contains the hardware trap and interrupt vectors and re
quires 128 words. This region is expandable during system generation 
to a maximum of 256 words. 

System Stack 
Used for nesting interrupts and internal calls made by the executive. 
Forty words are required. 

System Common Data 
Contains pointer filled in during system generation. 

System Tables 
Contain the data used to control system operation. Included are parti
tion descriptions, the system task directory, and device tables. The 
total size of the table region is established by system generation con
figuration selections. 

Dynamic Storage Region 
The executive has continuing needs for temporary storage. Such 
storage is acquired, used, and returned to the available pool. If a given 
executive service requests dynamic storage, and it is unavailable, the 
executive will inform the user task, which usually waits for some stor
age to become available. The size of this region is important, for if it is 
too small, waiting periods will be induced; if it is too large, system 
effectiveness is lowered, since fewer tasks can fit in memory. The size 
of the region is a system generation parameter. 

134 



RSX-11M AND RSX-11S 

16K ~----------.., 

USER TASKS 

8K ~-------------~ 

FILE SYSTEM I 
TASK TERMINATION ROUT INE I 

MONITOR CONSOlE ROUTINE 

1-----------------i 

_ USER DEFINED 
PARTITIONS AREA 

EXECUTIVE SYSPAR 
_ PARTITION AREA (CAN 

BE MOVED DURING 
SYSTEM GENERATION) 

DYNAMIC STORAGE AREA _ CAN BE EXPANDED 
DURING SYSTEM 

1-------- GENERATION OR VIA 
AN MCR COMMAND 

TASK LOADER FOR I 
NON-RESIDENT TASKS ____ _ 

~ __ 5_Y __ ST_E~ ~B~_S __ ~ 
TERMINAL DRIVER 

LOADABLE DEVICE 
DR IVERS PART ITION 

DISK DRIVERS 

1----------------
EXECUTIVE SERVICES 

BASIC EXECUTIVE 

SYSTEM COMMON DATA 

~-------------~ 

SYSTEM STACK SPACE 

~--- ---- -------I 

TRAP VECTORS OL-___________ ~ 

--- DEVICE DRIVERS 
CAN BE ADDED 
DURING SYSTEM 
GENERATION 

Figure 6-1 Basic RSX-11 M Executive 16K Word System 

The Basic Executive 
The basic executive includes the code that controls the multiprogram
ming environment, performs task check pointing and power fail re
start, and handles system traps. During system generation, the user 
has the option of including or omitting the following services: 

• task check pOinting 

• task checkpointability during terminal input 

• Memory Management Unit support 

• dynamic memory allocation 

• automatic memory compaction 

• I/O rundown (automatic system clean-up after a task aborts and 
leaves files in an indeterminate state) 

135 



RSX-11M AND RSX-11S 

• asynchronous system trap support 

• external (user-written) MCR function support 

• task termination and device-not-ready messages 

• power failure recovery 

• GET PARTITION PARAMETERS directive support 

• GET SENSE SWITCHES directive support 

• EXTEND TASK directive support 

• GET TASK PARAMETERS directive support 

• ALTER PRIORITY directive support 

• SEND/RECEIVE directives support 

• Memory Management directives support 

• automatic install, request, and remove-on-exit support (RUN com-
mand option) 

• logical device assignment support 

• setting upper/lowercase conversion for terminal input 

• multi-user protection support 

• transparent terminal READ/WRITE support 

• RMS record locking 

• executive-level round-robin scheduling 

• executive-level disk swapping 

• user-written device driver support 

• executive debugging tool 

• panic/crash dump and system failure reporting 

• device error and timeout logging 

• loadable device drivers 

• ANSI magtape support 

• direct connect to user tasks of hardware interrupts directive 

The following processor options support can be included or omitted: 

• Floating Point Processor support 

• FIS support 

• programmable clock support 

• watchdog timer support 

• parity memory support 

136 



RSX-11M AND RSX-11S 

Executive Directive Services 
This region contains the service routines which respond to the direc
tives issued by users to request executive services. These programs 
make use of the basic executive. 

Device Drivers 
Three fixed drivers can be included in the basic 8K executive: 

• disk 
• cassette, DECtape, magnetic tape, line printer or floppy disk 

• terminal (basic DL 11 driver only) 

These are multi-unit drivers that can service up to the maximum 
devices controlled by the respective hardware interfaces. Drivers can 
be either fixed in memory with the executive or they can be loadable, 
allowing for more efficient memory use. 

Task Loader for Nonresident Tasks 
This loader is a task and operates out of its own partition. Thus, it can 
run in parallel with system and user tasks. The loader, which is device 
independent 

1. Loads tasks on initial load requests. 

2. Writes checkpointable tasks to disk when required. 

3. Returns previously checkpointed tasks to active competition for 
processor resources. 

File System, Monitor Control Routine (MCR) and Task Termination 
(TKTN) 
These three routines function as tasks. In the minimum system, they 
execute out of the same partition. 

As distributed, the RSX-11 M system generates a file system that runs 
in 2K words. The user has the option of building a larger file system 
with greater processing speed and increased function. 

Panic Dump and Crash Modules 
These two routines respond to system software failures, providing 
core dumps and selective analysis. They are not included (or shown) 
in the basic 8K system, but are mentioned because of their fundamen
tal importance in error analysis. Most program development systems 
(as opposed to dedicated on-line systems) will likely include these 
routines. 

In a 16K system with an 8K executive, the remaining 8K words are 
available for user task partitions. In 16K-word systems, partition defi
nitions cannot be altered without regenerating the system. In systems 
with more than 16K words of memory, the user can re-define partitions 

137 



RSX-11M AND RSX-11S 

on-line using an MCR console command. Figure 6-2 illustrates a typi
cal memory organization for a large mapped RSX-11 M system. 

124K 

34.5K 

26.5K 

22K 

20K 

o I 

USER TASKS 

LOAD ABLE DEVICE 

PRINT SPOOLER 
AND PMD TASK 

BIG FILE SYSTEM 

MCR AND TKTN TASKS 

DYNAMIC STORAGE 
REGION 

TERMINAL AND SYSTEM 
DISK 

DISK DRIVERS 

EXECUTIVES 
(INCLUDES ALL SERVICES) 

SYSTEM CONTROLLED 
-- GEN PARTITION 

-- DRVPAR 

__ PAR4K 

-- FCPPAR 

-- SYSPAR 

Figure 6-2 Memory Organization for a Large Mapped RSX-11 M System 

RSX-11S System Components 
RSX-11 S requires an RSX-11 M, RSX-11 D, or VAX system for system 
generation and program development. An RSX-11 S system is gener
ated from the RSX-11 M system using the standard system generation 
process. The maximum hardware and software configuration is the 
same as that of an RSX-11 M system with the exceptions of file system 
support, non-resident tasks, task check pointing, and dynamic memo
ryallocation. 

Since it is based on RSX-11M, RSX-11S enjoys most of the inherent 
features and generation capability of that system. For example, RSX-
11 S automatically supports all of the peripheral devices that RSX-11 M 
supports, including hardware features such as floating point proces
sors, parity memory, and memory management. All are selectable at 
system generation and can be included in an RSX-11 S system at the 
cost of memory use. 

The basic software building blocks for an RSX-11 S system are: 

1. The generatable features of the RSX-11 M Executive (2.5K to 4K) 

2. A special File Control Services (FCS) (1.25K) that contains no sup
port for directory devices. 

138 



RSX-llM AND RSX-llS 

3. All RSX-11 MilO device drivers 

4. Subset MCR (2K) 

5. On-line Task Loader (2.5K) 

6. System Image Preservation Program (1.5K) 

The minimum software system is an executive. The smallest executive 
that can be generated requires 2.5K words of memory. Services that 
are omitted from the 2.5K executive include: 

• address checking 

• Asynchronous System Traps (required for FORTRAN) 

• 1/0 rundown 

• task termination and device-not-ready notification 

• external MeR functions (user-written functions) 

• install, request, and remove-on-exit support 

• SEND, RECEIVE, GET TASK PARAMETERS, GET SENSESWITCH-
ES and GET PARTITION PARAMETERS directives 

• parity memory support 

• network support 

• all 1/0 drivers 

Although omitted from the minimum executive, these features can be 
generated into an RSX-11 S system at the cost of memory use. 

The minimum RSX-11 S software system must include the executive 
and the I/O device drivers. For example, two to four small 1/0 device 
drivers could be added to the minimum executive at the cost of an 
additional 1.5K words of memory. In an 8K word system, 
approximately 4K words woutd be available to application tasks. 

If operator communication is required, subset MCR can be included in 
a system at a cost of 2K of memory. In an 8K system this still leaves 
approximately 2K for application tasks. 

The On-Line Task Loader (OTL) can be included in an RSX-11S sys
tem if the on-line loading of tasks is desired. 

Tasks are created on a host RSX-11 M system, transferred to the load 
medium using RSX-11 M's File Exchange Utility (FLX), and then loaded 
into a running RSX-11 S system using OTL. The minumum size for OTL 
is 2.5K words. In 2.5K words, however, OTL supports only one load 
device. On-line task loading requires a 16K-word system, since ap
proximately 8.5K words will be required for system software (2.5 exe
cutive, 2K MCR, 1.5K device drivers, and 2.5K OTL). 

139 



RSX-11M AND RSX-11S 

The System Image Preservation Program (SIP) is an on-line utility task 
that provides the capability to save the image of a running system into 
a load device medium in bootstrapping format. The saved system can 
subsequently be restored by bootstrapping it from the load device 
medium. The minimum size for SIP is 1.SK words. In 1.SK words, it can 
support only one load device. 

The standard RSX-11 M File Control Services (FCS) record 1/0 pack
age contains a large amount of code to support file-structured de
vices. (RSX-11S contains no file support and this code is therefore 
unnecessary.) The special version of FCS provided with RSX-11 S is 
the standard FCS without the file support code. This provides a 
significant size reduction. 

SYSTEM CONVENTIONS 
To simplify operations, RSX-11 systems observe certain conventions 
with respect to devices, file structures, file naming, operator com
mands, and indirect files. 

Devices 
The RSX-11 systems support a variety of peripheral devices. They are 
referred to by a 2-letter name and an optional 1- or 2-digit unit number 
followed by a colon. For example, TT12: represents user terminal 
number 12. Peripheral devices can be referred to by mnemonics, by 
pseudo-device names, or, in task references, by logical unit numbers. 
In addition, RSX-11 M systems support logical device name assign
ments. 
Pseudo device names are associated with normal device mnemonics 
assigned by the system manager. They permit the system manager to 
dynamically determine the physical devices that will send or receive 
information. RSX-11 M supports the following pseudo devices: 

SY: 

TI: 

CL: 

CO: 

System device: indicates the device on which the 
system disk is mounted. 

Terminal interface: indicates the terminal with which 
a particular task is associated. Each terminal has a 
unique TI. The TI of each task is assigned to the 
requesting terminal. 

Control log: indicates the device normally used for 
the listing of files. The CL device is normally redirect
ed to the line printer. 

Console output: indicates the device by which the 
system can communicate with the system manager. 
The CO device is normally redirected to the system 
console. 

140 



RSX-11M AND RSX-11S 

Logical unit numbers (LUNs) provide the mechanism for programs to 
maintain device independence. The logical unit numbers used in a 
program can be assigned by means of device mnemonics to any avail
able peripheral device that performs the desired function. LUNS can 
be assigned by the programmer at task-build time, or by the task itself 
at run time. Because the system provides LUN assignments, it is not 
always necessary to assign a LUN to a task. Furthermore, LUNs can be 
changed by an MeR function for any installed, inactive, non-fixed task. 

RSX-11 M has an additional facility for associating a logical name with 
a physical device, called logical device assignment. Logical device 
assignments are a convenient way to associate logical names with 
physical devices. There are two types of logical device assignments: 
local and global. Local assignments apply only to commands and 
tasks initiated from the terminal on which the assignment was made. 
Global assignments apply to all commands or tasks. If a logical name 
is defined as both global and local, the local assignment overrides the 
global assignment. Logical device names can be the same as physical 
device names or can be any character string using the syntax for 
device names. 

File Structures 
RSX-11 M supports a common file structure for disk called Files-11. In 
addition, RSX-11 M supports ANSI Standard Level 3 format for single 
or multi-volume magnetic tape files. 

Files-11 is a general purpose file system that provides a facility for the 
dynamic creation, extension, and deletion of files on disk. It includes a 
scheme for volume and file protection which allows the owner of a 
volume or file to deny all access or certain kinds of access to all users, 
groups of users, or particular users in the system. This scheme for 
volume and file protection provides the key to the system protection, 
in that only users with access privileges are allowed access. 

A Files-11 volume is a collection of files which reside on a single disk. 
The system can directly address each file on the volume by means of 
file pointers which reside in the volume's directory files. 

Each Files-11 volume has two kinds of directory files that are used for 
file management the Master File Directory (MFD) file, and User File 
Directory (UFD) files. 

The Master File Directory (MFD) file is automatically generated by the 
file system when a volume is initialized as a Files-11 volume, and is 
used to store pOinters to all of the User File Directory (UFD) files on the 
volume. 

141 



RSX-11M AND RSX-11S 

User File Directory (UFO) files are created as needed, They are used to 
store pointers to all of the files belonging to, or associated with, the 
user whose account number (User Identification Code or UIC) corre
sponds to the UFO file name. 

All Files-11 files, whether MFO, UFO, or user files, have the same basic 
format. All files have a file header area, and one or more data area(s). 
Figure 6-3 illustrates the Files-11 file format. 

FILE HEADER AREA 

FILE OWNER FIELD (UIC) 

FILE NAME FIELD 
(FROM 1-9 ALPHANUMERIC CHARS.) 

FILE TYPE FIELD 

VERSION NUMBER FIELD 

FILE PROTECTION FIELD 

DATA POINTER FIELD(.) 

DATA AREA A POINTER 
1------------

DATA AREA B POINTER 
1-----------

) 
DATA AREA N POINTER 

DATA AREA A DATA AREA B 

) ~ 
Figure 6-3 Sample Files-11 File Structure 

The file header area contains all the pertinent information required by 
the file system to process the file. For the purposes of this introduc
tion, the user need be familiar with only the following fields: 

File Owner Field The file owner field contains the account 
number (UIC) of the user who created the 
file. 

142 



File Name Field 

File Type Field 

Version Number Field 

File Protection Field 

Data Pointer Field 

RSX-11M AND RSX-11S 

The file name field contains the name as
signed to the file when it was created. File 
names can be a maximum of nine alphanu
meric characters long. 

The file type field contains the mnemonic 
that identifies the file by its functionality; for 
example, FTN defines a FORTRAN source 
file. 

The version number field identifies the par
ticular version or generation of the file. 

The file protection field contains a code that 
describes who is allowed to access the file: 
system, owner, group, or world. It also de
scribes the type of access allowed; read, 
write, extend or delete. 

The data pointer field describes the physi
cal allocation of the file on the volume. Each 
data area pOinter describes a physically 
contiguous portion of the file. 

By establishing pointers to blocked data in the file's header area, as 
opposed to storing the data immediately following the file header, the 
system accomplishes two things: all files on the volume have the same 
structural format regardless of functionality; and all fragmented or 
non-contiguous areas of the volume can be put to use, that is, a file 
can be expanded merely by attaching another pOinter to a blocked 
data area in its file header. 

Users always address data in a file-relative manner. The translation of 
file-relative address into physical addresses is performed by the file 
system and is completely transparent to the user. 

File Specifiers 
Any system component that needs to refer to files does so using a 
standard file command string with the following general format: 

Output file specifications = input file specifications 

There can be several file specifications on either side of the equal sign. 
Optional switches are used to indicate desired operations other than 
default operations. File specifiers have the following format: 

dev:[uic ]fi lename. type;versionl switch 

where: 

143 



dev: 

[uic] 

filename 

type 

;version 

/switch 

RSX-11M AND RSX-11S 

is the physical device on which the volume contain
ing the desired file is mounted (for example DBO: or 
DK1:). 

is the User Identification Code that specifies the user 
file directory containing the desired file. 

is the name of the file. File names can be up to nine 
alphanumeric characters in length. File name and 
type are always separated by a period. 

is the designator distinguishing among various 
forms of files. For example, a FORTRAN source file 
might be named COMP.FTN, while the object file 
associated with that program might be named 
COMP.OBJ. 

is a number used to differentiate among versions of 
a file. For example, when a file is first created using 
the text editor, it is assigned a version number of 1. If 
the file is subsequently opened for editing, the editor 
keeps the original file for back-up and creates a new 
file with the same file-name and type designations, 
but with a version number of 2. 

is usually an optional qualifier. Switches are normal
ly used either to direct the execution of a task, or to 
qualify an input parameter. 

If any of the file specifier elements except the file name is omitted from 
the file specifier, the system can use a default value. A task can also 
establish defaults for a file. The system default for the device name is 
the system device. The default for the user file directory specification 
is the UFD that corresponds to the UIC under which the task is run
ning. The default for the version specification is the latest version 
number. For RSX-11 M systems, the defaults for the type specification 
vary according to the operation to be performed. The common set of 
file types is: 

.CMD 

.DAT 

.DIR 

.FTN 

An indirect file containing a list of task or MCR com
mands for a task. (In RSX-11 M the commands can 
also be MCR commands.) 

A data file, as opposed to a program file 

A directory file, for example, a UFD directory 

A FORTRAN source program 

144 



.lST 

.MAC 

.MAP 

.MlB 

.0Dl 

.0lB 

.SMl 

.STB 

.TSK 

.CRF 

.SYS 

RSX-11M AND RSX-11S 

A listing file 

A MACRO-11 source program 

A task builder memory allocation listing file 

A user macro library 

An overlay description file 

An object module library 

The system macro library 

A symbol table file 

A task image file 

A cross reference file that will be appended to the 
map file 

A system image file 

MCR Operator Commands and Terminal Control 
The Monitor Console Routine (MCR) is the terminal interface between 
the user and the RSX-11 operating system. In the system, terminals 
can have either of two functions: command or slave. The system does 
not accept any unsolicited input from a slave terminal; its I/O is com
pletely under task control. A command terminal is used to activate 
MCR and interface with the system using MCR system commands. 
The SET command can be used to characterize a terminal as a slave 
or command terminal. 

MCR's system commands enable the general user to perform the 
following functions: 

• gain access to the system 

• initiate and terminate execution of system or user programs 

In addition, the privileged user can perform the following additional 
functions: 

• adjust, modify, and control the system environment 

The privileged MCR user has complete control over the system's oper
ation. 

145 



RSX-11M AND RSX-11S 

In RSX-11M, the privileged characteristic is associated with certain 
terminals, as determined by the system manager initially during 
system generation and subsequently by setting terminal characteris
tics using the SET command. Non-privileged commands can be in
voked at any command terminal. Privileged commands can be in
voked only at privileged terminals. 

In RSX-11 M, the MC R task itself processes most of the standard MCR 
commands, but will call independent command tasks to process some 
commands. The MCR organization makes it possible for users to add 
operator console services to meet their application needs. 

The RSX-11 systems include four different kinds of MCR commands; 
initialization commands, informational commands, task control com
mands, and system maintenance commands. Table 1 lists the RSX-11 
MCR commands, and indicates the systems in which they are avail
able. 

Table 6-1 RSX·11 MCR Commands 

Initialization Commands 
COMMAND SYSTEMS 

BOOT M 

TIME M&S 

MOUNT M 

DISMOUNT M 

INITVOLUME M 

FUNCTION 

Boostraps a system that exists as a 
task image file on a file-structured 
volume. It provides a convenient 
means for terminating one system 
and starting another. For example, 
BOOT can be used for terminating 
a real-time system and starting a 
program development system. 

Lists the time and date maintained 
in the system clock calendar. A 
privileged user can change the 
time and date. 

Declares that a volume is logically 
on-line for access by the system. 

Declares that a volume is logically 
off-line and cannot be accessed by 
the system. 

Initializes a volume for use by the 
system. 

146 



RSX-11M AND RSX-11S 

COMMAND 

INSTALL 

SET 

UFO 

HELLO 

BYE 

SYSTEMS 

M 

M 

M 

M 

M 

Informational Commands 
COMMAND SYSTEMS 

ACTIVE TASK M & S 
LIST 

BAD M 

DEVICES M 

FUNCTION 

Installs a task in the system by 
making an entry in the System 
Task Directory; this allows the op
erator to subsequently run the in
stalled task. This function is per
formed by the On-line Task Loader 
utility in RSX-11 S systems. 

Allows the user to establish or alter 
a variety of parameters, including 
terminal device characteristics, 
command or slave terminal char
acteristics, and default UIC for a 
terminal. 

Creates a User File Directory on a 
volume and enters its name in the 
Master File Directory. 

Allows the user to log in to the sys
tem and be identified as a valid 
user. 

Logs a user off the system. The on
ly valid command that MCR recog
nizes after BYE is HELLO. 

FUNCTION 

Lists the active tasks in the system, 
indicating the tasks' current status, 
for example, task suspended, wait
ing for 1/0, etc. 

Locates any unusable blocks on a 
disk. 

Prints the symbolic names of all 
device units known to the system. 
Indicates if a device handler is re
sident, a volume is mounted, or to 
what device a symbolic device 
name is assigned. 

147 



RSX-11M AND RSX-11S 

COMMAND 

LUNS 

PARTITIONS 

TASK LIST 

HELP 

BRO 

SYSTEMS 

M 

M 

M&S 

M 

M 

Task Control Commands 
COMMAND SYSTEMS 

ALTER M 

FIX M 

UNFIX M 

ASSIGN M 

REASSIGN M 

REDIRECT M&S 

FUNCTION 

Prints a list of the physical device 
units and corresponding logical 
unit numbers for an indicated task. 
It is used to determine which physi
cal devices a task requires. 

Lists a description of each memory 
partition including partition name, 
base address and use. It also lists a 
description of each memory-re
sident sharable library and global 
command block. 

Lists a description of each task in
stalled in the system, including 
task name, version number, de
fault partition name, priority and 
size. 

Displays contents of HELP file. 

Broadcasts a message to one or a 
set of terminals. 

FUNCTION 

Allows the user to change the pri
ority of a task. 

Allows the user to fix a task in its 
partiton in memory. A fixed task 
gets faster response to requests 
for execution. (A function exists in 
OTL for RSX-11 S systems to fix a 
task when it is loaded). 

Frees fixed tasks from memory. 

Assigns a logical device name to a 
physical device. 

Reassigns a Logical Unit Number 
(LUN) from one physical device to 
another. 

Redirects all 110 requests from one 
physical device to another. 

148 



RSX-11M AND RSX-11S 

COMMAND 

LOAD 

UNLOAD 

RUN 

CANCEL 

ABORT 

SYSTEMS 

M 

M 

M&S 

M&S 

M&S 

CLQUEUE M 

RESUME M&S 

REMOVE M&S 

FUNCTION 

Makes a specified device driver re
sident in memory and ready to ho
nor 1/0 requests. 

Unloads a specified device driver 
from memory. 

Initiates the execution of an in
stalled task. An installed task can 
be started immediately, started a 
specified time from when the com
mand is issued, started a specified 
time from the next time unit, or 
started at an absolute time of day. 
A special option of the RSX-11 M 
RUN command allows the user to 
run a task that has not been in
stalled; when issued, the task is in
stalled, run and removed on exit. In 
all cases except the latter, the user 
can specify a reschedule interval 
for the task. 

Cancels any pending periodic re
scheduling for a task. 

Terminates execution of a speci
fied task. 

Continues execution of a previous
ly suspended task. 

Removes a task name from the 
system task directory (opposite of 
INSTALL). 

System Maintenance Commands 
COMMAND SYSTEMS FUNCTION 

SAVE M Copies the memory image of the 
system to the system disk so that a 
bootstrap can reload it and start up 
the system. (In RSX-11S systems, 
the System Image Preservation 
utility performs this function.) 

149 



COMMAND 

OPEN 

BRK 

RSX-11M AND RSX-11S 

SYSTEMS 

M&S 

M 

FUNCTION 

Allows the privileged user to exam
ine or modify a word in memory. 

Breaks to the Executive Debugging 
Tool (XDT). 

In addition to the MCR commands available to control system execu
tion, an RSX-11 system provides the following special terminal control 
characters: 

CTRLlC 

CTRLlZ 

CTRLlI 

CTRLlK 

CTRLlL 

CTRLlU 

CTRLlO 

CTRLlS 

CTRLlQ 

CTRLlR 

Activates MCR at a terminal. The system types the 
prompt "MCR>". Note that, unlike most other PDP-
11 systems, the RSX-11 family does not use CTRLlC 
to affect the execution of any currently running tasks 
other than MCR. 

Logical end-of-file; when typed in response to a 
prompt from most utility programs, CTRLlZ causes 
the program to exit. 

Causes a horizontal tab. 

Causes a vertical tab of four lines. 

Causes eight line feeds. 

Cancels the current input line. 

Enables or disables output to a terminal. 

Temporarily suspends output to the terminal. This 
feature enables users with high-speed terminals to 
fill the display screen, stop output with a CTRLlS 
and then continue with a CTRLlQ. 

Resumes printing of characters on the terminal from 
the point at which printing was interrupted using 
CTRL/S. 

Causes the system to reprint the current line entered 
in the terminal buffer and allows the user to view 
exactly what has been entered so far. 

Indirect Files (Command Files) 
An indirect file is a sequential file containing a list of commands. Rath
er than typing commonly used sequences of commands, the user can 

150 



RSX-11M AND RSX-11S 

type the sequence once and store it on a file using the Editor utility 
program. To execute the sequence, the user types an "at" sign (@) 
and then the command file name. The affected task locates the indi
rect file and executes the command it contains. 

There are two types of indirect files, indirect task command files and 
indirect MCR command files. 

The commands contained in an indirect task command file are task 
specific. They can be interpreted only by a specific task such as the 
MACRO assembler, the Task Builder, or another utility program. The 
indirect file is specified in place of the command line normally given to 
the task when it is run. For example, to give an indirect file to the 
MACRO assembler to execute, the user types: 

MCR>MAC@MDFIL.CMD 

which causes MACRO to read and execute the file CMDFIL.CMD for all 
of its commands. 

RSX-11 M supports an indirect command file processor for MCR com
mand processing. In this case, the indirect file contains commands to 
the MCR console interface. To execute a series of MCR commands 
using the indirect MCR command file processor, the user types the 
"at" sign followed by an indirect file's name in response to the MCR 
prompt. For example, to execute a series of MCR commands con
tained in the file name BEGIN.CMD, the user types: 

MCR>@BEGIN.CMD. 

In addition to the standard MCR commands, the RSX-11 M indirect 
command file processor can accept special commands that allow the 
user to control command file processing. These special commands 
provide the following capabilities: 

INITIATE PARALLEL TASK EXECUTION 
It is possible to request initiation of a task and not wait for the task to 
terminate before having the next command line processed. Normally, 
the indirect file processor passes a task initiation command line to 
MCR and then waits until the command is executed before continuing. 
In this case, however, the indirect file processor can initiate a task, 
pass a command string to it, and continue processing the indirect file 
command lines in parallel with the initial task's execution. 

WAIT FOR A TASK TO FINISH EXECUTION 
Indirect command file processing can be suspended until a particular 
task has terminated. 

TEST IF A TASK IS INSTALLED OR NOT INSTALLED 
A test can be made to determine whether a particular task is installed 

151 



RSX-11M AND RSX-11S 

in the system or not. If the task is installed, the remainder of the 
command line is ignored. 

TEST IF A TASK IS ACTIVE OR NOT ACTIVE 
A test can be made to determine whether a task is active or not. If the 
task is active, the rest of the command line is processed. If the task is 
not active, the rest of the command line is ignored. 

SUSPEND EXECUTION FOR A SPECIFIED TIME INTERVAL 
Indirect file processing can be suspended for a specified number of 
clock ticks, seconds, minutes, or hours. When the interval is exhaust
ed, indirect file processing continues at the point where it was 
interrupted. 

PROVIDE COMMENTARY 
Comments can be included in the command file. Comments are dis
played on the entering terminal and are convenient to provide expla
nation or to give instructions to the user who issued the command file. 

PAUSE FOR OPERATOR ACTION 
It is possible to suspend indirect file processing until the user at the 
entering terminal performs some action. The file processor prints a 
message on the terminal to notify the user. To continue indirect com
mand file processing, the user types a RESU ME command. 

ASK A QUESTION AND WAIT FOR A REPLY 
It is possible to print a message on the entering terminal, suspend 
indirect command file processing until input is received, and then set a 
specified symbol true or false depending on the input contents. If the 
symbol is not already definecj, an entry is made in the symbol table 
and its value set. 

DEFINE A SYMBOL 
A symbol can be defined or its value can be changed. A symbol can 
represent either a true or false value. When a symbol is first defined, a 
symbol table entry is made and set to a specified value. A symbol can 
have any alphanumeric name up to six characters long. 

TEST IF A SYMBOL IS TRUE OR FALSE 
The value of a symbol can be tested at the beginning of a command 
line. If the test is true, the rest of the command line is processed. If the 
test is false, the remaining part of the command line is not processed. 

TEST IF A SYMBOL IS DEFINED OR NOT DEFINED 
A test can be made to determine whether a symbol has been defined 
or not. If it is defined, the rest of the command line is processed. If is is 
not defined, the rest of the command line is ignored. 

DEFINE LABELS 
A command line in the command file can be labeled. 

152 



RSX-11M AND RSX-11S 

BRANCH TO A LABELED LINE 
Control can be transferred from one line in an indirect file to another 
line in an indirect file by an unconditional branch to a labeled line. A 
branch can transfer processing to a labeled line before the branch 
command line or after the branch command line. 

BRANCH TO A LABELED LINE ON DETECTING AN ERROR 
Control can be transferred from one line in an indirect file to another 
line if an error occurs. If the conditional branch on error line is pro
cessed, control is passed to a specified command line if one of the 
following errors is detected: undefined symbol reference, symbol ta
ble overflow, undefined label, or syntax error. This feature enables the 
user to gain control to clean up before aborting execution. 

COMBINED LOGICAL TEST 
Tests can be combined using Boolean AND and OR directives. In 
addition, an implied logical AND is effected if multiple tests are placed 
on the same line; the command on the line is executed only if all tests 
are true. 

MCR indirect files can reference other MCR indirect files. Up to four 
levels of indirect MCR command files can be specified. Each time a 
new level is entered, all symbols previously defined are masked out of 
the symbol table and only symbols defined in the current level are 
available. When control returns to a previous level, the symbols 
defined in that level are available again. 

RSX-11 M can execute multiple MCR indirect files simultaneously. 
Several users at MCR command terminals can initiate MCR indirect 
command file processing. This effectively provides multiple-stream 
"batch" processing in RSX-11 M systems. 

FILE CONTROL SERVICES 
RSX-11 file control services enable the user to perform record orient
ed and block oriented I/O operations and to perform additional func
tions required for file control, such as open, close, wait, and delete 
operations. To invoke FCS functions, the user issues macro calls to 
specify desired file control operations. The FCS macros are called at 
assembly time to generate code for specified functions and opera
tions. The macro calls provide the system-level file control primitives 
with the necessary parameters to perform the file access operations 
requested by the user. Figure 6-4 illustrates the file access operation. 

153 



RSX-11M AND RSX-11S 

I USER-ISSUED MACRO CALL I 
~. 

I FILE CONTROl SERVICES I 
~ l FILE CONTROl PRIMITIVES I 
! I PERIPHERAL DEVICE HARDWARE 

(e.g., DISK, TERMINAL) I 

Figure 6-4 File Access Operation 

FCS is a set of routines that is linked with the user program at task
build time from a resident system library or a system object module 
library. These routines, consisting of pure, position-independent code, 
provide a user interface to the file system, enabling the user to read 
and write files on file-structured devices and to process files in terms 
of logical records. 

Logical records are regarded by the user program as data units that 
are structured in accordance with application requirements, rather 
than existing merely as physical blocks of data on a particular storage 
medium. 

FCS provides the capability to writ~ a collection of data (consisting of 
distinct logical records) to a file in a way that enables the data to be 
retrieved at will. Data can be retrieved from the file without having to 
know the exact form in which it was written to the file. 

FCS thus provides a sense of transparency to the user so that records 
can be read or written in logical units that are consistent with an 
applications requirement. 

File Access Method 
RSX-11 supports both sequential and direct access to files. The se
quential access method is device-independent, that is, it can be used 
for both record-oriented and file-structured devices (for example, 
card reader and disk, respectively). The direct access method can be 
used only for file-structured devices. 

Data Formats for File-Structured Devices 
Data is transferred between peripheral devices and memory in blocks. 
A data file consists of virtual blocks, each of whicl"l may contain one or 

154 



RSX-11M AND RSX-11S 

more logical records. In FCS, a virtual block in a file consists of 512 
bytes. 

Records in a virtual block can be either fixed or variable in length. The 
first two bytes of a variable-length record contain a value defining the 
length of that record (in bytes), excluding the record length bytes. 

Virtual blocks and logical records within a file are numbered sequen
tially, starting with one. A virtual block number is a file-relative value, 
while a physical block number is a volume-relative value. For example, 
the first virtual block in a file is always virtual block number 1, but at 
the same time it could also be physical block number 156. 

Block I/O Operations 
The READ and WRITE macro calls allow the user to read and write 
virtual blocks of data from and to a file without regard to logical rec
ords in a file. Block I/O operations provide a very efficient means of 
processing file data, since such operations do not involve the blocking 
and deblocking of records within the file. Also, in block I/O operations, 
the user can read or write files in an asynchronous manner; control 
can be returned to the user program before the requested I/O opera
tion is completed. 

When block I/O is used, the number of the virtual block to be pro
cessed is specified as a parameter in the appropriate READ and 
WRITE macro call. The virtual block so specified is processed directly 
in a buffer reserved by the program in its own memory space. 

As implied above, the user is responsible for synchronizing all block 
I/O operations. Such asynchronous operations can be coordinated 
through an event flag specified in the READ and WRITE call. The event 
flag is used by the system to signal the completion of the I/O transfer, 
enabling the user to coordinate those block I/O operations which are 
dependent on each other. 

Record I/O Operations 
The GET and PUT macro calls are provided for processing record
oriented files. GET and PUT operations perform the necessary block
ing and deblocking of the records within the virtual blocks of the file, 
allowing the user to read or write individual records. 

In preparing for record I/O operations, the user program must specify 
the format of the records. For example, it must specify whether the 
records are fixed or variable in length, or whether records that are to 
be output to a carriage-control device are to contain carriage-control 
information, which can be either at the beginning of the record or 
embedded within the records. 

155 



RSX-11M AND RSX-11S 

For sequential access files, 1/0 operations can be performed for both 
fixed and variable length records. For direct access files, 1/0 opera
tions can be performed only for fixed length records. 

In contrast to block I/O operations, all record 1/0 operations are syn
chronous; control is returned to the user program only after the 
requested 1/0 operation is performed. 

Because GET and PUT operations process logical records within a 
virtual block, only a limited number of GET or PUT operations result in 
an actual 1/0 transfer, that is, when the end of a data block is encoun
tered. Therefore, all GET and PUT 1/0 requests will not necessarily 
involve a phYSical transfer of data. 

The File Storage Region 
The file storage region (FSR) is an area allocated in the user program 
as the working storage area for record 1/0 operations. The FSR con
sists of two program sections which are always contiguous to each 
other. The first program section of the FSR contains the block buffers 
and the block buffer headers for record 1/0 processing. The user 
determines the size of the area at assembly time. The number of block 
buffers and associated headers is based on the number of files that 
the user intends to open simultaneously for record 1/0 operations. 

The second program section of the FSR contains impure data that is 
used and maintained by FCS in performing record 1/0 operations. 
Portions of this area are initialized at task-build time, and other por
tions are maintained by FCS. This program section is intentionally 
isolated from the user to preserve its integrity. 

The size of the FSR can be changed, if desired, at task-build time. 

The data flow during record 1/0 operations is depicted in Figure 6-5. 
Note that blocks of data are transferred directly between the FSR 
block buffer and the device containing the desired file. The blocking 
and deblocking of record during input is accomplished in the FSR 
block buffer during output. Note also that FCS serves as the user 
interface to the FSR block buffer pool. All record 1/0 operations initiat
ed through GET and PUT calls are totally synchronized by FCS. 

Data Transfer Modes 
When record 1/0 is used, a program can gain access to a record in 
either of two ways after the virtual block has been transferred into the 
FSR from a file: 

156 



MOVE MODE 

LOCATE MODE 

DEVICE 

RSX-11M AND RSX-11S 

Individual records are moved from the FSR 
buffer (as shown in Figure 6-5). Move mode 
simulates the reading of a record directly 
into a user record buffer, thereby making 
the blocking and deblocking of records 
transparent to the user. 

The user program accesses records direct
ly in the FSR block buffer. Program over
head is reduced in locate mode, since rec
ords can be processed directly within the 
FSR block buffer. 

IMPURE 
DATA 

FCS 

Figure 6-5 Record 1/0 Operations 

Shared Access to Files 
FCS permits shared access to files according to established conven
tions. Two macro calls, among several available in FCS for opening 
files, can be issued to invoke these functions. The OPNS macro call is 
used specifically to open a file for shared access. The OPEN call, on 
the other hand, invokes generalized open functions which have shared 
access implications only in relation to other 1/0 requests then issued. 

OPNS allows several active read-access requests and one write-ac
cess request for the same file. OPEN allows multiple read-access 
requests for the same file, but does not permit concurrent write ac-

157 



RSX-11M AND RSX-11S 

cess. Note that shared access during reading does not necessarily 
imply the presence of read requests from several separate tasks. The 
same task can open the same file using different logical unit numbers. 

Spooling Operations 
FCS provides facilities at both the macro and subroutine level to 
queue files for subsequent printing. A task issues the PRINT macro 
call to the queue a file for printing on the system line printer. 

FCS Macros and Macro Use 
FCS includes four basic kinds of macro that simplify the user's inter
face to the system's file control primitives. The four kinds are: 

• initialization macros 

• file-process macros 

• command line processing macros 

• the CALL macro 

The initialization and file-processing macros are used to establish the 
data base description and the necessary temporary storage areas 
needed to perform I/O operations. The command line processing 
macros are used to dynamically process I/O commands entered from 
a terminal. The CALL macro is used to invoke file control routines. 

The initialization and file-processing macros set up the following 
structures to define the data base: 

• A file data block (FDB) that contains execution-time information 
necessary for file processing. It defines the basic characteristics of a 
file, i.e., record type, record, size, access privileges, etc. 

• A data set descriptor that is accessed by FCS to obtain the file 
name, type, version number, and location which are necessary to 
open a specified file. The data set descriptor is used when a pro
gram accesses a given set of known or pre-defined files. 

• A default file name block that is accessed by FCS to obtain default 
file information required to open a file. This is accessed when com
plete file information is not specified in the data set descriptor. It is 
used by programs written to access a general set of files. 

There are two types of initialization macros: assembly-time macros 
and run-time macros. Data supplied during assembly of the source 
program establishes the initial values in the FDB. Data supplied at 
run-time can either initialize additional portions of the FDB or change 
values established at assembly time. Furthermore, the data supplied 
through the file-processing macros can either initialize portions of the 
FDB or change previously initialized values. The user not only has a 

158 



RSX-11M AND RSX-11S 

broad range of control over defining the data base characteristics, but 
also has control over when the definitions are made. 

File processing macros also determine the way in which files are pro
cessed. These macro calls are invoked and expanded at assembly 
time. The resulting code is then executed at run time to perform the 
following operations: 

OPEN Opens and prepares a file for processing. 

OPNS 

OPNT 

OFID 

GET 

GETR 

GETS 

PUT 

PUTR 

PUTS 

READ 

WRITE 

DELETE 

WAIT 

PRINT 

Opens and prepares a file for processing; allows 
shared access to the file (depending on the mode of 
access). 

Creates and opens a temporary file for processing. 

Opens an existing file using the file identification 
provided in the filename block. 

Reads logical records from a file. 

Reads fixed-length records from a file in random
access mode. 

Reads records from a file in sequential access mode. 

Writes logical records to a file. 

Writes fixed-length records to a file in random mode. 

Writes records to a file in sequential mode. 

Reads virtual blocks from a file. 

Writes virtual blocks to a file. 

Removes a named file from the associated volume 
directory and deallocates the space occupied by the 
file. 

Suspends program execution until a requested 
block 1/0 is performed. 

Queues a file for printing on a special terminal or line 
printer. 

In summary, the file-processing macros allow the user to specify ran
dom access or sequential access to files, and perform block oriented 

159 



RSX-llM AND RSX-llS 

or record oriented file processing. In addition, the PRINT macro allows 
the user to spool files to a line printer or terminal device. 

The command line processing macros allow the user to access special 
routines available in the system object library. The Get Command Line 
(GCML) routine accomplishes all the logical functions associated with 
the entry of a command line from a terminal, an indirect command file, 
or an on-line storage medium. The Command String Interpreter (CSI) 
routine takes command lines from the GCML input buffer and parses 
them into appropriate data set descriptors required by FCS for open
ing files. 

The CALL macro allows the user to access a special set of file control 
routines. These routines allow a MACRO program to perform the fol
lowing operations: find, insert, or delete a directory entry, rename a 
file, extend a file, mark a temporary file for deletion, and delete a file, 
among other operations. 

RMS-ll RECORD MANAGEMENT SERVICES 
Digital Equipment Corporation's Record Management Services pro
vides a set of general purpose file handling capabilities. RMS-11 al
lows user-written application programs to create, access, and main
tain data files with efficiency and economy. 

RMS-11 's variety of file organizations and access modes gives the 
user the ability to choose those methods best suited to the application. 
RMS-11 files can be organized sequentially, relatively, and by the in
dexing method. Based upon these file organizations, RMS-11 records 
can be accessed in a number of ways: 

• Sequentially 

• Randomly by relative record number or by indexing on one or more 
keys or by a unique Record's File Address (RFA). 

• By dynamic access, a mixture of sequential and random access 
modes. 

• Directly by physical location of data. 

RMS-11 complements DBMS-11, DIGITAL'S data base management 
system, by providing file and record handling capabilities for those 
applications whose size and data structures do not suggest the need 
for central data administration and the complete data base manage
ment services of DBMS-11. Thus, DIGITAL customers are provided 
with a growth path from keyed access data management to data base 
management. 

RMS-11 includes a set of utility programs for the creation and 
maintenance of files, and a set of operating system routines through 

160 



RSX-11M AND RSX-11S 

which records are transmitted to and from user programs. Under 
RMS-11, records are regarded by the user program as logical data 
units that are structured and accessed in accordance with application 
requirements. As a result, programmers can retrieve data from a file 
without having to know the exact format and internal structure main
tained by operating system routines. Thus, the RMS-11 user has a 
sense of transparency with the file system interface because RMS-11 
handles much of the data buffering and shared access control respon
sibilities. Other major features of RMS-11 are: 

• Collections of record entries are organized by RMS-11 so that no 
pre-sorting is required in the creation of indexed files. 

• When new records are inserted into an indexed file, RMS-11 incre
mentally reorganizes the file, thereby retaining the ablility to access 
records efficiently and eliminating the need for overflow areas. 

• Support of both fixed length and variable length records furnishes 
efficient space utilization and access. Additional 
space/performance controls give the user flexibility in the configu
ration of buffer space and storage areas. 

• For applications that require data file organizations supporting ac
cess by one or more user-specified key values, RMS-11's file han
dling capabilities can be extended by adding the multi-keyed access 
option. This option provides both generic and approximate key 
searches to maximize data retrieval capabilities. 

• Concurrent access features enable data sharing in multi-user, multi
application environments, and reduce redundant data occurrences. 
System controlled record locks provide data integrity during con
current access. 

• Multi-level file private control provides protection against unauthor
ized data access. 

• Application programming is simplified through multiple high-level 
languages. 

• RMS-11 used with ANS-74 COBOL programs provides compatibility 
across systems for decreased training costs and maximum program 
portability. 

• RMS-11 includes a comprehensive set of utilities for file creation 
and maintenance. 

DEFINE: creates and defines the attributes of a file. 

DISPLAY: displays the attributes of a Single file or a group of files. 

CONVERT: provides for easy transfer and conversion of data from 
any specified input file to a given output file. 

161 



RSX-11M AND RSX-11S 

BACKUP: protects against the loss of data due to hardware failure 
or software error by creating a back-up copy on an alternate storage 
device. 

RESTORE: restores previously backed-up files to their original 
state. 

SYSTEM UTILITY PROGRAMS 
The RSX-11 M system provides a wide variety of system utility pro
grams. RSX-11 S provides two utility programs, the On-Line Task 
Loader and the System Image Preservation program. This section 
descri bes the RSX-11 M system utilities. 

There are two sets of system utilities: those used primarily for program 
development and debugging, and those used for general purpose file 
manipulation. The common set of program development utilities is: 

EDI and EDT Editors 
The editors are used to enter source programs or data files into the 
system and to modify them as needed. A large set of easy-to-use 
commands makes the editors effective program development tools. 
EDI is the traditional editor and EDT is the newer line-oriented editor 
which has video terminal features. 

SLP Source Input Program 
SLP is an editing program used to create and maintain source lan
guage files on disk. 

TKB Task Builder 
The task builder creates loadable memory images from assembled or 
compiled tasks. It links relocatable object modules and resolves any 
references to global symbols, common areas, and shared libraries. 
The task builder is used to specify a task's attributes, such as check
pointability, priority, etc. The task builder is also used to create shara
ble commons. The task builder provides an overlay descriptor lan
guage to construct task overlays. The overlay descriptor language 
simplifies the process of dividing a task into overlaid segments and 
specifying load methods. Finally, if it is requested by the task-build 
command, the user can obtain a cross reference of all global symbols 
defined or referenced in the task. There are three different task build
ers supplied: a small one for small systems, a larger one which 
supports all of the features and a third one in which certain features 
have been omitted in order to produce very fast executions. 

LBR Librarian 
LBR provides the capability to create and maintain disk-resident li
braries of object modules and user-defined macros. 

162 



RSX-11M AND RSX-11S 

ODT On-Line Debugger 
DDT aids the user in debugging programs that have been assembled 
or compiled and task built. From the keyboard,the user interacts with 
DDT to: 

• print or change the contents of a location in the task 

• run the program using the breakpoint features to halt the program 
at specified pOints 

• search the program for a specific bit pattern 

• calculate offsets for relative addresses 

Trace capability is also provided to aid in the debugging of FORTRAN 
programs. 

ZAP Task Patch 
ZAP provides a facility for examining and modifying task image files 
and data files. With ZAP, permanent patches can be made to task 
image or data files without having to re-create the file. 

PAT Object Module Patch 
PAT allows the patching or updating of code in a relocatable binary 
object module. 

XDT Executive Debugging Tool 
XDT, a subset of DDT, is an interactive debugging tool for executive 
modules, 110 drivers and interrupt service routines. 

BAD Block Locator 
BAD is a utility which determines the number and location of bad 
blocks on disks and records this information on the last good block of 
the disk. RSX-11 M will read this information when the disk is initial
ized. 

PMD Post-Mortem Dump 
PMD is a debugging tool that can generate a memory dump for a task 
that terminates abnormally (called a post-mortem dump) or an edited 
memory dump for a running task (called a snapshot dump). Snapshot 
dumps can be requested any number of times during task execution. 
In general, both post-mortem and snapshot dumps provide the follow
ing information: contents of the CPU registers, including the stack 
pOinter, program counter, processor status word, and floating point 
registers (if the program used the latter), the task status code, event 
flags set, overlays that were in memory at the time, outstanding 110 
requests, LUN aSSignments, etc. 

The set of general purpose file manipulation programs includes: 

163 



RSX-11M AND RSX-11S 

PIP Peripheral Interchange 
PIP is used to copy files from one device to another, for example, from 
disk to printer, to rename files, to list files, and to delete files. 

FLX File Exchange 
FLX is a special purpose file copy utility. It can copy a file in Files-11 
format and covert it to either RT -11 or DOS/BATCH format on another 
device, or copy a file in either RT -11 format or DOS/BATCH format on 
another device, or copy a file in either RT -11 or DOS/BATCH format 
and convert it to Files-11 format. It can also copy files in Files-11, RT-
11 or DOS/BATCH format to another device in the same format. Valid 
RT -11 devices for copy operations are RK11 disk, cassette, and DEC
tape. Valid DOS/BATCH devices for copy operations are RK11 disk, 
DECtape, magnetic tape, and cassette. RSX-11 M also supports RT -11 
format on floppy disks and both RT -11 and DOS/BATCH formats on 
paper tapes. (Note that RSTS/E can use the DOS/BATCH format for 
DECtapes. It is therefore possible to use FLX to transfer files to and 
from RSTS/E systems as well.) Furthermore, FLX can initialize a cas
sette in RT-11 or DOS/BATCH format, list RT-11 or DOS/BATCH 
cassette directories, and delete files on RT -11 or DOS/BATCH vol
umes. 

DMP File Dump 
DMP enables the user to obtain the listing of Files-11 files or volumes 
in either ASCII or octal format. 

DSC Disk Save and Compress 
DSC enables the user to backup/restore disk volumes to magnetic 
tape or other disks and to combine unused blocks on disks to create 
contiguous blocks. DSC comes both as a stand-alone and an on-line 
program. 

VFY File Verification 
VFY checks the consistency and accuracy of the Files-11 file structure 
on a Files-11 device, for example, a disk. It also prints the number of 
available blocks in a volume, locates files that could not otherwise be 
accessed, and lists the names of files on the volume. 

CMP File Compare Utility 
CMP is a utility which will compare, line by line, two ASCII files. Its 
output can be either a new file with all the differences encountered, a 
listing of one with change bars marking the differences, or an output 
suitable for input to the SLP utility. 

164 



RSX-11M AND RSX-11S 

RSX-11 M SYSTEM SUMMARY 

Is 

• Real-time processing 

• Sensor based 

• Data base management 

• Multi-user development 

• Building block operating system for: 
- Communications 
- Commercial applications 
- Turn-key applications 

Is not 

• Batch processing 

• Timesharing 

• Protected environment 

Includes Data Management/Utilities 

• RMS-11 

• DBMS 

• DATATRIEVE-11 

• SORT-11 

Languages 

• COBOL 

• FORTRAN IV 

• FORTRAN IV-PLUS 

• MACRO-11 

• BASIC-11 

• BASIC-PLUS-2 

• RPGII 

165 



166 



CHAPTER 7 

INTERACTIVE APPLICATION SYSTEM 
lAS (V2) 

OVERVIEW 
lAS supports concurrent real-time, timesharing, and batch process
ing, making it the ideal multi-purpose operating system. Since an lAS 
system also offers powerful easy-to-use program development, it is a 
natural host for smaller RSX-11 based systems in a distributed com
puting arrangement. It also offers its users data base management 
capabilities. 

FEATURE TOPICS 

• Functions and Features 

• lAS Executive Organization and Services 
- Active Task List 
- The Timesharing Schedule 
- Batch Processing 
- System Generation and Initializaton 

• Command Language Interpreters 
- Program Development System (PDS) 
- PDS Commands (Table 7-2) 

• System Control Interface (SCI) 

• Timesharing Control Primitives 

• lAS System Summary 

167 



lAS 

OPERATING SYSTEM FUNCTIONS AND FEATURES 
lAS is a large general purpose operating system that runs on a PDP-
11170, PDP-11 160, PDP-11 155 or PDP-11 145 processor. It is a mUlti
user timesharing system that supports concurrent interactive, batch 
and real-time applications. It includes the MACRO assembler. As op
tions, FORTRAN IV, FORTRAN IV-PLUS, COBOL, SORT, CORAL-66, 
BASIC, and BASIC-PLUS-2 language processors can be added, as 
well as the RMS and DBMS data and record management facilities. 
lAS features: 

• multiple programming languages: FORTRAN, BASIC, COBOL, 
CORAL-66, SORT, and MACRO 

• a single, easy-to-Iearn and use interactive command language 

• priority scheduling for real-time tasks 

• submission of batch jobs from interactive terminals 

• timesharing services for development of interactive applications 
programs 

• a simple internal software interface for the development and use of 
special-purpose, mUlti-user interactive applications 

• a sophisticated file system providing device independence; file pro
tection; sequential, random, and relative file access; and, optionally, 
multi-keyed ISAM 

• dynamic allocation of system resources 

• use of shared, reentrant code to minimize memory requirements 

• system management facilities for system configuration, generation 
and control 

• facilities to account for and restrict the use of system resources 

lAS supports a variety of peripherals useful in batch and real-time 
applications, including line printers, card readers and laboratory peri
pherals. 

As an interactive time-sharing system, lAS presents an easy-to-use 
system interface. The program development system, PDS, provides a 
computing environment that supports most application processing re
quirements of lAS users. As such, it presents to lAS terminal users a 
standard interface which requests and processes valid passwords and 
user names before making system facilities available to the user. The 
interface allows the user to create programs, submit jobs to the batch 
stream, and issue commands to create and manipulate program and 
data files. 

As a batch system, lAS services multiple queues of batch jobs. 
FORTRAN, MACRO, and COBOL jobs can be submitted to batch. The 

168 



lAS 

user interface for batch processing is the same as the PDS interactive 
interface. Therefore, programs can be developed in interactive mode 
and run in production in batch mode. The system manager can control 
the amount of service that batch jobs receive from the processor. In 
particular, the system manager can guarantee a minimum processor 
time for batch processing. 

As a generalized, flexible base for executing interactive applications, 
lAS provides support for application-specific user interfaces for appli
cations such as data entry, bank teller terminals or engineering com
putation, where it is necessary or desirable to present a customized 
interface to terminal users (operators, for example). 

Further, lAS supports the concurrent execution of multiple interactive 
applications. Thus, a data processing application and the program 
development system can execute concurrently and be serviced jOintly 
by the timesharing facilities of the system. 

The interactive application facility is further enhanced by the capability 
of the FORTRAN IV-PLUS compiler and lAS to develop and support 
sharable programs. For the user, this means that system overhead 
(memory occupancy and swapping time) is minimized. Also, the user 
can allocate specific application interfaces and deallocate them as 
required. This facility is flexible and extendable. The system is easily 
modified and additional applications are easily added. 

The special-purpose interfaces can be written and checked out using 
the lAS program development system and then installed by the system 
manager for use on specific terminals. lAS provides a number of sys
tem services that can be called from the application program to en
hance the function of these special-purpose interfaces. 

lAS was built from the RSX-11 D operating system. It provides, there
fore, the RSX-11 D real-time processing facilities of 
multiprogramming, priority scheduling, power-fail restart, contingen
cy exits, disk-based operation and task checkpointing of real-time 
tasks. Real-time, interactive, and batch operations can occur concur
rently and, normally, in that order of priority. 

lAS system operations are managed by two executives. The real-time 
executive schedules real-time activities according to their priorities 
and manages the system resources not allocated to the timesharing 
activities. The timesharing executive schedules timesharing users on 
the basis of a time-slicing algorithm when real-time activities do not 
take precedence. Batch processing normally uses processor time 
available after interactive users are serviced. Both batch tasks and 
interactive tasks run under control of the timesharing scheduler. 

169 



lAS 

Table 7 -1 provides a summary of the lAS system's features. 

Table 7-1 lAS System Summary 

System type 

CPUs supported 

Memory size range 

Batch processing 

Languages 

System tasks and spe
cial utilities 

File system 

Concurrent interactive, batch, and real-time 
processing system with multi-language 
support 

PDP-11170, PDP-11/60 (in 11/40 
mode),PDP-11/55, and PDP-11/45 with 
memory management 

Minimum: 64K words 
Maximum: 124K words, 1920K words on a 
PDP-11170 

Standard spooled queue and optional uns
pooled card reader 

MACRO and optionally FORTRAN IV, 
FORTRAN IV-PLUS, COBOL, BASIC, BA
SIC-PLUS-2, and CORAL-66 

VFY File and Media Verification Program, 
and special BAD Bad Blocks Reporting Pro
gram CDA Core Dump Analyzer, PRE 
Media Preservation Program, Error Log
ging and Diagnostics Package 

RSX-11 family's Files-11 

lAS EXECUTIVE ORGANIZATION AND SERVICES 
To provide system flexibility, the lAS operating system is controlled by 
a system monitor consisting of a real-time executive kernel and a 
timesharing executive. The primary functions of the kernel include 
memory and disk management, supervision of privileged tasks (in
cluding real-time tasks and device handlers), file management, and 
maintenance of the general integrity of the system. The kernel main
tains the Active Task List (ATL) to control task dispatching. 

The timesharing executive controls both interactive and batch pro
cessing. It controls the execution of timesharing tasks by time slicing 
and by swapping tasks in and out of memory. 

The Active Task List 
The kernel coordinates the dispatching of all tasks on the system by 
scanning the entries in the Active Task List (ATL). The ATL is a priori-

170 



lAS 

ty-ordered list of all resident active tasks in the system. Because of 
their requirement for immediate service, the 1/0 device-handler tasks 
are put at the top of the ATL. For the same reason, any user-designat
ed real-time tasks are assigned to high-priority levels. The timesharing 
executive, which runs at a lower priority than 1/0 and real-time tasks, 
controls the scheduling of user timesharing tasks by inserting tasks in 
the A TL. Figure 7-1 illustrates the priority structure of the ATL. 

HIGHEST 
PRIORITY 

j 

I 
I 
I 
I 
I 
I g 

REAL-TIME TASKS 
E.G. I/O HANDLERS, 
SPOOLERS, USER 
REAL-TIME TASKS 

TSSI 

TIMESHARING 
USER TASK 

BATCH 
PROCESSOR 

BATCH 
USER TASK 

TSSNUL 

INACTIVE 
TIMESHARING TASKS 

Figure 7-1 Schematic Diagram of ATl Structure 

171 



lAS 

The timesharing scheduler uses two tasks, TSS1 and TSSNUL, to 
control the dispatching of tasks. The timesharing scheduler task TSS1 
selects a task for executing by placing its entry in the ATL at a priority 
of one less than itself. The scheduler task then gives up control (for 
example, waits for an event flag such as time slice complete) to allow 
the kernel to dispatch the user task. TSSNUL is the null job and runs 
continuously in a loop so that tasks below it on the ATL can never 
execute. When a timesharing task is not executing, TSS1 places the 
ATL entry for that task below that of TSSNUL. TSSNUL always 
executes at priority 1. 

The Timesharing Scheduler 
The prime objective of the scheduler is to reduce as far as possible the 
average response time to all user demands. In order to do so, the 
scheduler distinguishes between various levels of user importance 
and urgency of service. The scheduler maintains a number of round
robin queues, or levels, of tasks to be scheduled. The scheduler scans 
each level (high to low) in a round-robin fashion until it finds a memo
ry-resident runnable task. A non-resident ready-to-run task will cause 
the swapping system to be activated. 

A task which uses a full time quantum is transferred to the next lower 
level unless it is already at the lowest level. Tasks at lower levels are 
not scheduled as often as tasks at higher levels. Tasks allocated to a 
lower priority level are given a longer time quantum when next activat
ed. Thus, large jobs are run and swapped less frequently, but in com
pensation, receive more processor time once activated. 

To prevent tasks from being starved of processor time because the 
scheduler is continuously scheduling higher priority tasks, a means of 
promoting tasks from one level to the level above is provided. If, over a 
given period of time, no scheduling has been performed at a given 
level, then a task at that level is moved to the bottom of the level above. 

If the sCheduler finds a runnable task that is not resident, then the task 
must be loaded into memory to receive its quantum of CPU time. 
Space is created in memory by moving resident tasks to create the 
required contiguous space, and, if necessary, by writing inactive tasks 
to the swap area on disk(s). 

Two time factors are associated with every task. The quantum deter
mines the amount of CPU time a job may have before it is swapped out 
of main memory. The time slice is the maximum CPU time a task is 
allowed to use before a rescheduling operation is performed. 

The time quantum for a particular task is determined by: 

Q = At + C 

172 



where: 

A 

C 

lAS 

is a factor (in clock ticks) assigned to a task when it is 
loaded: for example, 1 tick per 1 K words in the task. 

is a time factor associated with the scheduling level; t 
increases as the level number increases. 

is the minimum guaranteed quantum for the system. 

The quantum for a task at a low scheduling level may be quite large. In 
order not to block other higher priority tasks awaiting service, the 
scheduler calculates the quantum of the task, and then allocates the 
task a number of time slices. At the end of each time slice, the schedu
ler will try to run higher priority tasks. However, the task will not be 
swapped until its quantum has expired. If the task enters a wait state, 
however, the quantum will be set to zero. In this case, therefore, it will 
be made available for swapping. 

The time slice parameter can be adjusted to achieve the desired 
compromise between responsiveness and system throughput. If the 
time slice is set to its maximum value, all tasks will execute without 
interruption for their entire quantum. The time slice should never be 
smaller than the maximum quantum for a Level 1 task. All the parame
ters of the scheduling algorithm can be adjusted by the system man
ager to tailor lAS scheduling to the needs of the local installation. 

Batch Processing 
Batch runs as if it were another timesharing terminal. The batch com
mand language is the same as the general purpose interactive pro
gram development command language, and it is processed by the 
same command ianguage interpreter (see below). 

The batch processor obtains its command input from a queue of com
mands. The batch queue is maintained independently, thus enabling 
jobs to be submitted to the queue at any time. The processor can 
service two types of queues. The system can maintain a spooled 
queue which consists of: 1) batch job files submitted from interactive 
terminals, and 2) command input from the card reader (if the card 
reader is deSignated as a spooled device). The batch processor can 
also service a queue of commands directly from the card reader if it is 
deSignated as an unspooled device. 

Batch processing is initiated and terminated by the system manager. 
The batch processor executes at the batch scheduling level where it is 
serviced by the timesharing scheduler. Batch processing shares CPU 
time with interactive tasks, but its priority for service is always below 
that of the active tasks. 

173 



lAS 

To assure that batch processing receives adequate service, the sys
tem manager can specify the percentage of CPU time to be made 
available to it, and the length of time (quantum) batch should run when 
it does receive service. For example, the system manager could direct 
lAS to devote ten percent of the available time to batch jobs in 2-
second quanta. Tasks in the batch level are not subject to the promo
tion/demotion mechanism of the timesharing scheduler; that is, tasks 
remain in the batch level for as long as they are executing. 

Batch user tasks share space with the interactive tasks (if any) current
ly executing. While any space not currently in use by batch is used for 
interactive processing, batch can be guaranteed space so that re
quirements up to that maximum will always be satisfied by swapping 
interactive tasks out of memory if necessary. 

Executive Data Structures 
The lAS system maintains a number of common areas in which the 
various executive tasks store information and communicate with each 
other. SCOM contains system tables, the kernel node pool, lists, and 
some servicing routines. SYSRES, the System Resident Library, con
tains common routines which will be used by most tasks. IASCOM is a 
library containing timesharing nodes, lists, tables, and common 
routines for manipulating the timesharing data structures. IASBUF is a 
buffer area used for communication between the timesharing control 
primitives, IASCOM, and the timesharing executive. 

I/O Services and Device Independence 
Input and output constitute a significant part of all programmed activi
ty. Thus, lAS 'provides a variety of services to perform these opera
tions. 

The lAS file system is a collection of system services that permits the 
user to view I/O as a transaction between a program and a named, 
protected collection of records known as a file. The file system man
ages all data transfers and provides the mechanism whereby a file 
intended for a record-oriented device, such as a line printer, can be 
dynamically directed to an area on magnetic storage. 

Access to a user's files stored on a disk, DECtape or labeled magnetic 
tape is controlled by a protection specification on each file. When 
creating a file, a user can specify whether other users may have ac
cess to the file and, if so, whether they may modify the file or merely 
read it. 

One of the goals of any file system is to make the user program 
independent of the I/O hardware. Thus, while the storage characteris-

174 



lAS 

tics of a medium are organized around physical records, the user 
deals only with logical records. 

To provide greater device independence, the lAS user will in general 
use logical units instead of referring directly to physical devices. lAS 
provides a set of logical unit numbers (LUNs) which are not associated 
with specific physical devices or files until run time. In the source 
program, all device and file references use LUNs. These LUNs may be 
assigned to particular devices by a command issued before the 
program is executed. 

Sharing of Common Routines 
In a system designed to support many users, there is a high probability 
that many tasks will use the same code sequences, such as mathe
matical routines and specialized 1/0 routines. 

The common code could be built directly into each task requiring it, 
but this might result in several copies of the same code occupying 
memory space at the same time. The alternative employed by lAS is to 
put the common code where all users can share it, so that only one 
copy of the code is required. The lAS system uses shared code heavi
ly. 

Under lAS, shared areas may be data areas (global common), sets of 
common routines (libraries), or the pure (read-only) areas of complete 
tasks (shared tasks). Global common areas allow simultaneously ac
tive tasks to share data. A sharable library consists of routines which 
may be interrupted to service another request, then resume execution 
later at the point of interruption. Users who write reentrant routines 
can include their own sharable libraries in the lAS system. Shared 
code does not need to be permanently resident; it can be loaded at the 
time a task which uses it is run. Programs written in either FORTRAN 
IV-PLUS or MACRO can be shared. 

System Generation and Initialization 
System generation is the process by which a collection of system 
services is tailored to meet local physical constraints and performance 
requirements. 

lAS consists of a set of independent program segments which can be 
linked selectively to eliminate services not required at a given installa
tion. For example, a system manager might eliminate the device 
handlers for devices not included in the hardware configuration. 

During system generation, the system manager also defines and 
names the partitions in which programs will execute. This normally 
includes defining a timesharing partition and any special partitions 
dedicated to the execution of real-time applications. 

175 



lAS 

After generating the system, the system manager runs a special start
up task to initialize the timesharing system. The start-up task prompts 
for a series of parameters that specify the system configuration for the 
current session. The parameters can be entered at the terminal, or 
read from a predefined file. The values specified for the start-up para
meters override the defaults specified at system generation. 

The start-up parameters include: 

• Terminals to be allocated for timesharing use 

• Devices to be made available for timesharing users 

• Devices to be used for swapping 

• System control parameters 

• Partition names for timesharing 

• Partition names for executive tasks 

Once the start-up parameters are established, the system operator 
enables general timesharing users to access the system by allocating 
timesharing terminals to the system's command language interpret
ers. 

COMMAND LANGUAGE INTERPRETERS 
A command language interpreter (CLI) is a task which interfaces with a 
person who uses the lAS system. PDS, the program development 
system CLI supplied with lAS, allows the general user to access all 
non-privileged facilities of the system. Another CLI called the system 
control interface (SCI) allows the system operator to alter the state of 
the system, to designate user interfaces (CLls), and to allocate facili
ties to each user. 

Normally, PDS is the standard CLI to which a general terminal in the 
lAS system is allocated. Using the SCI interface, the system operator 
can designate a specific task other than PDS as the CLI for a terminal. 
For example, the system operator might set aside one terminal to be 
used solely for program editing. When EDIT is designated as the only 
CLI for that terminal, EDIT will be invoked when CTRL/C is typed, and 
a user at that terminal will not be able to issue commands to anything 
except the editor. 

Users can write their own CLI tasks. The CLI tasks can be installed and 
allocated timesharing terminals. This means that the system can pre
sent a number of different terminal interfaces. A user-written CLI task 
can define its own command language, which can be as simple and 
understandable as required. It can be specifically designed for a par
ticular application operation. Application terminal users do not, there
fore, have to learn a generalized command language such as PDS to 
perform their subset of daily activities. 

176 



lAS 

A CLI is written as a normal, non-privileged user task which can use, in 
addition to the standard system directives and file system facilities, the 
lAS system's timesharing control primitives (see below). A CLI can be 
written in any language which provides the facilities it requires; for 
example, a CLI that wishes to use the system QIO directive must be 
written in FORTRAN, MACRO or BASIC (with user-defined functions). 

After a task has been installed as a CLI, lAS automatically provides 
certain task execution controlling functions. For example, when 
CTRL/C is typed on a terminal allocated to a CLI, a copy of the non
shared part of the CLI is activated. If the task specifically requests the 
information, lAS will inform the task of any events happening at its 
terminal or terminals. 

The following two sections describe the two standard CLI tasks provid
ed with the lAS system: PDS, the program development system, and 
SCI, the system control interface. 

Program Development System (PDS) 
A typical timesharing user interfaces with lAS through the program 
development system (PDS) command language interpreter. Under 
PDS, users can create, compile, link, load, and run programs. They 
can submit jobs to the batch stream, use various peripheral devices, 
and obtain system information. 

PDS is a prompt-oriented system. After PDS is activated at a terminal, 
either by the autostart mechanism or by typing a CTRL/C, PDS invites 
the input of a command by issuing the prompt "PDS>". The user 
replies by typing a command name and its parameters, if any, followed 
by a carriage return. If a user does not supply all the parameters 
required in a command, the system will prompt the user for them. 
Additionally, the user can issue the HELP command to display the 
commands available. 

As an example, the user can log in to the system, using the LOGIN 
command, in two ways. If the user desires the prompts, the user can 
simply type the command LOGIN in response to the PDS prompt. 

PDS> LOGIN The user issues the command. 

USERID? SMITH 

PASSWORD? 

The user ID is a 1- to 12-character user 
name which identifies a person to the sys
tem. PDS requests a user ID. 

PDS requests a password. The password is 
not displayed. 

177 



lAS 

USER SMITH UIC[200,200] n07: TASK 25 22:30:07 27-SEP-77 

PDS validates the user name and password 
and accepts the user to the system by print
ing information relevant to the user's job. 

If the user types a user name after issuing the LOGIN command, PDS 
does not prompt for a user name, it prompts only for the password. 

PDS> LOGIN SMITH 
PASSWORD? 
USER SMITH UIC[200,200] n07: TASK 25 22:30:52 27 -SEP-77 
PDS> 

As another example, the user can issue a command to rename a file in 
any of three ways. If the user simply types the command name RE
NAME, PDS prompts for the old file specification and the new file 
specification parameters. 

PDS> RENAME 
OLD? MATRIX.FTN 
NEW? BACKUP.TMP 
PDS> 

If the user does not want the prompts, the user can enter the entire 
command on one line. 

PDS> RENAME MATRIX.FTN BACKUP.TMP 
PDS> 

If the user issues the command name fOllowed by a carriage return, 
but does not need the second prompt, it is also acceptable to enter the 
command parameters on the line with the first prompt. 

PDS> RENAME 
OLD? MATRIX.FTN BACKUP.TMP 
PDS> 

The user can supply PDS commands in a file rather than typing them 
in one at a time on the terminal. The user creates a file containing the 
commands PDS is to execute, called an indirect file. To execute the 
commands in the file, the user replies "@filename" to a PDS prompt, 
where "filename" is the name of the indirect file. PDS processes the 
file in the same manner that it processes commands typed individually 
on the console. The commands, as well as any error messages that 
occur during the execution of the commands, will be displayed on the 
user's output device. 

For example, suppose the user creates an indirect file named 
PERF.CMD containing the PDS commands to compile, link and run 

178 



lAS 

the source program PERF.FTN. By typing the command 
"@PERF.CMD" in response to a PDS prompt, PDS will execute the 
command file. 

PDS> @PERF.CMD The user issues the indirect file 
command. 

FORTRAN/LlST:PTEST PERF The first command requests the 
FORTRAN compiler to compile 
the source program named 
PERF.FTN (the .FTN extension is 
assumed by default) and pro
duce an object program (named 
PERF.OBJ by default) and a list
ing file named PTEST.LST (the 
.LST extension is assumed by 
default). 

22:34:17 TASK TERMINATION CORE SIZE 20K CPU TIME 01.05 

PDS prints a message when 
compilation is complete. 

LINK PERF The second command requests 
the linker to link the object pro
gram named PERF.OBJ. (The 
.OBJ extension is assumed by 
default) 

22:35:49 TASK TERMINATION CORE SIZE 15K CPU TIME 14.41 

RUN PERF 

22:35:58 

PDS prints a message when link
ing is complete. 

The third command requests 
PDS to execute the program 
PERF.TSK (the extension .TSK is 
assumed by default). 

22:37:12 TASK TERMINATION CORE SIZE 10K CPU TIME 00.13 

PDS> 

PDS prints messages regarding 
program execution. 

After processing the command 
file, PDS indicates that it is ready 
to accept another command. 

There are several types of PDS commands; commands that provide 
access or system information, commands that allocate resources, 

179 



lAS 

commands that manipulate files, and commands that control task exe
cution. The system manager can designate certain PDS commands as 
privileged or non-privileged for any particular user. That is, when de
fining the user accounts, the system manager specifies which PDS 
commands each user can issue. For example, some PDS commands 
control real-time task execution. Only those users who have been 
given real-time execution privileges can issue the real-time execution 
control commands. 

Except for the LOGIN, LOGOUT, JOB, and EOJ commands, all non
privileged commands can be issued in either interactive or batch 
mode. When a command is issued in batch mode, it requires a dollar 
sign ($) preceding the first character of the command name. 

Table 7-2 lists the general PDS commands. Commands that contain 
the term "real-time" in their description are available only to the users 
with real-time execution privileges. All other commands- listed are 
non-privi leged. 

Table 7·2 PDS Commands Summary 

System Initialization Commands 
SET Used to change system and device defaults 

for a particular user. 

PASSWORD Chaoges password. 

LOGIN Initiates an interactive session at a terminal. 

LOGOUT Ends an interactive session at a terminal. 

JOB Denotes start of a batch job. 

EOD Denotes end of data in a batch job. 

EOJ Denotes end of a batch job. 

System Informational Commands 
HELP Displays a list of all available commands. 

SHOW 

MESSAGE 

Displays system and device defaults and 
various types of system status information. 

Sends a message to the system operator. 

180 



lAS 

Job Control Commands 
ALLOCATE Reserves a device for single user access. 

DEALLOCATE Releases a device. 

ASSIGN Associates a user-specified logical name or 
a physical device with a logical unit number. 

DEASSIGN Disassociates a logical name or physical 
device with a logical unit number. 

CANCEL Cancels the periodic scheduling of requests 
for a real-time task. 

MOUNT Requests mounting of a volume or volume 
set. 

DISMOUNT Requests operator to dismount a volume. 

GOTO Transfers control in an indirect command 
file or batch command file. 

ON Allows for testing of errors in an indirect or 
batch command file. 

STOP Prevents all further processing in a batch or 
indirect command file. 

INSTALL Install a real-time task. 

RUN Initiate execution of a user program (used 
also for real-time task execution). 

ABORT Kills a suspended user program or com
mand. 

CONTINUE Restarts a previously suspended program 
or command. 

QUEUE Queues a file for printing or queues a batch 
job. 

SUBM IT Submits a job for batch execution. 

AL TERPRIORITY Changes priority of a real-time user task. 

FIX Inhibits the checkpointing of a real-time 
task. 

UNFIX Allows a real-time task to be checkpointed. 

181 



CANCEL 

REMOVE 

lAS 

Cancels periodic rescheduling of a real
timetask. 

Removes an installed real-time task. 

File Manipulation Commands 
APPEN D Appends one or more file(s) to another. 

COMPARE 

COpy 

CREATE 

DELETE 

MERGE 

DIRECTORY 

DUMP 

PRINT 

RENAME 

SORT 

TYPE 

INTIALIZE 

UNLOCK 

Allows the line-by-line comparison of two 
input files. 

Copies one or more files. 

Creates a disk file from card or terminal in
put or creates a directory file. 

Deletes one or more files. 

Takes records from a sequential, indexed, 
or relative file and merges them with an in
dexed or relative file. 

Displays the names of files in the indicated 
directory. 

Produces a printed listing in ASCII (or octal) 
of the contents of a file. 

Prints a file or files on the system's printer. 

Changes the name of a file. 

Sorts a file into a specified sequence. 

Types a file at the user's terminal. 

Initializes a foreign (DOS and RT11) vol
ume. 

Unlocks a file that was locked. 

PDS Program Development Commands 
EDIT Invokes the interactive editor or, optionally, 

the line editor. 

MACRO Invokes the MACRO assembler. 

182 



LINK 

LIBRARIAN 

FORTRAN 

COBOL 

BASIC 

CORAL 

lAS 

Invokes the linker to link together 
FORTRAN and/or MACRO object modules. 

Invokes the librarian to create object pro
gram libraries. 

Invokes either the FORTRAN IV or 
FORTRAN IV-PLUS compiler. 

Invokes the COBOL language processor. 

Invokes the BASIC subsystem. 

Invokes the CORAL-66 compiler. 

In addition to the PDS commands, lAS supports special terminal con
trol commands issued from the terminal. These control commands 
are: 

CTRLlC 
CTRLlU 
CTRL/I 
CTRLlK 
CTRLlL 
CTRLlO 
CTRLlR 
CTRLlS 
CTRLlQ 
CTRL/Z 

Returns control to PDS (suspends a running program). 
Deletes current line. 
Skips to next tab position. 
Vertical tab. 
Form feed. 
Enables/disables terminal output. 
Retypes the current input line. 
Suspends current output until CTRLlQ is typed. 
Resumes current output. 
Generates an end-of-file. 

In addition to the general PDS commands, lAS includes special PDS 
commands available only to the system manager. The system manag
er must be logged in under the system management account to gain 
access to these privileged PDS commands. There are three types of 
privileged PDS system management commands: 

• accounting commands to authorize users and report system use 

• real-time system control commands 

• volume and file control commands 

System Control Interface (SCI) 
The system operator communicates with lAS through the system con
trol interface (SCI) command language interpreter. The SCI command 
language uses the same syntax and conventions as the PDS com
mand language, including prompting for missing parameters. Indirect 
SCI command files are also supported. 

183 



lAS 

SCI commands enable the operator to monitor the system in four 
different areas: 

• command language interpreter control 

• overall system and task control 

• peripheral device control 

• system information 

The command language interpreter (CLI) commands allow the opera
tor to install and remove CLI tasks, allocate and deallocate resources 
(e.g., terminals) to a CLI task, and abort a CLI task at a particular 
terminal. These commands are used both to initialize a timesharing 
system and to modify the system's characteristics during system 
operation. 

The system and task control commands enable the operator to: load 
and unload device handlers which are not permanently resident; 
mount and dismount volumes; set the system parameters to suit the 
current workload; and shut down the system. These commands also 
enable the operator to have ultimate task execution control. For exam
ple, the operator can terminate any task in the system. This can be 
useful when, for example, a batch task loops indefinitely because of 
internal errors,. 

Peripheral device control commands provide the operator with the 
facility to service user requests for access to disk packs, magnetic 
tapes or other removable media. Additionally, the operator can control 
the output spooling mechanism and the type of printer forms being 
used. 

The system information commands allow the system operator to dis
play system information such as the active task list, CLI allocations, 
partition names and sizes, date and time, and device status. 

TIMESHARING CONTROL PRIMITIVES 
lAS provides an installation with a convenient mechanism for imple
menting special-purpose interactive applications systems such as in
ventory control, order entry, on-line file update, etc. Programs written 
in either FORTRAN IV-PLUS or MACRO are ideally suited for this 
purpose since the program, if reentrant, can be shared by multiple 
users. The programmer writes a program as if it were responding to 
only one terminal, thus eliminating many of the problems associated 
with interactive multi-user applications. If the application requires spe
cial system services or interlocks between users, it can use the system 
directives, the file system, and the lAS timesharing coordination facili-

184 



lAS 

ties to perform these functions. The timesharing facilities are provided 
through a set of routines called timesharing control primitives (TCP). 

A task designated as a CLI obtains service from TCP by issuing calls to 
specify desired operations. TCP runs at a higher priority level than the 
timesharing scheduler to provide a high service level to CLI tasks and 
to ensure that up-to-date system information is always available to the 
timesharing executive. TCP presents a kernel handler interface to the 
system; the basic method is through a 010 (Oueue 1/0) directive. 

There are eight kinds of TCP routines available to the user writing a 
CLI. For protection purposes, the system operator can control the 
privileges of a CLI task. When installing the CLI task, the operator 
specifies which TCP facilities the CLI can use. The following sections 
describe the TCP routines. 

CLI Control Primitives 
These primitives provide the necessary CLI authorization and alloca
tion to terminals required to establish the timesharing environment. 
This group provides the facilities for dynamically controlling the CLI 
population of the system and the allocation of terminals to those CLis. 
The CLI control primitives are: 

Initialize a CLI 
A task is initialized either at system start-up by the lAS executive or at 
any subsequent time by the system manager. The CLI must already be 
installed. It can be initialized as a batch subsystem (the default is 
interactive). 

Allocate Terminals to a CLI 
Allocates or starts up a CLI task for specified terminals or processing 
spooled input. 

Relinquish Terminals for a CLI 
Releases the terminals that the calling CLI is servicing. 

Task Initiation and Control 
Task initiation and control primitives enable a CLI to submit tasks to 
timesharing either on behalf of the terminal user or for the CLI's own 
purposes. They also provide the facilities for the CLI subsequently to 
control the execution of those tasks by suspending, continuing, or 
aborting the tasks. They are: 

Task String Parse 
Parses a command string, identifying a task name. It also identifies 
whether or not a parameter string is present in the command. 

185 



lAS 

Set Up a Job Node 
Sets up the information in a job node to enable successful scheduling 
of a task on submission of the job node to the scheduling queue. 

Queue Job Node 
Queues a specified job node to be run under lAS. The scheduling level 
at which the task is to run initially can be specified. 

Set Task Termination 
Enables a CLI to abort a task previously submitted for scheduling. 

Set Task Continue 
Enables a task to be continued after being suspended, either as a 
result of a suspend request or a CTRLlC issued from the terminal. 

Set Task Event Flag 
Allows a CLI to communicate with a task which it has previously 
initiated by setting a local event flag for that task. 

B.uffer Management 
A Cll can claim and relinquish buffers by using this group of primi
tives. They are: 

Clai m lAS Buffer 
Allows a single buffer to be picked from the lAS buffer pool. 

Relinquish lAS Buffer 
Relinquishes a buffer by returning it to the buffer pool. 

Terminal Event Control Primitives 
The terminal event control primitives enable TCP to communicate to 
the eLi events that occur asynchronously with the current eLi activity. 
For example, Tep can notify the eLi of task termination for the CLI's 
terminal user, of a CLI exit requested, or that a CTRLlC was received 
on a terminal. This mechanism allows the CLI to make decisions as to 
its subsequent actions. The primitives are: 

Declare Terminal Event 
Declares a terminal event for the CLI to service. 

Service Terminal Event 
Invoked by the CLI task to service asynchronous events occuring for 
its terminal user. 

Job Node Management 
Every task submitted for scheduling under lAS timesharing must have 
an associated job node. The job node management primitives enable 
a calling CLI task to control the allocation of job nodes to its user and 
therefore the user's ability to run tasks. 

186 



lAS 

Claim Job Node 
Enables a job node to be picked from the job node pool for the 
requestor. Normally the job node is claimed on behalf of a terminal 
belonging to the requesting CLI task, but a CLI can claim a job node 
for its own use. 

Assign a UIC 
Assigns a user identification code to a job node. The assigned job 
node usually belongs to a terminal node but it could also be a floating 
node claimed by the CLI for some other purpose. 

Relinquish a Job Node 
Releases a job node currently allocated to the terminal serviced by the 
calling CLI or releases a specified job node previously claimed by the 
calling CLI. 

System Management 
The system management primitives enable the system manager to 
obtain information about the system and reset the tuning parameters. 
Access to the system tuning parameters (batch and interactive quanta, 
maximum number of interactive jobs, etc.) is available only to the 
system manager. 

Set or Report the Timesharing Task Promotions Period 
Reports and optionally changes the timesharing promotion period. 
During timesharing tasks execution, the system allocates tasks among 
the scheduling levels according to their activity. A task that uses a full 
time quantum in a high level is transferred to the next lowest level, 
where the quantum size is greater. The goal is to move highly interac
tive tasks to high levels, while CPU-bound tasks move to low levels. To 
avoid having tasks in low levels becoming starved for CPU time, tasks 
are periodically promoted. If, during the promotion period, no task in a 
level has been scheduled, the task at the top of that level is promoted 
to the bottom of the next highe level. 

Set or Report the Batch Quantum 
Reports the current values of the batch time quantum, the time 
between batch schedules, and optionally gives new values to one or 
both of the parameters. 

Set or Report the Timesharing Quantum 
Reports the current value of and optionally changes the time quantum 
allocated to a specific scheduling level. The lAS scheduler relies on 
the quantum values increasing with level number. 

Set or Report the Timesharing Quantum Constants 
Reports and optionally gives new values to the constants used in cal-

187 



lAS 

culating the time quantum given to each task in each scheduling level. 
The quantum given to a task is determined by the relationship: 

Q = At + C 

C represents the minimum quantum given to any task and t represents 
the timesharing quantum allocated to a specific scheduling level. A, 
the allocation factor, is a function of task size, where A = N/M. N is the 
number of clock ticks allocated for M number of 1000-byte blocks of 
task size. Using this TCP, the task can modify the values for C, Nand 
M. 

'Report Task Characteristics 
Reports the limits associated with user tasks which run under the 
timesharing system: 

• maximum allowed number of timesharing tasks 

• maximum task size 

• maximum number of user LUNs assigned 

• maximum number of currently assigned devices 

Report Time Statistics 
Reports the following system statistics: 

• elapsed time since start-up 

• elapsed time since start of statistics collection 

• total time given to timesharing 

• total time given to executing timesharing tasks 

• total time when no execution occurred 

• total time given to batch 

Report Task Information 
Reports information about the active timesharing user tasks in the 
system. Anyone of the following can be requested: report all user 
tasks in the system; report all tasks initiated from a specific terminal. 

Device Management Primitives 
This group of primitives controls the allocation of devices to timeshar
ing users. It enables the control of multiple users of the system who 
wish to make use of peripheral devices. It allows any number of inter
active users (and optionally one batch user) to have simultaneous 
access to Files-11 volumes or directory devices and exclusive use of 
foreign volumes and non-directory devices. The primitives also allow 
the assignment and deassignment of LUNs to devices which are effec
tive for all subsequent timesharing user tasks runon the CLI. 

188 



lAS 

Assign LUN to Device 
Assigns a terminal user's LUN to: 1) a specified volume mounted on a 
given device unit; 2) a specified device; 3) a specified volume mounted 
on any of the devices of the specified device type. In all cases the 
device must be one which is allocated as available to timesharing. 

Deassign LUN 
Deassigns the device assigned to a given LUN for a terminal user or 
deassigns all LUNs for a given device for a user. 

Check Device Allocation 
Checks whether a device is in the timesharing user's device map and 
is on-line. 

Record On-Line Volume 
Records the information about volumes mounted for the timesharing 
users. The number of timesharing users using a device is incremented 
and a device table entry is made for the requestor's terminal, signify
ing that the volume has been mounted. 

CheckDe~ceForMou~ 

Called by the MOUNT program when the MOUNT utility is being run on 
behalf of a timesharing user. It ensures that the device can be 
mounted successfully for the user by checking for a free device map 
entry and checking that no other user has the device's exclusive use. 

Relinquish Volume 
Makes a device available to other users if the current user has exclu
sive control. If the user does not have exclusive control of the device, 
the system is notified that the device is no longer needed by the user 
(that it can be dismounted as far as the current user is concerned). 

CLI Service 
These primitives provide service functions to CLI tasks. Information 
about the user task currently running for the CLI (name, size, CPU time 
used so far) and devices currently assigned to the CLI's terminal user 
are provided. Additionally, the CLI can control the terminal context for 
its user terminal-the CLI can inhibit or allow the action of CTRL/C on 
the terminal via this mechanism, as well as using it to record the CLI's 
own context information. 

Set or Report Terminal Context 
Reports and optionally changes the context of the terminal. Control 
context governs whether a CTRLlC is recognized at a terminal. 

Give Job Statistics 
Returns the task time and CPU time used for the task currently run
ning for the terminal being serviced by the calling CLI task. It also 
returns the device and LUN information for the terminal user. 

189 



lAS 

Report Terminals for a CLI 
Reports the terminals in the system for the requesting CLI task. 

SYSTEM TASKS AND SPECIAL UTILITIES 
lAS provides a common command language for all standard system 
program development utilities such as the editor, linker and librarian. 

In addition to the standard program development utilities, lAS also 
provides two special system tasks called VERIFY and BAD BLOCKS. 
These tasks are available only to the system manager. VERIFY is used 
verify the consistency and validity of the files on a Files-11 volume. 
BAD BLOCKS is used to locate any unusable blocks on a disk and is 
normally run prior to disk volume initialization. 

The system manager or operator also has available a special utility 
called CDA. CDA (Core Du mp Analyzer) is a task that executes on-line 
with other tasks to capture system information at the time of crash. It 
provides the capability to later analyze the state of the system at the 
time the crash occurred. 

General users have access to a special utility called PRESERVE. PRE
SERVE is a multi-user task that creates copies of disk, magnetic tape 
or DECtape volumes. PRESERVE can also be booted into memory as 
a stand-alone program. 

lAS SYSTEM SUMMARY 

Is 

• Real-time 

• Timesharing 

• Batch processing 

• Data base management 

• Multi-function 

• Extensible executive 

• High RSXIVAX/TRAX compatibility 

• Protected environment 

Is not 
• High capacity (dedicated) timesharing 

• High capacity (dedicated) real-time 

• Operating on small CPUs 

190 



lAS 

Includes Data Management/Utilities 

• DBMS 

• RMS-11 

• DATATRIEVE-11 

• SORT-11 

Languages 

• BASIC-11 

• BASIC-PLUS-2 

• COBOL 

• FORTRAN IV 

• MACRO-11 

191 



192 



OVERVIEW 

CHAPTERS 

DIGITAL STANDARD MUMPS 
DSM·11 (V.1) 

DSM-11 is a multi-user data base management system that includes 
both an operating system and a high-level language. The DSM-11 
language has text handling capabilities that facilitate the inspection of 
any piece of data for content (such as keywords) or for any format. 
Other text-handling capabilities permit several pieces of text to be 
combined into one, and divided into segments. Since DSM-11 is an 
on-line program development and data storage and retrieval system 
with effective string manipulation capabilities and an M-tree file struc
ture, a programmer can write, debug, or modify a program to develop 
a working application quickly. 

FEATURE TOPICS 

• Functions and Features 

• Executive and System Features 
- Job Scheduling 
- I/O Monitor 

• User Interface 

• Terminals and Ancillary I/O Devices 

• Data Management 

• Data Storage Elements 

• DSM Disk Structure and Global Arrays 

• Language and Utilities 

• The MUMPS Language 
- Expressions 
- DSM-11 Commands Summary 

• DSM-11 System Summary 

193 



DSM-11 

INTRODUCTION - FUNCTIONS AND FEATURES 
DSM-11 is an interactive multi-user data base management operating 
system. The capabilities of the system are heavily oriented toward 
string manipulation using the high-level Standard MUMPS language, 
DIGITAL Standard MUMPS, ANSI STD X11.1-1977. The system re
lieves the user of any concern for programming peripheral devices or 
for structuring data bases in the traditional sense. 

Language processing by the system is interpretive. This greatly facili
tates program development by eliminating the need to load editors, 
assemblers, linkers, etc. The DSM application programmer is relieved 
of assembly language programming. The major concerns of the appli
cation programmer are developing the proper logical hierarchy for a 
data base and developing efficient logic for the data processing re
quirements. 

The DSM language is provided with its own stand-alone operating 
system. In addition to supporting the Standard MUMPS language and 
providing all operating system capabilities, the system affords the user 
a unique data base structure and access method. Data which is re
ferred to symbolically is automatically stored and linked in sparse, 
hierarchical structures called M-trees. The phYSical and logical 
allocation of mass storage for the tree-structured data base is handled 
completely by the operating system so that the programmer can con
centrate on application data relationships. The data base thus created 
can either be made available to all system users or be restricted to a 
class of users. 

The DSM-11 operating system runs on any of the PDP-11/34, 11/60, 
and 11/70 central processors. The system permits up to 63 simulta
neous users, operating on any of up to 80 terminals, to interact with a 
common data base. The system is specifically designed to manipulate 
strings of data and to expand or contract the data storage areas 
through dynamiC, problem-orier.ted procedures. 

The operating system is highly modular and resides permanently in 
memory. The system uses between 20K and 32K words of memory, 
depending on the hardware configuration and system software op
tions selected during system generation. During system generation, 
the remaining memory is subdivided into user partitions. Machines 
with no more than 32K words of memory can have 2 to 4 user parti
tions. Machines with more than 32K words can have a maximum of 63 
partitions. 

A partition holds one active user's program, local data, and system 
overhead data. There is no fixed correspondence between terminals 
and partitions. Indeed, jobs can run without having terminals associat
ed with them, and multiple terminals can be attached to one job. 

194 



DSM-11 

Partition assignment is performed dynamically at log-in time, and is 
also permitted during execution. The recommended size for partitions 
is approximately 4K bytes each, but they do not all have to be the 
same size; the maximum partition size is 16K bytes. When logging in, a 
user is assigned the next available partition. If the requested size is not 
available, the next largest partition will be assigned. 

Each active user requiring CPU time obtains a time slice in turn. A 
checkpoint form of timesharing is used whereby a program is allowed 
to execute until its time slice has expired, plus any additional time 
required to complete a current operation. Control then passes to the 
next job (in priority order) requiring service. The software is entirely 
memory resident; there is no swapping to disk. 

Additional features include: 

• variable-sized data elements and logical records 

• random access of data using multiple keys 

• a variety of terminal and peripheral devices 

• system utilities for backup, validation, and reporting 

• easy writing, storing, and debugging of programs 

• on-line modification of system configuration, system utilities, and 
system library 

• inter-task memory-to-memory communication facilities 

• choice of ANSI standard and EBCDIC magnetic tape labeling 

• journaling at system level 

• spooling 

• data base access by more than one CPU 

• stand-alone backup program (fast, flexible, error tolerant) 

Table 8-1 summarizes the supported hardware of the DSM-11 operat
ing system. 

Table 8-1 DSM-11 Supported Hardware 

CPUs sup- PDP-11/34, PDP-11/45, PDP-11/60, or PDP-11/70 
ported 

Memory 
ranges 

Minimum: 32K words (allows 2 to 4 users) 
Maximum: 124K words on 11/34, 11/60; 1 megabyte 
on 11/70 

195 



Disk systems 

Minimum 
peripherals 

Additional 
peripherals 

DSM-11 

Both fixed-head and removable pack disk systems 
can be used for on-line storage of user programs, 
the data base, and system utility programs. The 
maximum size system can provide more than 1.4 
billion bytes of on-line storage. RK11, RK06, RKO?, 
RP04, RP05, RP06, RM02, RM03. 

Console terminal 
A disk system (RK11, RK06, RKO?, RP04, RP05, 
RP06, RM02, or RM03) 
A tape system (TS03, TU10, TU16, or TU45 magnetic 
tape system) 

Maximum 16 single-line controllers (DL 11) 
Maximum multiplexers: 5 DH11s (16 lines) or 6 
DZ11s (Slines) with a maximum of SO terminals total 
DMC11 Synchronous Communications Interface 
Industry compatible magtape (TS03, TU10, TU16, 
TU45; up to 4 drives each) 
CR11 card reader 
LP11 line printer 

EXECUTIVE AND SYSTEM FEATURES 

Job Scheduling 
The executive implements the timesharing aspects of the system and 
permits partitioned multiprogramming using dynamic assignment of 
memory-resident user partitions. In a timesharing environment, jobs 
are generally highly interactive and normally require little processing 
time between I/O requests. The executive passes control from one 
user to another in order to use the central processor as much as 
possible. Because jobs are resident in memory partitions, the execu
tive can switch from user to user in rr.inimum time. 

The executive uses a set of priority-weighted queues to administer its 
scheduling algorithm. Jobs waiting to run can be placed in either one 
of two sets of wait queues, depending on the priority set by the appli
cation system designer. These queues are the Wait 1, Wait 2, and Wait 
3 queues, and the Wait A, Wait B, and Wait C queues. The priorities 
are Wait 1, Wait A, Wait 2, Wait 8, Wait 3 and Wait C queues. Initially, a 
job starts in the highest priority wait queue. When a job reaches the 
front of this queue, it is placed in the run queue, where it executes for 
the duration of its time slice. The number of DSM commands executed 
is incremented with the interpretation of each command. The counter 
is reset upon the completion of an input message. When a job is 
swapped out, if the command count is less than 20, the job is placed in 

196 



DSM-11 

the Wait 1 or Wait A queue. If the command count is greater than 20 
and less than 8192, the job is placed in the Wait 2 or Wait B queue. 
Otherwise, the job is placed in the Wait 3 or Wait C queue. 

If the job is still executing, and has not issued an I/O request (which 
would change its priority) by the end of this time slice, it is placed in 
the lowest priority wait queue. When it reaches the front of this queue, 
it is allocated another time slice and is once again placed in the run 
queue. After this point, the executive circulates the job between the 
lowest priority wait queue and the run queue. When the job becomes 
I/O bound, the executive places the job at the end of the highest 
priority wait queue (unless the I/O was disk I/O, in which case the job 
is placed at the front of the highest priority wait queue). Note that the 
time slice given to any job in any wait queue always remains the same, 
regardless of the wait queue in which the job is placed. This queueing 
algorithm gives priority to the most highly interactive jobs in the sys
tem. 

I/O Monitor 
When a job becomes I/O bound, the executive places the job in the 
appropriate hung state that signals the I/O monitor to start its process
ing. The I/O monitor initiates and processes the I/O activity through its 
interrupt handlers. 

The DSM interpreter and the I/O monitor communicate through buff
ers for terminal I/O character processing, but the I/O monitor 
supervises the asynchronous filling and emptying of these buffers to 
overlap output with that program's processing whenever possible. 

The I/O monitor creates a terminal-independent environment in which 
an application program can run with any terminal of the hardware 
system regardless of its specific speed and formatting characteristics. 
At terminal log in, a partition initially "owns" one terminal. It may sub
sequently acquire other terminals in the system, or it may release the 
original terminal and continue as a detached job. 

The I/O monitor also supervises the peripheral I/O devices of the 
system, including the magtape drive, card reader and line printer. 

User Interface 
Most users of the DSM-11 system gain access to the system's pro
grams using a special log-in sequence which involves one or two 
access codes (depending on the privileges of the user). These codes, 
provided by the system manager, are the User Class Identifier code or 
UCI, and the Programmer Access Code or PAC. 

The DSM-11 system can have up to 10 UCls (classes of user). A UCI 

197 



DSM-11 

allows access to the programs and globals listed in the program and 
global directories for that UCI. A user who is permitted simply to run 
programs needs to know only the UCI and the name of the programs 
for that UCI. 

Users who are allowed to create or modify programs and global files 
must know the system's PAC. This code permits system operation in 
direct mode. In direct mode, a programmer can issue DSM com
mands at the keyboard, as well as create, modify and delete global 
data and programs associated with the UCI under which the user 
logged in. 

If the user intends to program, the partition is initialized and control is 
passed to the interpreter for the subsequent programming session. If 
the user desires activation of a service program, the requested pro
gram is loaded from the disk into the partition and execution of that 
program commences. In either case, the user retains the partition until 
logging off the system or until the requested program finishes execut
ing. 

DSM-11 also employs a concept known as "tied terminals." An 
attempt to log in at a tied terminal activates the task to which the 
terminal is tied and limits the user to the resources associated with 
that task. Normally, the user gains access to the system by typing a 
CTRLlC, entering a UCI or UCI and PAC code, and then selecting a 
program or command to execute. When the user types a CTRLlC at a 
tied terminal, the task to which the terminal is tied is immediately 
activated. This capability gives the system manager an effective con
trol mechanism for system access. 

To log in to the system, the user types the CTRL/C keys or the BREAK 
key on the terminal. If the terminal is not tied, DSM responds by 
requesting a UCI code. The terminal user can respond in one of two 
ways. If the user is not a privileged user, the response consists of a UCI 
code followed by the name of the program to be executed. In this case, 
DSM logs in the user if the UCI is valid, executes the named programs 
and logs off the user. 

If the user is a privileged user, the response consists of a UCI code 
followed by the PAC. In the latter case, DSM enters direct mode, 
indicated by its printing a greater than character (» on the terminal. In 
direct mode, the programmer can: 

• execute DSM commands immediately 

• enter program code 

• run programs and access global files listed in the UCI directories 

• run library utility programs 

198 



DSM-11 

All application programs, system utilities and library programs are 
written in Standard MUMPS language. This language allows an appli
cation programmer to write a program and debug, edit, run, and mod
ify it in a single interactive session at a terminal. This minimizes the 
programmer's time in solving aproblem, the computer time needed in 
checking it out, and the elapsed time required to obtain a final running 
program. The interpreter is that part of the operating system responsi
ble for these services. The executive and the liD monitor serve to 
enable the interpreter to operate efficiently. 

The interpreter examines and analyzes all Standard MUMPS language 
statements, executing in turn the desired operations. Each Standard 
MUMPS language statement undergoes identical processing each 
time it is executed by the interpreter. Intermediate code is not generat
ed. Comprehensive error checking is also performed to ensure proper 
language syntax. 

In addition, the interpreter stores and loads programs through the disk 
storage system. During program execution, the interpreter can overlay 
external program segments invoked by an active program. Proper 
linkages are set up to return to the invoking program when execution 
of the segments terminates. 

A number of major advantages are obtained from the use of the inter
preter as the major component of the DSM system. FIrst, programs 
written in an interpretive language do not require any compiling or 
assembling. Error comments during execution are printed at the pro
grammer's terminal and allow quick recovery, program modification 
and re-execution. All program debugging and modification operations 
are performed in the DSM language directly at the terminal. This 
makes modification convenient, particularly in an environment where 
the troubleshooting necessary to interface a program with an applica
tion area is a time-consuming prOcess. The DSM environment allows a 
programming session to take the form of a conversational dialog 
between the programmer and the terminal device. 

Almost any DSM command or function can be executed from the 
keyboard in direct mode. When a command is entered, the DSM lan
guage interpreter executes the command immediately and gives the 
appropriate response to the programmer. A command line can con
sist of several Standard MUMPS commands and arguments, com
ments, and data. For example, the programmer can enter the com
mand line: 

>WRITE "7+5=",7+5 

This command tells DSM to print the characters 7+5= on the terminal, 
evaluate the arithmetic expression 7 +5 and print the result on the 

199 



DSM-11 

terminal. DSM therefore responds by immediately printing: 

7+5=12 
> 

To create a program, the programmer enters a paragraph of code 
which may consist of one or more lines. Each paragraph begins with a 
label and a TAB character; subsequent lines begin with just a TAB and 
are addressed via the label plus an offset. For example: 

>A WRITE "7+5=",7+5,! 
WRITE "THIS IS A TEST",! 

> 
In order to print the second line of this program on the terminal, one 
wouldtypeP A+1. 

Entering lines of code in this manner signals the system to store the 
line in the program buffer of the user's partition rather than to execute 
it immediately. DSM responds only by printing the> character. The 
programmer must explicitly request DSM to execute the stored com
mand line. For example: 

>DOA 
7+5=12 
THIS IS A TEST 
> 
The DO command tells DSM to begin executing at the line labeled A of 
the stored program, and it will continue to execute until it encounters a 
control command such as GOTO 6r QUIT, or arrives at a point where 
there is nothing else to interpret. 

Once a program has been created, the programmer can store the 
contents of the partition's program buffer on disk or on a secondary 
storage device such as magnetic tape. The program can then be 
reloaded into the program buffer from the disk or secondary storage. 
A program can be modified when it is loaded in the program buffer by 
adding new lines or by replacing, deleting, or modifying existing lines 
of code. 

Terminals and Ancillary I/O Devices 
In addition to the disk devices reserved for use by the DSM data base 
supervisor, DSM allows users to have access to terminals and ancilla
ry I/O devices such as the card reader and magnetic tape devices. 
Each I/O device has a unique identification number in the system. 

Ownership of terminals and ancillary I/O devices is established using 
the OPEN command. Once ownership is established, I/O may proceed 

200 



OSM-11 

using the I/O commands available. !n genera!, the programmer need 
not be concerned with specific characteristics of I/O devices, since 
data transfers consist of ASCII strings not greater than 255 characters. 
There are, however, certain physical operating characteristics of these 
devices which may be of interest to the programmer: for example, 
rewinding a magtape or a form feed on the line printer. There are also 
logical characteristics such as use of special characters to indicate 
end of a logical record or end-of-medium (EOM). The omission of 
such characters can result in logical records of unlimited length (ex
cept for physical device limitations such as length of tape). 

The unique identification number of each I/O device always repre
sents the same device regardless of the hardware configuration of the 
particular system. For example, the console terminal is always device 
#1 and the line printer is always device #3. If a particular system does 
not have a line printer, then device #3 is non-existent, and any attempt 
to reference it generates an error. 

The commands which affect input and output operations to the termi
nals and ancillary devices are: READ, PRINT, WRITE, WRITE* and 
ZLOAD. The WRITE command is used to output both local and global 
data, as well as literals, constants and format control characters. The 
WRITE* command is used primarily to take advantage of special fea
tures of I/O devices, which are specified, generally, by non-printing 
ASCII codes. The WRITE* command accepts numeric arguments, the 
low-order seven bits of which are taken as the decimal representation 
of the ASCII code. For example, the command W*10 is used to output 
a line feed character. 

In addition to the standard I/O peripheral devices such as the line 
printer and magnetic tape drives, DSM has two special "devices." 
They are the Sequential Disk Processor and the CPU-CPU device. 

The Sequential Disk Processor (SDP) allows the user to access the 
disk physically as an assignable sequential I/O device. The SDP can 
access only the disk space that is explicitly set aside for its use. Other 
disk space, including the global data base structure, can not be 
accessed. Sequential disk processing allows the user to impose any 
file structure on the SDP space. 

The CPU-CPU device is a DMC11 synchronous interface, full- or half
duplex, that connects the DSM-11 CPU to another CPU. The other 
CPU does not necessarily have to be a DSM-11 system, but does have 
to recognize DMC-11 protocols. This device allows a DSM program to 
communicate with a program running on another central processor. 

In an attempt to connect more users to a common data base, DSM-11 
allows a system to be connected syntactically to up to four other sys-

201 



DSM-11 

tems. Functionally, these routines will allow a user on one system to 
lock global nodes or read or write global data from the other systems. 

Spooling 
DSM-11 also includes the ability to spool output to line printers. The 
spooling device is a file-structured mechanism used for temporary 
storage of information. Typically, one would direct the output of sever
al programs to separate files on this device. These files would then be 
processed one at a time by a de-spooling program which would write 
them to an output device such as the line printer. After a file had 
finished printing, it would be erased from the structure. 

In order to aid in classifying these spool files, a destination code ac
companies each file, in addition to its own unique file index number. 
The destination code is a value which is in the range of (1) to (255). 
This code is recorded in the directory entry for each file for easy 
access. By using this code, a file can easily aid in retrieving a particular 
group of files. 

For instance, let us say that there are two de-spooling routines running 
on a DSM system, each handling one printer (devices 3 and 4). The 
user may choose to designate files which have a destination code of 3 
to be written to device #3 and those with a destination code of 4 to be 
printed on device #4. 

Each de-spooling routine would attempt to access any existing file 
with an associated destination code (3 for device #3, 4 for device #4). If 
no file exists with this destination cede, an error code is returned in the 
system variable $ZA. The de-spooling routine would then recognize 
that and would sleep for a specific period and then try again. 

If the open was successful, the de-spooler would read from that file 
and output it to its associated printer. Upon completion of this (end-of
file is indicated by a $ZA error code), the file would be erased by use of 
an option on the CLOSE command. 

In this way, actual file numbers become relatively unimportant, and 
several files with the same destination may be open simultaneously. 

In the released version of DSM-11, the despooling routine (% 
DSPOOL) uses this destination code as the intended output device 
and will process all spool files in a serial manner. It is suggested that 
the user examine this routine and use it as a model for customizing the 
spooling facilities to the particular installation environment. 

The system global t%SPOOL is used by %DSPOOL and %DEVIL for 
communication with other routines. An entry point QUITt%DSPOOL is 
provided to shut down the de-spooling routines. The routine %DEVIL 

202 



DSM-11 

is a device error monitor routine which scans for printer errors and 
indicates them on the console device. It then re-enables the printer for 
a re-try. 

Journaling 
OSM-11 also supports the technique known as journaling. Journaling 
is a technique whereby an additional copy of any data that is modified 
on the disk is made on another device. In the OSM system, any item 
that is changed on the data base is also written on to the magnetic tape 
for a journal record. Should a catastrophic failure to the disk occur, it 
is always possible to bring back the journal tape entries and restore to 
the previous backup copy, bringing the system right up to date as of 
the time of the failure. This journaling is transparent to the MUMPS 
application programmers. It runs at the system level, built in to the 
operating system so that MUMPS programs need not be modified or 
specially written to handle journaling. All desired changes to the data 
base are recorded automatically on to the journaling system. Journal
ing also has the capability of writing transactions delimiters. 

It is frequently important in data base systems to be sure that all of a 
particular grouping of items, or a particular transaction, is updated on 
the device. With OS M-11, it is possible to write transaction delimiters 
onto the journal so that the restore program can be sure that it has an 
entire transaction before it does the restore. 

The journaling in the OSM-11 system is double buffered. This is a 
performance enhancement that means the system should very rarely 
have to wait for the magnetic tape to catch up with the data base 
changes. All entries being made to the tape are written into one buffer. 
While that buffer is being written out on to the tape, the updated 
transactions are being written to the second buffer. This ping-pong 
effect can keep the magtape moving at optimum speed, and not bog 
the system down waiting for the tape transport activity. 

The journaling is optional either by the entire system or by specific job. 
It is important to note that, once included in a system during system 
build, journaling is assumed. A user must take an overt action to stop 
the journaling, rather than one to start it. When a particular operation 
doesn't need journaling, such as a batch process that can easily be 
repeated, then the journaling can be stopped to enhance system per
formance. 

DATA MANAGEMENT 

Data Base Supervisor 
The data base supervisor consists of a group of routines which pro-

203 



DSM-11 

vide physical as well as logical control of the various disk systems 
which store the data base. 

In DSM, all file information is referenced symbolically, in the context of 
hierarchical global variables and arrays. This replaces the standard 
technique of sequentially accessing the blocks constituting files on 
secondary memory devices. Instead, the content and structure of the 
tree-structured symbol tables are logically mapped into the physical 
storage medium of the system. The data base supervisor maps logical 
information from global arrays into directories of fixed-size blocks. 
Maps of unused disk blocks are maintained to facilitate the dynamic 
allocation of disk storage space to files. These storage allocation maps 
are bit maps in which there is a correspondence between the map 
address and the bit position within the map, and the disk address of 
the block. 

Whenever a file needs a block, the system references a table which 
governs the allocation of data for that particular user. This table has 
entries in it which indicate the block number where a scan for an 
empty block is to be started. Types of blocks allocated in this way are: 
global directory, global pointer, routine directory, routine pointer and 
global data blocks. Given a starting location, the system references a 
master allocation table to determine the availability of blocks in the 
desired area. (This map is known as the master map and is kept in 
main memory.) Having thus found the region where an available block 
is to be found, the appropriate map block is referenced for the specific 
block number. 

DSM utilizes a data retrieval method known as disk cache. Once a 
block of data accomodating a given level of subscripting is referenced, 
its address is placed in the partition's overhead area and the block 
remains in memory until a reference to a different block is made. 
When a level is reached, often no further disk access need be made to 
reference associated information. At system generation, the system 
manager has the option to establish a buffer pool of up to the equiva
lent of 64 disk block buffers. Disk data blocks will be kept in the buffer 
pool as a function of frequency of use. Frequently used blocks will 
tend to remain in memory, thus reducing the number of disk accesses. 
Furthermore, when data are updated, care is given to repacking, and 
sometimes reorganizing, the individual data elements within a chain, 
to ensure maximum use of space for variable length data. 

When a part of a global structure is deleted, it is attached to a garbage 
chain. The garbage collector routine removes blocks from the tree
structured chain and updates the storage allocation maps according
ly. 

204 



DSM-11 

Data Storage Elements 
All user data, whether numeric or string, are stored in the system as 
ASCII character strings. DSM interprets these strings in one of two 
ways: as numbers, such as those used in calculations, or as strings, 
such as names and addresses. 

Numbers in DSM are signed numbers which can be up to 27 signifi
cant deci mal digits long. Examples of numbers are: 

2.08 
151.95 
403,222 
.6379465 

A data value has the form of a number if it satisfies the following 
restrictions. 

1. It contains only digits and the characters '-' and ',' (the + character 
is not necessary. The number +403,222 is equivalent in value to 
403,222. 

2. At least one digit is present. 

3. A decimal point (.) occurs no more than once. 

4. The number zero is represented by the one-character string '0'. 

5. The representation of each positive number contains no hyphen (-) 
character. 

6. The representation of each negative number contains the hyphen 
(-) character followed by the representation of the positive number 
which is the absolute value of the negative number. (Thus, the 
following restrictions describe positive numbers only.) 

7. The representation of each positive integer contains only digits and 
no leading zeros. 

8. The representation of each positive number less than 1 consists of 
a decimal point (.) character followed by a non-empty digit string 
with no trailing zero. 

9. The representation of each positive non-integer greater then 1 con
sists of the integer part of the number followed by the fractional part 
of the number. 

String data in DSM is any contiguous series of legal DSM characters 
that are to be considered a single data entity. Strings in DSM can be 
up to 255 characters long. Examples of strings are: 

HELLO, MY NAME IS 
55SECONDS 
2,564,843,485,076,193 

205 



DSM-11 

FRIENDS, ROMANS, COUNTRYMEN, ... 
FROP%X10.CF 

Program data values can be expressed as literals, constants or 
variables. Three types of variables can be created in Standard 
MUM PS programs: simple variables, subscripted variables and global 
variables. Variables can be created, modified and deleted using the 
SET, READ, and KILL commands. 

System variables are a fourth type of variable. These variables, main
tained by the operating system, contain general information for use by 
all Standard MUMPS programs. With one exeception, system vari
ables are read-only and cannot be altered as can normal variables. 

A subscript is a value enclosed in parentheses which is appended to a 
variable name to identify uniquely a number of data elements which 
are to reside under that variable, name. All the subscripted variables 
residing under a common name are collectively referred to as an 
array. An array can consist of variables which have more than one 
level of subscripting, and when more than one level is used for global 
array subscripts, they are separated by commas. 

A sparse array is an array in which only those elements which are 
explicitly defined or which are required to support the array structure 
actually exist. Unlike other languages which may require a declaration 
of the maximum size of an array to preallocate space, DSM dynamical
ly allocates storage for all arrays only as needed, thus conserving 
storage space. 

Local variables are variables that reside in the same partition as the 
commands which created them and are used as scratch or transient 
data. These variables are accessible only to programs running in the 
same partition. Simple variables have no subscript, for example, ABC, 
R45, X, %D. Subscripted variables can have multiple levels of sub
scripting, with numeric or string subscripts. For example: ABC(2), 
R49(ULlST"), ABC(4+B(C*D)/0.89). 

Global variables are multi-subscripted arrays. Unlike local variables, 
they are external to a program's partition, providing a common data 
base available to all programs in a given user class. There is no logical 
limit to the number of subscripts that can be used. The physical limit is 
63 characters for a complete global reference. Like subscripted local 
variables, global arrays also reside in sparse arrays and are created 
simply by reference in a program. Each global array is identified by a 
unique name which is similar to a local variable name in a program, 
but is always preceded by an up-arrow character (t). 

206 



DSM-11 

Array elements, which are often called nodes, can contain either a 
numeric or string data value. Nodes may be either pOinter nodes or 
data nodes. Pointer nodes are stored as required by the system at the 
higher levels of the tree. All data are stored in a well-ordered form in 
data blocks-regardless of the number of subscripts. 

A global variable node can be referenced in a program using a special 
abbreviated syntax called naked syntax. The naked syntax facility per
mits the programmer to abbreviate the global reference. 

In form, only the up-arrow and subscripts are explicitly stated. The 
global name is assumed from the last global reference made. Thus, if 
a reference to tABC(2) is to be made after referencing tABC( 1), only 
the subscript is specified: t(2). The first subscription in the naked 
reference replaces the last subscript in the previously completed glo
bal reference. Thus if tABC(2,3,4) is referenced sucessfully, then a 
reference. to to ,2,3) would refer to tABC(2,3, 1,2,3). 

In addition to storing global data files, the disk is also used to contain 
Standard MUMPS language programs, which include both user-creat
ed programs; and system utility programs. 

The availability.of programs and global data to users is controlled by 
the system's protection scheme. Up to 10 classes of user can be de
fined within the system. Each user class has access only to those 
programs and globals residing in that class. In addition, specially 
named library programs residing in UCI #1 (the system UCI) can be 
accessed by all users. 

The DSM Disk Structure and Global Arrays 
The primary devices used by the DSM-11 system are the disk units 
allocated to the storage of DSM globals and DSM programs. Each UCI 
defined by the system manager has two directories associated with it: 
the global directory (that is, the file directory) and the program directo
ry. 

Directories for programs and globals are normally stored on thE! sys
tem disk. Storage area for programs and globats usually begins on the 
same disk unit as the associated directories. As programs and globals 
increase in size and number, storage area will ultimately flow across 
physical disk unit boundaries. This is completely transparent to the 
user. The general user does not have to be concerned with any DSM-
11 disk device unit naming to retrieve globals or programs from any of 
the disks allocated for this purpose. 

The system manager can locate the directories on any disk unit in the 
system. The system manager can also limit program and global stor
age to specific disk units in the system. 

207 



DSM-11 

Globals are logically organized as multidimensional tree-structured 
arrays. An element of an array has a logical name consisting of the 
global name and the subscript(s) uniquely identifying the element. For 
example, tABC(2,3.4,JONES) is the name of the element in the global 
called ABC whose first subscript is 2, whose second subscript is 3.4, 
and whose third subscript is JONES. The elements of a global array 
are called nodes. 

The user's global directory contains the names of all the globals it can 
reference, together with the pOinters to the tree structures for each of 
the globals. 

The basic new data structure is organized along the lines of "multiway 
B-trees." A general discussion of multiway trees can be found in 
Knuth, "Sorting and Searching," Volume 3, Chapter 6.2.4. 

Essentially, the new structure consists of three types of disk blocks: 
directory, pointer, and data blocks. The organization and growth of 
data blocks will first be described, and, in so doing, the others will be 
explained. 

All of the data are stored in blocks called data blocks. Each piece of 
data is stored with the set of subscripts that is required to access the 
data. The subscripts are concatenated to form the "node name," and 
the associated data in the node's "value." Thus a data block may look 
as follows: 

A_1_3, HELLO 
1st NODE 

A_5, YES 
2nd NODE 

A_19_3_2, BYE 
3rd NODE 

In this example, tA(1 ,3) = "HELLO." All of the nodes are kept in order 
by node name, and tA(5) would preceedtA(5,O). 

Let us assume that this is the only data block, and that in attempting to 
add tA(2), we find that the block is not large enough. A new block is 
allocated, and part of the block is placed in the new data block. Anoth
er block is also allocated, and it contains the first node name of each of 
the data blocks with an associated pOinter to each data block. Our 
structure may now look as follows: 

A 1 3 A 5 POINTER 
BLOCK 
A_1_3, HELLO A_2, THERE 

The top block in this diagram is a pointer block. Other nodes will be 
inserted in the data blocks, and other splits will occur causing new 
entries to be inserted in the pOinter block. Eventually, the pOinter block 
will become so full that it too must split. When this split occurs, a 

208 



DSM-11 

higher level pointer block is allocated, and the process repeats itself. 
Every time the bottom pointer level splits, a new node is inserted in a 
higher level painter block until it, too, splits. 

Note that all of the data are stored at the bottom level, and that, 
although deletions may result in the collection of certain data and 
pointer blocks, the same number of pointer block levels will always 
exist between any data block and the top pointer block. 

The number of pointer block levels depends upon the file size (num
ber of elements and length of subscripts). In small files, the number of 
pointer levels may be one or two. Large files will require three levels. 

The complete segregation of painter and data blocks permits the sys
tem considerable freedom in block allocation. All of the pointer blocks 
may be stored on a couple of cylinders, thus reducing the head motion 
which is the major factor in access time. 

LANGUAGE AND UTILITIES 
A set of DSM language utility programs provides the user with the 
tools to maintain and service the system efficiently. All these utilities 
are written as Standard MUMPS language programs, and as such can 
be easily modified and extended to suit the needs of a particular 
installation. 

The utility programs consist of two operationally distinct groups: sys
tem utility programs and library utility programs. The system utility 
programs provide functions for use by the system manager. They 
reside on the disk under the control of the system UCI (UCI #1), and 
are accessible only to those individuals possessing the system UCI 
code. 

Library utility programs provide general services which are available 
to all system users, regardless of UCI. These programs also reside 
under the system UCI but employ a naming convention which distin
guishes them from system utilities. 

Tables 8-2 and 8-3 briefly describe the system utility and library pro
grams. 

Table 8-2 System Utility Program Summary 

BBD Bad Block Deallocator 

STU System Startup 

STA System Status 

209 



DSM-11 

SSD System Shut Down 

RJD Restore Job/Devices 

PAN Partition Analysis 

DDR Device Descriptor Rpt 

CTK Caretaker 

KTR Caretaker Rptr 

JPC Job Priority Change 

BCS Broadcaster 

DGAM Disk Growth Area Management 

OAT Sets date in $HOROLOG 

TIM Sets time in $HOROLOG 

DSM Backup and Utility System 
The Standard MUMPS Backup and Utility System (SMBU) is a boot
able, stand-alone system. 5MBU allows the user to back up or save 
the significant data from DSM disks so that in the event of a system 
failure, the disks can be restored to their former states. In addition, 
5MBU performs the following important utility functions: 

1. Labels disks and magtapes for identification purposes and for pre
vention of inadvertent distruction of important data. 

2. Formats and tests disks; initializes disks to be used in a DSM 
environment. 

3. Makes exact image copies of magtape and disk volumes to back up 
non-MUMPS data. 

4. Allows the direct allocation or deallocation of individual blocks on a 
DSM disk. 

Once loaded into memory, 5MBU begins executing automatically. 
Thereafter, the user need only answer the question it asks in order to 
have it perform the operations desired. If in doubt as to the way to 
answer a particular question, the user can type the single character 'H' 
(followed by a carriage-return) and receive a list of sample answers to 
the question, showinq the format in which the answer is expected. 

210 



DSM-11 

Note that if the user types 'H' in response to the first question 5MBU 
asks, he will receive an "SMBU Command Summary"-a brief de
scription of all 5MBU commands, explaining the use of each. 

%BDLMP 

%CP 

%D 

%DO 

%DOC 

%ED 

%FL 

%GBA 

%GD 

%GL 

%GP 

%GR 

%GS 

%GSEL 

%GU 

%GUCI 

%H 

%IOS 

%JRNL 

Table 8-3 Library Utility Program Summary 

Block Dump - dumps requested global blocks. 

Character Print - turns echoing of characters on 
and off. 

Writes out the date equivalent of whatever is in $HO
ROLOG. 

Decimal to octal subroutine 

Decimal-octal converter 

Routine Editor 

Routine first line list 

Gobal Block Analysis 

Global Directory 

Global Lister 

Global Place 

Global Restore 

Global Save 

Global Name Selector 

Global Utilization 

Get current UCI name and number 

Takes care of all date and time conversions. 

110 device selector 

Turns journaling off and on. 

211 



%LT 

%OD 

%PROTECT 

%RBA 

%RD 

%RLST 

%RS 

%RSE 

%RSEL 

%RR 

%T 

DSM-11 

Prints out lock table 

Octal to decimal subroutine 

Global Protect - changes protection codes of differ
ent globals. 

Routine Block Analysis 

Routine Directory 

Routine List 

Routine Save 

Routine Search 

Routine Name Selector 

Routine Restore 

Writes out the time equivalent of whatever is in $HO
ROLOG. 

The MUMPS Language 
ANSI STANDARD MUMPS X11.1-1977 contains a large repertoire of 
capabilities; its basic orientation is procedural, much like FORTRAN or 
COBOL. Its capabilities are primarily directed toward the processing 
of variable-length string data, although mixed mode operations are 
expressly permitted. In addition, standard algebraic and Boolean op
erations are available. 

Language processing is in every sense interpretive. Each line of 
Standard MUMPS code undergoes identical processing each time it is 
executed. The language interpreter has two operating modes: pro
gram execution mode (indirect mode) and program creation mode 
(direct mode). In direct mode, programs can be created, modified, 
debugged, stored, and executed in whole or in part. Indirect mode 
permits the execution of these programs. 

The following paragraphs discuss some of the major elements of the 
Standard MUMPS language. 

Expressions 
An expression is a value description that can be made in the Standard 
MUMPS language. An expression is any legal combination of oper-

212 



DSM-11 

ands and operators. Expression elements include such basic lan
guage elements as literals, constants, simple variables and subscript
ed variables. Also included are function references and subexpres
sions, which are simply legal expressions enclosed in parentheses. 
The following are examples of expression elements: 

123.34 
ABC 
"ABCD" 
MX(5) 
tXYZ(2,5) 
$LENGTH(Z) 
(A+B-(C/D)) 

constant 
simple variable 
literal 
local subscripted variable 
global variable 
function reference 
su bexpression 

The operators in an expression serve to represent the various 
arithmetic and logical computations of the Standard MUMPS lan
guage. Table 8-4 lists the Standard MUMPS expression operators. 

Table 8-4 Summary of Expression Operators 

Type 

Arithmetic 

Relational 

Boolean 

String Relational 

String Concatenation 

Indirection 

Symbol Function 

+ Addition 
Subtraction or Unary Minus 
Multiplication 

I Division 
# Modulo 
\ Integer divide 

< 
> 

<= 
>= 
'= 

& 

[ 

1 
? 

@ 

Less than 
Greater than 
Equality 
Less than or equal to 
Greater than or equal to 
Not equal to 

AND 
OR 

Contains 
Follows 
Pattern verification 
Equality 
Not 

Concatenation 

Indirection* 

213 



DSM-11 

*Indirection allows data values to be executed as Standard MUMPS 
code. 

Indirection Is denoted by the character @ followed by an atomic 
expression. The value of the expression is substituted for the occur
rence of indirection before the rest of the line is interpreted. There are 
three basic types of indirection. 

1. Argument indirection, where the indirection occurs in place of a 
command argument, and the value must be one or more complete 
command arguments. 

2. Name indirection, where the indirection occurs in any context 
where a named variable can occur and the value of an indirection 
must be a complete variable name. 

3. Pattern indirection, where the indirection occurs in place of a pat-
tern and the value must be a pattern. 

Of special importance are the relational string operators. They provide 
facilities for determining the characteristics of string data. The opera
tors return true or false results. They are: 

String Contains ([) - The string specified by the left operand is exam
ined for the occurrence of the string specified by the right operand. If a 
match is found, the result is true. 

String FOllows (]) - The string specified by the left operand is com
pared character-for-character with the string specified by the right 
operand to establish relative position according to the ASCII collating 
sequence. If the string specified by the left operand follows that speci
fied by the right operand, the result is true. 

Pattern Verification (?) - The string specified by the left operand is 
examined for the occurrence of the character patterns specified by the 
pattern specification codes. If a matching condition exists, the result is 
true. The pattern specification codes can be preceded by a single 
decimal integer to specify the number of occurrences of a particular 
character type. The pattern specification codes are: 

A Verify upper and lowercase alphabetics 
C Verify 33 control characters 
E Verify entire set of 128 characters 
L Verify 26 lowercase alphabetics 
N Verify 10 numerics 
P Verify punctuation 
U Verify upper case alphabetics or any 

string of characters delimited 
by punctuation marks 

214 



DSM-11 

Commands 
A command is the basic' unit of expression in the Standard MUMPS 
language. A command is a mnemonic which symbolizes the action to 
be performed, for example GOTO or SET. The command name can be 
abbreviated to one letter. It usually takes one or more arguments 
which specify the objects of the action to be performed. Several Stan
dard MUMPS commands can be present on a command line. Pro
gram comments can be appended to any command line using a semi
colon to separate the command line from the comment text. 

Standard MUMPS uses alphanumeric tags plus offsets to identify lines 
of code, and programs are arranged in a paragraph concept. Stan
dard MUMPS commands are executed from left to right within a line 
and sequentially from one line to the next (assuming no control com
mands are encountered). For example, INIT is a tag which identifies 
the first line of the INIT paragraph; INIT + offset addresses 
subsequent lines of the INIT paragraph without the need to tag every 
line of code. 

Certain commands permit the optional use of an argument or argu
ment list. The indirection syntax operator, symbolized by @, provides 
dynamic argument definition. In form, the command argument is re
placed by the indirection syntax operator immediately fOllowed by a 
variable name. During execution, the contents of that variable name 
are taken as the argument. For example: 

1.15 S ARG = "15+3/6" ;variable ARG is set to value 
1.20 W @ ARG ;contents of ARG are evaluated and output 

An optional Boolean-valued expression preceded by a colon can be 
used as part of an argument to specify conditional execution. For 
example: 

GOTO 3:A>B ;control is transferred to paragraph 3 if A is greater than 
B 

Commands can be issued in either indirect mode or direct mode un
less specified otherwise. Table 8-5 summarizes the DSM commands. 

BREAK 

Table 8-5 DSM-11 Commands Summary 

Stops a routine at a specified point to allow examina
tion of routine variables. BREAK allows an argument 
which returns a Boolean value (1 = true, 0 = false). A 
true argument allows a given job to be interrupted, 
whereas a false argument prevents a job from being 
interrupted. 

215 



CLOSE 

DO 

ELSE 

FOR 

GOTO 

HALT 

HANG 

IF 

KILL 

LOCK 

DSM-11 

Releases one or more designated devices from 
ownership. 

Initiates execution of the MUMPS code at the 
specified argument. 

Provides the means for testing the sense of the 
previously executed IF command. When the sense of 
the preceding IF is false, commands following the 
ELSE on the line are executed. Otherwise, control 
passes to the next program step. This command can 
be issued in indirect mode only. 

Produces efficient looping by repeating commands 
residing on the same line for a specific set of variable 
values. QUIT terminates a FOR loop. 

Program control is permanently transferred either to 
a line of code in the same routine, to the start of a 
new routine, or to a particular line of code in a new 
routine. Note that if return of control is required, the 
DO command should be used. This command can 
be issued in indirect mode only. 

First LOCK (see below) with no arguments and 
CLOSE of all devices opened by this job are execut
ed (although these are not stated explicitly). Then 
execution of the current process is terminated. HALT 
does not take an argument. 

Suspends program execution for a specified time 
interval. When the interval is up, program execution 
resumes at the command following the HANG. 

Effects a change in a program's operation based on 
the validity of one or more Boolean-valued expres
sions. If all expressions are true, the remainder of 
the command line is processed. If any expression is 
false, the next step is executed. It can be used with
out arguments; the condition tested is the value of 
system variable $T, which is set by the last IF state
ment. The ELSE command is used to test the logical 
reverse of an IF. 

Used to delete both local and global variables, with 
specified arguments or exclusive arguments. 

Program convention for notifying other users that a 
particular node of a global and all nodes to which it 

216 



OPEN 

QUIT 

READ 

SET 

WRITE 

USE 

VIEW 

XECUTE 

DSM-11 

points (all its descendants) are not to be referenced. 
This allows the program to protect global data which 
may be accessed by several programs simulta
neously for updating. LOCK without arguments 
releases all nodes previously locked. 

Obtains ownership of one or more devices. 

Terminates the execution of a logical process, in
cluding the execution of a line or program. QUIT is 
often used to terminate prematurely operations 
which are executed within the range of the DO, FOR, 
and XECUTE commands. 

Reads one or more lines of characters into specified 
local variables. Additional optional arguments are a 
message to be written and the format control char
acters, and timing information. A timed READ en
ables the program to continue processing if the time 
interval elapses before any input is received. This is 
particularly useful in applications where terminals 
are either infrequently attended or unattended. 

Assigns the result of an expression to a specified 
variable. 

Specifies the output of data and format control to the 
current device. When an argument includes an as
terisk followed by an integer value, one character 
whose code is the number represented by the integ
er is sent to the current device. The effect of this 
character at the device is device dependent. 

Designates a specific device as the current device 
for input and output. Before a device can be named 
in the argument of a USE command, its ownership 
must have been established through execution of an 
OPEN command. 

Permits the reading and writing of memory locations 
and disk storage blocks in the system's data base. 
The use of the VIEW command is restricted by sev
erallevels of protection. 

Provides a means of interpreting Standard MUMPS 
code which arises during program execution. Each 
argument of the XECUTE command is interpreted as 
if it were a line of Standard MUMPS code. 

217 



DSM-11 

ZCommands 
The following commands are known as Z commands. These com
mands are the DSM-11 extensions to the DSM language, and can be 
used only under DSM-11. 

The Z commands may be abbreviated to their first two characters, i.e., 
ZINSERT may be abbreviated to ZI. 

ZG(O) Resumes execution of a routine after a BREAK com
mand. If an error occurs while in the BREAK state or 
if CTRLlC is typed, continuation is not possible using 
the ZGO command, because system error 
processing removes the break state from the user's 
partition. 

ZI(NSERT) 

Example: 

> S X=O F 1=1:1 S X=X+I B:X=15 
<BKERR> B:X=15 
>ZGO 

ZI(NSERT) "stringexpr":label 

where "string expr" is the line the user wishes to 
insert in his routine. Note that the contents of "strin
gexpr" should have a space, not a TAB after the 
label (if a line label is specified within "stringexpr"). 

where :Iabel is the label of the line just previous to 
where "stringexpr" is to be inserted; :Iabel can also 
be a line label plus offset, when no label exists on the 
line previous to the insert. 

Inserts one or more routine lines into the user's rou
tine. May be used in two basic ways: 
1. To insert one or more new lines into a routine 

2. To replace an existing line or lines in a program 

To insert or replace one or more lines in a routine, 
ZINSERT starts inserting lines after the line pOinter. 
ZINSERT can insert only one line at a time; a new 
ZINSERT command must be given for each line to be 
inserted. To insert a line in the following routine, 

>ONE<TAB>;This is test line one 
> THREE<TAB>;This is test line three 

the user simply types: 

>ZINSERT"TWO;This is test line two":ONE 

218 



ZJ(OB) 

DSM-11 

This will insert the line labeled TWO after line ONE. 

To replace line THREE, the user types 

>ZINSERT "THREE W .... HELLO'''';This is test line 
three":TWO 

Notice that HELLO has two sets of double quotes. 
This will cause HELLO to print out as "HELLO". One 
set of double quotes would print HELLO. 

At this point, ZREMOVE can be used to delete the 
last line in the routine. 

Example: 

To insert a line at the beginning of the previous rou
tine, type: 

>ZINSERT "FIRST ;this routine prints out test lines": 
+0 

The +0 inserts this line as the first line of the routine. 

ZJ(OB) entryref["MGR"]:8 

where entryref is of the form: 

[Iabel]trnam 

Starts a new partition executing the job trnam, start
ing at label. This will occur only if a partition is avail
able. If the job is successfully started, $TEST is set to 
true (1). If a partition is not available, $TEST is set to 
false (0). An if without arguments can be used by the 
starting job to determine whether the desired job 
was started. The optional square brackets allow the 
manager to start programs in any user area 
specified by the literal "MGR", and the optional co
lon allows specification of a particular partition size, 
in a number of 512-byte increments. 

Examples: 

1. >ZJOB tAA:8 

Starts job tAA in a new 4K-byte partition. 

>W$T 
1 

To confirm that tAA was sucessfully started, check 
$T. A result of 1 means succesful start. 

2. >ZJOB CHKRtAA 

219 



ZL(OAD) 

ZR(EMOVE) 

ZS(TORE) 

DSM-11 

Starts job tAA in a new partition, starting at label 
CHKR. 

ZL(OAD) rnam 

Loads routines from disk, sequential disk area or 
magtape into the user's partition. 

Examples: 

1. >ZLOAD CALC 

Loads a routine named CALC from disk. 

2. >047 U 47 ZL 

Loads a routine from magtape unit into your parti
tion. 

ZR(EMOVE) [zremovearg, ... ] 

where zremovearg has the form label or label1 :Ia
bel2 

where label, label1, and label2 are labels of existing 
lines in a routine. 

In the argumentless form, deletes ali lines in a rou
tine. With arguments, deletes all lines from label1 to 
label2 inclusive. 

Examples: 

1. ZREMOVE 

Deletes all routine lines currently in user's partition. 

>ZR BREAKO:BREAK2 

Deletes all lines starting with BREAKO and continu
ing through BREAK2. 

ZS(TORE) rnam 

Without an argument, stores the routine buffer under 
the name that is in the partition vector. If the partition 
vector does not contain a routine name (that is, when 
the special variable $ZNAME is equal to the null 
string), the routine must be stored with a name 
(pnam). 

If the partition vector does not contain a routine 
name, and the user attempts to store a routine with
out specifying a name, a <NOPGM> error is gener
ated. 

220 



ZU(SE) 

Functions 

DSM-11 

To delete a routine from a disk or tape file, use ZRE
MOVE to clear the partition, and then file that empty 
partition under the name of the routine to be deleted. 

Example: 

>ZR 

ZREMOVE clears the user's partition. 

>ZSTORE ROU 

ZSTORE then stores the user's empty partition un
der the name ROU, a routine to be deleted. ROU is 
now deleted. 

ZU(SE) dev# 

Allows temporary use of a terminal device which 
another job actually owns. This command is primari
ly intended for use in a broadcast utility routine and 
for error response queries to the console device. 

The user need not OPEN or CLOSE this device. If the 
device specified in this command is valid, the service 
is temporarily set as the user's current device. The 
100 package arbitrates as to which job accesses the 
device at anyone time. READs should always be 
preceded by a prompt that identifies the requested 
information in the same READ command. This will 
always guarantee that the prompt will appear direct
ly in front of the input, identifying the request. When
ever output is performed by the read command, the 
input buffer is flushed so that typed-ahead informa
tion will not mistakenly be processed. 

The legal device values for this command are: 

4--19 64-11 

A function performs an operation and returns a value based on the 
outcome of that operation. A function name is always prefixed by a 
dollar sign ($). Functions are listed in alphabetical order, and may be 
abbreviated to their first two characters, with the $ counting as the first 
character. Table 8-6 lists and defines the currently specified functions. 

221 



$ASCII 

$CHAR 

$DATA 

$EXTRACT 

$FIND 

$JUSTIFY 

$LENGTH 

$NEXT 

$PIECE 

RANDOM 

SELECT 

$TEXT 

$VIEW 

DSM-11 

Table 8-6 Functions 

Selects a character of an ASCII string and returns 
the code of that ASCII string as a decimal integer. 

Translates a string of decimal integers into a string of 
ASCII characters. 

Returns an integer indicating whether the named 
variable (specified as an argument to$DATA) either 
contains data, or has 'descendants,' or both. 

Returns a character or substring of a string expres
sion, selected by position number. 

Returns an integer specifying the end position, plus 
one, of a specified substring within a given string. 

Returns the value of an expression, right-justified 
within a field of a specified size. 

Returns the length (number of characters) of a 
string. 

Returns the lowest numeric subscript value on the 
same level but numerically higher than the last sub-
script of the named global or local variable. 

Returns a substring of a specified string that is de
limited by a specific character. 

Returns a pseudo-random integer uniformly distrib
uted in the closed interval (0, intexpr-1). 

Returns the value of one of several expressions in a 
list, selected by the truth values in a second list of 
expressions. 

Returns the text content of a specified line of the 
routine in which the function appears. 

Returns an integer between 0 and 65535, equal to 
the contents of the memory location specified in the 
argument. 

$Z Function Descriptions 
There are certain functions, called $Z functions, which are DSM-11 
specific. These functions are provided as extensions to DSM, making 
many more options available to the user. These functions may be 
abbreviated to their first three characters. (The $Z counts as the first 
two characters). 

222 



$Z(SORT) 

DSM-11 

$Z(SORT) (glvn(subscript , ... )) 

Identifies the next subscript at the same level as the 
given global or local variable. Identical to $NEXT, 
except for the following differences: 

$NEXT 
• numeric collating sequence 

• starting point is -1 

• failure condition is-1 

$ZS 
• string collating sequence 

• starting point is the null string 

• failure condition is the null string 

System Variables 
A number of special reference-only variables are defined within the 
system to control the flow of information and to provide system infor
mation to Standard MUMPS programmers. These variables are main
tained and updated by the system for each job partition. They can be 
examined by various Standard MUMPS commands (WRITE, SET, etc.) 
but, with the exeception of the $E variable, can not be altered by the 
program. All special variables can be abbreviated to their first two 
characters, except for $Z variables, which can be abbreviated to their 
first three characters. Table 8-7 lists the special variables. 

$HOROLOG 

$10 

$JOB 

$STORAGE 

$TEST 

Table 8-7 Special Variables 

Contains the current date and time. 

Identifies the current 1/0 device. 

Contains the job number (positive integer) of each 
executing DSM job. 

Returns an integer number of characters of free 
space available for use in the current partition. 

Contains a truth value computed from execution of 
the most recent IF command containing an argu
ment, or an OPEN, LOCK, or READ with a timeout. 

223 



$X 

$Y 

$Z 

DSM-11 

Contains a non-negative integer value that points to 
the next column position to be output. 

Points to current line number. 

Reserved for DS M-11 specific extensions: 

$Z Special Variables 

$ZA 

$ZB 

$ZE(RROR) 

Used with device I/O. 

When magtape is the current device, $ZA contains 
an integer whose bit pattern displays the magtape 
hardware status register (drive status register for the 
T JE16). When the sequential disk processor is the 
current device, $ZA contains either the current disk 
block address or the error status. When a terminal is 
the current device, $ZA contains the error status. 
When another processor is the current device, the 
low order byte of $ZA contains a count of unsuccess
ful I/O transmissions (message state only) and the 
high order byte describes error conditions (message 
and terminal state). 

Refer to the DSM-11 Programmers Guide for bit as
signments. 

Used with terminal type devices; returns the last 
word of the DDB containing information on the status 
of a particular device. For the sequential disk pro
cessor, $ZB returns the byte offset into the current 
block. For the DMC-11, $ZB returns, in the low byte 
only, the current message number (in message 
mode). For a remote device, $ZB returns the modem 
timer value. 

Aids error detection in routines. Can be set to enable 
error trapping. To enable the error trap, $ZE is set 
equal to a line reference. The line reference may 
include a reference to a routine, such as SET $ZE= 
"label + intexprtrnam". When an error occurs, con
trol passes to the line and/or routine referenced by 
$ZE; $ZE is then reset to indicate both the error code 
and the line and routine which were executing at the 
time of the error. 

The error trap is disabled by setting $ZE to the null 
string. 

224 



$ZN(AME) 

DSM-11 

Example: 

S $ZE="ERR+2tSTAT" 

On erro'r. control passes to routine STAT at line 
ERR+2 (the line whose position is +2 from the line 
labeled ERR). 

Contains the name of the current routine. unless $ZN 
was set by an argumentless ZREMOVE. in which 
case $ZN contains the null string. To reset $ZN. a 
ZLOAD DO. GOTO or an argumentless ZREMOVE 
command must be made; $ZN can also be reset by 
transfers to other routines. 

DSM-11 SYSTEM SUMMARY 

Is 
• Interactive. high-productivity applications development for data 

base management system 

• Highly approachable 

• Integrated language/command environment 

• Powerful language structure for text processing 

• Large numer of terminals-up to 80 

Is not 

• General timesharing 

• Real-time 

• Computational or batch 

• Multi-language 

Languages 
• DSM-11 

225 



226 



CHAPTER 9 

TRANSACTION PROCESSING SYSTEM 
TRAX (V.1) 

OVERVIEW 
TRAX is specially designed to handle high volume transaction 
processing in a commercial environment. The system provides for 
easy interactive application development. It utilizes its own "smart" 
terminal and terminal language, provides for distributed processing 
and programming in high-level languages, and offers high data 
throughput. 

FEATURE TOPICS 

• Introduction 

• Trax System Organization 

• VT-62 Application Terminal 
- Screens 
- Application Terminal Security 

• Application Terminal Language/Forms Control 

• BASIC TRAX-11 Terminology 

• Support Environment Features 
- Program Development/Text Preparation 
- Compilation and Linking 
- Batch and Spooling 

• System Generation 
- On-line Diagnostics 
- Software/Hardware Error Logging 

• TRAX Station Structure 

• Station Message Processing 

• Exchange Structure 

• File Access/Recovery Methods 

• System Utilities 

• TST Library 

• TRAX Communications 

• TRAX Languages/Data Manager Options 

• TRAX System Summary 

227 



TRAX 

INTRODUCTION - WHAT IS TRAX? 
TRAX is a high-volume transaction handling data processing system 
designed for easy application development. It has been designed by 
DIGITAL as a dedicated system to optimize interactive commercial 
transaction processing through use of an efficient multitasking archi
tecture, a simplified programming style, and a wide array of program 
development features. 

TRAX is a totally integrated hardware and software system. It employs 
its own forms-oriented terminal, the VT62, a smart terminal with built
in data formatting capabilities, driven exclusively by TRAX software. 
Data entered into forms at application terminals provide the basic 
input to TRAX transaction processors. 

AN APPLICATION EXAMPLE 
An order entry application provides an example of the benefits of 
TRAX on-line transaction processing. 

When an order is entered in any system, inventory or customer credit 
may be insufficient. In a batch transaction processing system, these 
insufficiencies are usually discovered only after batches of orders are 
keypunched and processed. Since credits and debits, and shipments 
sent and received, are also applied to the data base in batches, the 
credit and inventory records against which batched customer orders 
are checked may be out of date: recent payments may not yet be 
processed, so credit or inventory problems reported during batch 
order processing may not really exist-or a problem may not be dis
covered until the order is picked (and stock found insufficient) or the 
credit department holds the shipment. 

With TRAX, on-line access to the data base permits order entry appli
cations to report credit or inventory problems to the terminal user 
while the customer is still on the phone. Shipments made, stock re
ceived, and debits and credits are applied on-line, as they occur. So 
credit and inventory checks during order entry are made against rec
ords that reflect the moment's reality, not the status of files updated 
periodically in batch runs. Should a credit problem be discovered, the 
TRAX terminal user can do a customer status or credit lookup 
transaction and discuss the problem while the customer is still on the 
phone. If inventory is insufficient, the customer can be offered a partial 
shipment or a sUbstitute item recommended by the TRAX application 
program. 

Typically, the VT62 terminal user selects the desired transaction from 
a transaction selection form, as shown. 

228 



TRAX 

TRANSACTION SELECTION 

IIJ)DCST - Add Custo .. er Record 
ADDSTK - Add Stock Record 
APPPAY - Apply Pay .. ents 
CHHCST - Change Custo .. er Data 
CHNSTK - Change Stock 
CSHSAL - Cash Sale 
DPYBCK - DISPLAY Back Orders 
DPYCST - DISPLAY CustoMer Data 
DPYINV - DISPLAY Invoice 
DPYORD - DISPLAY Order 
DPYSTK - DISPLAY Stock 
ENTER - Enter Order 
PROBCK - Process Back Orders 
RCVSTK - Received Stock 
SHPORD - Ship Order 

Screen 1 Transactions available are displayed on the terminal. 

Moving the terminal's cursor to the desired transaction on the transac
tion-selection form, the terminal user presses the SELECT key. The 
terminal confirms the transaction chosen, the Enter Order transaction, 
by highlighting it in reverse video, as illustrated. 

TRANSACTION SELECTION 

ADDCST - Add Custo .. er Record 
ADDSTK - Add Stock Record 
AP~AY - Apply PayMents 
CHHCST - Change CustoMer Data 
CHNSTK - Change Stock 
CSHSAL - Cash Sale 
DPYBCK - DISPLAY Back Orders 
DPYCST - DISPLAY CustoMer Data 
DPYINV - DISPLAY Invoice 
DPYORD - DISPLAY Order 

·DPYSTK - DISPLAY Stock ---PROBCK - Process Back Orders 
RCVSTK - Received Stock 
SHPORD - Ship Order 

Screen 2 Terminal confirms selected transaction. 

When the ENTER key is depressed, a form will appear with the cursor 
positioned at the beginning of the "customer 10 number" field. A cus
tomer can be identified either by 10 number or by name, as the screen 
below illustrates. 

229 



TRAX 

CustoMer IdentIflcatlon 

CustoMer I: I11III 
CustoMer NaM": ___ 

Screen 3 Terminal displays first form of Enter Order transaction. 

CustQM~r- Identlfication 

CustoMer I: HIIIII 
Custo"er NaMe: ~ 

Screen 4 Operator types customer name where prompted by form. 

If the ENTER key is pressed at this point, another form will appear that 
allows the operator to enter general information about the order. 

Common typing errors are detected locally in the terminal. For exam
ple, if the letter 'T' is entered into the system in place of the number '6' 
in a Zip Code, an error message will be displayed. The error detection 
is made without CPU involvement. The screen below illustrates this 
process. 

Screen 5 Operator types ordering information. 

230 



TRAX 

Screen 6 Terminal responds instantly to typing errors. 

If the ENTER key is depressed at the completion of this step, a mes
sage will appear that reads "transaction complete," as illustrated be
low. 

Stock Quan Description of Ite. Each Available Extend&d ---------= -----= ------------
Screen 7 Operator enters order. 

Once the customer order information has been sent to the CPU by 
depressing the ENTER key, TRAX immediately supplies a form, as 
shown below, for entry of the item description and quantity ordered 
information. 

231 



TRAX 

Screen 8 Successful completion of transaction is quickly confirmed. 

TRAX SYSTEM ORGANIZATION 
The TRAX applications environment consists of transaction 
processing support services and a transaction processor. A transac
tion processor is a collection of data tables and software capable of 
processing an application's transactions. It and the accompanying 
TRAX support services are the elements that make TRAX a uniquely 
efficient system. 

The TRAX support environment provides support services for all non
transaction processing activities, including application batch process
ing. application development (both transaction processing and batch 
processing), and management and control of the entire system. The 
batch processors and support terminals shown in Figure 9-1 can be 
used interchangeably for any of these activities, because batch pro
cessors are the full equivalent of support terminals. In other words, the 
batch language is the same as the support terminal language. 

APPLICATIONS 
ENVIRONMENT 

SUPPORT 
ENVIRONMENT 

Figure 9-1 TRAX System Structure 

232 



TRAX 

VT62 APPLICATION TERMINAL 
The VT62 is an applications-only terminal designed to optimize TRAX 
transaction processing. It optimizes system performance with block 
mode transmission and locally buffered menus, forms, and error
checking. For example, messages specific to the form displayed are 
loaded by the host with the form into the terminal, for local error 
detection without CPU intervention. 

Figure 9-2 VT62 Terminal 

A block-mode terminal, rather than communicating character-by
character with the host, transmits whole screen loads of data at once, 
considerably reducing CPU involvement. The VT62 is also a multidrop 
terminal. Up to eight VT62s can be hung on a line and polled by the 
processor. 

233 



TRAX 

The VT62 communicates as specified by DIGITAL's DECnet standard 
DDCMP protocol. It operates asynchronously at speeds up to 9600 
baud and synchronously up to 4800 baud. It can operate in full or half 
duplex using either dedicated lines for local use or standard data set 
modems over dial up or leased lines. It can be connected point to 
point or multidropped with up to eight terminals per line. 

There is provision for adding a hard copy terminal (LA 180P) to the 
VT62. This output-only device shares the VT62 microprocessor and 
line interface, but otherwise looks like a separate and independent 
output-only device to the applications programmer. This option can be 
used as a low cost, error free, remote forms-oriented printer. 

Screen(s) 
The display screen, which has 24 80-character lines, can be logically 
divided under control of a form definition into three areas: the Display 
Area, the Form Area, and the Error Line. 

The top part of the screen is the Display Area. This area can be from 0 
to 23 lines long, software selectable. Any area between the Display 
Area and the bottom line, the Error Line, is the Form Area. 

The Display Area is for menu selection and system or operator mes
sages. The Form Area is for user data input in transaction processing. 
When typed errors are detected in the terminal, the Error Line displays 
a locally stored message. 

Because error messages are loaded into the terminal, foreign lan
guage and special purpose messa~es can be used. 

Display Area 
The Display Area is divided into menu fields, display fields and unused 
(blank) areas. Menu fields are usually names of transactions that can 
be selected; VT62 users can move the cursor from one menu field to 
another by means of control keys. They can (de)select a menu item (a 
transaction) by pressing the (DE)SELECT key. A selected menu item is 
displayed in reverse video and is returned to the host when the user 
presses the ENTER key. 

In the Display Area, display fields are used by the system to present 
text to the user. The text can be presented in normal or reverse video. 
The cursor cannot be pOSitioned in these fields and the user can not 
alter them. 

234 



TRAX 

TRANSACTION SELECTION 

@DDCST Add Customer Record 

ADDS T K Add Stock Record 

CSHSAL Cosh Sale 

DPYCST DISPLAY Customer Doto 

DPYBCK DISPLAY Back Orders 

DPYINV DISPLAY Invoice 

D P Y OR D DISPLAY Order 

DPYSTK DISPLAY Stock 

EN TO R D Enter Order 

C H NC S T Chonge Customer Doto 

(HNSTK Change Stock 

APPPAY Apply Payments 

PR OBC K Process Bock Orders 

RCVSTK Received Stock 
SHPORD Ship Order 

Screen 9 Display Area, Form Area, Error Line 

Customer Mosler File Subsystem - Chonge Customer Transaction 

-STATE CODE INCORRECT 

CustOmer Number 
Customer Nome 

Add.ress 

000003 
ROBERT T SMITH 

DIGITAL EQUIPMENT CORP. 

146 MAIN STREET 
City, Stote 
Zip Code 
Telepnone 

MAYNARD 

(617) 493·8B74 

Allenlion BOB SMITH 

(red il Limit (S) 500.00 

• MX 
01754 

Functi,on Keys: ENTER to refils customer record, CLOSE to quit without filing 

Screen 10 Display Area showing menu selection. 

235 



TRAX 

Customer Moster File Subsystem - Add Customer Tronsoction 

Customer Number 

Customer Nome 

Address 

City. State 
Zip Code 
Telephone 

000003 
ROBERT T SMITH 

DIGITAL EQUIPMENT CORP 

146 MAIN STREET 
MAYNARD 

161l) 493-8874 

Attention BOB SMITH 

Credit Limit ($) 500.00 

MA 
0175X , 

FunctIon Keys: ENTER to Add customer record, ClOSe to quit functIon 
...... NUMERIC ONLY 

Screen 11 Form Area and Display Area showing system message_ 

Screen 12 Error Line below Form Area with local error message re
sulting from user-entered typing error. 

236 



TRAX 

Application Terminal Security 
Application terminal security is provided by a sign-on/sign-off facility 
and by work classes and user authorizations. A work class is a list of 
transactions stored as part of the transaction processor. When associ
ated with a terminal (message processor) or a user, a work class 
determines the transactions that station or user is allowed to invoke. A 
list of valid transactions is required to define a work class. A given 
transaction can be included in any number of work classes, and be 
dedicated to a terminal. 

If a work class is to be associated with a terminal station, the work 
class name is specified when the station is defined. Only those tran
saction types included in the work class can be invoked from the 
terminal station. The sign-on and sign-off transactions can be 
included in a terminal's work class. If a user signs on, the transactions 
in the work class associated with the user's identifier can be invoked. 
After sign-off, the terminal work class again defines what transactions 
can be invoked at the terminal. 

For each user authorization record, the following is specified: 

• user identifier 

• password 

• valid work class names 

ATL - APPLICATION TERMINAL LANGUAGE/FORMS CONTROL 
The Application Terminal Language (ATL) provides a straightforward 
method for the application programmer to define a form. 

The form definition, when incorporated into a transaction processor, is 
used to control all aspects of the interaction between the terminal user 
and the TRAX system. 

Using ATL, the application programmer specifies: 

• The layout of the form presented to the user at the application termi
nal, including the size of the Display and Form Areas and the sizes of 
each field (display, prompt, input, print, or menu). 

• How the user must fill out the form, including special restrictions on 
the kinds of characters that are permitted in various input fields. 

• Initial contents of each field. Initial contents can be literal text, the 
current date, time, transaction number, or transaction name, the 
terminal station name, text supplied by a program (via a message), 
or blank. 

• Enabling of special terminal control keys (function keys) by which 
the terminal users can indicate one of several responses to the form. 

237 



TRAX 

• The formats of the replies that are to be used within the context of 
the form. Up to 64 replies can be associated with a form and these 
replies are program selectable by number. For a reply, the pro
grammer specifies which fields on the screen are to be overwritten 
and their new contents. The programmer has available all the types 
of data that were available for initializing the field, that is, literal 
strings, system-supplied data, and data contained in the message 
that requested the reply. The required data fields in the message are 
defined as part of the reply specification. In addition, the program
mer can specify the position of the cursor and enable or disable 
selected function keys. 

• Special form options, such as designating a form to be a transaction 
selection form. If the form is to be used to select the next transac
tion, the programmer specifies which field or menu will contain the 
transaction name, whether authorization checks are to be made, 
and associated error messages. 

• Typed screen entries are formatted into a message for processing 
by one or more application programs. The format of the message is 
also defined as part of the form. In addition to the contents of the 
input and selected menu fields, the programmer can specify all the 
system-supplied text (e.g., date, time) or literal text strings. 

For maximum transaction processing efficiency, ATL is a compiled 
language. The application programmer prepares a separate ATL 
source for each form definition, using the DIGITAL standard editor 
(EDT). This source file contains English-like ATL language statements 
and compiler directives such as default specifications and statement 
repetition. 

The statements, as a file, are read by the forms definition file utility 
program, ATL, which produces form definition records. The utility 
checks the form definition for erroi"S and produces a detailed descrip
tion of the form and its associated messages. The compiled output is 
saved as part of the transaction processor's forms definition file. 

The example below illustrates an ATL screen format definition. 

238 



TRAX 

Figure 9-4 ATl Screen Format Definition 

Figure 9-5 shows all of the processing paths which can result from the 
interaction between exchange control processing and forms. The 
proper choice of processing paths by the application designer will 
result in straightforward conversational processing as shown in Figure 
~6. ' 

239 



TRANSACTION 
DEFINITION 
SPECIFIES 
NEXT EXCHANGE 

ABNORMAL 
TERMINATION 

ABORT 

USER SELECTS 
NEXT EXCHANGE 
VIA FUNCTION 
KEY 

CLOSE 

NORMAL 
TERMINATION 

TRAX 

TST SELECTS 
NEXT EXCHANGE 
VIA RESPONSE 
MESSAGE 

DATA 

ENTRY 
KEY 

STOP REPEAT 

EXCHANGE 
MESSAGE 
BUILT AND 
SENT 

Figure 9-5 Processing Paths for Forms 

240 

TST CAUSES 
REPLY TO BE 
DISPLAYED VIA 
RESPONSE 
MESSAGE 

TRANSACTION 
DEFINITION 
SELECTS NEX T 
EXCHANGE 

TO NEXT 
EXCHANGE 



TRAX 

USER AT TERMINAL OTHER PROc. 
TERMINAL STATION STATIONS 

+ • ~ • • 

Figure 9-6 Typical Exchange or Message Processing Paths 

BASIC TRAX TERMINOLOGY 

Application 
An application is a logically related set of data processing operations 
which support a specific business activity. It is a set of transactions in a 
transaction processor. Examples of applications include: 

• Order Processing 

• Accounts Receivable 

• Accounts Payable 

• Purchase Orders 

• Inventory Control 

• Student Records 

241 



TRAX 

The term "application" is also used as an adjective to describe the 
elements of a data processing system which were specifically devel
oped to support an application. For instance: 

• application program 

• application file 

• application terminal 

Transaction 
A transaction is a pre-defined unit of data processing performed by a 
transaction processor. The processing of the forms associated with an 
order entry is an example of a transaction. There are generally several 
forms associated with each transaction. The processing of one form is 
an exchange. 

Transaction Instance 
Every invocation of a data processing operation (i.e., a transaction) is 
defined in TRAX as a transaction instance. In TRAX, transactions are 
usually initiated by the actions of an application terminal user, and the 
result of the specified operation is made available to the user. 

Transaction Processor 
A transaction processor has the following elements: 

• TRAX transaction processor executive services 

• A set of forms definitions 

• A set of transaction definitions 

• A set of station definitions 

• A set of Transaction Step Tasks (TSTs) 

• A set of work classes (optional) 

• A set of user authorizations (optional) 

• A set of specifications for each file accessed, including journaling 
requirements 

• A set of support services 

A single transaction processor is defined to process the transactions 
associated with one or more applications. 

Once it has been constructed, the transaction processor functions as a 
unit. It may be installed, started, stopped, and removed from the sys
tem with simple operating system commands. While it is running, the 
applications terminals assigned to it are available for transaction pro
cessing. 

242 



TRAX 

The management services which TRAX provides to a transaction pro
cessor are extensive. Only application routines to handle application
specific processing steps are programmed: the rest of the specifica
tions needed to construct a transaction processor are parameter table 
entries. These tables drive the TRAX transaction processor 
management services, producing in the desired transaction processor 
behavior. This organization results in: 

• Consistency of transaction processor structure 

• Much less application code to debug 

• Consistently applied system optimization techniques 

• EaSier documentation 

Transaction Slot 
Every transaction instance has associated with it a data structure 
called the transaction slot, containing: 

1. the current exchange message 

2. the transaction workspace 

3. the system workspace 

The first item is the data exchanged between the user who has just 
filled in a form and the application program(s) that must process the 
data the user provided. 

The transaction workspace is the area where an application program 
can save data for use by another program, providing both programs 
are performing processing for the same transaction instance. 

The system workspace is used by the TRAX transaction processing 
support services to administer the execution of the transaction in
stance. Like the transaction workspace, it is allocated when the trans
action instance is initiated and is kept until the transaction instance 
terminates. 

The exchange message, transaction workspace, and system work
space are directly associated with the transaction instance and are 
stored together within the transaction processor. The aggregate data 
structure containing these three elements is called the transaction 
slot. The transaction slot contains all available transaction instance 
context. 

Transaction Processor Cache 
When a TRAX transaction processor is started, it has assigned to it a 
contiguous area of memory referred to as a cache. The transaction 
processor uses this cache for two major purposes: 

243 



TRAX 

1. To satisfy requirements for temporary buffer space. 

2. To store in memory disk-resident data such as RMS index and data 
blocks, forms definitions, application programs, etc. 

Every time a request is made to read a specific disk block, the transac
tion processor looks first in its cache. If the block is already there, a 
physical disk access is avoided. 

When the cache is full, a new block is read into the cache area that 
contained the least recently used block. Thus, frequently used blocks 
such as the first level index of an RMS index-sequential file or a popu
lar transaction definition record will tend to remain in the cache. Of 
course, if a block in the cache is updated, the transaction processor 
also updates the disk itself. 

The net effect is a decrease in the number of real disk accesses and 
increased system performance. 

TRANSACTION PROCESSOR 

FORM 1 

EXCHANGE 1 

FORM 2 

I EXCHANGE 

~ 
TST 4 

Figure 9-7 Transaction Processor 

Transaction Step Task (TST) Structure 
A transaction is processed by a set (one or more) of subroutine-like 
application modules called TSTs. The TST is initiated upon receipt of a 
station exchange message at the station associated with each TST. 

244 



TRAX 

The TST, being a subroutine, accepts a set of parameters which are 
passed by the TRAX executive. These parameters are: 

• the address of the exchange message 

• the address of the transaction workspace 

(The maximum size of the workspace is defined by the designer via 
the TRADEF utility. The combined size of the station exchange 
message and workspace cannot exceed 8 K bytes.) 

The TST processes the exchange message, and optionally performs 
any data file accesses, manipulates the workspace or exchange mes
sage, sends any independent station messages and then exits. 

All data file access is via native language I/O statements. The TRAX 
system does the actual processing of the RMS I/O operations. 

All other interactions between the TST and any other element in the 
system are performed by routines in a TST library supplied with the 
TRAX system. 

SUPPORT ENVIRONMENT FEATURES 
A TST is coded in the support environment (SE) with the standard 
editor (EDT) provided with TRAX. The TST is assembled or compiled 
with a language processor, the COBOL compiler, for example. The 
resulting object module is then built into a task image with the TSTBLD 
utility. 

In addition to its special transaction-processing features, TRAX pro
vides support for typical batch processing and utility programs. The 
services provided by the TRAX support environment (SE) are similar 
to those provided by other DIGITAL multi-user operating systems. 

Whereas TRAX transaction processors always work as a unit, pro
grams run in the TRAX support environment stand alone. These pro
grams may be initiated from a support terminal or by a batch proces
sor. 

The TRAX support environment can be used to run: 

• Application batch processing. 

• Program development utilities, including text editors, compilers, 
task builders, debuggers, and documentation preparation utilities. 

• Utility programs that generate transaction processors. 

• Utility programs that manage a TRAX system, including console 
operator's utilities, batch processors, and spoolers. 

• Utility programs that back up and restore system data files. 

Because no specialized system services are provided in the support 

245 



TRAX 

environment, equivalents of transaction processors are not required. 
Programs in the support environment stand alone, and have the same 
system services available to them. Programs may be started or 
stopped as desired, and interaction between a program and its sup
port terminal (or batch processor) is conversational, rather than forms 
oriented. 

Program Development/Text Preparation 
Source programs and documentation are prepared on-line in the sup
port environment with the DIGITAL standard editor, EDT. Incorpora
tion of screen mode display, cursor control, and word processing 
commands provides an efficient means to enter, display, and edit text. 
A text formatting program is available for documentation files. 

Compilation and Linking 
The DCl command language has simple commands to translate a 
source program into a runnable program or task. 

DEBUG 
Individual TSTs are debugged in the support environment using the 
DEBUG utility. DEBUG emulates the entire transaction environment 
yet gives the programmer access to interactive debugging facilities 
such as the BASIC-PlUS-2 debug monitor. In addition, it allows the 
programmer, either interactively or via a file, to provide the input mes
sages for the TST to process. All external calls made by the TST are 
logged in a file or on the support terminal. 

When all TSTs are individually tested, a debug transaction processor 
can be constructed to run in the application environment. This incor
porates a full trace facility as well as software error logging for the 
operator's use. 

Software Performance Monitoring 
TRAX provides a set of utilities which can produce extensive 
transaction processor statistics. These utilities keep track of various 
system parameters and provide a picture of the transaction processor 
operation over chosen periods of time. They can be used for system 
tuning. The statistics collected via the report generation tacilty include 
station, cache, transaction, and data file statistics as well as general 
system statistics. The report generation utility has been designed to 
run independently of the sample gathering so that reports can be 
generated during off hours or as a low priority background job. 

Batch and Spooling 
TRAX provides a centralized QUEUE facility within the support envi-

246 



TRAX 

ronment. This facility allows the generation of named work queues and 
the subsequent submission of batch or line printer spooling jobs to 
named queues. The submission can occur from a support terminal, 
from a program running in the support environment, or from a tran
saction application program (TST) running in a transaction processor. 
Multiple batch processors and line printer spoolers can operate con
currently. The QUEUE management commands include: 

• INITIALIZE a queue (generates a name). 

• DELETE a queue, the complementary operation to the INITIALIZE 
option. All elements in a removed queue are purged. 

• START a queue, i.e., commence de-spooling activities on the partic
ular queue. 

• STOP a queue, the complementary operation to START; all ele
ments remaining in the queue are preserved for future de-spooling 
operations. 

• SHOW the contents of a queue. 

• Hold an element in a queue, i.e., prevent de-spooling of the job even 
if priority and after times would allow such a de-spooling. 

• Release a held job for normal de-spooling. 

• DELETE an element from a queue. 

• Modify the submit/time characteristics of an element in a queue. For 
example, move it to the top of the queue by changing its priority to 
be greater than any other element. 

• STOP /ST ART the curently active job in a queue in order to: 
- abort it 
- restart it (characteristics allowing) 
- requeue it (characteristics allowing) 
- space (backward or forward) a number of pages for print jobs 

• INITIALIZE a de-spooling task or batch processor. 

• DELETE a de-spooling task or batch processor. 

• START a de-spooling task or batch processor. 

• STOP a de-spooling task or batch processor. 

• ASSIGN a queue to a de-spooling task or batch processor. 

• DEASSIGN a queue from a de-spooling task or batch processor. 

• START the queue manager. 

• STOP the queue manager immediately or at completion of jobs 
currently running. 

247 



TRAX 

SYSTEM GENERATION 
TRAX system generation is simple, interactive, and straightforward. All 
TRAX options are fully installed by answering "yes" to a question and 
mounting the option tape; no special installation instructions are 
required. When the generation is complete, a copy of the system is 
stored on magnetic tape so system generation doesn't have to be 
repeated. 

Patching is fully automated; all control and patch data reside on a 
single magnetic tape. This tape is issued at regular intervals. 

Transaction Processor Generation Utilities 
Transaction Processor generation involves identifying and defining all 
components of a transaction processor. Eight interactive utilities are 
provided to simplify the task. They are: 

TPDEF Defines the general attributes of a transaction pro
cessor. 

TRADEF 

WORDEF 

AUTDEF 

ATL 

TSTBLD 

FILDEF 

STADEF 

Defines all transactions. 

Generates and names sets of transactions required 
to limit system access by terminal number (see STA
DEF) or by operator identification (see AUTDEF). 

Establishes operator identification and association 
of operator to one or more transaction sets (work 
classes) defined previously by WORDEF. 

Generates all form definitions. 

Generates task images of all TSTs. 

Identifies and logically names all application data 
files belonging to this transaction processor. 

Defines all stations. 

Dialog Conventions 
The transaction processor generation utilities run as interactive dia
logs. That is, the utility will type a prompt and take appropriate action 
based on the response. The format of a prompt is: 

question <default>? 

The value enclosed by angle brackets is the utility's default value. If 
there is no default, the angle brackets are omitted. The utility checks 

248 



TRAX 

each reponse as it is received. If the response is invalid, the prompt is 
repeated. In most cases, the utility provides an error message before 
re-prompting. 

In general, the operator types a response, terminating it with a car
riage return. The form of the answer should be clear form the prompt. 
Unless a literal type of answer is expected, the utility will convert all 
input to upper case and compress all blanks. If the expected response 
is a YeslNo, the utility will accept Y, Ye, Yes, N, or No as valid answers. 
Unless otherwise stated, all input numbers are expected to be deci
mal. If the user expected to select an item from a set (e.g., select the 
next function), the response need contain only the number of charac
ters required to obtain a unique answer. 

All prompts recognize several special responses. If the operator types 
a carriage return without typing other characters before it, the utility 
assumes the default value. This is the value that was specified 
between the angle brackets. If the prompt is not understood or the 
valid answers are not known, a ? carriage return should be typed. The 
utility will display an explanation of the prompt and the prompt will be 
repeated. 

The ESCAPE key is used to escape from a particular dialog step and 
retu rn to the previous step. If the step is a step in a dialog loop, the 
utility will return to the first step of that loop. 

If a CTRLlZ is typed in response to a prompt, the utility will do an 
orderly exit. 

On-line Diagnostics 
TRAX provides a set of diagnostics for disks, tapes, and application 
terminals that can be run from the support environment while normal 
system operation continues. This allows investigation of possible 
hardware problems without terminating normal system operation. 

Software Error Logging 
TRAX software error logging writes all transaction processor-detected 
errors to a disk file and optionally to a support terminal. A utility can be 
used to select and format the software error entries into an error log 
report. 

Software error logging detects malfunctioning applications software 
and provides a unique tool to debug an on-line transaction system. 
The software error log also reports terminal status errors and hard
ware errors that were detectable only by software. 

249 



TRAX 

Hardware Error Logging 
The TRAX hardware error logging facility monitors the hardware relia
bility of the system. 

It detects and records information about hardware errors as they oc
cur whether or not the error is recoverable. 

The system operator (or programmer) can use the analysis and report 
utilities to detect increased error frequency and schedule mainte
nance without affecting normal system operation. 

COMMON FEATURES 
Although TRAX makes a significant demarcation between its transac
tion processing services and its support environment, there are sever
al operating system features which are shared by all TRAX system 
components: 

1. Multitasking Operating System 

TRAX is an advanced multitasking operating system. Many differ
ent tasks can be active simultaneously within a single CPU. Support 
environment programs can be active at the same time as transac
tion processors, and multiple transaction processing steps can be 
active simultaneously within a given transaction processor. 

2. RMS-11 File Management 

The TRAX operating system supports RMS-11 file access for both 
the transaction processing and th~ support environments. For 
transaction processing, TRAX provides RMS-11 file management 
as part of the transaction processor executive services. In the sup
port environment, where each program is independent of any oth
er, RMS-11 support must be linked into each program. The two 
methods of using RMS-11 are compatible, allowing files created in 
either environment to be used in the other. 

TRAX STATION STRUCTURE 
A station is a logical location within a transaction processor where 
formatted data (station messages) are received and processed. 

A station also controls a defined system resource (terminal, link, appli
caton program, etc.). 

This control encompasses the formatting of data to and from the re
source, the control of all transaction instances initiated at the station, 
and the translation of resource input data into system messages for 
further processing by a pre-defined set of stations. 

Each station has an active processing element associated with it: ei
ther a set of TRAX transaction processing services or a specially 

250 



TRAX 

programmed application routine. The station's active processing ele
ment is responsible for processing all station messages that are 
directed to its station. In the course of this processing, the active 
element may generate new messages and send them to other stations. 
When the active element has finished with the original station mes
sage, TRAX system services forward the message to its next designat
ed destination. 

There are seven types of stations within a transaction processor. They 
are: 

1. TERMINAL STATION 
A station that controls one application terminal. 

2. TST STATION 
A station that controls the execution of a named transaction step 
task (application program). Each TST has its own station. 

3. MASTER LINK STATION 
A station that controls a communication link to another transaction 
processor or to an IBM CICS system. 

4. SLAVE LINK STATION 
A station that receives transaction initiation requests from a master 
link in another transaction processor (in the same or a separate 
system) and initiates and controls the requested transactions. 

5. SUBMIT BATCH STATION 
A station that submits batch job requests received from transaction 
instances within the same transaction processor. 

6. SLAVE BATCH STATION 
A station that receives transaction initiation requests from a sup
port environment program and subsequently initiates and controls 
the requested transaction(s). 

7. MAILBOX STATION 
A station that adds received messages to a sequential disk file and 
allows transactions to retrieve such messages in a first-in/first-out 
manner. 

Station Message Processing 
The vehicle for data transfer between stations is referred to as a sta
tion message. There are four types of station messages: 

1. Exchange Message 
An exchange message is generated by the station which initiates a 
transaction and is routed sequentally to a pre-defined list of sta
tions. Each station receiving the exchange message may read or 
modify the message contents. The exchange message travels as 
part of the transaction slot. 

251 



TRAX 

2. Response Message 
A response message is a station message returned from a TST 
processing the current exchange message back to the station 
which inititated the transaction instance. 

Response messages are used for the following purposes: 
- returning data from the exchange message processing to the 

source station 
- exchange control (discussed later in this chapter) 
- forms control (discussed previously) 

3. Mailbox Messages 
A mailbox message is a station message sent from a TST to a 
mailbox station. The message data is stored on a disk file by the 
mailbox station. 

4. Report Message 
A station message sent to an output-only terminal station, contain
ing a form name and the data to be displayed or printed. 

Exchange Structure 
An exchange is a cycle of transaction processing consisting of the 
processing of an exchange message at one or more stations. 

The system begins an exchange by placing the exchange message 
(containing the data to be processed) into the transaction slot. An 
exchange ends when the last station in the exchange message route 
list has finished processing the message. 

To define an exchange, the applications designer must allow for: 

1. A six character exchange name. 
Each exchange in a transaction definition has a unique name. 

2. A forms definition (form) name. 
Each exchange that will be initiated from an application terminal 
has a unique name. 

3. Route list 
The route list provides the name(s) of one or more station(s) to 
which the exchange message is to be sequentially routed. 

4. Subsequent action 
Subsequent action is a set of parameters that define the action to 
be taken by the originating station after the exchange message has 
been composed and dispatched to the first processing station. 

252 



TRAX 

EXCHANGE STRUCTURE 

STATION 1 

STATION 3 

Figure 9-8 Exchange Structure 

Exchange Control 
Exchange control is the specification of the next exchange to be exe
cuted when the current exchange terminates. Exchanges are con
trolled three ways: with exchange definition options, response mes
sages, and terminal function keys. 

Interactive terminal stations manage the flow of a transaction instance 
so that there is never a conflict in exchange control. At any instant a 
terminal station may be awaiting a response message to a previously 
sent exchange message, or it may be awaiting a user response to a 
previously dispatched form or reply. But it is never awaiting both si
multaneously. Response messages are ignored when awaiting user 
responses and user responses are ignored when awaiting response 
messages. Both a response message and a function key may exert 
exchange control, but only if they are employed in the proper 
sequence and at the proper times. They will then both have an effect, 
and the result will be successive applications of the relevant exchange 
control rules. 

Station Sharing 
It is possible for many transaction instances to be active at the same 
time in a given transaction processor. Each will have a station mes
sage waiting or being processed at a station. A station can be used by 
different transactions. For example, two TSTs that might arrive at a 
station for processing at the same time are 

• a look-up on a customer file 

• a look-up on an inventory file 

253 



TRAX 

For the most part, the application designer is not affected by these 
multiprocessing issues. The TRAX transaction processing support 
services manage each station so that extra messages are queued up 
and released as soon as the appropriate station is free. The exchange 
messages and workspaces are managed automatically, so that each 
time a station is activated, the proper exchange message and work
spaces are attached for its use. 

FILE ACCESS/RECOVERY METHODS 
A transaction processor is constructed with specific file access 
permissions. Each accessible file must be identified during the con
struction process. 

The transaction processor will open each of the files as specified by 
the applications designer. The files will then be available to all transac
tion instances within that transaction processor. The transaction pro
cessor opens each file with either update or read-only access. If the 
transaction processor has update access to a file, any of its transac
tion instances can update or read records in the file. Of course, if the 
transaction processor has read-only access, none of its transaction 
instances can update the file. 

Only one transaction processor can have update access to a given file. 
All others accessing that file at the same time must be restricted to 
read-only access. 

A transaction processor provides full file sharing and record locking 
facilities for its transaction instances. File sharing and record locks are 
managed on a transaction instance basis, rather than on a station 
basis. Thus, a station does not lock a record for itself but for the 
transaction instance which it is processing at the time. The record lock 
remains associated with the transaction instance, and the locked rec
ord is available to all other stations which subsequently process the 
transaction instance. In fact, once the original locking station ceases to 
process the transaction instance, it will be unable to access the locked 
record for another transaction instance. 

At the option of the application designer, file updates done by a 
transaction processor can be staged and journaled. This option is 
selected individually for each file accessed by the transaction proces
sor; files can be journaled and staged, just staged, or neither. 

Staging 
Staging is the delay of each update to a file until the end of the transac
tion instance requesting the update. Its value is that the update will 
never occur if the transaction instance is aborted, and the file will 

254 



TRAX 

remain intact without cleanup operations. Of course, the delay of the 
update also prolongs the period that the records are locked; a lock 
which was exercised when a record was read for updating will not be 
released until the actual update occurs after the transaction instance 
terminates. In some situations, this may prolong the period of record 
locking to an unacceptable degree from a system performance 
viewpoint, and staging in such situations is impossible. 

The application designer and his programming staff must be alert for 
possible record lockout situations when staging is used. The applica
tion programmer cannot cause premature file operations on a staged 
file. 

Staged Records 
Staged records are stored in the transaction instance's system work
space to await the end of the transaction instance. Storage of staged 
records uses the bulk of the system workspace, and is a major deter
mining factor in the size of the workspace required for a given transac
tion definition. 

Journaling 
Journaling is the parallel writing of updated records to a second medi
um in addition to the updating of the original file. The resulting journal 
can be used to reconstruct the file in case it is damaged or lost. 

TRAX transaction processors journal by writing the transaction slot 
onto the journal medium at the end of the transaction instance. This 
transaction slot contains the current exchange message for the 
transaction instance, as well as the transaction workspace and the 
system workspace. Files which require journaling will also be staged 
automatically, thus guaranteeing that updated records in journaled 
files will appear in the system workspace, and hence will be journal
ized. 

The journaling operation is done at the end of any transaction instance 
which has updated at least one record in a journaled file. 

Recovery 
TRAX error detection and recovery methods allow applications design 
to include system integrity and recovery capabilities acquired at some 
cost in system overhead. 

255 



TRAX 

TST LIBRARY (USER INTERFACE) 
The following is a list of system functions available to a TST -all are 
invoked by an external call specifying parameters using the standard 
higher-level language calling sequence. 

CALL 

SNDMBX 

REPORT 

REPLY 

PROCEED 

STPRPT 

TRNSFR 

CLSTRN 

ABORT 

RESTRT 

AROUTE 

DROUTE 

DALLRT 

GETMBX 

MBXNUM 

SYSTEM RESPONSE 

Send to Mailbox Station - causes message to be 
added to specified mailbox station queue. 

Send report to output-only terminal station. 

Send Reply Message - allows initiating station to go 
on to new exchange message. 

Send proceed message - directs initiating station to 
go on to new exchange. 

Send stop repeat message - directs initiating sta
tion to disregard any existing repeat options. 

Send transfer to named message - permits the initi
ating station to begin execution of a specified ex
change definition. 

Send close transaction message - causes a normal 
termination of the current transaction instance. 

Send response message and abort transaction -
automatically deletes any remaining routes for the 
current exchange message. 

Restart exchange - abort will occur if transaction 
not defined with exchange recovery. 

Add route - the specified station (6-character 
ASCII) is added to the end of the route list for current 
exchange message. 

Delete route - the specified station will be deleted 
from the route list of the current exchange message. 

Delete all routes - all remaining routes are deleted. 

Get from mailbox. 

Get the number of message currently queued to 
mailbox. 

256 



TSPAWN 

TABORT 

GETIME 

GETSTN 

GETSRC 

GETRAN 

LOGTRN 

GETFIL 

TRAX 

Spawn a transaction - allows a TST to spawn a 
single exchange transaction or a new transaction in
stance. 

Abort a transaction - causes abort of a spawned 
transaction, or if ABORT call cannot be executed. 

Get Time - fills specified buffer with current date 
and time. 

Get current station name - returns in buffer the sta
tion name associated with the current TST. 

Get transaction source station name - returns 
name of source station for current transaction in
stance. 

Get transaction nartle - returns the transaction 
name for the current transaction instance. 

Log transaction - writes user specified log data to 
journal file. 

Get file specification - used to return a physical file 
specification to a TST for further processing. 

TRAX LANGUAGES/DATA MANAGER OPTIONS 
TRAX includes either COBOL or BASIC-PLUS-2; the other is optional. 
TRAX COBOL is functionally similar to COBOL-11 V3.5. TRAX BASIC
PLUS-2 is the same as Version 1.5 offered on DIGITAL systems. The 
TRAX TST philosophy of programming small modules of TST code to 
handle specific steps within an application makes memory utilization 
more efficient through use of a shared object time system. In addition, 
the DAT ATRI EVE-11 data management option is a standard part of 
the system. 

TRAX COMMUNICATIONS 
TRAX Communications are designed to allow an active transaction 
within a TRAX transaction processor to initiate communications with a 
transaction processor in another system by using an IBM 3271 emula
tor. This other system may be another TRAX system or an IBM Sys
tem/360 or System/370 running an IBM transaction processor (CICS). 

The communication facility isolates the application program from de
tailed knowledge of protocols, message flow control, and link multi
plexing. Access to either TRAX or IBM remote systems is via the same 
simple user interface. 

257 



TRAX 

CPU 1 CPU 2 

Figure 9-9 TRAX Communications 

KMC11-A 
The KMC11-A auxiliary processor is used within TRAX for the charac
ter-by-character interrupt processing required for application terminal 
line interfaces and the TRAX/TL-3271 interface. The KMC11-A high 
speed microprocessor as used by TRAX is capable of controlling up to 
48 DZ11 lines or 16 DUP11-DA lines. If both interfaces are present, 
then two KMC11-As are required. 

The KMC11 connects directly to the PDP-11 UNIBUS and accesses 
both main memory and the 1/0 device registers to significantly reduce 
the CPU processing load. 

TRAX/TL 
Communication between two transaction processors, each on a 
separate TRAX system, requires use of the following hardware: 

• DMC11-AL plus DMC11-M D - Used for local operation over coaxi
al cable. The TRAX systems may be up to 18,010 ft. (5,487 m) apart. 
The units include built-in modems. 

258 



TRAX 

• DMC11-AR plus DMC11-DA - Used for remote operation over 
common carrier faciities. Interfaces to EIA/CCITT synchronous mo
dems (Bell Series 200 or equivalent), capable of operation up to 
19,200 bps. 

Multiple transaction processors within one TRAX system may com
municate with one or more transac:tion processors over one physical 
link. 

TERMINAL TRAX CPU I TRAX CPU 2 

Figure 9-10 TRAX/TL 

Figure 911 rRAX Supported Devices 

Max. Line 
Memory Disks Tapes Terminals Printers 

PDP-11/34 
256 Kb RK07- 28Mb TE16 - 1600 bpi, 45 ips LA36 LP11 -

RM02- 67Mb TU16 -1600 bpi, 45 ips VT52 96 char., 
RP04- 88Mb TU16 -1600 bpi, 75 ips VT62 132 col. 
RP05- 88Mb LA180 
RP06- 176 Mb 

--- -- -~------ ------

PDP-11/60 
256 Kb RK07- 28Mb TE16 -1600 bpi, 45 ips LA36 LP11 -

RM02- 67Mb TU16 -1600 bpi, 45 ips VT52 96 char., 
RP04- 88Mb TU16 -1600 bpi, 75 ips VT62 132 col. 
RP05- 88Mb LA180 
RP06- 176 Mb 

.. ""-"------

PDP-11/70 
4Mb RM03- 67 Mb TE16 -1600 bpi, 45 ips LA36 LP11-

RP04- 88Mb TU16 -1600 bpi, 45 ips VT52 96 char., 
RP05- 88 Mb TU16 -1600 bpi, 75 ips VT62 132 col. 
RP06- 176 Mb LA180 

... -- _ ... --.. ----.--~--.--.. 

259 



TRAX SYSTEM SUMMARY 

Is 

• High volume transaction processing 

• Batch processing 

• Protected environment 

• Application development tools: 
- Debug utility 
- Terminal screen language 
- Distributed functionality 
- RSXIV AX compatibility 
- Easy systems design 

Is not 
• Timesharing 

• Sensor based 

• For smaller CPUs 

• Large scale batch (IBM) 

Includes Data Management/Utilities 

• RMS-11 

• DATATRIEVE-11 

• SORT-11 

Languages 

• COBOL 

• BASIC-PLUS-2 

• MACRO-11 

260 



OVERVIEW 

CHAPTER 10 

DECNET PHASE II 

DECnet Phase II is the collective name for the set of software products 
that extend various PDP-11 operating systems by enabling the user to 
interconnect these systems with each other to form computer net
works. The DECnet Phase II products discussed here include DECnet-
11 M Version 2, DECnet-11 S Version 2, DECnet/E Version 1, and DEC
net-RT Version 1. 

FEATURE TOPICS 

• DECnet-11 Introduction 

• DECnetlPDP-11 Systems Summary 

• DECnet Phase II and the PDP-11 Products 
- Communication and User/Program Functions (chart) 
- Comparative Analysis DECnetlPDP-11 Operating Systems 

(chart) 

261 



DECnet PHASE 1/ 

DECNET PHASE II INTRODUCTION 
DECnet products create distributed networks from DIGITAL comput
ers and their interconnecting data links by creating a general mecha
nism for sharing resources and providing interprogram communiC8-
tions within a distributed data processing environment. DEC net im
plementations adhere to a common network architecture that defines 
the structure and protocols each must use to communicate through 
the network. 

DECNET PHASE II AND THE PDP-11 PRODUCTS 
DECnet products contain several capabilities that can be shared in 
common with different PDP-11 operating systems. These common 
capabilities can be described in terms of specific communications and 
user/program functions as illustrated below. 

Communications Functions 
Point-to-Point communications describe the ability to communicate 
between two nodes that are connected over a previously established 
physical link. 

User/Program Levels 
Task-to-Task user/program functions describe the ability of a pro
gram running on one node to interact with a program running on 
another node. 

File transfer user/program functions describe the ability to transfer 
data from a file on one node to a file on another node. 

I 
FILE 

F()~I ___ A ____ ~ __________ ~===B===:.~.c::J 
Resouce access user/program functions describe the ability of a 
program on one node to access resources (such as files), or to request 
services (such as a load request) physically located on another node. 

262 



DEGnet PHASE /I 

A B 

In addition, DEC net products have a range of capabilities which may 
operate selectively on PDP-11 operating systems, The table below 
offers a comparative analysis of DECnetlPDP-11 systems capabilities. 

DECNEDPDP~1SYSTEMSSUMMARY 

DESCRIPTION: 
DECnetiRT Version 1.0 allows a suitably configured RT -11 system to 
participate as a Phase /I DECnet node in point-to-point computer net
works. DECnetiRT offers task-to-task communications, network file 
transfer and network resource-sharing capabilities, using the DIGITAL 
Network Architecture (DNA) protocols. DECnetiRT communicates 
with adjacent nodes over synchronous and asynchronous communi
cation lines, and parallel interfaces. Access to DECnetiRT is support
ed for RT -11 user programs written in MACRO-11 and FORTRAN. 

DECNEDRTFEATURES 

-Transmits and maintains data integrity between two adjacent nodes 
of a network. 

- FORTRAN and MACRO-11 tasks can interact with other tasks exe
cuting in the DEC net environment; transfer data on a record-by
record basis to remove peripheral devices and files; request the 
execution of programs in other systems in the network; and cause 
programs executing on remote systems to be terminated. 

- Inter-system file transfer 

- Includes software utilities to monitor network activity, provide inter-
system operator communications and aid network maintenance. 

DECnet/E, Version 1 

DESCRIPTION: 
DECnetiE al/ows a suitably configured RSTS/E system to participate 
as a Phase II DECnet node in point-to-point computer networks. DEC
netiE is a Phase /I network product and is warranted for use only with 
Phase /I DECnet products supplied by DIGITAL. 

DECnetiE offers task-to-task communications and network file trans
fer capabilities using the DIGITAL Network Architecture protocols. 

263 



DEGnet PHASE II 

DECnetiE communicates with adjacent nodes over synchronous com
munication lines interfaced with DMC11 microprogrammed controll
ers. 

DECNET/E FEATURES 
• Transmits and maintains data integrity between two adjacent nodes 

of a network. 

• BASIC and BASIC-PLUS-2 tasks can interact with other tasks exe
cuting in the DECnet environment. 

• Inter-system file transfer 

• Includes software utilities to monitor network activity, provide inter
system operator communications, and aid network maintenance. 

DECnet·11 M, Version 2.0 

DESCRIPTION: 
DECnet-11 M Version 2.0 allows a suitably configured RSX-11 M sys
tem to participate as a Phase II DECnet node in pOint-to-point compu
ter networks. DECnet-11 M offers task-to-task communications, 
network file transfer, and network resource-sharing capabilities, using 
the DIGITAL Network Architecture (DNA) protocols. DECnet-11 M 
communicates with adajacent nodes over synchronous and asynchro
nous communication lines, and parallel interfaces. Access to DECnet-
11 M is supported for RSX-11 M user programs written in MACRO-11 
and FORTRAN. 

DECnet-11 M is a Phase II network product and is warranted for use 
only with Phase II DECnet products supplied by DIGITAL. 

DECNET·11M FEATURES 
• Transmits and maintains data integrity between two adjacent nodes 

of a network. 

• FORTRAN and MACRO-11 tasks can interact with other tasks exe
cuting in the DECnet environment; transfer data on a record-by
record basis to remote peripheral devices and files; request the 
execution of programs in other systems in the network; and cause 
programs executing on remote systems to be terminated. 

• Inter-system file transfer 

• Down-line system loading 

• Down-line program and task loading 

• Includes software utilities to monitor network activity, provide inter
system operator communications and aid network maintenance. 

264 



DECnet PHASE /I 

DECnet-11 D, Version 2.0 

DESCRIPTION: 
DECnet-11 D Version 2.0 allows a suitably configured RSX-11 D system 
to participate as a Phase II DEC net node in pOint-to-point computer 
networks. DECnet-11 D offers task-to-task communications, network 
file transfer and network resource-sharing capabilities, using the 
DIGITAL Network Architecture (DNA) protocols. DECnet-11D com
municates with adjacent nodes over synchronous and asynchronous 
communication lines, and parallel interfaces. Access to DECnet-11 Dis 
supported for RSX-11 D user programs written in MACRO-11 and 
FORTRAN. 

DECNET-11D FEATURES 

• Transmits and maintains data integrity between two adjacent nodes 
of a network. 

• FORTRAN and MACRO-11 tasks can interact with other tasks exe
cuting in the DECnet environment; transfer data on a record-by
record basis to remote peripheral devices and files; request the 
execution of programs in other systems in the network; and cause 
programs executing on remote systems to be terminated. 

• Inter-system file transfer 

• Down-line system loading 

• Down-line program and task loading 

• Includes software utilities to monitor network activity, provide inter
system operator communications, and aid network maintenance. 

DECnet-11 S, Version 2.0 

DESCRIPTION: 
DECnet-11 S Version 2.0 allows a suitably configured RSX-11 S system 
to participate as a Phase II DEC net node in point-to-point computer 
networks. DECnet-11 S offers task-to-task communications, network 
file transfer and network resource-sharing capabilities, using the 
DIGITAL Network Architecture (DNA) protocols. DECnet-11S commu
nicates with adjacent nodes over synchronous and asynchronous 
communication lines, and parallel interfaces. Access to DECnet-11 S is 
supported for RSX-11 S user programs written in MACRO-11 and 
FORTRAN. 

DECNET-11S FEATURES 
• Transmits and maintains data integrity between two adjacent nodes 

of a network. 

265 



DEGnet PHASE /I 

• FORTRAN and MACRO-11 tasks can interact with other tasks exe
cuting in the DECnet environment; transfer data on a record-by
record basis to remote peripheral devices and files; request the 
execution of programs in other systems in the network; and cause 
programs executing on remote systems to be terminated. 

• Inter-system file transfer 

• Down-line system loading 

• Down-line program and task loading 

• Includes software utilities to monitor network activity, provide inter
system operator communications, and aid network maintenance. 

DEC net-lAS, Version 2.0 

DESCRIPTION: 
DECnet-IAS Version 2.0 allows a suitably configured lAS system to 
participate as a Phase II DEC net node in pOint-to-point computer net
works. DECnet-IAS offers task-to-task communications, network file 
transfer and network resource-sharing capabilities, using the DIGITAL 
Network Architecture (DNA) protocols. DECnet-IAS communicates 
with adjacent nodes over synchronous and asynchronous communi
cation lines and parallel interfaces. Access to DECnet-IAS is support
ed for lAS user programs written in MACRO-11 and FORTRAN. 

DECNET-IAS FEATURES 

• Transmits and maintains data integrity between two adjacent nodes 
of a network. 

• FORTRAN and MACRO-11 tasks can interact with other tasks exe
cuting in the DECnet environment; transfer data on a record-by
record basis to remote peripheral devices and files; request the 
execution of programs in other systems in the network; and cause 
programs executing on remote systems to be terminated. 

• Inter-system file transfer 

• Down-line system loading 

• Down-line program and task loading 

• Includes software utilities to monitor network activity, provide inter
system operator communications, and aid network maintenance. 

266 



Table 10-2 

DECnet-11 M DECnet-11 S DECnet-11 D DECnet-IAS DECnetiE DECnet-RT DEC net-VAX 
Version 2 Version 2 Version 2 Version 2 Version 1 Version 1 Version 1 

Task-to-Task YES YES YES YES YES YES YES 
Intersystem YES NO YES YES YES YES YES 

File Transfer 
t::J 

Command/Batch YESl NO YESl YESl YES YES YESl rn 
File Submission 

(") 
::3 

N Command/Batch YES NO YES YES YES NO YES 
~ 

0) "tJ 
'-.J 

File Execution :t 
:t> 

Remote File Access YES YES2 YES YES NO YES YES CIl rn 
Down-Line YES NO YES YES NO NO YES :::: 

System Loading 
Down-Line YES NO YES YES NO NO NO 

Task Loading 
1 Cannot submit files to DECnetiE systems. Can tell DECnet/E to execute batch 

files already at the DECnet node. 

2 Offers local users network access to remote file systems. Does not allow 
users on remote systems to access local files. 



268 



269 





OVERVIEW 

CHAPTER 11 

SORT-11 (V.2) 

SORT -11 allows for the reordering of data based upon control or key 
fields within the input data records. SORT -11, RMS-11 K, DATA
TRIEVE-11, and DBMS are the four major Data Managers in PDP-11 
software. All of these systems may run on a variety of PDP-11 operat
ing systems as illustrated below. 

DATA MANAGEMENT TABLE 

RMS-11K RSX-11 M, lAS, TRAX-11, RSTS/E 

DATATRIEVE RSX-11 M, lAS, TRAX-11, RSTS/E 

DBMS RSX-11 M, lAS, TRAX-22 

SORT RSX-11 M, lAS, TRAX-11, RSTS/E 

FEATURE TOPICS 

• Functions and Features 
- Record Sort (SORTR) 
- Tag Sort (SORTT) 
- Address Routing Sort (SORTA) 
- Index Sort (SaRTI) 

• DATA files 

• Command String and Specification File 

• SORT Processing Options 

271 



SORT-11 

FUNCTIONS AND FEATURES 
The SORT utility program allows the user to reorder data from any 
input file into a new file in a sequence that is based upon control or key 
fields within the input data records. SORT runs under any operating 
system that includes RMS (Record Management Services). (See 
Chapter 12 for information on RMS.) The sorting sequence is deter
mined by control fields, also known as key fields, within the data itself. 
If the user does not wish to sort the data base, SORT can still be used 
to extract key information, sort that information, and store the sorted 
information on a permanent file. Later that file can be used to access 
the data base in the order of the key information on the sorted file. The 
contents of the sorted file may be entire records, key fields, or record 
indices relative to the position of each record within the file (the first 
record on the data base is record 1, the second, 2, etc.). 
SORT provides four sorting techniques: 

• Record Sort (SORTR) produces a reordered file by using the entire 
contents of each record as the record key. A record sort can be 
used on any acceptable input device and can process any valid 
RMS (Record Management Services) format. 

• Tag Sort (SORTT) produces a reordered file by sorting only the 
record keys. SORT then randomly reaccesses the input file to create 
a resequenced output file according to those record keys. The tag 
sort method conserves temporary storage, but can only accept in
put files residing on disk. 

• Address Routing Sort (SORTA) produces an address file without 
reordering the input file. The address file, sorted by record keys, 
can later be used as an index file to read the data base in the desired 
sequence. Any number of address files may be created for the same 
data base. A customer master file, for instance, may be referenced 
by customer number index or sales territory index for different re
ports. SORT A is the fastest of the four sorting methods. 

• Index Sort (SORTI) produces an index file containing the key field 
of each data record and a pOinter to its location in the input file. The 
index file can be used for sequential or direct accessing from a 
random file. 

The SORT utility program may be controlled by a command string and 
an optional specification file. There is a simple format for each. If the 
user's SORT application does not require that records be restructured 
or that only a subset of the input file be sorted, then only a command 
string is needed to control SORT. 

SORT can handle any RMS valid file organization. Different file or
ganizations are distinguished by the ordering of the records they con
tain and the way they handle the retrieval process. 

272 



SORT-11 

The order of the records in a sequential file is determined by the order 
in which the records are read from the file. The first record in the file is 
the fi rst record read out, regardless of whether the records are written 
to the file in some sorted order or not. 

A relative file consists of record areas that are identified by relative 
record numbers. The first record area in the file is record number 1, 
the second is 2, etc., much the same as an apartment house where the 
first apartment is 1, and so forth. But, as in an apartment house, if the 
user wants the record that is in the twelfth record area, he must ask for 
record number 12, even though there may not be records in areas 1 
through 11. Relative files can reside only on disk. 

An indexed file contains prologue information, one or more indices, 
and the data records themselves. To retrieve information, the user 
asks for the proper record by primary or alternate key. The system 
looks up the key in the appropriate index and retrieves the record 
using the record pointer associated with the key. Indexed files can 
reside only on disk. 

Table 11-1 shows the devices that can be used to supply data to 
SORT. Data may be stored in binary, ASCII, or EBCDIC form. 

DATA FILES 
SORT may accept a file from anyone of the peripheral devices 
available in the system configuration: disk units, magtape units, card 
readers, paper tape readers, and terminals. 

A record is usually divided into several logical areas called data fields. 
The data in each field mayor may not be relevant to SORT. Each field 
may be interpreted as a record identifier, key data, or general data 
related to the logical content of the record and not relevant to the 
sorting process. SORT uses record identifiers to distinguish the vari
ous tapes of records in a file. SORT uses the key fields in each record 
to reorder an input file. Any other data field in a record may be re
tained in the output file or ignored by SORT. 

273 



SORT-11 

Tablt~ 11-1 Selecting the Sorting Process and Devices That Best 
Suit the Processing Environment 

Sorting 
Technique 

SORTR 

(Record Sort) 

SORTT 

(Tag Sort) 

SORTA 

(Address 
Routing Sort) 

SORTI 

(Index Sort) 

Input 
File 

Disk 

Magtape 

Paper Tape 

Cards 

Console 

Disk 

Magtape 

Disk 

Magtape 

Disk 

Magtape 

Output 
File 

Disk 

Magtape* 

Paper Tape 

Printer 

Console 

Disk 

Magtape* 

Printer 

Console 

Paper Tape 

Disk 

Disk 

Work 
File 

Disk 
(3-8 files) 

Disk 
(3-8 files) 

Disk 
(3-8 files) 

Disk 
(3-8 files) 

* Provided records are at least 18 bytes long. Magtape must be in ANSI format. 

COMMAND STRING AND SPECIFICATION FILE 
The user can direct the SORT program by entering a command string. 
The command string has three functions: 

1. To reference devices in the system for each file in the current sort. 

2. To specify switches that define file parameters used in the sorting 
process. 

3. To reference a specification file or to specify other switches to 
control the sort. 

Several command string switches define the sorting process parame
ters. One switch describes record formats and the maximum record 

274 



SORT-11 

size. Another delimits the internal work files. Others provide detailed 
file information to RMS. 

Normally, the sort must be directed with a specification file. Two addi
tional switches may be used instead of a specification file to control a 
sort. One switch specifies the sorting process option; the other identi
fies the key fields. The use of these switches is limited to sorting an 
input file of uniform format: 

1. The key fields must reSide in the same location in every record of 
the input file. 

2. The file must contain only the records to be included in the sort. 
The figure below illustrates a general sort that would require only a 
command string and switches. 

I A I 0 

I c I c 
I 0 I B 

SORT USING COMMAND STRING AND SWITCHES 

The specification file is the supplement to the command string, which 
provides the basis for controlling and directing the sorting process. 

The specification file provides a variety of controlling features. They 
are listed below: 

1. Record Selection 

I c 

I 0 I D 

I B I B 

RECORD SELECTION 

275 



SORT-11 

The user can include or omit any records from the sorting process. 
The output file will contain only the specified records. 

2. Alternate Collating Sequence 

I 0 1 B 

I c J c 
I B I 0 

-..+ B-D,D-B----. 

ALTERNATE COLLATING SEQUENCE 

If necessary, the user can specify an aternate collating sequence. 
The normal sequence is that implied in ASCII code. One alternate 
choice is EBCDIC values. The other is an individual alternate 
collating sequence (AL TSEQ). An AL TSEQ can be used to change 
the ASCII values of the normal sequence. It applies to all the al
phanumeric key data in the records, but only during the actual 
sorting process. The output record remains unchanged. 

3. Forced Keys 

I 351 

I 102 

I 242 

I 351 

l 102 

I 333 

1':42 333 
--.3nn-/nn-

FORCED KEY 

An AL TSEQ applies to all positions of the key. Forced keys allow 
the user to'specify an alternate sequence for particular positions 
within the key. An alternate can be specified by substituting a 
lower-valued character, such as the slash (/) in the example above. 
Since the slash comes before 0, the 300-series records in the ex
ample are brought to the front of the file. Notice that the records so 
treated are in sequence and in front of the rest of the sorted file. 
The net effect is that of two sorted files, one behind the other. 

276 



SORT-11 

4. Input Format Variation 

I Abbby 

I 0'0" 

I A bbby 

1 N141 

I A Qaoz I N 207 

N 207 N 141 

INPUT FORMAT VARIATION 

If the input file contains records with several different formats, the 
user can identify those records by tape so that they may be proper
ly handled. 

In the example above, A and N are record identifiers. 

5. Output Format Variation 

I B mn 19 I UY 0 23 

I 0 UY 23 I sf C 17 

I C sf 17 I mn B 19 

A xy 11 1y A 11 

OUTPUT FORMAT VARIATION 

The user can change the format of the data file during the sort, but 
cannot change the contents of any given data item. 

SORT OPERATION 
The SORT program consists of two basic parts: a control program and 
a subroutine package called SORTS. The control program directs the 
overall processing. SORTS serves as a collection of subroutines that 
the control program uses during its processing. 

There are three phases of operation in the SORT control program. In 
the first phase, SORT reads the command string, decodes, and stores 
the switch values and the specification file, if present. Any errors in the 
command string or specification file are reported at this point. 

277 



SORT-11 

The second phase begins the pre-sort operation. The control program 
is called to open and read the input file and establish the keys. The the 
SORTS subroutine begins the initial sorting process. At this point, the 
amount of available internal storage space becomes important to the 
efficiency of the sort. If that space is not sufficient to hold all the 
records, SORT builds strings of sorted records and transfers them to 
scratch files on bulk storage devices. In order to merge these files and 
complete the sort, space for at least three scratch files must be avail
able. The SORT program normally provides for a maximum of eight 
scratch files. Either a switch in the command string or the amount of 
available internal work space can reduce the number of scratch files 
used. 

The merge phase rebuilds the intermediate scratch files into a merged 
file. Another subrouting reads the records in the proper sequence. 
The records are then written into the output file. If there are no scratch 
files to merge because main memory was sufficient to hold all the 
records, the sorted records are written directly into the output file. 
After the last record is written, the control program cleans up the 
scratch files and returns to the first phase; SORT is then ready to 
accept another job. 

SORT PROCESSING OPTIONS 

Record Sort (SORTR) 
The Record Sort (SORTR) outputs all specified record data in a sorted 
sequence. Each record is kept intact throughout the entire sorting 
process. Since it moves the whole record, SORTR is relatively slow 
and may require considerable main memory or external storage work 
space for large files. 

Table 11-2 Sorting Process Options 

Type of Type of Record Size Device Speed 
SORT File and Format 

SORTR Input Any Any appropriate Slowest 
(Record and device including: 
Sort) Output disk, magtape 

card reader, 
console 

278 



SORT-11 

Type of Type of Record Size Device 

SORTT Input Any Disk 
(Tag 
Sort) Output Any Any appropriate 

device (including 
magtape) 

SORTA Input Any Disk or magtape 
(ADDROUT 
Sort) Output Fixed, six Disk 

bytes 

Input Any Disk or magtape SORTA 
(Index 
Sort) Output Fixed, 6- Disk 

byte pointer 
+ original 
key 

Tag Sort (SORTT) 

Speed 

Slow for 
large files, 
large keys 

Fastest 

Fast 

The Tag Sort (SORTT) produces the same kind of output file as 
SORTR, but it handles only record pointers and key fields. Since 
SORTT moves a smaller amount of data than SORTR, SORTT usually 
performs a faster sort than SORTR. The input file must be randomly 
re-accessed to create the entire output file, which may be lengthy 
process for large files. 

Address Routing Sort (SORTA) 
SORT A produces address routing files, which consist of relative rec
ord pointers, beginning at 1, in binary words. These files can be used 
as a special index file to access randomly the data in the original file. It 
is possible to maintain only one data file, but several different index 
files as needed. Like SORT, SORTA uses the minimum amount of data 
necessary in the sorting process. Once the input phase is completed, 
the input file is not read again. The output data is in a restricted mode. 
This means that SORTA is the fastest sorting method in the sort pack
age. 

Index Sort (SORTI) 
SORTI produces an index file consisting of relative record pOinters, as 
in SORTA, and index keys. This makes it slightly slower than SORTA. 
During processing SORTI handles only the relative record pointers 
and two forms of the key fields. One form is used for sorting and the 
other is left as it was in the original data. 

279 



280 



CHAPTER 12 

RECORD MANAGEMENT SERVICE 
RMS-11 (V.1) 

OVERVIEW 
RMS-11 allows user-written application programs to create, access, 
and maintain data files efficiently. Its variety of file organizations and 
access modes gives the user the ability to choose the method best 
suited to the application. RMS-11 supports sequential, relative, and 
indexed files, which users can access sequentially, randomly, or by 
key. The multi-keyed access option provides both generic and ap
proximate key searches. Records can be either fixed or variable 
length. The system offers record handling capabilities for applications 
whose size and data structures do not require the full services of 
DBMS. 

FEATURE TOPICS 
• Functions and Features 

• File Organizations 

• RMS File Organizations 
- Sequential 
- Relative 
- Indexed 

• RMS Access Modes 
- Sequential 
- Random 
- Record's File Address (RFA) 
- Dynamic Access 

• File Attributes 
- Storage Media 
- File Specifications 

• RMS Record Formats 

• Program Operations on RMS Files 

• Run Time Environment 

281 



RMS-11 

FUNCTIONS AND FEATURES 
Record Management ~ervices for the PDP-11 is a set of general pur
pose file-handling capabilities. In combination with a host operatng 
system, it provides efficient and flexible facilities for data storage, 
retrieval, and modification. When writing programs, the user can se
lect processing methods from among RMS file structuring and ac
cessing techniques suited to specific applications. RMS's flexibility is 
explained in its handling of the following areas: 

• File Organizations 

• File Attributes 

• Program Operations on RMS Files 

• Runtime Environment 

The manner in which RMS builds a file is called its organization. RMS 
provides three file organizations: 

• sequential 

• relative 

• indexed 

The organization of a file establishes the techniques one can use to 
retrieve and store data in the file. These techniques are known as 
access modes. The access modes that RMS supports are: 

• Sequential 

• Random 

• Record's File Address (RFA) 

An application program or a RMS utility can be used when creating a 
RMS file to specify the organization and characteristics of the file. 
Among the attributes specified are: 

• Storage Medium 

• File and Protection Specifications 

• Record Format and Size 

• File Allocation Information 

After RMS creates a file according to the specified attributes, applica
tion programs can store, retrieve and modify data. These program 
operations can occur at the logical or physical level. 

At the logical level, a RMS file is a collection of individual records. The 
record is the unit of information to which RMS provides access. 

At the physical level, a file is a collection of units called virtual blocks. 
When bypassing the record passing processing capabilities of RMS, 
programs access these virtual blocks through a technique known as 
block 1/0. 

282 



RMS-11 

During runtime, RMS and the host operating system provide an envi
ronment for user programs that permits file sharing and reduces the 
number of buffers required. When a program accesses files at the 
logical level, RMS additionally supports: 

• Multiple Access Streams 

• Synchronous or Asynchronous Record Operations 

• Move and Locate Record Transfer Modes 

FILE ORGANIZATION 
A file is a collection of related information. Application requirements 
establish the nature of this information. For example, a company 
might maintain personnel information (employee names, addresses, 
job titles) in one file and product information (part numbers, prices, 
specifications) in a second, separate, file. Within each of these files, 
the information is divided into records. In the personnel file, it would 
be logical for all the information on a single employee to constitute a 
single record and for the number of records in the file to equal the 
number of employees. Similarly, each record in the product informa
tion file would represent a description of a single product. The number 
of records in the file reflects the requirements of a particular applica
tion, in this case, a central registry of products sold by a company. 

Each record in the personnel and product files would be subdivided 
into discrete pieces of information known as data fields. The user 
would define the number, location within the record, and logical inter
pretation of these data fields. Programmers at the company's data 
processing installation would write applications that interpret a parti
cular data field in records of the personnel file as the name of an 
employee. They would interpret another ciata field in records of the 
product file as a part number. Figure 12-1 illustrates records that 
might occur in a personnel file and in a product file. 

DATA FIELDS' NAME ADDRESS BADGE NO DEPARTMENT TITlE 

MAIN 51, USA 1452 PAYROLL CLERK 

PERSONNEL RECORD 
) 

DATA FIELDS' PART NO DESCRIPTION PRICE IN STOCK SPECIFICATION 

219 WIDGET $1.86 1430 3" x2" x 1" 

PRODUCT RECORD ) 

FigUrE! 12-1 Personnel and Product Records 

283 



RMS-11 

Thus, the user can completely control the grouping of data fields into 
records and records into files. The relationship among data fields and 
records is known and is embedded in the logic of the programs. RMS 
does not require an awareness of logical relationships among infor
mation in the files. Rather, RMS processes records as single units of 
data. Programs either build records and pass them to RMS for storage 
in a file or issue requests for records while RMS performs the 
necessary operations to retrieve the records from a file. 

The purpose of RMS, then, is to ensure that every record written into a 
file can subsequently be retrieved and passed to a requesting pro
gram as a single logical unit of data. The structure, or organization, of 
a file establishes the manner in which RMS stores and retrieves rec
ords. The way a program requests the storage or retrieval of records is 
known as the access mode. The access mode that can be used de
pends on the organization of a file. 

RMS FILE ORGANIZATIONS 
When creating a file, there is a choice of three file organizations: 

• Sequential 

• Relative 

• Indexed 

Sequential File Organization 
In sequential file organization (see Figure 12-2), records appear in 
physical sequence. Each record except the first has another record 
preceding it, and each record except the last has another record fol
lowing it. The physical order in which records appear is always identi
cal to the order in which the records were originally written to the file 
by an application program. 

Figure 12-2 Sequential File Organization 

Relative File Organization 
When relative organization is selected, RMS structures a file as a 
series of fixed-size record cells. Cell size is based on the size specified 
as the maximum permitted length for a record in the file. RMS 
considers these cells as successively numbered from 1 (the first) to n 

284 



RMS-11 

(the last). A cell's number represents its location relative to the begin
ning of the file. 

Each cell in a relative file can contain a single record. There is no 
requirement, however, that every cell contain a record. Empty cells 
can be interspersed among cells containing records. 

Since cell numbers in a relative file are unique, they can be used to 
identify both a cell and the record (if any) occupying that cell. Thus, 
record number 1 occupies the first cell in the file, record number 17 
occupies the seventeenth cell, and so forth. When a cell number is 
used to identify a record, it is also known as a relative record number. 
FigurE 12-3 depicts the structure of a relatively organized file. 

Figure 12-3 Relative File Organization 

Indexed File Organization 
Unlike the physical ordering of records in a sequential file or the rela
tive positioning of records in a relative file, the location of records in 
indexed file organization is transparent to the program. RMS com
pletely controls the placement of records in an indexed file. The pres
ence of keys in the records of the file governs this placement. 

A key is a character string present in every record of an indexed file. 
The location and length of this character string are identical in all 
records. When creating an indexed file, the user decides which char
acter string in the file's records is to be a key. Selecting such a 
character string indicates to RMS that the contents (Le., key value) of 
that string in any particular record written to the file can be used by a 
program to identify that record for subsequent retrieval. 

At least one key, the primary key, must be defined for an indexed file. 
Optionally, additional keys (Le., alternate keys) can be defined. Each 
alternate key represents an additional character string in records of 
the file. The key value in anyone of these additional strings can also be 
used as a means of identifying the record for retrieval. 

As programs write records into an indexed file, RMS locates the val
ues contained in the primary and alternate keys. From the values in 
keys within records, RMS builds a tree-structured table known as an 
index. An index consists of a series of entries. Each entry contains a 

285 



RMS-11 

key value copied from a record that a program wrote into the file. With 
each key value is a pointer to the location in the file of the record from 
which the value was copied. RMS builds and maintains a separate 
index for each key defined for the file. Each index is stored in the file. 
Thus, every indexed file contains at least one index, the primary key 
index. When alternate keys are defined, RMS builds and stores an 
additional index for each alternate key. Figure 12-4 shows the general 
structure of an indexed file that has been defined with only a single 
key. Figure 12-5 depicts an indexed file defined with two keys: a pri
mary key and one alternate key. 

-,-----,---, 
I , , , 

ABLE : ELM AV 24379 JONES : MAIN ST 19724 Si\r'ilTH I HOLT RD 35888 
I 

'------------- DATA RECORDS ---------------) 

Figure 12-4 Single Key Indexed File Organization 

File 
Organization 

Sequential 

Relative 

Indexed 

*Disk files only. 

Table 12-1 
Permissable Combinations of 

Access Modes and File Organizations 

Access Mode 

Sequential Random 

Record # Key Value 

Yes No No 

Yes Yes No 

Yes No Yes 

286 

RFA 

Yes* 

Yes 

Yes 



PRIMARY IN DEX 
lEMPLOYEE NAME) 

ABLE I ELM AV 24379 

KEY DEFINITIONS 

JONES MAIN ST 19724 SMITH 

ALTERNATE INDEX 
[BADGE ""MBER) 

HOL T RD 11133 

'-------------------DATA RECORDS -------------------~) 

Figure 12-5 Multi-key Indexed File Organization 



RMS-11 

RMS ACCESS MODES 
The various methods of retrieving and storing records in a file are 
called access modes. A different access mode can be used to process 
records within the file each time it is opened. Additionally, a program 
can change access mode during the processing of a file. 

RMS provides three record access modes: 

• Sequential 

• Random 
• Record's File Address (RFA) 

RMS permits only certain combinations of file organization and access 
mode. Table 12-1 lists these combinations. 

The following subsections describe RMS access modes and the ca
pablity of changing access mode during program execution. 

Sequential Access Mode 
Sequential access mode can be used to access all RMS files. Sequen
tial accesss means that records are retrieved or written in a particular 
sequence. The organization of the file establishes this sequence. 

Sequential Access to Sequential Files -In a sequentially organized 
file, physical arrangement establishes the order in which records are 
retrieved when using sequential access mode. To read a particular 
record in a file, say the fifteenth record, a program must open the file 
and access the first fourteen records before accessing the desired 
record. Thus each record in a sequential file can be retrieved only by 
first accessing all records that physically precede it. Similarly, once a 
program has retrieved the fifteenth record, it can read all the remain
ing records (from the sixteenth on) in physical sequence. It cannot, 
however, read any preceding record without closing and reopening 
the file and beginning again with the first record. 

When writing new records to a sequential file in sequential access 
mode, a program must first request that RMS position the file immedi
ately following the last record. Then each sequential write operation 
the program issues causes a record to be written following the previ
ous record. 

Sequential Access to Relative Files - During the sequential access 
of records in the relative file organization, the contents of the record 
cells in the file establish the order in which a program processes 
records. RMS recognizes whether successively numbered record cells 
are empty or contain records. 

288 



RMS-11 

When a program issues read requests in sequential access mode for a 
relative file, RMS ignores empty record cells and searches successive 
cells for the first one containing a record. If, for example, a relative file 
contains records only in cells 3,13, and 47, successive sequential read 
requests cause RMS to return relative record number 3, then relative 
record number 13, and finally relative record number 47. 

When a program adds new records in sequential access mode to a 
relative file, the order in which RMS writes the records depends on 
ascending relative cell numbers. Each write request causes RMS to 
place a record in the cell whose relative number is one higher than the 
relative number of the previous request, as long as that cell does not 
already contain a record. If the cell already contains a record, RMS 
rejects the write operation. Thus, RMS allows a program to write new 
records only into empty cells in the file. 

Sequential Access to Indexed Files - In an indexed file, the 
presence of one or more indices permits RMS to determine the order 
in which to process records in sequential access mode. The entries in 
an index are arranged in ascending order by key values. Thus, an 
index represents a logical ordering of the records in the file. If more 
than one key is defined for the file, each separate index associated 
with a key represents a different logical ordering of the records in the 
file. A program, then, can use the sequential access mode to retrieve 
records in the order represented by any index. 

When reading records in sequential access mode from an indexed file, 
a program initially specifies a key (e.g., primary key, first alternate key, 
second alternate key, etc.) to RMS. Thereafter, RMS uses the index 
associated with that specfied key to retrieve records in the sequence 
represented by the entries in the index. Each successive record RMS 
returns in response to a programmed read request contains a value in 
the specified key field that is equal to or greater than that of the 
previous record returned. 

In contrast to a sequential read request, sequential write requests to 
an indexed file do not require the initial key specification. Rather, RMS 
uses the stored definition of the primary key field to locate the primary 
key value in each record to be written to the file. When a program 
issues a series of sequential write requests, RMS verifies that each 
successive record contains a key value in the primary key field that is 
equal to or greater than that of the preceding record. 

Random Access Mode 
In random access mode, the program, rather than the organization of 
the file, establishes the order in which records are processed. Each 

289 



RMS-11 

program request for access to a record operates independently of the 
previous record accessed. Associated with each request in random 
mode is an identification of the particular record of interest. Succes
sive requests in random mode can identify and access records any
where in the file. Random access mode cannot be used with sequen
tially organized files. Both the relative and indexed file organizations, 
however, permit random access to records. The subsections that fol
low describe the use of random access with these organizations. Each 
organization provides a distinct way programs can identify records for 
access. 

Random Access to Relative Files - Programs can read or write 
records in a relative file by specifying relative record number. RMS 
interprets each number as the corresponding cell in the file. A pro
gram can read records at random by successively requesting, for 
example, record number 47, record number 11, record number 31, 
and so forth. If no record exists in a specified cell, RMS returns a 
nonexistence indicator to the requesting program. Similarly, a 
program can store records in a relative file by identifying the cell in the 
file that a record is to occupy. If a program attempts to write a new 
record in a cell already containing a record, RMS returns a record
already-exists indicator to the program. 

Random Access to Indexed Files - The indexed file organization 
also permits random access of records. However, for indexed files, a 
key value rather than a relative record number identifies the record. 

Each program read request in random access mode specifies a key 
value and the index (e.g., primary index, first alternate index, second 
alternate index, etc.) that RMS must search. When RMS finds the key 
value in the specified index, it reads the record that the index entry 
points to and passes the record to the user program. 

In contrast to read requests, which require a program-specified key 
value, program requests to write records randomly in an indexed file 
do not require the separate specification of a key value. All key values 
(primary and, if any, alternate key values) are in the record itself. When 
an indexed file is opened, RMS retrieves all definitions stored in the 
file. Thus, RMS knows the location and length of each key field in a 
record. Before writing a record into the file, RMS examines the values 
contained in the key fields and creates new entries in the indices. In 
this way RMS ensures that the record can be retrieved by any of its key 
values. Thus, the process by which RMS adds new records to the file is 
precisely the process it uses to construct the original index or indices. 

290 



RMS-11 

Record's File Address (RFA) Access Mode 
Record's file address (RFA) access mode can be used with any file 
organization as long as the file resides on a disk device. This access 
mode is further limited to retrieval operations only. Like random ac
cess mode, however, RFA access allows a specific record to be identi
fied for retrieval. 

As the term record's file address indicates, every record within a file 
has a unique address. The actual format of this address depends on 
the organization of the file. In all instances, however, only RMS can 
interpret this format. 

The most important feature of RFA access is that the address (RFA) of 
any record remains constant while the record exists in the file. After 
every successful read or write operation, RMS returns the RFA of the 
subject record to the program. The program can then save this RFA to 
use again to retrieve the same record. It is not required that this RFA 
be used only during the current execution of the program. RFAs can 
be saved and used at any subsequent time. 

Dynamic Access 
Dynamic access is not strictly an access mode. Rather, it is the capa
bility to switch from one access mode to another while processing a 
file. There is no limitation on the number of times such switching can 
occur. The only limitation is that the file organization (or, in the case of 
RFA access, the device containing the file) must support the access 
mode selected. 

As an example, dynamic access can be used effectively immediately 
following a random or RFA access mode operation. When a program 
accesses a record in one of these modes, RMS establishes a new 
current position in the file. Programs can then switch to sequential 
access mode. By using the randomly accessed record (rather than the 
beginning of the file) as the starting pOint, programs can retrieve 
succeeding records in the sequence established by the file's organiza
tion. 

FILE ATTRIBUTES 
The logical and physical characteristics of a RMS file are known as its 
attributes. These characteristics are defined by the source language 
statements of an application program or by the RMS utility program 
DEFINE. RMS uses this information about the attributes to structure a 
file on the storage medium. 

291 



RMS-11 

The most important attribute of any RMS file is its organization. A file 
for use in a particular application can be tailored by making the proper 
selection of this and other attributes. In addition to file organization, 
the user can choose from among the following attributes: 

• Storage medium on which the file resides 

• File and protection specification of the file 

• Format and size of records 

• Size of the file 

• Size of a particular storage structure, known as the bucket, within 
relative and indexed files 

• Definition of keys for indexed files 

Storage Media 
Selection of a storage medium on which RMS builds a file is related to 
the organization of the file. Permanent sequential files can be created 
on disk devices or ANSI magnetic tape volumes. Transient files can be 
written on devices such as line printers and terminals. Unlike sequen
tial files, relative and indexed files can reside only on disk devices. 

File Specifications 
The name assigned to a new file enables RMS to find the file on the 
storage medium. The conventions for file specifications of the host 
operating system are followed when naming a file. 

RMS allows for the assignment of a protection specification to a file at 
the time it is created. The format of this specification is the format used 
by the host operating system. 

When a file is created, the user must provide the format and maximum 
size specifications for the records the file will contain. The specified 
format establishes how each record appears physically in the file on a 
storage medium. The size specification allows RMS to verify that rec
ords written into the file do not exceed the length specified when the 
file was created. 

RMS Record Formats 
• Fixed 

• Variable 

• Variable-with-fixed-control (VFC) 

• Stream 

Like the selection of a storage medium, the choice of a format for the 
records of a file depends on a file's organization. Table 11-? shows the 
allowed combinations of record format and file organization. 

292 



RMS-11 

Fixed Length Record Format - The term fixed length record format 
refers to records of a file that are all equal in size. Each record occu
pies an identical amount of space in the file. 

Variable Length Record Format - In variable length record format, 
records in a file can be either equal or unequal in length. To allow 
retrieval of variable length records from a file, RMS prefixes a count 
field to each record it writes. The count field describes the length (in 
bytes) of the record. RMS removes this count field before it passes a 
record to the program. 

RMS produces two types of count fields, depending on the storage 
medium on which the file resides: 

• Variable length records in files on disk devices have a 1-word (2-
byte) binary count field preceding the data field portion of each 
record. The specified size excludes the count field . 

• Variable length records on ANSI magnetic tapes have 4-character 
decimal count fields preceding the data portion of each record. The 
specified size includes the count field. In the context of ANSI tapes, 
this record format is known as 0 format. 

Variable-with-Fixed-Control Record Format - Variable-with-fixed
control (VFC) records consist of two distinct parts, the fixed control 
area and the user data record. The size of the fixed control area is 
identical for all records of the file. The contents of each fixed control 
area are identical for all records of the file. The contents of each fixed 
control area are completely under the control of the program and can 
be used for any purpose. As an example, fixed control areas can be 
used to store the identifier (e.g., relative record number or RFA) of 
related records. 

The second part of a VFC record is similar to a variable length record. 
It is a user data record, variable in length and composed of individual 
data fields. 

The two parts of a VFC record correspond to the way a program writes 
and reads such records. Prior to an output operation, a program 
builds a VFC record in two locations. It builds the fixed control area in 
a location separate from the user data part of the record. When writing 
the record to the file, RMS fetches both the fixed control area and the 
user data part of the record from their respective program locations. 
RMS then prefixes the user data part of the record with the fixed 
control area, prefixes the result with a count field that describes the 
total size of both Parts, and writes the record to the file. 

On input operations, RMS reverses the preceding procedure. It uses 
the count field to locate the entire VFC record in the file. RMS removes 

293 



RMS-11 

this count field. Then it removes the fixed control area from the record 
and stores it in one program location while storing the remaining part 
in a second location. 

Stream Format Records - Records in stream format can vary in size. 
However, no count field precedes each record. Instead, RMS consid
ers the entire file a stream of contiguous ASCII characters. Each rec
ord in the file is delimited by one of the following: 

• Form feed (FF) 

• Vertical tab (VT) 

• Line feed (LF) 

• Carriage return immediately followed by line feed (CR-LF) 

Stream format records are supported for file interchange with non
RMS-application programs. Since this format is highly inefficient, it 
should be used only when such interchange is a concern. 

On output operations, RMS examines the last character of the record 
constructed by a program. If this character is an LF, VT, or FF, RMS 
leaves the record unaltered and writes it to the file. If the last character 
is not LF, VT, or FF, RMS appends a carriage return (CR) character 
followed by a line feed (LF) character to the record before writing it to 
the file. 

On input operations, RMS scans the stream of ASCII characters, re
moving null characters and searching for the first occurrence of an FF, 
VT, LF, or CR-LF combination. If the character that terminated the 
scan is an FF, VT, or LF (not preceded by CR), RMS passes the entire 
string, including the terminating character, to the program. If, how
ever, the scan encounters a CR-LF combination, RMS removes these 
two characters and passes the preceding string as a record to the 
program. Each successive input operation causes the scan to resume 
at the character following the last FF, VT, LF, or CR-LF combination 
encountered. 

Size of Records 
The user must provide RMS with record size information along with 
the selected record format. RMS use of this information depends on 
the record format chosen. 

When fixed format records are chosen, the actual size of each record 
in the file must be indicated. This size specification becomes part of 
the information stored and maintained by RMS for the file. Thereafter, 
if a program attempts to write a record whose length differs from this 
specified size, RMS will reject the operation. 

294 



RMS-11 

When creating a file with variable length format records, the user can 
specify a maximum record size greater than zero or, for sequential 
and indexed files, a maximum record size equal to zero. If the speci
fied size is greater than zero, RMS interprets the value as the size of 
the largest record that can be written into the file. 

VFC format records require two size specifications. The first size 
specification identifies the length of the fixed control area of all rec
ords in the file. The second size specification represents the maximum 
length of the data portion of the VFC records. RMS handles this sec
ond size specification in a manner similar to its handling of the size 
specification for variable format records. 

For stream format records, RMS permits the user to specify the same 
record size information as for variable format records. That is, a non
zero value represents the maximum permitted size of any record writ
ten in the file while a zero value suppresses RMS size checking. 

Size of RMS Files 
The size of an RMS file is expressed as an integral number of virtual 
blocks. Virtual blocks are physical storage structures. That is, each 
virtual block in a file is a unit of data whose size depends on the 
physical medium on which the file resides. For example, the size of 
virtual blocks in files on disk devices is 512 bytes. 

The operating system assigns ascending numbers to a file's virtual 
blocks. This numbering scheme allows a file to appear as a series of 
adjacent virtual blocks. In reality, however, the successive numbering 
of virtual blocks and the physical placement of these blocks on a 
storage medium need not correspond. 

On magnetic tapes, successively numbered virtual blocks actually oc
cupy successive physical locations. Virtual blocks from one file are 
never intermixed with virtual blocks from another. On disk devices, 
however, the situation can be quite different. Files on disk can reside 
in one or more discrete areas known as extents (see Figure 12-1 ). 
The virtual blocks of a file contain the records that programs write into 
the file. Depending on the size of records, a virtual block can contain 
one record, more than one record, or a portion of a record. 

When creating an RMS file, the user can specify an initial allocation 
size. If no file size information is given, RMS allocates the minimum 
amount of storage needed to contain the defined attributes of the file. 

Buckets In Relative and Indexed Files 
RMS uses a storage structure known as a bucket for building and 
maintaining relative and indexed files. Unlike a virtual block, a bucket 

295 



RMS-11 

can never contain a portion of a record. That is, RMS does not permit 
records to span bucket boundaries. 

The size of buckets in a file is defined at the time the files are created. 
Buckets can consist of from 1 to 32 virtual blocks. The maximum 
bucket size on the RSTS/E operating system is 15 virtual blocks. 
When selecting a bucket size, considerations are: file organization, 
record format, record size, and the internal information RMS main
tains in each bucket. Within these constraints, a large bucket size will 
serve to increase sequential mode processing of a file, since fewer 
actual I/O transfers are required to access records. Minimizing bucket 
size, on the other hand, means that less 110 buffer space is required to 
support file processing. 

Key Definitions For Indexed Files 
To define a key for an indexed file, the position and length of character 
data in the records of the file must be specified. At least one key, the 
primary key, must be defined for an indexed file. Additionally, up to 
254 alternate keys can be defined. Each primary and alternate key 
represents from 1 to 255 characters in each record of the file. 

When identifying the position and the length of keys to RMS, Simple or 
segmented keys can be defined. A simple key is a single, contiguous 
string of characters in the record; in other words, a Single data field. A 
segmented key, however, can consist of from two to eight data fields 
within records. These data fields need not be contiguous. When proc
essing records that contain segmented keys, RMS treats the separate 
data fields (segments) as a logically contiguous character string. 

The environment within which a program processes RMS files at run
time consists of two levels, the file processing level and record proc
essing level. 

When defining keys at file creation time, two characteristics for each 
key can be specified: 

1. Duplicate key values are allowed. 

2. Key value can change. 

When it is specified that duplicate key values are allowed, the user 
indicates that more than one record in the file can have the same value 
in a given key. Such records, therefore, have the same record identifi
er. The capability to allow duplicate key values further distinguishes 
indexed files from relative files. In relative files, the record identifier, 
representing a relative record number, is always unique. 

The personnel file can serve as an example of the use of duplicate 
keys. At file creation time, the creator of the file could define the 

296 



RMS-11 

department name field as an alternate key. As programs wrote rec
ords into the file, the alternate index for the department name key field 
would contain multiple entries for each key' value (e.g., PAYROLL, 
SALES, ADMINISTRATION) since departments are composed of more 
than one employee. When such duplication occurs, RMS stores the 
records so that they can be retrieved in first-in/first-out (FIFO) order. 

Using the preceding personnel file, an application could be written to 
list the names of employees in any particular department. A single 
execution of the application could list the names of all employees 
working, for example, in the department called SALES. By randomly 
accessing the file by alternate key and the key value SALES, the 
application would obtain the first record written into the file containing 
this value. Then, the application could switch to sequential access and 
successively obtain records with the same value, SALES, in the alter
nate key field. Part of the logic of the application would be to deter
mine the point at which a sequentially accessed record no longer 
contained the value SALES in the alternate key field. The program 
could then switch back to random access mode and access the first 
record containing a different value (e.g., PAYROLL) in the department 
name key field. 

The second key characteristic (key value can change) indicates that 
records can be read and then written back into the file with a modified 
value in the key. When such modification occurs, the appropriate in
dex is automatically updated to reflect the new key value. This charac
teristic can be specified only for alternate keys. Further, when specify
ing this characteristic, the user must also specify that the duplicate key 
values are allowed. 

If the sample personnel file was created with the department name 
field as an alternate key, the creator of the file would need to specify 
that key values can change. This specification would allow a program 
to access a record in the file and change the contents of a department 
name data field to reflect the transfer of an employee from one 
department to another. 

The user can also declare the converse of either of these two key 
characteristics. That is, the user can specify for a given key that dupli
cate key values are not allowed or that key values cannot change. 
When duplicate key values are not allowed, RMS rejects any program 
request to write a record containing a value in the key that is already 
present in another record. Similarly, when the key value cannot 
change, RMS does not allow a program to write a record back into the 
file with a modified value in the key. 

297 



RMS-11 

PROGRAM OPERATIONS ON RMS FILES 
After RMS has created a file according to the user's description of file 
characteristics, a program can access the file and store and retrieve 
data. When a program accesses the file as a logical structure (i.e., a 
sequential, relative, or indexed file), it uses access modes to perform 
record operations that add, retrieve, update, and delete records. The 
organization of the file determines the types of record operations per
mitted. If the record accessing capabilities of RMS are not utilized, 
programs can access the file as a physical structure. As a physical 
structure, RMS considers the file simply as an array of virtual blocks. 
To process a file at the physical level, programs use a type of access 
known as block I/O. 

Record Operations of RMS Files 
The organization of a file, defined when the file is created, determines 
the types of operations that the program can perform on records. 
Depending on file organization, RMS permits a program to perform 
the following record operations: 

• Read a record. RMS returns an existing record within the file to the 
program. 

• Write a record. RMS adds a new record that the program constructs 
to the file. The new record cannot replace an already existing rec
ord. 

• Find a record. RMS locates an existing record in the file. It does not 
return the record to the program, but establishes a new current 
position in the file. 

• Delete a record. The program modifies the contents of a record read 
from the file. RMS writes the modified record into the file, replacing 
the old record. 

Table 12-1 shows the combinations of record operations and file or
ganizations that RMS permits. The subsections that follow discuss 
record operations in the context of each file organization. 

Sequential File Organization Record Operations 
In sequential file organization, a program can read existing records 
from the file using sequential or RFA access modes. New records can 
be added only to the end of the file and only through the use of 
sequential access mode. The find operation is supported in both se
quential and RFA access mode. In sequential access mode the pro
gram can use a find operation to skip records. In RFA access mode, 
the program can use the find operation to establish a random starting 
point in the file for sequential read operations. The sequential file 

298 



RMS-11 

organization does not support the delete operation, since the structure 
of the file requires that records be adjacent in and across virtual 
blocks. A program can, however, update existing records in disk files 
as long as the modification of a record does not alter its size. 

Table 12-2 
Record f-ormats and File Organizations 

File Organization Record Format 

Fixed Variable VFC Stream 

Sequential Yes Yes Yes disk only 

Relative Yes Yes Yes No 

Indexed Yes Yes No No 

Relative File Organization Record Operations 
Relative file organization permits programs greater flexibility in per
forming record operations than sequential organization does. A pro
gram can read existing records from the file using sequential, random, 
or RFA access mode. New records can be sequentially or randomly 
written as long as the intended record cell does not already contain a 
record. Similarly, any access mode can be used to perform a find 
operation. After a record has been found or read, RMS permits the 
delete operation. Once a record has been deleted, the record cell is 
available for a new record. A program can also update records in the 
file. If the format of the records is variable, update operations can 
modify record length up to the maximum size specified when the file 
was created. 

Indexed File Organization Record Operations 
Indexed file organization provides the greatest flexibility in performing 
record operations. A program can read existing records from the file 
in sequential, RFA, or random access mode. When reading records in 
random access mode, the program can choose one of four types of 
matches that RMS must perform using the program-provided key val
ue. The four types of matches are: 

• Exact key match 

• Approximate key match 

• Generic key match 

• Approximate and generic key match 

299 



RMS-11 

Exact key match requires that the contents of the key in the record 
retrieved precisely match the key value specified in the program read 
operation. 

The approximate match facility allows the program to select either of 
the following relationships between the key of the record retrieved and 
the key value specified by the program: 

• Equal to or greater than 

• Greater than 

The advantage of this kind of match is that if the requested key value 
does not exist in any record of the file, RMS returns the record that 
contains the next higher key value. This allows the program to retrieve 
records without knowing an exact key value. 

Generic key match means that the program need specify only an initial 
portion of the key value. RMS returns to the program the first occur
rence of a record whose key contains a value beginning with those 
characters. This capability is useful in applications where a series of 
records must be retrieved according to the contents of only a part of 
the key field. In an indexed inventory file, for example, a company 
might designate its part numbers in such a way that the first three 
digits represent the vendor from whom the part is purchased. In order 
to retrieve the record associated with a particular part, the program 
would normally supply the entire part number. Generic selection per
mits the retrieval of the first record representing parts purchased from 
a specific vendor. 

The final type of key match combines both generic and approximate 
facilities. The program specifies only an initial portion of the key value, 
as with generic match. Additiona"y, a program specifies that the key 
data field of the record retrieved must be either: 

• Equal to or greater than the program-supplied value 

• Greater than the program-supplied value 

In addition to versatile read operations, RMS allows any number of 
new records to be written into an indexed file. It rejects a write 
operation only if the value contained in a key of the record violated a 
user-defined key characteristic (e.g., duplicate key values not permit
ted). 

The find operation, similar to the read operation, can be performed in 
sequential. RFA. or random access mode. When finding records in 
random access mode, the program can specify anyone of the four 
types of key matches provided for read operations. 

300 



RMS-11 

In addition to read, write, and find operations, the program can delete 
any record in an indexed file and update any record. The only restric
tion RMS applies during an update operation is that the contents of the 
modified record must not violate any user-defined key characteristic 
(e.g., key values cannot change and duplicate key values are not per
mitted). 

Table 12-3 
Record Operations and File Organizations 

File Organization Record Operation 

Read Write Find Delete Update 

Sequential Yes Yes Yes No Yes* 

Relative Yes Yes Yes Yes Yes 

Indexed Yes Yes Yes Yes Yes 

*Disk files only. 

Block I/O 
Block 1/0 allows a program to bypass the record processing capabili
ties of RMS entirely. Rather than performing record operations 
through the use of supported access modes, a program can process a 
file as a physical structure consisting solely of virtual blocks. , 
Using block 1/0, a program reads or writes multiple virtual blocks by 
identifying a starting virtual block number in the file. Regardless of the 
organization of the file, RMS accesses the identified block or blocks on 
behalf of the program. 

Since RMS files, particularly relative and indexed files, contain internal 
information meaningful only to RMS itself, DIGITAL does not recom
mend that a file be modified by using block 1/0. The presence of the 
block 1/0 facility, however, does permit user-created file structures. 
The resultant structures must be maintained using specialized pro
grams. The structures cannot be accessed using RMS record access 
mode and record operations. 

RMS RUNTIME ENVIRONMENT 
The environment within which a program processes RMS files at run
time consists of two levels, the file processing level and record pro
cessing level. 

301 



RMS-11 

At the file processing level, RMS and the host operating system pro
vide an environment that permits concurrently executing programs to 
share acceRS to the same file. RMS ascertains the amount of sharing 
permissible from information provided by the programs themselves. 
Additionally, at the file processing level, RMS provides facilities that 
allow programs to min·imize buffer space requirements for file 
processing. 

At the record processing level, RMS allows programs to access rec
ords in a file through one or more record access streams. Each record 
access stream repesents an independent and simultaneously active 
series of record operations directed toward the file. Within each 
stream, programs can perform record operations synchronously or 
asynchronously. That is, RMS allows programs to choose between 
receiving control only after a record operation request has been satis
fied (synchronous operation) or receiving control before the request 
has been satisfied (asynchronous operation). 

For both synchronous and asynchronous record operations, RMS 
provides two record transfer modes, move mode and locate mode. 
Move mode causes RMS to copy a record from an lID buffer into a 
program-provided location. Locate mode allows programs to address 
records directly in an I/O buffer. 

File Processing Environment 
RMS provides two major facilities at the file processing level, file shar
ing and buffer handling. 

File Sharing 
Timely access to critical files requires that more than one concurrently 
executing program be allowed to process the same file at the same 
time. Therefore, RMS allows executing programs to share files rather 
than requiring them to process files serially. The manner in which a file 
can be shared depends on the organization of the file. Program-pro
vided information further establishes the degree of sharing of a partic
ular file. RMS coordinates the sharing of a relative or indexed file 
through a bucket locking mechanism. The following paragraphs de
scribe: 

• File organization and sharing 

• Program sharing information 

• Bucket locking 

File Organization and Sharing - with the exception of magnetic tape 
files, which cannot be shared, every RMS file can be shared by any 
number of programs that are reading, but not writing, the file. Sequen
tial files on disk can be accessed by a single writer or shared by 

302 



RMS-11 

multiple readers. Relative and indexed files, however, can be shared 
by multiple readers and multiple writers. A program can read or write 
records in a relative or indexed file while other programs are Similarly 
reading or writing records in the file. Thus, the information in such files 
can be changing while programs are accessing them. 

Program Sharing - A file's organization establishes whether it can be 
shared for reading with a single writer or for multiple readers and 
writers. A program specifies whether such sharing actually occurs at 
runtime. The user controls the sharing of a file through information the 
program provides RMS when it opens the file. First, a program must 
declare what operations (e.g., read, write, delete, update) it intends to 
perform on the file. Second, a program must specify whether other 
programs can read the file or both read and write the file concurrently 
with one program. 

The combination of these two types of information allows RMS to 
determine if multiple user programs can access a file at the same time. 
Whenever a program's sharing information is compatible with the 
corresponding information another program provides, both programs 
can access the file concurrently. 

Bucket Locking - RMS uses a bucket locking facility to control oper
ations to a relative or indexed file that is being accessed by one or 
more writers. The purpose of this facility is to ensure that a program 
can add, delete, or modify a record in a file without another program's 
simultaneously accessing the same record. 

When a program opens an indexed or relative file with the declared 
intention of writing or updating records, RMS locks any bucket ac
cessed by the program. This locking prevents another program from 
accessing any record in the buck~t until the program releases it. The 
lock remains in effect until the program accesses another bucket. 
RMS then unlocks the first bucket and locks the second. The first 
bucket is then available for access by another concurrently executing 
program. 

Buffer Handling 
To a program, record processing under RMS appears as the move
ment of records directly between a file and the program itself. Trans
parently to the program, however, RMS reads or writes virtual blocks 
or buckets of a file into or from internal memory areas known as I/O 
buffers. Records within these buffers are then made available to the 
program. 

The storage structures transferred between a file and I/O buffers de
pend on the organization of the file. When a program processes 
sequential files, RMS reads and writes virtual blocks. For relative and 

303 



RMS-11 

indexed files, RMS reads and writes buckets. Thus, the storage ele
ment RMS uses to structure the file is the unit of transfer between the 
file and memory when RMS accesses the file in response to one pro
gram's record operation request. 

In addition to buffers that contain virtual blocks or buckets, RMS re
quires a set of internal control structures to support file processing. 
The combination of these buffers and control structures is known as 
the space pool. RMS maintains a separate space pool for each execut
ing program. Rather than allocating space solely on the basis of the 
total number of files processed, RMS provides facilities to ensure that 
a space pool is large enough to accommodate only the requirements 
of the largest number of files that can be open simultaneously. Using 
these facilities, a program provides information that allows RMS to 
calculate the minimum size requirements of the space pool. 

In choosing size requirements for the I/O buffer portion of the space 
pool, there are two options: 

• A completely centralized space pool 

• Private I/O buffers for one or more files 

In a completely centralized space pool, all I/O buffers, as well as the 
internal control structures required for file processing, are inaccessi
ble to the program. RMS totally manages the space within the pool 
and allocates portions, as needed, as buffer space and control 
structures for open files. 

Private I/O buffers allow a program some measure of control over I/O 
buffer space. Private I/O buffers can be allocated on a per-file basis by 
explicitly specifying the address and total size of the buffers to be used 
for a particular file. While the file is open, RMS manages this buffer 
space and the program must not access it. However, when the file is 
closed, the private I/O buffer space is available for use by the pro
gram. 

The major advantage of private I/O buffers is that they avoid fragment
ing a completely centralized space pool. That is, since particular files 
have varying buffer requirements based on their organization, a 
centralized space pool could have sufficient space available for the 
opening of an additional file, but the space could be noncontiguous. 
When such a situation arises, a program cannot open the desired file. 
Such fragmentation cannot occur in a private I/O buffer pool since 
there is no mixture of differing space requirements. 

Record Processing Environment 
After opening a file, a program can access records in the file through 

304 



RMS-11 

the RMS record processing environment. This environment provides 
three facilities: 

• Record access streams 

• Synchronous or asynchronous record operations 

• Record transfer modes 

Record Access Streams 
In the record processing environment, a program accesses records in 
a file through a record access stream. A record access stream is a 
serial sequence of record operation requests. For example, a program 
can issue a read request for a particular record, receive the record 
from RMS, modify the contents of the record, and then issue an up
date request that causes RMS to write the record back into the file. 
The sequence of read and update record operation requests can then 
be performed for a different record, or other record operations can be 
performed, again in a serial fashion. Thus, within a record access 
stream, there is at most one record being processed at any time. 
However, for relative and indexed files, RMS permits a program to 
establish multiple record access streams for record operations to the 
same file. The presence of such multiple record access streams allows 
programs to process in parallel more than one record of a file. Each 
stream represents an independent and concurrently active sequence 
of record operations. Further, when such streams update records in 
the file, RMS employs the same bucket locking mechanism among 
streams that it uses to control the sharing of a file among separate 
programs. 

As an example of multiple record access streams, a program could 
open an indexed file and establish two record access streams to the 
file. The program could use one record access stream to access rec
ords in the file in random access mode through the primary index. At 
the same time, the program could use the second record access 
stream to access records sequentially in the order specified by an 
alternate index. When a program accesses a record through either 
stream, RMS automatically uses its bucket locking mechanism to en
sure that both streams do not attempt to write the same record at the 
same time. 

Synchronous and Asynchronous Record Operations 
Within each record access stream, a program can perform any record 
operation either synchronously or asynchronously. The RSTS/E oper
ating system supports synchronous record operations only. When a 
record operation is performed synchronously, RMS returns control to 
a program only after the record operation request has been satisfied 
(e.g., a record has been read and passed to one program). When a 

305 



RMS-11 

record operation is performed asynchronously, RMS can return con
trol to one program before the record operation request has been 
satisfied. A program, then, can utilize the time required for the physi
cal transfer between the file and memory of the block or bucket con
taining the record to perform other computations. However, a 
program cannot issue a second record operation through the same 
stream until the first record operation has completed. To ascertain 
when a record operation has actually been performed, a program can 
issue a wait request and regain control when the record operation is 
complete. 

Record Transfer Modes 
In addition to specifying synchronous or asynchronous operations for 
each request in a record access stream, a program can utilize either of 
two record transfer modes to gain access to each record in memory: 

• Move Mode Record Transfers - RMS permits move mode record 
operations for all file organizations and record operations. Move 
mode requires that an individual record be copied between the I/O 
buffer and a program. For read operations, RMS reads a block or 
bucket into an I/O buffer, finds the desired record within the buffer, 
and moves the record to a program-specified location. 

Before a write or update operation in move mode, the program 
builds or modifies a record in its own work space. Then the program 
issues a write or update record operation request, and RMS moves 
the record to an I/O buffer. 

• Locate Mode Record Transfers - RMS supports locate mode rec
ord transfers for read operations to all file organizations. However, it 
permits locate mode on write operations for sequential files only. 

Locate mode reduces the amount of data movement, thereby saving 
processing time. This mode enables programs to access records 
directly in an I/O buffer. Therefore, there is normally no need for 
RMS to copy records from the I/O buffer to a program. To allow the 
program to access a record in the I/O buffer, RMS provides the 
program with the address and size of the record in the I/O buffer. 

306 



CHAPTER 13 

DATA BASE MANAGEMENT SYSTEM 
DBMS (V. 1.5) 

OVERVIEW 
DBMS is a CODASYL-standard data base management system that 
uses the "set definition" as the basic building lock with which even the 
most complex data relationships can be defined. It separates data 
definitions from data references and allows definition of logical, appli
cations-oriented relationships. DBMS suppports mUlti-level sequen
tial, hierarchical (tree), and network data structures. 

FEATURE TOPICS 

• Features 
- Data Description Language 
- Data Manipulation Language 
- Schema Data Description Language 

• Data Organization 
- DIRECT 
- CALCULATED 
- VIA 

• Physical Space Management 
- Set Relationship Capabilities 
- Set Membership 

• Data Base Utilities 
- Data Dictionary Facilities 
- Data Base Recovery and Journaling 

• Data Manipulation Language 

• COBOLlDML Compilation 

• Other Language/DML Compilation 

• Programming Requirements 

• Execution of Object DML Programs 

307 



DBMS 

FEATURES 
Data Base Management System (DBMS) provides a centrally man
aged data base that acts as a common resource for application pro
grams. 

DBMS allows each application program to access an appropriate sub
division through a simple set of commands that act as extensions to 
COBOL and FORTRAN programs and as calls from BASIC and 
MACRO programs. 

DBMS is controlled through two sets of language facilities for data 
base administration and application programming. The Data Descrip
tion Language (DDL) allows the central data base to be defined and 
created. The Data Manipulation Language (DML) allows individual ap
plication programmers to access portions of the data base by using 
simple commands that are embedded in application programs. 

DBMS allows the creation of one central data base that acts as a 
common resource for any number of application programs. This cen
tral data base reduces redundant data, provides data consistency, 
and allows the data base to be maintained more easily and with more 
security. 

The description of the central data base (called the schema) is done 
with the Schema Data Description Language (Schema DDL). The 
Schema DDL performs these three functions: 

• defines the physical mapping of the schema to device media 
through the DML control language 

• defines all data elements (records, groups, items) in the data base 

• describes all logical relationships (structures) that are to exist 
between elements 

Once the central data base is defined, any number of logical sub
divisions can be defined using the Sub-schema DDL. Each sub-sche
ma defines a specific combination of records and structures which 
apply to a given application program. This central control and con
trolled allocation of the data base not only provide for maintainabi!ity 
and security of data, but permit markedly improved application pro
grammer efficiency. For example, the arduous data description func
tion is removed from the scope of the application programmer. Thus, 
individual application programs are easier to write and debug, and 
have superior portability and better maintainability. 

The Schema DDL, the Sub-schema DDL, and the COBOL and 
FORTRAN DMLs are implementations of CODASYL and approved by 
the COBOL Journals of Development. 

308 



DBMS 

DATA ORGANIZATION 
The basic unit within the DBMS data base is the record. Individual 
records are differentiated from one another by their format-defined 
and alterable using the Schema DDL. For example, one record type 
might be named CUSTOMER and could include all record occur
rences that have the following three data items: 

• 8 characters for customer number 

• 32 characters for customer name 

• 32 characters for customer address 

Any number of record types can be defined to meet the needs of the 
user community. Further, each record type can be included in any 
number of sub-schemas; identical record types need not be duplicat
ed for different application programs. For example, the record type 
EMPLOYEE can be in the sub-schema for both the personnel and 
medical benefits application programs. 

Since large data bases are generally stored on disk systems where the 
time between successive accesses is the key to optimum perform
ance, data base performance can be improved by locating and retriev
ing these related records with a single access. DBMS offers three 
modes of record storage that provide flexible record placement con
trol. 

These record location modes are: 

• DIRECT - allows the user maximum control over logical storage 
location. In this mode, a suggested data base key (desired location) 
is supplied before the record is stored. If the suggested data base 
key is available, it will be assigned to that record. If unavailable, the 
next available data base key will be assigned. 

• CALCULATED (CALC) - stores the record based on the value of 
one or more data items within the record. This option can be used to 
spread records evenly over an area. Ever CALC record provides a 
"keyed" entry point into the data base. 

• VIA - used for record occurrences that will be referenced primarily 
in conjunction with another record type. For example, if record type 
EMPLOYEE is usually accessed in conjunction with record type 
COMPANY, the VIA option would store record occurrences of EM
PLOYEE as close to occurrences of the specific COMPANY as is 
possible. This clusters member records around owners, minimizing 
the number of physical accesses necessary. 

309 



DBMS 

Table 13-1 Physical Storage A"ocation Under DBMS 

DBMS-11 AREAS 

POSSIBLE "FILES" 
MAPPINGS 

AREA 1 
PAGES 1-1000 
(1st Physical 
Area) 

FILE A 

PAGES 1-N 
(En1ire Physical Database) 

AREA 2 ~/~REA "X" 
PAGES 1001-3000 PAGES "b"-"N" 
(2nd Physical ~ Xth Physical 
Area) Area) 

FILES B & C FILES D-Z 

B C 

PHYSICAL SPACE MANAGEMENT 
The basic unit of physical space management under DBMS is the 
page. A page is a fixed-length block transferred to and from storage 
(size defined by the user) which will be maintained by the DBMS in
put/output routines. 

The total physical extent of the data base is described in pages using 
the Schema DDL (such as pages 1-10,000). The data base is then 
divided by the Schema DDL into areas. For example, area 1 might be 
pages 1-1,000; area 2, pages 1001-3000, and so on. 

No special overflow storage areas are ever needed when dealing with 
DBMS data bases. The space management routines handle appropri
ate allocation and continuous optimization of the storage resources 
available. Through the use of special space management pages and 
other techniques, record retrieval and storage are optimized-even 
when the data base is 80% to 90% full. 

Within a page, any number of different records and different record 
types may be stored, each with its own length. Variable length space 
management is employed within each page so that when a record is 
deleted, the associated space is made available for reuse. This elimi
nates efficiency-robbing gaps in the data base. 

Through the use of the Device/Media Control Language (DMCL), the 
data base may be mapped to any combination of system files: 

• The entire data base may be assigned to a single file. 

• Related files may be assigned to areas on a one-to-one basis. 

• Several files may be associated with a particular area. 

The applications programmer is never aware of which files are con
nected to the portion of the data base associated with specific 
applications. 

310 



DBMS 

SET RELATIONSHIP RULE 
While the ability to control the physical placement of records is impor
tant to optimize system speed, the most important aspect of any data 
base management system's usability is the number and kind of data 
relationships that can be supported. 

Logical relationships are established by defining named collections of 
record types-each called a set. Each set must have one record type 
declared as the owner record and one or more record types declared 
as its member records. Seven basic examples of this freedom to de
fine sets in any manner to meet exact user needs are: 

Set Relationship Capabilities 
DBMS includes a series of options to establish and maintain set rela
tionships. Since each set is described independently from any other 
set, the record order of each set can be defined for most efficient 
access. Record order within a set may be defined to be: 

• FIRST (New records are positioned first in a series of records.) 

• LAST (New records are positioned last in the series of records.) 

• PRIOR (New records go immediately before a record occurrence 
established by the user program.) 

• NEXT (New records go immediately after a record occurrence es
tablished by the user program.) 

• SORTED (Record placement is determined by a user-supplied algo
rithm.) In a sorted set, records will be logically pOSitioned in 
ascending or descending order based on the value of one or more 
data items within the record. 

The logical ordering of member record occurrences in a set is inde
pendent of the physical placement of the records. Additionally, the 
same record type can participate (be a member) in any number of 
different sets, each with a different ordering criterion. 

Set Membership 
Not only can a record type participate as a member of different sets 
with a different relationship in each set, but the type of membership 
may be different in each set. Set membership can be optional or 
mandatory, and manual or automatic, depending on whether the user 
application program is permitted to CONNECT or DISCONNECT an 
occurrence of this record type from the set. 

• Optional set membership allows a record to be removed from a set 
without the record's being deleted from the data base. 

• Mandatory set membership defines a record as a permanent mem
ber of a set as long as the record is present in the data base. 

311 



DBMS 

• Automatic set membership defines the record to be specified as a 
member of a set as an automatic function performed by the data 
base management system when the record occurrence is stored in 
the data base . 

• Manual set membership allows the connection to a set of a record 
occurrence to be performed by the user program. 

Table 13·2 Set Relationships 

1. Any record may participate as a member in one or more SETs. 

PROJECT 

2 Any record may be specified as the owner of one or more SETs 

3 Any record may participate as a member of any number of SETs, and also be an 
owner of one or more SETs 

4. A SET may have only one record type as its owner but may have one or more 
record types as members . 

~DCGR~ 
COURSe 

5 Any number of SET relationships may exist between two record types 

History 

6 A record type may exist Without any SET participation -as neither a member nor 
an owner of a SET 

GRADE/SALARY 

312 



DBMS 

7 Any record type may be defined as an optional member of a SET Participation of 
each record occurrence is established or deleted based on execution of a 
statement within a user program. 

'I-O-E-PA-R-TM-E-NT----,I 

I 

~ 
~UC~~~L~TORYJ 

Set Linkage 
The relationship between record types within a set is maintained by 
the existence of pOinters to other related records, known as linkage. 
Members of sets are always linked automatically in the forward direc
tion (next pointer). Sets may optionally be defined to be linked either 
in the reverse direction (prior pointer) and/or linked to the owner 
(owner pointer). Owner pOinters allow the owner record to be ac
cessed directly from a member record without following the next or 
prior pOinter chain to the end. 

Thus, options for set linkage are: next pOinters, next and prior point
ers, next and owner pointers, or next, prior, and owner pOinters. 

OAT A BASE UTILITIES 
DBMS includes a comprehensive set of utilities that allows the data 
base administrator to monitor and audit the activity of the system, 
measure the performance of the system, and recover the data base 
after a hardware or software failure. 

Data Dictionary Facilities 
A group of comprehensive data dictionary reports are integral to 
DBMS. These listings provide tools for controlling and maintaining the 
data base plus documentation of non-DBMS files. Reports include a 
range map, record descriptions, set descriptions, a DMCL map, and 
user Data Dictionary. 

Data Base Recovery and Journaling 
DBMS has integrated journaling and recovery features. It automatical
ly maintains a journal of all changes made to the data base. This 
journal includes both "before" and "after" images of modified portions 
of the data base. Checkpoint statistics are also included. 

313 



DBMS 

Security Dump and Security Restore 
This facility provides for a high-speed copy of the entire data base or 
named area(s) to or from a serial device. It also provides statistics 
about the area(s) copied, including each record type found, number of 
occurrences, total characters occupied, and percent of copied area 
occupied by each record type. The security dump also indicates page 
loading and cluster information. 

Journal Rollforward 
The rollforward utility recovers the data base forward to a specified 
point in time by reapplying "after" images from the journal tape to the 
data base in chronological order. It provides information about each 
end-of-job checkpoint reached and determines if the data base is in a 
logical quiesce condition at this checkpoint. The rollforward utility also 
takes into account a multi-tasking environment, and at each check
point will display all other programs that were active, which areas the 
programs had open, and their declared usage mode in each area. It 
will also print "before" images in decimal and/or octal format for au
diting or test evaluation. ROllforward will display page images without 
reapplying them to the data base, if specified. 

Journal Rollback 
This utility recovers the DBMS data base to a user-specified point 
backward in time by reapplying "before" page images from the journal 
tape. Journal rollback corresponds to the journal rollforward utility 
except that it is sensitive to "after" images and end-of-job check
points. 

Initialization Utility 
This utility initializes any part of the DBMS data base or portion thereof 
to empty pages. Each area must be formatted with this utility before 
any record occurrences can be stored. 

Page Find/Fix 
Page Find/Fix is a general debugging tool that allows display and 
replace functions to check the contents of any page and make modifi
cations. It will locate and display a page based on a page number or 
key value of a CALC record. If the key value is submitted, the utility 
performs the CALC transform on the value and displays the page that 
contains the record occurrence with that value. 

CALC Routine 
The mathematical transform used to store and retrieve records in the 
CALC location mode is available through this routine. It may be used 

314 



DBMS 

to test a key value set for even distribution in an area or as a 
mechanism to permit presenting records so that a data base can be 
efficiently loaded. 

On-line Recovery 
When certain programs end abnormally, this utility immediately recov
ers the data base without affecting other programs operating at the 
same time. Programs doing retrieval only need not be recovered. Pro
grams in the UPDATE (shared) usage mode cannot be automatically 
recovered. Programs in the PROTECTED UPDATE or EXCLUSIVE UP
DATE usage modes will be recovered. This utility performs as a roll
back operation replaCing "before" images for the program that termi
nated abnormally. 

Journal File Fix 
This utility will copy a journal file in cases where no ending labels have 
been placed on that file because of operating system failure, hardware 
crash, etc. It will write the appropriate end-label information on the 
output journal file. 

Data Base Query 
This utility allows the user to use interactive machine DML commands 
to access the data base without need for read to write programs. 

Data Base Utility 
This utility verifies that the data contained in the data base is 
consistent with the Schema description. 

COMMON ACCESS MONITOR PROGRAM (CAMP) 
The Common Access Monitor Program (CAMP), also referred to as 
DBX, allows any number of programs in the central processor to use a 
single copy of the data base control system (DBCS) for effective multi
tasking. CAMP threads all requests from application programs to the 
DBCS. It also includes an automatic recovery program which will, 
when possible, back-out the effect of a program that ends abnormally 
in the on-line environment. 

The buffer pool resides with the DBCS. The buffer size is defined by 
the user of a particular data base. The association of programs with 
invoked sub-schemas assures that when each program ends, its sub
schema is released immediately from main memory, keeping total 
overhead to a minimum. 

315 



DBMS 

DATA MANIPULATION LANGUAGE 
The simple command structure of the data manipulation language 
means: 

• Programmer learning time is minimized. 

• Programs written by one programmer are easily understood byoth
ers. 

• Application programs are more portable and more easily main-
tained. 

• Programming productivity is increased. 

Data manipulation statements may be included anywhere within the 
procedure coding of a COBOL, FORTRAN, or other language applica
tion program. 

Control statements establish access to a portion of a data base. The 
READY AREA statement announces the user's intention to start pro
cessing within the specified area. The corresponding FINISH AREA 
statement announces the end of processing. 

Locating or accessing records is done with the following statements: 

• FIND locates a record occurrence in the data base that satisfies the 
record-selection-expression portion of the statement. 

• GET causes a retrieval from the most recently located record. 

• ACCEPT CURRENCY causes movement of the data base key asso
ciated with the most recently located record to a named location in 
the program. 

Modification statements result in a change to the contents of the data 
base. Changes include the addition of new data, modifications to 
existing data-item values, or deletion of data in the data base. 

• STORE uses data established by the user in working storage to 
create a new record occurrence in the data base. 

• MODIFY changes the data content of an existing record in the data 
base. 

• CONNECT and DISCONNECT cause a change in the set relationship 
of an existing record occurrence in the data base. 

• ERASE causes an existing record occurrence to be removed from 
the data base. 

The application programmer can access the data base only through a 
sub-schema which is predefined by the data processing manager. A 
sub-schema is made available to a program via a declarative state
-ment. Records defined in the sub-schema specify the only data base 
data that can be manipulated by the application program. This fur-

316 



DBMS 

nishes data privacy independence at the application program level. 
Data manipulation statements are referred to as the data manipulation 
language (DML). The DML processor supplies record type descrip
tions from the sub-schema into the working area of the user's pro
gram. 

317 



DBMS 

Table 13-3 DBMS Data Manipulation Language 

DBMS-11 Data Manipulation Language 

CONTROL STATEMENTS: 
DB sub-schema-name WITHIN schema-name. 

READY {realm-name] [USAGE MODE IS [PROTECTED] {RETRIEVAL}] 
EXCLUSIVE UPDATE 

FINISH. 

FIND [record-name] DB-KEY 

FIND CURRENT [ WITHIN 

IS identifier. 

{ set-name }] 
realm-name • 

{

NEXT} PRIOR 
FIND FIRST 

LAST 
[record-name] {

set-name } 
WITHIN • 

realm-name 
integer 
identifier 

FIND OWNER WITHIN set-name. 

{ ANY } FIND DUPLICATE record-name. 

FIND record-name WITHIN set-name [CURRENn USING identifier 

IF set-name IS [NOn EMPTY imperative-statement. 

{ MEMBER}. . IF [NOn set-name OWNER Imperative-statement. 

MODIFICATION STATEMENTS: 

[{
PERMANENT} ] 

ERASE [record-name] :~~ECTIVE MEMBERSJ 

CONNECT [record-name] TO set-name 

MODIFY {record-name]. 

DISCONNECT {record-name} FROM set-name. 

STORE record-name. 

RETRIEVAL STATEMENTS: 
GET [record-name]. 

{
reCOrd-name} 

ACCEPT identifier FROM set-name CURRENCY. 
realm-name 

318 



DBMS 

COBOL/DML COMPILATION 
The user must identify a predefined sub-schema in the sub-schema 
section of the Data Division. DML statements may appear anywhere in 
the Procedure Division and may be considered for the programmer as 
an extension to the COBOL language. This means that, surrounded by 
other COBOL statements, they may be placed at the appropriate point 
in any procedure. PDP-11 COBOL DML reads the COBOL/DML 
source statements and searches within the Data Division for the sub
schema section to obtain the name of the sub-schema specified. Once 
the sub-schema name has been verified, the DML processor obtains 
the names of all valid records, sets, and areas. The relationships 
between them are also obtained from sub-schema information stored 
in the data base description. These are used to validate DML state
ments in the Procedure Division. 

PDP-11 COBOL will establish an 01 level record entry followed by 
selected data items in working storage for each record type included 
in the sub-schema. System control and communication data items are 
included automatically. 

Each DML command is validated for correct syntax and usage of 
record-set-area relationships. At compile time, these DML validations 
guard against the programmer's using the data base improperly; 
hence resources are not wasted later during system Iprogram debug
ging. All DML errors detected by PDP-11 COBOL will be displayed 
with the source statement in error. 

FORTRAN DML COMPILATION 
The user identifies a predefined sub-schema using a DML INVOKE 
statement at the beginning of each main or subprogram module that 
contains DML statements. FORTRAN DML statements may be consid
ered by the programmer as an extension to the FORTRAN language, 
and, as such, DML statements may appear anywhere in a FORTRAN 
program that executable statements are allowed. The FORTRAN DML 
preprocessor (FDML) reads the FORTRANIDML source program and 
converts all DML statements to standard FORTRAN statements. 

FDML includes all the functionality of the COBOL DML, plus dynamic 
(runtime) naming, end error phrases, USE procedures, dynamic buff
er binding, and selective record copies from the sub-schema division. 

OTHER LANGUAGE/DML COMPILATION 
DBMS can be used with any language that supports a CALL state
ment, such as BASIC and MACRO-11. The user communicates with 
DBMS from these languages by passing arguments through the CALL 
statement. The CALL statement procedure is straightforward and easy 
to use. 

319 



DBMS 

PROGRAMMING REQUIREMENTS 
The DBMS input/output area for the data base resides in working 
storage. Each record included in the sub-schema is automatically in
cluded in working storage by the DML processor as an 01 level record 
entry followed by the statements which describe the name, picture 
attribute, and use of each data item. Only those data items of the 
record defined in the sub-schema are transferred to the user program. 
Input of a record from the data base always appears in its like named 
area in working storage. 

Storage (or output) of a record to the data base requires the 
movement of data from various locations in the user's program to 
each of the data items described for the specific record in working 
storage. Once this is completed by user procedure statements, the 
record is moved physically from working storage into the data base 
using the STORE statement. 

The user is responsible for initializing all data items required to exe
cute a DML statement successfully, and must ensure that the data is 
correct. DBMS has extensive object time error diagnostic facilities and 
will update error status after every DML statement. To determine the 
action taken by the system in response to the request, the user must 
examine the error status following each DML command. 

In summary, three operations are required for each access to the data 
base: 

• initialization of data items as required by the DML statement to be 
executed 

• initiation of the data base operation by the DML statement 

• error checking to determine the outcome of the preceding DML 
command 

EXECUTION OF OBJECT DML PROGRAMS 
The operations that take place when a DML statement is executed are 
discussed this section. Numbers in parentheses refer to Table 13-4. 

• A DML statement appears in the object program as a request to the 
sub-schema interface routine (1). The request identifies the type of 
data base service desired and any additional information, such as 
record name, set name, and area name, required to interpret the 
request properly. 

• The sub-schema interface routine analyzes the request using infor
mation stored in the object sub-schema (2). If the request requires 
the use of the data base control system (DBCS), the user-supplied 
information is augmented by information from the object schema 
before control is passed the DBCS (3) itself. 

320 



DBMS 

• The DSCS performs the requested data base service using informa
tion supplied by the sub-schema interface routine. The operation 
performed depends upon the type of DML statement executed. In 
the event of a request to locate a record (FIND statement), the DSCS 
will look in the system page buffers to see if the requested record is 
present. If the record is not in the system page buffers, a request will 
be made to the operating system (4) to input a data base page from 
the direct access file to the system page buffers (5,6). No input is 
initiated if the record is already present in the system page buffers. 

• Any changes to the data base are recorded on the data base journal 
file (7). 

• The OSCS performs the requested service using additional informa
tion contained in the object sub-schema. The object sub-schema 
contains a representation of the data structure, record placement 
control, record characteristics, currency status, data base opera
tion, statistics, and constraints on DML operations. In general, the 
object sub-schema controls the operations and access of the data 
base for each program that invokes it. 

• Whenever a specified record occurrence is located by the DSCS, 
the data base key and other system information related to the 
record are moved from the system page buffer to locations within 
the object sub-schema (8). This information represents the currency 
status of the area, sets, and record type of the record occurrence 
which has been located. 

• If the request to the DSCS specified movement of the contents of a 
record to the user working area (GET statement), data will be moved 
from a system page buffer to a specified record area in the user 
working area (9). Only the data portion of the requested record is 
delivered to the user; system controlled structure data is retained by 
the DSCS to ensure data base integrity. Data movement from the 
user working area to the system page buffers will occur in response 
to a STORE or MODIFY statement. 

• The DSCS returns to the interface routine with an indication of the 
success or failure of the data base service (10). 

• The sub-schema interface routine moves status information regard
ing the outcome of the DML statement executed to locations within 
the user working area of the program (11). 

• Control is returned to the user's program at the statement following 
the DML statement just executed (12). 

• The user must determine the status of the previous DML statement 
by examining the contents of the system status information (13). For 
example, if a FIND statement was just executed, the contents of 

321 



DBMS 

system status information would indicate whether the specified rec
ord occurrence was located or not. If the system status information 
condition indicates that the service requested was completed suc
cessfully, the user would access the user working area as needed 
( 14). 

Table 13-4 Execution of Object DML Programs 

SECONDARY STORAGE 

L -+1 ~~ __ ~~~_DATA BASE 

6 

---~ 

t 

4----+ 

9 

~USER ~ I SYSTEM --- SUOBB_SJcECHTEMA-2 
WORKING : STATUS -_ -t- _A~E=-____ 1 ft'J~O_R~=-~I<?t'J _ 11 

14 13 USER PROGRAM 12 

--~~~~~~--~----~ 

322 



OVERVIEW 

CHAPTER 14 

DATATRIEVE-11 (V.1) 

DATATRIEVE-11 provides lAS, RSTS/E, and RSX-11M users with an 
inquiry language and report writing system that allows direct, easy 
access to data contained in RMS-11 files. This system is designed 
especially for unsophisticated computer users; everyday use of DAT A
TRIEVE-11 requires no programming skills. And DATATRIEVE-11 da
ta management facilities include interactive data retrieval, sort, up
date, and maintenance and access of data dictionary entries that 
define RMS-11 records. 

FEATURE TOPICS 
• Product Description 

- Query 
- Report Generation 
- Data Definition 

• Features 

• Minimum Hardware Required 

• BASIC Commands 

• Essential Terminology 

• Processing a File as a Collection 

• Special Syntactical Symbols 

• Key Words 

• Summary of Commands and Statements 

• A Sample DAT ATRIEVE-11 Session 

323 



DA TA TRIEVE-11 

PRODUCT DESCRIPTION 
DATATRIEVE-11 is an interactive query, report, and data maintenance 
system designed to operate in a programmerless environment. 

• Query - allows interactive data retrieval, sort, and update. 

• Report generation - produces summary and detailed reports, ti
tles, headings, footnotes, group totals, and report totals. 

• Data definition - allows creation, maintenance, and access of the 
data dictionary which defines RMS records. 

The DATATRIEVE-11 system includes RMS-11 K software and is avail
able on the RSTS/E, RSX-11 M, and lAS operating systems. RMS-11 K 
record management services are utilized by the system to access data 
contained in relative, indexed, or sequential file organization. Addi
tional facilities are provided by the system for selective data retrieval, 
sorting, formatting, updating, and report generation. 

At the heart of the system is a Data Dictionary in which record formats 
and file definitions are stored. The Data Dictionary can be shared by 
multiple users, and can be used to save frequently accessed com
mand sequences. 

FEATURES 

• Runs on RSTS/E, lAS, and RSX-11 M operating systems. 

• Features natural, English-like syntax that is easy to learn and easy to 
use. 

• Notifies user of errors immediately for on-line correction. 

• Maintains file security. 

• Contains a Data Dictionary facility. 

• Provides extensive user control of report formats. 

• Handles RMS files in COBOL, BASIC-PLUS-2, FORTRAN IV, 
FORTRAN IV-PLUS, DIBOL, and MACRO. 

• Includes interactive record updating capabilities with automatic 
prompts. 

• Eliminates the need for many specialized applicatons programs. 

• Uses COBOL-compatible record definitions. 

MINIMUM HARDWARE REQUIRED 
Any valid RSTS/E, RSX-11 M, or lAS operating system configuration 
will run DATATRIEVE-11 if it includes: 

• RMS-11 K software 

• 64K-byte user memory 

324 



DA TA TRIEVE-11 

• Extended Instruction Set 

• A Floating Point Processor, if floating point data type is used. 

BASIC COMMANDS 
DATATRIEVE-11 uses a simple English-like command language for 
data retrieval, modification, and display. Prompting is automatic for 
both command and data entry. The major commands are: 

• HELP - provides asummary of each DATATRIEVE-11 command. 

• READY - identifies a domain for processing and controls the ac
cess mode to the appropriate file. 

• FIND - establishes a collection (subset) of records contained in 
either a domain or a previously established collection based on a 
Boolean expression. 

• SORT - re-orders a collection of records in either the ascending or 
descending sequence of the contents of one or more fields in the 
records. 

• PRINT - prints one or more fields of one or more records. Output 
can optionally be directed to a line printer or disk file. Format control 
can be specified. A column header is generated automatically. 

• SELECT - identifies a single record in a collection for subsequent 
individual processin.9. 

• MODIFY - alters the values of one or more fields for either the 
select record or all records in collection. Replacement values are 
prompted for by name. 

• STORE - creates a new record. The value for each field contained 
in the record is prompted for by name. 

• ERASE - removes one or more records from the RMS-11 file corre
sponding to the appropriate domain. 

• FOR - executes a subsequent command once for each record in 
record collection, providing a simple looping facility. 

In addition to the simple data manipulation commands, a number of 
more complex commands are available for the advanced user. These 
commands, such as REPEAT, BEGIN-END, and IF-THEN-ELSE, may 
be used to combine two or more DATATRIEVE-11 commands into a 
single compound command. These, in turn, may be stored in the Data 
Dictionary as procedures for invocation by less experienced users. 

DATATRIEVE-11 provides a full set of arithmetic operators (addition, 
subtraction, multiplication, division, and negation), a set of statistical 
operators (total, average, maximum, minimum, and count), and pro
vides automatic conversion between data types used in the FORTRAN, 
COBOL, and BASIC-PLUS-2 languages. 

325 



DA TA TRIEVE-11 

The OAT ATRI EVE-11 report writer provides easy-to-use commands to 
control the following report functions: 

• report name, date, and page numbering 

• page width and length specification 

• detail line specification 

• multiple control break specification with automatic totaling at any 
level 

• multiple report sections 

A OATATRIEVE-11 report command can be freely intermixed with 
other OATATRIEVE-11 commands. 

ESSENTIAL TERMINOLOGY 
Files, domains, collections, records, and fields are five terms of 
fundamental importance to the file structure of OATATRIEVE-11. 

Records are groups of related items of data that are treated as a unit. 
For example, all the pieces of data describing a model of a yacht in a 
marina could be grouped to constitute the record for that yacht. 

Each of the individual pieces of data in a record is referred to as a 
field. The yacht's model number, length, and price are all potential 
fields in its record. 

The term files refers to the logically related groups of data that are 
kept by RMS-11. For example, we might put all of t~e yacht records for 
a current inventory of yachts into one file. 

Domains are named groups of data containing records of a single 
type. An RMS-11 domain consists of all the records in a particular 
RMS-11 file. In this case, we could say that all the yacht records for the 
current inventory are kept in the YACHTS domain. The number of 
records in any domain may change as new records are stored or old 
records are erased. 

A record collection is a subset of a domain. It may consist of no 
records, one record, or up to all the records in the domain. Using our 
previous example, we could say that all the yachts manufactured by 
Grampian could be made to form the Grampian-collection, while 
those yachts manufactured by Islander could be used to form the 
Islander-collection. To carry this example one step further, if the in
ventory is currently out of stock of yachts manufactured by Seaworthy, 
the Seaworthy-collection will be empty, or null. 

326 



DA TA TRIEVE-11 

The Data Dictionary is a location where the definitions for procedures, 
records, and domains are kept in a standard fashion by DATATRIEVE-
11. The Data Administrator will be concerned with the creation and 
maintenance of Data Dictionary information. Certain users will be able 
to display certain information from this dictionary, but only manage
ment will be concerned with defining it. 

PROCESSING A FILE AS A COLLECTION 
Perhaps the most important systems concept to master is collection 
processing. DATATRIEVE-11 operates on collections of records taken 
from the files. To get down to the level of record processing, the FIND 
and SELECT commands are employed to gather the collection and 
extract the records desired. The system provides a cursor facility to 
track the user's place in a collection. Figure 13-1 illustrates the cursor 
as a place marker, and shows how it can be manipulated through the 
collection, from the first, to the next, to the last record. It need not 
always move forward; directional movement within a collection is at 
the user's discretion. 

In most DATATRIEVE-11 operations, the files are never changed, but 
a great deal of manipulation occurs on the collections. Thus, the col
lections can be thought of as a sort of temporary storage, kept for 
immediate purposes, and then released. 

327 



W 
N 
00 

® 

ALBERG 37 MK II 

'--_______ ~CD~l ~J- FIRST 

Figure 13-1 Collection Cursor 

l 
LAST 

NEXT 



DATA TRIEVE-11 

The FIRST record of the collection is the first one encountered when it 
was established or collected. The record numbered with (1) in Figure 
13-1 identifies the FIRST record in this example. 

The NEXT record is always the one immediately after the CURRENT 
one. In the figure, the CURRENT record is the sixth one, so the NEXT 
record must be the seventh. 

We have been referring to records according to their numeric position 
in the collection, that is, sixth, seventh, and so forth. This is a proper 
form of reference, and in the DATATRIEVE-11 language digits will be 
used for the position number whenever a format specifies the nth 
record. 

The LAST record is the one located at the very end of the collection. 

If there happen to be no records at all in a collection, the collection is 
nUll, and the collection cursor will have to be nUll, too. 

Generally, the user works on just one collection at a time, the CUR
RENT one. However, it is possible to name a collection and refer back 
to it later in the same session, if it is important enough or likely to be 
used again. 

Thus, it is possible to be working with a number of collections, one of 
which is the CURRENT one, the one most recently the object of a FIND 
command. Each of the collections has its own collection cursor and 
may have a designated CURRENT record, as well. However, only one 
collection may be CURRENT at a time. 

The lifetime of any collection is limited to a given session. Collections 
cannot be saved, nor can they be shared by several users. However, 
the user can always reproduce a collection of identical characteristics 
(although not necessarily identical records, since the files can change 
in the interim), simply by repeating the sequence of FIND commands 
used initially to establish and/or refine the collection. If this is a fre
quent requirement, the steps should be defined as a procedure. 

Collections may be ordered on command. When a collection is sorted, 
it may well change the position a particular record holds. 

Special Syntactical Symbols 
Special symbols are used in syntax descriptions to clarify proper 
usage of DATA TRI EVE-11 command elements. While these symbols 
are discussed individually in the following section, Figure 13-2 shows 
how they can combine in numerous syntactical expressions and even 
be nested. 

329 



DA TA TRIEVE-11 

Syntax Brackets ([ ]) denote items that are optional. If more than one 
item is enclosed in brackets, one (or none) of the items may be cho
sen. 

Square Brackets ([]) denote the bracket symbols on the keyboard and 
are required where shown. 

Braces (I I) enclose one or more items that are required. If more than 
one possible entry is shown, the user must include one of the choices, 
but can specify no more than one. 

Ellipsis ( ... ) implies that one can choose to repeat a version of the 
command element immediately preceding. In DATATRIEVE-11 there 
are no restrictions on the number of repetitions, unless they are expli
citly stated. Watch for punctuation characters needed to serve as sep
arators for the repetitions. Note that repetitions occur only at the user's 
option. 

Uppercase letters in boldface denote required words. In lightface, 
these words are optional. 

Lowercase letters are used with generic terms that must be replaced 
by the appropriate names or values. 

Boldface denotes that the uppercase word is required in every use of 
the command or statement, unless enclosed in other brackets. 

Figure 13-2 illustrates a fairly complex syntactical structure, employ
ing all these symbols in a English sentence rather than a command. 
Observe how the symbols can be nested. Whenever nesting occurs, 
the meaning of the outermost pair of symbols prevails. Thus, when a 
seemingly required item inside braces occurs inside a pair of outer 
brackets, the entire group is considered to be optional. 

As is shown in Figure 13-2, there are a large number of legal sen
tences that can be constructed to conform to the syntax; only a few 
possiblilities are shown here. 

Later, when these same symbols are used in actual DATATRIEVE-11 
command definitions, keep in mind the large number of combinations 
of command elements they imply. The symbols are merely part of the 
description of the command, a sort of code to indicate a number of 
ways to construct each command from its parts. 

330 



w 
w 

::::::::f:IIOW[;~i';"::::'J' '''"~:~:GETS HE HA{DATE WITH {~~~~;}~ , ... j, AND LOSES ALL. 

THE FIELD MARY 
THE HORSE GAIL 

The following sentences are among the many possibilities the user could construct: 

JOHN PLAYS, AND LOSES ALL. 

None of the optional bracketed items is included; only the required underlined words in uppercase are kept. 

JOHN PLAYS THE HORSES, AND LOSES ALL. 

An object word for PLAYS is supplied, but the bracketed FORGETS clause is omitted. 

JOHN PLAYS, FORGETS HE HAS A DATE WITH MARY, AND LOSES ALL. 

The optional bracketed items after PLAYS are omitted, but the FORGETS clause is added. 

JOHN PLAYS THE FIELD, FORGETS HE HAS A DATE WITH SUSIE, and LOSES ALL. 

All options included except the repetition. 

JOHN PLAYS BASEBALL, FORGETS HE HAS A DATE WITH BETTY, A DATE WITH GAIL, AND LOSES ALL. 

Observe the substitution of BASEBALL for the lowercase word sport-name and the repetition at the site of the ellipsis. 

Figure 13-2 Illustrating Syntactical Symbols 



DATATRIEVE-ll 

Keywords 
OAT ATRIEVE-11 utilizes language elements called keywords which 
have a specific denotation and associated function. If they are used in 
any other context, they may serve to confuse the system about user 
intentions. Thus, it is good policy to avoid the use of these words as 
names of domains, procedures, records, fields, and collections. 

The full list of keywords is reproduced in Table 13-1. 

Table 13-1 Keywords 

ABORT DESC LESS-EQUAL READY 
ADVANCED DESCENDING LESS-THAN RECORD 
ALL DISPLAY LINES-PAGE RECORDS 
AND DOMAIN LT RELEASE 
ASC DOMAINS MAX REPEAT 
ASCENDING EDIT-STRING MAX-LINES REPORT 
AT ELSE MAX-PAGES REPORT-HEADER 
AVERAGE END MIN REPORT-NAME 
BEGIN END-PROCEDURE MODIFY SELECT 
BETWEEN EQ NE SEPARATE 
BOTTOM EQUAL NEW-PAGE SET 
BT ERASE NEW-SECTION SHARED 
BY EXCLUSIVE NEXT SHOW 
CHARACTER EXIT NO SHOWP 
COL EXTEND NO-DATE SIGN 
COLLECTIONS FILL NO-NUMBER SKIP 
COLUMN FIND NOT SORT 
COLUMN-HEADER FINISH NOT-EQUAL SORTED 
COLUMNS-PAGE FIRST NUMBER SPACE 
COMP FOR OF STORE 
COMP-1 GE ON TAB 
COMP-2 GREATER-EQUAL OR THE 
COMP-3 GREATER-THAN PAGE THEN 
COMP-5 GT PIC TOP 
COMP-6 HELP PICTURE TOTAL 
COUNT IF PRINT TRAILING 
CURRENT IN PROCEDURE UIC 
DATE INCREASING PROCEDURES USAGE 
DECREASING IS PROTECTED USING 
DEFINE JUSTIFY PW VERIFY 
DEFINEP LAST QUERY-HEADER WITH 
DELETE LE QUERY-NAME WRITE 
DELETEP LEADING READ 

332 



DA TA TRIEVE-11 

Summary of DATATRIEVE-11 Commands and Statements 

Commands 
DEFINE DOMAIN domain-name-1 USING record-name-1 

ON rms-file-spec-1 ; 

DEFINE PROCEDURE procedure-name-1 

: } DATATRIEVE statements and commands 

END-PROCEDURE; 

DEFINE RECORD record-name-1 USING data-def-1 [data-def-2 ... ] ; 

DEFINEP resource-nme-1 [(password-str-1)] seg-number, 
lock-type-1 ,key-1, privilege-str-1 

{ 
domain-name-1 } 

DELETE record-name-1 
procedure-name-1 

[(password-str-1 )]; 

DELETEP resource-nme-1 [(password-str-1)] seq-number 

ERASE [ALL [OF rsell 

EXIT 

FIND domain-name-1 [WITH condition] 

FIND CURRENT [WITH condition] 

FI N 0 record-selection-expression 

FINISH [domain-name-1 [,domain-name-2 ... ]] 

HELP [ADVANCED] [command-name-1 [,command-name-2 ... ]] 

MODIFY [ALL] [field-name-1 [,field-name-2 ... ]] [OF rse] 

PRINT [ALL] [print-list-1] [OF rse] [ONjfile-spec-1 ] 
1.... *.prompt-name-1 

~HARED d~R~~~Fj 
READY domain-name-1 [(password-str-1)] PROTECTE RITE 

EXCLUSIVE EXTEND 

RELEASE collection-name-1 [,collection-name-2 ... ] 

333 



DA TA TRIEVE-11 

SELECT '~E~ ] [collection-name-1] L~a'Ue-eXp-1 
SHOW show-item-1 [,show-item-2 ... ] 

where the show items are chosen from the following list: 

PROCEDURES 
DOMAINS 
COLLECTIONS 
RECORDS 
ALL 
CURRENT 
READY 
procedure-name-1 [(password-str-1)] 
domai n-name-1 [(password-str -2)] 
record-name-1 [(password-str-3)] 
collection-name-1 

SHOWP r9source-1 [(password-str-1)] 

SORT [collection-name-1] BY sort-key-1 [,sort-key-2 ... ] 

where the sort-keys assume the following form: 

DESC[ENDING] field-name-1 ~SC[ENDING] ~ 
INCREASING 
DECREASING 

STORE domain-name-1 [USING statement-1][VERIFY 
USING statement-2] 

Statements 
field-name-1 = value-exp-1 

field-name-1 = field-name-2 

ABORT value-exp-1 

BEGIN statement-1 [;statement-2 ... ] END 

DISPLAY value-exp-1 

FOR rse-1 statement-1 

IF condition THEN statement-1 [ELSE statement-2] 

334 



DA TA TRIEVE-11 

REPEAT value-exp-1 statement 1 

statement-1 THEN statement-1 

Report Writer Statements 
fld-name-1 

AT TOP OF PAGE PRINT summry-item-1 [,summry-item-2 ... ) ~ J (fld-name-1j 

BOTTO REPORT 

PRINT detail-item-1 [,detail-item-2 ... ] 

REPORT [rse] [ON file-spec-1] 

REPORT END 

SET parameter-1 [,parameter-1 ... ] 

where the parameters are chosen from the following list: 

REPORT-NAME = report-name 
MAX-LINES = integer-1 
MAX-PAGES = integer-2 
NUMBER 
NO-NUMBER 
DATE = [lstring-1"] 
NO-DATE 
LINES-PAGE = integer-3 
COLUMNS-PAGE = integer-4 

Subexpressions 
where the record selection expression (rse) assumes the following 
form: 

rALL l (CURRENT } 
lflRST oJ [collectn-name-2 IN] cOllectn-name-3 [WITH conditn] 

domain-name-1. 
[SORTED BY key-1 [,key-2 ... ]] 

where each sort-key is in the form: 

~SC[ENDING] J 
DESC[ENDING] field-name-1 
INCREASING 
DECREASING 

335 



DATATRIEVE-11 

A SAMPLE DATATRIEVE-11 SESSION 

Data Definition 
Before DATATRIEVE-11 can access a file, a record structure and do
main name must be defined for that file. The record structure, which 
resembles a COBOL data definition, describes the format of the rec
ords in the file. The user can examine the record structure for the 
sample file by typing SHOW YACHT. 

QL>SHOW YACHT 
RECORD YACHT 

USING 
01 BOAT. 

03 TYPE. 
06 MANUFACTURER PIC X(1 0) 

QUERY-NAME IS BUILDER. 
06 MODEL PIC X(10). 

03 SPECIFICA TlONS 
QUERY-NAME SPECS. 
06 RIG PIC X(6). 
06 LENGTH-aVER-ALL PIC xxx 

QUERY-NAME IS LOA. 
06 DISPLACEMENT PIC 99999 

QUERY-HEADER IS "WEIGHT" 
EDIT-STRING IS ZZ,ZZ9 
QUERY-NAME IS DISP. 

06 BEAM PIC 99. 
06 PRICE PIC 99999 

EDIT-STRING IS $$$,$$$.; 

DATATRIEVE-11 always refers to a file by its domain name. The do
main name can be the same as the file name, but need not be. Often 
the domain name is easier to remember than the file name. For exam
ple, our sample file is named YACHT.DAT, but its domain name is 
BOATS. 

336 



DA TA TRIEVE-11 

Query Facility 
When ready to use DATATRIEVE-11, the user issues the READY com
mand to ready BOATS for access. When the prompt appears, the user 
can begin using SYSTEM commands. If a command error occurs, 
DATATRIEVE-11 responds with an error message and reprints its 
prompt; the user then simply types the command correctly. 

QL>READY BOATS 
QL> 

FIND 
To find records with certain characteristics, the user employs the FIND 
command. The FIND command creates a collection (i.e., a group of 
records) comprising all records found with the characteristics speci
fied. The collection thus created becomes the basis for further com
mands until a different collection is established. 

To create a collection of boats with price greater than $30,000, the 
user would proceed as in the example. Note that the greater-than sign 
(» could have been used instead of GT. 

QL> FIND BOATS WITH PRICE GT 30000 
[17 RECORDS FOUND) 

PRINT ALL 
The user types PRINT ALL to print the collection of records created by 
the FIND command. PRINT ALL prints the current collection on the 
terminal. To print the collection on the line printer or on another termi
nal, the user specifies that device name. For example, PRINT ALL ON 
LPO: prints the collection on the line printer unit zero. To create a file 
containing the collection, use PRINT ALL and replace the device name 
with a file specification. 

QL>PRINT ALL 
LENGTH 

OVER 

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE 

ALBERG 37MKII KETCH 37 20,000 12 $36,951 
BAYFIELD 30/32 SLOOP 32 9,500 10 $32,875 

CARIBBEAN 35 SLOOP 35 18,000 11 $37,850 
CHALLENGER 32 SLOOP 32 12,800 11 $31,835 

SORT 
After establishing a collection, the user can use the SORT command to 
rearrange it. The SORT command can sort records by one or more 
fields in ascending or descending order. If more than one field is 

337 



DA TA TRIEVE-ll 

specified, DATATRIEVE-11 sorts all records in the collection by the 
first field specified, sorts for the second field within categories of the 
first field, and so forth. 

QL>SORT BY ASCENDING LOA,PRICE 
QL>PRINT ALL 

LENGTH 

OVER 
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE 

RYDER S.CROSS SLOOP 31 13,600 00 $32,500 
CHALLENGER 32 SLOOP 32 12,800 11 $31,835 
BAYFIELD 30/32 SLOOP 32 9,500 10 $32,857 
WRIGHT S'WND II SLOOP 32 14,900 00 $34,480 

A sort of the current collection by ascending length overall (LOA) and 
price rearranges the collection first into ascending order by length 
overall, then in order of increasing price for each length. All 32-foot 
models, for example, are in order of ascending price. 

SELECT 
A single record can be examined with the SELECT command. To get 
the first, last, or next record in the collection, the user simply types 
SELECT FIRST, SELECT LAST, or SELECT NEXT. The SELECT com
mand also accepts an integer, as in SELECT 7, which retrieves the 
seventh record in the current collection. 

QL>SELECT FIRST 

MANUFACTURER MODEL RIG 

RYDER S. CROSS SLOOP 

MODIFY 

LENGTH 

OVER 
ALL 

31 

WEIGHT BEAM 

13,600 00 

PRICE 

$32,500 

The MODIFY function is used to change information in a collection. 
First, the user types READY BOATS MODIFY to ready the file for 
modification, then uses the MODIFY command itself. DATATRIEVE-11 
grants MODIFY access only to users whom the system manager or 
data base administrator has approved. With the MODIFY command, 
users name the field(s) whose values they want to change. DAT A
TRIEVE-11 automatically prompts for the new value for the specified 
field(s). The entire collection can be modified so that the new value is 
in effect in every record, or it is possible to modify one record at a time 
(after SELECTing the record). 

QL>READY BOATS MODIFY 
QL>MODIFY BEAM 
PLEASE SUPPLY VALUE FOR BEAM: 11 
QL>PRINT 

338 



DATATRIEVE-11 

MANUFACTURER MODEL RIG 

RYDER S. CROSS SLOOP 

STORE 

LENGTH 

OVER 

ALL 

31 

WEIGHT BEAM 

13,600 11 

PRICE 

$32,500 

DATATRIEVE-11 also provides a STORE command that allows the file 
to be updated by adding new records. To use the STORE command, 
the user first opens BOATS for writing by typing READY BOATS 
WRITE. The STORE command can then be issued. 

OL>READY BOATS WIRE; 
OL>STORE BOATS 
PLEASE SUPPLY VALUE FOR MANUFACTURER: CAPE DORY 
PLEASE SUPPLY VALUE FOR MODEL: 25 
PLEASE SUPPLY VALUE FOR RIG: SLOOP 
PLEASE SUPPLY VALUE FOR LENGTH-OVER-ALL: 25 
PLEASE SUPPLY VALUE FOR DISPLACEMENT: 4000 
PLEASE SUPPLY VALUE FOR BEAM: 7 
PLEASE SUPPLY VALUE FOR PRICE: 8995 
OL>FIND BOATS WITH PRICE EO 8995 
[1 RECORD FOUND] 
OL>PRINT ALL 

MANUFACTURER MODEL 

CAPE DORY 25 

RIG 

SLOOP 

LENGTH 

OVER 

ALL 

25 

WEIGHT BEAM 

4,000 07 

PRICE 

$8,995 

DATATRIEVE-11 grants WRITE access only to users whom the system 
manager or data base administrator has approved. In response to the 
STORE command, the system prompts for values for each field de
fined in the record structure. 

PRODUCING FORMATTED REPORTS 

REPORT 
The REPORT statement is the first statement in any report request. It 
invokes the report facility and specifies the collection from which the 
report will be extracted. To generate a report on a collection already 
established, a user issues the REPORT statement without a collection 
name. The default output device for reports is the terminal. To direct 
output to another device or file, the file specification is included in the 
REPORT statement. 

339 



DA T A TRIEVE-11 

SET 
The SET statement names format items for the report. Using the SET 
statement, the user can specify 

1. the name of the report 

2. the number of lines and columns per page 

3. the inclusion of page number and date 

4. the number of lines or pages beyond which the report should be 
terminated automatically 

All format items specified by the SET statement (except the report 
name) have default values. 

PRINT 
The PRINT statement in the report facility is an extension of the PRINT 
command in the query facility. Using the PRINT statement, the user 
can specify the content and format of each line in the report. Each 
PRINT statement produces one entry in the report for each record in 
the collection. 

AT 
The AT statement includes summary line information. With the AT 
statement, the user can control the printing of headers at the tops of 
pages and reports, and establish starting conditions for new pages 
and reports. The AT statement also can invoke the computation utility, 
which generates total and subtotals. 

REPORT END 
The REPORT END statement is the last statement in a report request. 
It ends the report specification and returns to DATATRIEVE-11 com
mand level. 

QUIT 
When the user has finished using DAT ATRI EVE-11 on a file, he types 
QUIT to return to the command level of the host operating system. 

340 



341 





OVERVIEW 

CHAPTER 15 

MACRO-11 

MACRO-11 is a powerful assembly language which processes source 
programs and produces a relocatable object module. It has extensive 
macro features which allow a programmer to code directly and effi
ciently in machine assembly language. MACRO-11 also provides for 
direct access to hardware features of the system. And many PDP-11 
operating systems have MACRO-11 bundled in to handle program 
assembly functions. 

FEATURE TOPICS 
• Functions and Features 

• Language 

• Symbols and Symbol Definitions 

• Directives 
Listing Control Directives 
Function Directives 
Data Storage Directives 
Program Sectioning Directives 
Symbol Control Directives 
Conditional Assembly Directives 

• MACRO Definitions and Repeat Blocks 

• MACRO Calls and Structured MACRO Libraries 

• Assembler Operation 

• Assembler Operating System Environments 

343 



MACRO-11 

FUNCTIONS AND FEATURES 
PDP-11 MACRO processes source programs written in the MACRO 
assembly language and produces a relocatable object module and 
optional assembly listing. MACRO is included with the RT -11, RSX-
11 D, RSX-11 M, lAS, and RSTS/E operating systems. 

MACRO provides the following features: 

• relocatable object modules 

• global symbols for linking separately assembled object programs 

• device and file name specifications for input and output files 

• user-defined macros 

• comprehensive system macro library 

• program sectioning directives 

• conditional assembly directives 

• assembly and listing control functions at program and command 
string levels 

• alphabetized, formatted symbol table listing 

• default error listing on command output device 

• a Cross Reference Table (CREF) symbol listing 

The MACRO assembler included in the RSX-11 and lAS systems also 
features: 

• global arithmetic, global assignment operator, global label operator, 
and default global declarations 

• multiple macro libraries with fast access structure 

• predefined (default) register definitions 

• an indirect command file facility for controlling the assembly 
process 

LANGUAGE 
A MACRO source program is composed of a sequence of source 
coding lines. Each source line contains a single assembly language 
statement followed by a statement terminator, such as a carriage re
turn. The assembler processes source statements sequentially, gener
ating binary machine instructions and data words or performing as
sembly-time operations (such as macro expansions) for each state
ment. 

A statement can contain up to four fields, which are identified by order 
of appearance and by specified terminating characters. The general 
format of a MACRO assembly language statement is: 

label: operator operand(s) ;comments 

344 



MACRO-11 

The label and comment fields are optional. The operator and operand 
fields are interdependent; either can be be omitted depending on the 
contents of the other. Some statements have one operand, for 
example: 

CLR RD 

while others have two: 

MOV #344,R2 

A label is a unique user-defined symbol which is assigned the current 
location counter and entered into the user-defined symbol table. A 
label is a symbolic means of referring to a specific location within a 
program. The value of the label can be either absolute (fixed in memo
ry independent of the position of the program) or relocatable (not fixed 
in memory), depending on whether the location counter value is cur
rently absolute or relocatable. 

An operator field follows the label field, if present, and can contain a 
macro call, a PDP-11 instruction mnemonic, or an assembler direc
tive. When the operator is a macro call, the assembler inserts the 
appropriate code during assembly to expand the macro. When the 
operator is an instruction mnemonic, it specifies the instruction to be 
generated and the action to be performed on any operands which 
follow. When the operator is an assembler directive, it specifies a 
certain function or action to be performed during assembly. 

An operand is that part of the statement manipulated by the operator. 
Operands can be expressions, numbers, symbolic arguments, or 
macro arguments. 

The comment field can contain any ASCII text characters. Comments 
do not affect assembly processing or program execution, but are use
ful in source listings for later analysis, documentation, or debugging 
purposes. 

Symbols and Symbol Definitions 
Three types of symbols can be defined for use within MACRO source 
programs: permanent symbols, user-defined symbols, and macro 
symbols. Correspondingly, MACRO maintains three types of symbol 
tables: the Permanent Symbol Table (PST), the User Symbol Table 
(UST), and the Macro Symbol Table (MST). 

Permanent symbols consist of the PDP-11 instruction mnemonics and 
MACRO directives. The PST contains all the permanent symbols auto
matically recognized by MACRO and is part of the assembler itself. 
Since these symbols are permanent, they do not have to be defined by 
the user in the source program. 

345 



MACRO-11 

User-defined symbols are those used as labels or defined by direct 
assignment. Macro symbols are those symbols used as macro names. 
The UST and MST are constructed during assembly by adding the 
symbols to the UST or MST as they are encountered. 

The value of a symbol depends on its use in the program. A symbol in 
the operator field can be a macro symbol, a user-defined symbol, or a 
permanent symbol. To determine the value of the symbol, the assem
bler searches the three symbol tables in the following order: MST, 
UST, and PST. 

A symbol used in the operand field can be either a user-defined sym
bol or a permanent symbol. To determine the value of the symbol, the 
assembler searches the User Symbol Table and the Permanent Sym
bol Table in that order. 

These search orders allow redefinition of Permanent Symbol Table 
entries as user-defined or macro symbols. The same name can be 
assigned to both a macro and a label. 

User-defined symbols are either internal or external (global) to a 
source program module. An internal symbol definition is limited to the 
module in which it appears. A global symbol can be defined in one 
source program module and referenced within another. 

Internal symbols are temporary definitions which are resolved by the 
assembler. Global symbols are preserved in the object module and 
are not resolved until the object modules are linked into an executable 
program. With some exceptions, all user-defined symbols are internal 
unless explicitly defined as being global. 

When a label is given to a program statement, a symbol table entry is 
made and the value of the current location counter is assigned to it. A 
label can be defined as a global symbol by ending the label name with 
two colons instead of one. 

A direct assignment statement associates a symbol with a value. When 
a direct assignment is first used to define a symbol, that symbol is 
entered into the User-defined Symbol Table, and the specified value is 
associated with it. The general format for a direct assignment is: 

sym bol = expression 

A symbol can be defined as a global symbol by separating the symbol 
from the expression with two equal signs instead of just one. That is, 
the statement: 

symbol = = expression 

automatically declares the symbol as a global symbol. 

346 



MACRO-11 

Expressions are combinations of terms that are joined together by 
binary operators and that reduce to a 16-bit value. Binary operators 
are, for example, addition, subtraction, multiplication, division, logical 
AND, and logical inclusive OR. 

The expression in a direct assignment statement can itself be a refer
ence to another symbol. In this way, a symbol can be redefined in a 
subsequent direct assignment statement if the symbol definition con
tains a reference to a subsequently defined symbol. Only one level of 
forward referencing is allowed. The following example illustrates an 
illegal forward reference: 

X=Y (Illegal forward reference) 
y = Z (Legal forward reference) 
Z=1 

Although one level of forward referencing is allowed for local symbols, 
a global symbol defined in a direct assignment statement must not 
contain a forward reference. The global assignment expression (= =) 
must not itself contain an undefined reference to another symbol. 

Local symbols are specially formatted internal symbols used as labels 
within a given range of source code, called a local symbol block. Local 
symbols are of the form n$, where n is a decimal integer between 1 
and 65535, inclusive. Examples of local symbols are: 1$, 27$, 59$, 
104$. 

A local symbol block can be delimited in one of three ways: 

• The range of a local symbol block usually consists of those state
ments between two normally defined labels. 

• The range of a local symbol block is normally terminated upon en
tering a new program section, as defined by a program section 
directive . 

• The range of a local symbol block can be explicitly defined by the 
use of the .ENABL and .DSABL directives. 

Local symbols provide a convenient means of generating labels to be 
referenced only within a local symbol block. The use of local symbols 
reduces the possibility of entry point symbols with multiple definitions 
appearing within a program. A local symbol, then, is not referenced 
from other source program modules or even from outside its local 
symbol block. Thus, local symbols of the same name can appear in 
other local symbol blocks without conflict. 

347 



MACRO-11 

Directives 
A program statement can contain one of three different operators: a 
macro call, a PDP-11 instruction mnemonic, or an assembler direc
tive. MACRO includes directives for: 

• listing control 

• function specification 

• data storage 

• radix and numeric usage declarations 

• location counter control 

• program termination 

• program boundaries information 

• program sectioning 

• global symbol definition 

• conditional assembly 

• macro definition 

• macro attributes 

• macro message control 

• repeat block definition 

• macro libraries 

Table 15-1 lists the MACRO directives. 

Table 15-1 Assembly and Macro Directives 

Listing Control Directives 
. LIST Controls the listing of source lines, sequence num

bers. 

.NLlST 

. TITLE 

. SBTTL 

. IDENT 

.PAGE 

Current location counter field, generated binary 
code, source code, comments, macro expansions, 
table of contents, symbol table, etc . 

Assigns a name to the object module and provides 
the header of each page in the assembly listing . 

Identifies an element to be included in the assembly 
listing table of contents . 

Provides an additional label for the object module. 

Ejects a page in the assembly listing. Same as issu
ing a form feed. 

348 



MACRO-11 

Function Directives 
.ENABL Enables or disables the following function control. 
.DSABL Options: produce absolute binary output, assemble 

all relative addresses as absolute addresses (useful 
during debugging), ignore card column sequence 
numbers, truncate or round floating-point values, 
accept lower case input, permit a local symbol block 
to cross normal boundaries, inhibit binary output. In 
addition, RSX-11 liAS MACRO provides two addi
tional function control options: inhibit the default 
register definitions, treat all undefined symbol refer
ences as default global references. 

Data Storage Directives 
.BLKB Reserves a byte- or word-aligned block of storage in 
.BLKW the object program . 

. BYTE 

.wORD 

. ASCII 

.ASCIZ 

.RAD50 

.FLT2 

.FLT4 

Stores a binary value in a byte in the object module. 
Used to generate successive bytes of data. 

Stores a binary value in a word in the object module . 
Used to generate successive words of data. 

Stores the ASCII code(s) for the given character(s) 
following the apostrophe or quote in a byte or word. 
Used to generate text characters in the source code . 

Translates a character string into its equivalent 7-bit 
ASCII values and stores them in the object module. 

Translates a character string into its equivalent 7-bit 
ASCII values and stores them in the object module 
appending a zero byte to the string. This enables the 
program to identify the end of the string by search
ing for a null character (zero byte). 

Allows three ASCII characters to be packed into one 
word (Radix-50 format); using this directive, any 6-
character symbol can be stored in two consecutive 
words. 

Stores a floating point number in 2-word floating 
point format. 

Stores a floating point number in 4-word floating 
point format. 

349 



MACRO-l1 

Radix and Numeric Control Operators 
.RADIX Declares anyone of the following radices to apply to 

succeeding numbers in the source program: 2, 4, 8 
or 10. 

to, to, tB 

tc 

tF 

tR 

Declares a (temporary) decimal, octal or binary radix 
for the number following the control operator. 

Declares that the number following the control oper
ator is to be 1's complemented as it is evaluated 
during assembly. 

Declares that the number following the control oper
ator is to be interpreted as a i-word floating point 
argument. 

Declares that the three characters following the con
trol operator are to be evaluated as a Radix-50 value. 

Location Counter Control Directives 
. EVEN Ensures that the current location counter contains 

an even value by adding one if the current value is 
odd. 

.000 Ensures that the current location counter contains 
an odd value by adding one if the current value is 
even. 

Terminating Directives 
.END Indicates the logical end of source input and, option

ally, specifies the entry point, starting or transfer ad
dress . 

. EOT End of input tape. Ignored by the assembler (includ
ed for compatibility with PAL-11 assemblers). 

Program Boundaries Directive 
.L1MIT Reserves two words in the object module which, dur

ing linking, are used to store the address of the bot
tom of the program and the address of the first free 
word following the program image. This enables the 
program to determine its upper and lower address 
boundaries during execution. 

350 



MACRO-11 

Program Sectioning Directives 
.PSECT Begins or continues a program section with speci

fied attributes. The attributes are interpreted by the 
Task Builder (or Linker) to establish and control the 
memory allocation of a program. The attributes are: 
read-only or read/write access; contains instructions 
or data; local or global program section; absolute or 
relocatable program section; concatenated or over
laid program section . 

. ASECT 

. CSECT 

Begins or continues the absolute program section. 
This directive is interpreted as a .PSECT directive 
with the following default attributes: allow read/write 
access; contains instructions; global program sec
tion; absolute (non-relocatable); overlaid program 
section . 

Begins or continues a relocatable program section. 
This directive is interpreted as a .PSECT directive 
with the following default attributes if the program 
section is named: allow read/write access; contains 
instructions; global program section; relocatable; 
overlaid program section. The following default at
tribu.tes are used if the .CSECT is unnamed: allow 
read/write access; contains instructions; local pro
gram section; relocatable; concatenated program 
section. 

Symbol Control Directive 
.GLOBL Defines (and thus provides linkage to) symbols not 

otherwise defined as global symbols within a mod
ule. (Global symbols can also be defined using the 
global assignment operator (= =). the global label 
operator (::) or. by default reference. if a symbol is 
not defined by the end of assembly pass 1.) 

351 



MACRO-11 

Conditional Assembly Directives 
.IF If the condition specified in the argument is met, in

cludes the following block of code in the assembly. 
Condition testing can be based on the value of an 
expression, the existence of a definition for a sym
bol, or the value of a macro-type argument. 

.ENDC 

. IFF 

.IFT 

.IFTF 

. IIF 

Identifies the end of the conditional assembly block . 

The code following this subconditional directive, and 
continuing up to the next occurrence of a subcondi
tional directive or to the end of the conditional as
sembly block, is to be included in the program, 
providing that the condition tested upon entering the 
conditional assembly block is false. 

The code following this subconditional directive, and 
continuing up to the next occurrence of a subcondi
tional directive or to the end of the conditional as
sembly block, is to be included in the program, pro
vided that the condition tested upon entering the 
conditional assembly block is true. 

The code following this subconditional directive, and 
continuing up to the next occurrence of a subcondi
tional directive or to the end of the conditional as
sembly block, is to be included in the program, re
gardless of the result of the condition tested upon 
entering the conditional assembly block . 

Assembles this line of code if the condition specified 
on the line is met. 

Macro Definition Directives 
.MACRO Identifies the beginning of a macro definition . 

. ENDM 

.MEXIT 

Identifies the end of a macro definition. 

Terminates a macro expansion before the end of the 
macro is encountered. 

352 



MACRO-11 

Macro Attribute Directives 
.NARG Determines the number of arguments in the macro 

call currently being expanded'. 

.NCHR 

.NTYPE 

Determines the number of characters in a specified 
character string. It is useful in calculating the length 
of macro arguments. 

Determines the addressing mode of a specified 
macro argument. 

Macro Message Control Directives 
.ERROR Sends a message to the listing file during assembly 

pass 2. A common use of this directive is to provide a 
diagnostic announcement of a rejected or erroneous 
macro call or to alert the user to the existence of an 
illegal set of conditions specified in a conditional as
sembly. 

.PRINT Identical to the .ERROR directive, except that it is not 
flagged in the assembly with an error code. 

Macro Repeat Block Directives 
.IRP Replaces a dummy argument with successive real 

arguments specified in an argument string. 

.IRPC 

.REPT 

Replaces a dummy argument with each successive 
character of the specified string. 

Duplicates a block of code a number of times in line 
with other source code. 

Macro Library Directive 
.MCALL Includes in the assembly macro definitions which are 

taken from system or user macro library files. 

353 



MACRO-11 

LISTING CONTROL DIRECTIVES 
Several listing control directives are provided in MACRO to control the 
content, format, and pagination of all listing output generated during 
assembly. Facilities also exist for creating object module names and 
other identification information in the listing output. 

The listing control options can also be specified at assembly time 
through switch options included in the listing file specification in the 
command string issued to the MACRO assembler. The use of these 
switch options overrides all corresponding listing control directives in 
the source program. 

When no listing file is specified, any errors encountered in the source 
program are printed on the terminal from which MACRO was initiated. 

FUNCTION DIRECTIVES 
Several function control options are provided by MACRO through the 
.ENABL and .DSABL directives. These directives are included in a 
source program to invoke or inhibit certain MACRO functions and 
operations incident to the assembly process itself. They include the 
ability to: 

• Produce absolute binary output. 

• Assemble all relative addresses as absolute addresses. This func
tion is useful during the debugging phase of program development. 

• Cause source columns 73 and greater (to the end of the line) to be 
treated as comment. The most common use of this feature is to 
permit sequence numbers in card columns 73-80. 

• Truncate or round floating point literals. 

• Accept lower case ASCII input instead of converting it to upper case. 

• Enable a local symbol block to cross program section boundaries. A 
local symbol block is normally established by encountering a new 
symbolic label or a program section directive in the source pro
gram. By enabling a local symbol block to cross program section 
boundaries, a local symbol block can be established which is not 
terminated until another symbolic label or program section directive 
is encountered following a disable local symbol block function 
directive. Local symbols cannot, however, be defined in a program 
section other than that which was in effect when the block was 
entered. The basic function of this directive in regard to program 
sections is limited to those instances where it is desirable to leave a 
program section temporarily to store data, followed by a return to 
the original program section. 

• Inhibit binary output. 

354 



MACRO-11 

• Inhibit the normal default register definitions. 

• Treat all undefined symbol references as default global references. 

CONDITIONAL ASSEMBLY DIRECTIVES 
Conditional assembly directives enable the programmer to include or 
exclude blocks of source code during the assembly process, based on 
the evaluation of stated condition tests within the body of the program. 
This capability allows several variations of a program to be generated 
from the same source. 

The user can define a conditional assembly block of code, and within 
that block, issue subconditional directives. Subconditional directives 
within conditional assembly blocks are used to indicate: 

• The assembly of an alternate body of code when the condition of the 
block tests false. 

• The assembly of a non-contiguous body of code within the condi
tional assembly block, depending on the result of the conditional 
test on entering the block. 

• The u'nconditional assembly of a body of code within a conditional 
assembly block. 

Conditional assembly directives can be nested. MACRO permits a 
nesting depth of 16 conditional assembly levels. 

MACRO DEFINITIONS AND REPEAT BLOCKS 
In assembly-language programming, it is often convenient and desira
ble to generate a recurring coding sequence by invoking a single 
statement within the program. In order to do this, the desired coding 
sequence is first established with dummy arguments as a macro defi
nition. Once a macro has been defined, a single statement calling the 
macro by name with a list of real arguments (replacing the corres
ponding dummy arguments in the macro definition) generates the 
desired coding sequence or macro expansion. 

Macros can be nested; that is, the definition of one macro can include 
a call to another. The depth of nesting allowed is dependent on the 
amount of memory used by the source program being assembled. 

A label is often required in an expanded macro. Normally, a label can 
be explicitly specified as an argument with each macro call. Care must 
be taken, however, in issuing subsequent calls to the same macro in 
order to avoid specifying a duplicate label as a real argument. This 
concern is eliminated through a feature of MACRO which creates a 
unique symbol where a label is required in an expanded macro. 

MACRO can automatically create unique local symbols. This automat
ic facility is invoked on each call of a macro whose definition contains 

355 



MACRO-11 

a dummy argument preceded by the question mark (?) character, if a 
real argument of the macro call is either null or missing. If the real 
argument is specified in the macro call, however, MACRO does not 
generate a local symbol and normal argument replacement occurs. 

Macro call arguments may be specified as positional or keyword. Use 
of the keyword feature requires that the corresponding dummy 
argument name be known and specified exactly. In addition, the key
word construction may be used when defining a macro to specify 
explicit default values for the macro arguments. 

An indefinite repeat block is a structure that is very similar to a macro 
definition. Such a structure is essentially a macro definition that has 
only one dummy argument. At each expansion of the indefinite repeat 
range, this dummy argument is replaced with successive elements of 
a specified real argument list. An indefinite repeat block directive and 
its associated repeat range are coded in-line within the source pro
gram. This type of macro definition does not require calling the macro 
by name, as required in the expansion of conventional macros de
scribed above. 

An indefinite repeat block can appear within or outside of another 
macro definition, indefinite repeat block, or repeat block. 

MACRO CALLS AND STRUCTURED MACRO LIBRARIES 
All macro definitions must occur prior to their references within the 
user program. MACRO provides a selection mechanism for the pro
grammer to indicate in advance those system macro definitions re
quired in the program. (System macros include the monitor 
programmed requests or executive directives available with each op
erating system.) 

The .MCALL directive is used to specify the names of all the macro 
definitions not defined in the current program but used in the pro
gram. When this directive is encountered, MACRO searches the sys
tem macro library file to find the requested definition. 

MACRO extends this macro call facility by enabling the programmer to 
retrieve macros from libraries of user-defined macros. The .MCALL 
directive provides the means to access both user-defined and system 
macro libraries during assembly. 

The MACRO assembler assumes that the system macro library and 
user-defined macro libraries are constructed in a special direct access 
format to retrieve macro definitions quickly. These structured macro 
libraries are created by the Librarian utility program. 

Each library file contains an index of the macro definitions it contains. 
When an .MCALL directive is encountered in the source program, 

356 



MACRO-11 

MACRO searches the user macro library for the named macro defini
tions, and, if necessary, continues the search with the system macro 
library. Because each macro library contains an index of all of its 
entries, MACRO searches only the index in each library to find where 
the macro definition is stored. 

ASSEMBLER OPERATION 
The MACRO Assembler assembles one or more ASCII source files 
containing MACRO statements into a single relocatable binary object 
program. MACRO can accept source data from any input device, such 
as a disk or card reader. The sources to be included in a single assem
bly are listed in the command string from left to right in the order in 
which they are to be assembled. The last statement in the last source 
specified is normally the .END statement. If the .END statement is not 
provided, it is assumed. 

Assembler output consists of the binary object file and an optional 
assembly listing followed by the symbol table listing and a cross 
reference listing. 

MACRO is a two-pass assembler. During assembly pass one, MACRO 
locates and reads all required macros from libraries, builds symbol 
tables and program section tables for the program, and performs a 
rudimentary assembly of each source statement. During assembly 
pass two, MACRO completes the assembly, writes out an object file, 
and generates an assembly and symbol table listing for the program. 

At the end of assembly pass one, MACRO determines whether a given 
global symbol is defined in the current program modules or whether it 
is to be treated as an external symbol. In general, all undefined global 
symbols appearing in a given program must be defined by the end of 
assembly pass one. All symbols remaining undefined at the end of 
assembly pass one are assumed to be default global references. 

The object module MACRO produces must be processed by the oper
ating system's linker utility program (called the Linker or Task Builder) 
to create an executable program. The linker joins separately assem
bled object modules into a single load module (or task image). The 
linker fixes (makes absolute) the values of the external or relocatable 
symbols in the object module. 

To enable the linker to fix the value of an expression, MACRO passes it 
certain directives and parameters. In the case of the relocatable 
expressions in the object module, the linker adds the base of the 
associated relocatable program section to the value of the relocatable 
expression provided by MACRO. In the case of external expression 
values, the linker determines the value of the external term in the 

357 



MACRO-11 

expression (since the external expression must be defined in at least 
one of the other object modules being linked together) and then adds 
it to the absolute portion of the external expression, as provided by 
MACRO. 

In summary, an executable program image can be constructed from 
one or more source modules, which can be assembled either sepa
rately or together. The resultant object module(s) must be linked 
together using the linker utility. Figure 15-1 illustrates the processing 
steps required to produce an executable program from several 
sources stored as files. 

-------1" ASSEMBLER 

Figure 15-1 MACRO AssemblY Procedure 

PROGRAM SECTIONING 
The MACRO program sectioning directives are used to declare names 
for program sections and to establish certain program section attrib
utes. These program section attributes are used when the program is 
linked into an executable load module or task. 

358 



MACRO-11 

A program can consist of an absolute program section, an unnamed 
relocatable program section, and up to 254 named relocatable pro
gram sections. The absolute program section serves to link the pro
gram with fixed memory locations such as interrupt vectors and the 
peripheral device register addresses. 

The relocatable program sections are also called control sections, 
since they normally contain instructions. The unnamed control section 
is internal to each object module. That is, every object module can 
have an unnamed control section; but the linker treats each control 
section independently. Each is assigned an absolute address such 
that it occupies an exclusive area of memory. Named control sections, 
on the other hand, are treated globally, in the same manner as 
FORTRAN COMMON.' If different object modules have control sec
tions with the same name, they are all assigned the same absolute 
load address, and the size of the area reserved for loading of the 
section is the size of the largest. Thus, named control sections allow 
for the sharing of data and/or instructions among object modules . 

• If declared with the .PSECT directive (see below), they must have the attrib-
utes global and overlaid. 

The assembler maintains separate location counters for each section. 
The first occurrence of a program section directive assumes that the 
current location cOl,lnter is set at relocatable zero. The scope of this 
directive then extends until a directive declaring a different program 
section is specified. For example: 

.CSECT 

A: 0 
B: 0 
C: 0 
ST: CLR<HT>A 

CLR<HT>B 
CLR<HT>C 
.ASECT 
.=4 
.wORD .+2,HALT 
.CSECT 

INCA 
BRST 
.END 

;start the unnamed relocatable 
;section 
;assembled at relocatable 0, 
;relocatable 2 and 
;relocatable 4. 
;assemble code at 
;relocatable address 
;6 through 12 
;start the absolute section 
;assem ble code at 
;absolute locations 4 through 7 
;resume the unnamed relocatable 
;section 
;assemble code at 
;relocatable 22 through 27 

By maintaining separate location counters for each program section, 
MACRO allows the user to write statements which are not physically 

359 



MACRO-11 

contiguous within the program, but which can be loaded contiguously 
following assembly. 

MACRO includes an additional program sectioning directive, .PSECT, 
because of the unique nature of the linker utility program, the Task 
Builder. Assembly language programs can use the .PSECT directive 
exclusively, since it affords all the capabilities of the .CSECT and 
.ASECT directives. MACRO will accept .ASECT and .CSECT direc
tives, but assembles them as if they were .PSECT directives with im
plicit default attributes. 

The .PSECT directive allows the user to exercise absolute control over 
the memory allocation of a program at task-build time, since any pro
gram attributes established through this directive are passed to the 
Task Builder. For example, if a programmer is writing programs for a 
multi-user environment, a program section containing pure code (in
structions only) or a program section containing impure code (data 
only) can be explicitly declared through the .PSECT directive. Further
more, these program sections can be explicitly declared as read-only 
code, qualifying them for use as protected, reentrant programs. In 
addition, program sections exhibiting the global attribute can be 
explicitly allocated in a task's overlay structure by the user at task
build time. The advantages gained through sectioning programs in 
this manner therefore relate primarily to control of memory allocation, 
program modularity, and more effective partitioning of memory. 

The .PSECT directive allows the user to define the following program 
section attributes: 

Access 
Two types of access can be permitted to the program section: read
only or read/write. RSX-11 D and lAS support read-only access by 
setting hardware protection for the program section. 

Contents 
A program section can contain either instructions or data. This attrib
ute allows the Task Builder to differentiate global symbols that are 
program entry-point instructions from those that are data values. 

Scope 
The scope of the program section can be global or local. In building 
single-segment programs, the scope of the program has no meaning, 
because the total memory allocation for the program will go into the 
root segment of the task. The global or local attribute is significant only 
in the case of overlays. If an object module contains a local program 
section, then the storage allocation for that module will occur within 
the segment in which the module resides. Many modules can refer-

360 



MACRO-11 

ence this same program section, and the memory allocation for each 
module is either concatenated or overlaid within the segment, de
pending on the argument of the program section defining its allocation 
requirements (see below). If an object module contains a global pro
gram section, the memory area allocations to this program section are 
collected across segment boundaries, and the allocation of memory 
for that section will go into the segment nearest the root in which the 
first memory allocation to this program section appeared. 

Relocatability 
A program section can be absolute or relocatable. When a program 
section is declared to be absolute, the program section requires no 
relocation. The program section is assembled and loaded, starting at 
absolute virtual address O. When the program section is declared to 
be relocatable, the Task Builder calculates a relocation bias and adds 
to it all references within the program section. 

Allocation Requirements 
The program section can be concatenated or overlaid. When conca
tenated, all memory allocations to the program section are to be 
concatenated with other references to this same program section in 
order to determine the total memory allocation requirements for this 
program section. When overlaid, all memory allocations to the pro
gram section are to be c;>verlaid. Thus, the total allocation requirement 
for the program section is equal to the largest individual allocation 
request for this program section. 

ASSEMBLER ENVIRONMENTS 
MACRO is the assembler included in the RT-11, RSX-11, and lAS 
operating systems. lAS MACRO is identical to the MACRO assembler 
used in the RSX-11 systems. In addition, MACRO is included in the 
FORTRAN IV package option available for the RSTS/E system. 

The following sections summarize the operating environments of the 
RT -11 and RSX-11 MACRO products. 

UNDERRT-11 
MACRO requires an RT-11 system configuration (or background par
tition) of 12K words or more. If more than 12K words are available, 
MACRO will use the additional memory to increase the amount of 
symbol table space possible. 

RT-11 MACRO provides a system macro library containing the ex
panded code for all the RT -11 monitor's programmed requests. Refer 
to the RT -11 chapter in Section II of this handbook for a list of the RT-
11 programmed requests. 

361 



MACRO-11 

Under the RT-11 operating system, a smaller version of MACRO, 
called ASEMBL, is available for users with minimum system configu
rations. ASEMBL has the same features as MACRO with the following 
exceptions: 

• Macro directives (.MACRO, .MCALL, .ENDM, .IRP, .PSECT etc.) are 
not recognized. 

• DATE is not printed in listings. 

• Wide line-printer output is not available. 

• There is no lower case mode. 

• There is no enable/disable punch directive. 

• There are no floating point directives. 

• There are no local symbols or local symbol blocks. 

• CREF is not available. 

Most of the macro definition features not available in ASEMBL are 
supported by EXPAND. EXPAND is an RT -11 system program which 
processes the macro references in a macro assembly language 
source file. 

EXPAND simply copies its input files to its output file unless it encoun
ters any of the following directives: .MCALL, .MACRO, .name, and 
.ENDM. The .MCALL directive instructs EXPAND to search the system 
macro library to find the macro names listed in the directive, and store 
their definition in internal tables. The .MACRO directive instructs EX
PAND to copy a macro definition from the user's input file to its inter
nal tables. The .name directive, if name is the name of a macro, in
structs EXPAND to replace the macro call with the definition stored in 
its internal tables. The .ENDM directive terminates the macro defini
tion when encountered while EXPAND stores a macro definition. 

UNDER RSX-11 
MACRO requires a minimum of 14K words of partition space to 
execute. The system macro library includes executive directives and 
file system calls. Refer to the RSX-11 chapter for a description of the 
executive directives and file system calls. 

Under the RSX-11 M system, an 8K word version is available for users 
who have limited memory space. The 8K version differs from the 14K 
version in the following ways: 

• It does not search the Permanent Symbol Table for symbols ap
pearing in the operand field of a statement. 

• It does not recognize the following .ENABLI.DSABL directive func
tion control options: produce absolute binary output, ignore card 

362 



MACRO-11 

column sequence numbers, truncate floating point values, accept 
lower case input, inhibit binary output. 

• It does not recognize or accept the PAL-11 R conditional assembly 
directives and .EOT directive. 

• It does not flag in the assembly listing the instructions which are not 
common among all members of the PDP-11 family. 

• It does not accept floating pOint directives or control operators 
(.FLT2, .FLT4, tF, etc.), or PDP-11/45 or PDP-11 170 floating point 
opcodes. 

363 



364 



OVERVIEW 

CHAPTER16 

BASIC (V2) 

BASIC is an easy-to-Iearn, conversational programming language that 
uses simple English words, abbreviations, and familiar mathematical 
symbols to perform operations. DIGITAL's BASIC is an immediate 
response, interactive language compatible with Dartmouth standard 
BASIC. It gives the user the capability to develop and debug a pro
gram in a minimum amount of time. In addition, relatively large data 
processing tasks as well as quick, one-time calculations can be per
formed. 

FEATURE TOPICS 

• Functions and Features 

• Language Elements 
- Constants and Variables 
- Operators 
- Statements 

• Functions 
- Arithmetic Functions 
- String Functions 
- User-defined Functions 

• Programming Example 

• Graphics and Laboratory Peripherals Support 

• BASIC Files 

• Compiler Operation 
- Immediate Mode of Execution 

• BASIC Operating System Environments 

365 



BASIC 

FUNCTIONS AND FEATURES 
BASIC is an incremental compiler which provides immediate transla
tion and storage of a program written in the BASIC source language, 
while it is being entered. A single-user BASIC system is available as an 
option on the RT -11, RSX-11 M, RSX-11 S and lAS operating systems 
(running shared under lAS). A multi-user BASIC system is available as 
an option for the RT -11 operating system. 

BASIC provides the following features: 

• incremental compiler for immediate source translation 

• immediate mode for easy debugging and use as a desk calculator 

• ASCII sequential files compatible with FORTRAN 

• integer, string, and floating point virtual array files for random 
access 

• dynamic allocation of string storage 

• PRINT -USING statement for output formatting 

• complete set of string manipulation functions 

• user-defined functions 

• programs that can be chained together pass data through common 
CALL statement for assembly language subroutines 

• graphics and laboratory peripherals support 

LANGUAGE 
The BASIC language is a conversational programming language 
which uses simple English-type statements and familiar mathematical 
notation to perform operations. BASIC is one of the Simplest computer 
languages to learn, and once lear.led, provides advanced techniques 
to perform intricate data manipulations and efficient problem expres
sion. 

A BASIC program is composed of lines of statements containing in
structions to the BASIC compiler. Each line of the program begins with 
a number that identifies that line as a statement and indicates the 
order of statement execution relative to other lines in the program. 
Each statement starts with an English word specifying the type of 
operation to be performed. 

All BASIC statements and computations must be written on a single 
line. Statements cannot be continued on a following line. More than 
one statement, however, can be written on a single line when each 
statement after the first is preceded by a backslash. For example, 

366 



BASIC 

10 INPUT A,B,C 

is a single statement line, while 

20 LET X= 11 \ PRINT X,V,Z \ IF X=A THEN 10 

is a multiple statement line containing three statements: LET, PRINT, 
and IF. 

BASIC Language Elements 
CONSTANTS AND VARIABLES 
BASIC treats all numbers (real and integer) as decimal numbers. 
Numbers used must be in the approximate range 10 -38 to 10 38 . 

In addition to real and integer formats, BASIC accepts exponential 
notation. Numeric data can be input in anyone or all of these formats. 
BASIC automatically uses the most efficient format for printing a num
ber, according to its size. It automatically suppresses leading and 
trailing zeros in integer and decimal numbers and formats all expo
nential numbers. 

BASIC also processes information in the form of strings. A string is a 
sequence of alphabetic, numeric, or special characters treated as a 
unit. A string constant is a list of characters enclosed in quotes. A 
string constant can be used in the PRINT, CALL, and CHAIN state
ments. These uses of st~ing constants are allowed in versions of BA
SIC that do not support strings. 

In BASIC with string support, string constants can also be used to 
assign a value to a string variable, for example, in the LET and INPUT 
statements. 

BASIC recognizes six types of variables: floating point, subscripted 
floating point, string, subscripted string, integer, and subscripted in
teger. A numeric variable is an algebraic symbol representing a 
number and is formed by a single letter or a letter optionally followed 
by a single digit. For example: I, B3, or X. 

Subscripted variables provide additional computing capabilities for 
dealing with lists, tables, matrices, or any set of related variables. In 
BASIC, variables are allowed one or two subscripts. For example, a list 
might be described as A(I) where I goes from 0 to 5: 

A(O), A(1), A(2), A(3), A(4), A(5). 

This allows reference to each of the six elements in the list, and can be 
considered a one-dimensional algebraic matrix. Two-dimensional ma
trices are also allowed. 

Any variable followed by a percent sign (%) indicates an integer vari
able. For example: A%, C7%, C%(5). 

367 



BASIC 

Any variable name followed by a dollar sign ($) character indicates a 
string variable. For example: A$, C7$. Any list or matrix variable name 
followed by the dollar sign character denotes the string form of that 
variable. For example: V$(n), M2$(n), C$(m,n), G1$(m,n). 

The user can assign values to variables by indicating the values in a 
LET statement, by entering the value as data in an INPUT statement, or 
by a READ statement. The value assigned to a variable does not 
change until the next time a statement that contains a new value for 
that variable is encountered. 

OPERATORS 
BASIC performs addition, subtraction, multiplication, division and ex
ponentiation. The five operators used in writing most familiar formulas 
are: 

+ 

I 

t 

A+B 
A-B 
A*B 
AlB 
AtB 

Add B toA 
Subtract B from A 
Multiply A by B 
Divide A by B 
Raise A to the Bth power 

In addition, BASIC allows unary plus and minus arithmetic operators. 
For strings, the concatenation operator (+ or &) puts one string after 
another without any intervening characters. 

Relational operators allow comparison of two values and are used to 
compare arithmetic expressions or strings in an IF-THEN statement. 
The relational operators are: 

Equals (alphabetically equal) 
< Less than (alphabetically precedes) 
< = Less than or equals (precedes or equals) 
> Greater than (alphabetically follows) 
> = Greater than or equals (follows or equals) 
< > Not equals (not alphabeticallj equal) 

STATEMENTS 
The following summary of BASIC statements gives a brief explanation 
of each statement's use. 

REM 

LET 

DIM 

Contains explanatory comments in a BASIC pro
gram. 

Assigns the value of an expression to the specified 
variable. Variable and expression must be of the 
same type. 

Reserves space in memory for arrays according to 
the subscripts specified. 

368 



DATA 

READ 

OPEN FOR 
INPUT [OUT
PUT) AS FILE 

INPUT 

IFEND 

PRINT 

PRINT USING 

RESTORE 

CLOSE 

NAMETO 

KILL 

RANDOMIZE 

DEF FN 

BASIC 

Used in conjunction with READ to input listed data 
into an executing program. Can contain any mixture 
of strings and numbers. 

Assigns values listed in DATA statements to the 
specified values. Variables can be numeric or string. 

Opens a file for input (or output) and associates the 
file with the specified logical unit number. 

Reads data from the file associated with the logical 
unit specified or from the user's terminal. Variables 
can be arithmetic or string. 

Tests for an end-of-file condition of input sequential 
file associated with logical unit expression. 

Prints the values of the specified expressions on the 
terminal or, when specified, to the file associated 
with the logical unit expression. The TAB function 
can also be included. 

Prints the values of the specified expression on the 
terminal or, when specified, to the file associated 
with logical unit expression in the format determined 
by the given string. Both numeric and string expres
sions can be used. 

Resets to the beginning either the data pOinter or, 
when specified, the input file associated with the 
given logical unit number. 

Closes the file(s) associated with the logical unit 
number(s) and virtual file logical unit number(s) 
specified. If no logical unit number is specified, 
closes all open files. 

Renames the specified file. 

Deletes the specified file. 

Causes the random number generator (RND func
tion) to produce different random numbers every 
time the program is run. 

Defines a user function. 

369 



CALL 

FORTO 

NEXT 

IF 

GOSUB 

RETURN 

GOTO 

ON GOSUB 

ONGOTO 

CHAIN 

OVERLAY 

COMMON 

END 

BASIC 

Used to call assembly language subroutines from a 
BASIC program. 

Sets up a loop to be executed the specified number 
of times. 

Placed at the end of the FOR loop to return control to 
the FOR statement. 

Conditionally executes the specified statement or 
transfers control to the specified line number. If the 
condition is not satisfied, execution continues at the 
next sequential line. The expressions and the rela
tional operator must all be string or all be numeric. 

Unconditionally transfers control to specified line of 
subroutine. 

Terminates a subroutine and returns control to the 
statement following the last executed GOSUB 
statement. 

Unconditionally transfers control to specified line 
number. 

Conditionally transfers control to the subroutine at 
one line number specified in the list. The value of the 
expression determines the line number to which 
control is transferred. 

Conditionally tral)sfers control to one line number in 
the specified list. The value of the expression deter
mines the line number to which control is trans
ferred. 

Terminates execution of the program, loads the pro
gram specified, and begins execution of the lowest 
line number or, when a line number is present in the 
statement, at the specified line number. 

Merges the current program with a program seg
ment stored in a file. 

Preserves values and names of specified variables 
and arrays when the CHAIN statement is executed. 
Both string and arithmetic variables and arrays can 
be passed. The statement also dimensions the spec
ified arrays. 

Placed at the end of the physical end of the program 
to terminate execution (optional). 

370 



STOP 

FUNCTIONS 

BASIC 

Terminates execution of the program. Placed at the 
logical end of the program. 

BASIC provides a variety of functions to perform mathematical and 
string operations. 

Arithmetic Functions 
ABS Returns the absolute value of an expression. 

ATN 

COS 

EXP 

INT 

LOG 

LOG10 

PI 

RND 

SGN 

SIN 

SQR 

TAB 

SYS 

String functions 

Returns the arctangent as an angle in radians. 

Returns the cosine of an expression in radians. 

Returns the value of the constant e (approx. 2.71828) 
raised to a given power (expression). 

Returns the greatest integer less than or equal to a 
given expression. 

Returns the natural logarithm of an expression. 

Returns the base 10 logarithm of an expression. 

Returns the value of pi (3.141593 approx.) 

Returns a random number between 0 and 1. 

Returns value indicating the sign of an expression. 

Returns the sine of an expression in radians. 

Returns the square root of an expresssion. 

Causes the terminal print head to tab to column 
number given by an expression (valid only in PRINT}. 

Special system function calls; control terminal 110 
and perform special functions. 

ASC Returns the deCimal ASCII code for the one-charac
ter given expression. 

BIN Converts a string expression containing a binary 
number to a decimal value. 

371 



CHR$ 

CLK$ 

DAT$ 

LEN 

aCT 

pas 

SEG$ 

STR$ 

TRM$ 

VAL 

BASIC 

Generates a one-character string whose ASCII value 
is the low-order 8 bits of the integer value of the 
given expression. 

Returns the time as a string 

Returns the date as a string. 

Returns the number of characters in the given string. 

Converts a string expression containing an octal 
number to a decimal value. 

Searches for and returns the position of the first oc
currence of a substring in a string. 

Returns the string of characters in the given posi
tions in the string. 

Returns the string which represents the numeric val
ue of the given expression. 

Returns the given string without trailing blanks. 

Returns the value of the decimal number contained 
in the given string expression. 

User-defined Functions 
In some programs it may be necessary to execute the same sequence 
of statements in several different places. BASIC allows definition of 
unique operations or expressions and the calling of these functions in 
the same way as, for example, the square root or trigonometric func
tions. Each function is defined once and can appear anywhere in the 
program. 

A function definition consists of the function name, a dummy variable 
list (up to five), and an expression. 

When the user-defined function is used in the program, the expres
sions in the argument list passed to the function will replace the 
dummy variables in the defining expression. Any variable in the defin
ing expression that is not in the dummy variable list will have the value 
that the variable is currently assigned. 

PROGRAMMING EXAMPLE 
The pas function is used to find the position of a substring in a string. 
The pas function can be used to map a string of characters to a 
corresponding integer value which can be used for subsequent pro
cessing. This technique iscalled a table look-up. The table string is the 

372 



BASIC 

first argument of the POS function and the string to be mapped is the 
second argument. For example: 

LlSTNH 

10 REM PROGRAM TO TRANSLATE MONTH NAMES TO NUMBERS 
20 T$=" JANFEBMARAPRMAY JUNJULAUGSEPOCTNOVDEC" 
100 PRINT "TYPE THE FIRST 3 LETTERS OF A MONTH"; 
110 INPUT M$ 
120 IF LEN(M$)<>3 GO TO 200 
130 M=(POS(T$,M$,1)+2)/3 
140 REM CHECK IF MONTH IS SPELLED CORRECTLY 
1451F M=O GO TO 200 
150 IF M<>INT(M) GO TO 200 
160 PRINT M$" IS MONTH NUMBER "M 
170 GO TO 100 
200 PRINT "INVALID ENTRY - TRY AGAIN" \ GO TO 100 

READY 

RUNNH 

TYPE THE FIRST 3 LETTERS OF A MONTH? NOV 
NOV IS MONTH NUMBER 11 
TYPE THE FIRST 3 LETTERS OF A MONTH? DEC 
DEC IS MONTH NUMBER 12 
TYPE THE FIRST 3 LETTERS OF A MONTH? JUM 
INVALID ENTRY - TRY AGAIN 
TYPE THE FIRST 3 LETTERS OF A MONTH? tc 
STOP AT LINE 110 

READY 

GRAPHICS AND LABORATORY PERIPHERALS SUPPORT 
BASIC provides graphics support for the VT11, GT 42, and GT 44 
graphics display systems. The support consists of a collection of rou
tines accessible by the CALL statement. 

Points, vector, text, and graph data can all be combined through sim
ple CALL statements. The screen can be scaled to any coordinates. 
Portions of the display can be controlled independently through the 
use of the subpicture feature. Special graphic rputines allow the dis
play of an entire array of data by one call statement. The area of 
memory that is allocated to the display buffer can be dynamically 
controlled. 

373 



BASIC 

Laboratory peripheral support for BASIC allows the user to use the 
complete set of LPS11 hardware. LPS support enables the user to 
sample and display in a real-time environment a variety of data from 
analog to digital converters, digital I/O, and external events. Sampling 
is controlled by crystal clocks and/or Schmitt triggers. It is possible to 
specify such parameters as sampling rate and response time thus 
allowing maximum flexibility. 

Since BASIC is a higher-level language, even the novice programmer 
can solve complex data acquisition problems with a minimum amount 
of effort. All LPS routines are issued by the BASIC CALL statement 
allowing the PDP-11 assembly language programmer to include or 
modify the routines easily to meet particular requirements. 

BASIC Files 
Data is stored either in sequential files or in random access, virtual 
array files. Sequential files are treated in the same way as terminal I/O; 
data is read by an INPUT statement and written by a PRINT statement. 
Sequential files are useful for storing data that is processed serially. 

Virtual array files are similar to arrays stored in memory. An element of 
data in a virtual array can be part of any BASIC expression, since it is 
created in the same way as an element of a normal array. Virtual array 
files allow data to be accessed in a random, non-serial manner and 
are the only BASIC files in which existing data can be updated without 
rewriting the entire file. 

There are three data types for virtual array files: integer, floating point, 
and string. A file can contain only one data type. 

Creating, Modifying and Executing BASIC Programs 
A BASIC program is entered in the system using the editing com
mands. Once a program has been entered, it can be saved, retrieved, 
listed or executed using the editing commands. When the BASIC sys
tem is running, it prints the message READY on the terminal to indi
cate that it is ready to accept an editing command. 

The BASIC system's editor is a replacement editor. That is, an incor
rect line is changed by entering a new line with the same line number 
as the incorrect line. The editor replaces the old line with the new line 
entered. A line can be deleted by typing its line number and a carriage 
return. Both the line number and the line are removed from the pro
gram. The following provides a summary of the BASIC editing 
commands. 

NEW Clears the user area in memory and assigns a speci
fied name to the current program. Used to create a 
new program. 

374 



LIST 
L1STNH 

RUN 
RUNNH 

CLEAR 

RENAME 

SAVE 

OLD 

REPLACE 

APPEND 

LENGTH 

SCR 

UNSAVE 

BYE 

BASIC 

Types on the terminal the program currently in 
memory. A range of line numbers can be specified. If 
the command does not have the "NH" suffix, the pro
gram header is printed. 

If issued with no file specification, executes the pro
gram currently in memory. If a file specification is 
issued, clears the user area, reads a program in 
from the file, and executes the program. If the com
mand does not have the "NH" suffix, the program 
header is printed. 

Clears the contents of the user array and string buff
ers. This command is used when a program has 
been executed and then edited. Before rerunning 
the program, the array and string buffers are cleared 
to provide more memory space. 

Changes the current program name to a specified 
name. 

Copies the contents of the user area to a file, lists the 
contents on the line printer, or punches the contents 
on paper tape. 

Clears the user area and reads a program from a 
specified file into the user area in memory. 

Replaces the specified file with the program current
ly in memory. 

Merges the program currently in memory with a pro
gram stored in a file. All lines in the program in mem
ory that have duplicate line numbers with the pro
gram in the file are replaced by the lines from the 
program in the file. 

Displays on the terminal the amount of storage re
quired by the BASIC program currently in memory. 
This information is useful in determining the 
minimum user area in which a specific program can 
run. 

Erases the user area in memory. 

Deletes the specified file. 

If the BASIC system supports multiple users, termi
nates the session at the terminal. 

375 



SUB 

RESEQ 

BASIC 

Allows a user to change portions of a line without 
replacing the whole line. 

Allows a user to resequence the line numbers in a 
program. 

In addition to the editing commands, the BASIC system recognizes the 
following special control characters: 

CTRLlC Interrupts program execution and prints the READY 
message. 

CTRLlO Enables/disables console output. 

CTRL/U Deletes the current line being entered. 

RUBOUT Deletes the last character typed. 

COMPILER O~ERATION 
When the user enters a BASIC program, the BASIC system does not 
store the program exactly as it is typed or read from the input file. 
Instead, it translates the program into an intermediate form which can 
be used in two different ways. The intermediate code can be returned 
to its initial form by the LIST or SAVE commands to produce an ASCII 
program that looks like the input program, or the translated code can 
quickly be interpreted by the RUN command to execute a program 
under the operating system. 

Immediate Mode of Execution 
It is not necessary to write a complete program to use BASIC. Almost 
any BASIC statement can be executed in immediate mode. This latter 
facility makes BASIC an extremely powerful calculator. 

BASIC distinguishes between those lines entered for immediate exe
cution and those entered for later execution by the presence or ab
sence of a line number. Statements which begin with line numbers are 
stored; those without line numbers are executed immediately. 

Immediate mode operation is especially useful for program debug
ging and desk calculation problems. 

To facilitate debugging a program, STOP statements can be placed 
throughout the program. When the program is run, each STOP state
ment causes the program to halt. The data values can then be 
examined and modified in immediate mode. The immediate mode 
statement 

GO TO line number 

376 



BASIC 

is used to continue program execution. The values assigned to vari
ables when the RUN command was issued remain intact until a 
SCRatch, CLEAR or another RUN command is issued. 

If the STOP statement occurs in the middle of a FOR loop, modifica
tions can not be made to the section of the program which precedes 
the FOR statement. 

If CTRLlC is used to halt program exectuion, the GO TO command 
can be used to continue execution at the line where execution 
stopped. 

When using immediate mode, nearly all the standard statements can 
be used to generate or print immediate mode results. Multiple state
ments can be used on a single line in immediate mode. For example: 

A=1 \ PRINT A 
1 

Program loops in immediate mode are allowed in multiple statement 
lines. Thus a table of square roots can be produced as follows: 

FOR 1=1 TO 10\ PRINT I,SQR(I) \ NEXT I 

1 1 
2 1.41421 
3 1.73205 
4 2 
5 2.23607 
6 2.44949 
7 2.64575 
8 2.82843 
9 3 
10 3.16228 

Certain statements, while not illegal, make no sense when used in 
immediate mode, such as COMMON, DEF, DIM, DATA and RANDOM
IZE. The INPUT statement is illegal in immediate mode. Also, function 
references in immediate mode are illegal unless the program contain
ing the definition was previously executed. 

User Area Allocation And Program Size 
The BASIC system stores each user's program in memory in the fol
lowing format: 

Arrays high addresses 

Buffers 

377 



BASIC 

Strings 

Symbol Table 

User Code low addresses 

The symbol table and user code area are created when the program is 
entered. When the RUN command is issued, the user program is 
scanned and arrays are set up. The string area is created during 
program execution. 

The SCRatch command clears ali the user code, symbol table, strings, 
and arrays from memory. The CLEAR command clears the arrays and 
strings but does not affect the user code or symbol table. 

A symbol table entry is created for each distinct line number or vari
able name referenced in the program. These entries are not deleted, 
however, even when ali references in the program to a particular line 
number or variable are removed. Thus, if the program in memory is 
heavily modified, it may be desirable to save it with the SAVE com
mand and then restore the program with the OLD command to obtain 
the largest possible user area. 

The LENGTH command displays on the terminal the amount of stor
age required by the BASIC program in memory. This information is 
useful in determining the minimum user area in which a specific pro
gram can run. 

LENGTH prints the number of words used and the number of words 
remaining free in the user's area. The LENGTH command always re
turns the current memory requirements; they may differ depending on 
when the command is issued. The number of words in use includes 
memory currently needed by the BASIC program itself, arrays, string 
variables, and file buffers in the user area. To determine the size of the 
program alone, issue the LENGTH command immediately after an 
OLD or CLEAR command. Arrays are created after the RUN command 
is issued and file buffers are created when the OPEN statement is 
executed. The memory required for string variables and string arrays 
varies with the current values of the strings. 

BASIC ENVIRONMENTS 
BASIC is available on the RT-11, RSX-11M, and lAS systems. Two 
versions are available for the RT -11 operating system: the standard 
single-user version available on lAS, and a special multi-user version. 

The single-user version of BASIC available on RT -11 provides 
graphics and laboratory peripherals support. BASIC with Laboratory 

378 



BASIC 

Peripheral System support requires at least 16K words of memory. 
The hardware required for use of the BASIC graphics support in
cludes a GT 44 system (RT -11). In addition to the peripheral I/O device 
needed to support the BASIC system (disk, DECtape, cassette or pa
per tape), the use of the timer routines require a real-time clock. The 
memory required for the graphics support itself is approximately 2.5K 
words. 

The following paragraphs discuss the features and capabilities of the 
BASIC versions available. 

Under RT-11: Single-user Version 
BASIC-11/RT -11 interfaces with the RT -11 monitor. BASIC is loaded 
under control of the monitor by typing the "BASIC" command. Users 
can access any RT-11 supported device, including disk, DECtape, 
cassette, magnetic tape, card reader, paper tape reader/punch and 
floppy disk. BASIC-11/RT-11 files can be processed by FORTRAN 
IV /RT -11. At least 8K words of memory are required to run BASIC. In 
systems with more than 8K words of memory, BASIC-11/RT -11 pro
vides alphanumeric character string 110 and string variable support. 

Under RT -11: Multi-user version 
MU BASIC-11/RT -11 is a multi-user BASIC system, capable of ac
commodating up to eight users simultaneously. Each user independ
ently creates and executes BASIC programs. All of the features of MU 
BASIC, including statements, commands, functions and immediate 
mode execution are available to all users. 

MU BASIC runs under the RT -11 foreground/background or XM 
monitor. Users can access all devices supported by RT -11. 

Up to eight users can be supported on single-job systems with at least 
24K words of memory. Up to four users can be supported on single
job systems with at least 16K words of memory, or on Fore
ground/Background systems with at least 28K words of memory. 

To accommodate multiple users, MU BASIC provides a scheduling 
supervisor. In addition, the system provides a log-on procedure and 
file protection as options. 

The log-on procedure requires that users obtain a user 10 and pass
word from the system manager to gain access to the system. The 
HELLO and BYE commands are used in this case to log on and log off 
the system. 

The file protection system provides several degrees of file access. 
There are three classes of files: public, group, and private. Public 
library files are available to all users, Group library files are accessible 
to all users and have the same first character in their user 10. A private 
file is accessible only to the user who created it. 

379 



BASIC 

If file protection is desired, a file can be given any of the following 
access characteristics: 

Run 

Read 

Update 

Complete 

Allows access by the RUN command or CHAI N state
ment. 

Allows access by the OLD or APPEND command or 
the OPEN FOR INPUT or OVERLAY statement or use 
of the value of an element of a virtual array. 

Allows a virtual array file to be updated. 

Allows access by all of the above and by the SAVE, 
REPLACE or UNSAVE command or the OPEN FOR 
OUTPUT, NAME TO or KILL statement. 

A non privileged user is allowed complete access only to the user's 
own private files. A non privileged user can have run and read access 
to files in the public library and the user's own group library. Nonprivi
leged users are not allowed access to other user's private library files 
or other group's files. The access allowed a non privileged user to all 
files other than the user's own files can be modified by the inclusion of 
a protection code in the filename. 

A privileged user has complete access to all files. Group library and 
public library files can be created only by a privileged user. 

In addition to the log-on procedure and file protection, MU BASIC 
includes the following commands: 

HELLO Allows the user to log on to the system (optional). 

ASSIGN 

DEASSIGN 

SET TTY 

Assigns a specified device to a user if it is available. 

Deassigns a specified device. 

Sets the system to allow different terminal character
istics. 

MU BASIC provides a comprehensive set of system functions. Certain 
system functions are available to all users. These cancel CTRLlO 
typed at a terminal, disable/enable echoing, enter single character 
input mode, scratch the user area in memory and return to the READY 
message, and return the current user's ID. Certain other system func
tion calls can be executed only by a privileged user. These disable the 
CTRLlC interrupt, set the user ID, terminate the privileged user status, 
and cause BASIC to exit and return control to the RT -11 monitor. 

The single character input mode system function call is useful for 

380 



BASIC 

special read operations. It returns the decimal ASCII value of the next 
character input from the terminal or a file. It is the only method for 
BASIC programs to process terminal input without waiting for a car
riage return to be typed. This allows interactive programs to use single 
character response and not require a carriage return. 

Single character input mode allows data in any file to be read with no 
need for separating commas or carriage returns. Binary files can be 
copied exactly. 

Under lAS 
BASIC under lAS is treated as a shared single-user system. That is, a 
single copy of the pure area of BASIC can be shared by several users, 
but each user has his own copy of the impure BASIC code. 

The minimum requirement for the BASIC system is a 12K-word parti
tion. The partition can be expanded up to 28K words. BASIC/lAS can 
access any device supported by the lAS file system. 

Under RSX-11M 
BASIC-11 may run under both mapped and unmapped RSX-11 M sys
tems . 

• Unmapped systems (memory management option not included in 
the configuration) require a 15K-word minumum partition (supports 
one user, BASIC-1 ~ is overlaid) . 

• Mapped systems (memory management option is included in the 
configuration): 
- Systems in which the interpreter code is not installed as shared 

code require a 15K-word minimum partition for each user. 
- Systems in which the interpreter code is installed as shared code 

require one 15K-word minimum common partition area (shared 
by all users), with a 5K-word minimum partition area for each 
user. 

381 



w 
00 
N 



OVERVIEW 

CHAPTER17 

BASIC-PLUS (V6C) 

BASIC-PLUS has a comprehensive group of string operations that 
provide efficient processing of alphabetic data, including names, ad
dresses, sentences, and paragraphs. The BASIC-PLUS user can ap
pend strings or compare them. It's possible to extract, examine, or 
search for a string of characters contained in a larger string. BASIC
PLUS has an immediate mode of operation that allows commands to 
be instantly executed instead of stored for later execution. This lan
guage has program control and storage facilities that can store both 
programs and data on any mass storage device and retrieve them for 
use during program execution. 

FEATURE TOPICS 

• Functions and Features 

• BASIC-PLUS Language Summary (Table 18-1) 
- Variable Types 

• Summary of BASIC-PLUS Statements 
- General Program Statements 
- Matrix Statements 
- Statement Modifiers 
- System Statements 
- Record 1/0 Statements 

• Immediate Mode Operations 
- Data Formats and Operations 
- Matrix Manipulation 
- Advanced Statement and Function Features 

383 



BASIC-PLUS 

FUNCTIONS AND FEATURES 
The BASIC-PLUS programming language is DIGITAL's extension of 
the BASIC language originated at Dartmouth College. Its language 
compiler enables users to write executable programs in BASIC-PLUS 
as well as interact with the RSTS/E operating system. BASIC-PLUS 
runs exclusively (as one of many language options) on RSTS/E. BA
SIC-PLUS under RSTS/E offers many features not found in the origi
nal BASIC or other versions of BASIC. 

BASIC-PLUS incorporates the following special features: 

Immediate Mode of Operation: Commands can be executed immedi
ately by BASIC-PLUS instead of being stored for later execution. 

Program Editing Facilities: An existing program can be edited by 
adding or deleting lines, or renaming the program. The user can com
bine two programs into a single program and request the listing of a 
program, either in whole or in part, on a terminal or line printer. 

Program Control and Storage Facilities: Facilities are included for 
storing both programs and data on any mass storage device and later 
retrieving them for use during program execution. Programs can also 
be entered from a terminal paper tape reader as well as from the high
speed paper tape reader available on the computer. 

Documentation and Debugging Aids: The insertion of remarks and 
comments within a program is easy in this version of BASIC. Debug
ging of programs is aided by the printing of meaningful diagnostic 
messages that pinpoint errors detected during the program's 
execution. 

Access to System Peripheral Equipment: The user program is able 
to perform input and output with various equipment, such as paper 
tape reader/punch, disk, DECtape, industry-compatible magnetic 
tape, line printer, floppy disks, and card reader. 

Record 1/0: Language extensions provide a means of handling rec
ords composed of fixed-length fields in a highly efficient manner. 

Matrix Computations: A set of 13 commands is available for perform
ing matrix I/O, addition, subtraction, multiplication, inversion, and 
transposition. 

Alphanumeric String Capabilities: Alphabetic and/or alphanumeric 
strings can be manipulated with the same ease as numeric data. Indi
vidual characters within these strings can be accessed by the user. 

Formatting of Output: The PRINT-USING statement includes facilities 
for tabs, spaces, and the printing of column headings, as well as 
precise specifications of the output line formatting and floating dollar 
sign, asterisk fill, and comma insertion in numeric output. 

384 



BASIC-PLUS 

String Arithmetic: A set of functions which perform arithmetic on 
operands which are numeric strings instead of integer or floating point 
numbers. This provides a means of calculating values of higher than 
normal precision, or values which must not be affected by round-off 
error, at the expense of slower execution time. 

The following sections describe some of the advanced BASIC-PLUS 
features, including immediate mode operations, data formats and op
erations, matrix manipulation, program development commands, and 
advanced BASIC-PLUS statements. Table 18-1 provides a summary 
of the BASIC-PLUS language. 

Table 18-1 BASIC-PLUS Language Summary 

SUM MARY OF VARIABLE TYPES 

Type 

Floating point 

Integer 

Character string 

Floating point matrix 

Integer matrix 

Character string matrix 

SUMMARY OF OPERATORS 

Type Operator 

Example 

A 
I 
X3 

B% 
D7% 

M$ 
R1$ 

S(4) E(5,1) 
N2(8) V8(3,3) 

A%(2) 1%(3,5) 
E3%(4) R2%(2,1) 

C$( 1) S$(8,5) 
A2$(8) V1$(4,2) 

Operates On 

Arithmetic - unary minus Numeric variables 
or constants. 

t exponentiation 

* multiplication 

/ division 

385 



Type 

Relational 

Logical 

BASIC-PLUS 

Operator 

+ addition 

- subtraction 

= equals 

< less than 

::s; less than or equal 
to 

> greater than 

~ greater than or 
equal to 

~ not equal to 

~ ap proxi m ately 
equal to 

NOT logical nega
tion 

AND logical product 

OR logical sum 

XOR logical exclu
sive or 

IMP logical implica
tion 

EQV logical equiva
lence 

386 

Operates On 

String or numeric 
variables or con
stants. 

Relational expres
sions composed of 
string or numeric 
elements, integer 
variables, or integer 
valued expressions. 



BASIC-PLUS 

Type Operator Operates On 

String + concatenation String variables or 
constants. 

Matrix ± addition and sub- Dimensioned vari
traction of equal di- abies. 
mensions 

* multiplication of 
conformable matri
ces 

* scalar multiplica
tion 

SUMMARY OF FUNCTIONS 

Mathematical 
ABS(X) Absolute value 

ATN(X) Arctangent in radians 

COS(X) Cosine in radians 

EXP(X) Exponent 

FIX(X) Truncated value 

INT(X) Greatest integer 

LOG (X) Natural log 

LOG10(X) Common log 

PI Constant pi 

RND Random number between 0 and 1 

SGN(X) Sign 

SIN(X) Sine in radians 

SQR(X) Square root 

387 



BASIC-PLUS 

Mathematical 

TAN(X) Tangent in radians 

Print 
POS(X%) Current print head position 

TAB(X%) Move print head position 

String 
ASCII(A$) ASCII value in decimal 

CHR$(X%) ASCII character 

CVT%$(I%) Maps integer to string 

CVTF$(X) Maps floating point to string 

CVT$%(A$) Maps string to integer 

CVT$F(A$) Maps string to floating point 

CVT$$(A$, 1%) Converts string 

STRING$ Creates string 
(N1%,N2%) 

LEFT(A$,N%) Returns leftmost substring 

RIGHT Returns rightmost substring 
(A$,N%) 

MID Returns middle substring 
(A$,N1%,N2%) 

LEN(A$) Returns string length 

INSTR Search for substring 
(N%,A$,B$) 

SPACE$(N%) String of spaces 

NUM$(N%) String of numerals 
NUM1$(N%) 

388 



BASIC-PLUS 

String 

VAL(A$) Computes numeric value 

XLATE(A$,B$) Translate string 

System 
DATE$(O%) Current date 

DATE$(N%) Calendar date 

TIME$(O%) Current time 

TIME$(N%) Time of day 

TIME(O%) Clock time 

TIME(1%) CPU time used 

TIME(2%) Connect time 

TIME(3%) KCTs used 

TIME(4%) Device time used 

STATUS 110 status 

BUFSIZ(N) Opened device buffer size 

LINE Interrupted line number 

ERR Error code received 

ERL Line number on error receipt 

SWAP%(N%) Byte swap 

RAD$(N%) Radix-50 conversion 

Matrix 
TRN(X) Transpose matrix 

INV(X) Inverse of matrix 

389 



Matrix 

DET 

NUM 

NUM2 

Magtape 
MAGTAPE 

RECOUNT 

BASIC-PLUS 

Determinant after inverse 

Number of rows on input 

Number of row elements on input 

Program control of magtape 

Input characters read 

SUMMARY OF BASIC-PLUS STATEMENTS 

General Program Statements 
REM Identifies comments in a program. 

LET 

DIM 

RANDOMIZE 

IF-THEN, IF-GOTO 

IF-THEN-ELSE 

FOR 

FOR-WHILE, FOR-UN
TIL 

NEXT 

Assigns a value to a variable. 

Defines the maximum number of elements 
in a matrix. 

Causes the random number function (RND) 
to choose a random starting value. 

Transfers conditionally from the normal 
consecutive order of statement numbers or 
conditionally executes a set of statements, 
depending on the truth of some mathemati
cal relation or relations. 

Same as the IF-THEN statement, except 
that rather than executing the line following 
the IF statement when the condition is not 
met, another line number can be specified 
for execution. 

Causes the program to cycle through a des
ignated loop using a control variable to 
count the number of repetitions. 

Specifies that a loop is to be reiterated as 
long as a certain condition remains true 
(FOR-WHILE) or false (FOR-UNTIL). 

Signals the end of the loop which began 
with the FOR statement. 

390 



BASIC-PLUS 

General Program Statements 

DEF, single line 

DEF, multiple line 

GOTO 

ON-GOTO 

GOSUB 

ON-GOSUB 

RETURN 

CHANGE 

OPEN 

CLOSE 

READ 

DATA 

RESTORE 

PRINT -USING 

INPUT 

Defines a single-line function. 

Defines a multiple-line function. 

Unconditionally transfers execution to some 
line other than the next sequential line in the 
program. 

Transfers control to one of several lines de
pending on the value of an expression. 

Transfers control to the first line of a sub
routine. 

Transfers control of a program to one of 
several subroutines or to one of several en
try points of one or more subroutines. 

Signals the end of a subroutine and trans
fers control to the line following the GOSUB 
statement line. 

Transforms a character string into a list of 
numeric values or a list of numeric values 
into a character string. 

Associates a file on a file-structured device 
or some non-file structured device with an 
1/0 channel number internal to the pro
gram. 

Terminates 1/0 between the program and a 
peripheral device. 

Assigns values defined i n DATA statements 
to specified variables. 

Supplies the values to be used in READ 
statements. 

Resets the data values list; a subsequent 
READ statement obtains the value defined 
by the first DATA statement in the program. 

Performs formatted output. 

Enters data to a program from an external 
device such as the terminal, disk, DECtape, 
or paper tape reader. 

391 



BASIC-PLUS 

General Program Statements 

INPUT LINE 

NAME-AS 

KILL 

ON ERROR GOTO 

RESUME 

CHAIN 

STOP 

END 

Matrix Statements 
MAT READ 

MAT PRINT 

MAT INPUT 

MAT 

Statement Modifiers 
IF 

UNLESS 

FOR 

Enters an entire line of data as a single 
character string without any formatting. 

Renames and/or assigns protection codes 
to a disk or DECtape file. 

Deletes a file from an account area. 

Transfers control to a user-written subrou
tine that handles a normally fatal program 
error. 

Resumes execution of a program after a 
user-written error routine is executed. 

Transfers control of execution to another 
program. 

Suspends program execution and returns 
terminal to immediate mode. 

Identifies the end of a program. 

Reads data into a matrix from DATA state
ments in a program. 

Prints each element of a one- or two-dimen
sional matrix. 

Enters the value of each element of a predi
mensioned matrix from the keyboard. 

Creates initial values for the elements of a 
matrix (excluding row zero or column zero), 
which can be all zeros, all ones, or an identi
ty matrix (all diagonal elements are ones). 

The statement is executed only if the condi
tion specified following the IF is true. 

The statement is executed only if the condi
tion specified following the UNLESS state
ment is false. 

Performs reiterative execution of a single 
line based on a control variable. 

392 



BASIC-PLUS 

Statement Modifiers 

WHILE 

UNTIL 

Performs reiterative execution of a single 
line as long as the condition specified fol
lowing the WHILE remains true. 

Performs reiterative execution of a single 
line as long as the condition specified fol
lowing the UNTIL remains false. 

System Statements 
SLEEP Suspends a program's execution for a 

specified interval. 

WAIT Sets a maximum period for the system to 
wait for input from a terminal before gener
ating a trappable error. 

Record 1/0 Statements 
LSET Stores values in a string left-justified. 

RSET 

FIELD 

GET 

PUT 

UNLOCK 

Stores values in a string right-justified. 

Associates a string name with an I/O buffer. 

Reads data from a file into an I/O buffer. 

Writes data from an I/O buffer into a file. 

Allows another program to obtain write 
privileges to a record currently open for 
write operations. 

BASIC-PLUS PROGRAM DEVELOPMENT COMMANDS 
NEW 

OLD 

SCALE 

CATALOG 
CAT 

Allows the user to create a BASIC-PLUS program by 
entering it on the terminal. 

Retrieves the source file of a previously saved BA
SIC-PLUS program and places it in the user's job 
area. 

Allows the user to set the double precision floating 
pOint numeric scale format scale factor to be used in 
all programs subsequently compiled for the account. 

Prints a listing of any account's device directory on 
the terminal. 

393 



TAPE 

KEY 

APPEND 

COMPILE 

SAVE 

REPLACE 

UNSAVE 

RENAME 

LIST 

DELETE 

LENGTH 

BASIC-PLUS 

Disables the terminal echo feature when reading a 
low speed terminal device. 

Enables the terminal echo feature after reading a low 
speed paper tape on the terminal. 

Merges the contents of a previously saved program 
into a program currently in the job area. 

Stores a compiled version of the source program 
currently in the user's job area on a selected device. 

Stores the current source program in the user's area 
on a selected device. 

Same as SAVE, but allows the user to replace a pro
gram currently saved under the same name as the 
program currently in the job area. 

Deletes a file from a selected device. 

Changes the name of the program currently in mem
ory to a new name. 

Lists all or selected lines of a BASIC-PLUS program 
currently in the user's area on the terminal. 

Deletes one or more selected lines of a program cur
rently in the user's area. 

Prints the length, in 1 K word increments, of the cur
rent program in the user's area. 

IMMEDIATE MODE OPERATIONS 
Most BASIC-PLUS statements can either be included in a program for 
later execution or be issued on-line at the terminal as commands 
which are immediately executed by tr.e BASIC language processor. 
Immediate mode operation is especially useful in two ways: to perform 
simple calculations that do not justify writing a complete program, or 
to debug a program. 

To make program debugging easier, a user can insert several STOP 
statements in the program. When it is run, each STOP statement 
causes the program to halt and identify the line in the program at 
which the program was interrupted. The user can then examine the 
current contents of variables and change them if necessary, by using 
immediate mode commands. The user can then type the CONTINUE 
command to resume program execution from the line at which it 
stopped. 

394 



BASIC-PLUS 

DATA FORMATS AND OPERATIONS 
BASIC-PLUS allows the user to manipulate string, integer numeric or 
floating point numeric data. 

String data are sequences of ASCII characters treated as units. The 
user can define string constants and string variables (including sub
scripted variables). In addition, relational operators can be applied to 
string operands to compare and indicate alphabetic (ASCII) se
quence. Using the BASIC-PLUS CHANGE statement, the user can 
convert individual string characters to their equivalent ASCII code (in 
decimal) and vice-versa. BASIC-PLUS provides a variety of string 
functions that allow the user to concatenate two strings, access part of 
a string, determine the number of characters in a string, search for 
substrings, and convert strings to compact storage formats. The user 
can also define new string functions. 

Normally, all numeric values (variables and constants) specified in a 
BASIC program are stored internally as floating point numbers. If op
erations to be performed deal with integer numbers, significant eco
nomies in storage space can be achieved by the use of the integer 
data type, which requires only one word of storage per value. Integer 
arithmetic is also significantly faster than floating pOint arithmetic. 

BASIC-PLUS permits a user program to combine integer variables or 
integer-valued expressions using a logical operator to give a bitwise 
integer result. The logical operators AND, OR, NOT, XOR, IMP, and 
EQV operate on integer data in a bitwise manner. 

Floating point numeric operations are the default BASIC-PLUS nu
meric type. BASIC-PLUS users working with floating point numbers 
can increase accuracy of operations involving fractional numbers by 
using the scaled arithmetic feature or the string arithmetic functions. 
Furthermore, the user can perform arithmetic operations using a mix 
of integer and floating point numbers. If both operands of an arithmet
ic operation are either explicitly integer or explicitly floating pOint, the 
system automatically generates integer or floating point results. If one 
operand is an integer and another is floating point, the system con
verts the integer to a floating point representation and generates a 
floating point result. If one operand is an integer and the other 
operand is a constant that can be interpreted either as a floating point 
number or an integer, the system generates an integer result. The user 
can explicitly impose the formats and thereby control the result of the 
operation. 

MATRIX MANIPULATION 
Matrices are arrays of data which are implicitly or explicitly dimen
sioned by the user. Matrices can be composed of variables of any 

395 



BASIC-PLUS 

type. A single matrix, however, is composed of a single type of data: 
floating point, integer, or string. Dimensioning a matrix establishes the 
default number of elements in each row and column and the number 
of elements in the matrix. Implicitly dimensioned matrices are as
sumed to have ten elements in each dimension referenced (size 10 for 
one-dimensional matrix, size 10-by-10 for two-dimensional matrix, 
with each dimension also having a zero row and column). Explicit 
dimensioning is done using the DIM dimension statement. 

By using the BASIC-PLUS MAT statements, a user program can alter 
the number of elements in each row and the number of columns in the 
matrix, as long as the total number of elements does not exceed the 
number defined when the matrix was dimensioned. The MAT opera
tions do not set row zero or column zero, nor do they initialize values in 
the space allocated to the matrix unless specific MAT functions are 
executed. 

The operations of addition, subtraction, and multiplication (including 
scalar multiplication) can be performed on matrices using the com
mon BASIC mathematical operators. The matrices indicated for any 
operation must be conformable to that operation. In addition, func
tions exist for the performance of transposition and inversion of matri
ces. 

ADVANCED STATEMENT AND FUNCTION FEATURES 
BASIC-PLUS extends the BASIC language by including several addi
tional statements for easier logic flow control, function definitions, and 
timesharing response. The ON-GOTO, ON-GOSUB, IF-THEN-ELSE, 
FOR-WHILE, and FOR-UNTIL' statements provide a variety of 
conditional controls over looping and subroutine execution. The ON 
ERROR GOTO statement allows the programmer to write subroutines 
that handle error conditions normally considered fatal. The program 
can test a system variable named ERR to determine which error oc
curred, and can examine a system variable named ERL to determine 
the line number at which the error occurred. The SLEEP and WAIT 
statements allow program suspension, either for a specified time in
terval or until input from a terminal is received. The PRINT -USING 
statement provides special output formatting, including exponential 
representation, dollar signs, commas, trailing minus sign, and asterisk 
fill. The DEF statement allows multiple-line function definitions. Multi
ple-line function definitions can be nested, can be written in any data 
type and can contain any variety of argument types. 

To increase the flexibility and ease of expression within BASIC-PLUS, 
five statement modifiers are available; IF, UNLESS, FOR (including 
FOR-WHILE and FOR-UNTIL), WHILE and UNTIL. These modifiers are 

396 



BASIC-PLUS 

appended to program statements to indicate conditional execution of 
the statement or the creation of implied FOR loops. 

RSTS/E also includes several system functions and statements that 
allow program access to system information and conversion routines. 
The program can obtain the current date and time, the CPU time, 
connect time, KCTs, and device time used for the job. The program 
can convert a numeric value to a string date or time or vice versa, can 
swap bytes, or convert an integer in Radix-50 format to a character 
string. 

397 



398 



OVERVIEW 

CHAPTER18 

BASIC-PLUS-2 (V2) 

BASIC-PLUS-2 is a superset of BASIC-PLUS with true compilation 
compatibility. Files produced in BASIC-PLUS-2 also interface directly 
to the RMS-11 record management system, enabling the user to cre
ate files, do record mapping, and access records sequentially, ran
domly, or by key. Another main feature of BASIC-PLUS-2 is a call 
statement which allows the programmer to access external 
subroutines. And there are a number of BASIC-PLUS-2 statements 
that allow for interactive observation and control of program execu
tion. 

FEATURE TOPICS 
• Features 

• Constants 
- Numeric Constants 
- Integer Constants 
- String Constants 

• Variables 
- Numeric Variables 
- Integer Variables 
- String Variables 
- Subscripted Variables 

• Forming Expressions 
- Comparing Strings Using Relational Operators 
- Logical Expressions 

• Subprograms 
- Dummy and Actual Arguments 

• Modifying Statements 

• Matrix Operations 

• Files 

• Summary of Statements 

399 



BAS/C-PLUS-2 

FEATURES 
The BASIC-PLUS-2 language is an outgrowth of Dartmouth BASIC. It 
encompasses both the elementary statements used to write simple 
prog rams and many new and advanced features. These new features, 
not found in standard Dartmouth BASIC, allow production of more 
complex and efficient programs. 

Some of the special features of BASIC-PLUS-2 are: 

• virtual arrays 

• record file I/O 

• extensive string support 

• full matrix package 

• long variable names 

• IF ... THEN ... ELSE 

• ON ERROR 

• statement modifiers 

• user-defined functions 

• multi-statement lines 

• mUlti-line statements 

CONSTANTS 
There are three types of constants in BASIC-PLUS-2: 

• Numeric (real numbers, also called floating point numbers) 

• Integer (whole numbers) 

• String (alphanumeric and/or special characters) 

Numeric Constants 
A numeric constant is one or more decimal digits, either positive or 
negative, in which the decimal pOint is optional. 

The following are all valid numeric constants (real numbers): 

5 42861 
74 -125 
6. .95 

Integer Constants 
An integer constant is a whole number (no fractional part) written 
without a decimal point. An integer constant is typed as one or more 
decimal digits terminated by a percent sign (%). For example, the 
following numbers are ali integer constants (whole numbers): 

400 



29% 
3432% 

12345% 

String Constants 

BASIC-PLUS-2 

-8% 
1% 

205% 

A string constant (also called a literal) is one or more alphanumeric 
and/or special characters enclosed by double quotation marks 
("text") or single quotation marks ('text'). 

Each character in a string constant can be a letter, a number, a space, 
or any ASCII character except a line terminator. The value of the string 
constant is determined by all its characters. For example, because of 
the number of spaces between the quotation marks and the charac
ters: 

DIGITAL "is not the same as "DIGITAL" 

VARIABLES 
Depending on the operations specified in a program, the value of a 
variable may change from line to line. BASIC-PLUS-2 uses the most 
recently assigned value of a variable when performing calculations. 
This value remains the same until a statement is encountered that 
assigns a new value to that variable. 

BASIC-PLUS-2 accepts three types of variables: 

• numeric 

• integer 

• string 

Numeric Variables 
A numeric variable is a named location in which a single numeric value 
is stored. The user names a numeric variable with a single letter fol
lowed by 29 optional characters consisting of letters, digits, or periods. 
Therefore, the maximum length of a numeric variable name is 30 
characters: 

1 letter 
29 optional characters 

Spaces should not be embedded between characters. The following 
are numeric variables: 

C 
M1 
F67T.J 

L. .. 5 
BIG47 
Z2. 

401 



BASIC-PLUS-2 

Integer Variables 
An integer variable (like a numeric variable) is a named location in 
which a single value can be stored. Using an integer variable in a 
program indicates that space is reserved for the storage of a whole 
number (no fractional part). 

An integer variable is named with a single letter followed by 29 option
al characters consisting of letters, digits, or periods, and terminates 
with a percent sign (%). Therefore, the maximum length of an integer 
variable name is 31 characters. The following are integer variables: 

ABCDEFG% C.8% 
B% D6E7% 

String Variables 
A string variable is a named location used to store alphanumeric 
strings. A string variable is named with a letter followed by 29 optional 
characters consisting of letters, digits, or periods, and terminated with 
a dollar sign ($). The dollar sign ($) must be the last character in the 
name. 

The following are examples of string variables: 

C1$ 
L.6$ 
ABC1$ 

Subscripted Variables 

M$ 
F34G$ 
T .. $ 

A subscripted variable is a numeric, integer, or string variable with one 
or two subscripts appended to it. The subscripts can be any positive 
expression type: a constant or a variable (integer or numeric), a letter 
or symbol, or any combination of these. BASIC-PLUS-2 converts non
integer expressions to integer by truncating the fraction. The value of 
the subscript can be a up to a maximum defined by the system. 

The subscript in a subscripted variable is a pointer to a specific loca
tion in a list or table in which a value is stored. The user designates the 
pointer with either one or two subscripts enclosed by parentheses. If 
there are two subscripts, they are separated with a comma. The value 
stored can be numeric, integer, or string data. 

To name a subscripted variable the user starts with a numeric, integer, 
or string variable name: 

A A% A$ 

To refer to an element in a list (one dimension), the user follows the 
variable name with one subscript within parentheses. For example: 

A(6) A%(6) A$(6) 

402 



BASIC-PLUS-2 

To refer to an element in a table (two dimensions) the user follows the 
variable name with two subscripts. The first subscript designates the 
row number, and the second subscript designates the column num
ber. The two subscripts are separated with a comma. For example: 

A(7,2) A%(4,S) A$(17,23) 

BASIC-PLUS-2 accepts the same alphanumeric characters for a sim
ple numeric variable and a subscripted variable within the same pro
gram. 

FORMING EXPRESSIONS 
An expression can be numbers, strings, constants, variables, func
tions, array references, or any combination of these, separated by any 
of the following: 

1. Arithmetic operators 
2. Relational operators 
3. String operators 
4. Logical operators 

Operator Example Meaning 

+ A+B 

I 

t 

A-B 
A*B 
AlB 
AtB 
A**B 

Operator Example 

< 
> 
<=,=< 
>=,=> 
<>,>< 

A=B 
A<B 
A>B 
A<=B 
A>=B 
A<>B 
A==B 

Add Bto A 
Subtract B from A 
Multiply A by B 
Divide A by B 
Calculate A to the power B 
Calculate A to the power B 

Meaning 

A is equal to B 
A is less than B 
A is greater than B 
A is less than or equal to B 
A is greater than or equal toB 
A is not equal to B 
A is approximately equal to B if the 
difference between A and B is less 
than 1 Ot( -S). 

Comparing Strings Using Relational Operators 
When a relational operator is used to compare the value of one or 
more alphanumeric characters, the user creates a relational string 
expression. BASIC-PLUS-2 uses the ASCII character collating 
sequence to determine which character is greater or lesser in value 

403 



BASIC-PLUS-2 

than the other. The comparison is made character by character, left to 
right, by ASCII value, until BASIC-PLUS-2 finds a difference in value. 

When applied to strings, relational operators compare characters for 
~phabeticsequence. 

Operator Example Meaning 

A$=B$ Strings A$ and B$ are equal after remov-
ing trailing blanks and nulls. 

< A$<B$ String A$ occurs before string B$ in al-
phabetic sequence. 

> A$>B$ String A$ occurs after string B$ in al-
phabetic sequence. 

<=,=< A$<=B$ String A$ is equal to, or precedes, string 
B$ in alphabetic sequence. 

>=,=> A$>=B$ String A$ is equal to, or follows, string B$ 
in alphabetic sequence. 

<>,>< A$<>B$ String A$ is not equal to string B$. 

A$==B$ Strings A$ and B$ are identical (exactly 
the same length without padding and 
compostion of all characters). 

Note that the relational operator = = has a different meaning when 
applied to strings than when applied to numbers. When comparing 
strings of different lengths, BASIC-PLUS-2 treats the shorter string as 
if it were padded with trailing blanks to the length of the longer string. 
In order to perform character-to-character comparison, BASIC-PLUS-
2 needs two characters to compare. This is where the trailing blanks 
serve their purpose. 

Logical Expressions 
A logical expression consists of either one operand preceded by a 
logical operator or two separated by a logical operator. Logical 
expressions are used in statements like the IF-THEN-ELSE statement 
where a condition is tested to determine subsequent operations within 
the program. The operands in this case are usually relational expres
sions. Logical expressions can also be used with integer data. How
ever, logical operations on strings are illegal. 

BASIC-PLUS-2 determines whether the condition is true or false by 
testing the bitwise result of the logical expression for non-zero and 
zero, respectively. (That is, a non-zero result is true, and a zero result 

404 



BASIC-PLUS-2 

is false.) Notice that any non-zero value is assumed to be true. BASIC
PLUS-2 supplies the value -1 for true when it evaluates a logical or 
relational expression, but accepts any non-zero value when perform
ing a test. 

SUBPROGRAMS 
BASIC-PLUS-2 supplies a method for writing procedures to be used 
several times: subprograms. A subprogram allows the user to divide a 
large task into smaller, more manageable units which, in turn, can be 
accessed individually. 

Dummy and Actual Arguments 
Because reference subprograms can be referenced at more than one 
point throughout a program, many of the values used by the subpro
gram may change each time it is used. Dummy arguments in subpro
grams represent the actual values passed to the subprogram when it 
is called. 

These dummy arguments indicate the data type of the actual 
arguments they represent. The position, number, and type of each 
dummy argument in a subprogram list must agree with the position 
and type of each actual argument in the reference to the subprogram 
(CALL statement). 

Items passed to subprograms can be any legal variable, constant, 
expression, array, or array element. The value of any parameter can 
be used as a file number in the subprogram. BASIC-PLUS-2 passes 
items from the main program to the subprogram either by value or by 
reference. When passing by value, BASIC-PLUS-2 makes a temporary 
copy of the value in the calling program and uses the copy for calcula
tions in the subprogram. The value in the calling program remains 
unchanged. The following items are passed by value: 

• constants 

• expressions 

• array elements 

When passing by reference or address, BASIC-PLUS-2 takes the 
actual value from the location in the main program, uses the value in 
the subprogram, then replaces the value in the main program. In this 
case, because of calculations in the subprogram, the value passed by 
reference could change in the main program. The following items are 
passed by reference: 

• variables 

• entire arrays 

405 



BASIC-PLUS-2 

It is not possible to pass complete arrays by value. Individual elements 
of a list or table, however, are always passed by value. When an indi
vidual entry in an array is passed to a subprogram, it is received as a 
numeric or string variable depending on its type. 

MODIFYING STATEMENTS 
Another useful tool for building programs is the statement modifier. In 
BASIC-PLUS-2, the statement modifier qualifies or restricts the exe
cution of a statement; thus allowing the user to: 

1. Indicate conditional execution of a statement. 
2. Create an implied loop. 

An implied loop built with a statement modifier iterates only one state
ment on a line. In cases where the FOR-NEXT statement loop is ex
tremely simple, the necessity for both the FOR and next statements is 
eliminated. 

BASIC-PLUS-2 provides five statement modifiers: 

1. IF 
2. WHILE 
3. UNTIL 
4. UNLESS 
5. FOR 

These statement modifiers cannot stand alone; they must be append
ed to a statement. Most BASIC-PLUS-2 statements can be modified. 

When using statement modifiers with the various forms of the IF 
statement, the following rules apply: 

1. Append statement modifiers to either the THEN clause or the ELSE 
clause of an IF STATEMENT. 

2. The statement modifier applies only to the clause it is appended to 
and not to the statement as a whole. 

If there is more than one statement on a line, the modifier applies only 
to the statement immediately preceding it. More than one statement 
modifier can be appended to a single statement. In this case, BASIC
PLUS-2 processes the modifiers from right to left. Statement modifiers 
are reserved words. 

MATRIX OPERATIONS 
With the MAT statement, the following operations can be performed 
with arrays: 

1. ASSignment 
2. Addition 

406 



BASIC-PLUS-2 

3. Subtraction 
4. Multiplication 
5. Transposition 
6. Inversion 

Each MAT operation statement begins with the keyword MAT followed 
by an expression to be evaluated. The value of one array can be 
assigned to another as in the following example: 

10 MAT A=B 

This statement sets each entry to array A equal to the corresponding 
entry of array B. A is redimensioned to the size of array B. 

You can also add and subtract arrays: 

10MATA=B+C 
20 MAT A=B-C 

FILES 
There are three types of files in BASIC-PLUS-2: 

1. Terminal format files 
2. Virtual array files 
3. Record files 

To distinguish one file from another, it must be labeled with a file 
specification. The file specification usually contains the device name, 
the file name, and the file type. 

Terminal Format Files 
A terminal format file is a collection of ASCII characters stored in lines 
of various lengths. The end of a line is determined by a line terminator, 
i.e., line feed. BASIC-PLUS-2 stores these ASCII characters, including 
spaces and line terminators, exactly as they would appear on the 
terminal; hence the name terminal format file. 

Terminal format files are sequential access files. Sequential access 
files are files that contain information that must be read or written one 
item after another from the beginning of the file. This means that an 
item from the file cannot be retrieved without first retrieving all the 
items preceding it. 

BASIC-PLUS-2 has a file pOinter that keeps track of where the user's 
location is in the file. To add new items to an existing file without 
overwriting current information, the entire file must be read. This ac
tion places the file pOinter at the end of the file where data can be 
added. 

407 



BASIC-PLUS-2 

Virtual Array Files 
A virtual array file, like a terminal-format file, is information stored on a 
system device (disk). Once a virtual array file is opened, the similarity 
with terminal format files ends. Elements in a virtual array can be 
accessed exactly as elements in an array in memory. 

Virtual array files are random access files. The last element in a virtual 
array can be accessed as quickly as the first. 

When BASIC-PLUS-2 stores data in a virtual array file, it does not 
convert them to ASCII characters but rather stores them in the internal 
binary representation. Consequently, there is no loss of precision 
caused by data conversion. 

Record Files 
A BASIC-PLUS-2 record file is a collection of related data stored in the 
form of records. The user determines the size and content of the 
records and the structure and access properties of the file. For more 
details, see Chapter 11, RMS. 

Programs can write BASIC-PLUS-2 programs that deal with records 
and files. The following need to be defined: 

1. File organization 
2. Access method 
3. Record format 
4. Record mapping 
5. File operations 
6. Record operations 

File Organization 
The manner in which BASIC-PLUS-2 stores and retrieves records in a 
file is determined by the structure of the file. In BASIC-PLUS-2, the 
structure of a file is known as the organization. When the file is creat
ed, the user specifies its organization. The organization, in turn, deter
mines the operations and access methods that can be used on the file. 
The three organizations that can be specified are: 

1. Sequential 
2. Relative 
3. Indexed 

SUMMARY OF STATEMENTS 
The following list summarizes BASIC-PLUS-2 statements and func
tions. 

408 



BASIC-PLUS-2 

SUMMARY OF BASIC-PLUS-2 STATEMENTS 
CALL Transfers control to a specified subprogram, trans

fers parameters, and saves the state of the calling 
program. 

CHAIN 

CHANGE 

CLOSE 

COM 

DATA 

DEF 
(single line) 

DEF 
(multi-line) 

Passes control to a specified program; if no line 
number is specified, execution starts at the begin
ning of the program. 

Converts a list of integers (real numbers are truncat
ed) into a string of characters and vice versa. 

Terminates 1/0 to a device and writes all active 
buffers. 

Allows the user to establish a named storage area 
that can be shared by 2 or more subprograms; the 
variables and arrays in the variable list are assigned 
to the named area and, when accessed by more than 
1 subprogram, must be of the same data type; the 
common area name must be 1 to 6 characters. 

Allows the user to provide a pool of information that 
is accessible to the program by means of a READ 
statement; a DATA statement must be the last state
ment on the line and, when more than one is speci
fied, the items must be separated with commas. 

Establishes a user-defined function. The function 
name can be any legal variable name and must be
gin with FN; the variable type determines the func
tion type. The optional arguments represent dummy 
parameters and cannot contain array elements. The 
function definition can refer to any of the dummy 
parameters or to other program variables but the 
definition cannot be recursive. Single-line user-de
fined functions are local to the main program or sub
program in which they are contained. 

Establishes user-defined functions and allows the 
user to include other statements in the body of the 
function. The function name can be any variable 
name preceded by FN. Any statement can appear in 
a function except SUB, SUBEND, RETURN, or 
another DEF. The DATA and DIM statements are not 
local to the function definition. A GOTO, GOSUB, 
ONGOTO,orONGOSUBtran~~ou~~ethefun~ 

tion is not allowed. The function definition must end 
with an FNEND statement. 

409 



DELETE 

DIM 

DIM# 

END 

FIND 

FNEND 

FOR 

FOR 
(conditional) 

GET 

GOSUB 

GOTO 

IF 

BASIC-PLUS-2 

Erases the existing record from relative and indexed 
files. 

Reserves storage for arrays. 

Allocates space for the specified arrays on the file 
associated with the logical number. Storage is allo
cated at the beginning of the file such that the right
most subscript changes most rapidly; the default 
string storage length is 16 and the space is pre-allo
cated. 

Terminates program execution and closes all files; 
optional; when used, END must be the last statement 
in the program. 

Causes a RECORD search in the specified file. 

Causes an exit from a user-defined function and sig
nals the function's logical and physical end. 

Initiates and controls a loop. A simple numeric vari
able must be used after the FOR, and the same vari
able must appear in the required NEXT statement. 
The first numeric expression is the intial loop value; 
the second expression is the terminating loop value. 

Duplicates the previous FOR statement, except that 
loop termination is determined by a false expression 
in the WHILE clause or a true expression in the UN
TIL clause. 

Reads a record from a specified file into a buffer. On 
sequential files, GET operations are performed on 
succeeding records starting at the beginning of the 
file. Relative files allow the specification of a record 
number, and indexed files allow the specification of 
a key value. 

Transfers control to a subroutine that begins at a 
specified line number. 

Unconditionally transfers control to a specified line 
number. 

Allows branches in the program or conditional 
execution of one or more statements. 

410 



INPUT 

INPUT LINE 
and LlNPUT 

INPUTLlNE# 
and LlNPUT# 

KILL 

LET 

MAP 

MAT INPUT 

MAT PRINT 

MAT READ 

MOVE 

NAMEAS 

NEXT 

ON ERROR 

ON-GOSUB 

BASIC-PLUS-2 

Allows the user to type in data to the program from 
the terminal. The program requests data by printing 
a question mark on the terminal and waiting for a 
user response. 

Allow a character string (ending with a line termina
tor) to be input to a specified variable. The line termi
nator is included in the string with INPUT LINE but 
discarded with LlNPUT. 

Read strings from a terminal-format file. 

Deletes a file from storage. 

Assigns constants and expressions to variables. 

Associates a named buffer with a file. Specified data 
in the element list are moved from the file to the 
buffer on a GET and from the buffer to the file on a 
PUT. 

Allows element values to be entered in an array. In
put is read from the terminal. Elements are stored in 
row order as they are typed. 

Outputs each element of a specified array. 

Reads the values into elements of a 1- or 2-dimen
sional array from a DATA statement. 

Associates the data in a record with the variables 
specified in the 1/0 list. 

Renames a file without changing the contents of the 
file. 

Terminates a FOR, WHILE, or UNTIL loop. The vari
able must correspond to the variable in the initial 
FOR statement. Nested loops cannot cross each 
other. No variable is allowed if the loop is started 
with WHILE or UNTIL. 

Allows control to shift to an error-handling routine. 

Conditionally transfers control to one of several sub
routines or to one of several entry points into one or 
more subroutines. 

411 



ON-GOTO 

OPEN 

PRINT 

PRINT# 

PRINT USING 

PUT 

RANDOMIZE 

READ 

REM 

RESTORE 

RESUME 

RETURN 

BASIC-PLUS-2 

Allows the user to transfer control to another line of 
the program based on the value of the expression. 

Allows the user to create a new file or to access an 
existing file. 

Causes the specified data to be output on the termi
nal. The expression list can be expressions, vari
ables, or quoted strings separated by a comma or a 
semicolon; commas cause output to terminal print 
zones; semicolons ignore the print zones. 

Writes data into the specified terminal-format file. 

Causes output to be printed in a specified format. 
The list indicates the elements to be printed. It allows 
the user to format numbers so that the decimal 
pOints are aligned, making it easier to compare co
lumns of numbers. 

Writes a record from a buffer to a specified file. The 
RECORD clause is used for relative files; sequential 
files allow PUT operations only at the end of the file; 
the count clause allows the user to specify the size of 
the record. 

Changes the starting point of the RND function to a 
new unpredictable location. 

Directs BASIC td read from a list of values built into a 
data block by a DATA statement. 

Contains user-written comments and has no effect 
on program execution. 

Resets the specified terminal-format file or record 
file to its beginning from the current position of the 
file. RESTORE without a file expression restores the 
data in a DATA statement; RESTORE with a key 
clause resets the key of reference. 

Indicates the last statement in an error-handling 
subroutine. If no line number is specified, control is 
shifted back to the point of error generation. If a line 
number is specified, control is shifted to that line. 

Indicates the last statement in a subroutine; shifts 
control to the statement following the last executed 
GOSUB statement. 

412 



SCRATCH 

SLEEP 

STOP 

SUB 

SUBEND 

UNTIL 

UPDATE 

WAIT 

WHILE 

BASIC-PLUS-2 

AllowS the user to truncate the file. SCRATCH can be 
used only if the file was OPENed with ACCESS 
SCRATCH. 

Causes a temporary halt in execution. The length of 
delay is determined by the value of the expression in 
seconds. 

Causes a halt in program execution; files are not 
closed, and a message indicating the location of the 
halt is printed. 

Marks the beginning of a subprogram and defines 
the type and number of subprogram parameters. 

Marks the end of the subprogram and returns con
trol to the calling program; must appear at the end of 
all subprograms. 

Sets up a loop that must have a corresponding NEXT 
statement; the loop executes until the expression is 
true. 

Changes an existing record in the file. The new rec
ord size as defined in the MAP or COUNT clause 
must be the same as the record it replaces; on se
quential files, an UPDATE must be preceded by a 
successful GET or FIND. 

Specifies the maximum number of seconds allowed 
for input before an error is generated; a zero or null 
value disables the WAIT. 

Sets up a loop that must have a NEXT statement. The 
WHILE expression is evaluated before each loop 
iteration; if the expression is true, BASIC executes 
the statements in the loop. If the expression is false, 
BASIC executes the statements following the NEXT 
statement. 

413 



414 



OVERVIEW 

CHAPTER 19 

COBOL (V3) 

PDP-11 COBOL provides terminal-oriented, fast data processing for 
commercial applications. Source programs are written in the Ameri
can National Standards Institute (ANS) COBOL-74 language. 
DIGITAL's COBOL is a fully implemented intermediate level compiler 
conforming in language element, representation, symbology and cod
ing format to ANS specification. In addition, it includes a number of 
features which include: DIGITAL's standard CALL sequences for ex
ternal subroutines; use of the RMS-11 Record Management System; 
an ANS standard COBOL segmentation facility; and ANS standard 
string and substring manipulation. 

FEATURE TOPICS 
• Functions and Features 

• PDP-11 COBOL Features 
- String Manipulation 
- On-Line Interactive COBOL Program Execution 
- File Organization 
- Library Facility 
- Debugging Features 

• Compiler Implementation 
- Memory Segmentation 
- Flexibility 

• COBOL Operating System Environments 
- Under RSTS/E 
- Under lAS and RSX-11 M 

• Utility Programs 
- Terminal Format 
- Convention Format 
- COBRG - COBOL Report Generator 

• COBOL Language Implementation (Table 19-1) 

415 



COBOL 

FUNCTIONS AND FEATURES 
PDP-11 COBOL provides fast direct access data processing for com
mercial applications. PDP-11 COBOL is available as an optional lan
guage processor for the RSTS/E, RSX-11 M, lAS, and TRAX operating 
systems. Included in the COBOL package are the MERGE utility for 
merging ODL files, RFRMT source reformatting program, and COBRG 
report generator program utilities. 

PDP-11 COBOL is a fully implemented intermediate level compiler 
conforming in language element, representation, symbology, and 
coding format to ANS-74 COBOL, specification X.3.23-1974. ANS-74 
COBOL includes the following: 

• full high-level nucleus module 

• full high-level table handling module 

• full high-level sequential I/O module 

• full high-level relative I/O module 

• full high-level indexed I/O module 

• low-level interprogram communication module 

• full high-level segmentation module 

• full low-level library function, with partial high-level REPLACING 
facility 

• conditional variables - Data Division Level 88 

• nested <;:onditionals 

The hardware configuration supporting COBOL is any valid RSTS/E, 
RSX-11 M, lAS, or TRAX operating system configuration whh a line 
printer and enough memory to support a 24K-word COBOL task 
under RSTS/E and a 27K-word COBOL task for RSX-11 M, lAS, and 
TRAX. Depending on the size of the compiler generated in a particular 
system, COBOL source programs can contain up to 6,000 or more 
statements. The recommended minimum disk storage is either two 
RK05 disk drives or an RP03, RP04, RP05, or RP06 disk drive. Option
al hardware supported includes a card reader. 

The disk-resident compiler can accept source program input from 
cards, console terminals, and disks-including input from source text 
library files stored on disks. COBOL utilizes RMS-11 to implement 
user file handling. In addition, COBOL programs can also create 

416 



COBOL 

and/or read ANSI standard format magnetic tape files if magnetic tape 
systems are included in the system's hardware configuration. Finally, 
COBOL programs can build files which the DATATREIVE-11 software 
package can process and vice versa. 

LANGUAGE FEATURES 
The PDP-11 COBOL processing modules are: 

Nucleus 

Table Handling 

Sequential I/O 

Relative I/O 

Indexed 1/0 

Segmentation 

Library 

Inter-program 
Communication 

All language elements necessary for inter
nal processing. 

Defining and manipulating tabular data. 

Defining and accessing sequential files. 

Defining and accessing relative files, includ
ing dynamic access. 

Defining and accessing indexed sequential 
files, including dynamic access and multiple 
alternate keys. 

Specifying overlay of the Procedure Divi
sion at object time. 

Copying predefined COBOL text into the 
source program; changing text while copy
ing. 

Calling separately compiled subroutines 
and passing parameters. 

PDP-11 COBOL utilizes RMS for I/O handling, and is therefore capa
ble of handling files created under other PDP-11 languages. 

The nucleus, table handling, sequential I/O, relative 1/0, and indexed 
I/O modules of PDP-11 COBOL meet full ANS-74 high-level stan
dards. RERUN, ENTER, and ALTERNATE are not, however, included 
in the PDP-11 COBOL Nucleus Level 2 code set. PDP-11 COBOL 
offers high-level extensions in the Segmentation and Library modules. 
Figure 19-1 compares the language elements implemented in PDP-11 
COBOL with the ANS-74 COBOL language elements. 

COBOL Data Types 
PDP-11 COBOL supports a variety of standard data types. They in-
clude: 

417 



COBOL 

• Numeric DISPLAY Data 
- Trailing overpunch sign 
- Leading overpunch sign 
- Trailing separate sign 
- Leading separate sign 
- Unsigned 
- Numeric-edited 

• Numeric COMPUTATIONAL Data 
- 1-word fixed binary 
- 2-word fixed binary 
- 3-word fixed binary 
- 4-word fixed binary 

• Alphanumeric DISPLAY Data 
- Alphanumeric 
- Alphabetic 
- Alphanumeric-edited 

These are data types which are required over a spectrum of applica
tion systems and are provided for flexibility in the specification and 
design of such systems. 

String Manipulation 
PDP-11 COBOL has the capability to manipulate data strings. It offers 
INSPECT, STRING, a"nd UNSTRING-COBOL verbs for character 
string handling-to search for embedded character strings, with tally 
and replace. In addition, they have the ability to join together or break 
out separate strings with various delimiters. 

On-line Interactive COBOL Program Execution 
The Procedure Division ACCEPT and DISPLAY statements allow ter
minal-oriented interaction between a COBOL program and a user. 
Using these statements, a COBOL program can exercise interactive 
operation with a user running the program. This is useful in an order 
entry application, for example. 

The ACCEPT statement allows the terminal user to enter input lines 
which the COBOL program can interpret. The ACCEPT statement also 
has a second format that allows it to retrieve the current date or time 
from the system. 

The DISPLAY statement transfers data from a specified literal or data 
item to a specified device, normally the user's console. The statement 
can be modified by a special WITH NO ADVANCING phrase (without 
automatic appending of carriage return and line feed) that allows the 
COBOL program to control the format of the message sent. If the 
device handler allows it, the WITH NO ADVANCING phrase will have 

418 



COBOL 

the device remain positioned on the same line and the same character 
position following the last character displayed. This is especially useful 
when typing prompting messages on the console. 

While the ACCEPT and DISPLAY statements are primarily intended 
for use with keyboard devices, PDP-11 COBOL allows the ACCEPT 
statement to accept cards from a card reader, and the DISPLAY state
ment to display data on a line printer. 

File Organization 
The sequential 110, relative 1/0, and indexed 1/0 modules meet the full 
ANS-74 high-level standards and include all the COBOL verbs. For 
indexed file organization, this means that the user can build and proc
ess indexed files with one major key and zero or more alternate keys. 
This multikey facility offers flexibility and power in the development of 
application systems and is a language feature supported by only a few 
COBOL implementations. 

Library Facility 
With PDP-11 COBOL the user has a full ANS-74 intermediate level 
Library facility which includes high-level features. All frequently used 
data descriptions and program text sections can be held in library files 
available to all programs. These files can then be copied into source 
programs to save unnecessary repetitions simultaneously during pro
gram preparation and to prevent a common source of errors. 

Call Facility 
PDP-11 COBOL supports the CALL statement. This language fea
ture allows COBOL programs to invoke separately compiled sub
programs, passing arguments in the process. These subprograms 
may be written in COBOL or other languages. This facility has the 
following advantages: 

• provides flexibility through modular development of application 
systems 

• permits functional specification of small, well-defined source 
modules 

• gives the user access to operating system-dependent features via 
subroutines written in MACRO-11 

Debugging Features 
To make program debugging easier, the COBOL compiler produces 
source language listings with embedded diagnostics. Fully descriptive 
diagnostic messages are listed at the point of error. Over 400 different 
error conditions are checked-varying from simple warnings to major 
error detections. 

419 



COBOL 

When the compiler detects an error in the source program, the com
piler attempts to recover from an error and continue to compile the 
program. The kind of error message, whether informational, warning, 
or fatal, indicates a likelihood that the assumption made to recover 
from the error will produce an object program that will run as the 
programmer intended. Normally, the COBOL compiler will not gener
ate an object program if major fatal errors are detected. The user can, 
however, force the compiler to produce an object program by request
ing that it accept a fatal errors command string. This facility is provid
ed as an extra debugging option. It can be useful in shortening the 
compile-debug cycle, particularly if applied to large COBOL programs 
which take considerable compilation time, but it should be used with 
caution. 

Debugging large source programs is made still easier by the use of the 
optional Data Division allocation map and modular programming 
techniques offered by the segmentation and inter-program communi
cation facilities. 

Another useful debugging aid is the optional cross-reference listing 
produced by the compiler. This is a listing of all data names, pro
cedure names, and the source line numbers of those program lines in 
which the definitions and references are contained. For each name, a 
list of ordered source line numbers is displayed. Definitional source 
line numbers are distinguished from reference source line numbers. 

COMPILER IMPLEMENTATION 
PDP-11 COBOL is a full compiler language and can be envisioned as a 
three-step process. The first step is compilation, in which the compiler 
translates the source program into an object module and also pro
duces an overlay description language (ODL) file. This file describes 
the overlay tree structure associated with the generated object mod
ule. The object module itself is not in executable format, as it needs to 
be processed by a linker. 

In the likely event that more than one COBOL-produced object mod
ule is to be linked to produce an executable task, it is necessary to 
"merge" the associated ODL files before the linking operation. Thus, 
the second step in the process is the ODL merge operation, which is 
performed by the MRG utility. This utility merges the ODL files from 
more than one compilation into a single, composite ODL file. 

The third step in the process is linking, or task building. The object 
files, together with the composite ODL file, are input to the system 
linker to produce an executable image. COBOL-produced object 
modules can be processed by themselves, or they can be linked with 

420 



COBOL 

object files produced from other language processors. In addition to 
linking object modules produced by the PDP-11 COBOL compiler, the 
linker automatically selects the required routines from the COBOL 
System Object Library and from the RMS-11 Object Library. After the 
object files are linked, the executable task is ready to run. 

Memory Segmentation 
Programs are overlaid according to the standard COBOL segmenta
tion module. If the users choose, however, they can request the com
piler to break up the program and overlay it on a user-specified code 
segment size. 

Flexibility 
The PDP-11 COBOL compiler and run-time system has the flexibility 
to allow it to be built for various operating system configurations. 
Specifically, the size of the COBOL task can be increased or de
creased depending on the amount of memory available on a particular 
configuration. 

The size of the COBOL task image is a general determinant of the 
maximum size of a COBOL program, the speed at which it can com
pile, and the speed at which it can execute. In general, the larger the 
COBOL task, the faster it will run and the greater its capacity to exe
cute very large COBOL programs. 

When the compiler code or run-time code needs to use the disk work 
files, it obviously takes a longer time to run. By expanding the size of 
the internal work areas, the user can eliminate the need to access the 
work file so often. This means faster compilation and execution. 

The COBOL task size can vary from approximately 24K words to 28K 
words on RSTS/E, and 27K to 32K ON RSX-11 M, lAS, and TRAX. The 
size variation depends on the size of the work area selected by the 
system manager when building the COBOL task for the particular 
configuration on which it will execute. 

COBOL OPERATING SYSTEM ENVIRONMENTS 
PDP-11 COBOL is available under four operating systems: RSTS/E, 
~SX-11 M, lAS, and TRAX. In general. PDP-11 COBOL is completely 
mdependent of the operating systems on which it is available. It uses 
RMS for file handling. It does not use operating system directives or 
function calls. The commands used to invoke the compiler and run
time system are basically the same from system to system. The follow
ing paragraphs briefly state the implementation characteristics under 
each of the operating systems. 

UNDER RSTS/E 
Under RSTS/E. the COBOL task can run in either interactive or batch 

421 



COBOL 

mode. The files that COBOL programs create can be read by BASIC
PLUS-2 programs using ASCII sequential file processing techniques 
(INPUT, READ, and PRINT statements). 

UNDER lAS AND RSX-11 M 
The PDP-11 COBOL compiler requires at least 27K words of memory 
to compile all elements of the COBOL language. The COBOL task 
runs, by default, in the general system-controlled GEN partition. This 
partition should be at least 27K words on a 48K system. This allows 
other tasks to reside in the partition when COBOL is running. 

COBOL operates as any other language processor under lAS with 
these exceptions: there is no directive use and there can be no inter
task communication. COBOL does use RMS and files created using 
COBOL are therefore compatible with ail other RSX-11 or lAS files. 

UNDERTRAX 
The PDP-11 COBOL compiler requires at least 27K words of memory 
to compile all elements of the COBOL language. Under TRAX, a 
COBOL task can run in either the applications environment or the 
support environment. COBOL user 1/0 is implemented with RMS-11 
and, in the applications environment, the user's 110 buffer space is 
allocated out of system space. 

UTILITY PROGRAMS 
PDP-11 COBOL offers three utility programs to aid the user with data 
processing. 

MERGE 

RFRMT 

COBRG 

Merges ODL files generated by COBOL compilations 
into a single ODL file. 

Converts PDP-11 terminal format COBOL programs 
into conventional format ANS COBOL programs. 

A high-level language with efficient, commercially 
oriented problem solving capabilities. With COBRG, 
vital reports can be developed quickly by saving 
tedious, time-consuming format coding. 

The RFRMT (Reformat) utility program reads COBOL source pro
grams that were coded using terminal format and converts the source 
statements to 80-column conventional format. PDP-11 COBOL ac
cepts source programs that are coded using either the conventional 
80-column card reference format or the shorter, easy-to-enter termi
nal format. 

• Terminal Format is designed for easy use with context editors con
trolled from an on-line terminal keyboard, and is therefore compati
ble for use with PDP-11 systems. It eliminates the line-number and 

422 



COBOL 

identification fields. It allows horizontal tab characters and short 
lines and therefore offers potential savings in disk space. 

• Conventional Format produces source programs that are 
compatible with the reference format of other COBOL compilers 
thoughout the industry. 

RFRMT allows the programmer to enter source programs in the sim
pler terminal format and then, if compatibility is ever required for 
those programs, provides a simple method for conversion to conven
tional format. 

The COBRG (COBOL Report Generator) utility program provides a 
fast, simple mechanism for producing printed reports from data files. 
COBRG recognizes input specification lines which enable the user to: 

• define a report's page headings 

• describe the format of input and output files 

• set the rules for moving information from input records to detail 
output lines 

• set the rules for adding values in accumulators 

• set the rules for monitoring the sort keys for value changes 

• set the rules for constructing and printing the accumulated values 

COBRG uses these specification lines to produce a tailored COBOL 
source program. This program, when compiled and executed, gener
ates the actual report. 

423 



COBOL 

Table 19-1 COBOL Language Implementations 

TOPS-10 PDP-11 
Language Elements Level Module ANS-68 ANS-74 COBOL COBOL 

V6 V3 

CHARACTER SET 
Words 
0.1 •... 9 A.B .... Z - _____ NUC X X X X 
Punctuation 
.' () space or blank _______ 1 NUC X X X X 

1 NUC X .. 2 NUC X X X X 
EXT X X 

Arithmetic + - • / •• ________ 2 NUC X X X 
Relational < > = 2 NUC X X X X 
Editing 
B 0 + - CR DB Z • $ .• NUC X X X X 
/ --- NUC X X 
Separators 
; and. not permitted NUC X X 
; and. are permitted 1 NUC X X X X 
COBOL WORDS (max 30 chars) __ 1 NUC X X X X 
User-defined Words 1 NUC X X X X 
cd-name 1 COM X X 
condition name 2 NUC X X X X 
data-name (1 st char alpha) 1 NUC X X 
data-name ___________ 2 NUC X X X X 
file-name ______________ 1 SEQ X X X X 
index-name ___ 1 TBl X X X X 
level-number _____________ 1 NUC X X X X 
library-name 2 LIB X X X 
mnemonic-name 1 NUC X X X X 
paragraph-name 1 NUC X X X X 
program-name 1 NUC X X X X 
record-name 1 SEQ X X X X 
report-name 1 RPW X X X 
routine-name (optional) ____ 1 NUC X X X 
section-name ______ ____ 1 NUC X X X X 
segment-number 1 SEG X X X X 
text-name 1 LIB X X X X 
System Names 1 NUC X X X X 
computer-name _ X X X X 
implementor-name X X X X 
language-name (optional) X X X 
Reserved Words 1 NUC X X X X 
keywords 1 NUC X X X X 
optional words 1 NUC X X X X 
qualifier connectives: OF IN 2 NUC X X X X 
series connectives: • ; 2 NUC X X X X 
logical connectives: 
AND. OR. AND NOT. OR NOT 2 NUC X X X X 
LlNE-. PAGE-COUNTER registers __ 1 RPW X X X 

424 



COBOL 

Table 19-1 (cont) COBOL Language Implementations 

Language Bements 
TOPS-10 PDP-11 

Level Module ANS-68 ANS-74 COBOL COBOL 

LINAGE-COUNTER register ____ ~2 
DEBUG-ITEM register __ 1 
TALLY register _ 1 
ZERO constant _ _1 
ZEROS, ZEROES constants __________ 2 
SPACE constants _1 
SPACES contant ___ ____ 2 
HIGH-VALUE, LOW-VALUE~_~ 1 
HIGH-VALUES, LOW-VALUES ____ 2 
QUOTE constanL__ __ 1 
QUOTES constant ___ __2 
ALL literaL___ _______ _ ____2 
arithmetic special chars __ ____ 2 
relational special chars _2 
non-numeric literals (1-120 chars) __ 1 
quote within non-numeric literals __ 
numeric literals (1-18 chars) ___ _ 
PICTURE strings _______________ 1 
comment entries____ _ __________ __ 1 
No Qualification Permitted ___ 1 
Qualification Permitted ____ 2 
Subscripting to 3 Levels ____ 1 
Indexing to 3 Levels __ ________ __ 1 

IDENTIFICATION DIVISION 
PROGRAM-ID_~ ____ _______ 1 
AUTHOR _______ ____ 1 
INSTALLATION __ _ _______ 1 
DATE-WRITTEN_~ ____________ 1 
DATE-COMPILED____ ________ 2 
SECURITY ___________ 1 
REMARKS_______ __ 1 

ENVIRONMENT DIVISION 
Configuration Section 
Can be omitted__ _ _ ____ ~_ 
SOURCE-COMPUTER ____________ 1 
WITH DEBUGGING MODE ________ 1 
OBJECT-COMPUTER ~ ___________ 1 
MEMORY SIZE ________ ~ _____ 1 
COLLATING SEQUENCE ___ ~ ___ 1 
SEGMENT-LIMIT ~_~ __________ 2 
SPECIAL-NAMES _~ __________ 1 
ON STATUS _______________ 1 
OFF STATUS _________ _ __ 1 
SPECIAL-NAMES series___ ___ 1 

425 

SEQ 
DEB 
NUC 
NUC 
NUC 
NUC 
NUC 
NUC 
NUC 
NUC 
NUC 
NUC 
NUC 
NUC 
NUC 

NUC 
NUC 
NUC 
NUC 
TBL 
TBL 

NUC 
NUC 
NUC 
NUC 
NUC 
NUC 
NUC 

EXT 
NUC 
DEB 
NUC 
NUC 
NUC 
SEG 
NUC 
NUC 
NUC 
NUC 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 

X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 

X 

X 
X 

X 
X 
X 
X 
X 

X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

V6 V3 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 

X 
X 
X 

X 
X 
X 
X 
X 
X 
X 

X 
X 

X 
X 

X 
X 
X 
X 
X 

X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 

X 

X 
X 
X 

X 
X 
X 
X 



COBOL 

Table 19-1 (cont) COBOL Language Implementations 

TOPS-10 PDP-11 
Language Elements Level Module ANS-68 ANS-74 COBOL COBOL 

V6 V3 

ST ANqARD-1 alphabet-name_ _1 NUC X X 
NA TIVE alphabet-name __1 NUC X X 
Implementor-name alphabet-name _1 NUC X 
literal alphabet-name 2 NUC X 
CURRENCY SIGN _ __ 1 NUC X X X X 
DECIMAL-POINT _1 NUC X X X X 
Input-Output Section 
FILE-CONTROL SELECT ____ 1 SEQ X X X X 

_1 REL X X 
_1 RAC X X 

1 INX X X 
__ 1 SRT X X X 

OPTIONAL ___ 2 SEQ X X X X 
ASSIGN TO implementor-name _ _1 SEQ X X X X 

__ 1 REL X X 
-- 1 RAC X X 

_1 INX X X 
__ 1 SRT X X X 

MUL TIPLE REEL/UNIT _ 1 SEQ X X 
_____1 SRT X X 

RESERVE integer AREA(S) _ _2 SEQ X X X X 
FILE-LIMIT literal THRU literal_ ___ 1 SEQ X X X X 

____ 1 RAC X X 
FILE-LIMIT literal series 2 SEQ X 

2 RAC X X 
data-name THRU data-name _2 SEQ X 

2 RAC X X 
FILE-LIMIT data-name series 2 SEQ X 

2 RAC X X 
SEQUENTIAL ORGANIZATION __ 1 SEQ X X 
RELATIVE ORGANIZATION 1 REL X X 
INDEXED ORGANIZATION _1 INX X X 
SEQUENTIAL ACCESS MODE _1 SEQ X X X X 

---- 1 REL X X 
_1 RAC X X 

__ 1 INX X 
RANDOM ACCESS MODE _1 REL X X 

1 INX X X 
DYNAMIC ACCESS MODE _ 2 REL X X 

_2 INX X 
PROCESSING MODE SEQ _1 SEQ X X 

RAC X X 
ACTUAL KEY RAC X X 
RECORDING MODE EXT X X 
RELATIVE KEY 1 REL X X 
RECORD KEY _1 INX X X 

426 



COBOL 

Table 19-1 (cont) COBOL Language Implementations 

TOPS-10 PDP-11 
Language Elements Level Module ANS-68 ANS-74 COBOL COBOL 

V6 V3 

SYMBOLIC KEY EXT X 
AL TERNATE RECORD KEY 2 INX X 
FILE STATUS 1 SEQ X X 

REL X X 
INX X X 

1-0 CONTROL: RERUN SEQ X X X 
REL X 
RAe X X 

1 INX X X 
SAME AREA 1 SEQ X X X X 

1 REL X X 
1 RAC X X 
1 INX X X X 

SAME RECORD AREA 2 SEQ X X X x 
2 REL X X 
2 RAC X X X 
2 INX X X 
2 SRT X X X 

SAME SORT-MERGE AREA 2 SRT X X X 
SAME series 1 SEQ X X X X 

REL X X 
RAC X X 

1 INX X X X 
MUL TIPLE FILE TAPES 2 SEQ X X X X 
APPLY EXT X 

DATA DIVISION 
Communication Section COM X X 
File Section SEQ X X X X 

REL X X 
RAC X X 
iNX X X 
SRT X X X 
RPW X X X 

linkage section IPC X X 
working storage section NUC X X X X 
report section RPW X X X 
communications description entry COM X X 
data description entry NUe X X X X 
file description entry SEQ X X X X 

REL X X 
RAC X X 
INX X X 
RPW X X X 

record description entry SEQ X X X X 
REL X X 
RAC X X 
INX X X 

427 



COBOL 

Table 19-1 (cont) COBOL Language Implementations 

TOPS-10 PDP-11 
Language Elements Level Module ANS-68 ANS-74 COBOL COBOL 

V6 V3 

LINAGE clause 2 SEQ X X 
LINE NUMBER clause ~ ______ 1 RPW X X X 
NEXT GROUP clause RPW X X X 
OCCURS clause 
integer times --------- 1 TBL X X X X 
ASCENDING/DESCENDING 2 TBL X X X X 
data-name series __ ~_~_~~ ______ 2 TBL X X X X 
INDEXED BY index-name 1 TBL X X X X 
i1 TO i2 DEPENDING ON - 2 TBL X X X 
PAGE clause ------------- -- _~_1 RPW X X X 
PICTURE clause 
Character string max 30 chars _____ 1 NUC X X X X 
Data characters: A X 9 ~ __ 1 NUC X X X X 
Operational symbols: S V P _____ 1 NUC X X X X 
Fixed insertion characters: 
OB,.$ + -CR DB _______ ~_1 NUC X X X X 
Fixed insertion character: / ____ ._~~ __ 1 NUC X X X 
Replacement chars: $ + - Z * ____ 1 NUC X X X X 
Currency sign substitution _~ _____ 1 NUC X X X X 
Decimal point substitution _____ ~ __ 1 NUC X X X X 
RECORD CONTAINS clause --~ 1 SEQ X X X X 

------ ~ ____ 1 REL X X 
___ 1 RAC X X 

1 INX X X 
1 SRT X X X 

_. ___ 1 RPW X X X 
REDEFINES clause (no nesting) ~ __ 1 NUC X X X 
REDEFINES clause (nesting) ----- 2 NUC X X X X 
RENAMES clause .. ______ ~ ____ 2 NUC X X X X 
REPORT clause ______ 1 RPW X X X 
SIGN clause --- -- --------- _1 NUC X X 
SOURCE clause ___ .1 NUC X X X 
SUM clause _1 NUC X X X 
SYNCHRONIZED clause ___ 1 NUC X X X X 
TYPE clause _1 NUC X X X 
USAGE clause 
COMPUTATIONAL (means binary) NUC X X X X 
COMP-1 (floating point) EXT X 
DISPLAY NUC X X X X 
DISPLAY-6 (SIXBIT) -- ------~- EXT X X 
DISPLAY-7 (ASCII) EXT X X 
INDEX TBL X X X X 
DATABASE-KEY ---- ------------ DBM X 
VALUE clause 
literal NUC X X X X 
literal series 2 NUC X X X X 
literal THRU literal 2 NUC X X X X 

428 



COBOL 

Table 19-1 (cont) COBOL Language Implementations 

TOPS-10 PDP-11 
Language Elements Level Module ANS-68 ANS-74 COBOL COBOL 

V6 V3 

literal range series _2 NUC X X X X 
VALUE OF clause 
implementor-name IS literal SEQ X X X X 

REL X X 
RAC X X 
INX X X 
RPW X X X 

implementor-name IS data-name ------2 SEQ X X X X 
2 REL X X 
2 RAC X X 
2 INX X X X 
2 RPW X X X 

PROCEDURE DIVISION 
USING phrase 1 IPC X X X 
Declaratives 1 SEQ X X X 

____ 1 REL X X 
1 RAC X X 
1 INX X X 
1 RPW X X X 
1 DEB X 

Arithmetic expressions 2 NUC X X X X 
Conditional expressions 1 NUC X X X X 
Simple conditions 1- NUC X X X X 
Relation conditions ______ 1 NUC X X X X 
[NOT] GREATER THAN _____ 1 NUC X X X X 
[NOT]> 2 NUC X X X X 
[NOT] LESS THAN 1 NUC X X X X 
[NOT] < 2 NUC X X X X 
[NOT] EQUAL TO 1 NUC X X X X 
[NOT] = 2 NUC X X X X 
EQUALS EXT X 
numeric operands _________ 1 NUC X X X X 
nonnumeric operands (equal size)_1 NUC X X 
nonnumeric (may be unequal) 2 NUC X X X X 
Class conditions 1 NUC X X X X 
NOT option 1 NUC X X X X 
Switch-status condition ____________ 1 NUC X X X X 
NOT option EXT X X 
Condition-name condition _--------2 NUC X X X X 
NOT option EXT X X 
Sign condition 2 NUC X X X X 
NOT option ~ NUC X X X X 
Logical AND OR and NOT 2 NUC X X X X 
Negated simple conditions ___ -2 NUC X X X X 
Combined and negated combined_-2 NUC X X X X 
Abbreviated combined relation ____ 2 NUC X X X X 

429 



COBOL 

Table 19-1 (cant) COBOL Language Implementations 

TOPS-1O PDP-ll 
Language Elements Level Module ANS-68 ANS-74 COBOL COBOL 

V6 V3 

Arithmetic operands __ ~~_~ ___ 1 NUC X X X X 
Overlapping operands 1 NUC X X X X 

__ 1 TBL X X X X 
Multiple arithmetic results ______ 2 NUC X X X X 
ACCEPT statement 
Only one transfer of data __ 1 NUC X X X 
No restrictions on transfers _ ~_2 NUC X X X X 
FROM ____ 2 NUC X X X X 
FROM DATE -~ NUC X X 
FROM DAY 2 NUC X 
FROM TIME ____ ~_~.2 NUC X X 
MESSAGE COUNT _____ 1 COM X X 
ADD statement 
indentifier literal series _____ 

~~- 1 NUC X X X X 
TO identifier --- -

__ 1 NUC X X X X 
TO identifier series _______ __ ~ ____ 2 NUC X X X X 
GIVING identifier -,,-

~ __ 1 NUC X X X X 
GIVING identifier series ___ 2 NUC X X X X 
ROUNDED __ ~_1 NUC X X X X 
SIZE ERROR ____ 1 NUC X X X X 
CORRESPONDING --

___ .2 NUC X X X X 
AL TER procedure-name ---- ----- _~~ 1 NUC X X X X 
AL TER procedure-name series _2 NUC X X X X 
CALL literal __ 1 IPC X X 
CALL identifier 2 IPC X X 
CALL USING data-name _ ... ~1 IPC X X 
CALL ON OVERFLOW ----- __ 2 IPC X 
CANCEL statement ____ 2 IPC X 
CLOSE single file-name __ 1 SEQ X X X X 
CLOSE file-name series 2 SEQ X X X X 

___ 1 REL X X 
_1 RAC X X 

1 INX X X X 
REEL 1 SEQ X X X X 
UNIT 1 SEQ X X X X 
NO REWIND - -~-

2 SEQ X X X X 
LOCK _2 SEQ X X X X 

1 REL X X 
_ 1 RAC X X 

1 INX X X X 
FOR REMOVAL ~2 SEQ X X 
WITH DELETE _ EXT X 

DBM X 
COMPUTE identifier series 2 NUC X X X 
DELETE statement _1 REL X X 

INX X X X 
DBM X 

430 



COBOL 

Table 19-1 (cont) COBOL Language Implementations 

TOPS-10 PDP-11 
Language Elements Level Module ANS-68 ANS-74 COBOL COBOL 

V6 V3 

DISABLE statement 
INPUT 1 COM X X 
TERMINAL INPUT __________ 2 COM X X 
OUTPUT ~ _____________ 1 COM X X 
KEY identifier/literal _________ 1 COM X X 
DISPLAY statement 
only one transfer of data NUC X X 
no restriction 2 NUC X X X X 
UPON ____________________ 2 NUC X X X X 
WITH NO ADVANCING EXT X X 
DIVIDE statement 
INTO identifier _______________ 1 NUC X X X X 
INTO identifier series ________ 2 NUC X X X 
BY identifier __ 1 NUC X X X X 
GIVING identifier 1 NUC X X X X 
GIVING identifier series ____ ----.2 NUC X X X 
ROUNDED ___________ 1 NUC X X X X 
REMAINDER --"--- 2 NUC X X X X 
SIZE ERROR ___________________ 1 NUC X X X X 
ENABLE statement 
INPUT _____ ~ _____ 1 COM X X 
TERMINAL INPUT 2 COM X X 
OUTPUT _______________ 1 COM X X 
KEY identifier/literal 1 COM X X 
ENTER statement (optionall _______ 1 NUC X X X 
ENTRY statement ------------ EXT X 
EXAMINE statement 1 NUC X X 
EXIT statement ____________ 1 NUC X X X X 
EXIT PROGRAM statement _____ 1 IPC X X X 
FIND statement -------~---- DBM X 
GENERATE statement 1 RPW X X X 
GET statement DBM X 
GOBACK statement EXT X 
GO TO statement 
TO optional _____________________ 1 NUC X X 
procedure-name required _________ 1 NUC X X X 
procedure-name optional _~_2 NUC X X X X 
DEPENDING ON phrase ________ 1 NUC X X X X 
IF statement 
statements must be imperative ____ 1 NUC X X 
nested statements _________ 2 NUC X X X X 
ELSE ____________________ 1 NUC X X X X 

-- -----"---------- DBM X 
INITIATE statement _____________ 1 RPW X X X 
INSERT statement _ ________ 1 NUC X X X X 

- -- _._- .. _------------- DBM X 

431 



COBOL 

Table 19-1 (cont) COBOL Language Implementations 

TOPS-10 PDP-ll 
Language Elements Level Module ANS-68 ANS-74 COBOL COBOL 

V6 V3 

INSPECT statement 
single character data item NUC X X 
multi-character data item ______ ~ NUC X X 
INVOKE statement ___________ DBM X 
MERGE statement _______ _2 SRT X 
MODIFY statement ________ DBM X 
MOVE statement 
TO identifier NUC X X X X 
TO identifier series ____ 1 NUC X X X X 
CORRESPONDING _______ 2 NUC X X X X 

- -~--------- DBM X 
MULTIPLY statement 
BY identifier 1 NUC X X X X 
BY identifier series 2 NUC X X X X 
GIVING identifier ------ 1 NUC X X X X 
GIVING identifier series 2 NUC X X 
ROUNDED ----------- 1 NUC X X X X 
SIZE ERROR ------- 1 NUC X X X X 
NOTE sentence 1 NUC X X 
OPEN statement 
INPUT single file-name SEQ X X X X 
INPUT file-name ser-ies 2 SEQ X X X X 

____________ .1 REL X X 
____________________ 1 RAC X X 

_________________ 1 INX X X 
-----_.- 1 NUC X X X X 

INPUT REVERSED 2 SEQ X X 
INPUT NO REWIND 2 NUC X X X X 
OUTPUT single file-name 1 SEQ X X X X 
OUTPUT file-name series ______ 2 SEQ X X X X 

- _.-------- 1 REL X X 
___________ 1 RAC X X 

- ----- ~----.------- 1 INX X X 
OUTPUT NO REWIND 2 SEQ X X X X 
1-0 single file-name _______ 1 SEQ X X X X 
1-0 file-name series 2 SEQ X X X X 

___________________ 1 REL X X 
1 RAC X X 

------ ------ 1 INX X X 
EXTEND 2 SEQ X X 
INPUT, OUTPUT, 1-0, EXTEND __ 2 SEQ X X 
INPUT, OUTPUT and 1-0 series __ 1 SEQ X X 

--_.- -_._---- 1 REL X X 
- - ----------- 1 RAC X X 

---" --"-"--_._----_ .. 1 INX X X 
--- ------- - ---- DBM X 

432 



COBOL 

Table 19·1 (cont) COBOL Language Implementations 

TOPS-10 PDP-11 
Language Elements Level Module ANS-68 ANS-74 COBOL COBOL 

V6 V3 

PERFORM statement 
procedure name~ ___________ 1 NUC X X X X 
THRU _~ _______ ~~ _____ ~ ___ ~ ___ 1 NUC X X X X 
TIMES _~_ ~ ______________ ~~~ ___ ~. ___ ~ 1 NUC X X X X 
UNTIL - ~ ~ -_._---- -_. --. ___ ~ ___ ~ ~~ __ 2 NUC X X X X 
VARYING 2 NUC X X X X 
READ statement 
file-name ____ ~~~ ____ ~_1 SEa X X X X 

~_~ .. ~ __ ~ _______ ~~_~ __ 1 REL X X 
~ _~ _____________________ ~_1 RAC X X 
_____ ~~ ______ ~_1 INX X X 

INVALID KEY _______ ~ ______ ~ _~ __ . __ 1 REL X X 
_______ ~ ____ ~ ________ 1 RAC X X 

!NTO identifier ~ ____ ~ ____ 1 SEa X X X X 
1 REL X X 

______ ~ _____ ~ __ ._~_~ ______ 1 RAC X X 
~~ ____ ~ _____ ~~ ____ ~ _____ 1 INX X 

NEXT ~ _~ _______________ 2 REL X X 
- ._----_._--- 2 INX X 

ATEND __ ~~ 1 SEa X X X X 
1 REL X X 
1 RAC X X 

--------------- 1 INX X X 
KEY IS 2 INX X 
RECEIVE statement 
MESSAGE 1 COM X X 
SEGMENT 2 COM X X 
INTO identifier 1 COM X X 
NO DATA phrase 1 COM X X 
RELEASE statement 
record name SRT X X X 
FROM SRT X X X 
REMOVE statement DBM X 
RETURN statement 
file-name SRT X X X 
INTO SRT X X X 
ATEND SRT X X X 
REWRITE statement 
FROM identifier 1 SEa X X 

1 REL X X 
1 INX X X X 

INVALID KEY phrase 1 REL X X 
1 INX X X X 

SEARCH statement 2 TBL X X X 
SEEK statement 1 RAC X X 

433 



COBOL 

Table 19-1 (cont) COBOL Language Implementations 

Language Elements 
TOPS-10 PDP-11 

Level Module ANS-68 ANS-74 COBOL COBOL 

SEND statement 
FROM identifier ___ __ _______ _ __ 2 
FROM identifier WITH _ __ __ _1 
WITH identifier _ _ ___ _ _____ 2 
WITH EGI___ _____________ 1 
WITH EM! __ 1 
BEFORE/AFTER ADVANCING ___ 1 
SET statemenL _1 
SORT statement 
max 1 SORT STOP, 1-0 procedure __ 2 
not limited to 1 SORT _________ 2 
COLLATING SEQUENCE phrase ___ 2 
START statement __ ____ ____ 2 

__ ____ _ _______ 1 
STOP statement _ ______ ____ __1 
STORE statement ________ _ 
STRING statement ____________ 2 
SUBTRACT statement 
indentifier /literal series ____________ 1 
FROM ______ ___________ 1 
FROM series _____________ 2 
GIVING identifier ______________ 1 
GIVING identifier series ______ 2 
ROUNDED _____ 1 
SIZE ERROR ___ _ ______ _ ___ 1 
CORRESPONDING __ 2 
SUPPRESS statement __ ______ 1 
TERMINATE statement ________ 1 
TRACE statement _____ _ 
UNSTRING statement 2 
USE statement __ _ _________ _ 
EXCEPTION/ERROR PROCEDURE 
ON fil-namllNPUT /OUTPUT /1-0 ___ 1 

_____________ 1 
______ 1 

_________ 1 
On file-name series ______ _ _______ 2 

_____ .2 
__________ 2 

__________________ 2 
ON EXTEND __________ 2 
LABEL PROCEDURE___ ___ _2 
BEFORE REPORTING ______ 1 
USE FOR DEBUGGING statement 
procedure-name ______________ 1 
procedure-name series ______ 1 
ALL PROCEDURES _ _ __________ 1 

434 

COM 
COM 
COM 
COM 
COM 
COM 
TBl 

SRT 
SRT 
SRT 
REL 
INX 
NUC 
DBM 
NUC 

NUC 
NUC 
NUC 
NUC 
NUC 
NUC 
NUC 
NUC 
RPW 
RPW 
EXT 
NUC 
DBM 

SEQ 
REl 
RAC 
INX 
SEQ 
REL 
RAC 
INX 
SEQ 
SEQ 
RPW 

DEB 
DEB 
DEB 

X 

X 
X 

X 

X 
X 
X 
X 
X 
X 
X 
X 

X 

X 

X 

X 

X 
X 

X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 

X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 

X 
X 

X 
X 
X 

X 
X 

X 

X 
X 
X 

V6 V3 

X 
X 
X 
X 
X 
X 
X 

X 

X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 

X 

X 
X 

X 

X 
X 

x 

X 
X 
X 

X 

X 
X 
X 
X 
X 
X 
X 
X 

X 

X 
X 

X 
X 
X 

X 
X 



COBOL 

Table 19-1 (cont) COBOL Language Implementations 

Language Elements 
TOPS-10 PDP-11 

Level Module ANS-66 ANS-74 COBOL COBOL 

ALL REFERENCES OF identifier ___ ~2 
file-name series 2 
cd-name series ___ _ _______ 2 
WRITE statement 
record-name _______ ______ 1 

1 
______ ._~ _________ 1 

_____ ~ _____ ~___ 1 
FROM identifier _________ 1 

____________ ._~ _________ 1 
_ ____ _____ _ __1 

_ . ______ . ___________ ~ ___ 1 

BEFORE! AFTER ADVANCING 
integer LINES _________ ~ ___ 1 
identifier LINES 2 
mnemonic-name ___ _ __ 2 
PAGE ____ ~____ _ 1 
AT END-OF-PAGE _____________ ~2 
INVALID KEY _______________ 1 
Positioning Clause _________ 1 

____ 1 

SEGMENTATION 
segment-number (priority-number) __ 1 
Fixed Memory Range 0-49 ____ 1 
Non-fixed Memory Range 50-99 ____ 1 
SEGMENT-LIMIT 2 

LIBRARY 
COpy _ _ _ _ _ _ ________ 1 
text-name__ ___ ~ _____ ~ __ 1 
literal ~ _ _ ___ ~ _________ ~ ___ _ 
literal OF!IN LIBRARY 2 
literal REPLACING 2 
used like a COBOL word 1 
pseudo-text may be replaced ___ 2 

REFERENCE FORMAT 
Sequence numbers ______ 1 
may be omitted 
Area A _______ _ 
Division header ________ 1 
Section header 1 
Paragraph header ___________ 1 
Data Division entries ____ ~ _______ 1 

435 

DEB 
DEB 
DEB 

SEQ 
REL 
RAC 
INX 
SEQ 
REL 
RAC 
INX 

SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
REL 
RAC 
INX 

SEG 
SEG 
SEG 
SEG 

LIB 
LIB 
EXT 
LIB 
LIB 
LIB 
LIB 

NUC 
EXT 
NUC 
NUC 
NUC 
NUC 
NUC 

X 

x 

x 

x 

x 
X 
X 

X 

X 
X 
X 
X 

X 
X 

X 

X 

X 
X 
X 
X 
X 

X 
X 
X 

X 
X 

X 
X 
X 

X 

X 
X 
X 
X 
X 
X 

X 

X 
X 
X 
X 

X 
X 

X 
X 
X 
X 

X 

X 
X 
X 
X 
X 

V6 V3 

X 

X 
X 
X 

X 
X 

X 
X 
X 

X 
X 

X 
X 
X 
X 

X 
X 

X 

X 
X 
X 
X 
X 
X 
X 

X 
X 

X 
X 
X 

X 

X 
X 

X 
X 
X 

X 

X 
X 
X 
X 

X 
X 
X 

X 
X 

X 
X 
X 
X 
X 
X 
X 



COBOL 

Table 19-1 (cont) COBOL language Implementations 

Language Elements Level Module 

Area B NUC 
Paragraphs ____ ~_ NUC 
Data Division Entries NUC 
Continuation Lines 
Nonnumeric literals 1 NUC 
Words and numeric literals 2 NUC 
Comments with· 1 NUC 
Comments with I 1 NUC 

~-------------

Abbreviations: 
X feature implemented according to standard 

feature not implemented 

TOPS-10 PDP-11 
ANS-68 ANS-74 COBOL COBOL 

V6 V3 

X X X X 
X X X X 
X X X X 

X X X X 
X X X X 
X X X X 
X X X 

feature available through a non-standard method 

NUC Nucleus RPW Report Writer 
TBl Table Handling SEG Segmenation 
SEQ Sequential 1/0 LIB Library 
REl Relative lID DEB Debugging 
INX Indexed 1/0 IPC Inter-program comm 
SRT Sort/Merge COM Communications 

436 



OVERVIEW 

CHAPTER 20 

DIBOL-11/DECFORM (V1) 

DIBOL-11/DECFORM is a software configuration option for DIGITAL's 
commercial data systems.The package includes the DIBOL-11 lan
guage processor and the DECFORM screen formatting and file review 
utility. DECFORM facilitates additions, reviews, changes, and verifica
tions to files. DIBOL provides the ability to do data manipulation, arith
metic expression evaluation, subscripting of tables, redefinition of 
records, external calls to other programs, and both sequential and 
random access to files. 

FEATURE TOPICS 
• DIBOL Features 

• Program Structure 

• DIBOL Statements 
- Compiler Directive Statements 
- Data Specification Statements 
- Data Manipulation Statements 
- Control Statements 
- Input/Output Statements 

• Subroutine Library 

• DECFORM 

Program Structure 
A DIBOL-11 program is separated into two major parts: a Data Divi
sion and a Procedure Division, both of which are linked to a compiler. 
The Data Division identifies the data elements and the record structure 
of all the data files used within the program. The Procedure Division 
contains the logic and data manipulation statements that implement a 
particular application program. 

437 



-I=> 
W 
00 



DIBOL-11 

DIGITAL BUSINESS-ORIENTED LANGUAGE IMPLEMENTATION 
SOURCE LANGUAGE INPUT MEDIA 

~EJ~c=J 
CARTRIDGE DISK FLOPPY TERMINAL 

DISK PAC~K _____ D_IS_K ____ KE_Y_BO_A_R_D~) 

OBJECT PROGRAM 

APPLICATION 
lIO 

Figure 20-1 

DlBOL-11 STATEMENTS 
DIBOL-11 statements fall into five functional groups: 

• Compiler (linked to both divisions) = Compiler directives 

• Data Division = Data specifications 

• Procedure Division = Data manipulation 
- Control statements 
- Input/Output statements 

Compiler Directive Statements 
These statements are not executable at run time and do not affect 
program operation. They are instructions to the compiler. The compil
er directive statements include: 

439 



START 

0180L-11 

Causes the DIBOL-11 program listing to skip to a 
new page. 

SUBROUTINE Identifies this program as an external subroutine. 

PROC Separates Data Division statements from Procedure 
Division statements. 

END Ends the last statement in a program. 

Data Division Data Specification Statements 
Data specification statements (also referred to as field definition state
ments) define and identify the characteristics of the data processed by 
a DIBOL-11 program; for example, data can be either nu meric or 
alphanumeric, have certain size requirements and initial values. Fields 
of data that are grouped together are preceded by a RECORD or 
COMMON statement, and may be redefined at that level. The data 
specification statements are: 

RECORD 

COMMON 

Defines the beginning of one or more grouped fields. 

Defines the beginning of one or more grouped fields 
and allows external subroutine to use/share a field 
without specifying it as an argument in an XCALL. 

Procedure Division Data Manipulation Statements 
These statements are used to perform calculations as well as data 
modification, conversion, and movement. They include both arithmet
ic and logical expressions, as stated below: 

INCR 

LOCASE 

UPCASE 

Increments a variable by one. 

Converts uppercase letters to lowercase. 

Converts lowercase letters to uppercase. 

Moves_the results of the expression on the right of 
the equal sign to the left of the equal sign. 

The operators in an expression represent various arithmetic and 
manipulative functions of the DIBOL-11 language. Operators are clas
sified either as unary or binary operators. DIBOL-11 expression oper
ators include: 

440 



DIBOL-11 

Type Symbol Description 

Arithmetic + Plus value 
(unary) Minus value or negation 

Arithmetic + Addition 
(binary) Subtraction 

Multiplication 
/ Division 
# Rounding 

Relational .EO. Equal 
(binary) .NE. Not equal 

.GT . Greater than 
. LT. Less than 
.GE. Greater than or equal to 
.LE . Less than or equal to 

Boolean . AND. Boolean conditional 
(binary) argument AND 

.OR. Boolean conditional 
argument OR 

Format Formats converted 
(binary) decimal data 

Control Statements 
Control statements govern the order of a program's instructions by 
modifying the normal order of statement execution. The DIBOL-11 
control statements are: 

CALL 

XCALL 

GOTO 

IF 

OFFERROR 

ONERROR 

RETURN 

Calls a subroutine within the program. 

Calls an external subroutine. 

Transfers control to another statement. 

Executes a statement based on the results of a logi
cal condition. IF uses relational and Boolean opera
tors. 

Disables trapping of run-time errors. 

Enables trapping of run-time errors. 

Returns from subroutine. 

441 



SLEEP 

DIBOL-11 

Suspends program operation for a specified time 
interval when operating in a timesharing environ
ment. 

STOP Terminates program execution and optionally chains 
to another program. 

Input/Output Statements 
Input/output statements control the transmission and reception of 
data between memory and PDP-11 input/output devices such as the 
disk, the line printer, and the terminal. The input/output statements 
are: 

ACCEPT 

CLOSE 

DELETE 

DETACH 

DISPLAY 

FORMS 

LPQUE 

OPEN 

READ 

READS 

RECV 

SEND 

STORE 

UNLOCK 

WRITE 

WRITES 

Receives a character from a device. 

Terminates use of an input/output channel and 
closes the associated file. 

Deletes a record from an ISAM file. 

Disconnects the program from its terminal when op
erating in a time-sharing environment. 

Sends a character string to a device. 

Sends special form control characters used by line 
printers. 

Requests printing of a file. 

Initializes a file in preparation for input/output oper
ations. 

Reads a record from a file (direct access). 

Reads the next record in sequence from a file. 

Receives a message from another program. 

Transmits a message to another program. 

Stores a record into an ISAM file. 

Releases a record for use by another program when 
operating in a time-sharing environment. 

Writes a record to a file (direct access). 

Writes the next record in sequence to a file. 

442 



DIBOL-11 

SUBROUTINE LIBRARY 
The DIBOL-11 external subroutine capability allows the user to devel
op subroutines to perform special purpose functions. A program can 
include any of the following routines as well as any the user may 
develop. 

ASCII ASCII equivalent of decimal character. 

DATE 

DECML 

DELETE 

ERROR 

FLAGS 

MONEY 

RENAM 

RSTAT 

RUNJB 

SLICE 

TIME 

TNMBR 

TTSTS 

VERSN 

DECFORM 

Return system date. 

Decimal equivalent of ASCII character. 

Delete specified file on specified device. 

Return error code and line number of last error. 

Set special run-time options. 

Define currency character for field editing. 

Rename a file. 

Return size and terminating characters of last record 
read. 

Start-up one job from another. 

Set interpreter cycle count for job priorities. 

Return system time. 

Return terminal number identification. 

Return terminal status. 

Return run-time monitor version number. 

DECFORM is DIGITAL's interactive, screen formatting, data entry, ed
it, file-review and maintenance system. It is a high-level code transla
tor or "forms compiler" that operates with DIBOL-11 on both CTS-300 
and CTS-500 operating systems. DECFORM brings to the small busi
ness environment many stand-alone, key-to-disk functions and file
review capabilities. In addition, it has its own forms-creation language 
and terminal. 

443 



DIBOL-11 

Features 

• Facilitates systems integration to permit processing of large quanti
ties of data. 

• Supports the special function keys of the VT50H and VT52 CRT 
terminals to provide cursor control and efficient operator interface. 

• Offers custom programming options in the high-level DIBOL-11 lan
guage to aid in system flexibility. 

• Offers an organized and structured approach to the implementation 
of data entry and file-review functions to provide easy applications 
implementation. 

• Offers automatic edit checking of keyed input data at the source to 
reduce error rate and assure data integrity. 

• Supports direct access to system files with both linear and ISAM 
search capability for maintenance and review to shorten application 
development time. 

• Offers an easy-to-use forms-creation language. The format 
developer lays out each screen by line and column position, with 
associated edit checks and labels, to produce desired formats 
quickly. 

TECHNICAL OVERVIEW 

Format Control File 
The code serving as input to DECFORM is called the Format Control 
File, which the format developer generates to specify the exact layout 
of data entry and review formats. A separate Format Control File is 
required for each format. DECFORM takes the code composing the 
Format Control File and translates it into DIBOL-11 program source 
statements with annotated comments. It is then _compiled into in
termediary code, linked, and stored. Each terminal using a DECFORM 
format operates independently of any other terminal and therefore 
requires its own copy of the linked format code. The amount of memo
ry space necessary to handle each format (and thus each terminal) 
varies, depending on the Size and complexity of the format. Generally, 
the space requirements are 4-6K words of memory per format. 

Specially Designed Terminal 
DECFORM utilizes its uniquely designed terminal keyboard located to 
the right of the VT52 and VT50H DECscope terminals. The VT52 is the 
recommended terminal because its 24-line by aO-character screen 
layout allows more room for screen formatting by offering 23 format
ting lines. 

444 



DIBOL-11 

Memory Requirements 
The DECFORM compiler will execute on any D350 system running a 
single-job monitor or in the background partition of an 11/34-based 
0350 system supporting memory management. Compiled DECFORM 
programs require a minimum of 8-9K bytes per program. Maximum 
program size is primarily a function of the number of fields in a pro
gram, the number of files opened, and the number of edit checks per 
field. It is also greatly influenced by the size of supporting data tables 
and the size of any user-written subroutines. These factors determine 
the number of DECFORM programs that can be run simultaneously, 
sharing available memory with the monitor. For example, a standard 
D350 system with 56K bytes of memory could support more than one 
OECFORM program, sharing available memory with the CTS-300 
monitor and ISAM. 

System Supervisor Functions 
Common to most key-to-storage data recording systems is a set of 
facilities generally referred to as system supervisor functions. The 
following section will outline those supervisory functions which are 
either standard or easily instituted under OECFORM. 

1. Field resequencing on output of records to files: 

Under CTS-300 - Accomplished through DECFORM. Any order
ing of fields may be created, independent of the displaying se
quence, by so specifying in the DECFORM Format Control File. 

Under CTS-500 - Same as CTS-300. 

2. Sequence numbering (that is, a method of identifying which termi
nal was responsible for sending a record, via communications): 

Under CTS-300 - Implementable under DECFORM via the pro
grammable option, through a 01BOL-11 routine. 

Under CTS-500 - Using the send/receive function, the 
information of the sender terminal must be embedded in the mes
sage. This must be programmed. 

3. Ability of the system supervisor to define constants (values) for 
specific fields: 

Under CTS-300 - Accomplished through DECFORM. At the time 
a format is created, the designer has the option of defining fields 
to constants and entering those constants, or having the operator 
enter the constants at the time the format is used. The system 
supervisor can also relate the constant directly to the operator via 
the display screen. 

445 



DIBOL-11 

4. Ability to define the system parameters, that is, number of termi
nals and facilities available for use: 

Under CTS-300 - These are defined initially at the time of SYS
GEN. 

Under CTS-500 - Falls out of the system definition functions 
which are specified at the time timesharing is started up. 

5. Ability to initialize the system controlled by the system supervisor: 

Under CTS-300 - A normal function; performed by the system 
operator whenever the system is started up. 

Under CTS-500 - Most functions can be reset any time needed 
(for example, TTY SET, UTILITY). Some basic ones, however, 
(e.g., DEFAULT, REFRESH, DISKINIT, etc.) must be booted in 
specifying the start of time-sharing. 

6. Loading (entering) of the date and time of day: 

Under CTS-300 - A normal function, performed by the system 
operator, whenever the system is up. 

Under CTS-500 - Using UTILITY, this can be accomplished at 
anytime required. 

7. Allow system .supervisor to perform a DUMP (of data files en
tered): 

Under CTS-300 - The operating system provides a DUMP and 
PIP utility. 

Under CTS-500 - Using PIP, this is a standard function. 

8. Interactive format definition and creation, where there is a ques
tion-and-answer dialog between the system and the format 
developer: 

Under CTS-300 - Through DECFORM, the forms creator gener
ates a control file which specifies all parameters required. It is not 
interactive; however, the creator tells the system what is needed. 

Under CTS-500 - Same as CTS-300. 

9. Data Substitution - substitution of data values in fields after the 
data entry operator has finished with them: 

Under CTS-300 - The data record can be passed to a (DIBOL-
11) program running in the system, which will manipulate the 
fields before storing the record in a file. 

Under CTS-500 - Same as CTS-300, except BASIC-PLUS, BA
SIC-PLUS-2, and COBOL could be used as well as DIBOL-11. 

446 



DIBOL-11 

10. Printing data (hard copy): 

Under CTS-300 - System provides a line printer spooler function 
called LPTSPL. 

Under CTS-500 - Same as CTS-300 facility but is called au E. 

11. Production (audit trail and operator) statistics: 

Under CTS-300 - Not presently implemented. 

Under CTS-500 - A utility called MONEY specifies much of this 
information by project/programmer number: connect time, CPU 
time, K-core ticks. 

12. Remote terminals and data transmission: 

Under CTS-300 - Communications through the use of DL 11 s. 

Under CTS-500 - Same as CTS-300. 

13. Supervisor's station (CRT) has control over other stations: 

Under CTS-300 - Through forced job start-up, one terminal can 
force the start of DECFORM jobs on other terminals. 

Under CTS-500 - Privileged users can force the start of 
DECFORM jobs on other terminals. 

14. Supervisor can obtain a listing of jobs (or formats) each terminal 
is using: 

Under CTS-300 - Use of STATUS utility gives this information. 

Under CTS-500 - Use of VIDEO DISPLAY utility gives this infor
mation. 

File Review and Update Modes 
There are four file-review and update modes of importance to a com
mercial system utilizing DEC FORM. 

1. The Inquiry mode. This mode inquires into a record within a file. 
This mode allows the operator to review data previously entered as 
a record within the system files. (No changes to any information 
within the file are allowed.) Both sequential and indexed sequential 
(ISAM) files may be used under this review function. 

2. The Change mode. This mode allows for both review and update of 
information in a record within a file. Once the record is displayed on 
the screen in the appropriate format, the operator may examine the 
data and make changes where necessary. This function is one of 
the primary methods by which files within the system are main
tained. Both sequential and ISAM files are supported. 

447 



DIBOL-11 

3. The Delete mode. This mode allows for selective deletion of rec
ords from a file. Again, the record is displayed on the screen, using 
the appropriate display format. Once the operator is sure that this is 
the record which is to be deleted, a message is sent to the system to 
delete it. The delete function is supported only under ISAM file 
structures. 

4. The Verification mode. This mode is analogous to the verify mode 
found on many stand-alone, key-to-disk data entry systems. This 
function increases the reliability of the data. With the verify function, 
an operator reviews a record displayed on the screen and selec
tively re-keys data fields. If any of the re-keyed fields differ from the 
original contents of those fields, the operator is informed of this 
difference and asked which data is desired. As with the data which 
was originally entered, any changes must also pass any edit checks 
associated with the fields in question. 

This function improves the overall accuracy of data entered into the 
system through the DEC FORM formats. 

Without key verification of input data, statistics have shown error 
rates in the neighborhood of 2-3 percent for data such as payroll 
input, accounts payable, and other financial data. With keyed 
verification, errol rates have been shown to be reduced to as 
little as one error in 100,000 key strokes. In areas where a single 
wrong character or a missed field might cause serious problems, 
key verification of data maximizes the assurance of data integrity. 

Application Example 
A typical application using DECFORM capability is commercial loan 
processing (automobile loans, home improvement loans, etc.) Appli
cation for a loan involves filling out a complicated form with interrelat
ed fields that must be completed correctly to avoid delay or, worse, 
rejection of the loan because of improperly formatted data. The easy 
construction of screen masks that DECFORM provides allows the loan 
department to construct different forms for different loans. The ability 
to verify the correctness of account numbers by doing immediate in
quiries to local data bases is extremely important when a payment is 
due. The many editing features that DECFORM provides allow for 
entry of data with maximum efficiency and accuracy. 

448 



0180L-11 

SAMPLE PROGRAM (DIBOL-11) 
START ;DATA SECTION 

RECORD 10BUF 
STOCKN, 04 
DESC, A25 
UCOST, D5 

OORDER, 04 
ECOST, D8 

RECORD ,X 
MAXREC, D6 

RECORD 
COUNT, 06,000001 
LIMIT, 06 

PROC(1) ;PROCEDURE SECTION 
OPEN (1, U, 'INVENT) 

READ (1, 10BUF, COUNT) 
LIMIT = MAXREC 

LOOP, INCR COUNT 

END 

READ (1, 10BUF, COUNT) 
IF (STOCKN.LT.1000)GO TO LOOP 

ECOST =(UCOSrOORDER)#1 

WRITE (1, 10BUF, COUNT) 

IF (COUNT.NE.L1MIT)GO TO LOOP 

CLOSE(1) 
STOP'REPRT8' 

;AREA USED FOR INPUT & OUTPUT 
;STOCK NUMBER, 4 DIGITS 
;DESCRIPTION, 25 ALPHA CHARS. 
;UNIT COST, 5 DIGITS WITH ACCURACY 
;TO THREE (IMPLIED) DECIMAL PLACES 
;OUANTITY ORDERED, 4 DIGITS 
;EXTENDED COST 8 DIGITS WITH ACCURACY 
;TO TWO (IMPLIED) DECIMAL PLACES 
;REDEFINE THE ORIGINAL RECORD 

;WORKING STORAGE AREA 
;RECORD COUNT 

;INITIALIZE CHANNEL 1 FOR INPUT/OUTPUT 
;DEVICE WITH FILENAME 'INVENT 
;READ THE FIRST RECORD IN THIS FILE 
;SAVE MAXREC WHICH IS THE NUMBER OF 
;RECORDS IN THIS FILE 
;ADD 1 TO COUNT 
;READ A RECORD FROM CHANNEL 1 
;IF STOCK # IS UNDER 1000 GO TO THE 
;STATEMENT CALLED LOOP 
;MUL TIPLY UNIT COST BY ORDER QUANTITY 
;STORE AS EXTENDED COST, ROUND & 
;TRUNCATE ONE DECIMAL PLACE BEFORE 
;STORING RESULT 
;WRITE THE MODIFIED RECORD OVER THE 
;OLDONE 
;IF NOT END OF FILE, GO BACK AND READ 
;ANOTHER RECORD 
;INPUT /OUTPUTFILE IS CLOSED 
;END THIS PROGRAM AND START A PROGRAM 
;CALLED REPRTB 
;OPTIONAL STATEMENT INDICATING END OF 
;PROGRAM 

449 



450 



OVERVIEW 

CHAPTER 21 

FORTRAN 

FORTRAN IV is a substantially improved form of the standard scientif
ic programming language that can be used on any PDP-11 configura
tion. FORTRAN IV-PLUS is a superset of FORTRAN IV supporting the 
same enhancements to the ANS standard, but also including numer
ous extensions. The primary diferences between the two FORTRANs 
are that the FORTRAN IV-PLUS compiler produces highly optimized 

. PDP-11 machine language code; creates hard code that uses the flo
ating point processor option in high-end PDP-11 s; and can produce 
sharable code. 

Emphasis in this chapter is placed on the common features of the two 
languages. 

FEATURE TOPICS 
• FORTRAN Specifications and National Standards 

• PDP-11 FORTRAN Language Description 
- Statements and Expression Operators 
- Fortran Library Functions 

• Fortan IV Functions and Features 

• Fortran IV Compiler Structure and Operation 

• Fortran IV Operating System Environments 

• Fortran IV-PLUS Functions and Features 
- Language Extensions and Statements 
- Library Functions 

• Fortran IV-PLUS Compiler Structure and Operation 

• Fortran IV-PLUS Operating System Environments 

451 



FORTRAN 

SPECIFICATIONS AND STANDARDS 
The PDP-11 FORTRAN language is based on the specifications for the 
ANS FORTRAN X3.9-1966. The following are enhancements to the 
American National Standard: 

• Array Subscripts - Any arithmetic expression can be used as an 
array subscript. If the value of the expression is not an integer, it is 
converted to integer type. 

• Array Dimensions - Arrays can have up to seven dimensions. 

• Alphanumeric Literals - Strings of characters bounded by apo
strophes can be used in place of Hollerith constants. 

• Mixed-mode Expressions - Mixed-mode expressions can contain 
any data type, including complex and byte. 

• End of line comments - Any FORTRAN statement can be followed, 
in the same line, by a comment that begins with an exclamation 
point. 

• Debugging Statements - Statements that are included in a pro
gram for debugging purposes can be so designated by the letter D 
in column 1. Those statements are compiled only when the associat
ed compiler command string option switch is set. They are treated 
as comments otherwise. 

• Read/Write End-of-file or Error Condition Transfer - The specifica
tions END=n and ERR=n (where n is a statement number) can be 
included in any READ or WRITE statement to transfer control to the 
specified statement upon detection of an end-of-file or error condi
tion. The ERR=n option is also permitted in the ENCODE and 
DECODE statements, allowing program control of data format er
rors. 

• General Expressions in I/O lists - General expressions are permit
ted in I/O lists of WRITE, TYPE, and PRINT statements. 

• General Expression DO and GO TO Parameters - General expres
'sions are permitted for the initial value, increment, and limit param
eters in the DO statement, and as the control parameter in the com
puted GO TO statement. 

• DO Increment Parameter - The value of the DO statement 
increment parameter can be negative. 

• Optional Statement Label List - The statement label list in an as
signed GO TO is optional. 

• Override Field Width Specifications - Undersized input data fields 
can contain external field separators to override the FORMAT field 
width specifications for those fields (called "short field termination"), 
permitting free-format input from terminals. 

452 



FORTRAN 

• Default FORMAT Widths - The FORTRAN IV programmer may 
specify input or output formatting by type and default width and 
precision values will be supplied. 

• Additional I/O Statements: 
File Control and Attribute Definition 

OPEN 
CLOSE 

List-directed (free format) u = logical unit number 
READ (u,*) 
WRITE (u,*) 
TYPE-
ACCEPT-
PRINT-

Device-oriented I/O 
ACCEPT 
TYPE 
PRINT 

Memory-to-memory formatting 
ENCODE 
DECODE 

Unformatted direct access I/O 
DEFINE FILE 
READ (u'r) 
WRITE (u'r) 
FIND (u'r) 

u = logical unit number 
r = record number 

The unformatted direct access I/O facility allows the FORTRAN pro
grammer to read and write files written in any format. 

• Logical Operations on INTEGER Data: The logical operators .AND., 
.OR., .NOT., .XOR., and .EQV. may be applied to integer data to 
perform bit masking and manipulation. 

• Additional Data Type: The byte data type (keyword LOGICAL *1 or 
BYTE) is useful for storing small integer values as well as for storing 
and manipulating character information. 

• IMPLICIT Declaration - The IMPLICIT redefines the implied data 
type of symbolic names. 

PD~11FORTRANLANGUAGE 

A FORTRAN program consists of FORTRAN statements and optional 
comments. There are two kinds of statements; executable, and non
executable. Executable statements describe the action of the pro
gram. Non-executable statements describe the data arrangement and 
characteristics, and provide editing and data conversion information. 

45.3 



FORTRAN 

There are assignment statements, control statements, I/O statements, 
FORMAT statements and specification statements. FORMAT and 
specification statements are non-executable. Table 12-1 summarizes 
the PDP-11 FORTRAN language components. 

Table 12-1 PDP-11 FORTRAN Language Summary 

Expression Operators 

TYPE OPERATOR 

Arithmetic exponentiation 
multiplication 

/ division 
+,- addition, subtraction, 

unary plus and minus 

Relational .GT. greater than 
.GE. greater than or 

equal to 
.LT. less than 
.LE. less than or 

equal to 
.EO . equal to 
. NO. not equal to 

Logical .NOT. .NOT.A is true 
if and only if 
A is false 

.AND. A.AND.B is true if 
and only if A and 
B are both true 

.OR. A.OR.B is true if 
and only if A or 
B or both are true 

,EOV. A.EOV.B is true if 
and only if either 
A and B are both true 
or A and B are both 
false 

.XOR. A.XOR.B is true if and 
only if A is true and 
B is false or B is true 
and A is false 

454 

OPERATES ON 

arithmetic or logical con
stants, variables and ex
pressions 

arithmetic or logical 
constants, variables 
and expressions (all 
relational operators 
have equal priority) 

logical or integer 
constants, variables 
and expressions 



Assignment Statements 

variable = expression 

ASSIGN-TO 

Control Statements 

GOTO Unconditional 

Computed 

Assigned 

IF Arithmetic 

Logical 

DO 

FORTRAN 

Arithmetic/Logical Assignment: 
The value of the arithmetic or logical 
expression is assigned to the variable. 

The ASSIGN statement is used to associate 
a statement label with an integer variable. 
The variable can then be used as a transfer 
destination in a subsequent assigned GO
TO statement in the same program unit. 

Transfers control to the same state
ment every time it is executed. 

Permits a choice of transfer destina
tions, based on a value of an expres
sion within the statement. 

Transfers control to a statement label 
that is represented by a variable. Be
cause the relationship between the 
variable and a specific statement la
bel must be established by an AS
SIGN statement, the transfer destina
tion can be changed, depending upon 
which ASSIGN statement was most 
recently executed. 

Transfers control to a statement de
pending on the value of an arithmetic 
expression. Used for conditional con
trol transfers. 

Executes a statement if the test of a 
logical expression is true. 

Causes the statements in its range to be 
repeatedly executed a specified number of 
times. The range of the DO begins with the 
statement following the DO and ends with a 
specified terminal statement. The number 
of iterations is determined by the values for 
the initial, terminal, and increment parame
ters. 

455 



CONTINUE 

CALL 

RETURN 

PAUSE 

STOP 

END 

OPEN 

FORTRAN 

Causes no processing. Passes control to 
the next executable statement. Used pri
marily as the terminal statement of a DO 
loop when that loop would otherwise end 
with a GO TO, arithmetic IF, or other prohi
bited control statement. 

Calls a SUBROUTINE subprogram and 
passes it actual arguments to replace the 
dummy arguments in the subprogram. 

Returns control from a subprogram to the 
calling program unit. 

Prints a message (if specified) on the termi
nal and suspends execution until the user 
responds. 

Terminates program execution and prints a 
message (if specified) on the terminal. 

Marks the end of a program unit. In a main 
program, if control reaches the END state
ment, a CALL EXIT is implicitly executed. In 
a subprogram, a RETURN statement is im
plicitlyexecuted. 

Associates an existing file with a logical unit, 
or creates a new file and associates it with a 
logical unit. In addition, the statement can 
contain specifications for file attributes that 
direct the creation or subsequent process
ing. The attributes include specifying: the 
file name, the method of access (direct, se
quential or append), protection (read only 
or read/write), form (formatted, 
unformatted), record size, block allocation 
or extension, whether the file can be 
shared, and whether the file is to be deleted 
or saved when closed (disposition). In addi
tion, the OPEN statement can be modified 
by an ERR keyword which specifies the 
statement to which control is transferred if 
an error is detected. 

456 



CLOSE 

Input/Output Statements 

READ Formatted 

Unformatted 

Direct Access 

List-directed 

Error Control 

WRITE Formatted 

Unformatted 

FORTRAN 

Disassociates a file from a logical unit. Dis
position attributes specified in the OPEN 
statement can be modified. For example, a 
file opened as a file to be deleted can be 
saved, or a file opened to be saved can be 
deleted. 

Reads at least one logical record from 
the specified unit according to the 
given format specifications, and as
signs values to the elements in a list. 

Reads one logical record from the 
specified unit, assigning the input val
ues to the variables in a list. 

Reads the specified logical record 
form the specified unit and assigns 
the input values to the variables in a 
list. 

Reads data from the specified unit, 
converts it into internal format, and 
assigns the input values to the ele
ments of the I/O list, converting the 
value to the data type of the element if 
necessary. 

Optional elements in the READ state
ment allow control transfer on error 
conditions. If an end-of-file condition 
is detected and the END option is 
specified, execution continues at a 
given statement. If a recoverable I/O 
error occurs and the ERR option is 
specified, execution continues at a 
given statement. 

Writes one or more logical records 
containing the values of the variables 
in a list onto the specified unit in the 
given format. 

Writes one logical record containing 
the values of the variables in the list 
onto the specified unit. 

457 



Direct Access 

List-directed 

Error Control 

ACCEPT 

TYPE 

PRINT 

DEFINE FILE 

REWIND 

BACKSPACE 

END FILE 

FIND 

FORTRAN 

Writes one logical record containing 
the values of the variables in the list 
into the specified record of the given 
unit. 

Writes the elements of the I/O list to 
the specified unit, translating and ed
iting each value according to the data 
type of the value. 

Optional elements in the WRITE state
ment allow control transfer on error 
conditions. If an I/O error occurs and 
the ERR option is specified, execution 
continues at the given statement. 

Identical to a formatted or list-directed 
READ statement, except that input comes 
from a logical unit normally connected to 
the terminal keyboard. 

Identical to a formatted or list-directed 
WRITE except that output is directed to a 
logical unit normally connected to the termi
nal printer. 

Same as a TYPE statement, except that out
put is directed to a logical unit normally 
connected to the line printer. 

Defines the record structure of a direct ac
cess file: the logical unit number, the num
ber of fixed-length records in the file, the 
length of a single record, and the pOinter to 
the next record. 

The given logical unit is repOSitioned to the 
beginning of the currently open file. 

The currently open file on the given logical 
unit is backspaced one record. 

An end-of-file record is written on the file 
open on the given logical unit. 

Positions the direct access file on the given 
logical unit to the specified record and sets 
the associated variable. 

458 



ENCODE 

DECODE 

Format Statements 

FORMAT 

FORTRAN 

Writes the elements in the 1/0 list into a 
memory buffer. translating the data into AS
CII format. The ERR option allows control 
transfer to a given statement if an error con
dition is detected. 

Reads the elements in the 1/0 list from a 
memory buffer. translating the data from AS
CII format into internal binary format. The 
ERR option allows control transfer to a 
given statement if an error is detected. 

Describes the format in which one or more 
records are to be transmitted. The format 
descriptors include integer and octal. logi
cal. real. double precision. complex. literal 
and editing. Real. double precision and 
complex formats can be scaled. 

Specification Statements 

IMPLICIT 

type var1.var2 ..... varn 

DIMENSION 

Overrides the implied data type of symbolic 
names. in which all names that begin with 
the letters I. J. K. L. M. or N are presumed to 
be INTEGER values. and all names begin
ning with any another letter are assumed to 
be REAL values. unless otherwise specified. 
IMPLICIT allows the programmer to define 
the initial letters for implied data types. If a 
variable is not given an explicit type. and its 
name begins with a letter defined in an IM
PLICIT statement. its default type is that de
fined by the IMPLICIT statement. 

Type Declaration: 
The given variable names are assigned the 
specified data type in the program unit. 
Type is one of INTEGER*2. INTEGER*4. RE
AL*4. REAL*8. DOUBLE PRECISION. COM
PLEX*8. LOGICAL *4. LOGICAL *1 or BYTE. 

Reserves storage space for the specified 
array(s). 

459 



COMMON 

EQUIVALENCE 

EXTERNAL 

DATA 

PROGRAM 

FORTRAN 

Reserves one or more blocks of storage 
space under the specified name to contain 
the variables associated with the block 
name. 

Declares two or more variable names in the 
same program unit to be associated with 
the same storage location. 

Permits the use of external procedures 
(functions, subroutines and FORTRAN li
brary functions) as arguments to other sub
programs. 

Assigns initial values to variables and array 
elements prior to program execution. 

Assigns a name to a main program unit. If 
present, it is the first statement in the main 
program. 

User-Written Subprograms·· 

name (var1, var2, ... ) = Arithmetic Statement Function: 
expression Creates a user-defined function having the 

variables as dummy arguments. When 
referenced, the expression is evaluated us
ing the actual arguments in the function call. 

FUNCTION Begins a FUNCTION subprogram, indicat
ing the program name and any dummy vari
able names. An optional type specification 
can be included. 

SUBROUTINE Begins a SUBROUTINE subprogram, indi
cating the program name and any dummy 
variable names. 

BLOCK DATA Specifies the subprogram which follows as 
a BLOCK DATA subprogram. An optional 
name for the program unit may be given. 

FORTRAN Library Functions 

ABS(X) 
IABS(X) 
DABS(X) 
CABS(Z) 
FLOAT(I) 

Real absolute value 
Integer absolute value 
Double Precision absolute value 
Complex to Real, absolute value 
Integer to Real conversion 

460 



!F!X(X) 
SNGL(X) 
DBLE(X) 
REAL(Z) 
AIMAG(Z) 
CMPLX(X,Y) 
AINT(X) 
INT(X) 
IDINT(X) 
AMOD(X,Y) 
MOD(I,J) 
DMOD(I,J) 
AMAXO(I,J, ... ) 
AMAX1(I,J, ... ) 
MAXO(I,J, ... ) 
MAX1(X,Y, ... ) 
DMAX1(X,Y, ... ) 
AMINO(I,J, ... ) 
AMIN1(X,Y, ... ) 
MINO(I,J, ... ) 
MIN1(X,Y, ... ) 
DMIN1(X,Y, ... ) 
SIGN(X,Y) 
ISIGN(I,J) 
DSIGN(X,Y) 
DIM(X,Y) 
IDIM(I,J) 
EXP(X) 
DEXP(X) 
CEXP(Z) 
ALOG(X) 
ALOG10(X) 
DLOG(X) 
DLOG10(X) 
CLOG(Z) 
SQRT(X) 
DSQRT(X) 
CSQRT(Z) 
SIN(X) 
DSIN(X) 
CSIN(Z) 
COS(X) 
DCOS(X) 
CCOS(Z) 

FORTRAN 

Real to Integer conversion 
Double to Real conversion 
Real to Double conversion 
Complex to Real conversion 
Complex to Real conversion 
Real to Complex conversion 
Real to Real truncation 
Real to Integer conversion 
Double to Integer conversion 
Real remainder 
Integer remainder 
Double Precision remainder 
Real maximum from Integer list 
Real maximum from Real list 
Integer maximum from Integer list 
Integer maximum from Real list 
Double maximum from Double list 
Real minimum of Integer list 
Real minimum of Real list 
Integer minimum of Integer list 
Integer minimum of Real list 
Double minimum from Double list 
Real transfer of sign 
Integer transfer of sign 
Double Precision transfer of sign 
Real positive difference 
Integer positive difference 
e raised to the X power (X is Real) 
e raised to the X power (X is Double) 
e raised to the Z power (Z is Complex) 
Returns the natural log of X (X is Real) 
Returns the log base 10 of X (X is Real) 
Returns the natural log of X (X is Double) 
Returns the log base 10 of X (X is Double) 
Returns the natural log of Z (Z is Complex) 
Square root of Real argument 
Square root of Double Precision argument 
Square root of Complex argument 
Real sine 
Double Precision sine 
Complex sine 
Real cosine 
Double Precision cosine 
Complex cosine 

461 



TANH(X) 
ATAN(X) 
DATAN(X) 
ATAN2(X,Y) 
DA T AN2(X, Y) 
CONJG(Z) 
RAN(I,J) 

FORTRAN 

Hyperbolic tangent 
Real arctangent 
Double Precision arctangent 
Real arctangent of (X/Y) 
Double Precision arctangent of (X/Y) 
Complex conjugate 
Returns a random number between 0 and 1 

FORTRAN IV FUNCTIONS AND FEATURES 
The FORTRAN IV compiler and Object Time System is available as an 
optional language processing system for the RT -11, RSTS/E, RSX-
11 M, and lAS operating systems. The FORTRAN compiler accepts 
source programs written in the FORTRAN IV language and produces 
an object file which must be linked prior to execution. FORTRAN IV 
supports all PDP-11 hardware options: EAE, EIS, FIS, and FPB-11. 

The FORTRAN IV compiler is characterized by extremely rapid compi
lation rates. The FORTRAN IV compiler also performs well in small 
environments. On an RT-11 system with as little as 8K words of memo
ry, FORTRAN IV can compile programs containing as many as 450 
lines. On an RT -11 system with 28K words, FORTRAN IV can compile 
programs containing as many as 2200 lines. 

Despite its small size requirements and high compilation rate, 
FORTRAN IV provides a high level of automatic object program op
timization. The compiler performs redundant expression elimination, 
constant expression folding, branch structure optimization, and sever
al types of subscripting optimizations. 

FORTRAN IV has no statement ordering requirements, allowing de
clarations to appear anywhere within the source program. Terminal 
format input (using the tab character to delimit field) makes program 
preparation easier. 

In order to allow larger FORTRAN programs, FORTRAN IV can allo
cate array storage outside a program's logical address space. These 
arrays are called virtual arrays and can be of any data type; they may 
also require operating system support of memory management direc
tives. 

FORTRAN IV COMPILER OPERATION 
The FORTRAN IV compiler accepts a source written in the FORTRAN 
language as input and produces an object file and a listing file as 
output. The object file must subsequently be processed by the 
operating system's linker program, for example, the Linker or Task 
Builder, to produce an executable program. 

462 



FORTRAN 

COMMAND STRING SPECIFICATION OPTIONS 
In the input/output file specification command string issued to the 
FORTRAN IV compiler to request program compilation, the user can 
specify a number of switch parameter options. Some of the parame
ters are: 

Specify Listing Options 
The user can request a number of listing options. By default, the user 
is supplied with diagnostics (if any), a source program listing, and the 
storage map. In addition, the user can request a generated code list
ing, or can combine any of the listing options in a single listing. The 
generated code listing contains a symbolic representation of the ob
ject code generated by the compiler, including a location offset from 
the base of the program unit, the symbolic Object Time System (OTS) 
routine names, and routine arguments. The code generated for each 
statement is labeled with the same internal sequence number that 
appears in the source program listing, for easy cross reference. 

Selectively Compile Debugging Statement Lines 
The user can request the compiler to include in the compilation those 
lines with a D in column one. These statements allow the inclusion of 
programmer-selected debugging aids (see below). 

Code Generation Options 
The compiler can generate in-line code which directly supports FIS, 
EIS, EAE or threaded code for machines without the additional arith
metic hardware. 

Enable/Disable the Common Subexpression Optimizer 
In general, the optimizer will make the program run faster. Disabling 
the optimizer can reduce program storage requirements, but will in
crease execution time. 

Include or Suppress Internal Sequence Numbers 
Suppressing internal sequence number accounting reduces program 
storage requirements for generated code and slightly increases 
execution time, but disables line number information during trace
back. 

Allocate Two Words for Default Length of Integer Variables 
Normally, single storage words will be the default allocation for integer 
variables not given an explicit length specification (Le., INTEGER*2 or 
INTEGER*4). Only one word is used for computation. The user can 
request that the default allocation be two storage words. 

Enable/Disable Vectoring of Arrays 
Array vectoring is a process which decreases the time necessary to 
reference elements of a multidimensional array by using some addi-

463 



FORTRAN 

tional memory to store array accessing information. If array vectoring 
is enabled, the compiler decides whether to vector a multidimensional 
array based on the ratio of the amount of space required to vector the 
array over the total space required by the array. If this ratio is greater 
than 25%, the array is not vectored, and standard mapping is used 
instead. If size is a more critical factor than speed, the user can disable 
the vectoring of all arrays. If arrays are vectored, it is so noted in the 
storage map listing. 

Enable/Disable Compiler Warning Diagnostics 
Warning diagnostics report conditions which are not fatal error condi
tions, but which can be potentially dangerous at execution time, or 
which may present compatibility problems with other FORTRAN com
pilers running on PDP-11 operating systems. For example, a warning 
message is generated if a variable name exceeds six characters in 
length. This is potentially dangerous if another variable name has the 
same first six characters. The warning diagnostics are normally en
abled, but the user can suppress their inclusion in the diagnostics 
listing. 

Internal Operation and Structure 
Instead of using temporary files to process source programs, the 
FORTRAN IV compiler performs all its activities in main memory. It 
reads the entire source program once, stores it in memory in a com
pacted format, and processes the compacted code in memory. Since 
a disk device is not used for temporary file operations, compilation 
speed is significantly increased. 

To reduce the memory requirements of such a compilation system, 
the FORTRAN IV compiler employs a multi-phase overlaid structure. 
The compiler consists of a large number of overlays. Most of the space 
allocated to the compiler is occupied by the compressed source code. 
Figure 12-1 illustrates the compile-time memory map. 

464 



FORTRAN 

SYMBOL TABLE 
(DYNAMIC) 

(GROWS DOWNWARD) 

r------j-------
CURRENT INTERNAL 
FORM OF SOURCE 

PROGRAM 
(DYNAMIC) 

110 BUFFER AREA 

ACTIVE OVERLAY AREA 

ROOT SEGMENT AND 
OVERLAY LOADER 

VECTORS AND SYSTEM 
COMMUNICATION AREA 

HIGH ADDRESSES 

.25K 

MINIMUM 
1.25K WORDS 

.25K WORDS 

.25K WORDS 

LOW ADDRESSES 

Figure 12-1 Compile-Time Memory Map 

The compiler goes through a series of processing phases, one for 
each of its overlays. Each program segment is processed separately. 
The basic processing phases are: 

1. Source program compaction and listing 

2. Syntax analysis and error reporting 

3. Statement processing 

4. Code generation 

5. Code optimization 

The compiler begins by reading in as much of the source program as 
can fit in memory. It then compresses the source code in memory by 
removing blanks and other unnecessary data. It continues to read in 
more source code, compressing it as it goes, until the entire program 
segment fits in memory. 

Once the source code is compacted into memory, the compiler begins 
processing the internal form of the source code as a whole. Because 
the entire program segment is available to the compiler, FORTRAN IV 
does not require statement ordering restrictions. 

During the first stage of code generation, the compiler immediately 
writes as much information as possible to the object file. This step is 
necessary to further compress the internal source code to enable the 
symbol table to grow in the later stages of processing. 

465 



FORTRAN 

The non-executable statements are eligible for immediate processing, 
since the information they provide is not needed until run-time. There
fore, the compiler searches for all the occurrences of non-executable 
statements, such as FORMAT and DATA statements, produces the 
beginning of the object module, and compacts the internal source 
code further. 

The compiler enters all variables and constants not yet processed into 
the symbol table, and performs the syntax scan of the executable 
statements. The program is translated into an internal format in pre
paration for final code generation. 

Object Code Generation 
A few executable FORTRAN statements can be translated directly into 
machine instructions. Typical FORTRAN operations, however, require 
long sequences of PDP-11 machine instructions. For example, stan
dard sequences are needed to locate an element of a multidimension
al array, initialize an I/O operation, or simulate a floating point 
operation not supported by the hardware configuration. 

The common sequences of PDP-11 machine instructions are con
tained in a library known as the FORTRAN Object Time System (OTS). 
The FORTRAN IV compiler does not always generate pure machine 
instructions for the FORTRAN source code statements. It simply deter
mines which combination of appropriate OTS routines is needed to 
implement a FORTRAN program. During the linking process for an 
object program, the linker utility includes the needed OTS routines 
into the load module. During program execution, these routines are 
chained together to effect the desired result. However, in-line code is 
used for improved execution speed for some operations where appro
priate. 

The compiler references a library instruction sequence by generating 
a word containing the address of the first instruction in the OTS rou
tine, followed by the information upon which the routine is to operate 
(the operands). For example, an OTS routine used to perform the end
of-DO-Ioop sequence must be passed to the location of the index 
variable, the limit value, and the address of the beginning of the loop. 

The compiler and OTS make use of the PDP-11 general register and 
indirect addressing facility to have the OTS routines executed at run
time. Register 4 (R4) is used to chain together the selected OTS rou
tines. The last instruction executed in each library routine is a JMP 
(R4)+, which transfers control to the next library instruction sequence. 

466 



FORTRAN 

Optimizations 
The FORTRAN IV compiler performs the following optimizations dur
ing compilation: 

1. Compiled FORMAT Statements 
The compiler interprets the FORMAT statements at compile-time, 
translating the format into an internal form. This not only increases the 
execution speed of the program, it decreases its size, because less 
run-time code is needed. 

2. Array Vectoring 
Array vectoring decreases the time necessary to reference elements 
of a multidimensional array by using additional memory to store the 
array. If an array is vectored, a particular element in the array can be 
located by a simplified mapping function, without the need for multipli
cation operations. 

3. Constant Folding 
Integer constant expressions are evaluated at compile-time. 

4. Compile-time Evaluation of Constant Subscript Expressions 
Constant subscript expressions in array calculations are evaluated at 
compile-time. 

5. Elimination of Unreachable Code 
Statements that are never reached by flow of control are eliminated 
from the object code. 

6. Common Subexpression Elimination 
Redundant subexpressions whose operands are not changed 
between computations are replaced by a temporary value calculated 
onlyonce. 

7. Peephole Optimizations 
The compiler examines the internal form of the object code on an 
operation-by-operation basis to replace sequences of operations with 
shorter and faster equivalent operations. For example, the compiler 
replaces a divide-by-two operation with a multiply-by-one-half opera
tion. There is a large set of these kinds of operations. 

8. Branch Optimizations for Arithmetic and Logical IF 
Branch structure optimizations improve program speed and decrease 
its size. For example, an arithmetic IF statement can often be im
proved: 

IF(A-7.0)100,200,100 !goto 200 if A is equal to 7.0 
100 CONTINUE 

The compiler will optimize this statement to: 

IF(A .EO. 7.0) GOTO 200 

467 



FORTRAN 

9. Register Allocation 
Register allocation is optimized over a series of statements or loops to 
minimize direct memory references for variables. 

10. Loop Optimization 
The optimizer locates expressions dependent on the loop index vari
able, and reduces them to less complex arithmetic operations. For 
example multiplies are replaced with adds and subscripts are re
placed with direct memory references. 

Libraries 
The FORTRAN programmer can create a library of commonly used 
assembly language and FORTRAN functions and subroutines. The 
operating system's librarian utility provides a library creation and 
modification capability. Library files may be included in the command 
string to the linker utility. The linker recognizes the file as a library file 
and links only those routines in the library that are required in the 
executable program. By default, the linker also automatically searches 
the FORTRAN system library for any other required routines. 

Debugging a FORTRAN Program 
Two debugging facilities are available to the FORTRAN programmer. 
The FORTRAN Object Time System provides the traceback feature for 
fatal run-time errors. This feature locates the actual program unit and 
line number of a run-time error. Immediately following the error mes
sage, the error handler will list the line number and program unit name 
in which the error occurred. If the program unit is a subroutine or 
function subprogram, the error handler will trace back to the calling 
program unit and display the name of that program unit and the line 
number where the call occurred. This process will continue until the 
calling sequence has been traced back to a specific line number in the 
main program. This allows the exact determination of the location of 
an error even if the error occurs in a deeply ;lested subroutine. 

In addition to the FORTRAN OTS error diagnostics which include the 
traceback feature, there is another debugging tool available. A "D" in 
column one of a FORTRAN statement allows that statement to be 
conditionally compiled. These statements are considered comment 
lines by the compiler unless the appropriate debugging lines switch is 
issued in the compiler command string. In this case, the lines are 
compiled as regular FORTRAN statements. Liberal use of the PAUSE 
statement and selective variable printing can provide the programmer 
with a method of monitoring program execution. This feature allows 
the inclusion of debugging aids that can be compiled in the early 
program testing stages and later eliminated without source program 
modification. 

468 



FORTRAN 

FORTRAN IV OPERATING ENVIRONMENTS 
The FORTRAN IV compiler and OTS is available as an optional lan
guage processor for the RT-11, RSTS/E, RSX-11 M and lAS operating 
systems. The compiler operation and facilities under each of these 
systems are essentially identical. 

Each operating system provides additional features particular to the 
environment. For example, the monitor programmed requests or exe
cutive directives are usually available as a library of FORTRAN-call
able routines. 

Under RT-11 
The entire FORTRAN IV system is operational in 8K words under the 
RT -11 SJ, FB, or XM monitors. The RT -11 System Subroutine Library 
(SYSLlB) is a collection of FORTRAN-callable routines which allow a 
FORTRAN user to utilize various features of the RT -11 Fore
ground/Background (F/B) and Single-Job monitors. SYSLIB also 
provides various utility functions, a complete character string manipu
lation package, and 2-word integer support. SYSLIB is provided as a 
library of object modules to be combined with FORTRAN programs at 
link-time. SYSLIB allows the RT -11 FORTRAN user to write almost all 
application programs in FORTRAN with no assembly language cod
ing. 

Also available under RT -11 are: 

• A library of FORTRAN-callable graphics routines supporting the 
VT11, GT40, GT42, and GT44 graphics hardware systems. 

• Plotting support for the L V11 electrostatic printer Iplotter. 

• Laboratory data acquisition and manipulation routines used in con
junction with the LPS-11 and AR11 laboratory peripheral hardware. 

• The Scientific Subroutine Library, providing FORTRAN-language 
routines for mathematical and statistical applications. 

• Stand-alone program execution 

Under RSTS/E 
RSTS/E FORTRAN IV operates in interactive or batch mode under the 
RSTS/E monitor. The FORTRAN IV system includes the FORTRAN IV 
compiler, the Object Time System (OTS), and several utility programs. 

The entire system (including compiler and optimization components) 
is completely functional in an 8K-word user area. A system interface 
occupying 4K words of memory is sharable among all FORTRAN IV 
users on the system. In addition, the FORTRAN IV system provides 
overlay support for programs and data, allowing extremely large pro
grams to be run in a small region of memory. 

469 



FORTRAN 

RSTS/E FORTRAN IV provides assembly language subprogram sup
port, using the MACRO assembler. Although the assembly language 
subprogram can not issue any monitor calls, MACRO provides the 
experienced user with a tool to further enhance computational per
formance. 

Under RSX·11 and lAS 
In RSX-11 M, the FORTRAN IV compiler runs in a minimum partition of 
7K words. If run in a larger partition, it uses the extra space for pro
gram and symbol table storage. In RSX-11 D and lAS, the compiler 
task requires 8K words minimally and can be extended when it is 
installed. As with RSX-11 M systems, the additional space allows the 
processing of larger FORTRAN programs. 

An RSX-11 liAS library consists of object modules. Two types of librar
ies exist, shared and relocatable. 

Relocatable libraries are stored in files. Object modules from 
relocatable libraries are built into the task image of each task refer
encing the module. The Task Builder is used to include modules from 
relocatable libraries in a task image. When a library specification is 
encountered in the command string, those modules in the library 
which contain definitions of any currently undefined global symbols 
are included in the task image. The user can construct relocatable 
libraries of assembly language and FORTRAN routines using the li
brarian utility. 

Shared libraries are located in main memory and a single copy of each 
library is used by all referencing tasks. Access to a shared library is 
gained by specifying the name of the library in an option at task build 
time. Shared libraries are built using the task builder. They must con
tain sharable (reentrant) code. 

Each RSX-11 liAS system has a system relocatable library. The system 
relocatable library is automatically searched by the Task Builder if any 
undefined global references are left after processing all user-specified 
input files. The FORTRAN OTS may be included in the system library 
and hence is loaded automatically with FORTRAN programs. 

The RSX-11 liAS system library provides FORTRAN-callable forms of 
most executive directives. The FORTRAN programmer can schedule 
the execution of tasks, communicate with concurrently executing 
tasks, and manipulate system resources through these calls. 

Industrial Society of America (ISA) extensions for process 1/0 control 
are available in FORTRAN-callable format under RSX-11 M. Support 
for laboratory and process control peripherals is also included. 

470 



FORTRAN 

FORTRAN IV-PLUS FUNCTIONS AND FEATURES 
The FORTRAN IV-PLUS Compiler and Object Time System is an op
tional language processing system for the RSX-11 D, RSX-11 M, and 
lAS operating systems. The FORTRAN IV-PLUS compiler accepts 
source programs written in the PDP-11 FORTRAN language and pro
duces an object file which must be linked prior to execution. The 
FORTRAN IV-PLUS language is a superset of PDP-11 FORTRAN and 
is based on the specifications for the American National Standard 
FORTRAN X3.9-1966. 

Both the FORTRAN IV and the FORTRAN IV-PLUS compilers can be 
used in the same RSX family environments. If both FORTRAN compi
lers are to be used on the same system, two separate FORTRAN 
library files are maintained. One compiler must be selected as the 
"default" compiler. The one selected as the default is the one that can 
be used in batch processing. 

The primary differences between the FORTRAN IV compiler and the 
FORTRAN IV-PLUS compiler are that the FORTRAN IV-PLUS compi
ler: 

• supports extended language features 

• produces highly optimized PDP-11 machine language code 

• requires the FPP Floating Point Processor option 

The FORTRAN IV-PLUS compiler generates optimized code resulting 
in fast user program execution. The FORTRAN IV compiler is de
Signed to provide high-speed program compilation and to operate on 
minimum core configurations. 

With the exception of virtual array support in FORTRAN IV, the 
FORTRAN IV-PLUS language is upward compatible with the PDP-11 
FORTRAN IV language. The FORTRAN IV-PLUS system supports the 
same enhancements to the language standard as FORTRAN IV. In 
addition, FORTRAN IV-PLUS also includes the following extensions: 

• ENTRY statements can be used in SUBROUTINE and FUNCTION 
subprograms to define multiple entry points in a single program 
unit. 

• PARAMETER statements can be used to give symbolic names to 
constants. 

• Lower bounds as well as upper bounds of the array dimension can 
be specified in array declarators. The value of the lower bound 
dimension declarator can be negative, zero, or positive. 

• The data type INTEGER*4 provides a sign plus 31 bits of precision. 
INTEGER*4 allows a greater range of values to be represented than 
INTEGER*2. Both data types can be used in the same program. 

471 



FORTRAN 

• A compiler command line specification allows all INTEGER and 
LOGICAL declarations without explicit length specifications to be 
considered as INTEGER*2 and LOGICAL *2, or INTEGER*4 and 
LOGICAL *4, respectively. 

• The following 1/0 statements have been added: 
READ (u'r,fmt) 

Direct access using formatted records 
WRITE (u'r,fmt) 

These 1/0 statements provide formatted direct access 1/0 opera
tions, since the READ and WRITE statements contain references to 
FORMA T statements or format specifications in arrays. 

• Generic function selection by argument data type is provided for 
many FORTRAN library functions. 

• The control variable of a DO statement can be a double precision 
data type as well as an INTEGER*2, INTEGER*4, or REAL data type. 
The initial, terminal, and increment parameters can be of any data 
type and are converted before use to the type of the control variable 
if necessary. 

• The INCLUDE statement incorporates FORTRAN source text from a 
separate file into a FORTRAN program. 

• The number of times a DO loop is executed (called the iteration 
count) is determined at the initialization of the DO statement and is 
not re-evaluated during successive executions of the loop. Conse
quently, the number of times the loop is executed will not be affect
ed by changing the variables iJsed in the DO statement. That is, the 
terminal and increment parameters can be modified within the loop 
without affecting the iteration count. 

LANGUAGE EXTENSIONS 
The following paragraphs discuss some of the additional language 
components that FORTRAN IV-PLUS provides to the FORTRAN IV 
language. Table 13-1 at the end of this chapter compares the im
plementation of the FORTRAN IV and FORTRAN IV-PLUS languages. 

I/O Statements 
FORMATTED DIRECT ACCESS INPUT/OUTPUT 
Formatted direct access READ and WRITE statements are used to 
perform direct access I/O of character data with a file on a direct 
access device. The OPEN statement is used to establish the attributes 
of the file. Each READ or WRITE contains an expression that specifies 
the number of the record to be accessed. 

472 



FORTRAN 

The formatted direct access READ statement causes the specified 
record to be read from the direct access file currently associated with 
the given logical unit. The characters in the record are scanned and 
converted as indicated by the given format specification. The resulting 
values are assigned to the elements in a list. 

The formatted direct access WRITE statement writes the specified 
record in the direct access file currently associated with the given 
logical unit. A list specifies a sequence of values which are converted 
to characters and positioned as specified by a format specification. 

Specification Statements 
INCLUDE 
Specifies that the contents of a designated file are to be incorporated 
in the FORTRAN compilation directly following the INCLUDE state
ment. An INCLUDE statement can appear anywhere a comment line 
can appear. When the compiler encounters an INCLUDE statement, it 
stops reading statements from the current file and starts reading 
statements from the included file. When the end of the included file is 
reached, compilation resumes with the statement following the IN
CLUDE statement. An INCLUDE statement can be contained in an 
included file. 

The INCLUDE statement provides a mechanism for writing modular 
reliable and maintainable programs by eliminating duplication of 
source code. A section of program text that is used by several pro
gram units, such as a COMMON block specification, can be created 
and maintained as a separate source file. All program units which 
referenced the COMMON block then merely INCLUDE this common 
file. Any changes to the COMMON block will be reflected automatically 
in all program units after compilation. 

EXTERNAL *name 
Specifies that a name refers to a user-defined external FUNCTION or 
SUBROUTINE subprogram, in order to differentiate it from a 
FORTRAN library processor-defined function. 

PARAMETER 
Allows a constant to be given a symbolic name. The symbolic name of 
a constant assumes the type implied in the form of its corresponding 
constant. The initial letter of the name has no effect on its type. 

User-Written Subprograms 
ENTRY 
Provides multiple entry points within a subprogram. It is not executa
ble and can appear within a function or subroutine program after the 
FUNCTION or SUBROUTINE statement. Execution begins with the first 
executable statement following the ENTRY statement. 

473 



FORTRAN 

Library Functions 
The following additional FORTRAN library functions are provided: 
ASIN(X) 
DASIN(X) 
ACOS(X) 
DACOS(X) 
SINH(X) 
DSINH(X) 
COSH(X) 
DCOSH(X) 
TANH(X) 
DTANH(X) 
TAN(X) 
DTAN(X) 
NINT(X) 
ANINT(X) 
IDNINT(X) 
IAND(I,J) 
IOR(I,J) 
IEOR(I,J) 
NOT(I) 
ISHFT(I,J) 

Real arcsine 
Double precision arcsine 
Real arccosine 
Double precision arccosine 
Real hyperbolic sine 
Double precision hyperbolic sine 
Real hyperbolic cosine 
Double precision hyperbolic cosine 
Real hyperbolic tangent 
Double precision hyperbolic tangent 
Real tangent 
Double precision tangent 
Real to integer nearest integer 
Real nearest integer 
Double to integer nearest integer 
Integer bitwise AND 
Integer bitwise OR 
Integer bitwise Exclusive OR 
Integer NOT 
Integer bitwise shift 

Generic Function References 
Generic function names provide a means by which some of the 
FORTRAN mathematical functions can be called with selection of the 
actual library routine used, based on, the type of the argument that 
occurs in the function reference. For example, if X is a real variable, 
then SIN(X) will reference the real-valued sine function. If D is a double 
precision variable, then SIN(D) will reference the double precision sine 
function. It is not necessary to write DSIN(D). 

Generic function selection is performed independently for each func
tion reference. Given the above example, both SIN(X) and SIN(D) can 
be used in the same program unit. 

The set of functions for which generic name selection is performed is 
shown below. Generic function selection can only be used with the 
argument types shown. 

474 



SYMBOLIC NAME 

ABS 

AI NT, ANINT 

FORTRAN 

TYPEOF 
ARGUMENT 

Integer 
Real 
Double 
Complex 

Real 
Double 

INT, NINT Real 
Double 

SNGL Integer 
Double 

DBLE Integer 
Real 

MOD, MAX, MIN, SIGN, and DIM Integer 
Real 
Double 

EXP, LOG, SIN, COS, and SQRT Real 
Double 
Complex 

LOG10, TAN, ATAN, ATAN2, ASIN,Real 
ACOS, SINH, COSH, and TANH Double 

COMPILER OPERATION AND OPTIMIZATIONS 

TYPE OF 
RESULT 

Integer 
Real 
Double 
Complex 

Real 
Double 

Integer 
Integer 

Real 
Real 

Double 
Double 

Integer 
Real 
Double 

Real 
Double 
Complex 

Real 
Double 

The FORTRAN IV-PLUS compiler accepts a source written in the 
FORTRAN language and produces an object file which must be linked 
by the .IAS/RSX-11 Task Builder prior to execution. The compiler uses 
a work file system to produce the object file. This work file system 
allows very large FORTRAN programs to be compiled in a limited 
amount of memory. 

The compiler generates PDP-11 machine language code, including 
FP-11 instructions, for the object program. During compilation, the 
FORTRAN IV-PLUS compiler performs many code optimizations. 

The FORTRAN IV-PLUS optimizations are designed to produce an 
object program that executes in less time than an equivalent non
optimized program. The optimizations are also designed to reduce the 
size of the object program. 

The FORTRAN IV-PLUS compiler performs the following optimiza
tions: 

475 



FORTRAN 

• Constant folding. Integer constant expressions are evaluated at 
compile-time. 

• Compile-time evaluation of constant subscript expressions in array 
calcu lations. 

• Elimination of unreachable code. An optional warning message is 
issued to mark unreachable statements in the source program list
ing. 

• Recognition and replacement of common subexpressions. 

• Peephole optimization. The code is examined on an operation-by
operation basis to replace sequences of operations with shorter and 
faster equivalent operations. 

• Branch instruction optimizations for arithmetic or logical IF state
ments. 

• Compile-time constant conversion. 

• Argument-list merging. If two function or subroutine references 
have the same arguments, a single copy of the argument list is 
generated. 

• Removal of invariant computations from DO loops. 

• Local register assignment. Frequently referenced variables are re
tained (if possible) in registers to reduce the number of load and 
store instructions. 

• Assignment of frequently used variables and expressions to regis
ters across DO loops. 

• JMP/BRANCH instruction resolution. The BRANCH instruction is 
used wherever possible to eliminate unnecessary JMP instructions. 

A FORTRAN IV-PLUS program is computationally equivalent to a pro
gram according to the definition of the FORTRAN language. Thus 
identical numerical results are obtained and equivalent run-time diag
nostics are produced. Messages may not, however, occur at exactly 
the same statements in the source programs. 

Compile-Time Operations on Constants 
The FORTRAN IV-PLUS compiler performs the following compile-time 
computations on expressions involving constants, including PARAM
ETER constants. 

• Negation of Constants. For example, 
X = -10.0 

• Type Conversion of Constants. For example, 
X = 10'Y 

is compiled as 
X = 10.0'Y 

476 



FORTRAN 

• Integer Arithmetic on Constants. For example, 
PARAMETER NN=27 
1= 2*NN+J 

is compiled as 
1= 54+J 

In addition, array subscripts involving constants are simplified at 
compile-time where possible. For example, 

DIMENSION 1(10,10) 
1(1,2) = 1(4,5) 

is compiled as a single MOV instruction: 

MOV 1+130,1+26 

This not only significantly increases the speed of the program, it re
duces its size. 

Elimination of Common Subexpressions 
Often the same subexpression appears in more than one computa
tion. If the values of the operands of a common subexpression are not 
changed between computations, the value of the subexpression can 
be computed once and its result can be substituted where the su
bexpression appears. For example, the sequence: 

A = 6*C+E*F 

H = A+G-B*C 

IF((B*C)-H)10,20,30 

contains the common subexpression B*C. The sequence is compiled 
as: 

t = B*C 
A = t+E*F 

H = A+G-t 

IF((t)-H)10,20,30 

where t is a temporary variable created by the compiler. Two compu
tations of the subexpression B*C are eliminated from the sequence. 

477 



FORTRAN 

A more subtle application of common subexpresson elimination oc
curs in the following example. The statements: 

DIMENSION A(25,25), 8(25,25) 
A(I,J) = 8(I,J) 

are compiled, without optimization, as the sequence of instructions in 
the following form: 

t1 = J*25+1 
t2 = J*25+1 
MOVE 8(t2) TO A(t1) 

The variables t1 and t2 represent equivalent expressions. The 
redundancy is recognized and the following shorter, faster sequence 
is generated: 

t = J*25+1 
MOVE 8(t) TO A(t) 

Removal of Invariant Computations from DO Loops 
The speed with which a given algorithm can be executed is increased 
if computations are moved from frequently executed program se
quences to less frequently executed program sequences. In particu
lar, computations within a loop involving only constants and variables 
whose values are not changed within the loop can be moved outside 
the loop. 

For example, in the sequence: 

DO 10, 1=1,100 
10 F = 2.0*Q*A(I)+F 

the value of the subexpressions 2.0*Q is the same during each itera
tion of the loop. Transformation of the sequence to: 

t = 2.0*Q 
DO 10, 1=1,100 

10 F=t*A(I)+F 

moves the calculation 2.0*Q outside the loop and eliminates 99 multi
ply operations. 

Generated Code Example 

The FORTRAN routine: 

0001 

0007 
0008 
0009 

DIMENSION A 1(25) 

AMIN= A1(1) 
AMAX= A1(1) 
DO 40 1=2,N 

478 



0010 
0011 
0012 40 

FORTRAN 

IF (A 1 (I) .L T. AMIN) AM IN = A 1 (I) 
IF (A1(1) .GT. AMAX) AMAX= A1(1) 
CONTINUE 

is compiled into the following code: 

L$GACD: 

SETF 
LDF A1,FO 

LDF FO,F1 

MOV #2,RO 

MOV RO,R1 
ASL R1 
ASL R1 

;Statement 0007. 

;AMAX is bound to FPP register 
;FO and initialized to A1(1). 
;AMIN is bound to FPP register 
;F1 and initialized to A1(1). 
;Statement 0009. 
;The DO loop control variable I 
;is bound to register RO and 
;initialized to 2. 

;Statement 0010. 

LDF A 1-4(R1 ),F2 
;For each iteration of the 

L$GAPE: 

L$GAFF: 

CMPF F1,F2 
CFCC 
BLE 
LDF 

CMPF 
CFCC 
BGE 
LDF 

L$GAPE 
F2,F1 

FO,F2 

L$GAFF 
F2,FO 

INC RO 
CMP RO,N 
BLE L$GACD 

;Ioop, A 1(1) is bound to FPP 
;register F2. 

;Statement 0011. 

;Statement 0012. 

STF F1,AMIN ;At the end of the loop, the 
STF FO,AMAX ;values of AMIN, AMAX and I 
MOV RO,I ;are stored in memory. 

ENVIRONMENTS 
The FORTRAN IV-PLUS compiler is available as an optional language 
processor for the RSX-11 M, RSX-11 0 and lAS operating systems. The 

479 



FORTRAN 

compiler's operation and facilities under each of these operating sys
tems are essentially identical. 

In all operating systems, the hardware configuration must include the 
FP-11 Floating Point Processor. The FORTRAN IV-PLUS compiler 
requires a minimum partition size of 17K words to execute in an RSX-
11 D or lAS system. Under RSX-11 M, the compiler requires a minimum 
partition size of 18K words. 

480 



OVERVIEW 

CHAPTER 22 

APl (V1) 

APL-11 uses one of the most concise, consistent, and powerful char
acter sets ever devised. It is flexible enough to solve problems in text
handling and commercial data processing as easily as it can solve 
problems in mathematics and statistics. The RSTS/E and RT -11 
operating systems support APL-11 as a language option. 

FEATURE TOPICS 
• Features and Functions 

- Applications 
- APL on the PDP-11 Systems 
- APL Equipment and Character Set 

• Language Elements 
- Data Structures 
- Statements 
- Monadic and Dyadic Primitive Functions 
- Primitive Scalar Functions 
- Extension of Scalar Functions to Arrays 
- Primitive Mixed Functions 
- Relational Functions 

• Input/Output Operations 
- Quad Input Mode 
- Quad-Del Input Mode 
- Normal Output Mode 
- Heterogeneous Output Mode 

• Communication with the System 
- System Commands 
- I-beams 

• APL Statement Execution 

• APL Operating System Environment 
- Workspaces 
- File System 

481 



APL 

FEATURES AND FUNCTIONS 
APL is a concise programming language suited for handling array
structured alphanumeric data. APL is used as a general data process
ing language as well as a mathematical tool. The language is flexible 
enough to solve problems in text handling and commercial data proc
essing as concisely and easily as it can solve problems in numerical 
mathematics and statistics. 

APL allows user-defined functions to be expressed with the same 
syntax used to express primitive language functions. Thus the user 
can expand the capabilities of the language to handle the require
ments of any application. 

Applications 
APL is used in engineering, commercial, and educational applications. 
Current applications include: data reduction and analysis, simulation 
and forecasting, financial modeling, design engineering, electric cir
cuit analysis, engineering analysis, inventory and payroll manage
ment, data base manipulation, reservation systems, computer
assisted instruction (CAl), and education (high school and college lev
el) in programming. 

APL on the PDP-11 
The APL system is implemented as a language interpreter on the PDP-
11. APL can operate on a wide range of hardware processors and has 
been implemented to run under either of two operating systems, RT-
11 or RSTS/E. 

The APL run-time system is preconfigured by DIGITAL to match such 
installation-dependent characteristics as: 

• the PDP-11 processor used 

• the operating system (RT -11 or RSTS/E) under which APL will run 

• the availability of hardware floating point processor 

• the selection of single precision or double precision arithmetic 

These characteristics are supplied as different modules in the distri
bution kit. 

APL Equipment and Character Set 
The user interacts with APL using a terminal or CRT. Two types of 
terminal are supported by the PDP-11 for use with the APL system. 

482 



APL 

DIGITAL APL Terminals 
Description 
Any terminal without the APL character set 
DECwriter II model LA37 with APL option 

Character Set 
ASCII 
APLIASCIl 

The full APL character set can be represented using a keyboard illus
trated in Figure 22-1. All characters on this keyboard are received and 
interpreted by APL. Note that letters, numbers, and some of the 
special characters appear in the conventional keyboard positions. 

Terminals Without the APL Character Set 
ASCII terminals do not support the use of the special APL characters 
illustrated in Figure 22-1. If the user has an ASCII terminal or is operat
ing in console terminal mode on an APL terminal, special APL charac
ters can be represented by keyboard mnemonics. To represent the 
APL rho symbol (p), for example, the user enters the .RO mnemonic. 
The .GO mnemonic is used to express an APL right arrow ( ..... ). 

483 



® CD @ @ ® 
src loll. PAPER OEVICE SELECT 

CIiARACTERSET our SELECT AVAil 

Figure 22-1 The APL Keyboard (LA37 Terminal) 



APL 

LANGUAGE ELEMENTS 
The APL language system provides functions and operators to 
manipulate data, and system commands to control the program envi
ronment. 

Data Structures 
Numeric and character data can be structured in a variety of ways. The 
following data structures are supported by APL: 

• scalars 

• vectors 

• matrices 

• arrays with three or more dimensions 

A scalar is a single numeric or character value with no dimensions. A 
character scalar is enclosed in single quotes; for example: 

enter: A-'C' 
A 

returned: C 

A vector is a one-dimensional array or character string consisting of 
any number of values. A numeric vector is entered as a list of values 
separated by at least one space; for example: 

enter: A - 1 2 3 4 
A 

returned: 1234 

A matrix is a two-dimensional array consisting of rows and columns. 
The user must enter values corresponding to each element of an ar
ray, and must also specify the shape of the array. The shape of an 
array is the number of dimensions which it has and the length of each 
of these dimensions. For example, a matrix can have six elements 
arranged as two rows and three columns or three rows and two col
umns, as illustrated by arrays A and B below. 

A 
1 2 3 
4 5 6 

B 
1 2 
3 4 
5 6 

485 



APL 

The APL primitive function rho (p) is used to specify the shape of a new 
array or to reshape an existing array. It can also be used to create a 
null vector, which is useful in certain APL operations. Following is an 
example of creating a simple matrix with the rho function: 

enter: A-42p01234567 
A 

returned: o 
2 
4 
6 

1 
3 
5 
7 

Arrays of three or more dimensions are also supported by APL. There 
is a limit of 16 dimensions on arrays in the current implementation of 
APL; however, a more significant restriction is that the size of the array 
must not exceed the size of the user's workspace. 

Statements 
A program consists of one or more lines called statements. There are 
two types of APL statements: 

• assignment statements 

• branch statements 

Assignment statements include both calculation and input/output op
erations. Branch statements are used to restart a function or to handle 
the transfer of control from one part of a program to another. Branch 
statements are relevant only to user defined functions. 

An APL statement can contain the following components: 

• identifiers 

• constants 

• APL primitive functions 

• user-defined functions 

Monadic and Dyadic Primitive Functions 
APL primitive functions are implemented in two forms: monadic and 
dyadic. Monadic functions take a right argument and are of the type 
+A (reciprocal), !B (factorial) or ~ 1 (logical NOT). Dyadic functions 
take both left and right arguments and are of the type 3+2 (addition), 
and X=Y (equal). The syntax of the function (Le., the presence of one 
or two arguments) determines whether the function is monadic or 
dyadic. For example, IA is a monadic function used to determine the 
magnitude or absolute value of the argument A. AlB is a dyadic func
tion used to obtain the residue or remainder available after dividing B 
by A. The particular operation specified by the I symbol is dependent 
on the context of the statement. 

486 



APL 

Primitive Scalar Functions 
APL primitive functions are of two types: scalar and mixed. Scalar 
functions generally take single-number (scalar) arguments and yield 
scalar results. They are used primarily for basic arithmetic and logical 
operations, such as addition, exponentiation, maximum value, and 
logical OR. With a few exceptions, the primitive scalar functions take 
numeric scalar arguments. The relational functions «, ::;;;, =, >, ~, ~) 
can take either character or numeric arguments, but only the equal (=) 
and not equal (~) primitives may have one character argument and 
one numeric argument. The logical functions (A, V, -, etc.) must have 
arguments equal to 0 or 1. 

Table 22-1 Primitive Dyadic Circle Functions 

XOY X (-X) 0 Y 
(1-Y*2)*O.5 0 (1-Y*2)*O.5 
SINY 1 ARCSINY 
COSY 2 ARCCOSY 
TANGENTY 3 ARCTANY 
(HY*2)*O.5 4 C+Y*2)*O.5 
SINHY 5 ARCSINH Y 
COSHY 6 ARCCOSHY 
TANHY 7 ARCTANHY 

Tables 22-2 and 22-3 summarize the primitive scalar functions 
available in APL. 

Table 22-2 Primitive Scalar Monadic Functions 

FUNCTION MEANING 

+Y Y 
- Y negative of Y 
XY sign of Y n,Q,1) 
+ Y reci p rocal of Y 
*Y e to the Yth power 
I Y magnitude of Y 
r Y ceiling ofY 
LY floor of Y 
• Y natural logarithm of y 
!Y factorial Y (for integral Y gamma function 

of Y + 1 for non-integral Y) 
?Y a random integer from Y 
oy 1r times Y 

487 



APL 

Table 22-3 Primitive Scalar Dyadic Functions 

FUNCTION 

X+Y 
X-V 
XXV 
X-';-Y 

MEANING 

add X to Y 
subtract Y from X 
multiply X and Y 
divide X by Y 

X*Y 
XIY 
XfY 
XLV 
X.Y 
XlY 

X to the Yth power 
residue of Y 
maximum of X and Y 
minimum of X and y 
log of Y to the base X 
binomial coefficient (number of combinations 
of Y things taken X at a time) 
trigonometric function (Y is in radians) 

Extension of Scalar Functions to Arrays 
The primitive functions are considered scalar functions because they 
generally take scalar arguments and yield scalar results. The opera
tions performed by these functions can, however, be extended to ar
rays. A primitive scalar function is applied to an array on an element
by-element basis. Thus, if the user specifies an addition operation in 
which both arguments are vectors, the corresponding elements of the 
vectors are added, for example: 

enter: 
returned: 

589+672 
11 15 11 

The arrays on which the primitive scalar functions operate can be of 
any dimension. If a dyadic function is being executed, the arrays spec
ified as the arguments of the function must generally have the same 
number of elements and be the same shape (e.g., a 2-by-3 array is not 
equivalent to a 3-by-2 array). There is one exception to this rule. If one 
argument is an array and the other is a scalar or a single-element 
array, the single value is applied to every element of the array. The 
following two examples are therefore equivalent. 

enter: 
returned: 

enter: 
returned: 

555+672 
11 127 

5+672 
11 127 

488 



APL 

Table 22-4 Primitive Mixed Functions 

FUNCTION MEANING 

pV RETURN SHAPE OF V 
XPV RESHAPE V TO MAKE DIMENSION X 
'-v GENERATE THE FIRST V CONSECUTIVE 

INTEGERS FROM CURRENT ORIGIN 
X,V FIND THE FIRST OCCURRENCE Of V 

WITHIN VECTOR X 
,v RETURN THE RAVEL OF V (MAKE Y A 

VECTOR 
X, V CATENATE X TO V ALONG THE LAST 

DIMENSION OF X 
X,[N] V LAMINATE X TO V ALONG THE Nth 

DIMENSION OF X 
XIV X (LOGICAL) COMPRESSION ALONG 

X/[N] V 
THE LAST DIMENSION OF V 
X(LOGICAL) COMPRESSION ALONG 
THE Nth DIMENSION OF V 

X+V X (LOGICAL) COMPRESSION ALONG 
THE LAST DIMENSION OF V 

X\V X (LOGICAL) EXPANSION ALONG THE 

X\[N] V 
LAST DIMENSION OF V 
X (LOGICAL) EXPANSION ALONG THE 
Nth DIMENSION OF V 

X .... V X(LOGICAL) EXPANSION ALONG THE 
FIRST DIMENSION OF V 

Xtv FOR X>O, TAKE FIRST X ELEMENTS OF V 
FOR X<O, TAKE LAST I X ELEMENTS OF Y 

XH FOR X>O, DROP FIRST X ELEMENTS OF V 
FOR X< 0, DROP FIRST Ix ELEMENTS OF V 

iJ?v TRANSPOSE THE DIMENSIONS OF V 
(FOR A MATRIX, EXCHANGE THE ROWS 
AND COLUMNS) 

xl\>Y TRANSPOSE ARRAV Y ACCORDING TO X 
</>Y REVERSE ALONG THE LAST DIMENSION 

</>[N]Y 
OF v 
REVERSE ALONG THE Nth DIMENSION 
OF Y 

(JY REVERSE ALONG THE FIRST DIMENSION 
OF V 

X</> V ROTATE BV X ALONG THE LAST 

xq,[N]V 
DIMENSION OF V 
ROTATE BV X ALONG THE Nth 
DIMENSION OF X 

X(JY ROTATE BV X ALONG THE FIRST 
DIMENSION OF V 

X'*'V GENERATE AN INDEX VECTOR SUCH THAT 
X[,f. VJ IS IN ASCENDING ORDER 

X'fV GENERATE AN INDEX VECTOR SUCH THAT 

X[tV] IS IN DESCENDING ORDER 

XlV DECODE THE REPRESENTA nON OF V 
IN NUMBER SYSTEM X 

XIV ENCODE V IN NUMBER SYSTEM X 
?V ROLL AN INTEGER SELECTED RANDOMLY 

IN RANGE 1 THROUGH Y (SCALAR 
FUNCTION) 

I 
X?Y DEAL X INTEGERS SELECTED RANDOMLY 

IN RANGE 1 THROUGH V WITHOUT 
DUPLICATION .y EXECUTE THE CHARACTER STRING V 

x-y DETERMINE THE MEMBERSHIP OF X IN 
ARRAV v 

mY INVERT THE MATRIX Y 
XDY PERFORM MATRIX DIVISION, SOLVE LINEAR 

EQUATIONS, FIND A LEAST SQUARE 
SOLUTION 

489 



APL 

Primitive Mixed Functions 
Scalar functions take scalar arguments, yield scalar results, and are 
extended to arrays on an element-by-element basis. Mixed functions, 
on the other hand, may take vector arguments and yield scalar or 
vector results, or may take scalar arguments and yield vector results. 
In expressing mixed functions for arrays of greater dimensions, it may 
be necessary to specify the particular coordinate of the array to which 
the function applies. Table 22-4 summarizes these functions. 

Table 22-5 Composite Operators 

OPERATOR MEANING 

,dY The a reduction along the last dimension of Y 

n/[N]Y The a reduction along the Nth dimension of Y 

a+Y The,~ reduction along the first dimension of Y 

Xu.nY Generalized inner product of X and Y 

X O.nY Generalized outer product of X and Y 

Relational Functions 
In APL, the relational functions «, ~, =, >, ~, ;to) return results; they 
are not simply comparison operators. An expression of the form A<B 
yields a result of 1 true if A is less than Band 0 false if A is greater than 
or equal to B. For example: 

enter: 
returned: 

enter: 
returned: 

enter: 
returned: 

9>6 

4>6 
o 
'C'>'A' 

Table 22-6 summarizes these functions. 

490 



FUNCTION 

X<Y 
XsY 
X=Y 
X~Y 

X>Y 
X~Y 

XAY 
XVY 
XAY 
XV-Y 
~Y 

APL 

Table 22-6 Logical Functions 

MEANING 

X less than Y 
X less than or equal to Y 
Xequal to Y 
X greater to or equal to Y 
X greater than Y 
X not equal to Y 
XANDY 
XORY 
X NAND Y (not both X and Y) 
neither X nor Y 
NOTY 

INPUT/OUTPUT OPERATIONS 
Input/output statements are a special variety of assignment state
ments. In APL, input and output operations are generally expressed 
by the special quad operator, D. 

Quad Input Mode 
The most basic form of input to APL is called evaluated input. In this 
mode, the value entered by the user is assigned to the variable to the 
left of the specification arrow. In the following example: 

K-D 
18 

The K variable takes on the value 18 entered by the user at the termi
nal. 

If a quad symbol appears anywhere in an APL statement except im
mediately to the left of a left-arrow, input will be accepted from the 
terminal as in the following: 

A-3iH5 
7 

Here the value of A becomes 36=3X(7+5). 

Quote-Quad Input Mode 
A version of the quad operator called the quote-quad operator (CJ) is 
used especially for the input of character data. An example of quote
quad mode is shown below. 

491 



X~D 

THAT'S AMAZING 
X 
THAT'S AMAZING 

APL 

Unlike evaluated input, quote-quad input allows character strings to 
be entered without explicit quote characters. When APL encounters a 
1'1 symbol, it positions the carriage at the left margin and accepts the 
data entered by the user up to the next carriage return as a character 
string. If a single character is entered, APL treats it as a literal scalar; a 
string is stored as a literal vector. If the user enters only a carriage 
return, APL treats this input as a vector of length zero. This is signifi
cantly different from the handling of empty input in evaluated input 
mode, in which APL rejects the input and waits for the user to reenter 
it. 

Quad-Del Input Mode 
A special version of the quad operator, the quad-del operator (i"'l) is 
used to input characters exactly as typed by the user. No special 
editing of APL characters is performed. The backspace, for example, 
is treated as a special character, and an overstrike symbol is not 
created. The following statements illustrate this difference between 
quad-del and quote-quad modes. 

X~f'J 

rl ¢A 
pX 
4 
x~n 

['] ¢A 
pX 
2 
p'¢A' 
2 

Normal Output Mode 
If a quad symbol appears immediately to the left of a left arrow, the 
value of the expression to the right of that specification arrow is out
put. Terminal output can also be accomplished simply by entering the 
name of the variable whose value is to be displayed. For example, the 
APL statement: 

il-B 

492 



APL 

using the quad symbol is equivalent to the statement: 

B 

since both have the effect of displaying the value of B. 

The quad output mode is especially helpful when an APL statement 
consists of multiple specifications. For example: 

X+-1 5-0+-3+4 
7 

Here the quantity 7 is assigned to the quad operator and displayed. 
The value of X is computed (its value is 8) but not displayed. 

OPERATOR 

X+-O 

X+-I'J 

X +-1"'1 

n+-x 

Table 22-7 Keyboard I/O Operators 

MEANING 

quad (evaluated) input from keyboard 

quote-quad (character) input from keyboard, up to 
but not including carriage return 

quad-del (unedited) input from keyboard 

quad output (display value of X) 

Heterogeneous Output Mode 

It is often desirable to mix character and numeric data on the same 
output line. Mixed output lines of this kind are called heterogeneous 
output. The APL user requests heterogeneous output simply by 
entering a series of vaues or expression, separated by semicolons, in 
the order in which they are to appear; the values can be parenthe
sized. The output displayed as a result of this specification contains no 
carriage returns, except where required by the data. 

COMMUNICATION WITH THE SYSTEM 
There are several ways in which the user can communicate with the 
APL system to change system parameters, determine hardware or 
operational characteristics, and modify workspace parameters. The 
system commands facilitate many of these system operations, and the 
I-beam functions allow APL users to communicate with the system 
from within the APL language itself. 

493 



APL 

System Commands 
System commands provide a means of communicating with the APL 
system and controlling the operational environment in which an APL 
session is conducted. System commands allow the user to examine or 
change the state of the system in the following ways: 

• Clear, identify, or save the active workspace 

• Load or delete a workspace from a secondary storage device 

• List variable and function names 

• Display the status of functions and variables in the workspace 

• Set the index origin, maximum number of significant digits, output 
line width, and comparison tolerance 

I-beams 
I-beams are APL functions used to communicate with the APL system 
to change user workspace characteristics and to report statistics 
about the workspace and the APL system. Unlike system commands, 
these functions are subject to the APL language syntax and rules of 
function definition. They can be included in user functions and defined 
in conjunction with other language operations. 

There are two types of I-beam functions. The first category consists of 
functions used to return workspace and system information. Exam
ples of information returned by the I-beams in this category are: 

• symbol table size and remaining available space 

• date and time of day 

• system job number, user's project-programmer number, and termi-
nal character set 

• line numbers in the state indicator 

• precision of APL version 

• values of system assembly parameters 

Some of these I-beams report general system characteristics (e.g., 
date) and others return information relevant only to the particular 
user's workspace and session. 

The second I-beam category consists of functions used to perform 
system actions and change workspace parameters. Examples of ac
tions performed by the I-beams in this category are: 

• turning error displays for the execute operator on and off 

• terminating the APL session 

• selecting the terminal character set 

• changing the random number sequence 

494 



APL 

APL STATEMENT EXECUTION 
APL statements can be executed in either of two modes: 

• Immediate mode, in which functions, statements, and expressions 
entered by the user are evaluated and executed immediately 

• Function-definition mode, in which the user can contruct a program 
consisting of APL statements, and name and save the program 

The APL user can shift from one mode to the other by typing a mode
transfer "del" (V') symbol. The syntax of the APL language itself is 
identical in both modes. Some special symbols are defined for ease of 
editing in function-definition mode. 

Defining the Function 
In the APL language, a program is implemented as a user-defined 
function. A user-defined function can include both APL primitive func
tions and other user-defined functions. The user develops a program 
in APL function-definition mode. Once developed, that program may 
be used with the convenience of a primitive function. 

A function is constructed in two parts: a function header and a function 
body. The function header defines the name of the function, the syntax 
of the function call, and any variables defined to be local to the func
tion. The function body consists of a number of program statements 
that define the actions to be performed by the function when it is 
executed. 

Editing the Function 
A function definition can be altered by the user in a variety of ways. 
Definition lines can be added, deleted, displayed, and changed; and 
the function header can be altered. The APL statements that make up 
a function definition are neither executed nor checked for syntactic 
validity when entered by the user. In function-definition mode, the user 
simply enters statements, edits them to correct obvious mistypings 
and inconsistencies, and saves them for future use. 

Executing the Function 
The process of defining a function associates the function header 
provided by the user with the statements entered as the function body. 
When the user executes the defined function, the function is used as if 
it were a primitive APL function. The information provided in the func
tion header specifies the number of arguments to be supplied in the 
function call and determines whether or not a value will be returned. 

495 



APL 

Debugging the Function 
Function execution is suspended before normal completion if an error 
occurs or if a stop vector is set. When execution is suspended, the 
name of the suspended function and the line number of the statement 
that would have been executed next are displayed. APL then awaits 
input in immediate mode. The user can perform any other APL opera
tions at this time. The user can resume execution after fixing the 
problem and can observe function nesting. 

The Trace Vector 
For debugging purposes, the user may find it helpful to obtain an 
automatic display of the intermediate results of fUJlction exection. As a 
program tracing aid, the values computed by one or more function 
statements can be output each time those statements are executed. 
To establish a trace for lines 4,6, and 7 of function F, the user includes 
the following statement in the function definition: 

T~F-4 6 7 

For execution of the specified line numbers this command causes the 
following information to be displayed, in the order shown: 

• function name 

• line number 

• final value returned by the statement 

The Stop Vector 
APL allows the user to suspend execution of a function from within the 
function itself. A stop control vector is available, with a syntax similar 
to that of the trace vector. The stop can be used to suspend function 
execution just before execution of one or more specified statements. 
To cause function F to be suspended before executing line 12 and line 
19, the user includes the following statement in the function definition: 

S.1F-1219 

For each suspension, this command causes the function name and 
line number that was about to be executed to be displayed. To disable 
the stop vector for function F, the following specification is supplied: 

S.1F-tO 

After function execution has been suspended by the stop control vec
tor, the system is in the normal suspended state. Execution can be 
resumed by specifying a branch to the desired line number. 

The stop control vector can be set from within a function to cause 
suspension only under certain circumstances. Editing a line for which 
a stop vector has been defined causes the stop vector to be disabled 
for that line. 

496 



APL 

ENVIRONMENTS 
The RT -11 and RSTS/E operating systems provide APL users with 
many of the standard features of the PDP-11 real-time and timeshar
ing environments. When configured for single-user access under RT-
11, the APL interpreter uses four overlay segments and requires about 
14K words of memory. When configured for use with RSTS/E, several 
users can simultaneously access the APL system. The APL interpreter 
can be configured as a RSTS/E run-time system. Each user shares the 
reentrant interpreter code, and only the user's workspaces are 
swapped. The APL run-time system uses approximately 16K words of 
memory. 

APL can be used on a variety of PDP-11 processors. It has been 
optimized to make efficient use of systems that offer hardware floating 
pOint processors, for example, the PDP-11/34, 11/45, 11 ISS, and 
11/70. However, APL can also be configured for use with processors 
that do not have floating point processors, or, in the case of RT -11, 
those processors that have the FIS instruction set. If a hardware proc
essor is not available, a software floating pOint package will be includ
ed with the APL interpreter to simulate the floating-point hardware. 

APL can be generated to perform either single precision or double 
precision arithmetic. Single precision provides an accuracy of approx
imately 7 digits, and double precision offers an accuracy of about 16 
digits. I-beam 37 can be used to determine the precision of a particu
lar APL system. 

Workspaces 
An APL workspace is a buffer in the user's memory area which stores 
the functions, variables, values, and temporary results obtained while 
execut.ing APL statements. USing the APL system commands, 
workspaces can be saved, retrieved, and erased in the same manner 
as any other file. They can be stored on a variety of PDP-11 devices, 
including disk, magnetic tape, DECtape, and floppy disk. 

A workspace can be saved in either memory-image or ASCII format. 
Workspaces saved in ASCII form can be created and edited with any 
DIGITAL editor. This is an important feature not found on many APL 
systems. 

There may be several workspaces stored in the user's disk area. The 
workspace currently available to the user is known as the active work
space. The maximum APL workspace depends upon the operating 
system and the amount of memory in the system. In an RT -11 system 
with 28K words of memory, the workspace may be approximately 
24,000 bytes. 

497 



APL 

File System 
The APL file system allows the APL user to access data and program 
files on a variety of system devices, including disk, DECtape, magnetic 
tape, and floppy disk. The file system is implemented as an integral 
part of the APL language and provides an interface to the RSTS/E and 
RT -11 operating systems. 

The APL file system support is provided by: 

• System commands for use in assigning, creating, closing, reading, 
writing, and renaming files 

• File operators for byte pointer, input, and output functions 

OPERATOR 

Channel-Number 

Channel-Number 

Channel-Number 

Table 22-8 File I/O Operators 

[type] N 

[type] N 

[type] data 

MEANING 

set file pointer 

file input 

file output 

In the APL system, input and output functions can be specified for files 
associated with any of 13 channels, one of which is reserved of use by 
the user's terminal. The ASSIGN file system command is used to asso
ciate an existing file with a channel. CREATE is used to create new files 
on specified channels by allocating space for them. 

Two types of files are supported by the APL system: 

• ASCII sequential 

• Random access 

APL ASCII sequential data files can be read and written sequentially 
by any other RT -11 or RSTS/E language processor (e.g., BASIC, 
FORTRAN, or MACRO). In addition, an APL program can create and 
read any standard ASCII files. Because APL workspaces can be read 
and stored in ASCII format, the file system can be used to save, re
trieve, and manipulate these workspaces. 

The APL system also supports the use of random access files. The 
system treats a file as random access memory, and the user can 
access any byte in the file directly by specifying the individual byte or 
value to be read or written. APL can access random files in any format, 
created with almost any language processor or system. For example, 
random access mode can be used to read and write FORTRAN direct 
access data files. 

498 



OVERVIEW 

CHAPTER 23 

RPG II (va) 

RPG II is a complete program generating system that provides users 
with a ready means of developing applications programs. It supports 
almost all functions offered by industry versions of RPG II, and pro
vides significant improvements over RPG I. The RSTS/E operating 
system supports RPG II as a language option. 

FEATURE TOPICS 
• Description 

• Language Specifications 

• Features 
- File Support for. Peripherals 
- File Organizations 
- Record Access Methods 

499 



RPG 

DESCRIPTION 
DIGITAL's Report Program Generator (RPG II) is a high level computer 
language system with a one-pass multi-phase compiler and an object 
time library system. 

RPG II requires as input an ordered set of RPG II source specifications 
and generates as output a machine language object program. In addi
tion, RPG II optionally produces a source program listing with error 
diagnostic messages, if any. 

LANGUAGE SPECIFICATIONS 
Effective use of RPG II requires following these basic steps: analyzing 
the problem to be solved, including design of the input and output 
data formats; encoding the data formats and requisite calculations for 
interpretation by RPG II; entering the coded specifications into the 
system; compiling the specifications into an object program by RPG II; 
preparing an executable program from the object program; and exe
cuting the resulting RPG II program to perform the desired process
ing. 

The coding specifications have seven possible formats. They are: 

• the Control Specifications (H Format), which supply information 

pertaining to the compilation as a whole 

• the File Description Specifications (F Format), which describe files 
to be used by the program 

• the Extension Specifications (E Format), which describe the tables 
and arrays to be used by the program and provide for additional file 
information 

• the Line Counter Specifications (L Format), which give special infor
mation about print output 

• the Input Specifications (I Format), which describe input records 
and fields 

• the Calculation Specifications (C Format), which describe the oper
ations to be performed on previously specified data and define the 
data fields which are not previously defined 

• the Output Specifications (0 Format), which describe the format of 
output records and the types of data fields. 

FEATURES 
DIGITAL's RPG II supports almost all functions offered by industry 
versions of RPG II and provides significant improvements over the first 
level of RPG. These feature~ make the language easier to use and 
more flexible. Among the features of RPG II are: 

500 



RPG 

• An easy-to-use programming language with standard application
oriented specification statements. 

• A full set of 31 instructions. 

• A complete set of compiler diagnostics available to aid in program 
debugging; also, a DEBUG facility that allows tracing of user RPG II 
programs. DEBUG allows source-level debugging by printing the 
setting of indicators and the contents of any field. 

• Full support for a wide range of peripheral devices including: 
Card Readers 
Magnetic Tape 
Disk 
Printers 
Terminals 

• File organizations: 
Sequential 
Direct 
Indexed 

• Record access methods: 
Consecutive 
Sequential by key 
Sequential within limits 
Random by key 
Random by relative record number 
Random utilizing ADDress ROUTing files 

• A DSPL Y operation code that provides the ability to display mes
sages on a user's terminal during program execution and to accept 
data in reply. 

• Support of console devices as normal files. This differs from the 
DSPL Y function which supports the console as a field-entering de
vice. 

• Support of ASCII, binary, packed decimal, over punched, and zoned 
decimal numeric data. 

• Control of page length and overflow via line counter specifications. 

• Repetitive printing of the initial first page output line to assist in the 
proper alignment of printer forms. 

• Up to nine matching fields to control multi-file processing. 

• Access to the system data previously entered via the system moni
tor. This allows the entire date, or any of its three parts, to be 
referenced by the reserved names UDATE, UMONTH, UDAY, or 
UYEAR. 

501 



RPG 

• Access to the contents of fields in records awaiting processing 
through the Look Ahead feature. Calculations, testing, comparisons, 
or output may be made using the contents of these fields. 

• Control over which file and record are to be processed in the next 
RPG II program cycle, through the FORCE operation code. 

• Use of switches (U1-U8) which are set at execution time to control 
calculations, input files, output files, or specific output records. 

• Access to records from a demand file during calculations cycle 
through the READ operation code. 

• Control of random record access by key or record number through 
the CHAIN operation. 

• Ability to load tables and arrays at compile time or from input files. 

• Ability to punctuate numeric output fields by specifying a single 
character edit code. 

• Ability to write records during total or detailed calculations through 
the EXCPT operation. 

• Executions of internal subroutines from any point within calcula
tions. 

• Ability to compute the square root of the value in a given field 
through the SORT operation. 

• Page-overflow processing control provided by the fetch overflow 
feature. 

• Ability to set and test bits of a one-byte binary field. 

• Table and array processing features including maintenance, argu
ment searching, and calculations operations on individual elements 
or entire arrays. 

• Ability to do multiple updating functions within the same program 
cycle. 

502 



OVERVIEW 

CHAPTER 24 

FOCAL (V1) 

FOCAL, the FOrmula CALculator programming language has been 
designed to function effectively in a real-time scientific environment 
where extensive statistical analysis and numerical calculations are re
quired. FOCAL allows calculations and operations to be performed 
immediately in response to a user command. The user can also string 
together FOCAL commands to form a program. In addition, a com
plete set of statements to perform arithmetic operations, program 
control, and input/output functions is provided. 

FEATURE TOPICS 

• Features 
- Real-Time Support 
- Time Queuing 
- Interrupt Handling 
- Analog Input 
- Digital Input and Output 
- Time Measurements 

• Graphics Support 
- Video Terminal Graphics 
- VT11 Graphics 
- Pqint-Plot Graphics 

• Minimum Focal System Requirements 
- Support Options 

• Language 
- The Command Interpreter 
- The Program Storage Area 
- The Variable Storage Area 

• FOCAL Program Structure 

• FOCAL Commands 

• FOCAL Function Calls 

503 



FOCAL 

FEATURES 
FOCAL (FOrmula CALculator) is an interactive high-level program
ming language designed for scientists who require a real-time lan
guage that is easy to learn and use. FOCAL provides both data acqui
sition and experiment control, as well as data analysis capabilities. 

FOCAL allows calculations and operations to be performed immedi
ately in response to a user command (calculator mode), or the crea
tion of programs from these commands. Because FOCAL is an 
interactive language, users can rapidly develop, debug, and modify 
their problem-solving programs without separate edit, compile, link, 
and load phases. All programs may be saved or loaded from mass 
storage files, and very long programs may be implemented by dividing 
them into segments that are chained together; i.e., each segment can 
be pulled from mass storage as needed. 

Since FOCAL operates under the RT -11 operating system, a program 
may read or write data in a totally device-independent manner. Device 
handlers and buffers are resident only when actually being utilized. 
FOCAL may define single or double subscripted variables to be virtual 
variables. In mass storage, such variables may hold vectors or arrays 
composed of hundreds or thousands of elements, and yet the user 
may use these variables in computations as if they were held entirely 
in memory. Virtual variable files may also be read or written by BASIC 
or FORTRAN IV programs. They are also compatible with LA-11 (Lab
oratory Applications) data files. Also, user-written MACRO routines 
may be easily incorporated into FOCAL to provide additional func
tions. 

Two versions of FOCAL are provided. One version supports single 
precision floating point arithmetic, which allows approximately 7 sig
nificant digits. The other version supports double precision arithmetic, 
which allows approximately 17 significant digits. 

Real-Time Support 
FOCAL has real-time features which enable the user to control com
plex processes while acquiring data. 

Time Queuing 
Mini-tasks written in FOCAL may be scheduled to occur at certain time 
intervals. The time intervals may be specified either in one-second 
units, or at line frequency resolution. 

Interrupt Handling 
Mini-tasks in FOCAL may be linked to interrupt vectors so that exter
nal events can bring about a series of FOCAL commands. Each mini
task may have its software priority set to one of seven levels. 

504 



FOCAL 

Analog Input 
Multi-channel analog data may be acquired and placed into a ring 
buffer at rates up to 5 kHz. Moreover, by using special functions, 
analog data can be moved continously to a mass storage file at rates 
over 3 kHz. Data can be read from the ring buffer by the FOCAL 
program while sampling proceeds. 

Digital Input and Output 
A function is provided for handling multiple digital input/output 
options, as well as multiple digital-to-analog channels. This function 
will also control user-implemented devices connected to the system. A 
function has been implemented for the setting, clearing, and logical 
testing of specific bits in data words. 

Time Measurements 
Extensive real-time clock functions have been implemented to allow a 
wide variety of time-related operations. Timing resolutions of 1 mil
lisecond may be effected both for generating timed events and for 
measuring the time intervals between external (or internal) events. 

Graphics Support 
Graphics displays have an important role in both data collection and 
data analysis. FOCAL is strongly graphics oriented and supports a 
range of graphic display systems. 

Video Terminal Graphics 
The VT55 video graphics terminal is fully supported by FOCAL/RT -11. 
This support is provided by a set of functions which may be used with 
the real-time laboratory functions. Thus, a researcher may use the 
VT55 to display the statistical analysis of data. The VT55 support mod
ule may be used without the lab functions to provide a computational 
terminal with graphic display utilizing double precision data and virtual 
subscripted variables. 

VT11 Graphics 
FOCAL provides control of the VT11 graphics processor. Both points 
and vectors may be drawn at anyone of eight intensities on the CRT, 
and hardware-generated characters may also be displayed. FOCAL 
provides control over the hardware features of the VT11, including the 
light pen. 

Point-Plot Graphics 
FOCAL supports graphics for pOint-plot, refresh CRTs. Relative or 
absolute pOints may be specified by loading coordinates into the ad
dressable graphics buffer. It is possible to specify alphanumeric char
acters in the same manner. Characters may be positioned anywhere 
on the screen and may be generated in one of five different sizes. The 

505 



FOGAL 

user may expand or alter the character set, as well as create a new 
dictionary which generates characters composed in other than the 
standard 5 x 7 matrix format. Elements of the display, including char
acters, may be moved dynamically on the CRT under program control. 
Moreover, entire pictures may be created and saved in a mass storage 
file, and later retrieved and displayed on the CRT at rates of up to 24 
pictures per second. 

General Features 
A variety of general features has been implemented in FOCAL. For 
example, error conditions may cause a specific group of statements to 
be executed; constants may be either decimal or octal; data may be 
printed in integer, decimal, scientific notation, octal, or binary formats; 
and a user may respond to a request for information by entering it in 
sCientific notation, as a decimal or octal number, a series of alphabetic 
characters, or even an arithmetic expression. 

Minimum FOCAL System Requirements 
1. Any system which supports RT -11 

2. 8K of memory (16K recommended) 

Supported Options 

• Memory: up to 28K words 

• Line frequency clock 

• Extended Arithmetic Element (EAE) 

• Extended Instrument Set (EIS) 

• Floating Point Instruction Set (FIS) 

• Floating Point Unit (FPU) 

• Line printer 

• UNIBUS programmable real-time clock 

• UNIBUS multi-channel AID converter 

• UNIBUS multi-channel DIA converter (with or without CRT control) 

• Multiple digital 1/0 options 

• VT11 graphics processor system with CRT, light pen 

• VT55 video graphics terminal 

LANGUAGE 
The FOCAL system consists of three parts: 

The command interpreter that reads the FOCAL command and 
performs the indicated operation. 

506 



FOCAL 

The program storage area, used by FOCAL to remember the pro
gram written by the user. 

The variable storage area, the area sharing the same space in the 
computer's memory as the program storage area. When FOCAL is 
loaded, all memory not occupied by the command interpreter is set 
aside for programmed variable storage. 

FOCAL PROGRAM STRUCTURE 
A FOCAL program is a collection of commands that are organized to 
perform a given task. The method by which these commands are 
organized is the key to FOCAL programming. 

A FOCAL statement is a set of one or more FOCAL commands 
placed on line. The FOCAL statement is the smallest section of a 
program which may be referenced by FOCAL. An example of a FOC
AL statement is: 

SET A= 15;TYPE A;QUIT 

The FOCAL commands SET, TYPE, and QUIT would be executed in 
that order. When more than one FOCAL command is placed on single 
line, they are separated by semi-colons (;). 

When a user wishes to store a FOCAL statement for later use, it is 
assigned a statement number as a reference. The statement number 
may be any value from 1.01 to 99.99 in .01 increments, with the excep
tion of those numbers ending in .00. Line numbers do not require that 
two digits be specified after the decimal point. The line number 2.1 is 
equivalent to 2.10. When a user wishes to store a FOCAL statement, 
the line need only be prefixed by the appropriate statement number. 
For example: 

1.1 SET A= 1.5;TYPE A;QUn 

This FOCAL statement would be entered i.oto the FOCAL program 
storage area, and could be referenced by FOCAL commands using 
the number 1.1. If another FOCAL statement with this line number 
currentJy exists ~n the program storage area, it wi'll be replaced when 
the new nne is entered. 

All FOCAL statements that have the same integer as a' portion of their 
line number aJfe collectively r.eferred to as a FOCAL group. This allows 
certain FOCA'I:.. commands to refer to these FOCAL statements, as if 
they were all a single long FOCAL statement. FOCAL groups are refer
enced using the integer portion of the line number. For example: 

1.1 SET A=1.5;TYPEA 
1.2 SET B=2.4;TYPE B 
1.3 SET C =A *B;TYPE C 

507 



FOCAL 

2.1 SET D=A+B;TYPE 0 
2.2 TYPE THE END 
2.3 QUIT 

The FOCAL command ERASE 1.2 would remove just statement 1.2, 
while ERASE 1 would delete lines 1.1, 1.2, and 1.3. 

FOCAL COMMANDS 
Each FOCAL statement consists of one or more FOCAL commands 
with their associated arguments (if any). FOCAL commands may be 
abbreviated by a single character. They require at least one space 
between the command and its associated arguments. This conserves 
memory, as one word of memory is required for each two characters 
in the user's program. The following table lists the FOCAL commands. 

Command Abbrev Example Function 

ASK A 

COMMENT C 

DO D 

ERASE E 

ASKX 

C EXAMPLE 

D02 

ERASE4.1 

508 

Assigns values to vari
ables from the key
board. 

Allows the user to 
document his program 
with comments or non
executable program 
steps. 

Directs program exe
cution to a statement 
or group of statements 
which will be executed 
until either a "RE
TURN" command is 
executed or the end of 
a statement or group is 
reached. When this oc
curs, the next state
ment executed is the 
statement following the 
last DO command en
countered .. 

Erases part of a pro
gram or an entire pro
gram. 



Command Abbrev 

FOR F 

GO G 

IF 

KILL K 

LIBRARY L 

MODIFY M 

OPERATE o 

QUIT Q 

FOCAL 

Example 

FOR 1=1,5; SET 
X=X+1 

GO 2.4 

IF(A)1.1, 
1.2,1.3 

KILL 

LIBRARY RUN 
TEST 

MODIFY 1.1 

OPERATETK 

QUIT 

509 

Function 

Executes the remain
ing command on a line 
while incrementing the 
value of the variable 
specified in the FOR 
command over the de
fined limits. This is 
used for loop control. 

Begins executing com
mands at the statement 
specified. Used to 
direct program control 
to the lowest line num
ber, or to a specific 
group or statement. 

Conditionally directs 
program execution us
ing the results of test
ing the sign of A. 
(-,O,or +) 

Stops the program and 
1/0 activity. 

Allows the program to 
access file-structured 
devices. (RT -11 ver
sion only) 

Used to alter words or 
characters in a stored 
program statement. 

Used to select non-file 
structured 1/0 devices 
for 1/0. 

Used to terminate pro
gram execution and re
turn control to user. 



Command Abbrev 

RETURN R 

SET S 

TYPE T 

WRITE W 

XECUTE x 

FOCAL 

Example 

RETURN 

Function 

Used to retu rn pro
gram execution to the 
statement following the 
last "DO" command 
executed. 

SET A=1.531 Assigns the value of 
the result of an expres
sion to the variable. 

TYPE Sends output to the 
"HI"!, currently selected out-
A put device. Used to 

print text, results of 
calculations, and val
ues of variables. 

WRITE 1 Used to list part or all 
of a program. 

XECUTE FPRM Used to call and exe-
(3,1) cute functions. 

Several commands may be put together in the same FOCAL statement 
as long as the total statement does not exceed 79 characters in length. 
Semi-colons are used to separate FOCAL commands within a state
ment. 

All FOCAL statements must be terminated by the carriage-return 
character. A FOCAL command can be terminated by either a semi
colon (;) or a carriage-return. For example: 

1.10 FOR 1=1,5;DO 2;TYPE "I",I,! 

There are a few exceptions to this rule: the COMMENT, ERASE, and 
certain LIBRARY commands can be terminated only by a carriage
return. 

FOCAL FUNCTIONS 
The FOCAL functions (subprograms internal to FOCAL) improve and 
simplify arithmetic capabilities, and give the potential for expansion to 
additional input/output devices. 

In general, the FOCAL functions may be used anywhere a number or a 
variable is legal in a mathematical expression. A standard function call 
consists of two or more letters beginning with the letter F and followed 
by an argument expression in parenthesis, Fxxx(expression). 

510 



The following standard functions are available: 
FOCAL Function Call Function 

FSIN(R) 

FCOS(R) 

FEXP(ARG) 

FLOG(ARG) 

FLN(arg) 

FX(func,addr,data) 

FCHR(arg) 

FRANO 

FADC(channel) 

FCLKO 

FABS(arg) 

FSGN(arg) 

FITR(arg) 

FSOT(arg) 

FSBR(group, arg) 

FPRM 
(parameter, value) 

FERR(group/line) 

FINT(vector, group, pri, 
CSRaddr, mask) 

FOUE(count, group, in
terval, delay, priority) 

Sine function (radians) 

Cosine function (radians) 

Exponential function 

Logarithm to the base 10. 

Natural logarithm 

Access to UNIBUS or O-bus devices 

Print and accept ASCII codes 

Random number function 

Analog to digital converter function 

Clock function 

Absolute value function 

Sign function 

Integer part function 

Square root function 

User programmed function 

Alter FOCAL internal parameters 

Define error handling routine 

Establish a routine to be executed on the 
detection of a specific hardware interrupt. 

Schedule a group or line number to be run 
count times, once every interval seconds, 
starting delay seconds from now. The rou
tine will have a priority of priority. 

511 



512 



APPENDIX A 

GLOSSARY 

absolute address A binary number that is assigned as the address 
of a physical memory storage location. 

absolute loader A stand-alone program which, when in memory, 
enables the user to load into memory data in absolute binary format. 

account number A discrete code used to identify a system user. It 
normally consists of two numbers, separated by a comma, called the 
project number and programmer number or the group number and 
member number. See also user identification code. 

active task list A priority-ordered list of active tasks used normally 
in an event-driven multi programmed system to determine the order in 
which tasks receive control of the CPU. 

address A label, name or number that deSignates a location where 
information is stored. 

alphanumeric Referring either to the entire set of 128 ASCII charac
ters or the subset of ASCII characters which include the 26 alphabetic 
characters and the ten numeric characters. 

ancillary peripherals In the MUMPS-11 system, peripherals not un
der control of the data base supervisor. 

append To add information to the end of an existing file. 

application program A program that performs a task specific to a 
particular end-user's needs. Generally, an application program is any 
program written on a program development operating system that is 
not part of the basic operating system. 

array An ordered arrangement of subscripted variables. 

ASCII The American Standard Code for Information Interchange, 
consisting of 128 7-bit binary codes for upper and lower case letters, 
numbers, punctuation and special communication control characters. 

assembler A program that translates symbolic source code into ma
chine instructions by replacing symbolic operation codes with binary 
operation codes and symbolic addresses with absolute or relocatable 
addresses. 

assembler directives The mnemonics used in an assembly lan
guage source program that are recognized by the assembler as com
mands to control and direct the assembly process. 

513 



GLOSSARY 

3ssembly language A symbolic programming language that can 
10rmally be translated directly into machine language instructions and 
IS, therefore, specific to a given computing system. 

assembly listing A listing produced by an assembler that shows the 
symbolic code written by a programmer next to a representation of the 
actual machine instructions generated. 

assigning a device Putting an 1/0 device under control of a 
particular user's job either for the duration of the job or until the user 
relinquishes control. See also attach. 

asynchronous A mode of operation in which an operation is started 
by a signal that the operation on which it depends is completed. When 
referring to hardware devices, it is the method in which each character 
is sent with its own synchronizing information. The hardware opera
tions are scheduled by ready and done signals rather than by time 
intervals. In addition, it implies that a second operation can begin 
before the first operation is completed. 

asynchronous system trap A system condition which occurs as the 
result of an external event such as completion of an I/O request. On 
occurrence of the significant event, control passes to an AST service 
routine. 

attach To dedicate a physical device unit for exclusive use by the 
task requesting attachment. See also assigning a device. 

backup file A copy of a file created for protection in case the primary 
file is unintentionally destroyed. 

bad block A defective block on a storage medium that produces a 
hardware error when attempting to read or write data in that block. 

base address An address used as the basis for computing the value 
of some other relative address. 

base segment The portion of a program using overlays that is al
ways memory-resident. See also root segment. 

batch processing A processing method in which programs are run 
consecutively without operator intervention. 

batch stream The collection of commands and data interpreted by a 
batch processor that directs batch processing. 

binary The number system with a radix of two. 

binary code A code that uses two distinct characters, usually the 
numbers 0 and 1. 

binary loader See absolute loader. 

514 



GLOSSARY 

bit A binary digit. 

bit map A table describing the state of each member of a related set. 
A bit map is most often used to describe the allocation of storage 
space. Each bit in the table indicates whether a particular block in the 
storage medium is occupied or free. 

block A group of physically adjacent words or bytes of a specified 
size which is particular to a device. The smallest system-addressable 
segment on a mass-storage device in reference to I/O. 

Boolean valued expression An expression which, when evaluated, 
produces either a true or false result. 

bootstrap A technique or device designed to bring itself into a de
sired state by its own action. 

bootstrap loader A routine whose first instructions are sufficient to 
load the remainder of itself into memory from an input device and 
normally start a complex system of programs. 

bottom address The lowest memory address in which a program is 
loaded. 

breakpoint A location at which program operation is suspended in 
order to examine partial results. A preset point in a program where 
control passes to a debugging routine. 

buffer A storage area used to temporarily hold information being 
transferred between two devices or between a device and memory. A 
buffer is often a special register or a designated area of memory. 

bug An instruction or sequence of instructions in a program that 
causes unexpected and undesired results. 

byte The smallest memory-addressable unit of information in a 
PDP-11 system. A byte is equivalent to eight bits. 

carriage return key The key on a terminal keyboard most often 
used in PDP-11 systems to terminate input lines. 

Central Processing Unit or Central Processor That part of a com
puting system containing the arithmetic and logical units, instruction 
control unit, timing generators and memory and I/O interfaces. 

character A single letter, numeral, or symbol used to represent in
formation. 

checksum A number used for checking the validity of data transfers. 

clock A time-keeping or frequency-measuring device within a com
puting system. 

515 



GLOSSARY 

code A system of symbols and rules used for representing informa
tion. 

coding Writing instructions for a computer using symbols meaning
ful to the computer itself, or to an assember, compiler or other 
language processor. 

collate To combine items from two or more ordered sets into one 
set having an order not necessarily the same as any of the original 
sets. 

command or command name A word, mnemonic, or character 
which, by virtue of its syntax in a line of input, causes a predefined 
operation to be performed by a computer system. 

command language The vocabulary used by a program or set of 
programs that directs the computer system to perform predefined 
operations. 

Command Language Interpreter The program that translates a 
predefined set of commands into instructions that a computer system 
can interpret. 

command string A line of input to a computer system that generally 
includes a command, one or more file specifications, and optional 
qualifiers. 

Command String Interpreter A special program or routine that ac
cepts a line of ASCII string input and interprets the string as input and 
output file specifications with recognized qualifiers. 

common A section in memory which is set aside for common use by 
many separate programs or modules. 

compile To produce binary code from symbolic instructions written 
in a high-level source language. 

compiler A program which translates a high-level source language 
into a language suitable for a partic~lar machine. 

completion routine A routine that is called at the completion of an 
operation. 

compute bound A state of program execution in which all opera
tions are dependent on the activity of the central processor; for exam
ple, when a large number of calculations are being performed. See 
also 1/0 bound. 

computer operator A person who performs standard system opera
tions such as adjusting system operation parameters at the system 
console, loading a tape transport, placing cards in a card reader, and 
removing listings from the line printer. 

516 



GLOSSARY 

concatenate To combine several files into one file, or several strings 
of characters into one string, by appending each file or string one after 
the other. 

conditional assembly The assembly of certain parts of a symbolic 
program only when certain conditions are met. 

configuration A particular selection of hardware devices or software 
routines or programs that function together. 

consecutive access The method of data access characterized by 
the sequential nature of the I/O device involved. For example, a card 
reader is an example of a consecutive access device; each card must 
be read one after another, and no distinction is made between logical 
sets of data in or among the cards in the input hopper. 

console The console of a central processor is the set of switches 
and display lights used by an operator or programmer to determine 
the status and control the operation of the computer. 

console terminal A keyboard terminal which acts as the primary 
interface between the computer operator and the computer system 
and is used to initiate and direct overall system operation through 
software running on the computer. 

constant A value which remains the same throughout a distinct 
operation. Compare with variable. 

context switching The switching between one mode of execution 
and other, involving the saving of key registers and other memory 
areas prior to switching between jobs, and restoring them when 
switching back. A common example of context switching is the tempo
rary suspension of a user program so that the monitor or executive 
can execute an operation. 

contiguous file A file consisting of physically adjacent blocks on a 
mass-storage device. 

control character A character whose purpose is to control an action 
rather than to pass data to a program. An ASCII control character has 
an octal code between 0 and 37. It is typed by holding down the CTRL 
key on a terminal keyboard while striking a character key. 

control section A named, contiguous unit of code (instructions or 
data) that is considered an entity and that can be relocated separately 
without destroying the logic of the program. 

core memory The most common form of main memory storage 
used by the central processing unit, in which binary data is represent
ed by the switching polarity of magnetic cores. 

517 



GLOSSARY 

core common See common. 

crash A hardware crash is the complete failure of a particular de
vice, sometimes affecting the operation of an entire computer system. 
A software crash is the complete failure of an operating system char
acterized by some failure in the system's protection mechanisms. In 
actual occurrence, it is a system-level trap, e.g., trap to location 4 or 10 
(attempt to execute an illegal instruction, parity error, etc.) when the 
system's trap routines have been destroyed. 

create To open, write data to, and close a file for the first time. 

cross reference listing or table A printed listing that identifies all 
references in a program to each specific label in a program. A list of all 
or a subset of symbols used in a source program and statements 
where they are defined or used. 

CTRL/C The control character issued from a terminal which is most 
commonly used to return the operator to communication with the sys
tem-level program. In most PDP-11 systems, it is typed on the terminal 
keyboard to gain the attention of the operating system before com
mencing the login procedure, or to terminate the currently-executing 
program and return to communication with the monitor. In some 
cases, it simply issues a call to the console listener or console service 
routine without interrupting current program execution. 

CTRL/U The control character issued from a terminal that tells the 
program currently accepting input to ignore the characters entered on 
the line up to the point where CTRLlU was typed. 

CTRL/Z Used in RSX-11 systems to terminate the system program 
currently waiting for input from the terminal. It is essentially an end-of
file character. 

data base A collection of interrelated data items organized by a 
consistent scheme that allows one or more applications to process the 
items without regard to physical storage locations. 

data base management system A scheme used to create. maintain 
and reference a data base. 

debug To detect, locate, and correct coding or logic errors in a 
computer program. 

DECnet A family of hardware/software products that create distrib
uted networks from DIGITAL computers and their interconnecting da
ta links. 

DECtape A convenient pocket-sized reel of magnetic tape devel
oped by DIGITAL for extremely reliable data storage and random ac
cess. 

518 



GLOSSARY 

default The value of an argument. operand or field assumed by a 
program if a specific assignment is not supplied by the user. 

delimiter A character that separates, terminates or organizes ele
ments of a character string, statement or program. 

detach a device Free an attached physical device unit for use by 
tasks other than the one that attached it. 

device A hardware unit such as an I/O peripheral, e.g., magnetic 
tape drive, card reader, etc. Also often used synonymously with 
volume. 

device controller A hardware unit which electronically supervises 
one or more of the same type of devices. It acts as the link between the 
CPU and the I/O devices. 

device driver A program that controls the physical hardware activi
ties on a peripheral device. The device driver is generally the device
dependent interface between a device and the common, device-inde
pendent I/O code in an operating system. 

device handler A program that drives or services an I/O device. A 
device handler is similar to a device driver, but provides more control 
and interfacing functions than a device driver. 

device name A unique name that identifies each device unit on a 
system. It usually consists of a 2-character device mnemonic followed 
by an optional device unit number and a colon. For example, the 
common device name for OECtape drive unit one is "OT1 :". 

device unit One of a set of similar peripheral devices; e.g., disk unit 
0, OECtape unit 1, etc. Also used synonymously with volume. 

DIGITAL Network Architecture (DNA) The common network archi
tecture of OECnet. 

direct access See random access. 

direct mode The mode of MUMPS-11 system operation which en
ables the programmer to: enter commands and or functions for im
mediate execution, and create or modify steps of a user's program. 

directive A type of executive request issued by a program that 
provides a facility inherent in the hardware which is controlled and 
organized by the operating system. See also programmed request. 

directory A table that contains the names of and pointers to files on 
a mass-storage device. 

directory device A mass-storage retrieval device, such as disk or 
OECtape, that contains a directory of the files stored on the device. 

519 



GLOSSARY 

double-buffered 1/0 An input or output operation which uses two 
buffers to transfer data. While one buffer is being used by the pro
gram, the other buffer is being read from or written to by an 1/0 
device. 

executive The controlling program or set of routines in an operating 
system. The executive coordinates all activities in the system including 
1/0 supervision, resource allocation, program execution, and operator 
communication. See also monitor. 

executive mode A central processor mode characterized by the 
lack of memory protection and relocation by the normal execution of 
all defined instruction codes. 

exponentiation A mathematical operation denoting increases in the 
base number by a factor previously selected. 

expression A combination of operands and operators which can be 
evaluated to a distinct result by a computing system. 

external storage A storage medium other than main memory. 

file A logical collection of data treated as a unit which occupies one 
or more blocks on a mass-storage device such as disk, DECtape, or 
magtape. A file can be referenced by a logical name. 

file gap A fixed length of blank tape separating files on a magnetic 
tape volume. 

file name The alphanumeric character string assigned by a user to 
identify a file, and which can be read by both an operating system and 
a user. A file name identifies a unique member of a group of files 
which: 1) has the same file name extension and version number (if 
any), 2) is located on the .same volume, and 3) belongs in the same 
User File Directory (if any). A file name has a fixed maximum length 
which is system dependent (generally six or nine characters). 

filename extension The alphanumeric character string assigned to 
a file either by an operating system or a user, and which can be read 
by both the operating system and the user. System-recognizable file
name extensions are used to identify files having the same format or 
type. If present in a file specification, a filename extension follows the 
file name in a file specification, separated from the file name by a 
period. A file name extension has a fixed maximum length which is 
system dependent (generally three characters, excluding the preced
ing period). 

file specification A name that uniquely identifies a file maintained in 
any operating system. A file specification generally consists of at least 
three components: a device name identifying the volume on which the 

520 



GLOSSARY 

file is stored, a file name, and a filename extension. In addition, de
pending on the system, a file specification can include a User File 
Directory name or UIC, and a version number. 

file structure A method of recording and cataloging files on mass
storage media. 

file-structured device A device on which data is organized into files. 
The device usually contains a directory of the files stored on the de
vice. 

file type See filename extension. 

floating point numeric A floating point number which, if stored in 
four words, is approximately in the range 10-38 to 1038 . 

foreground The area in memory designated for use by a high-priori
ty program. The program, set of programs, or functions that gain the 
use of machine facilities immediately upon request. 

format The arrangement of the elements comprising any field, 
record, file or volume. 

formatted ASCII Refers to a mode in which data is transferred. A file 
containing formatted ASCII data is generally transferred as strings of 
7-bit ASCII characters (bit eight is zero) terminated by a line feed, form 
feed or vertical tab .. Special characters, such as NULL, RUSOUT and 
T AS may be interpreted specially. 

formatted binary Refers to a mode in which data is transferred. 
Formatted binary is used to transfer checksummed binary data (8-bit 
characters) in blocks. Formatting characters are start of block indica
tors, byte count and checksum values. 

formatted device A volume which has been prepared for use on a 
system under program control. 

function An algorithm accessible by name and contained in the sys
tem software which performs commonly-used operations. For exam
ple, the square root calculation function. 

generation number See version number. 

global A value defined in one program module and used in others. 
Globals are often referred to as entry points in the module in which 
they are defined, and externals in the other modules which use them. 
Also, in the MUMPS-11 system, a global array. 

global array A data file stored in the common MUMPS-11 data 
base. Global arrays constitute an external system of symbolically 
referenced arrays. 

521 



GLOSSARY 

global variable A global variable in the MUMPS-11 system is a sub
scripted variable which forms a part (or node) of a global array. 

handler See device handler. 

hardware The physical equipment components of a computer sys
tem. 

high-level language A programming language whose statements 
are translated into more than one machine language instruction. Ex
amples are BASIC, FORTRAN, and COBOL. 

I/O page That portion of memory in which specific storage locations 
are associated directly with 1/0 devices. 

I/O rundown A process which delays the availability of a partition 
until all transfers to and from that partition have been stopped or have 
been allowed to complete. 1/0 rundown is invoked when a task is 
terminated and has outstanding transfers pending to or from its parti
tion. 

idle time That part of uptime in which no job could run because all 
jobs are halted or waiting for some external action such as 1/0. 

image mode Refers to a mode of data transfer in which each byte of 
data is transferred without any interpretation or data changes. 

impure code The code which is modified during the course of a 
program's execution; e.g., data tables. 

incremental compiler A compiler that immediately translates each 
source statement into an internal format, ready for execution. 

indirect file A file containing commands that are processed sequen
tially, yet which could have been entered interactively at a terminal. 

indirect mode The mode of MUMPS-11 system operation in which 
steps of a stored program can be executed. In this mode, neither 
commands nor functions can be entered at the terminal, nor can 
programs be created or modified. 

indirect reference A feature of the MUMPS language which permits 
the symbolic representation of an argument or argument list in a com
mand by a string variable. In operation, the string value of the variable 
is taken as the argument or argument list for the command. The indi
rection symbol, a back-arrow or underscore must precede the vari
able reference. 

initialize To set counters, switches, or addresses to starting values 
at prescribed points in the execution of a program, particularly in 
preparation for re-execution of a sequence of code. To format a vol
ume in a particular file-structured format in preparation for use by an 
operating system. 

522 



GLOSSARY 

interactive A technique of user/system communication in which the 
operating system immediately acknowledges and acts upon requests 
entered by the user at a terminal. Compare with batch. 

interpreter A computer program that translates and executes each 
source language statement before translating and executing the next 
statement. 

interrupt A signal which, when activated, causes a transfer of control 
to a specific location in memory, thereby breaking the normal flow of 
control of the routine being executed. An interrupt is normally caused 
by an external event such as a done condition in a peripheral. It is 
distinguished from a trap which is caused by the execution of a pro
cessor instruction. 

interrupt service routine The routine entered when an external 
interrupt occurs. 

interrupt vector address A unique address which pOints to two con
secutive memory locations containing the start address of the inter
rupt service routine and priority at which the interrupt is to be ser
viced. 

I/O bound A state of program execution in which all operations are 
dependent on the activity of an I/O device. For example, when a pro
gram is waiting for input from a terminal. See also compute bound. 

job A group of data and control statements which does a unit of 
work; e.g., a program and all its related subroutines, data and control 
statements; also, a batch control file. 

journaling The parallel writing of updated records to a second medi
um in addition to the original file. 

keyboard monitor A program that provides and supervises 
communication between the user at the system console and an oper
ating system. 

latency The time from initiation of a transfer operation to the begin
ning of actual transfer; i.e., verification plus search time. The delay 
while waiting for a rotating memory to reach a given location. 

leader A blank section of tape at the beginning of a reel of magnetic 
tape or at the beginning of paper tape. 

library A file containing one or more relocatable binary modules 
which are routines that can be incorporated into other programs. 

library A class of MUMPS programs listed in the system program 
directory and available to all users of the system. 

523 



GLOSSARY 

line A string of characters terminated with a vertical tab, form feed 
or line feed. 

linked file A file whose blocks are joined together by references (a 
link word or pOinter imbedded in the block) rather than consecutive 
location. 

linker A program that combines many relocatable object modules 
into an executable program module. It satisfies global references and 
combines control sections. 

linking loader A program that provides automatic loading, reloca
tion and linking of compiler and assembler generated object modules. 

listing The hard copy generated by a line printer. 

literal An element of a programming language which permits the 
explicit representation of character strings in expressions and com
mand and function elements. In most languages, a literal is enclosed 
in either single or double quotes to denote that the enclosed string is 
to be taken "literally" and not evaluated. 

load To store a program or data into memory. To mount a tape on a 
device such that the read point is at the beginning of the tape. To place 
a removable disk in a disk drive and start the drive. 

load image file A program that can be executed in a stand-alone 
environment without the aid of relocation. 

load map A table produced by a linker that provides information 
about a load module's characteristics; e.g., the transfer address and 
the low and high limits of the relocatable code. 

load module A program in a format ready for loading and executing. 

local variable In the MUMPS-11 system, a local variable is a vari
able which is stored only in the partition in which a program is 
executed (as opposed to a global variable). 

location An address in storage or memory where a unit of data or an 
instruction can be stored. 

log in To identify oneself to an operating system as a legitimate user 
of the system and gain access to its services. 

log out or log off To sign off a system. 

logical block An arbitrarily-defined fixed number of contiguous 
bytes which is used as the standard 1/0 transfer unit throughout an 
operating system. For example, the commonly-used logical block in 
PDP-11 systems is 512 bytes long. An 110 device is treated as if its 
block length is 512 bytes, although the device may have an actual 
(physical) block length which is not 512 bytes. Logical blocks on a 

524 



GLOSSARY 

device are numbered from block 0 consecutively up to the last block 
on the volume. A logical block is synonymous with a physical block on 
any device that has 512-byte physical blocks. See also virtual block, 
physical block, logical record, and physical record. 

logical device name An alphanumeric name assigned by the user 
to represent a physical device. The name can then be used synony
mously with the physical device name in all references to the device. 
Logical device names are used in device independent systems to en
able a program to refer to a logical device name which can be as
signed to a physical device at run-time. 

logical record A logical unit of data within a file whose length is 
defined by the user and whose contents have significance to the user. 
A group of related fields treated as a unit. 

logical unit number A number associated with a physical device 
unit during a task's I/O operations. Each task in the system can estab
lish its own correspondence between logical unit numbers and physi
cal device units. 

macro Directions for expanding abbreviated text. A boilerplate that 
generates a known set of instructions, data or symbols. A macro is 
used to eliminate the need to write a set of instructions which are used 
repeatedly. For example, an assembly language macro instruction 
enables the programmer to request the assembler to generate a pre
defined set of machine instructions. 

main memory The set of storage locations connected directly to the 
Central Processing Unit. Also called (generically) core memory. 

main program The module of a program that contains the instruc
tions at which program execution begins. Normally, the main program 
exercises primary control over the operations performed and calls 
subroutines or subprograms to perform specific functions. 

mapped system A system which uses the hardware memory man
agement unit to relocate virtual memory addresses. 

mass storage Pertaining to a device which can store large amounts 
of data readily accessible to the Central Processing Unit; for example, 
disk, DECtape, magnetic tape, etc. 

master file directory The system-maintained file on a volume that 
contains the names and addresses of all the files stored on the vol
ume. 

memory Any form of data storage, including main memory and 
mass storage, in which data can be read and written. In the strict 
sense, memory refers to main memory. 

525 



GLOSSARY 

memory image A replication of the contents of a portion of memory. 

memory mapping A mode of computer operation in which the high
order bits of a virtual address are replaced by an alternate value, 
providing dynamic relocatability of programs. 

memory protection A scheme for preventing read andlor write ac
cess to certain areas of memory. 

modulo A mathematical operation that yields the remainder function 
of division. Thus 39 modulo 6 equals 3. 

monitor The master control program that observes, supervises, 
controls or verifies the operation of a computer system. The collection 
of routines that controls the operation of user and system programs, 
schedules operations, allocates resources, performs 110, etc. 

monitor command An instruction issued directly to a monitor from a 
user. 

monitor console The system control terminal. 

Monitor Console Routine (MCR) The executive routine that allows 
the user to communicate with the system using an on-line terminal 
device. MCR accepts and interprets commands typed on the terminal 
keyboard and calls appropriate routines to execute the specified re
quests. 

mount a device or volume To logically associate a physical mass 
storage media with a physical device unit. To place a volume on a 
physical mass storage drive unit; for example, place a DECtape on a 
DECtape drive and put the drive on-line. 

multiprocessing Simultaneous execution of two or more programs 
by two or more processors. 

multiprogramming A processing method in which more than one 
task is in an executable state at anyone time. 

naked syntax A feature of the MUMPS language, providing an ab
breviated method for accessing global variables, which controls the 
disk access time. The node reference includes only subscript(s) for 
the element; the global variable name is assumed from the last global 
reference in which a name was explicitly stated. 

node A dynamically allocated set of bytes from a node pool used for 
system communication and control in an RSX-11 liAS system. An ele
ment of a global array in a MUMPS-11 system (also called a global 
variable). 

non-contiguous file A file whose blocks are not physically contigu
ous on the volume. 

526 



GLOSSARY 

non-file structured device A device, such as paper tape, line printer 
or terminal, in which data is not referenced as a file. 

object code Relocatable machine language code. 

object module The primary output of an assembler or compiler, 
which can be linked with other object modules and loaded into memo
ry as a runnable program. The object module is composed of the 
relocatable machine language code, relocation information, and the 
corresponding symbol table defining the use of symbols within the 
module. 

object program The relocatable binary program which is the output 
of a compiler or assembler. 

Object Time System The collection of modules that is called by 
compiled code in order to perform various utility or supervisory opera
tions. For example, an Object Time System usually includes 110 and 
trap handling routines. 

off-line Pertaining to equipment or devices not under direct control 
of the Central Processing Unit. 

offset The difference between a base location and the location of an 
element related to the base location. The number of locations relative 
to the base of an array, string or block. 

on-line Pertaining to eqUipment or devices directly connected and 
under control of the Central Processing Unit. 

operating system The collection of programs, including a monitor 
or executive and system programs, that organizes a central processor 
and peripheral devices into a working unit for the development and 
execution of application programs. 

overlay description language The set of instructions interpreted by 
a linker that defines the overlay structure of a task. 

overlay segment A section of code treated as a unit which can 
overlay code already in memory and be overlaid by other overlay 
segments. 

overlay structure A task overlay system consisting of a root seg
ment and optionally one or more overlay segments. 

p-section A section of memory that is a unit of the total task alloca
tion. A source program is translated into object modules that consist 
of p-sections (program sections) with attributes describing access, 
allocation, relocatability, etc. 

pack To compress data in storage by using an algorithm for its stor
age and retrieval. A removable disk. 

527 



GLOSSARY 

parity bit A binary digit appended to a group of bits to make the sum 
of all the bits always odd (odd parity) or always even (even parity). 
Used to verify data storage. 

parse To break a command string into its elemental components for 
the purpose of interpretation. 

part number In the MUMPS language, the integer portion of a 
program step which is used to refer collectively to all steps having a 
common integer base. 

partition A contiguous area of memory within whir;h tasks are load
ed and executed. 

patch To modify a program by changing the binary code rather than 
the source code. 

peripheral Any device distinct from the central processor which can 
provide input or accept output from the computer. 

physical address space The set of memory locations where infor
mation can actually be stored for program execution. Virtual memory 
addresses can be mapped, relocated or translated to produce a final 
memory address which is sent to hardware memory units. The final 
memory address is the physical address. 

physical block A physical record on a mass storage device. 

physical device An 1/0 or peripheral storage device connected to 
or associated with a central processor. 

physical record The largest unit of data that the readlwrite hard
ware of an I/O device can transmit or receive in a single 1/0 operation. 
The length of a physical record is device dependent. For example, a 
punched card can be considered the physical record for a card read
er; it is 80 bytes long. The physical record for an RK11 disk is a block; 
it is 512 bytes long. 

position independent code Code which can execute properly wher
ever it is loaded in memory, without modification or relinking. 
Generally, this code uses addressing modes which form an effective 
memory address relative to the central processor's Program Counter 
(PC). 

priority A number associated with a task that determines the prefer
ence its requests for service receive from the executive, relative to 
other tasks requesting service. 

privilege A characteristic of a user or program that determines what 
kinds of operations that user or program can perform. In general, a 
privileged user or program is allowed to perform operations normally 

528 



GLOSSARY 

considered to be the domain of the monitor or executive, or which can 
affect system operation as a whole. 

program development The process of writing, entering, translating, 
and debugging source programs. 

programmed requests An instruction available only to programs 
that is used to invoke a monitor service. 

programmer access code The system identification code that en
ables a user to gain access to a MU MPS-11 system in direct mode to 
create, modify and execute programs. 

project-programmer number See account number. 

pseudo device A logical entity treated as an lID device by the user 
or the system, but which is not actually any particular physical device. 

public disk structure The disk volume or set of volumes which are 
used as a general storage pool available to any users having quotas on 
the public structure. 

pure code Code that is never modified during execution. It is possi
ble to let many users share the same copy of a program that is written 
as pure code. 

qualifier A parameter specified in a command string that modifies 
some other parameter. See switch. 

queue Any list of items; for example, items waiting to be scheduled 
or processed according to system or user assigned priorities. 

Radix-50 A storage format in which three ASCII characters are 
packed into a 16-bit word. 

random access Access to data in which the next location from 
which data is to be obtained is not dependent on the location of the 
previously obtained data. 

real-time processing Computation performed while a related or 
controlled physical activity is occurring so that the results of the com
putation can be used in guiding the process. 

record A collection of adjacent data items treated as a unit. See 
logical record and physical record. 

record gap An area between two consecutive records. 

recursive Pertaining to a process that is inherently repetitive. The 
result of each repetition of the process is usually dependent on the 
result of the previous repetition. 

reentrant The property of a program that enables it to be interrupt
ed at any point by another program, and then resumed from the point 
where it was interrupted. 

529 



GLOSSARY 

resident Pertaining to data or instructions that are normally per
manently located in main memory. 

restart address The address at which a program can be restarted. It 
is normally the address of the code required to initialize variables, 
counters, etc. 

root segment The segment of an overlay tree that, once loaded, 
remains resident in memory during the execution of a task. 

RUNOFF A program that is used to prepare printed documents by 
performing formatting, case conversion, line justification, page num
bering, titling, and indexing. 

secondary storage Mass storage other than main memory. 

sentinel file The last file on a cassette tape which represents the 
logical end-of-tape. 

sequential access A data access method in which records or files 
are read one after another in the order in which they appear in the file 
orvolume. 

sharable program A (reentrant) program that can be used by sever
al users at the same time. 

significant event An event or condition which indicates a change in 
system status in an event-driven system. A significant event is 
declared, for example, when an 1/0 operation completes. A declara
tion of a significant event indicates that the executive should review 
the eligibility of task execution, since the event might unblock the 
execution of a higher priority task. The following are considered to be 
significant events: 110 queuing, 1/0 request completion, a task re
quest, a scheduled task execution, a mark time expiration, a task exit. 

single user access The status of a volume that allows only one user 
to access the file structure of a volume. 

single-stream batch A method of batch processing in which only 
one stream of batch commands is processed. 

sliver A 32-word section of memory. 

source language The system of symbols and syntax, easily under
stood by people, which is used to describe a procedure that a compu
ter can execute. 

sparse array Refers to the method of storage allocation used in 
MUMPS-11 for local and global arrays in which space is allocated only 
as variables are explicitly defined (unlike other languages which re
quire dimension or size statements for preallocation of storage). 

530 



GLOSSARY 

spooling The technique by which output to low-speed devices is 
placed into queues on faster devices to await transmission to the 
slower devices. 

step number A number in the range 0.01 to 327.67 used to identify 
each line of a MUMPS program. 

subscript A numeric valued expression or expression element 
which is appended to a variable name to uniquely identify specific 
elements of an array. Subscripts are enclosed in parentheses. Multiple 
subscripts must be separated by commas. For example, a two-level 
subscript might be (2,5). 

swapping The process of copying areas of memory to mass storage 
and back in order to use the memory for two or more purposes. Data 
is swapped out when a copy of the data in memory is placed on a mass 
storage device; data is swapped in when a copy on a mass storage 
device is loaded in memory. 

swapping device A mass storage device especially suited for swap
ping because of its fast transfer rate. 

switch An element of a command or command string that enables 
the user to choose among several options associated with the com
mand. In PDP-11 software systems, a switch element consists of a 
slash character (I) followed by the switch name and, optionally, a 
colon and a parameter. For example, a command used to print three 
copies of a file on the line printer could be: "PRINT filename/COPIES: 
3". 

synchronous The performance of a sequence of operations con
trolled by an external clocking device. Implies that no operation can 
take place until the previous operation is complete. 

synchronous system trap A system condition which occurs as a 
result of an error or fault within the executing task. 

system device The device on which the operating system is stored. 

system generation The process of building an operating system on 
or for a particular hardware configuration with software configuration 
modifications. 

system manager The person at a computer installation responsible 
for the overall nature of its operation. 

system operator See operator. 

system program A program that performs system-level functions. 
Any program that is part of the basic operating system. A system utility 
program. 

531 



GLOSSARY 

system programmer A person who designs and codes the pro
grams that control the basic operations of a computer system, as 
opposed to an application program. 

system UCI The User Class Identifier (UCI) code in a MUMPS-11 
system which is assigned to the first entry in the system's UCI table. 
The program and global directories associated with the System UCI 
are used to contain both system and library programs and globals. 

task In RSX-11 terminology, a load module with special characteris
tics. In general, any discrete operation performed by a program. 

terminal An 110 device, such as an LA36 terminal, which includes a 
keyboard and a display mechanism. In PDP-11 systems, a terminal is 
used as the primary communication device between a computer 
system and a person. 

time slice The period of time allocated by the operating system to 
process a particular program. 

TRAX A dedicated high-volume transaction processing operating 
system. 

transaction A single pre-defined data processing operation Within 
an application. 

transaction processor A collection of data tables and software ca
pable of processing an application's transactions. 

staging The delay of each update to a file until the end of the tran
saction instance requesting the update. 

unformatted ASCII A mode of data transfer in which the low-order 
seven bits of each byte are transferred. No special formatting of the 
data occurs or is recognized. 

unformatted binary A mode of data transfer in which all bits of a 
byte are transferred without regard to their contents. 

unmapped system An RSX-11 M or RSX-11 S system that does not 
have a hardware memory management unit available for virtual ad
dress relocation. 

user class identifier An identification code that enables a user to 
gain access to a MU MPS-11 system to execute programs. 

user identification code The number or set of numbers that serves 
to distinguish a particular user or collection of files in a multi-user 
system. The common format for a user identification code is two num
bers separated by a comma, enclosed in brackets. 

user program An application program. 

532 



GLOSSARY 

utility Any general-purpose program included in an operating sys
tem to perform common functions. 

variable The symbolic representation of a logical storage location 
which can contain a value that changes during a discrete processing 
operation. 

virtual address space A set of memory addresses that is mapped 
into physical memory addresses by the paging or relocation hardware 
when a program is executed. 

virtual array A RSTS/E file structure that is logically organized as a 
dimensioned array. 

virtual block One of a collection of blocks comprising a file (or the 
memory image of that file). The block is virtual only in that its block 
number refers to its position relative to other blocks within the file, 
instead of to its position relative to other blocks on the volume. That is, 
the virtual blocks of a file are numbered sequentially beginning with 
one, while their corresponding logical block numbers can be any 
random list of valid volume-relative block numbers. 

volume A mass storage media that can be treated as file-structured 
data storage. 

word Sixteen binary digits treated as a unit in PDP-11 processor 
memory. 

zero a device To erase all the data stored on a volume and re
initialize the format of the volu me. 

533 



INDEX 

Access 
see Files, access 

Account 
number, 24,98,99 
privileged, 102 

Accounting 
information, RSTS/E, 100,101 
utility programs, 95,96 

Active Task List (ATL) 170 to 172 

Address routing sort (SORTA) 272,274,279 

Alphanumeric data 
COBOL,418 

Alternate collating sequence (SORT-11) 276 

American National Standard Code for Information Interchange 
see ASCII format 

Analog input (FOCAL) 505 

ANS-68 COBOL 424 to 436 

ANS-74 COBOL 416,424 to 436 

ANS FORTRAN 452 

ANSI standard MUMPS 
see MUMPS 

APL 
character set, 483,484 
data structures, 485,486 
file system, 498 
hardware configuration, 482 to 484 
1/0 operations, 491 to 493 
language elements, 485 to 491 
overview, 481,482 
primitive functions, 486 to 490 
statement execution, 495, 496 
statements, 484 
system commands, 494 
system communication, 493,494 
under RSTS/E, 497 
under RT-11, 497 

Index-1 



INDEX 

Application Terminal Language (ATL) 237 to 241 

Arithmetic 
functions, 371 
operators (BASIC-PLUS-2), 403 

Arrays 
APL, 485, 486, 488 
DSM-11, 206,207 

ASCII files 
editing, 75,76 

ASCII format 17,18 

Assemblers 
see also MACRO, 41,48,49,52 to 55,343,344,357,388 

Assignm~nt statements 
FORTRAN, 455 

Asynchronous record operations 

Asynchronous System Trap (AST) 

Automatic set membership 312 

Backgrou nd region 13 

Bad Block Locator 163 

BASIC 
compiler operation, 57,58,376 to 378 
constants, 367 
editing commands, 374 to 376 
files, 374 
functions, 371,372 
graphics support, 373 
laboratory peripheral support, 374 
language description, 366,367 
operators, 368 
overview, 365,366 
programming example, 372,373 
statements, 368 to 371 
under lAS, 378,381 
under RSX-11 M, 378,381 
under RT -11,378 to 381 
using DBMS, 319 
variables, 367,368 

BASIC-PLUS 

302,305,306 

129,130 

advanced statements and functions, 396,397 

Index-2 



data formats, 395 
functions, 387 to 390 
immediate mode, 394 

INDEX 

matrix manipulation, 387,389,390,392,395,396 
operators, 385 to 387 
overview, 383 to 385 
program development commands, 393,394 
statements, 390 to 393 
under RSTS/E, 84,89 
variable types, 385 

BASIC-PLUS-2 
constants, 400,401 
expressions, 403 to 405 
files, 407,408 
matrix operations, 406,407 
overview, 399,400 
statement modifiers, 406 
statements, 408 to 413 
subprograms, 405,406 
variables, 401 to 403 

BATCH (RT'11) 80 

Batch processing 
lAS, 168,169,173,174 
RSTS/E, 108to 110 
RT-l1,80 
TRAX,246,247 

Binary 
data storage, 17 to 19 
files, 19 

Bit 14 

Block I/O 
RMS-11,301 
RSX-11,155 

Blocks 15,29 

Buckets 296,303 

Buffers (RMS-11) 303,304 

Cache (TRAX) 243,244 

CALC routine 314,315 

CALCULATED (CALC) record location mode 309,314,315 

Index-3 



Call facility (COBOL) 419 

CCl commands 105,106 

Central processors 
PDP-11,5 

Character set 
APl,483,484 

INDEX 

Checkpointing 126,131,132 

CMP (File Compare Utility) 164 

COBOL 
call facility, 419 
compiler operation, 56,57,420,421 
data types, 417,418 
debugging, 419,420 
DMl statements, 319 
files,419 
interactive execution, 418,419 
lang uage features, 417 to 420 
language implementations, 424 to 436 
library facility, 419 
overview, 415 to 417 
string manipulation, 418 
under lAS, 422 
under RSTS/E, 421,422 
under RSX-11 M, 422 
under TRAX, 422 
utility programs, 422,423 

Code shared lAS 175 

Collating sequence 
SORT-11,276 

Collection processing 327 to 329 

Command files (indirect) 66,150 to 153,178,179 

Command language commands 37 to 40 

Command language interpreters (CLI) 40,176 to 184 

Command line processing macros 160 

Commands 
eel,106 
DATATRIEVE-11, 325,326,333 to 336 
description, 36 
DSM-11, 215 to 221 

Index-4 



INDEX 

FOCAL, 508 to 510 
lAS (see also Command language interpreters (CLI», 40 
1/0,36,37 
monitor, 37 to 40 
MUMPS,215to217 
program development BASIC-PLUS, 393,394 
program development lAS, 180 to 183 
RSTS/E, 103 to 105,38,39 
RSX-11 Monitor Console Routine, 146 to 150,39,40 
RT -11 keyboard mon itor, 66 to 69 

Command String Interpreter (CSI) 76 

Command string specification 
FORTRAN-IV, 463,464 

Command terminal 145 

Commercial transaction processing 
see TRAX 

Common Access Monitor Program (CAMP) 315 

Common code (lAS) 175 

Communications 
see also DECnet Phase II 
RT -11, 65 to 75 
software, 4 
TRAX, 257 to 259 

Compiler directive statements (DIBOl) 439,440 

Compilers 
see also names of specific languages, such as BASIC, COBOL, DIBOL, 
FORTRAN 
49 to 58 

Composite operators 490 

Concise Command language (CCl) 38,39,105,106 

Conditional assembly directives 352,355 

Constants (BASIC-PlUS-2) 400,401 

Contiguous file structure 30,31 

Control characters 
RSTS/E,106 
RSX-11,150 

Control commands (lAS) 183 

Control sections 359 

Index-5 



Control statements 
DIBOL, 441,442 
FORTRAN, 455 to 457 

CPU-CPU device 201 

Crash module 
RSX-11M,137,138 

CTRL (control) key 27 

INDEX 

CTS-300 (DECFORM) 443,445 to 447 

CTS-500 (DECFORM) 443,445 to 447 

Data 
formats BASIC-PLUS, 395 
formats RSTS/E, 110,111 
logical characteristics, 15,16 
management (see also DBMS; RMS-11) 14 to 26,160,203 to 209 
manipulation, DIBOL, 440,441 
organization, DBMS, 309 
organization, logical, 27 to 20 
physical units, 14 to 16 
relationships (DBMS), 311 
sorting, 271 to 279 
storage, 17 to 19,374 
structures (APL), 485 to 486 
transfer, 19 to 22 
transfer modes (RSX-11), 156,157 
types (COBOL), 417,418 

Data Base Query 315 

Data base utilities 313 to 315 

Data Description Language (DDL) 308 

Data dictionary facilities (DBMS) 313 

Data files (RSX-11) 154,155 

Data management services 
see also DATATRIEVE-11; DBMS; RMS-11; SORT-11 
4 

Data management/utilities 
lAS, 45,191 
RSTS/E, 44,121 
RSX-11M,44 
TRAX-11,45,160 

Data Manipulation Language (DML) 306,316 to 322 

Index-6 



INDEX 

Data specification statements (DIBOL 440 

DATATRIEVE-11 
commands, 325,326,333 to 336 
formatted reports, 339,340 
hardware required, 324,325 
overview, 323,324 
sample session, 336 to 339 
syntax, 329 to 336 
terminology, 326,327 

DBMS 
Common Access Monitor Program (CAMP), 315 
Data Manipulation language, 316 to 322 
data organization, 309 
DMl programs, BASIC, 319 
DMl programs, COBOL, 319 
DMl programs, execution, 329 to 322 
DMl programs, FORTRAN, 319 
DMl programs, MACRO-11, 319 
DMl programs, requirements, 320 
overview, 307,308 
physical space management, 310 
set relationship capabilities, 311 to 313 
utilities, 313 to 315 

DBX 315 

Debugger 42 

Debugging 
APl,496 
COBOL, 419,420 
DBMS, 341 
FORTRAN,468 
RSX-11M,163 
RT-11,79 
TRAX,246 

DECFORM 443 to 449 

DECnet-11D 265,267 

DECnet-11 M 264,267 

DECnet-11 S 265 to 267 

DECnet/E 85,263,264,267 

DECnet-IAS 266,267 

DECnet overview 4 

Index-7 



DECnet Phase II 261 to 267 

DECnet/RT 263,26'7 

DECnet-VAX 267 

Detached job 91 

INDEX 

Device independence (lAS) 174,175 

Device/Media Control Language (DMCL) 310 

Devices 
description, 15 
drivers and handlers, 27,28,137 
file structured, 21 
name in file specification, 23 to 25 
RSX-11,140,141 

Device Utility Prgram (DUP) 76 

Diagnostics 
FORTRAN IV, 464 
TRAX,249 

DIBOL 
overview, 437 to 439 
statements, 439 to 442 
subroutine library, 443 

Digital input/output (FOCAL) 505 

Digital Standard Mumps Operating System 
See DSM-11 

Direct access file access method 30 

Directives 41 ,348 to 355 

Directory 33 

Directory Program (DIR) 76,77 

DIRECT record location mode 309 

Disk cache 204 

Disk Save and Compress (DSC) 164 

Disk structure 
DMS-11,207 
RSTS/E,113,114 

DMP (File Dump) utility 164 

DSM-11 
data management, 203 to 209 

Index-8 



spooling, 202,203 
command summary, 215 to 221 
executive, 196,197 
functions, 221 to 223 
journaling, 203 

INDEX 

library utility programs, 211,212 
MUMPS language, 212 to 225 
overview, 3,193 to 196 
processors supported, 6,195 
special variables, 223 to 225 
supported hardware, 195,196 
system summary, 45 
user interface, 197 to 200 
utilities, 209 to 212 
I/O operations, 197,200 to 202 

Dump (memory) 163 

DUMP utility 42,78 

Dyadic functions 486 to 488 

Dynamic 
file access, 291,292 
memory allocation, 132 
storage region, 134 

EDI editor 162 

Editing commands (BASIC) 374 to 376 

Edit mode (RSTS/E) 90,91 

EDIT program 75,76 

EDT editor 162 

Emulator Trap (EMT) 40 

Error logging 
TRAX, 249,250 
utility programs, 96,97 
Event-driven program execution, 13 
task scheduling, 128 

Event flags 128,129 

Exchanges 251 to 253 

Executive 
DSM-11,196,197 
lAS, 170to 174 
RSX-11M, 133to 138 

Index-9 



INDEX 

RSX-11S,139 

Executive Oebugging Tool (XOT) 163 

Executive directive services 137 

Expression operators 454 

Expressions 
BASIC-PLUS-2, 403 to 405 
MUMPS,212t0214 

Extended memory monitor 
RT-11,64,65 

Extensions (filename) 23 to 26,98,144,145 

FCS 
see File control services 

Field 15 

File compare (CMP) utility 164 

File control services 41,153 to 160 

File 1/0 operators (APL) 498 

File management 
TRAX,250 
utilities, 12,42 

Filename extensions 23 to 26,98,144,145 

File processor (FIP) buffering 93 

Files 
access, discussion, 29 to 33 
access, RMS-11, 288 to 292 
access, RSTS/E, 85,111 to 113 
access, RSX-11, 154 
access, TRAX, 254 
APL,498 
attri butes, RMS-11, 292 to 298 
BASIC, 374 
BASIC-PLUS-2,407,408 
binary, 19 
COBOL, 419 
copy utility, 164 
default types, RSX-11, 144,145 
description, 15,16 
indexed, 273,285 to 287,289 to 291,296 to 298,300,301 
ind irect, 66,150 to 153,178,179 

Index-10 



INDEX 

manipulation utility programs, 108 
naming, 23 to 26 
processing as collection, 327 to 329 
protection, BASIC, 379 
protection, discussion, 23 
protection, RSTS/E, 99,100 
relative, 273,284,285,289,299,300 
review and update modes (DECFORM), 447,448 
RMS-11, 283 to 287,298 to 301 
RSX-11 M utilities, 164 
sequential, 284,288 to 290,299 
sharing, RMS-11, 302,303 
sharing, RSX-11, 157,158 
sorting contents, 273,274 
specification, discussion, 23 to 26 
specification, RSTS/E, 97 to 100 
specification, RSX-11, 143 to 145 
structure, 29 to 33,141 to 143 

Files-11 141 

File storage region (FSR) 156,157 

File-structured devices .21 

File Verification (VFY) 164 

FILEX (File Exchange Program) 42,78 

FIPcalis 114,116to120 

Fixed length records 293 

Floating point 
BASIC, 367 
RSTS/E,92,93 

FLX (File Exchange) utility 164 

FOCAL 503 to 511 

Forced keys 276 

Foreground/background monitor (RT-11) 13,63 to 65 

Format control file (DECFORM) 444 

FORMAT program 78 

Format statements (FORTRAN) 459 

Formatted ASCII data files 111 

Forms control (TRAX) 237 to 241 

Forms creation language 443 

Index-11 



INDEX 

FORTRAN IV 
compiler operation, 52,55,462 to 468 
debugging, 468 
description, 451,462 
DML statements, 319 
language, 453 to 462 
libraries, 468 
library functions, 460 to 462 
optimizations, 467,468 
overview, 451 
specifications, 452,453 
System Subroutines (SYSF4), 80,81 
under RSTS/E, 469,470 
under RT -11,469 
user-written subprograms, 460 

FORTRAN IV-PLUS 
compiler operation, 52,55,56,475 to 479 
functions and features, 451 ,471 ,472 
language extensions, 472 to 475 
operating environments, 479,480 
optimizations, 475 to 479 

FORTRAN Object Time System 466 

FSR (File storage region) 156,157 

Function-definition mode (APL) 495,496 

Function directives 349,354,355 

Functions 
BASIC, 371,372 
BASIC-PLUS, 387 to 390 
FOCAL,510,511 
MUMPS, 221,222 

General system utility programs 107,108 

Generic function names 474,475 

Global 
arrays, 33,207 to 209 
logical device assignments, 141 
symbols, 346 
variables, 206,207 

Graphics support 
BASIC, 373 
FOCAL, 505, 506 

Index-12 



INDEX 

GT42 graphics display system 373 

GT44 graphics display system 373 

Hardware 
DSM-11 supported, 195,196 
error logging, TRAX, 250 

Heterogeneous output mode 493 

High-throughput computers 5 

lAS 
BASIC, 378,381 
batch processing, 173,174 
COBOL, 422 
command language interpreters, 40,176 to 184 
DEC net, 266,267 
directories, 33 to 35 
executive, 170 to 174 
FORTRAN IV-PLUS, 479,480 
indirect command files, 178,179 
I/O services, 174,175 
MACRO, 361 to 363 
overview, 3,167 to 170 
processors supported, 7 
program development system (PDS), 176 to 183 
program services, 40,41 
system generation, 175,176 
system summary, 45,170,190,191 
timesharing, 184 to 190 
utilities, 190 

IASBUF 174 

IASCOM 174 

I-beams 494 

IBM 2780 terminal emulator 85 

Immediate mode 
APL,495 
BASIC, 376,377 
BASIC-PLUS, 374 

Incremental compilers 49,50,57,58 

Indexed files 32,33,273,285 to 287,289 to 291,296 to 298,300,301 

Index file (RSX & lAS) 35 

Index sort (SORTI) 272,274,279 

Index-13 



INDEX 

Indirect command files 66,150 to 153,178,179 

INITcode 
RSTS/E,93,94 

Initialization utility 
DBMS,314 
RSTS/E,95 

Input modes 
APL, 491,492 

Integers 367,400 to 402 

Interactive Application System 
see lAS 

Interactive 
program execution, COBOL, 418,410 
time sharing, 168 

Interrupt handling 
FOCAL,504 

1/0 buffers 
RMS-11, 303,304 

1/0 commands 36,37 

1/0 operations 
APL, 491 to 493,498 
DSM-11, 197,200 to 202 
lAS, 174,175 
RSX-11, 155 to 157 

1/0 statements 
DIBOL,442 
FORTRAN, 457 to 459 
FORTRAN IV-PLUS, 472,473 

Jobs 
detaching, 91 
maximum number, RSTS/E, 92 
scheduling, 128,129,172,196,197 
size (RSTS/E), 84 
swapping, 91 

Journal File Fix 315 

Journaling 
DBMS,313 
DSM-11,203 
TRAX, 255 

Index-14 



Journal rollback 314 

Journal rollforward 314 

Keyboard 
APL,484 
1/0 operators, 493 
monitor, 38 
monitor commands, 66 to 69 

Keys 
indexed files, 296 to 298 
SORT -11,276 

INDEX 

KMC11-A auxiliary processor 258 

Laboratory peripheral support (BASIC) 374 

Language extensions 
FORTRAN IV-PLUS, 472 to 475 

Language processors 
see also names of specific languages, such as BASIC, MACRO, 
COBOL, FORTRAN 
47 to 58 

Languages 
DSM-11,45 
lAS, 45,191 
overview, 4,5 
RSTS/E,44,121 
RSX-11M,44 
RT-11,44 
TRAX-11, 45,260 

Librarian utility 42,51,54,55,78,162 

Libraries 51,468 

Library 
facility, COBOL, 419 
functions, FORTRAN, 460 to 462 
functions, FORTRAN IV-PLUS, 474 
utility programs, DSM-11, 209 to 211 

Linkage (set) 313 

Linked file structure 30,31 

Linkerutility 41,51,54,77 

Listing control directives 348,354 

Local 

Index-15 



logical device assignment, 141 
symbols, 347 
variables, 206 

Locate mode 157,302,306 

Logical 
blocks, 29 
data organizations, 27 to 29 
device assignments, 141 

INDEX 

disk structures (RSTS/E), 113,114 
functions (APL), 490,491 
names, 93 
operators (BASIC-PLUS-2), 403 to 405 
record, 15 
unit numbers (lAS), 175 
volume, 16 

MACRO 
assembler, 52 to 55,357,358 
directives, 348 to 355 
macro definitions, 352,355,356 
overview, 343,344 
program sectioning, 351,358 to 361 
statements, 344,345 
symbols, 345 to 347 
under lAS, 361 to 363 
under RSX-11, 362,363 
under RT-11, 361,362 
using DBMS, 319 

Macros 
command line processing, 160 
definitions, 352,355,356 
file control services (FCS), 158 to 160 
libraries, 353,356,357 

Macro Symbol Table (MST) 345 

Magnetic tape functions 
BASIC-PLUS, 390 

Mailbox message 252 

Maintenance utility programs 95 

Mandatory set membership 311 

Manual set membership 312 

Mapped file structure 30,31 

Indpx-16 



Mapped systems 121,128 

Mass storage devices 20,21 

INDEX 

Master File Directory 23,33 to 35,114,141 

Mathematical functions 
BASIC-PLUS, 387,388 

Matrix 
APL,485,486 
BASIC-PLUS, 387,389,390,392,395,396 
BAISC-PLUS-2,406,407 

MCR command buffer 133,134 

Memory 
dump, 163 
dynamic allocations, 132 
i mage file, 19 
requirements (DECFORM), 445 
segmentation (COBOL), 421 
structures (RSX-11 M), 133 to 138 

Messages 26,251,252 

Microcomputers 5 

Minicomputers 5 

Mixed functions 489,490 

Monadic functions 486,487 

Monitor 
commands, 37 to 40 
lAS, 170 
functions, 10,11 
RT -11, 63 to 65 

Monitor Console Routine (MCR) 39,40,124,145 to 151 

Move mode 157,302,306 

MRG utility 57 

MU BASIC-11/RT-11 379 to 381 

Multiple-pass compiler 55,56 

Multiple-phase compiler 55,56 

Multiple terminal service 92 

Multiprogramming 
see also RSX-11; RSX-11M; RSX-11S 
13,124,126to 128 

Index-17 



Multi-user 
BASIC, 379 to 381 

INDEX 

operating sy'stem (see also lAS; RSTS/E; RSX-11 M) 12 

MUMPS 
see also DSM-11 
13,14,212t0225 

Networks 261 to 267 

Next pointer 313 

Nodes 207 

Non-file structured devices 21 

Nonpriviledged programs 
FIP calls, 116 to 118 

Numeric data 
BASIC, 367 
BASIC-PLUS-2,400,401 
COBOL,418 
DSM-11,205 

Object code generation 
FORTRAN, 466 

Object files 
linking, 54,77 

Object module 
patching, 79 

Object module patch (PAT) utility 163 

Object Time Systems (OTS) 51,466 

On-line Debugging Technique (OOT) 79,163 

On-line Task Loader (OTL) 139 

Operating systems 
see also names of specific operating systems 
components, 10 to 12 
multi-user, 12 
overview, 9,10 
PDP-11,2t04 
processors supported, 6 to 8 
single user, 12 

Operators 
BASIC, 368 
BASIC-PLUS, 385 to 387 

Index-18 



BASIC-PLUS-2,403,404 
file 1/0 (APL), 498 

INDEX 

Operator services programs 96 

Optimizations 
FORTRAN IV, 467,468 
FORTRAN IV-PLUS, 475 to 479 

Optional set membership 311 

Output modes (APL) 492,493 

Overlay Description Language (ODL) 56,57 

Overlays (COBOL) 421 

Owner pointer 313 

Page (DBMS) 310 

Page Find/Fix 314 

Panic dump module (RSX-11M) 137,138 

Partitions (RSX-11) 126,127 

PATCH utility 79 

PAT (Object Module patch) utility 163 

PDP-11 
central processors, 5 
COBOL, 424 to 436 
operating systems, 2 to 4,6 to 8 
software, introduction, 1 to 5 

PEEK function 120 

Permanent Symbol Table (PST) 345 

Physical blocks 29 

Physical device characteristics 27 to 29 

Physical volume 15 

PIP (Peripheral Interchange Program) 42,76,164 

Pointers (DBMS) 313 

Point-plot graphics 505,506 

POint-to-point communications 262 

Post-Mortem Dump (PMD) 163 

Power failure restart 130,131 

Primitive functions (APL) 486 to 490 

Index-19 



INDEX 

Print functions (BASIC-PLUS) 388 

Priority (multiprogramming) 126,128,129 

Prior pointer 313 

Private disk 113,114 

Private 1/0 buffers 304 

Privilege 101 to 103 

Privileged programs FIP calls 118 to 120 

Program development commands (BASIC-PLUS) 393,394 

Program Development System (PDS) 40,176 to 183 

Program development utilities 12,51,162,163 

Programmed requests 
RT -11,64,65,69 to 75 

Programmed system services 40,41 

Programmer Access code (PAC) 197 

Programs 
debugging, 79,163 
privileged, 102 
sectioning, 351,358 to 361 

Protection 
DSM-11, 197,198,207 
files, 23 
RSTS/E files, 99,100 
TRAX,237 

Pseudo device names (RSX-11 M) 140, 141 

Pseudo keyboards 92 

Public disk 113,114 
Relocatable 
binary format, 48 
image file, 19 
program sections, 359 

Repeat block 353,356 

Report message 252 

Report Program Generator (RPG II) 499 to 502 

Reports (DATATRIEVE-11) 339,340 

Resource management utility programs 95,96 

Resource program (RESORC) 79 

Index-20 



INDEX 

Resource-Sharing Timesharing System/Extended 
see RSTS/E 

Response message 252 

Restart from power failure 130,131 

RMS-11 
buffer handling, 303,304 
COBOL,416 
file access modes, 288 to 292 
file attributes, 292 to 298 
file management, TRAX, 250 
file operations, 298 to 301 
file organization, 283 to 287 
overview, 160 to 162,281 to 283 
record formats, 293 to 295 
runtime environment, 301 to 306 
underRSX-11, 160to 162 

Rollback 314 

Rollforward 314 

Round robin scheduling 129,172 

RPG 499 to 502 

RSTS/E 
accounting information, 100,101 
APL,497 
BASIC-PLUS, see also BASIC-PLUS, 89 
batch processing, 108 to 110 
COBOL, 421,422 
configuration requirements, 84 
data formats, 110,111 
DEC net, 263,264,267 
device access structure, 97 
directories, 33 to 35 
file access, 111 to 113 
file protection, 99,100 
file specifications, 97 to 100 
floating point precision, 92,93 
FORTRAN IV, 469,470 
initialization code, 93,94 
logical disk structures, 113,114 
maximum number of jobs, 92 
monitor commands, 38,39 
operation, 88 to 114 

Index-21 



overview, 3,83 to 87 
privilege, 101 to 103 
processors supported, 6 

INDEX 

scaled arithmetic, 92,93,110,111 
SYS system functions, 40,114 to 120 
system accounts, 100,101 
system code, 88,89 
system generation, 91,92 
system summary, 44,86,87,121 
ti mesharing, 13,14,90,91 
user interface, 103 to 114 
utility programs, 94 to 97,107,108 

RSX-11 
see also RSX-11 M; RSX-11 S 
data transfer modes, 156,157 
default file types, 144,145 
file control services, 153 to 160 
1/0 operations, 155 to 157 
MCRcommands, 146to 150 
MACRO, 362,363 
Monitor Console Routine, 39,40,124,145 to 151 
multiprogramming, 13,126 to 128 
organization and components, 132 to 140 
overview, 123 to 125 
peripheral devices, 140,141 
priority scheduling, 128,129 
programmed services, 40,41 
system conventions, 140 to 153 
system generation, 133 
terminal control, 145,146,150 

Quad-del input mode 492 

Quad input mode 491 

Quad output mode 492,493 

Quantum 172,173 

Quote-quad input mode 491,492 

Radix directives 350 

Random access mode 290,291 

Read protection 
see Protection 

Index-22 



INDEX 

Real-time 
multiprogramming (see also RSX-11; RSX-11 M; RSX-11 S), 124 
processing, see lAS; RT -11 
support (FOCAL), 504 

Record files (BASIC-PLUS-2) 408 

Record 1/0 111 to 113,155 to 157,393 

Record location modes 309 

Record Management Service 
see RMS-11 

Record processing environment (RMS-11) 304 to 306 

Records 
DBMS, 309 
locked,254 
logical relationships, 311 
operations, RMS files, 298 to 301 
RMS-11 formats, 286, 293to 295 
staged,255 
transfer modes, RMS-11, 306 

Record selection 
SORT -11. 275,276 

Record's file address (RFA) access mode 291 

Record sort (SORTR) 272.274.278 

Recovery (DBMS) 313,315 

Relational 
functions (APL). 490,491 
operators. BASIC. 368 
operators. BASIC-PLUS-2, 403,404 

Relative files 273,284.285,289,290,299,300 

RSX-11M 
see also RSX-11 
On-Line Debugger (ODT), 163 
BASIC. 378.381 
COBOL. 422 
DEC net. 264.267 
disk-based operation, 131 
directories. 33 to 35 
dynamic memory allocation. 132 
executive. 133 to 138 
file manipulation utilities, 164 

Index-23 



INDEX 

file structures, 141 to 143 
FORTRAN IV-PLUS, 479, 480 
memory structures, 133 to 138 
minimum configuration, 124,125 
Monitor Console Routine, 124 
overview, 3 
processors supported, 7 
program development utilities, 162,163 
system summary, 44 
task check pointing, 131,132 
utility programs, 162 to 164 

RSX-11S 
see also RSX-11 
DEC net, 265 to 267 
executive, 139 
minimum configuration, 125 
overview, 3 
processors supported, 7 
system com ponents, 138 to 140 
system generation, 138 
utility programs, 162 

RT-11 
APL,497 
BASIC, 378,381 
BATCH,80 
debugging, 79 
DECnet, 263,267 
foreground/background, 12,13,63 to 65 
FORTRAN IV, 469 
FORTRAN System Subroutines (SYSF4), 80,81 
keyboard monitor commands, 66 to 69 
languages, 81 
MACRO,361,362 
monitors, 63 to 65 
operating environments, 63 to 65 
overview, 3,61,62 
processors supported, 6 
programmed requests, 40,64,65,60 to 75 
system communications, 65 to 69 
system programs, 76 to 79 
system summary, 44 
text editor, 75,76 

Run mode 90,91 

Index-24 



INDEX 

Save-image library (SIL) 88 

Scalar functions (APL) 487,488 

Scaled arithmetic (RSTS/E) 92,93,110,111 

Scheduling 
multiprogramming, 128,129,172,196,197 

Schema Data Description Language 308 

Security 
DBMS,314 
TRAX, 237 

Sequential Disk Processor (SOP) 201 

Sequential file access method 30 

Sequential files 284,288 to 290,299 

Set (DBMS) 311 to313 

Significant event 13,128,129 

Single-job monitor (RT-11) 63 

Single-user operating system 12 

Slave terminal 145 

Software 
error logging (TRAX), 249 
PDP-11, 1 to5 

SORT-11 271 to 279 

Source compare program (SRCCOM) 78 

Source Input Program (SLP) 162 

Source program creation 52 to 54 

Source statements (MACRO) 344 to 353 

Source management (DBMS) 310 

Space pool 304 

Special terminal commands 27 

Specification statements 
FORTRAN,459,460 
FORTRAN IV-PLUS, 473 

Spooling 
DSM-11,202,203 
RSTS/E,96 
RSX-11,158 

Index-25 



TRAX,246,247 

SPOOL program 96 

Stack (system) 134 

Staging 254,255 

Standard MUMPS 
see MUMPS 

INDEX 

Standard MU MPS Backup and Utility System (SMBU) 210,211 

Start-up parameters (lAS) 176 

Statement modifiers (BASIC-PLUS-2) 406 

Statements 
APL,484 
BASIC, 368 to 371 
BASIC-PLUS, 390 to 393 
BASIC-PLUS-2, 408 to 413 
DIBOL, 439 to 442 
FOCAL, 507,508 
MACRO, 344 

Station messages 251,252 

Stations (TRAX) 250 to 254 

Stop vector 496 

Stream format records 294,295 

Strings 
BASIC, 367,371,372 
BASIC-PLUS, 388,389 
BASIC-PLUS-2, 401 to 404 
COBOL, 418 
DSM-11,205 
virtual, 112 

Subpartitioning 127 

Subprograms 
BASIC-PLUS-2, 405,406 
user-written, FORTRAN, 460 
user-written, FORTRAN IV-PLUS, 473 

Subroutine library 
DIBOL,443 
RT-11,80,81 

Sub-schema DOL 308 

Index-26 



Subscripted variables 
BASIC, 367 
BASIC-PLUS-2, 402,403 
DSM-11, 206,207 

INDEX 

Supervisory functions (DECFORM) 455 to 447 

Swapping 91 

Symbols (MACRO) 345 to 347 

Synchronous record operations 302,305,306 

Synchronous System Traps (SST) 129,130 

SYSGEN 
see System generation 

SYSRES (lAS) 174 

SYS system functions 114 to 120 

System 
accounts (RSTS/E), 100,101 
code (RSTS/E), 88,89 
commands, APL, 494 
commands, RSTS/E, 103 to 105 
functions (BASIC-PLUS), 389 
information programs, 107 
library (RSTS/E), 89,90 
services, 40,41 
summaries 

DSM-11,45 
lAS, 45,170,190,191 
RSTS/E, 44,121 
RSX-11 M, 44 
RT-11,44 
TRAX, 45,260 

utilities, description, 11,12 
utilities, DSM-11, 209,210 

System computers 5 

System control interface (SCI) 183,184 

System controlled partitions 127 

System generation 
lAS, 175,176 
RSTS/E, 91,92 
RSX-11S, 138 
RSX-11,133 

Index-27 



INDEX 

TRAX, 248 to 250 

System Image Preservation Program (SIP) 140 

System management utilities 
description, 12 
RSTS/E, 94 to 97 

System Resident Library (lAS) 174 

System stack region 134 

System subroutine library (RT -11) 80,81 

Tag sort, (SORTT) 272,274,279 

Task Builder (TKB) 162 

Task command files 
indirect, 151 

Task loader 
RSX-11M,137 

Task patch (ZAP) utility 163 

Tasks 
check pointing, 131,132 
description, 125,126 
priority (lAS), 172 
size (COBOL) 421 

Task traps 129 

Terminal 
APL, 428 to 484 
command, 145 
control commands, lAS, 183 
control com mands, RSX-11, 145,146,150 
format files, 407 
interfaces, lAS, 176 to 184 
ownership, DSM-11, 200 
slave, 145 
tied,198 
transaction processing, 233 to 237 

Text editor 41,75,76,162 

Tied terminals 198 

Time-based scheduling 129 

Time measurements (FOCAl) 505 

Time quantum 172,173 

Index-28 



Time queuing (FOCAL) 504 

Timesharing 

INDEX 

see also lAS; DSM-11; MUMPS-11; RSTS/E 
13,14,90,91,170to 173,184to 190,196,197 

Timesharing Control Primitives 41,184 to 190 

Time slice 172 

TKB 162 

TOPS-l0 COBOL 424 to 436 

Transaction processing 
see also TRAX 
227,242 to 245,256,257 

Transaction Step Task (TST) 244,245,256,257 

Translation (language) 48 to 51 

Traps 129,130 

Trap vectors region 134 

TRAX 
applications environment, 232 
application terminal, 233 to 237 
batch processing, 246,247 
COBOL,422 
communications, 257 to 259 
data management/utilities, 45,260 
debugging, 246 
diagnostics, 249 
error logging, 249,250 
error recovery, 255 
file access, 254 
file mangement, 250 
forms control, 237 to 241 
languages, 257,260 
overview, 4,227 to 232 
processors supported, 8 
security, 237 
spooling, 246,247 
station structure, 250 to 254 
support environment, 232,245 to 247 
system generation, 248 to 250 
system structure, 232 
system summary, 45,260 
terminology, 241 to 245 

Index-29 



TST library, 258,259 

TRAX/TL 258,259 

UIC 23 

Unary operators 368 

Unmapped systems 127 

INDEX 

User area (BASIC) 377,378 

User Class Identtifier (UCI) 197 

User communication utility programs 97 

User controlled partitions 127 

User-defined functions 372 

User File Directory 23,24,33 to 35,114,141,142 

User Identification Code (UIC) 23 

User interface 
DSM-11, 197 to 200 
overview, 26 to 40 
RSTS/E, 103 to 114 

User Service Routine (USR) 28 

User Symbol Table (UST) 345 

User-written subprograms 
FORTRAN, 460 
FORTRAN IV-PLUS, 473 

Utilities 
COBOL, 422,423 
DBMS, 313 to 315 
DSM-11, 209 to 212 
lAS, 190 
overview, 11,12,41 to 43 
RSTS/E, 94 to 97,107,108 
RSX-11 M, 162 to 164 
RSX-11S,162 
RT -11, 76 to 79 
TRAX,248 

Variable length records 293 

Variables 
BASIC-PLUS, 385 
BASIC-PLUS-2, 401 to 403 
DSM-11, 206,207 

Index-30 



INDEX 

MUMPS special, 223,224 

Variable-with-fixed-control (VCF) records 293,294 

VERIFY program 42 

Version number 
file specif,ication, 25 

VFY (File Verification) 164 

VIA record locaton mode 309 

Video terminal graphics 
FOCAL, 505 

Virtual array files 408 

Virtual arrays 111,112 

Virtual blocks 29,154,155 

Volume 
description, 15 
logical, 16 

VT11 graphics display system 373,505 

VT52 DECscope terminal 
use with DECFORM, 444 

VT62 application terminal 233 to 237 

VT50H DECscope terminal 
use with DECFORM, 444 

Warning diagnostics 
FORT§!AN IV, 464 

Wildcard 26 

Workspaces 
APL,497 

Write protection 
see Protection 

XDT (Executive Debugging Tool) 163 

ZAP (Task Patch) utility 163 

Z commands 218 to 221 

Z function 222,223 

Z special variables 224,225 

Index 31 




	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	Index-22
	Index-23
	Index-24
	Index-25
	Index-26
	Index-27
	Index-28
	Index-29
	Index-30
	Index-31
	xBack

