
• AlphaServer Multiprocessing Systems
• DEC OSF/1 Symmetric Multiprocessing
• Scientific Computing Optimizations for Alpha

Digital Technical Journal
Digital Equipment Corporation

Volume 6 Number 3
Summer 1994

Cover Design
The cover design captures two major concepts

in this issue-symmetry and pamllelism. At the

hardware level, the AlphaServer multiprocess

ing systems provide symmetrical access to hard

ware system resources. As processors are added

to the multiprocessing system, the DEC OSF/1
operating system provides the parallelism that

allows applications to take advantage of the

added processor power. The KAP preprocessor

also provides parallelism, specifically for pro

grams running on symmetric multiprocessing

systems. In each case, symmetry and parallel

ism are among the keys to achieving designs

that offer the highest levels of performance.

The cover was designed by joe Pozerycki, Jr.,

of Digital's Design Group.

Editorial
Jane C. Blake, Managing Editor
Helen L. Patterson, Editor
Kathleen M. Stetson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production
Terri Autieri, Production Editor
AnneS. Katzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W. Beane
Donald Z. Harbert
Richard J. Hollingsworth
Alan G. Nemeth
Jean A. Proulx
Jeffrey H. Rudy
Stan Smits
Robert M. Supnik
Gayn B. Winters

The Digital Technical journal is a refereed journal published quarterly by Digital
Equipment Corporation, 30 Porter Road LJ02/Dl0, Littleton, Massachusetts 01460.
Subscriptions to the journal are $40.00 (non- U.S. $60) for four issues and $75.00
(non-U.S. $115) for eight issues and must be prepaid in U.S. funds. University and
college professors and Ph.D. students in the electrical engineering and computer
science fields receive complimentary subscriptions upon request. Orders, inquiries,
and address changes should be sent to the Digital Technical journal at the published
by address. I nquiries can also be sent electronically to dtj@digital.com. Single copies
and back issues are available for $16.00 each by calling DECdirect at 1 -800-DIGITAL
(1-800-344-4825). Recent back issues of the journal are also available on the Internet
at http://www.digital.com/info/DTJ/home.html. Complete Digital internet listings can
be obtained by sending an electronic mail message to info@digital.com.

Digital employees may order subscriptions through Readers Choice by entering VTX
PROFILE at the system prompt.

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright© 1994 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty
members and are not distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted. All rights reserved.

The information in the journal is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation or by the companies
herein represented. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in the journal.
ISSN 0898-90IX

Documentation Number E Y-S799E-TJ

The following are trademarks of Digital Equipment Corporation: Alpha, AlphaServer,
DEC, DEC Fortran, DEC OSF/1, DECpc, DECthreads, Digital, the DIGITAL logo, Micro VAX,
Open VMS, Storage Works, and ULTRIX.

CR AY-1 is a registered trademark ofCray Research, Inc.

Intel is a trademark oflntel Corporation.

KAP is a trademark of Kuck & Associates, Inc.

Microsoft and MS-DOS are registered trademarks and Windows NT is a trademark of
Microsoft Corporation.

MIPS is a trademark of MIPS Computer Systems, Inc.

Multimax is a trademark of Encore Computer Corporation.

Open Software Foundation is a trademark and OSF/ I is a registered trademark of Open
Software Foundation, Inc.

PAL is a registered trademark of Advanced Micro Devices, Inc.

SPECfp, SPECint, and SPECmark are registered trademarks of the Standard Performance
Evaluation Council.

SPICE is a trademark of the University of California at Berkeley.

TPC-A and TPC-C are trademarks of the Transaction Processing Performance Council.

UNIX is a registered trademark licensed exclusively by X/Open Company, Ltd.

Book production was clone by Quantic Communications, Inc.

Contents

6 Foreword
Steve Holmes

8 Design of the AlphaServer Multiprocessor
Server Systems
Fidelma M. Hayes

20 The AlphaServer 2100 1/0 Subsystem
Andrew P. Russo

29 DECOSF/1 Version3.0Symmetric
Multiprocessing Implementation
Jeffrey M. Denham, Paula Long, and
James A. Woodward

AlphaServer Multiprocessing Systems

DEC OSF/1 Symmetric Multiprocessing

Scientific Computing Optimizations for Alpha

44 DXML: A High-performance Scientific
Subroutine Library
Chandrika Kamath, Roy Ho, and Dwight P Manley

57 The KAP Parallelizer for DEC Fortran and
DEC C Programs
Robert H . Kuhn, Bruce Leasure, and Sanjiv M . Shah

I Editor's Introduction

jane C. Blake
Managing Editor

Designs that capitalize on Digital's 64-bit AJpha

RJSC processors or that enhance the performance
of scien tific applications are the subjects of papers
in this issue. Featured topics include the wel l
received AlphaServer multiprocessing systems,

the DEC OSF/1 symmetric multiprocessing op erat

ing system, a high-p erformance math l ibrary, and
a preprocessor program developed by Kuck &
Associates, Inc.

To develop a price/performance leader for the

server market, designers of the AJphaServer 2100
and 2000 mu ltiprocessing systems had to make
decisions that were at once creative, pragmatic,

and timely. Fidelma Hayes, an engineering manager
for the Server Group, presents an overview of these

high-performance servers that incorporate Alpha
RJSC technology and re-style 110 subsystems, and

support three operating systems-Microsoft's
Windows NT, DEC OSF/1, and Open VMS. Because of
the engineering team's persistent focus on perfor
mance, cost, and time-to-market, al l these goals fo r
the AlphaServer systems were surpassed .

Introducing two PC buses i n the Alp haServer
multiprocessing system was an importan t factor i n
market success and a n interesting engineering chal
lenge. Andy Russo discusses the benefits of a dual
level 1!0 strucrure that contains both the wiclely

used EISA bus and the newer high-performance

PCI bus that connects to a 128-bit m u ltiprocessing

system bus. He describes several in novative tech

niques that promote efficiency in the hierarchi
cal bus structure, the advantages offered by the
selection of bus bridges (one custom ASIC ancl o ne

standard chip set), ancl the 1/0 interrupt scheme
that combines familiar technology with custom
support logic.

2

The next paper presents the significant software
work done to ensure high performance and rel iabil
ity as crus are added to the 2100 and 2000 multipro

cessing systems. Jeff Denham , Paula Long, and Jim
Woodward first review the fou ndations of DEC

0Sf11 ve rsion 3.0, Digital's imple mentation of UNIX
for the AlphaServer multiprocessi ng systems. They

then examine issues that arise when moving an

operating system from a un iprocessor to a shared
memory SMP platform, in particular, the design
team's efforts in lock-based synchronization and

algorithm modifications aimed at paral lel ism
within the operating system kernel.

The total impact of 64-bit RJSC systems and oper

ating system support for shared memory SMP plat
forms is demonstrated by meeting the demands

of scient ific and technical app l ications. A tool for

accelerating appl ication performance on al l Alpha
systems is the DXM.L Extended Math Library.

Chanclrika Kamath, Roy Ho, and Dwight Manley
briefly discuss the role of mathematical l ibraries
and then present an overview of DXMI. compo
nents, which include both public domain BLAS and
LAPACK libraries and D igital proprietary software .
Using example routines, they explain optimization

techniques that effectively exploit the memory
hierarchy and provide substantial performance
improvements.

Another tool for optimizing scientific application
performance is KAP, a preprocessor to paral lelize
DEC Fortran and DEC C programs. As authors Bob
Kuhn, Bruce Leasu re, and Sanjiv Shah from Kuck &
Associates describe it, the KAP product is a super
optimizer, performing optimizations at the sou rce
code level that go beyond those performed by the

compilers. Their paper reviews adaptations to KAP
for SMP systems and the key design aspects, such as
data dependence analysis and the selection of loops
to parallelize from among many in a program.

The editors thank Andrei Shishov, M id- range
AlphaServers Program Manager, fo r his help in
developing this issue of the journal.

Biographies

jeffrey M. Denham A principal software engineer in the UNIX Software

Group, jeffrey Denham is a contributo r to the DEC OSF/1 version 3.0 symmetric

multiprocessing effort. Prior to this, he helped add POSIX.Ib features to the DEC

OSF/1 operating system and worked on the VAXELN real-time kernel. Jeff came to

Digital in 1986 from Raytheon Corporation. He holds a l:l.A (1979) from Hiram

Col lege, an MA. (1980) from Tufts University, both in Engl ish, and an M.S. (1985)

in Technical Communication from Rensselaer Polytechnic Institute.

Fidelma M. Hayes As an engineering manager in the Server Group, Fidelma

Hayes led the development of the AlphaServer 2100 and AlphaServer 2000 sys

tems. Prior to this work, she led the design of the DECsystem 5100. She has con

tributed as a member of the development team for several projects, including

the DECsystem 5800 CPU, the PRJSM system design. and the Mi croVAX 3100.

Fidelma jo ined Digital in 1984 after receiving a bachelor's degree in electrical

engineering from University College Cork, Ireland . She is currently working

toward a master's degree in computer science at Boston University.

Roy Ho As a principal software engineer in Digital's High Performance

Computing Group, Roy Ho developed the signal-processing routines used in

DXML. Prior to this work, he was a member of the High Performance Computing

Technology Group. There he designed the clock distribution system for the VAX

fault -tolerant system and the delay estimation software package for the VAX

9000 system boards. Roy has B.S. (1985) and ;vrs (1987) degrees in electrical engi

neering from Rensselaer Polytechnic Institute. He joined Digital in 1987

Chandrika Kamath Chandrika Kamath is a member of the Applied Compu ta

tional Mathematics Group. She has designe<.l and implemente<.l the sparse l inear

solver packages that are included in DXML. She has also opti mized customer

benchmarks for Alpha systems. Chandrika holds a Bachelor of Technology in

electrical engineering (1981) from the Ind ian Institute of Technology, an M.S.

in computer science (1984) and a Ph . D. in computer science (1986), both from

the University of Il l inois at Urbana-Champaign. She has publ ished several papers

on numerical algorithms for parallel computers.

I

3

Biographies

4

Robert H. Kuhn Robert Kuhn joi ned Ku ck & Asso ciates as the Director of

P roducts in 1992. H is functions are to form u late tech nical business stra teg y and

to ma nage product deliveries. From 1987 to 1992, he worked at Al l iant Compu ter

Systems, w here he managed compiler develo pment and a ppl i ca tion software

fo r parallel processing. Bob rece ived his Ph.D. in com puter science from

the Unive rsity of Ill inois at Champa ign-Ur bana in 1980 He is the a u thor of

several tech nical publ ica tions and has particip ated in organizing va rious techni

cal conferences.

Bruce Leasure Bruce Leasure. one of three fo unders of Kuck & Associates in

1979, serves as V ice President of Technolog y and is the chief scientist fo r the

company As a charter mem ber and executive director of the Parallel Computing

Forum (PCF), a standards-setting consortium, he was a lea der i n effor ts to stan

dardize basic forms of pa ral lelism. The PCF subsequently became the AJ'<SI X3H5

comm it tee f()r Para l lel Program Constru cts for H igh-leve l Languages, which he

chaired. Bruce received B.S. and M.S. deg rees in computer science from the

U niversity of I ll inois at Champaign-U rbana.

Paula Long Since jo in ing Digital i n 1986. Paul a Lo ng has contributed to vari

ous operati ng system p rojects. Present ly a princiral software eng i neer with the

UNIX Softw are G roup. she leads the development of symmetric mult iprocessing

(SMP) capabil ities for the DEC OSF/1 operating sys tem. In previo us positions, she

Jed the DEC OSF/ I real - t ime and DECwindows on VAXELN projects. Paula received

a BSC.S. from Westfield State Col lege i n 1983.

Dwight P. Mantey Dwight Manley is a con sul ting software engineer i n the

Appl ied Compu tational M athematics Group. He jo ined the DXJ.'<IL Group in 1989

a nd continues to s u pport and enha nce the DXM L anc l KAPF products. Since jo ining

Digi tal in 1979. be has worked on system measur ement and model ing projects

and was re spo nsible for all perform ance model i ng of the VAX 9000 CPU design.

He is l isted as a coinventor on 11 patents and as a coauthor of a paper on mat rix

com putation theo ry. Dwig ht has a BS in mathemat ics from the University of

M assachusetts and an M.S. i n operations research fro m Nort heastern University.

Andrew P. Russo Andy R u sso is a principal hardware engineer in the Alpha

Server G roup. Since joining D igital in 1983, Andy has been a project leader for

several i nternal org a nizations, includ ing the M id-range 1/0 Options G roup, the

Faul t To lerant Grour. and the Alp ha Server G roup . W h ile a t D ig i t al, Andy

has contributed to the architecture and design of high-performance ASICs and

mo dules to provide a va riety of end-prod uct requ irements. A ndy holds several

p atents and has authored two pa pers. He received a B.S. in computer engi neer

ing from Bosto n Un iversity.

Sanjiv M. Shah Sanjiv Shah received a B.S. in computer science and mathe

matics (1986) and an M.S. in computer science and engineering (1988) from the

University of Michigan. In 1988, he joined Kuck & Associates' KAP development

group as a research program mer. He has since been involved in researching and

developing the KAP Fortran and C products and managing the KAP development

grou p. Currently, Sanjiv leads the research and development for parallel KAP

performance.

James A. Woodward Principal software engineer James Woodward is a mem

ber of the UNIX Software Group. He is responsible for DEC OSF/1 symmetric

mul tiprocessing (SMP) processor scheduling and base kernel support. In previ

ous work, Jim led the ULTRIX SMP project and the VAX 8200, VAX 8800, and VAX

6000 ULTRIX operating system ports. He also wrote microcode for the VAX 8200

systems as a member of the Semiconductor Engineering Group. Jim joined

Digital in 1981 after receiving a B.S.E E from the University of Michigan.

I

I

6

Foreword

Steve Holmes
Engineering Group

Manager, Sen'er

Platform Del'elopment,

and Directm; Office

Server Product Line

The engineering developments described in this

issue represent the second of many planned gener

ations of products that will be designed to fulfill

Digital's Alpha vision. That vision is (a) to make

Alpha systems open, and (b) to deliver a rich set of

Alpha system products that lead the market both

in performance and price/performance. It is heart

ening to see the vision being realized. It is yet more

heartening to see it unfolding simultaneously with

appreciable improvements in Digital's business

practices. These combined events have already

resulted in substantial market acceptance of

Digital's AlphaServer products.

The particular set of papers in this issue is for

tuitous in that it demonstrates the large number

of individuals :l!ld range of engineering skills

required to bring about an industry phenomenon

such as Alpha. Included are papers focused on the

AJphaServer multiprocessing systems, on the sym

metric multiprocessing implementation of the DEC

OSF/ I operating s�'stem. on the optimization of

mathematical subroutine libraries for the Alpha

architecture. ami on the KAl' preprocessor. If one

can imagine these technical efforts multiplied

manyfolcl. the scope of the Alpha undertaking

will emerge.

The first generation of products based on the

Alpha architecture was introduced in 1992. The

AlphaServer 2100 system and DEC OSF/1 SMP operat

ing system. introduced in mid-1994, together repre

sent the beginning of the second-generation Alpha

server products. The overarching development

goal was to give our present and future customers

a compelling reason to buy. The resultant direction

was to provide very low cost multiprocessing sys

tem capability with inclustry-stanclard open l/0

buses. in this case PC! and EISA. To capitalize on

these attributes and to ensure that a complete solu

tion was delivered, the engineering teams main

tained a customer-focused perspective. It is this

perspective that has enabled the AlphaServer 2100

to achieve rapid market acceptance.

Truly, though. the most significant achievement
for the present round of Alpha server products is

this: a whole new standard of price/performance

for the industry has been reached. Computing that

in the past could have been performed only with

very expensive high-end machines or extensive dis

tributed networks is now performed by affordable

A! phaSe rver systems.

This price/performance breakthrough augments

Digital's strong capabilities.

• A tru ly open environment that supports UNrx and
Windows NT operating systems on Alpha systems

• The ongoing strength of the world's best fu l l
featured com mercial operating system, the

Open VMS system

• A world-cl;�ss ;�ncl worldwide service ;�nd del iv

ery org;�niz<�tion

• An extensive <�nd growing network of channels

• Over;�ll , D igit<�l's renewed <�nd me;�ningful com
m i t ment to be responsive to the demands and

needs of the markets

This is a very exciting ami productive time in
Digital's h istory

If this were the end of the story, there would be

much of which to be proud . In fact, there is more to

come across the range of AlphaGeneration prod

ucts, incl uding workstations, PCs, clustering, oper
ating systems, and networking. In the server area

speci fica l l y, the recently announced AlphaServer
2000 increases the price/performance lead of the
2100 system. Processor and cache upgrades have

increased the abso l u te performance of the fam i l y.

Just around the corner are s imilar advances for
other members of Digital's serve r p roducts. A l it t le

further away are s igni ficant enhancements in our
clustering capabi l i ties and in our server m anage

ment tools.

Al l these developments are of d i rect and measur
able benefit to our customers. A l l are guided by

what the markets are telling us they want. The
trend and pace of these enhancements will al low

Digital to continue to deliver on the promise of the
Alpha vision.

Performance measurements, for example,

SPECmark data and transaction-per-second tests,
and competit ive comparisons support the state

ments above. However. the case is m ade most con

vincingly by the early acceptance and rapid ramp

u p of AlphaServer 2100 system purchases by our
customers. In the h ighly competitive server arena,

success is being demonstrated dai ly.

I wou ld l ike to take this opportunity to offer

a very enthusiastic t hank-you to a l l whose work is
represented in the accompanying technical papers,

most especially to the AlphaServer 2100 develop

ment team w hose work I have had the privi lege to
observe since the team's formati on. The hard work

and dedication of everyone is recognized, appreci

ated, and needed for the fut ure .

T h is foreword wi l l conclude in favor of the sub
stantive papers that detai l the technical contribu

tions made by the au thors and their col leagues. It is
my expectation that readers of this issue of the

Digital Technical.fournal w i l l gain usefu l technical
insights. It is my hope that they w i l l also see, as I do,
that the future of Digital compu ting is bright.

7

Fidelma M. Hayes I

Design of the AlphaServer
Multiprocessor Server Systems

Digitar� AlpbaSen>er multiprocessor systems are bigbjJeJfonnance sen>ers that

C01Jibine multiprocessing tecbnolog)' with PC.stj>le 110 subsystems. The �ystem

a rcbitecture allou•s j(mr processing nodes, four memo1y nodes (up to a maximum

of 2 GB), and tu•o I/O nodes. All nodes communicate tbroug!J a system bus. Tbe

S)'Stem bus tms designed to support multiple generations of Alpha processor tech

nology Tbe arcbitect!lre can be implemented in different zmys, depending on tbe

size of the .)ystem packaging

The AlphaServer 2100 (large pedestal) and the

AJphaServer 2000 (small pedestal) servers from

Digital combine multiprocessing Alpha technology

with an I/O subsystem traditionally associated with

personal computers (PCs). The 110 subsystem in the

AlphaServer systems is based on the Peripheral

Component Interconnect (PC!) ami the Extended

Industry Standard Architecture (EISA) buses. All

AJphaServer products. including the AJphaServer

2100 cabinet version. share common technology

and support at least three generations of the Alpha

processor. In addition. the servers support three

operating systems: Microsoft's Windows NT version

3.5. and Digital's DEC OSF/ 1 version 3.0 (and higher)

and OpenV.VIS version 6.1 (and higher).

The AI phaSe rver svstems are designed to be

general-purpose servers for PC local area network

(LAN) and database applications. All models of the

system use a common multiprocessing bus inter

connect that supports different numbers of nodes.

depending on the system configuration. The systems

share a common Cl'll. memory, and 1/0 architecture.

The number of CI'L!s. the amount of memory, the

number of 1/0 slots. and the amount of internal stor

age vary depending on the mechanical packaging.

The flexibility of the architecture allows the quick

development of new anu enhanced systems.

This paper discusses the transformation of a

set of requirements into high-performance, cost

effective product implementations. The following

section describes the evolution of the AlphaServer

design from an advanced development project into

a design project The paper then describes the CPU

module, the multiprocessor system bus. and the

memory module. Subsequent sections discuss

module and silicon technology and the high

availability features incorporated into the design .

The paper ends with a performance summary and

conclusions about the project.

Concept Development

The engineering investigations of a client-server

system originated from a business need that Digital

perceived when it introduced the first systems

to incorporate the Alpha technology in late 1992

Among Digital's first products in the server market

were the OEC: 4000 high-performance departmental

system. the DEC 3000 deskside workstation/server,

and the ElSA-based Alpha PC. The lack of an explic

itlv identified. general-purpose system for the mid

range system market generated many requests from

Digital's MicroVAX rr system customers. Requests

from these customers propelled the AlphaServer

product development effort.

From the beginning of the project, two major

constraints were evident: The schedule required

a product by mid-1994. and the budget was limited.

Accordingly. the product team was required to

leverage other developments or to find newer. less

costly ways of achieving the product goals. Work

on the AlphaServer systems started as a joint effort

between an advanced development team and a

business planning team. The business team devel

oped market profil.es and a I ist of features without

which the system would not be competitive. The

business team followed a market-driven pricing

model. The profit expected from the system dic

tated the product cost for the system. This cost is

referred to as "transfer cost." The business team's

cost requirement was critical: if it could not be met.

ll)/. 6 ,\'u. j Slllll!ller 19')'1 Digital Te<"IJnical journal

Design of the AlphaSeruer Multiprocessor Seruer Systems

the project wou ld be canceled . Furthermore, the

entry- level system was required to

l . Support at least two CPUs, with p erformance for

a single CPU to yield 1 20 SPECmarks and 100+

transact ions per second (TPS) on the TPC-A

benchmark.

2. Support at least 1 gigabyte (c;B) of memory.

3. Support m ul t iple I/O buses with at least six

option slots supported o n the base system.

4. Prov ide high-availabi l ity features such as red un

dant power suppl ies, red u ndant array of inex

pensive d isks (RAJD), "warm swap .. of drives, and

clusteri ng.

'>. Provide a number of critical system connec

t ivity options, includ ing Ethernet, fiber d istrib

uted data i nterface (FODI), and syn chro nous

controllers.

6. Support the Windows NT, the DEC: OSF/1, and the

OpenVi'viS operating systems.

c;iven these criteria, the engi neering team

decided to base the development of the new server

on concepts taken from two Digital products ancl

combine them with the enclosures, power sup

plies. and options commonly associated with PCs.

The DEC 4000 server is a m u lt iprocessor system

wit11 a Futurebus+ l/0 subsystem; it provided

the basis for the m u ltiprocessor bus design.1 The

DECpc 150 PC is a u n iprocessor system with an EISA

1/0 subsystem; i t provided a model for designing an

I/O subsystem capable of running the Windows NT
operating system. The engineering team chose re

style peripherals because of their low cost.

A strategic decision was made to incorporate the

emerging PCJ bus into the product in addition to

the EISA bus. Major PC vendors lud expressed high
interest i n its development. and they bel ieved the

l'CI bus wou ld gain acceptance by the PC commu

nity. The PCl bus provides a high-performance, low

cost 110 chan nel that allows connections to many

options such as small computer systems i nterface

(SCSI) adapters and other common PC peripherals.

After the i nitial design had been completed, chang

ing market and competitive environments imposed

addit ional requ irements on the design team.

I. The init ia l transfer cost goal was red uced by

approximately 13 percent.

2 . Support for a max imum of four processor mod

ules was necessary.

Digital Technical journal Vol. 6 No.3 .\tl/11111er I'J'J1

To meet these new requ irements, the design team

had to modify the system design dur i ng the product

development phase.

System Overview

The base architecture deve loped for Digital's

AlphaServer m u lt iprocessor systems a l lows four

processing nodes, four memory nodes (up to a max

imum of 2GB), and two 1/0 n odes. All nodes com

municate through a system bus. The system bus

was designed to su pport multiple generations of

Alpha processor techno logy. The archi tecture can

be i mplemented in d i fferent ways. depending on

the size of the system packaging. It is flexible

enough to meet a variety of market needs. Two

implementations of the architecture are the

A lphaServer 2100 and the AlphaServer 2000 prod

u cts. F igure 1 is a block d iagram of the AlphaServer

2100 implementation of the architecture .

I n t h e AlphaServer 2 100 large pedestal server.

the system bus supports eight nodes. It is imple

mented on a backplane that has seven slots. The

seven slots can be configured to support up to

four processors. Due to the number of slots ava il

able, the server supports only 1 GB of memory

when four processors are installed. It supports

the fuJI 2 GB of memory with three processors

or less. The eighth node. which is the system bus

to-PC:J bridge, is resident on the backplane. Th is

provides a 32-bit J>C:I bus that operates at 33 mega

hertz (MJ-Jz). It is referred to as the primary J>CI bus

on the system.

A second 110 br idge can be i nstaJled in one of

the system bus slots. This opti on, which will be

available in 199'j, wi l l provide a 6 4 -bit PCI bus for

the system. A 64-bit PC! is an extension of a 32-bit

PC! bus with a wider data bus. It operates at 33 ,\1Hz
and is completely interoperable w ith the 32-bit PC!

specification. 2 Options designed for the 32-bit

PC! bus wi ll also work i n a 64-bit PC! s.lot.

EISA slots are supported through a bridge on the

primary PCI bus on the system. Only one EISA bus

can be supported in the system since many of the

addresses used by EISA options are fixed.·1 Support

of a s ingle EISA bus is not perceived as an issue given

the migration fro m the EISA bus to t he much higher

performing PC! bus . The maximu m supported

bandwidth on an EISA bus is 33 megabytes per

second (iVIB/s) versus the maxim u m bandwidth on

a 32-bit PCI bus of 1 32 MB/s. The EISA bus is used i n

the system for support of older adapters that have

nor migrated to PC!.

AlphaServer Multiprocessing Systems

80
<�======ll�===ll ===::

PCI BUS - 32 BITS ll
I ETHERNET I

8

r---------------1
I 8259A-2 I

: DDDDDD I I_-------------- ...J

8242
KEYBOARD--

KEYBOARD

MOUSE--
AND MOUSE
CONTROLLER

SERIAL
CONTROL
BUS

EISA BUS

PARALLEL

0
FLOPPY 0

0
SERIAL PORT I)
SERIAL PORT

0

Figure I Block Diagram of the AlphaServer 2100 System Architecture

The AlphaServer 2000 small pedestal system sup

ports five nodes on the system bus. The backplane

provides four system bus slots, allowing a maxi

mum configuration of two processor modules and

two memory modules. The system bus-to-PCI

bridge resides on the backplane and is the fifth

10

node. A system bus slot can also he used to support

the optional second 1/0 bridge.

The AlphaServer 2100 cabinet system is a rack

mountable version of the large pedestal

AJphaServer 2100 system. The rackmountable unit

provides a highly available configuration of the

11>1. 6 No . .i Siill/1111'1' 1')')4 Digital Teclmit:al journal

Design of the AlphaSeruer !Vlultzprocessor Seruer Systems

pedestal system. It i ncorporates two separate back

planes. One backplane supports eight system bus

nodes that are i mplemented as seven system
bus s lots. The eighth node (the system bus-to-PCI
bridge) resides o n the backplane. The second back

plane provides the 1/0 slots. The numbe r and

configur a t i o n of 110 slots are ident ical to the
AlphaServer 2 100 pedestal system . The rackmount
unit provides m in i m a l storage capacity. Add i t ional

storage is supported i n the cabinet version through

Storage\Xforks shelves. These storage shelves can

be powered i ndepende n t ly o f the base system

u n i t . prov i d i ng a h ighly avai l able configurat ion.

Table 1 gives the specifications fo r the
AlphaServer 2 100 and the AlphaServer 2000

pedestal systems. I nformation on the cabinet

version is not i ncluded because i ts characteristics

are s imi lar to the AlphaServer 2 100 large pedestal

Table 1 AlphaServer System Specifications

Specifications Large Pedestal
AlphaServer
2100 System

Height, inches 27.6

Width, i nches 16.9

Depth, inches 31 .9

Maximum DC power output, 600
watts per supply

Number of system slots 7

Number of processors supported 4

M inimum memory 32 M B
Maximum memory 2 GB

Embedded 1/0 controllers supported 1
Optional I/O control lers supported 1

32-bit PCI slots 3
64-bit PCI slots (on separate 1/0 2
control ler modu le)*

EISA slots 8

Serial ports 2

Parallel port

Ethernet ports (AUI and 1 0Base-T)

SCSI II controller 1

Removable media bays 3

I nternal warm-swap drive slots 16

· Future option

Digital Technical journal V!>i. li No . . > Sllll/11/l'r 1'}')1

version. Al l m u l t i processing members of the
AlphaServer fam i l y use the same processor a nd
memory modu les and d i ffer only i n system packag

i ng and backplane implementati o ns. This i l lustrates
the flexibi l i ty o f the archi tecture developed for the
system a nd decreases the development t ime fo r

n ew models.

CPU Module

The CPU modu le contains a n Alpha processor, a

secondary cache, a n d bus i n terface appl ication
specific i n tegrated circuits (AS1Cs). As previously

mentioned, the system arch itecture al lows m u l t iple

processor generations. M u l t iple variat i o ns of the
processor module are avai lable for the system, but
d i fferent variations cannot be used i n the same
system. Software has t i m i ng loops that depend on

the speed of the processor and cannot guara ntee

Small Pedestal Comments
AI phaSe rver
2000 System

23.8

16.9

25.6

400 Two possible per
system in either
redundant or current
shared mode

4

2

32 M B
640 MB

1
1

3
2

7

2

Not integral Up to 18 total network
to system ports supported on

system via PCI and
EISA options

1

2

8

1 1

AlphaServer Mult iprocessing Systems

synchronization between processors of d i fferent
speeds . The CPU modules prov ide a range of pert<>r
mance and cost options for the system owner.

The cost-focused processor mod u le uses the

Alpha 21064 processor operat ing at 190 MHz. This
chip was designed with Digital 's fourth-generation
complementary metal-oxide semiconductor (G<IOS)

technology. It has separate o n-chip caches for
i nstruction and data. The instruction cache hotels 8
k i lobytes (KB) of memory. and the data cache hollb
8 KB. The 1-M13 second- level data cache is imple

mented in 15 -n a nosecond (ns) static random-access
memory (SRA,VI) dev ices. It is a write-back, d irect
mapped cache. The access r ime ro the second- level

cache is a m u l t iple of the CPU clock cycle. The use
of 15 -ns SRA.VIs resulted in a read-and-write cycle
time of 26. :'> ns to the second-level cache. Th is is a
five- r imes mult iple of the CPU cycle r ime. The addi
t ional 1 1 . 3 ns is needecl for rou nd- trip etch de lay
and address buffer delay. The use of 1 2-ns SRA:VIs
was considered, bur the read-ancl-wrire cycle t ime
would have ro decrease to 21 ns to i mprove perfor
nunce. The reduct ion of 3 ns was not sufficient to
meet the r iming requirements of the module: there

fore, the less costly 1 "; -ns SRA.VI s were useu .
Higher performance processor modu les are also

avai lab le for the system. These modules are based
on the Alpha 2 1064A processor. which was
designed using fi fth-generation GviOS tt·chnology.
The Alpha 2I064A processor mod ule operates at

275 Iv!J-Iz. The processor has separate on-chip
instruction and data caches. The 10-KB instruction

cache is d irect mapped , and the 1 6 -KB data cache is
a 2 -way, set -associative cache. The backup cache
holds 4 MB of memory The combinat io n of higher
processor speed, larger internal on-chip caches,

ancl a large second- leveJ cache reduces the number
of accesses to main memory and processes clara at
a h igher rate. As a resu l t , the performance of the
system is increased by approx imately 20 percen t .

Multiprocessor System Bus

The tech nology developed for the system bus in the
DEC 4000 cleparrmenral server provided t he basis
for t he mu l t iprocessor bus designed for the
AlphaServer system . ' The system bus in the DEC

4000 product has the fol lowing features:

1. The 128-bit m u l t iplexed address and data bus
operates at a 24-ns cycle t ime. The bus runs
synchronously.

2. The bus supports two CPU nodes. four memory
nodes, and a single 110 node.

1 2

3. The bus supports add ress ing for block transfer
only. A block is 32 bytes of data .

4 J/0 is treated as either primary or secondary.

Primary 1/0 refers to devices that cou ld respond
without stal l ing the system bus. This designat ion
i s res tricted mainly to control and status regis

ters (CSRs) that exist on system bus nodes, e .g . .
the I/O bridge .

:;. A l l 1/0 on remote buses is referred to as secondary
1/0 and is accessed via a mail box protocol .
M a i lboxes were invented ro h ide slow accesses
to CSRs on remote 110 buses.

A CSR read could potential ly take 1 to 10 micro
seconds. which is very slow relative to the proces
sor cycle t ime. The bus is " nonpendeu:· which
means i t wou ld sta l l during a s low access. When a
bus stal ls, a l l accesses to CPUs and memories have
to wait unt i l the CSR access is complete. This cou ld
cause data to back up and potentia l ly overflow. To
avoid th is stare , either the system bus or the soft
ware device driver has to be pended.

A m a i l box is a software mechanism that accom
pl ishes "device driver pend ing .

.
. The processor

bui lds a structure in main memory cal led the mail

box data structure. It describes the operation to be
pnformed , e .g .. CSR read of a byte. The processor
then writes a pointer ro this structure into a mail
box pointer register. The 1 /0 node on the system

bus reads the mai lbox uata structure, performs the
operation specified . and returns status and any data
to the structure in memory. The processor then
retrieves the data from this structure and the trans

action is complete. I n th is way, the mai lbox proto
co.! a l lows software pend ing of CSR reads; it a l so
al lows the software to pass byte information that is
not avai lable from the Alpha 2 1064A processor. < '

Changes to the .�ystem Bus

Although t he DEC 4000 system bus prov iued many
features desi rable in a m u l tiprocessor interconnect,
it did not meet the system requ irements defined
during the concept phase of the AlphaServer proj

t'Ct. Two major hurdles existed. One was the Jack of
support for fou r CPlJs and m u l tip le J/0 nodes.
A second, more important issue was the incom

patibi l i ty of the mai lbox 1/0 structure with the
Windows NT operating system.

The init ia l port of the Windows N T operating sys
tem to t he DECpc 1')0 PC assumed d irect -mapped
1/0. With direct mapping the 1!0 is physical ly
mapped into the processor's memory map. and al l

l'o/. (, No . .) S/111/JJ/<'1' I'J'J4 Digital TeciJnical journal

Design of tbe AlpbaSerl'er Multiprocessor Sen•er Systems

reads/writes to l/0 space are hand led as u ncached
memory accesses. Clea rly, this was incompatible
with the nonpended bus, wh ich assumes the use of
mai lboxes. Consequently. the designers studied the
advantages and d isadvant ages of using mail boxes
to determine if they shou ld be supported in the
W i ndows NT operating system. They found that the
software overhead of manipu lat ing the mai lbox
structure made CSR accesses approx imately three
t imes s lower than direct accesses by the hardware.
Thus the CPU performing the 110 access waits
longer to complete. For this reason. the designers
chose not to use m a i lboxes.

The designers also had to ensure that the system
bus wou ld be ava i lable for use by other processors
while the 1/0 transaction was completi ng. To satisfy
this requ ire ment, they added a retry mechanism to
the system bus. The retry support was very simple

and was layered on top of existing bus s ignals.
A retry condition exists when the CPU in itiates a
cycle to the l/0 that cannot be completed i n one
system bus transaction by the I/O bridge. The CPU
involved in the transaction is notified of the retry
condition. The CPU then " backs otr the m u l tipro
cessor bus and generates that transaction some
period of t ime later. Other processor modules can
access memory during the slow 110 transaction.
The retry proced ure continues u nt i l the 1/0 bridge
has the requested data. At that stage , the data is
returned to the requesting CPU.

Byte Addressing Byte granu larity had been han
d led in the mai lbox data structure. After the d irect
map ped 1/0 scheme was adopted, the designers
had to overcome the Jack of byte addressab i l ity in
the Alpha arch itecture. Therefore, the designers
participated in a col laborative effort across Digital
to define a mechanism for adding byte add ress
abi l i ty in the Alpha archi tectu re. The new scheme
requ i red the use of the four lowe r ava ilable Alpha
Ad: [08:05] address bits to encode byte masks and
lower order address bits for the PC! and EISA buses.
For more detai ls. see the paper on the Alph aServer
2 100 110 subsystem in th is issue 6

The designers required a redefi nition of the
add ress map. All 1/0 devices are now memory
mapped . The Alpha 21064 A processor has a 34-bit
address field that yields an add ress space of 16 GR.
This 16-C B address regi on may be subdivided into
4-GB quadrants. Each quadrant can be individual ly
marked as cacheable or noncacheable memory. The
DEC 4000 system arch itecture split the 16-GB region

Digital Tecbnica/]ow-nat Vol. o No . .> Summer 1994

in h a l f: 8 (;B was al located as cacheable memory
space and the rema ining 8 GR as noncacheable
space. Memory-m apped 1/0 devices are mapped

into noncacheable space. The decision to support
multiple 1/0 buses in the new systems together with
the decision to memory map all I/O (i .e . , no mai lbox
accesses) yielded a noncacheable memory require
ment i n excess of the 8 CB al located in the DEC 4000
system. Therefore the designers of the AlphaServer
systems changed the address map and a l located a
single quadrant (4 GB) of memory as cacheable
space and the rema ining 12 GR as noncacheable.
These 1 2 GB are used to memory map the 1/0

Arbitration The bus used in the DEC 4000 system
suppo rts two CPU nodes and a single 1/0 node. To
ach ieve the AlphaServer prod uct goals of m u l t iple
110 bridges and mu ltiple CPU nodes, the des igners
changed the address map to acco mmodate CSR

space for these extra nodes and designed a new
arbi ter for the syste m . The arbiter i ncl udes
enhanced functionality to increase the pe rfor
mance of future generations of processors. Some
key features of the arbiter are l isted below.

1 . The arbiter is implemented as a separate chip on
al l processor modu les. The logic was partitioned
i nto a separate chip to accom modate a flexible
architecture and to al low addit ional arbitrating
n odes in the future. As many as fou r arbiters can
exist in the system. Only one arbiter is enabled in
the system . It is on the processor installed in slot
2 of the system bus.

2. 110 node arbitration is interleaved with CPU node
arbitration. The a rbitration is rou nd robin and
leads to an orde ring scheme of CPU 0, 1/0, CPU 1 ,
1/0, CPU 2 , 1/0 , CPU 3. 1/0. This scheme attempts
to minimize 1/0 late ncy by ensuring many arbi
tration slots for 1/0 devices. Processors sti l l have
more than adequate access to the system bus due
to the nature of 1/0 traffic (genera l ly bu rsts
of data in short periods of t i me). On an idle
bus, the arbiter reverts to a fi rst-come. first
served scheme.

3. The arbiter implements an exclusive access cycle.
This al lows an arbitrating node to retain the use
of the system bus for consecutive cycles. This
cycle is used by the 1/0 bridge in response to a PCI
lock cycle. A I'Ci lock cycle may be generated by a
device that requires an atomic operation, which
may take mult iple transactions to complete. For
exa mple, the AlphaServer 2 100 and Alp haServer

I , J

AlphaServer Multiprocessing Systems

2000 systems use a PCI-to-EISA bridge chip set

(Intel 82 i 30 chip set).- This chip set requests

a lock cycle on PC! when an EISA device requires

an ato mic read-modify-write operation.

The use of atomic read-modify-write operations

is com moo in older 1!0 adapter designs. The 1/0
bridge on the system bus requests an exclusive

access cycle from the arbiter. \Vhen it is granted. all

buffers in the path to memory are f lushed and the

device has exclusive use of the l'CJ and the system

bus until its transaction is completed. The use of

this mode is not recommended for new adapter

designs due to the unfair nature of its tenure on the

system bus. It was i m plemented in the AlphaServer

product design to support older EISA devices.

Memory Module

Main memory is accessed over the system bus either

by processors (after missing in their on-board caches)

or by 1/0 nodes performing direct memory access

(DMA) transactions. They are called com manders.

The memory controller incorporates a number of

performance-enhancing features that reduce latency

in accessing the dynamic RAoVI (DRA.vl) array. One

concept used is called a stream buffer. Stream

buffers reduce the read latency to main memorr

Reads to main memory normally require 9 to 10

cycles on the system bus, depending on the speed of

DRAMs in the array. The use of stream bufters reduces

this time to 7 cycles. The stream buffers provide a

facility to load data fetched from the DRANI array

prior to the receipt of a read request for that data.

A stream is detected by monitoring the read

addresses from each com mander on the system

bus. The logic s imply keeps a record of the memory

addresses of the previous eight read transactions

from each com mander and compares each subse

quent read address to see if the new address is con

tiguous to any of the recorded addresses. If a new

address is determ ined to be contiguous to any of

the previ ous eight addresses. a new stream i s

declared. A s a result, one o f the stream buffers

is allocated to a new stream.

A stream buffer is i m plemented as a four-deep,

first-in, f irst-out (FIFO) buffer. Each entry in the

FIFO buffer is 32 bytes. which is equivalent to the

system bus l ine s ize. Each memory module con

tains four stream buffers that can be al located to dif

ferent com manders. A least recently used (LRU)
algorithm is used to al locate stream bu tie rs. When

a new stream is detected, or an existing stream i s

1 4

empty. the stream buffer fills f rom the DRAM array

by using successive acklresses from the head of the

stream. After a buffer has been allocated and some

amount of data has been placed in the FIFO buffer,

" hit" logic compares incom ing read addresses from

the system bus to the stream address. If a compari

son of these two addresses is successful, read data

is del ivered from the memory module without

incurring the latency of accessing the DRAM array.

An invalidation scheme is used to ensure that the

stream bu ffers stay coherent. Write cycle addresses

are checked to see if they coincide with a stream

buffer address. If the write address i s equal to

any address currently in the stream buffer. that

entire stream buffer is declared invalid. Once it is

invalidated , it can be reallocated to the next

detected stream.

Wri tes to main memory complete on the system

bus in six cycl.es, which is achieved using write

buffers in the mem ory controller. The write transac

tions are essentiall y "dump and run." The total write

buffering available in each memory module is 64

bytes. which is large enough to ensure that the sys

tem bus never has to stall during a write transaction.

The implem entation of the memory module dif

fers f rom the AlphaServer 2 100 to the AlphaSe rve r

2000 system. Both memory modules conta in the

same memory controller ASIC:s, but the implemen

tation of the !WA.V! array is different. Due to space

constraints on the AlphaServer 2100, the DRAM

array was i mplemented as a flat, two-sided surface

mount module . On the AlphaSe rver 2000, single

in-line memory modules (SIMMs) were used for the

DRAM array. Memory module capacities vary from

32 .V!B to 512 ,VI B . The Al phaServer 2100 system pro

vides four system bus slots that can be populated

with memory modules. The m:�xi mum supported

configuration is 2 GB with four memory moclu les.

This l i m its the maximum system configuration to

three processors since one of the processor slots

must be used as a memory slot. The AlphaServer

2000 system prov ides two system bus slots that

can be populated with memory. The maximum

memory supported in this system i s 640 MB. This

configuration consists of one 5 12-MI3 module and
one 128-MB module. The maxi mum memory con

straint is dictated by the power and cooling avail

able within this system package . The A lphaServer

2000 sti!J supports two processor m odules when

configured with maximum memory. F igure 2
shows a block diagram of the AlphaServer 2000

memory module.

1-b/. 6 !lio . .) .\11111111a /'}')4 Digital TechHical]ourual

Design of the AlpiJaSe,-·uer Multiprocessor Server Systems

SERIAL CONTROL BUS
TO MEMORY MODULES AND CPU MODULE

ll
II I SER IAL CONTROL BUS I EEPROM

I BANK 3
EIGHT X36 S IMMs I

1r 1r I BANK 2
E IGHT X36 S IMMs J

1r 1r I I I BANK 1
EIGHT X36 S IMMs I

fl' 11'11 11 I BANK 0
EIGHT X36 SIMMs J

llJlllll ll
DATA PATH DATA PATH
1 28 DATA ADDRESS 1 28 DATA
AND 1 2 EDC

r
AND CONTROL rv---- AND 1 2 EDC
DRIVERS

- -
I I

I
I
I : I EVEN SLICE I : MEMORY CONTROLLER ASIC 1

SYSTEM BUS

J ODD SLICE I · 1 MEMORY CONTROLLER ASIC I
I t INTERFACE J

I
I I ._ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - -1- - - - - - - - - - - - - - - _ _ _ _ _ _ _ _ _ _ _ I l CLOCK j

BUFFERS

1
SYSTEM BUS TO MEMORY MODULE. 1/0 INTERFACE. AND CPU MODULES

Figure 2 Block Diagram of the AlphaServer 2000 Mernory Module

Technology Choices

This section briefly discusses some of the decisions

and tr:otdc-offs made concerning module and s i l icon

techno logy used in the systems.

Module Technology

The designers partit ioned the logic into mod ules fo r

two reasons: (I) Removable processor and memory

modules al low for instal lation of addi tional memory

and processors and (2) They also a l low for easy

upgrade to faster processor speeds. Since modu larity

adds cost to a system, the designers decided that the

I/O subsystem (EISA and PCI logic) should reside on

the backplane. They deviated from this stra tegy for

the AlphaServer 2100 system design because the PCI

to-EISA bridge was a new, unfami l iar design. Fixing

any problems with this chip set or any of the support-

Digital Tech nical journal Vol. o Nu. j Summer 1994

ing logic would have required a backplane upgrade,

which is a t ime-consuming effort. For this reason,

the engineers chose to build an 1/0 modu le for the

AlphaServer 2100 system that contained the PCI-to

EISA bridge; associated control logic; control lers for

mouse, keyboard , printer, and floppy drive; and the

integral Ethernet and SCSI control lers. This modu le

was eliminated in the AlphaServer 2000 system due

to the design stabi l ity of the 1/0 modu le .

The Metra! connector specified by the

Futu rebus+ specification was chosen for the sys

tem bus implementation on the DEC 4000 prod uct.

This choice was consistent with the design of the

DEC 4000 server, which is a Futurebus+ system.

Cost studies u ndertaken d u ri ng the i nitial design of

the AlphaServer 2 100 system showed that the cost

per pin of the Metra! connector was high and added

a significant cost to the system. The team decided

1 5

AlphaServer Multiprocessing Systems

ro invest igate the use of either the PCI or the EISA

connector for the system bus, since both connec

tors are used widel y in the system . The PCI con

nector is actually a variant of the MicroChannel

Architecture (MCA) connector used in m icrochan

nel sys tems. SPICE simulations showed that it per

formed better than the Metra! connector on the

Fu turebus+ .H The team chose a 240-pin version of

the connector for implementation because it me t

the system requ irements and had a low cost .

Due to the choice of the MCA connectOr, the

board thickness was limited to a maximum of 0.062

inches. An 8 -l ayer layup was chosen for the module

technology. The processor modules had a require

ment for both a 5.0-V supply and a 3.0-V supply.

The designers chose a spl i t plane to distribute the

power rather than two separate power planes fo r

each vol t age. Ro u ting high-speed signals across the

split was minim ized to redu ce any emissions that

might arise from using a spl it plane. Testi ng later

va l idated this approach as emissions from this area

were m inimal.

Silicon Technology

The system partitioning required the design of four

ASJCs. These were the CPU bus interface ASIC the

memory bus interface ASIC. the system arbiter. and

the system bus - to-PCI bridge . The DEC 4000 imple

mentation of the Futurebus+ used an exter n ally

supplied gate-array process that was customized to

meet the perform a nce needs of the bus and the per

formance goa ls of the first Alpha systems. Gate

array costs are de ter mined by the number of chips

that are produced on the chosen gate-array process.

The volume of chips produced by the gate-array

process for the DEC 4000 system was low because

the process was specially adjusted fo r that system

application. As a resu lt . the volume of chips was
direc tly proportional to the volume of the DEC 4000
systems built. Therefore . the cost per component

produced by this process was relatively high.

I f they had used this customized gate-array pro

cess, the designers of the AlphaServer product

could not have met their cost goals. They needed

a more generic process that could produce ch ips

that many system vendors could use . This would

ensure t hat the line utilization was high and that

t he cost per component was low. Therefore . they

changed the technology to one that is standard i n

the industry. Gate-array proc ess technology had

evolved since the DEC 4000 design. and a standard

techno logy that was capable of meeting the system

l <l

timing requirements was available. Extensive SPICE

simulations verified the process capability. ASICs

that were implemented with this process had no

diffi culty meeting the bus timing H

Another interest ing feature of the analog design

on the AJphaServer 2 100 system involves the sup

port of 11 loads on the PCI . The PCI s pec ification

recommends 10 loads as the "cookbook" design 2

The system requ irement on the AlphaServer 2100

was ro support three PCI slots. the in tegra l PCI

Ethernet chip. the NCRR l O (l'Cl-to -fasr-scsr con

troller), a n d the PCI - to-E lSA bridge. Each PCI

connector has been modeled to be equivalent to

two electrical loads. Taking account of the system

bus- to-P(] bridge and the a d d i t ional load con

tributed by the 1!0 module con nector yielded a PC!

bus with 1 1 el ectrical loads. Extensive SPICE simu

lations of the bus and careful routing to ensure

a short bus guaranteed that the new design wou ld

meet the electrical specifications of the PCI bus H

System Start-up

The design team incorporated many availability fea

tures in to the AlphaServer 2 100 and AlphaServer

2000 servers. These included support of "hot -swap"

storage devices that can be removed or installed

\vhile the svstem is operating. error correction code

(ECC)-protected memory. redundant power sup

pi ies. and CPl · recove n·. Perhaps the most interest

ing part of the design for availabil ity was the

emphasis on ensuring that the system l1ad enough

built-in recovery and redundancy to a l low i t to

rema in io a usabl e or diagnosable state. Large sys

tems sometimes have complicated paths in which

to access the initial start-up code. and a system fa il

ure in that path can leave the owner with no visible

fa ilure ind ication. Moreover. in a multiprocessor

system with more than one C : P l i instal led. it is
highly desirable to initialize the resident firmware

and the operating system even if a l l CPUs are not in

working order. The AlphaServer 2 100 and 2000 sys

tems employ two schemes to help ach ieve this goal .

The starr-up code for the A lphaServer 2100 ancl

Alp haServer 2000 systems is located in flash read

only memory (ROM), which resides on a peripheral

bus behind the PCI-to-EISA bridge . In starting up

a m ult iprocessing operating system. only one

processor is designated to access the start-up code

and initial i ze the operating system. This is referred

to as the primary processor. Accessing the start-up

code req uires the processor. system bus, memory,

and most of the 1/0 subsystem to be functional .

l'r1/. (> No. ,) Sllllllner I'J'J4 Digital Tee/mica/ journal

Design of the AlphaSerl'er Multiprocessor Server Systems

The AJphaServer systems have a number of fea

tures that help make the start-up process more

robust. Each processor module contains a separate

maintenance processor implemented as a simple

microcontroller that connects to a serial bus o n the

system. The serial bus is a two-wire bus that has

a data line and a clock l ine. On power-up the pro

cessor mod ule performs a number of d i agnostic

tests and logs the resu lts in an electrica l ly erasable

programmable read-o nly memory (EEPROM) on the

module. This EEPROM resides on the serial bus. If

a CPU fa i l s one of its power-up tests or if it has an

error logged i n its EEPROM, then it is not allowed to

be the pri mary processor. Assume that four CPUs

are instal led in the system; if only CPU 0 fa i ls , then

CPU 1 is the primary processor. I f CPU 0 and CPU 1

fa i l , then CPU 2 is the primary processor. If CPU 0,

CPU I , and CPU 2 fail, then CPU 3 is the primary pro

cessor. If a l l fou r CPUs fai l , then CPU 0 is the primary

processor. If any one of the CPUs fails, a message is

d ispl ayed on the operator control pa nel to i nform

the user that there is a problem. Any secondary CPU

that has failed is d isabled and w il l not be seen by the

firmware console or the operati ng system . The pri

mary processor then uses the system bus to access

the start -up code in the flash ROM.

The flash ROM may contain incorrect data . The

fl ash ROMs on many systems have a program

update, and errors from a power spike or su rge can

be in troduced into the ROM cocle during the update

procedure. User error is a nother common way to

i ntroduce data error; for example, a user can acci

dentally press a key while the update program is

running. Flash ROMs can also fail from intri nsic

manu facturi ng faul ts such as current leakage,

which will eventually convert a stored " 1 " into a

stored " 0," thus corru pting the program stored i n

the flash ROMs. Many techniques in the industry

partia l l y solve the problem of corrupted flash ROM

data. One well-known technique uses a checksum

and reports an error to the user if the data is not cor

rect. Another technique provides a second set of

flash ROMs and a switch that the user manipul ates

to transfer control to the new set in the event of

a fai lure. The designers stud ied many previously

used methods, but rejected them si nce they

required intervention by the user.

In the AlphaServer 2100 and the AlphaServer

2000 system design, the design team implemented

a scheme that did nor requ ire user intervention i n

the event of flash ROM corruption. The system has

1 1v1B of flash ROM of which the first 'il2 KR co ntain

Digital Techuicaljourual Vt1/. 6 No. J S11111111er 1994

the system init ia l ization code. T h is code is loaded

into main memory, and many data integrity tests are

performed . These i nclude s ingle and m u lt iple bit

parity checks, various d ata correction code check

i ng, and a checksu m cal cu.lation. The processor

detects an erro r if the checksum calcu lation fails,

i .e . , if the calculated value is not equal to the stored

value. The processor then writes a value to a regis

ter on the 1/0 mod ule , which automatical l y changes

the address pointing to the flash ROM to a second

bank of flash ROM . This combination of hardware

and software su pport prov ides a way for the

AlphaServer 2100 system user to overcome any

flash ROM corruption.

Design Considerations for the
AlphaServer 2000 System

The design of the AlphaServer 2000 small pedestal

system fo l lowed the AJphaServer 2100 system.

Market pressures d ictated the need for a smal ler

system with a lower entry-level cost. The in troduc

tion of the smal ler server was schedu led to coin

cide with the release of the Windows NT version 3.5

operating system.

An examination of the AlphaServer 2100 develop

ment schedule revealed the fol lowing interesting

points: (1) System power o n occurred nine months

after the team was formed: (2) Init ial system ship

ments occurred e ight months later; (3) The eight

month time period was spent mainly in porting and

qual ifying operating system software.

Based o n these facts, the system designers

bel ieved that rhe key to reducing the t ime-to-market

of the AlphaServer 2000 system was to eliminate the

dependency on synchronizing the design schedule

with an operating system release. Consequently, the

new system could not requ ire any software changes

at the operating system leve l . Any changes would

have to be transparent ro software. To ach ieve this,

the designers took advantage of a new feature in the

DEC OSF/ 1 and the OpenVMS operating systems

cal led dynamic system recognition (DSR).

A DSR machine is defi ned as a machine that

requires no new software development. Operat

ing systems, however, requi re l icensing; this

information is dependent upon the system model

num ber. There are two components to build ing

a DSR machine.

1. A programmer's view of the machine mu st be a

subset of an a l ready supported m achine. I n the

case of the A lphaServer 2000, the designers

1 7

AlphaServer Multiprocessing Systems

decided to make it a subset of the AlphaServer

2100. A clear u nderstand ing of how the operat

i ng systems initial ized the AlphaServer 2100 sys

tem was critical to u nderstanding what changes

could be made. A joint team of hardware and

software engineers exa mi ned various pieces of

the code to identify the areas of the system

design that cou l d be changed. I nvestigations

revealed that the system bus configuration code

for the AlphaServer 2100 is somewhat generic.

I t assumes a max i m u m of eight nod es, which is

the AlphaServer 2100 implementation. The 1!0
node to the primary PCI bus is expected to be

present. The presence of addi tional processors

and memories is detected by read i ng the CSR

space of each module. A modu le that is present

gives a posi t ive acknowledgment. The design

team could therefore reduce the nu mber of sys

tem bus slots from seven to fou r. This had no

effect on the software since nonexistent slots

wou ld merely be recognized as modules not

insta l led in the system.

The physical packaging of the AlphaServer 2000
also d ictated that the number of 1!0 slots be

red uced from 11 (8 EISA and 3 PCI) to 10. Given

the industry trend toward PCI, the desirable mix

would have been 6 EISA slots and 4 PC! slots. The

PC! bus configu ration code searched for as many

as 32 PC! slots, which is the number al lowed

by the PC! specification. 2 After careful consid

eration, the designers determined that the addi

tion of another PC! slot wou ld invo lve a change

i n in terrupt tables t o accommodate the addi

t ional interrupts and vectors required by the

addit ional slot. Therefore, the team decided to

implement 3 PC! and 7 EISA slots.

2. The other component to building a DSR machine

is to prov ide the system model number to the

operating system so that l i censing information

can be determi ned. The system resident code

that runs at start-up is referred to as the console.

The console and the operating systems com m u

nicate via a data structure known as the hard

ware parameter block (H\VRPB). The HWRPB is

used to communicate the model n umber to the

operat i ng system, which uses this nu mber to

provide the correct licensing information.

The AlphaServer 2000 system was completed i n

approximately nine months. Qual ification was not

dependent on the operating system schedules. By

1 8

bui lding a DSR machine, the design team met the

project's time-to-market requirements.

Performance Summary

Table 2 summarizes the performance of the systems

descri bed in this paper. The numbers are heavily

i nfluenced by the processor speed, cache, memory,

and 1/0 subsystems. The systems exceeded the per

for mance goals specified at the beginn ing of the

project. I n some cases the important benchmarks

that had been relevant i n the industry changed d ur

ing the course of system development. I n t h e trans

action processing measurement, for example, the

TPC-A benchmark was superseded by the TPC-C

benchm ark.

The AlphaServer 2100 server was the price

pe rformance leader in the industry at the time of its

i ntroduction in April 1994 . Successive i mprove

ments in processor and 110 subsystems should help

the AlphaServer 2100 and 2000 products maintain

that position in the industry

Table 2 System Performa nce

AlphaServer
2100 412:15

SPECi nt92' 200.1

SPECfp92' 291 .1

AIM l l l t
Number of AIMs 227.5
User loads 1941.2

Estimated TPSt 850

Notes:

• Single-processor system only

t Dual-processor system only

AlphaServer
2000 4/200

1 31 . 8

161.0

1 77.5
1516.0

660

:j: TPS is an abbreviation for transactions per second. These

numbers are estimated for a quad-processor system using

OpenVMS version 6.1 running Rdb.

Conclusions
The design team exceeded al l the product require

ments set at the beginning of the AlphaServer proj

ect. The transfer cost of the final product was 10
percent better than the goal. The reduced cost was

achieved despite t he erratic price l evels for DRAMs,

which were much h igher in 1994 than pred icted

in late 1992
Separate cost targets were establ ished for each

portion of the system, a n d each design engineer

was responsible for meeting a particu la r goal .

Vol. II No. 3 Summer 1994 Digilitf Technical journal

Design of the Alpha Server Multiprocessor Server Systems

Constant cost reviews ensured that variances could

be quickly addressed. The requirement to run three

operating systems quickly expanded the size and

scope of the project. The operating system devel

opers became an integral part of the design team.

Multiple reviews and open communication between

the hardware development team and the software

groups were essential to managing this work. The

hardware team performed system-level testing on

al l three operating systems. This proved invaluable

in tracking down bugs quickly and resolving them

in either hardware or software.

The project team delivered the expected perfor

mance and functionality on schedule. Develop

ment time was allocated for new power and

packaging subsystems (using third-party design

companies), new modules, new ASICs, new system

firmware, and porting of three operating systems.

To attain the sched u le, development tasks were

frozen at the beginning of the project. The tasks

were also categorized into three classes: mandatory,

nonessential, and disposable. Consequently, engi

neers were able to make trade-offs when required

and maintain the integrity of the product. Another

key factor to meeting the schedule was the use of

knowledge and technology developed for previous

products. This yielded m any benefits: less design

t ime, fewer resources required, known simulation

environment, and less time to a working prototype.

Acknowledgments

Many people contributed to the success of this proj

ect. They spent long weekends and nights working

to a schedule and a set of requirements that many

thought were unachievable. The inspired dedica

tion of team members made this project a real ity.

Although not complete, the fol lowing l ist credits

those who were the most deeply involved: Vince

Asbridge, Kate Baumgartner, Rachael Berman,

Jack Boucher, John Bridge, Bob Brower, Harold

Buckingham, Don Caley, Steve Campbell, Dave

Carlson, Mike Chautin, Marco C iaffi, Doug Field,

Rich Freiss, Nitin Godiwala, Judy Gold, Paul

Goodwin, Tom Hunt, Paul jacobi, Steve jenness, Jeff

Kerrigan, Wil l Kerchner, Jeff Metzger, John Nerl,

Mike O'Neil l , Kevin Peterson, Bryan Porter,

Ali Rafiemeyer, Lee Rid lon, Andy Russo, Stephen

Shirron, Andrei Shishov, Gene Smith, Kurt Thal ler,

Frank Touserkani, Vicky Triolo, and Ralph Ware.

Special thanks also to our manufacturing team in

Massachusetts, Canada, and Scot land.

Digital Technical journal Vol. 6 No. 3 Summer 1994

References and Note

1 . B. Maskas, S. Shirron, and N. Warchol , "Design

and Performance of the DEC 4000 AXP Depart

mental Server Computing Systems," Digital

Technical journal, vol . 4, no. 4 (Special Issue,

1992): 82-99

2. PC! Local Bus Specification, Revision 2. 0 (Hi l ls

boro, OR: PCI Special Interest Group, Order No.

281446 -001 , April 1993).

3. E. Solari , !SA and EISA, Theory and Operation

(San Diego, CA: Annabooks, 1992).

4. R. Sites, ed. , Alpha Architecture Reference Man

ual (Burlington, MA: Digital Press, Order No.

EY-L520E-DP, 1992).

5. DECchip 21064 Microprocessor Hardware Refer

ence Manual (Maynard, MA: Digital Equipment

Corporation, Order No. EC-N0079-72, 1992).

6. A. Russo, "The AlphaServer 2100 1/0 Subsystem,"

Digital Technical journal, vol. 6, no. 3 (Summer

1994, this issue): 20 -28.

7. 82420/82430 PC!set /SA and EISA Bridges (Santa

Clara, CA: Intel Corporation, 1993).

8. SPICE is a general-purpose circuit simulator pro

gram developed by Lawrence Nagel and Ellis

Cohen of the Department of Electrical Engineer

ing and Computer Sciences, University of Cali

fornia, Berkeley.

1 9

The AlphaServer 2100

1/0 Subsystem

Andrew R Russo I

The AlphaServer 2100 110 subsystem contains a dual-level 1/0 stmcture that

includes the high-powered PC! local bus and the widely used EISA bus. The PC! bus is

connected to the server's multiprocessing system bus through the custom-designed

bridge chip. The EISA bus supports eight general-pwpose EISA/ISA connectors, pro

viding connections to plug-in, industry-standard options. Data rate isolation, dis

connected transaction, and data buffer management techniques were used to

ensure bus efficiency in the 110 subsystem. Innovative engineering designs accom

plished the task of combining Alpha CPUs and standard-system 1/0 devices.

Digi tal 's AlphaServer 2100 server combines Alpha
multiprocessing technology with an 110 subsystem
typica l ly associated with personal computers
(PCs) . 1 The 1/0 subsystem on the AlphaServer 2100
system conta ins a two- level h ierarchical bus struc
ture consisting of a h igh-performance primary
J/0 bus connected to a secondary, lower per
formance 1/0 bus. The pri mary 110 bus is a 32 -bit
peripheral component i nterconnect (PC!) local bus
(or s imply, PCI bus) Z The PC! bus is connected
to the AlphaServer 2 100 system's m u l tiprocessing
system bus tl1rough a cu stom appl icat ion specific
integrated circui t (ASIC) bridge chip (referred to
as the T2 bridge chip). The secondary 1/0 bus is a
32 -bit Extended I ndustry Standard Architectme
(EISA) bus connected to the PC! bus through a
bridge chip set provided by Intel Corporation.:�
Figure 1 shows the 1/0 subsystem designed for the
A1phaServer 2 100 product. The r;o subsystem
demonstrated suffi cient flexibil ity to become the
1/0 interface for the sm a l l pedestal AlphaServer
2000 product and the rackmountable version of the
AlphaServer 2100 server.

This paper discusses the dual- level bus h ierarchy
and the several 1/0 advantages it provides. The
design considerati o ns of the 1!0 subsystem for the
AlphaServer 2100 server are exami ned in the sec
tions that fol l ow.

1/0 Support for EISA atul PC/ Buses

The EISA bus enables the AlphaSe rver 2100 system
to support a wide range of existing EISA or Ind ustry
Standard Arch itecture (!SA) l/0 pe ripherals 1 The
EISA bus can susta in data rates up to a theoretical

20

l i m i t of 33 megabytes per second (MB/s) at a clock
rate of 8.25 megahertz (MHZ). I n the current config
uration for the AlphaServer 2 100 product, the EISA

bus supports eight ge neral-purpose EISA/ISA con
nectors, and the EISA bridge chip set provides
connections to various low- speed, system-standard
1/0 devices such as keyboard , mouse, and t ime-of
year (TOY) clock. For most system configurations,
t he AlphaServer 2 1 00 system ·s EISA bus provides
enough data bandwidth to meet all data throughput
requ irements. In l i ght of the new requ irements for
faster data rates, however, the EISA bus w i l l soon
begin to run out of bus bandwidth .

To prov ide for more bandwidth, the AlphaServer
2100 system also contains a PC! bus as its primary
bus. With data rates four t i mes that of the EISA bus,
the PC! bus provides a d irect m igration path from
the EISA bus. The 32-bit PC! bus can sustain data
rates up to a theoretical I imit of 132 MB/s at a clock
rate of 33 M Hz. In the AlphaServer 2100 system
configuration, the PC! bus prov ides connecti ons
to three ge neral-purpose 32 -bit PCI connectors, an
Ethernet device, a SCSI device, the J>CI-to-EISA

bridge chip, and the T2 bridge chip.
A close examination of the bus structure reveals

that the AlphaServer 2100 system actua l ly contains
a three-level, hierarchical bus structure. In addition
to the PCI and EISA buses, the AlphaServer 2 1 00 sys
tem i ncludes a 128-bit multiprocessing system bus,
as shown in Figure 1. Each bus is designed to adhere
to i ts own bus interface protocols at d iffe rent data
rates. The syste m bus is 128 bits per 24 nanosec
onds (ns); the PC! bus is :)2 bits per 30 ns; and the
EISA bus is 32 bits per 120 ns. Each bus is requ ired

Vol. 6 No. 3 Slimmer 1')94 Digital Tecbnical journal

CPUs

I I SYSTEM BUS 1 28 BITS

11
THREE

BRIDGE
(T2 ASIC)

32-BIT
PCI SLOTS

H I I PCI BUS 32 BITS

I I
BRIDGE
(INTEL)

EISA BUS I I 32 BITS

I I
EIGHT
32-BIT EISA
SLOTS

MEMORY

J l

SCSI
CHIP

I I

Jl
SYSTEM
STANDARD
1/0 DEVICES

The AlphaServer 2100 l/0 Subsystem

ETHERNET
CHIP

I�
1/0
SUBSYSTEM

Figure I l/0 Subsystem for the AlphaServer 2100 System

to p rovide a particular fu nction to t he syste m and

is positioned in the bus hie rarchy to maximize

that efficiency. For example, the system bus is

positioned close to the c rus and memory to maxi

mize CPU memory access time, and the lower per

fo rmance 1/0 devices are placed on the EISA bus

because their t im ing requirements are less critical .

To main tain maximum bus effi ciency on all three

buses, i t is crit ical that each bus be able to perform

its various fu nctions autonomously of each other.

In other words, a slowe r performing bus shou ld not

affect the efficiency of a high-performance bus. The

section below d iscusses a few techniques that we

designed into the l/0 subsystem to enable the b uses

to work together efficiently.

Using the Bus Hierarchy Efficiently
This section d iscusses the data rate isolation, d is

con nected transaction , data buffer management,

and data bursting techniques used to ensure bus

efficiency in the l/0 subsystem.

Data Rate Isolation

The three-level bus hierarchy promotes data rate

isolation and concurrency for s imul taneous opera

tions on a l l three buses. The design of the bus

bridges he lps to enable each bus to work i ndepen-

D igital Technical journal Vol. 6 No. 3 Srmtmer /1)')4

dently: it provides bus interfaces with extensive

data buffering that fu nction at the same data rates

as the interfacing bus. For example. the T2 bridge

chip contains both a system bus interface and a PC!

bus interface that run synchronously to their

respective buses but are tot a l ly asynchronous to

each other. The data buffers i nside the T2 bridge

chip act as a domain con nector from one bus t ime

zone to the other and help to isolate the data rates

of the two buses.

Disconnected Transactiom

Whenever possible, the bridges promote the use of

d isconnected (or pended) protocols to move data

across the buses. Disconnected protocols decrease

the interdependencies between the d ifferent buses.

For example, when a CPU res iding on the system

bus needs to move data to the PO bus, the CPU does

so by sending its data onto the system bus. Here the

T2 bridge chip (see F igure 2) stores the data into

its internal data bu ffers at the system bus data

rate. The T2 bri dge chip provides enough buffer ing

to store an entire CPU transaction. From the CPU 's

perspective , the transaction is completed as soon

as the T2 bridge chip accepts its data. At that point,

the T2 bridge chip must forward the data to the PC!

bus, independent of the CPU . In this way, the CPU

2 1

AlphaServer Multiprocessing Systems

SYSTEM BUS [:J PCI BUS
COMMANDER MASTER

SYSTEM
SYSTEM

PCI
BUS DMA READ, PCI BUS BUS

BUS BUFFER DMA WRITE, AND BUFFER
CORNER :>

1 28 CORNER CONTROLLER PROGRAMMED CONTROLLER
LOGIC 32 LOGIC 1/0 BUFFERS

SYSTEM BUS G PCI BUS
R ESPONDER TARGET

Figure 2 Block Diagram of the T2 Bridge Chip

is not required to waste bus bandwidth by waiting
for the transfer to complete to its final destination
on the PC! bus.

The T2 bridge chip implements disconnected
transactions for all CPU-to-PCI transactions and most
PCI-to-memory transactions. In a similar fashion,
the PCl-to-EISA bridge implements disconnected
transactions between the PC! bus and the EISA bus.

Data Buffer Management

In addition to containing temporary data buffering
to store data on its journey from bus to bus, each
bridge chip uti l izes bu ffer management to a l locate
and deallocate its internal data buffers from one
incoming data stream to another. In this way, a single
ASIC bridge design can efficiently service multiple
data streams with a relatively small amount of data
buffering and without impacting bus performance.

The T2 bridge chip contains 160 bytes of tempo
rary data buffering divided across the three specific
bus transactions it performs. These three transac
tions are (I) direct memory access (DMA) writes
from PC! to memory (system bus), (2) DMA reads
from memory (system bus) to PC!, and (3) pro
grammed 1/0 (system bus) reads/writes by a CPU
from/to the PCI. The T2 bridge chip's data buffering
is organized into five 32-byte buffers. Two 32-byte

buffers each are al located to the DMA write and
DMA read functions, and one 32-byte buffer is al lo

cated to the programmed 110 function. Each of
the three t ransact ion functions contains its own
buffer management logic to determine the best use
of its available data buffering. Buffer management is
especially val uable in situations in which a PCI

2 2

device is reading data from memory on the sys
tem bus. To maintain an even flow of data from
bus to bus, the buffer management inside the T2
bridge chip attempts to prefetch more read data
from memory while i t is moving data onto the PC! .

Buffer management helps the bridges service bus
transactions in a way that promotes continuous
data flow that, in turn, promotes bus efficiency.

Burst Transactions

Using a bus efficiently also means ut i lizing as much
of the bus bandwidth as possible for "usefu l " data
movement. Useful data movement is defined as that
section of time when only the actual data is moving
on the bus, devoid of address or protocol cycles.
Maximizing useful data movement can be accom
pl ished by sending many data beats (data per cycle)
per single transfer time. Send ing multiple data
beats per single transfer is referred to as a "burst
transaction."

All three buses have the ability to perform burst
transactions. The system bus can burst as much as
32 bytes of data per transaction, and the PC! and
EISA buses can burst continuously as requ ired .

Data bursting promotes bus efficiency and very
high data rates. Each bus bridge in the server is
required to support data bursting.

The Bus Bridges

In the previous section, we discussed certain
design techniques used to promote efficiency

within the server's hierarchical bus structure. The
section that fol lows describes the bus bridges in
more detail, emphasizing a few interesting features.

Vol. 6 No . .i Summer 1994 D igital Technical journ al

The T2 Bridge Chip

The T2 bridge chip is a spec ially designed ASIC that
provides bridge functiona l i ty between the server's
mul tiprocessing system bus and the primary PC!

bus. (See Figures 1 and 2 .) The T2 ASIC is a 5.0-volt
chip designed in complementary metal-oxide semi
conductor (CMOS) technology. I t is packaged in

a 299-pin ceramic pin grid array (CPGA).
As stated earl ier, the T2 bridge chip contains a

128-bit system bus interface running at 24 ns and

a 32-bit PC! interface running at 30 ns. By using these
two interfaces and data buffering, the T2 bridge
chip translates bus protoco ls in both directions and
moves data on both buses, thereby providing the
logical system bus- to-PCI interface (bridge). In addi
t ion to the prev iously mentioned bridge features,
the T2 bridge chip integrates system functions such
as parity protection, error reporting, and CPU-to
PCI address and data mapping, which is d iscussed
later in the section Connecting the Alpha CPU to the
PC! ancl EISA Buses.

The T2 bridge chip contains a sophist icated DMA
controller capable of servicing three separate PCI
masters simultaneously. The DMA contro l ler sup
ports different-size data bursting (e.g . , single, mu lti
ple, or continuous) and two kinds of DMA transfers,
direct mapped and scatter/gather mapped . Both
DMA mappings al low the T2 bridge chip to transfer
large amounts of data between the PCI bus and the
system bus, independent of the CPU.

Direct-mapped DMAs use the address generated
by the PC! to access the system bus memory directly.
Scat ter/gather-mapped DMAs use the address gener
ated by the PC! to access a table of page frame num
bers (PFNs) in the system bus memory. By using the
PFNs from the table, the T2 bridge ch ip generates a
new address to access the data . To enhance the per
formance of scatter/gather-mapped DMAs, the T2
bridge chip contains a translation look-aside buffer
(TUl) that contains eight of the most recently used
PFNs from the table. By storing the PFNs in the TLB,

the T2 bridge chip does not have to access the table
in system bus memory every time it requi res a new
PFN. The TLB improves scatter/gather-mapped DMA
performance and conserves bus bandwidth. Each
entry in the TLB can be individua l ly inval idated as
required by software.

The T2 bridge chip also contains a single 110 data
mover that enables a CPU on the system bus to initi
ate data transfers with a device on the PC! bus. The
110 data mover supports accesses to all the valid PC!
address spaces, includ ing PC! 110 space, PCI mem-

Digital Techr�ical jour,al Vol. G No. 3 Summer 1994

The AlphaServer 2100 110 Subsystem

ory space, and PCI configuration space. The T2
bridge chip supports two l/0 transaction types
when accessing PC! memory space : sparse-type
data transfers ancl dense-type data transfers. Sparse
type transfers are low-performance operations
consisting of 8-, 16-, 24-, 32-, and 64-bit data trans
actions. Dense-type transfers are high-performance

operations consisting of 32-bit through 32-byte data
t ransactions. Dense- type transfers are especial ly
useful when accessing 110 devices with large data
buffers, such as video graphics adapter (VGA) con
t rol lers. A single PC! device mapped into PC! mem
ory space can be accessed with either sparse-type
operations, dense-type operations, or both.

In addition to accessing the PCI, a CPU can access
various T2 bridge chip internal control/status regis

ters (CSRs) for setup and status purposes. For maxi
mum flexibil ity, al l the T2 bridge chip's fu nctions
are CSR program mable, a l lowing for a variety of
optional features. Al l CPU I/O transfers, other than
those to T2 bridge chip CSRs, are forwarded to the

PC! bus.

Intel PC!- to-ElSA Bridge Chip Set

The Intel PCI-to-EISA bridge chip set provides the
bridge between the PC! bus and the EISA bus. I I t inte
grates many of the common 1/0 functions found in
today's ElSA-based PCs. The chip set incorporates
the logic for a PC! interface running at a clock rate
of 30 ns and an EISA interface running at a clock
rate of 120 ns. The chip set contains a DMA con
trol ler that supports d irect- and scatter/gather
mapped data transfers, with a sufficient amount of
data buffer ing to isolate the PC! bus from the EISA
bus. The chip set also includes PC! and EISA arbiters
and various other support control logic that pro
vide decode for peripheral devices such as the flash
read-only memories (ROMs) containing the basic
1/0 system (BIOS) code, real -t ime clock, keyboard/

mouse control ler, floppy controller, two serial
ports, one para l le l port, and hard d isk drive. In the
AJphaServer 2100 system, the PCI-to-EISA bridge
chip set resides on the standard 1/0 module , which
is discussed later in this paper.

Connecting the Alpha CPU to the PC/
and EISA Buses

In the next section, we d iscuss several i nteresting
design chal lenges that we encountered as we
attempted to connect re-oriented bus structures to
a high-powered mult iprocessing Alpha chassis.

2 3

AlphaServer Multiprocessing Systems

Address and Data Mapping
When a CPU init iates a data transfer to a d evice o n

t h e PC! bus, t h e T2 bridge c h i p m ust first determ i ne

the location (address) and amount of data (mask)

i nformation for the requested transaction a nd then

generate the appropriate PC! bus cycl e . This issue is

not straightforward beca use the PCJ and EISA buses

both support data transfers clown to the byte granu

larity, but the Alpha CPU and the system bus provide

masking granularity only down to :12 bits of data.

To generate less than 32 -bit addresses and byte

masked data transactions on the PC:! bus, the T2

bridge chip needed to i m plement a special decod

i ng scheme that converts an Alpha CPU-to-I/O trans-

Table 1 CPU-to- PCI Read Size Encod ing

action, as i t appears on the system bus, to a cor

rectly s ized PC! transact ion. Tables 1 and 2 give the

low-order Alpha address bits and Alpha 32-bit mask

fields ancl show how they are encoded to generate

the appropriate PC! address and data m asks. By

using this encod ing scheme, the Alpha CPL can per

for m read and write transactions to a PC! device

m apped in either PC! 1/0, PC! memory, or PC!
configuration space with sparse-type transfers.

(Sparse- type transfer sizes have 8-, 16- , 24-, 32- , or

64-bit data granu larity)

Another mapping probkm exists when a PC!
device wants to move a byte of data (or anything

smal ler than 32 bytes of data) i nto the system bus

Transaction EV _Addr[6:5] EV _Addr[4:3] I nstructions PCI Byte PCI_AD[1 :0] Data Returned
Size

8 bits 00 00 LDL

0 1 00 LDL

1 0 00 LDL

1 1 00 LDL

16 bits 00 0 1 LDL

0 1 0 1 LDL

1 0 0 1 LDL

24 bits 00 1 0 LDL

0 1 1 0 LDL

32 bits 00 1 1 LDL

64 bits 1 1 1 1 LDQ

Table 2 C PU-to-PCI Write Size Encoding

Trans- EV _Addr[6:5] EV _Addr[4:3] EV _Mask[7:0] (H)

action
Size

8 bits 00 00 00000001

0 1 00 00000001

1 0 00 00000001

1 1 00 00000001

16 bits 00 0 1 00000100

0 1 0 1 00000100

1 0 0 1 00000100

24 bits 00 1 0 00010000

0 1 1 0 00010000

32 bits 00 1 1 01 000000

64 bits 1 1 1 1 1 1 000000

24

Enables to Processor,

(L) EV _Data[127:0]

1 1 1 0 00 OW_O: [D7:DO]

1 1 01 0 1 OW_O: [D1 5:D8]

1 0 1 1 1 0 ow _O:[D23:D16]

01 1 1 1 1 OW_O: [D31 :D24]

1 1 0 0 0 0 OW_O:[D79:D64]

1 001 0 1 ow _O: [D87:D72]

001 1 1 0 ow _O: [D95:D80]

1 000 00 OW _1 : [D23: DO]

0001 0 1 o w _1 : [D31 :D8]

0000 00 OW_1 : [D95:D64]

0000 00 OW_1 : [D95:D64]
0000 OW_1 : [D127:D96]

l nstruc- PCI Byte PCI_AD[1 :0] Data Retu rned

tions Enables to Processor,

(L) EV _Data[127:0]

LDL 1 1 1 0 00 OW_O: [D7:DO]

LDL 1 1 01 0 1 OW_O:[D15:D8]

LDL 1 0 1 1 1 0 OW_O: (D23:D16]

LDL 0 1 1 1 1 1 OW_O: [D31 :D24]

LDL 1 1 00 00 OW_O:[D79: D64]

LDL 1 001 01 OW_O: (D87:D72]

LDL 001 1 1 0 OW_O: [D95:D80]

LDL 1 000 00 OW _1 : [D23: DO]

LDL 0001 01 ow _1 : [D31 :D8]

LDL 0000 00 OW_1 : [D95:D64]

LDQ 0000 00 OW_1 : [D95:D64]
0000 OW_1 : [D127:D96]

Vol. (i No . .) Sitllllll�r I'J'J·1 Digital Tecbnical journal

memory. Neither the system bus nor its memory
supports byte granularity data transfers. Therefore,
the T2 bridge chip must perform a read-modify
write operation to move Jess than 32 bytes of data into
the system bus memory. During the read-modify
write operation, the T2 bridge chip f irst reads a fu ll
32 bytes of data f rom memory at the address range
specified by the PC! device 2 It then merges the old
data (read data) with the new data (PC! write data)
and writes the ful l 32 bytes back into memory.

/SA Fixed-address Mapping
We encountered a third interesting mapping prob
lem when we decided to support certain !SA
devices with f ixed l/0 addresses in the AlphaServer
2100 system. These ISA devices (e.g . , ISA local area
network [LAN] card or an ISA f rame buffer) have
f ixed (hardwired) memory-mapped 110 addresses
in the 1-MB to 16 -MB address range.

The ISA devices being discussed were designed
for use in the f irst PCs, which contained Less than
1 MB of main memory. In these PCs, the 1!0 devices

had f ixed access addresses above main memory in
the 1-MB to 16 -MB address range. Today's PCs have
significantly more physical memory and use the
1-MB to 16 -MB region as a part of main memory.
Unfortunately, these JSA devices were never
redesigned to accommodate this change. There
fore , to support these ISA options, the PC designers
created 110 access gaps in main memory in the 1-M B
to 16 -MB address range. With this technology, an
access by a CPU in that address range is automati

cally forwarded to the !SA device.
To remain compatible with the ISA community,

the T2 bridge chip also had ro al low for a gap in
main memory at the 1-M B to 16 -MB address range so
that these addresses could be forwarded to the
appropriate !SA device.

BIOS Caching Compatibility

Today's Microsoft -compatible:: PCs provide another
performance-enhancing mechanism. \Ve decided to
implement this function inside the T2 bridge chip
as wel l .

During system initialization, MS-DOS-based PCs
read several BIOS ROMs from their l/0 space. Once
the ROMs are read, their contents are placed in fixed

locations in main memory in the 512-kilobyte (KB)
to 1-MB address range. The software then has

the abil ity to mark certain addresses within this
range as read cacheable, write cacheable, read
noncacheable, or write noncacheable. The basic

Digital Technical journal Vol. 6 No. 3 Summer 1994

The AlphaServer 2100 1/0 Subsystem

intention is to mark f requently accessed sections
of code as read cacheable but write noncacheable.
In this way, read accesses " hit" in main memory (or
cache), and writes update the ROMs directly.

Interrupt Mechanism

No computer system wou ld be complete without
providing a mechanism for an l/0 device to send

interrupts to a CPU. The 1/0 interrupt scheme on
the AlphaServer 2100 system combines familiar
technology with custom support logic to provide
a new mechanism.

Electrical and architectural restrictions prohib

ited the interrupt control logic f rom being directly
accessed by either the system bus or the PC! bus.
As a result, the interrupt contro.l logic is physical ly
located on a utility bus called the XBUS. The XBUS
is an 8-bit slave !SA bus placed nearby the PCI-to-EISA
bridge chips.

The base technology of the 1/0 interrupt logic is
a cascaded sequence of Intel 8259 interrupt con
trollers. The 8259 chip was chosen because it is a
standard, accepted, and wel l-known controller
used by the PC industry today. The use of the 8259
interrupt controller translated to low design risk as
wel l . Although the 8259 interrupt control ler is not
new, its integration into a high-performance multi
processing server, without incurring u ndue perfor
mance degradation, required some novel thinking.

The integration of the 8259 interrupt controller
into the A.lphaServer 2100 system presented two
considerable problems. First, the designers had
to satisfy the 8259 interface requirements in a way
that would have a minimal impact on the perfor
mance of the interrupt- servicing CPU. The 8259
requires two consecutive special-acknowledge
cycles before it wil l present the interrupt vector.
To resolve this problem, we designed a set of
handshaking lACK programmable array logic (PAL)
devices. These PA Ls enhance the functions of the
8259 controllers as XBUS slaves. The interrupt
servicing CPU performs only a single read to a desig
Juted address that is decoded to the XBUS. The lACK
control PAls decode this read and then generate the
special, double-acknowledge cycles required to
access the vector. The PAL logic also deasserts
CHRDY, a ready signal to the !SA bus, so that the cycle
has ample time to proceed without causing a con

formance error for a standard !SA slave cycle. When

the double acknowledge is complete and the vector
is guaranteed to be driven on the bus, the PALs
assert the CH RDY ready signal .

25

AlphaServer Multiprocessing Systems

The second problem involved the location of the
interrupt controller. As mentioned earlier, because
of electrical and architectural restrictions, the inter
rupt controller was located on the XBUS near the
PCI-to-EISA bridge chips. With the interrupt con
troller located on the XBUS, an interrupt-servicing
CPU is required to perform a vector read that spans
two I/0 bus structures. For this reason and its
potential effect on system performance, vector
reads bad to be kept to a m inimum, which is not
easy in a system that allows more than one CPU
to service a pending interrupt request.

Since the AlphaServer 2100 system can have as
many as four CPUs, a l l fou r CPUs can attempt to
service the same pending interrupt request at the
same time. Without special provisions, each CPU
would perform a vector read of the interrupt con
troller only to find that the interrupt has already
been serviced by another CPU. Requiring each CPU
to perform a vector read of the interrupt controller
on the XBUS wastes system resources, especially
when each vector read spans two bus structures. Of
course, this problem could be resolved by assigning
only one CPU to service pending interrupts, but this
would negate the advantage of having multiple CPUs
in a system . To solve this problem, the T2 bridge
chip on the system bus implements special "passive
release" logic that informs a CPU at the earliest possi
ble time that the pending interrupt is being serviced
by another CPU This allows the "released " CPU to
resume other, more important tasks.

The term passive release typically refers to a vec
tor code given to an interrupt-servicing CPU during
a vector read operation. The passive-release code
informs the CPU that no more interrupts are pend
ing. The special passive-release logic allows the T2
bridge chip to return the passive-release code to a
servicing CPU on behal f of the interrupt controller.
The T2 bridge chip performs this function to save
time and bus bandwidth.

After the designers implemented all the features
described above, they needed to address the prob
lem of how to deal with all the slow, highly volatile,
" off-the-shelf' parts. To integrate these compo
nents i nto the I/O subsystem, they invented the
standard 1!0 module.

The Standard 1/0 Module

As part of the development effort of the 1/0 su bsys
tem, the engineering team faced the chal lenge of
integrating several inexpensive, low-performance,
off- th e-shelf, PC-oriented l/0 functions (e.g . , TOY

26

clock, keyboard, mouse, speaker) into a high
performance Alpha mu ltiprocessing system, with
out affecting the higher performing architectural
resources. The mu.ltilevel I/0 bus structure served
to al leviate the performance issues, but the develop
ment of a PC-style 1/0 subsystem with off- the-shelf
components involved inherent risk and chal lenge.

To reduce the risks inherent with using new and
u nfamiliar devices, such as the PCI-to-EISA bridge
chip set, we chose to build an I/O mod u le (cal led
the standard I/0 modu le) that plugs into the
AlphaServer 2100 system backplane and contains
the PCI-to-EISA bridge, associated control logic, con
trollers for mouse, keyboard, printer, and floppy
drive as well as the integral E thernet and SCSI con
trol lers. Withou t this plug-in module, fixing any
problems with the PCI-to-EISA bridge chip set or
any of the supporting logic would have required
a backplane upgrade, which is a costly and time
consuming effort.

The standard 1/0 module is relatively small, inex
pensive both to manufacture and to mod ify, and
easily accessible as a field replaceable unit (FRU). As
shown in Figure 3, the standard 1/0 module con
tains the fol lowing logic

• PCI-to-Ethernet control ler chip

• PCHo-scsr control ler chip

• PCI-to-EISA bridge chips

• Real- time clock speaker control

• 8-KB, nonvolatile, ElSA-configuration , random
access memory (RAM)

• 1-MB BIOS flash ROM

• Keyboard and mouse control

• Paral lel port

• FDC floppy controller

• Two serial ports

• I2C support: control ler, expander, and ROM

• I ntel 8259 interrupt controllers

• Ethernet station address ROM

• Reset and sysevent logic

• Fan speed monitor

• Remote fault management connector

• External PC! subarbiter

• 3.3-volt and - 5.0 -volt generation

Vol. 6 o. 3 Summer 1994 Digital Technical journal

PCI BUS

ETHERNET
ROM
32 BYTES

The AlphaServer 2100 1/0 Subsystem

8

32

INTERRUPT
CONTROLLER

,.- - - - -- - - - - - , l 8259A-2 I 1 2C
PARALLEL
PORT

SCSI I 00000 I _ _ _ _ _ _ _ _ _ J

lACK
CONTROLLER

FAN
ROTATION
MONITOR

8242
KEYBOARD ___. KEYBOARD

PARALLEL

0
SYSTEM
RESET
GENERATION

AND MOUSE
MOUSE ___. CONTROLLER (1 }

0

- 5-V
GENERATION

3.3-V
GENERATION

FLOPPY

SERIAL PORT

SERIAL PORT

0
0
0

Figure 3 The Standard l/0 Module

For the most part, a l l these functions were gener
ated by using integrated, off- the-shelf components
at commodity pricing. Solutions known to work
on other products were used as often as possible.
The flash memory resides on the EISA memory bus
and is control led by the PCI-to-EISA bridge chip.
A simple multiplexing scheme with minima! hard
ware enabled the server to address more locations
than the bridge chip al lowed, as much as a ful l 1 MB
of BIOS ROM. The National PC87312, which provides
the serial and parallel port control logic, and the
floppy disk control ler reside directly on the ISA bus.
The rest of the devices are located on the XBUS (an

D igital Technical journal Vol. 6 No. 3 Swmner 1994

8-bit buffered slave ISA bus), with control managed
by the PC!- to-ElSA bridge chips.

In addition, the common PC functions are
located at typical PC addresses to ease their integra
t ion and access by software. As expected, hardware
changes were required to the standard l/0 module
during i ts hardware development cycle. However,
the standard 1/0 module, which takes only minutes
to replace, provided an easy and efficient method of

integrating hardware changes into the AlphaServer

2100 system . We expect the usefulness of the stan
dard l/0 module to continue and hope that it wi l l
provide an easy and i nexpensive repair process.

27

AlphaServer Multiprocessing Systems

Summary

The 1/0 subsystem on the AlphaServer 2 100 system
contains a two- level hierarchical bus structure con
sisting of a h igh-performance PC! bus connected to
a secondary ElSA bus. The PCl bus is connected to
the AlphaServer 2100 system's multiprocessing sys
tem bus through the T2 bridge chip. The secondary
1/0 bus is connected to the PC! bus through a stan
dard bridge chip set. The 1/0 subsystem demon
strated sufficient flexibi l i ty to become the 1/0
i nterface for the smal l pedestal AJphaServer 2000

and the rackmou ntable version of the AJphaServer
2100 products.

Acknowledgments
The AlphaServer 2100 l/0 wou ld not be w hat it is
today, without the dedicated, focused efforts of sev
eral people. Although not complete, the fol lowing
l ist gives credit to those who were the most deeply
invo lved . Thanks to Fidelma Hayes for leading the
Sable effort; to Vicky Triolo for the Sable mother
board and her support of the T2 bridge chip effort;

28

to Rachael Berman for her unflagging support of
the standard 110 modu le; to Lee Ridlon for his much
needed early conceptual contributions; to Stephen
Shirron for driving Sable software l/0 issues; to jolm
Bridge for cleaning up the second-pass T2; and to
Tom Hunt and Pau l Rot ker for their contributions
to the first-pass T2.

References

1 . F Hayes, ··oesign of the AlphaServer Multiproces
sor Server Systems;· Digital Techn ical journal,

vol . 6, no. 3 (Sum mer 1994, this issue): 8-19.

2 . PCI Local Bus Speetfication, Revision 2. 0 (Hi lls
boro, OR: PC ! Special Interest Group, Order No.
281446-001 . April 1 993).

3. 82420182430 PC/set /SA and EISA Bridges (Santa
Clara, CA: Intel Corporation, 1993).

4. E. Solari, !SA and EISA, Themy and Operation

(San Diego, CA: A.n nabooks, 1992).

Vol. 6 No . .! S/1111111er 1994 Digital Technical journal

jeffrey M. Denham
Paula Long

james A. Woodward

DEC OSF/1 Version 3.0 Symmetric
Multiprocessing Implementation

The primary goal for an operating system in a symmetric multiprocessing (SMP)
implementation is to convert the additional computing pawer provided to the sys

tem, as processors are added, into improved system pe1jonnance without compro

mising system quali�y. The DEC OSF/1 version]. 0 operating system uses a number

of techniques to achieve this goal. The techniques include algorithmic enhance

ments to improve parallelism within the kernel and additional lock-based synchro

nization to protect global system state. �ynchronization primitives include spin

locks and blocking locks. An optional locking hierarchy was imposed to detect

latent symmetric multiprocessor synchronization issues. Enhancements to the ker

nel scheduler improve cache usage by enabling soft affinity of threads to the proces

sor on which the thread last ran; a load-balancing algorithm keeps the number of

runnable threads spread evenly across the available processors. A highly scalable

and stable SMP implementation resulted from the project.

The DEC OSf/ 1 operating system is a Digital product
based in part on the Open Software Fou ndation 's
OSF/1 operating system . 1 One major goal of the DEC
OSF/1 version 3.0 project was to provide a leader
ship mult iprocessing implementation of the C '-JIX

operating system for AJpha server systems, such as

the Digital AlphaServer 2100 product. This paper
describes the goals and development of this operat

ing system feature for the version 3.0 release.

The DEC OSF/1 Version 3. 0
Multiprocessing Project

Mul tiprocessing platforms l ike the AJphaServer
2100 product provide a cost- effective means of
increasing the computing power of a server. Addi
tional computing capacity can be obtained at a
potentia l ly significant cost advantage by simply
add ing CPU modules to the system rather than by
adding a new system to a more loosely coupled
network-server arrangement. An effect ive execu
tion of this server-scal ing strategy requires signifi
cant cooperation between the hardware and
software components of the system. The hardware
must provide symmetrical (i .e . , equal) access to sys
tem resources, such as memory and J/0, for a l l pro

cessors; the operating system software must
provide for enough paral lel ism in its major subsys
tems to a l low appl ications to take advantage of the

Digital Techuicaljourual Vol. 6 No . .) Summer 1994

additional crus in the system . That is, the operating
system cost of mul.t iprocessing must be kept low
enough to enable most of an additional CPU's com
puting power to be used by applications rather

than by the operating system's efforts to synchro
nize simu ltaneous access to shared memory by mul
tiple processors.

Regard ing hardware, the AlphaServer 2100 prod
uct and the other Alpha mult iprocessing platforms
provide the shared memory and symmetric access

to the system and l/0 buses desired by the operat

ing system designers 2 The design allows al l CPUs
to share a single copy of the operating system

in memory. The hardware also has a load- locked/
store- conditional instruction sequence, which pro
vides both a mechanism fo r atomic updates to
shared memory by a single processor and an inter
processor interrupt mechanism.

Given these hardware features, operating system
software developers have a great deal of freedom
in developing a mult iprocessing strategy. The
approach used in DEC OSF/1 version 3.0 is cal led
symmetric mu ltiprocessing (SMP), in which all pro

cessors can participate fu lly in the execution of

operating system code. This symmetric design con

trasts with asymmetric multiprocessing (ASMP), in

which a l l operating system code must be executed
on a single designated "master" processor. Such an

29

DEC OSF/1 Symmetric Multiprocessing

a valuable product feature and was a preview of t he

effort that would be required to adapt the OSF/ 1

code for the DEC 2000, 4000, and 7000 multipro

cessing platforms. Supporting separate preemptive

kern els for three versions prior to DEC OSf/ l

version 3.0, combined with the developers' experi

ence on other multiprocessing systems (including

ULTRIX version 4 and an advanced development

project using M IPS multiprocessing platforms),

uncovered the following challenges and problems

that the team had to overcome to produce a com

petitive multiprocessing product:

• Supporting two complete sets of kernel binary

objects-base and rea l-time-was burdensome

for the operating system engineers ancl awk

ward for thi rd-p arty developers. Therefore, the

DEC OSF/1 multiprocessing product team had to
strive to ship a s ingle, unified set of k ernel bina

ri es. This set should encompass the full range

of real-time features, including preemption and

POS IX f i xed-priority scheduling. For that to be

practica l , the resulting multiprocessing kernel

would have to perform as well on a uniproces

sor as the non-SNIP ke rnel.

• Diagnosing locki ng problems in the preemptive

kernel was expensive in developer t i me . The

process required pa instaking inspection of

the s imple-locking source code, which is often

disguised in subsystem-specific macros. Lock

ing or unlock ing a spin lock multiple times or

not unlocking it at all (usually in code loops)

would dis able preemption well beyond the end

of a critical section or enable it before the encl.

A coherent lock ing architecture with automated

debugging facilities was needed to ship a rel iable

product on rime. The lock-debugging facility

present in the original OSF/1 code \Vas probably

inadequate for the task.

• Experiments with the real-time kernel revealed

unacceptable preemption latencies, especially

in funneled code paths. This deficiency indi
cated that, when moved to a multiprocess i ng

platform, the existing kernel would fai l ro use

addit i onal processors effectively. nlat is, the

kernel would not exhibit adequate parallel ism

to scale effectively. Clea rly, major work was

requ ired to significantly increase parallelism in

the kern el. This task ·would l ikely involve remov

ing most uses of funneling, eliminating some

spin locks, and adding other spin l.ocks ro create

a finer granularity of locklllg.

:) 2

Adapting the Base Operating System
for Symmetric Multiprocessing

Mak ing the leap f rom a preemptive uniprocessor

kernel to an effective SMP implementation , built

from a single set of kernel binaries, required con

tributions f rom the OSF/1 version 1 .2 and the DEC
OSF/ 1 version 3.0 projects. Fundamental changes

were introduced into the system to support SMP.

The basic approach planned by the SMP project

team was f irst to bootstrap the DEC: OSF/1 version

1 . 3 kernel on the existing Alpha multiprocessing

platforms. This task was accomplished by funneling

all major subsystems to a single processor while sta

bilizing the underpinnings of the multiprocessing

system (i .e. , the scheduler. the v irtual memory sub

system, the virtual f i le system, and the hardware

support) in the new environment. This approach

allowed the ream to make progress in unde rstand

ing the scope of the effort wh ile analyzing the

multiprocessing requ i rements of each kernel sub

system. The in-depth ana lysis was necessary to

identify those su bsystems in the kernel that

required modifications to run safely and eff i ciently

under SMP. As each su bsystem was confirmed to

exhibit parallelism or was made paralleL it was

unfunnded and thus freed to mn on any processor.

This process was iterative. If incorrectly paral

le l ized, a subsystem will reveal itself by (l) leaving

data incorrectly unprotected and thus open for cor

ruption and (2) developing a deadlock, i.e .. a s itua

tion in which each of two threads holds a spin lock

requ ired by the other th read and thus neither

thread can rake the lock ancl p roceed.

The efforts at parallel i zing the kernel fell into

two classes of modi fication: lock-based synchro

nization to ensure multiprocessing correctness and

algorithmic changes to increase the level of paral

lelism ach ieved.

Lock-based Synchronization

The code base on which the DEC OSF/ l product
is built, i .e. , the Open Software Foundation's OSf'/1

software, provides a strong foundation for SMP. The

OSF further strengthened thi s foundation in OSF! l
ve rsions 1 . 1 and 1 .2, when it corrected multiple

Si'vll' problems in t he code base and parallel ized

(and thus unfunneled) additional subsystems. As

the mu ltiprocessing bootstrap effort continued ,

the team analyzed and incorporated the OSF/ I ver

sion 1 . 2 S1Y!P improvements into DEC OSF!l version

3.0. As strong as this starting point was, however,

some st ructures in the system did not receive the

\l,,f. (, No. 3 S11111111er 1994 D igital Technical jour11al

DEC OSF/ 1 Version .). 0 Syrnmetric Multiprocessing Implementation

appropriate level of synchronization. The team cor

rected these problems as they were u n covered

through testing and code inspection.

The DEC OSF/ 1 operating system uses a combina

tion of simple locks, complex locks, elevated SPL,

and funneling to guarantee synchronized access to

system resources and data structures. Sim ple locks,

SPL. and fu nnel ing were described briefly i n the

earl ier d iscussion of preemption. Complex locks.

l i ke elevated SPL, are used in both u niprocessor and

m u l t iprocessor enviro nments. These locks are usu

a l l y sleep locks- threads can block while they wait

for the lock-which offer addit io nal features,

i nclud i ng m u l t iple-reader/single-writer access and

recursive acquisit ion.

An example of the use of each synchro n ization

technique fol lows:

• A s i mple lock i s used to protect the kernel 's cal l

out (timer) queue. I n an S,\1 P environment, m u l

tiple threads can update the ca l lout queue at the

same t ime. as each of them adds a t i mer entry

to the queue. Each thread must obtain the cal l

out lock before adding an entry and release the

lock when done. The cal lout s i mple lock i s also

a good example of SPL synchron ization under

multiprocessing because t he cal lout queue is

scanned by t he system clock l S R . Therefore,

before locking the cal lout Jock, a thread m u st

raise the SPL to the clock's lPL. Otherwise, the

thread holdi n g the cal l o u t lock at an SPL of zero

can be interrupted by the clock I S R , which w i l l

in tu rn attempt to take the cal lou t lock. The

resu lt is a permanent dead lock.

• A complex lock protects the file system direc

tory structur e . A blocking lock is requ ired

because the d i rectory lock holder m ust perform

I/O to update the directory, which i tself can

block. Whenever block i ng can occur w h ile

a lock is hel d , a complex lock is requi red.

• Fu nnel ing is used to synchro n i ze access to the

ISO 9660 CD-ROM file syste m . - The decision to

fu n nel this file system was .largely due to l i mi ta

t ions in the DEC OSI'/ 1 version 3.0 schedu le ;

however, the f i l e system is a good cho ice for fun

nel ing because of its general l y slow operation

and I ight usage.

To ensure adequate performance and seal ing as

processors are added to t he system , an SJ\II P imple

mentation must provide fo r as much paral lel ism

through the kernel as possible . The granularity of

Digital Technical jourual Vol. (J No . . > Summer 19')4

locks placed in the system has a major i mpact on

t he amount of paral lel ism obtained .

D uring multiprocessing developmen t, locking

strategies were designed to

• Reduce the total number of l ocks per su bsystem

• Reduce the number of locks ta ken per subsys

tem operation

• Improve the level of para l lel ism throughout the

kernel

At t i mes, t hese goals clashed: enhancing paral

lelism usually involves add ing a lock to some struc

ture or code path. This outcome confl icts with the

goal of red ucing lock counts. Consequent ly, in prac

tice. the process of successfu l l y para l lel izing a sub

system involves striking a balance between lock

red uction and the resul t i ng increase i n lock granu

larit y. Often, benchmarking d i fferent approaches is

required to fine- tune this balance.

Several general trends were uncovered d u ring

lock analysis and tuning. In some cases locks were

removed because t hey were not needed; they

were the products of ove rzealous synchro nization.

For example, a structure that is pr ivate to a t h read

may require no lock ing at a l l . Moreover, a data e le

ment t hat is read atomica l l y needs no lock i ng. An

example of lock removal is the gett i meofday() sys

tem cal l, which is used frequent ly by DBMS servers.

The system cal l simply reads the system time, a 64-

bit quantity, and copies it to a buffer provided by the

cal ler. The original OSF/1 system cal l . running on a

32-bit architecture, had to take a simple lock before

reading the t ime to guarantee a consistent value. On

the Alpha archi tecture, the system cal l can read the

ent ire 64 -bit t ime value atomical ly. Removing the

lock resulted in a 40 percent speed up.

In other cases, analyzing how structures are used

revealed that no lock ing was needed. For example,

an 1/0 control block cal led the buf structure was

being locked in several device drivers while the

block was in a state that al lowed only the device

driver to access i t . Removing t hese u nnecessary

locks saved one complex and one simple locking

sequence per l/0 operation in t hese d rivers.

Another effective optim izat ion involved post

poning lock i ng until a thread determined that it had

actual work to do. This technique was used success

fu l l y in a routine frequently cal led in a transaction

processing benchm a r k . The routi ne , which was

locking structures i n anticipation of fol lowing

a rarely used code path, was mod ified ro lock only

33

DEC OSF/1 Synunetric Multiprocessing

when the u ncommon code path was needed . This
optimization significantly reduced lock overhead.

To improve paral lel ism across the system, the
DEC OSf/1 SMP development team modified the lock
strategies in nu merous other cases.

Algorithm Changes

In some instances. the effective migration of a sub
system to the multi processing environment
required significant reworking of its fu ndamental
algorithms. This sect ion presents three examples of
th is work. The first example involves the rework
of the process ma nagement subsystem ; the second
example is a new tech nique for a thread to refer to
its own state; and the third example deals with
enhancements i n translation buffer coherency or
"shootdown:·

J'rfanaging Processes and Process State Early ver
sions of the DEC OSF/ 1 software maintai ned a set of
systemwide process l ists, most notably proc (static
proc st ructure array), a l lproc (active p rocess l ist) ,
and zomproc (zombie process l i st). These l ists tend
to be fairly long and are norma l ly traversed sequen
tial ly. Operations involving access to these l ists
include process-creation time (fork()) , signal post
ing, and process termination. The original OSF/1

code protected these process l ists and the i ndivid
ual proc structures themse lves by means of fu n nel
ing. This meant that v irtua l ly every system cal l that
involved process state, such as exit() . wait() ,
ptrace() , and sigact ion(), was a lso forced into
a single fu nnel. Experience with real- t ime preemp
tion in dicated that this approach would exact
excessive m u ltiprocessing costs. Although it is pos
sible to protect these l ists with locks, the develop
ment team decided that this basic portion of the
kernel must be optim ized fo r maximum multi
processing performance. The OSF al so recognized
the need for optimization; they add ressed the prob
lem in OSF/ 1 version 1 . 2 by adopting a redesign
of the process ma nagement developed for their
Mu lt imax systems by Encore Compu ter Corpora
t ion . The DEC OSF/ I team adopted a nd enh:mced
this design for hand l ing process l ists, p rocess man
agement system cal ls, and signal processing.

The redesign replaces the statica l ly sized array of
proc str uctures with an array of smaller process
iden tification (PID) entry structures. Each P[J) entry
structure p otentially points ro a dynamically a l lo
cated proc structure Under this new scheme, find
ing the proc structure associated with a user PID

has been reduced to hash ing the PID value to an

index in to the PID entry array. The process state
associated with that PID (active, zombie , or nonexis
tent) is maintained in the PID entry structure. This
a l lows process structures to be al located dynami
cal ly, as needed, rather than statical ly at boot t ime.
as before. Simple locks are a lso added to the process
structure to a l low mu lt iple threads in the process to
perform process management system cal ls and sig
nal hand l i ng concurrently. These changes a l lowed
process ma nagement fu nnel ing to be removed
entirely, which significantly improved the degree of
para l lel ism in the process management subsyste m .

Accessing Current Thread State One critical design
choice in i mplementing SMP on the DEC OSF/ 1 sys
tem concerned how to access the state of the cur
ren t ly running threa d . This state i ncl udes the
cmrent thread 's process, task. and v i rtual memory
stru ctures, and the so-called uarea, which contains
the pageable UNfX state. Access to this state, which
threads requ i re frequently as they run i n kernel
con text, must have low overhead . Fu rt her, because
the DEC OSF/1 operat ing syste m supports kernel
mode preemption , the method for accessing the
current thread's state m ust work even if a context
switch to another CPU occurs during the access
operation.

The origi nal OSF/ 1 code used arrays i ndexed by
the CPU number to look up the state of a runni ng
thread . One of these arrays was the U_ADDRESS

array, wh ich was used to access the cu rrently active
uarea. The U_A D DRESS array was loaded at con text
swi tch t i me and accessed while the thread exe
cuted. Before the advent of m u l tiprocessi ng. the
CPU number was a compile-t ime constant, so
that thread-state lookup involved s i mply reading
a global vari able to form the pointer to the data.
Ad di ng mu ltiprocess ing support meant changing
the CPU number from a constant ro the resu lt of
the WHAMI ("Who am P ") PA Lcode cal l to get the
cu rrent CPU nu mber. (PAL.code is the operati ng
system-specific privi leged arch itecture l ibrary
that provides control over interrupts, exceptions.
context switching, etc H)

Usi ng such global arrays for accessing the current
thread's state presented three shortcomings:

1 . The \\fJ-IAMI PALcode cal l added a minimum over
head of 21 machine cycles on rhe AlphaServer
2100 server, nor includ ing fu rther overhead c.lue
to cache m isses or instruction stream stalls . The
mul t iprocessing team fe l t that this was too large
a performance price to pay.

Vol. 6 No. 3 Summer 1<)')4 Digital Teclmical]ourrwl

DEC OSF/ 1 Version 3. 0 Symmetric il-'lultiprocessing Implementation

2. Allowing multiple crus to write sequ ential

pointers caused cache thrashing and extra over

head during context switching.

3. I ndexing by CPU nu mber was not a safe practice

when kernel-mode p reemption is enabled.

A thread could switch processors in the middle

of an array access, and the wrong pointer wou l d

be fetched . Prov iding addit ional locking to pre

vent this had unacceptable performance impli

cations because the operation is so common.

These problems convi nced the team that a new

algorithm was required for accessing the current

thread's state.

The solution selected was modeled o n the way

the OpenVMS VAX system uses the processor i n ter

rupt stack pointer to derive the pointer to per-CPU

state .9 In the OSF/ 1 system, each thread has its own

kernel stack . By a l igning this stack on a power-of

two boundary, a si mple masking of the stack

pointer yields a pointer to the per-thread data, such

as the process control block (PCB) and u thread

structure. Any data item in the per-thread area can

be accessed with the fol l owing code sequence:

l d a r 1 6 , M A S K
b i c s p , r 1 6 , r O

l d q r x , O F F S E T (r Q)

G e t m a s k v a l u e

M a s k s t a c k p o i n t e r t o
p o i n t t o s t a c k b a s e

A d d o f f s e t t o b a s e
a n d f e t c h i t e m

Accessing thread state using t h e kernel stack

pointer solves a l l three problems with CPU-number

based indexing. First, this techn ique has very low

overhead; accessing the cu rrent thread's data

involves only a simple masking operation and a read

operat ion. Second . usin g the kernel stack pointer

incurs no extra overhead during context switching

because the pointer has to be loaded for other uses.

Third, because thread stack areas are pages, no

cache confl icts exist between threads runni ng on

d ifferent processors. Final ly, the data access can

be preempted at any point, and the correct poi nter

is st i l l fetched . No processor-dependent state is

used to access the current thread state.

lnterprocessor Translation Lookaside Buffer

Shootdown Alpha processors employ translation

lookaside bu ffers (TLFls) to speed up the translation

of physical-to-virtual mappings. The TLB caches

page table entries (PTEs) that contain vi rtual-to

physical address mappings and access control infor

mation. Unl ike data cache coherency, which the

Digital Technical]our11al \IIJI. 6 No. 3 Summer 1994

hardware maintains, TLFl cache coherency is a task

of the software. The DEC OSF/ 1 system uses an

enhan ced ve rsion of the TLB shootdown algorithm

developed for the Mach kernel to maintain TLB

coherency. 1° First, a mod ification to the original

shootdown algorithm was needed to im plement

the Alpha archi tectu re's add ress space numbers

(ASNs) . Second, a synchronization feature of the

original algorithm was removed entirely to enhance

shootdown performance. This feature provided

synchronization for archi tectures in which the

hardware can modify PTEs, such as the VAX plat

form; the added protection is un necessary for

the Alpha architecture.

The final shootdown algorithm is as fo l l ows. The

physical map (PMAP) is the software structure that

holds the virtu al -to-physical mapping i n formation.

Each task within the system has a PMAP; operating

system mappings have a special kernel P;\1AP. Each

PMAP contains a l ist of processors cu rrently using

the associated address space. To init iate a virtual- to

physical translation change, a processor (the i n it ia

tor) first locks the PMAP to prevent any other threads

from modifying it. Next, the in itiator updates the PTE

mapping in memory and flushes the local TLB. The

processor then sends an i nterprocessor in terrupt

to all other processors (the responde rs) that are

cu rrently active in the same add ress space. Each

responder needs to ack nowledge the ini tiator and

inval idate its own mapping. Once a l l responders

are accounted for, the i nitiator is free to continue

with the knowledge that al l TLBs are coherent on

the system . The init iator marks nonactive proces

sors· ASNs i nactive , spins wh i le it waits for other

processors to check in, and then unl ocks the PMAP.

Figure 1 shows this final TLB shootdown algori thm

as it progresses from the initiating processor to the

poten tial respond ing processors.

Developing the Lock Package

Key to meeting the performance and rel iabi l it y

goa ls for the mult i processing portion o f the DEC

OSF/ 1 version 3.0 release was the development of

a lock pac kage with the fol lowing ch:ll'acteristi cs:

• Low execution and memory overhead

• Flexible support for both u niprocessor ancl

multiprocessor platforms, with and without

real-time preemption

• Autom ated debuggi ng facil it ies to detect in cor

rect locking practices at run time

35

DEC OSF/1 Synunetric Mult iprocessing

I n itiator:

Lock the PMAP.
Update the translation map (PTE).
I nval idate the processor TLB ent ry.
Send an interprocessor interrupt to all

processors that are using the PMAP.

Mark the nonactive processors' ASNs inactive.
Spin while it waits for other processors to check in .
Un lock the PMAP.

Responders:

Acknowledge the shootdown.
I nvalidate the processor TLB entry.
Ret urn from the i nterrupt.

Figure I hanslation Lookaside Bujfer Shootdown Algorithm

• Statistical faci l i r ies ro track the number of locks
used , how many times a lock is taken, and how
long threads wa i t to obtain locks

Of course, the overa l l role of the l ock package
is ro provide a set of synch ron iz:Jtion primi tives.
that is, the simp le and complex Jocks desc ribed in
earl ier sections. To support kernel-mode rhrea<.J
preemption, DEC OSF/ 1 version 1 .0 had extended
the lock package originally del ivered with OSF/ I
ve rsion 1 .0. Early in the DEC OSF/ 1 version 3.0 rroj
ect, the development team extended the package
again to optimize its performance and to add the
desired debugging and statistical features.

As previously noted, a major goa l fo r D EC OSF/1

ve rsion 3 0 was to ship a single version of its kernel
objects, instead of the base and rea l - t ime sets of
previous releases. Therefore, s imple locks wo uld
have to be comp i led into the kernel, even for ker
nels that wou ld run only on un iprocessor systems.
Achieving this goal required minimizing the size of
the lock structure; it wou ld be u nacce ptable to
h;lVe hundreds of ki lobytes (KB) of memory dedi
cated ro lock structures i n systems that did not use
such structures. Fu rther. the simple lock and
u n lock invocations required by the mul t ip rocess
ing code wou ld have to be present for a l l p latforms,
which wou ld raise serious performance issues fo r
uniprocessor systems. In fact, i n the original OSf/ I
lock package, the CPU overhead cost of compi l ing
in the lock code was between I and 20 percent.
Compute- intensive bench marks showe(l the cost to
be less than) perce nt, but the cost for mult iu ser
bench marks was greater than 1 0 percent, which
represents an u nacceptable performance degrada
tion. To meet the goal of a single set of binaries, the

development team had to e n hance the lock package
to be configurable at boot time. T hat is, the package
needed to be able to tailor itsel f to fi t the configura
t ion a nd real- r ime requi rements of the platform on
wh ich it wou ld run.

The lock package supplied by the OSF/ 1 system
was h1rther deficient in that it did nor su pport error
checking when locks were asserted . This deficiency
left developers open to the m ost com mon ronnen
tor of concurrent program mers. i .e . , dead locks.
Without er ror checking, potential system ha ngs
caused by Jocks being asserted in the wrong order
could go und etected for years and be difficul t to
debug. A fo rm al locking order or h ierarchy for a l l
Jocks in rhe system had to be establ ished. and the
lock pac kage needed the abi l i ty to check the hierar
chy on each lock taken.

These needs were mer by in trod ucing the notion
of lock mode to the lock package. Developers
defined the ti>Howing five modes and associated
roles:

• Mode 0: No lock operations; for production
u niprocessor systems

• Mode I : Lock cou nting only to man age kernel
p reemption; fo r prod uct ion rea l - t ime u nipro
cessor systems

• Mocle 2: Locking withm1t kernel preemption;
for product ion m u l ti processing systems

• Mode :') : Lock ing with kernel preemption; for
production re a l - t ime mul tiprocessing systems

• Mode 4: Ful l Jock deb ugging wi th or without
p reemption; for any development system

Vol. () No . . ! Still/Iller 1994 Digital Technical journal

DEC 05F/l Version 3. 0 Symmetric kfultiprocessing Implementation

The default un iprocessor lock mode is 0; the mul
tiprocessing default is lock mode 2. Both selections
favor non-real - t ime producti o n systems. The sys
tem's lock mode, however, can be selected a t boot
time by a nu mber of mechan isms. Lock modes are
implemented through a dynamic lock configura
tion scheme that essential ly iiJstal ls the appropriate
set of lock pri m i tives for the selected lock mode.
I nstal lation is rea li zed by patching the compiled-in
fu nction calls , such as si mple_lock(), to dispatch
to the corresponding lock primi tive for the selected
lock mode. This technique avoids the overhead
of dispatching indirectly to different sets of lock
primit ives fo r each ca l l , based on the lock mode.
The compi led-in lock fu nction calls to the lock
package are a l l e ntry points that branch to a cal l
patching rou t i ne ca lled simple_lock_patch(). This
routine changes the cal l i ng machine i nstruct ion to
be patched out (for Jock mode 0) or to branch to
the correspond ing primit ive in the appropriate set
of actual primitives, and then branches there (for
lock modes 1 through 4). Thus, the overhead for
dynamically switching between the versions of sim
ple lock primit ives occurs only once for each code
path. In the case of lock mode 0, calls to simple
Jock primi tives are " back patched " out. Under this
model, uniprocessor systems pay a one-t ime cost to
invoke the s imple lock primitives, after which the
expense of executing a lock primit ive is reduced to
executing a few no-op i nstructions where the code
for the lock cal l once resided.

To address memory consumption issues and to
provide better system debug capabi.lities, the devel
opers reorgan ized the lock data structures aroun d
t h e concept o f t h e lockinfo structure . This struc
ture is an encapsulation of the Jock's ordering (hier
archical relationsh ip) with surrounding locks and
its mini m um SPL requ ireme nt . Lock debuggi ng
information and the lock statistics were decoupled
from the lock structures themselves. To facil itate
the expression of a lock h ierarchy, the devel opers
in troduced the concept of c lasses a nd i nstances.
A lock class i s a grouping of Jocks of the same type.
For example, the process structure lock constitutes
a lock class. A lock instance is a particular lock of
a given class. For example, one process structure
s imple lock is a n instance of the class process struc
ture lock. Error checking and statistics-gathering
are performed on a lock-class basis and only i e1 lock
mode 4.

Decoupling the lock debugging inform ation
from the Jock itsel f significantly reduced the sizes

D igital Technical journal Vol. 6 No. 3 Summer 1994

of the s imple and complex lock structu res to 8 and
32 bytes, respectively. Embedded in both structures
is a 16-bit i ndex i nto the Jockinfo structure table
for that particular lock class. The lock info structure
is dyna mica l ly created at system startup in lock
mode 4. All classes in the system are assigned a rela
t ive position in a single u nified lock h ierarchy.
A lock class's posit ion i n the lockinfo table is also

i ts position in the lock h ierarchy; that is , locks must
be taken in the order in w hich they appear in the
table . Lock statist ics are also maintained on a per
class basis with separate entries for each processor.
Keeping lock statistics per processor and separat
i ng this information by cache blocks e l iminates
the need to synchronize lock-primitive access to
the statistics. Thi s design , which is i l lustrated in
Figure 2, prevents negative cache effects that could
result from sharing this data.

Once this powerful lock package was opera

tional, developers analyzed the lock design of their
kernel subsystems and attempted to place the locks
u sed into classes in the overal l system lock h ierar
chy. The position of a class depends on the order i n
which i t s locks are taken and released in relation t o
other locks i n the same code p ath a n d i n the sys
tem . At t imes, this static lock analysis revealed prob
lems in existing lock protocols, in wh ich Jocks were
taken in varying orders at diffe re nt points i n
the code. Clear ly, the lock protocol needed t o be
reworked to produce a consisten t order that could
be cod ified in the hierarchy. Thus, the exercise of
producing an overall lock hierarchy resu lted i n

LOCK INSTANCES LOCK CLASS LOCK STATISTICS

L......, CPU 1

Figure 2 Lock Structure

37

DEC OSF/1 Symmetric Multiprocessing

a significant cleanup of the original mult iprocess
ing code base. To add a new lock to the system,
a developer would have to determine the hierarchi
cal position for the new lock class and the mi ni
m u m SPL at which the lock must be taken.

Running the system in lock mode 4 and exercis
ing code paths of interest provided developers with
i m mediate feedback on their lock protocols. Using
the hierarchy and SPL information stored in the run
time lockinfo table, the Jock prim itives aggressively
check fo r a variety of locking errors, which include
the following:

• Locking a lock o u t of h ierarchical order

• Locking a si mple lock at an SPL below the
requ ired minimum

• Lock ing a s imple lock a lready held by the cal ler

• Unlocking an u n locked s imple lock

• Unlocking a s imple lock owned by another CPU

• Locking a complex lock with a simple lock held

• Locking a complex lock at interrupt level

• Sleeping with a simple lock held

• Lock ing or u n locking an uninitial ized lock

Encountering any of these types of violation
results i n a lock fa ult , i .e . , a system bug check that
records the information requ ired by the developer
to quickly track down the lock error.

The redu ction in lock sizes and the major
enhancement of the lock package enabled the team
to rea l ize its goal of a single set of kernel binaries.
Benchmarks that compare a pure uniprocessor
kernel and a kernel in lock mode 0 that are both
running on the same hardware show a less than
3 percent difference in performance, a cost consid
ered by the team to be well worth the many advan
tages to returning to a u nified kernel . Moreover, t he
debugging capabi l ities of the Jock package with
its hierarchical scheme streamlined the process of
lock analysis and provided precise and im mediate
feedback as developers adapted their subsystems to
the multiprocessing environment.

Adapting the Scheduler for
Multiprocessing

The normal schedul ing behavior, i .e . , policy, of
the OSF/ 1 system is tradi tional UNIX ti me-sharing.
The system time-sl ices processes based on a time
quantum and adjusts process priorities to favor
i nteractive jobs over compute-intensive jobs. To

38

support the POSIX rea l-time standard , the DEC OSF/ 1
system incorporates t wo additional fixed-priority
schedu l i ng poli cies: first in, first out (POLICY _FIFO)
and round robin (POLICY _RR).

A time-share thread's priority degrades with CPU
usage; the more recent the thread's CPU usage,
the more its priority degrades. (Note that OSF/ 1
schedu li ng entities are threads rather than pro
cesses.) In contrast, a fixed-p riority thread never
su ffers priority degradation. Instead, a POLICY_RR
thread runs until i t blocks voluntarily, is preempted
by a higher-priority thread , or exhausts a quantum
(and even then, the round robin schedu ling appl ies
only to threads of equal priority). A POLICY _FIFO
thread has no scheduling quantum; it runs until i t
blocks or is preempted. These special ized pol icies
are used by real-time appl icat ions and by threads
created and managed by the kernel. Examples
of these kernel threads include the swapper and
paging threads, device driver threads, and network
protocol hand lers. A featu re called thread binding,
or hard affinity, was added to DEC OSF/1 version 3.0

Binding a l lows a user or the kernel to force a thread
to run only on a specified processor. Binding sup
ports the funneling feature used by unpara llelized
code ancl the bind_to_cpu() system ca l l .

The goal o f a mu ltiprocessing operating system in
scheduling threads is to run the top N priority
threads on N processors at any given time. A simple
way to accomp.l ish this wou ld be to schedule
threads that are not bound to a CPU in a single, global
run queue and sched u le bound threads in a run
queue local to its bound processor. When a proces
sor resched u les, it would select the h ighest-priority
thread available in the local or the global run queue.

Sched u l ing threads out of a global run queue is
highly effective at keeping the N highest -priority
threads running; however, t wo problems arise with
this approach:

1. A single run queue leads to conten tion between
processors that are attempting to reschedu le , as
they race to lock the run queue and remove the
highest-priority thread .

2. Sched u l ing with a global run queue does not
take advantage of the cache state that a thread
bui lds on the CPU where i t last ran. A thread that
migrates to a different processor must reload its
state i nto the new processor's cache. This can
substantial ly degrade performance.

To help preserve cache state and reduce wastefu l
global run queue contention, the developers

Vol. 6 No. 3 Summer 1994 Digital Technical jour11al

DEC OSF/ 1 Version 3. 0 Symmetric Multiprocessing Implementation

enhanced the multiprocessing scheduler by adding
two new schedul ing models: a soft-affinity sched
uling model for time-share threads and a last

processor-preference model for fixed-priority
threads. Under these models, each processor sched
ules time- share and bound threads in i ts local run
queue, and it sched u les unbound fixed-priority
threads out of a global run queue.

Fixed-priority threads scheduled from a global
run queue are able to run as soon as possible. This

behavior is required for h igh-priority tasks like
kernel threads and real-time applications. The last
processor-preference model gives a fixed-priority

tlu·ead a preference for running on the processor
where it last ran; if that processor is busy, the thread
runs on the next available processor. Each t ime

share thread is softly bound to the processor on
which it last ran; that is , the thread shows an affinity
for that processor. Unl ike fu nneling or user bind
ing, which support hard (mandatory) affinity, soft

affinity al lows a thread to run elsewhere if it is

advantageous, i .e . , if such activity balances the load .
Otherwise, the softly bound thread tries to return
to the processor where it last ran and where its
recent cache state may still reside.

Under load , however, a soft affinity model used
alone can degenerate to a state where one proces
sor builds up a large queue of threads, leaving the

other processors with l i ttle to do and thus dim in

ishing the performance of the mult iprocessing sys
tem. To mitigate these side effects of soft affinity,
developers paired the soft affinity feature with the
ability to load-balance the runnable threads in the
system. To keep the load of t ime-share j obs spread
evenly across processors, the schedu ler must peri
odically load-balance the system. In addition to d is
tributing threads evenly across the local run queues

in the system, this load-balancing activity must

• Cost no more in processing time than it saves

• Prevent excessive thread movement among

processors

• Recogn ize and effectively accommodate changes
in the job m ix

To implement load balancing, each processor
main tains a time-share load average, i .e . , the aver
age local run queue depth over the l ast five sec
onds. Each processor uptlates its own load average

on each system clock tick. Processors also keep

track of the time they spend hand l i ng interrupts
and running fixed-priority threads, which are not
accounted for in the loca l run queue depth . Taking

D igital Technical journal Vol. G No. 3 Summ.er 1994

a processor's total potential execution time for a
schedu li ng period and subtracting from this time

the interrupt-processing and fixed-pri ority run

times yields the total time available on a processor
(processor ticks available) to run t ime-share threads.

In the worse case, a processor could be completely
consumed by fixed-priority threads and/or i nter

rupt processing and have no time to run time-share
threads. In this extreme case, the scheduler should

give no t i me-share load to that processor.
Adding the time-share load averages of all proces

sors determines the aggregate time-share load for

the system . Similarly, summing the processor ticks

available yields the total time available on the sys
tem for hand ling time- share tasks. Using this data,

the scheduler calculates the desired load for each
processor once per second, as fol lows:

Desired

load

Processor ticks System time-share
available X load

System ticks available

Load balancing is cal led for when at least one pro
cessor is above and one is below its desired load by
a mi nimal amount. I f this condition arises, then
those processors under their desired loads are
declared to be "out of balance:· The next time an
out-of-balance processor reschedules, it wil l try to

take a thread from the local run queue of a proces
sor that is above its desired load (" thread stealing").
A processor can declare itself back in balance when

its current load is above its desired load or when
there are no eligible threads to steal. Figure 3 shows

a simpl ified load-balancing scenario, in which a
processor below its desired load steals a thread
from a processor above its desired load .

To help preserve the cache benefits of soft affin

ity, a thread is el igible for stealing only when it has

not run on its current processor for some config

urable number of clock ticks. After this time has

elapsed without a thread running, the chance of it
having significant cache state remaining has dimin
ished sufficiently that the thread is more l ikely to
benefit from migrating to another processor and
running im mediately than from waiting longer to
run on its current processor.

To demo nstrate that soft affinity with load bal

ancing improves mult iprocessing performance
through cache benefits and the elimination of run
queue contention, developers ran a simple test pro

gram. The program, which writes 128 KB of data,
yields the processor, and then reads the same data

back, was run on a four-processor DEC 7000 system.

39

DEC OSF/1 Symmetric Multiprocessing

CPU 1 CPU 2 CPU N

5 CPU 1 IS 3 4
OUT OF

CURRENT LOAD
(NUMBER OF
THREADS)

BALANCE

DESIRED LOAD 4 4 4 . . .

LOCAL LOCAL LOCAL
RUN RUN RUN
QUEUE CPU 2 QUEUE QUEUE

STEALS

ITY I ONE THREAD I FROM CPU 1

EN
H IGHEST PRIOR
THREAD BETWE
LOCAL RUN QU
AND GLOBAL R
WINS THE PROC

EUES
U N QUEUE

ESSOR
I I
GLOBAL
RUN
QUEUE

Figure 3 Load Balancing

Tab.le 1 shows the results of running mul tiple
versions of this program with and without soft affin
ity and load bal ancing in operation. Performance
benefits appear only when mu ltiple copies of the
p rogram begin pi l ing up in the run queues at
the 16 -job level . Prior to this point, each job keeps
running on the same processor, i . e . , the cache it had
just fil led st i l l had its data cached when the pro
gram read i t back -the ideal case. At the 16-job
level, the four processors must be time-sha red . The
jobs that are runni ng with soft affinity now benefit
significantly because they continue to r u n on the
same processor and thus find some of their cache
state preserved from when they last ran. The sys
tems that schedu le from a globa l r u n queue provide
no such benefit . jobs take longer to complete, since
they are l i kely to run o n a different processor
fo r each time s l ice and find no cache state that they
can reuse .

The soft affinity and load-ba lanci ng features
improved many other multiuser benchmarks. For
example, a transact ion processing benchmark
showed a 17 p ercent performance improvement.

Focusing on Quality

The error-checking focus of the lock package is just
one example of how the DEC OSF/1 ve rsion 3.0 proj
ect focused on the qual ity and stabil i ty of the prod
uct. Most members of the mult iprocessing team
had been involved in an SMP development effo rt
prior to their DEC OSF/ 1 effort. Th is past experi
ence, coupled with the difficult ies other vendors
had experienced with their own mu l tiprocessing
i mplementations, reinforced the need to have a
strong qual ity focus in the SMP project.

Developers took mu ltiple steps to ensure that
the Si'vlP solution delivered in D EC OSF/ 1 version 3.0
wo uld be production qua l ity, includi ng

Table 1 Benefits of Soft Affin ity with Load Balancing (SAILS)

Nu mber Time with SAILB
of Jobs (Seconds)

1 25.9
4 25.9

16 1 06.5

40

Time without Benefit from
SA/LB (Seconds) SA/LB (Percent)

26.0 0
26.0 0

1 41 .9 25

14>1. 6 No. 3 Sumn11!r 1994 Digital Tecbnica/ journal

DEC OSF/ 1 Version 3. 0 Sym metric Multiprocessing Implementation

• Code reviews

• Lock debugging

• In - l ine assenion checking

• M u lt i threaded test suite development for SMP
qual ification

The base kernel code was reviewed for m u lti
processing correctness. D u ring this review phase,
checks were made to ensure that the proper level of
synchronization was employed to protect globa l
data structures. Numerous defects were uncovered
during this process and corrected. Running code
with lock checking enabled provided empirical
evidence of the i ncremental improvements of the
multiprocessing im plementation.

Beyond code reviews and lock debugging, inter
nal consistency checks (assertions) were coded
into the kernel to verify correctness of operations
at key points. Assertion checking was enabled dur
ing the development process to ensure that the ker
nel was fu nctioning correctly; it was then compiled
out for the production version of the kernel .

In parallel with the operating system develop
ment effort, new component tests were designed
to force as much concurrency as possible through
panicular code paths. The core of the test suite is
a thread-race l ibrary, which consists of a set of rou
tines that can be used to construct multithreaded
system-ca l l exercisers. The l ibrary provides the
ability to commence m u ltiple test instances simul
taneously. The individual tests are then combined
to form focused su bsystem tests and systemwide
tests. These tests have been used to u ncover multi

ple race cond itions in the operating system .
The UNIX development organization had a four

processor DEC 7000 system deployed in its develop
ment environment for more than 7 months prior
to releasing the SMP product. This system has been
extremely stable, with few complaints from the
user community. Extensive internal and external
field testing produced similar results.

Measuring Multiprocessing
Performance Outcomes

The major funct iona l i ty clel iverecl with SMP is

improved performance through application con
currency. The goal of the SM P p roject was to
provide leadership performance in the areas of
compute and data servers. To gauge success i n this
effort, several industry-standard benchmarks were

D igital Technical Journal Vol. 6 No. J Summer 1994

util ized. These benchmarks include SPECrate_INT92,
SPECrate_FP92, and AIM Suite III .

SMP performance is measured in terms of the
incremental performance gained as processors are
added to the system . Adding processors by no means
guarantees increased system performance. Systems
that have l/0 or memory l imitat ions rarely benefit
from introducing additional CPUs. Systems that are
compute bound tend to have the largest potential

for gain from additional processors. Note that large,
monolithic appl ications tend to see l it tle perfor
mance improvement as processors are added
because such applications employ l i tt le concur
rency in their designs.

Performance tuning for SMP was an iterative pro
cess that can be characterized as follows :

1 . Collect and analyze performance data.

• CPU uti l ization across the processors

• Lock statistics

• 1!0 rates

• Context swi tch rates

• Kernel profil ing

2. Identify areas that require improvement.

3. Prototype changes.

4. Incorporate changes that demonstrate improve
ment.

5. Repeat steps 1 through 4.

I n real ity, the process has two stages for each
benchmark. The init ial phase was devoted to driv
ing the system to become compute bound. The sec
ond phase improved cocle efficiencies.

Figures 4 and 5 show that, as expected, the
SPECrate_JNT92 and SPECrate_FP92 benchmarks
scale almost l inearly. Both of these benchmarks
are comp u te intensive and make only nominal
demands on the operating system.

AIM Suite III is a m ultiuser benchmark that
stresses m u ltiple components of an operating sys
tem, includ ing the virtual memory system, the
schedu ler, UNlX pipes, and the 1/0 subsystem.
Figure 6 shows AIM J l l resu lts for one and four pro
cessors, with a result ing 3.27 to 4 scal ing factor.
This equates to a greater than 80 percent scal ing
factor, a figure well within the goals for this bench

mark at first multiprocessing release. E fforts to pro
duce still better resu lts are u nder way.

AIM Suite III scal ing appears to be gated by a
single test in the AJi\1 Su ite Ill benchmark, i . e . ,

4 !

Chandrika Kamath
Roy Ho

Dwight P. Manley

DXML: A Highperformance
Scientific Subroutine Library

Mathematical subroutine libraries for science and engineering applications are an

important tool in high-jJeJformance computing. By identifying and optimizing

frequent�y used, numerically intensive operations, these libraries help in reducing

the cost of computation, enhancing portability, and improving productivity The

Digital eXtended Math Library is a set of public domain and Digital proprietmy

software that has been optimized for high performance on Alpha systems. In this

paper, DXi'v!L and the issues related to library software tecbnolog)l are described.

Specific examples illustrate bow algorithms can be optimized to take advantage of

the architecture of Alpha systems. Modem algorithms that effectively e:�ploit the

memory hierarchy enable DXi'v!L routines to provide substantial improvements in
pe1jonnance.

The D igital eXtended !'vlath Library (DXML) is a set
of mathematical subrouti nes, optimized for high
performance on Alpha systems. These subroutines
perform numerical ly i ntensive subtasks that occur
frequently in scient ific computing. They can there
fore be used as building blocks for the optimizat ion
of various science and engineeri ng appl ications in
industries such as chemical . aerospace, petro leum,

automotive, electronics, finance, and transportation.
In this paper, we discuss the role of mathematical

software l ibraries, fo l l owed by an overview of

the contents of the Digital eXtended Math Library.
DXML includes optimized versions of both the stan
dard BLAS and LAPACK l i braries as well as l ibraries

designed and developed by Digital for signa.l pro
cessing and the solution of sparse l i near systems
of equations. Next, we describe various aspects of
l ibrary software technology, includi ng the design
ancl testing of DXJ'vlL subroutines. Using key routines
as examples, we i l lustrate the techn iques used
in the performa nce optimization of the l ibrJry.
Final ly, we present data that demonstrates the per

formance improvement obtained through the use

of DXML.

The Role of Math Libraries

Early ma thematical l ibraries concentrated on sup
plemen ting the fu nctiona l ity provided by the

Fortran compilers. In addition to ro utines such as

sin and exp, which were included in the run- time

44

math l ibrary, more complicated special functi ons,
l inear algebra algorithms, and Fou rier transform

algorithms were included i n the software layer
between the hardware and the user application.

Then, in the early 1970s, there was a concerted
effort to produce high-qual i ty nu merical software,
with the aim of providing end users with implemen
tations of numerical a.lgorithms that were stable,
robust, and accurate. This led to the development
of several math l ibraries, with the pub lic domain

UNPACK and EISPACK l ibraries fo r the solution of
l inear and e igen systems, set ting the standards for
fu ture development of math software. ' - '

The late 1970s and early 1980s saw the avail ability
of advanced architectures, i nclud i ng vector ancl

paral lel computers, as well as h igh-performance
workstations. This added another facet to the devel
opment of math l ibraries. namely, the implemen
tation of algo ri thms for h igh efficiency on an
underlyi ng architecture.

TI1e effort to produce mathematical software thus
became a task of building bridges between numeri

cal analysts, who devise algorithms, computer archi
tects, who design high-pertormance computer
systems, and computer users, who need efficient,

reliable software for solving their problems. Con
sequently, these libraries embody expert knowledge
in appl ied mathematics, nu merical analysis, data

structures, software engineering, compilers, oper
ating systems, and computer architecture and

l·b/ (> No. 3 Summer J<J91 Digital Technical journal

DXML: A Hig1J-pe1jormance Scientific Subroutine libra!)'

are an important progra mmi ng tool in the use of
l1igh-performance computers.

Modern superscalar R!SC architectures with
floating-point pipelines, such as the AJpha, have
deep memory hierarchies. These include floa ting
point registers, mu ltiple leve ls of caches, and virtual

memory. The significant latency and bandwidth d if
fe rences between these memory kve. ls i mply that

nume rical algori thms have to be restructured to
make effective use of the data brought into any one
level. The perfor mance of an algori thm is also sus
ceptib le to the order in wh ich comp u tat ions are
sched uled as wel l as the h igher cost associated with

some operat ions such as floating-po int square-root
and division .

The architecture of the Alpha systems and the
tech nology of the Fortran and C compilers usual ly
provide an efficient computing environment with
adequate performance. However, there is often
room for improvement, especia l ly in engineering
and science appl ications. where vast amounts of
data are processed and repeated operations are per
fo rmed on each data element. One way to achieve
these improvements is through the use of opti
mized subroutine l ibraries.

The Digital eXtended Math Li brary is a collection

of rou tines that performs frequently occurring,
nume rically intensive operat ions. By identify ing
such operations and optimizing t hem for h igh per
fo rmance on AJpha systems. DXM L provides several
benefits to the comp utational scient ist.

• It a l lows defin it ion of fu nctions at a su fficiently

h igh l evel and therefore optimization beyond
the capabili ties of the compiler.

• It makes the arch itecture of the systems m o re

tra nsparent to the user.

• I t improves prod uctivity by providing easy
access to highly optimized, efficient code.

• I t enhances the portab il ity of user software
through the support of standard libraries and
interfaces.

• It promotes good software engineering practice
and avo ids dupl icat ion of work by identifying
and optimizing common fu nctions across sev
eral appl ication areas.

Overview of DXML

DXM L contains almost 400 user-callable rou ti nes,

optimized fo r Alpha systems.> This i ncludes both
software developed by Digita l as we l l as the 13LAS

and LAl'ACK l ibraries. Most ro utines are available

Digital Technical journal I-1JI. 6 No . .) Sutwl/el' 1')94

in fo ur ve rsions: real single precis ion, real double

p recision, complex single precision. and complex
double precision.

DXML i s available on both Ope nVMS and DEC

OSF/ I operating systems. Its ro ut ines can be cal led

from either Fortran or C, provided the difference i n

array storage between these languages is taken into
account . DXML is ava i l able as a shareable l ibrary.

with a s imple interface, enabl ing easy access to the

rou ti nes. On DEC OSF/1 systems, DXM L supports the

IEEE floating- point format. On OpenVMS systems,
e i ther the IEEE floating-point format or the VA X
F-float/G -float format can be selected .

DXM L rou tines can be broadly categorized into

the fol lowing fo ur areas:

• BLAS. The Basic Linear AJgebra Subroutines include

the standard BIAS and Digital enhancements.

• LAI'ACK . The Li near Algebra PAC Kage incl udes

l i near and eigen-system solvers.

• Sign a l processing. This includes fast Fourier
transforms (FFTs), convolution, and correlation.

• Sparse l i near system solvers. These include

direct and i terative solvers.

Of these, the signal-processing l ibrary and the
sparse I in ear system solvers are designed . deve l
oped, and optimized by Digital . The majority of the
BLAS ro utines and the l.A.PACK l ibrary are versions of

the public domain standard that were optim ized for
the Alpha architecture. By support ing the i ndustry
standard interfaces of these I ibraries, DX,V!L p ro

vides both portability of user code and high perfor

ma nce of the optimized software.
We next provide a brief description of the fimc

tiona l ity provided by each subcomponent of DXM L.
Further details are avai la ble i n t h e Digital eXtended

Math Library Reference Manual. s

VL/B

The vector l ibrary consists of seven double
precision rou t i nes that perform operations such as
sine. cosine, and natu ral logarithm, on data stored
as vectors.

BLAS I

The Basic L inear AJgebra level I subprograms per

form low-granu larity operations on vectors that

i nvolve o ne or two vectors as input and return

either a vector or a scalar as output ." Examples of
BLAS I rout ines include dot product, index of the
maximum element in a vector, and so on.

4 5

Scientific Computing Optimizations for Alpha

BIAS 1 Extensions (BIAS 1 E)

Digital has extended the functional ity of the BLAS l

routi nes by including 13 similar operations. These

include index of the m i n i m u m e lement o f a vector,

sum of the elements of a veer or, and so o n .

BIAS 1 Sparse (BIAS 1 S)

DX M L also includes nine rou tines that are sparse

extensions of t he BLAS 1 rou t ines. Of these, six are

from the sparse BLAS 1 standard and three are

enhancements.- These rou tines operate on two

vectors, one of which is sparse and stored in a com

pressed for m . As most of the elements in a sparse

vector are zero, both compu tational time and mem

ory are reduced by storing and operating on o n l y

t h e nonzeros. ULAS l S routines include construc

tion of a sparse vector from the specified elements

of a dense vector, dot prod uct, and so on.

BIAS 2

The BLAS level 2 rou tines perform operatio ns of

a h igher granul arity than the Ievel l routines .s These

include ma trix-vector operations such as matrix

vector product, ra nk-one and rank- two upda tes,

and solutions of triangular systems of equations.

Va rious storage schemes are supported, in cluding

genera l , symmetric, banded, and packed.

BIAS 3

The BLAS level .1 routines pe rform m atrix-matrix

operations, which are of a h igher granularity than

the BLAS 2 operations. Tl1ese rou t ines i nclude

matrix-matrix product, rank-k updates, solution of

triangular systems with mult ip le right - hand sides.

and multiplication of a matrix by a triangular matrix.

Where appropriate, these operations are defined

for matrices that may be general, sym metric, or tri

angular 9 The functionality of the public domain

BLAS 3 l ibrary has been en hanced by th ree addi

t iona I rou t ines for m atr ix addit ion, su btraction,

and transpose.

LA PACK

DXML includes the standard Linear Algebra

PACKage, LAPACK, which supersedes the U NPAC K

and EISPACK packages by extending the fu nctio nal

ity, using algorithms with higher accuracy, and

improving the performance through the use of

the optimized flLAS I i brary m LA PACK can be used

for solving many co m mo n l inear algebra prob

lems, i n cluding solution of l i near systems, l inear

least -squares problems, eigenva lue problems, and

46

singu lar value problems. Various storage schemes

are su pported, i ncl u d i ng general, band, trid iagonal ,

sym metric positive definite, and so o n .

Signal Processing

The signal- processing subco mponent of DXM L

includes l'FTs, convo l u tions, a n d correlations .

A comprehensive set of Fourier transforms is

provided, incl uding

• fFTs in one, two. and three d i mensions

• FFTs in fo rward and i nverse d irections

• M u ltiple one-dimensional transforms

There is no I imit on the numbe r of elements being

transformed , though the performance is best when

the data length i s a powe r of 2. Popu lar storage for

mats for the input and output data are supported,

a l l owing for possible sym metry i n the output data

and consequent red uction in the storage required .

Further efficiency is provided th rough the use of

the three-step F FT, which separates the process

of setting up and d e a llocating the in ternal data

stru ctures from the actual application of the FFT.

This resu Its i n sign ificant p erfo rmance ga i n when

repeated application of FFTs is requ ired.

The convolut ion and correlat ion rou tines in

DXNI L support both periodic (circular) and nonperi

oclic (l i near) definit ion. A discrete summ ing tech

nique is used for calculation. Special versions of t he

routines a l low control of output options such as

the range of coefficients computed, sca ling of the

output, ancl addition of the output to an array.

A l l FFT, convolution , and correlation rou t i nes are

avai.lable in both single and double precision and

support both real and complex data.

sparse Iterative Solvers

DXJ'vlL inclu des a set of routines for the iterative solu

tion of sparse l inear systems of equations using pre

conditioned, conj ugate-grad ienr- l ike methods. 1 1 · 1 l

A flexible user interface, based on a matrix-free for

mu lat ion of the solve r, al lows a choice among vari

ous solvers, storage schemes, and preco ndit ioners.

This formulation permits the user to defi ne his or

her own preco n cl itioner a ncl/or storage scheme for

the matrix. It also al lows the user to store the

m atrix using one of the storage schemes defined

by OX.vtL and/or use the precondit ioners prov ided .

A d river routine provides a si mple interface to the

iterative solvers when the DXM L storage sche mes

and preco n d itioners are use d .

vbl. 6 No . . J Summer 1')')4 D igital Tech11ical journal

DXML: A High-performance Scientific Subroutine Library

The differen t iterat ive methods provided are
(1) conjugate gradient, (2) least-squares conj ugate
grad ient , (3) biconjugate grad ient, (4) conjugate
grad ient squared, and (5) generalized minimum
residual. Each method supports various appl ica

tions of the preconditioner: left, right, split , and

no precond itioning.
The matrix can be stored in the symmetric diago

nal storage scheme, the unsymmetric diagonal stor

age scheme, or the general storage (by rows)
scheme. Three preconditioners are provided for each
storage scheme: diagonal, polynomial (Neumann),
and incomplete LU with zero diagonals added.

A choice of four stopping criteria is provided,

in addition to a user-defined stopping criterion.
The iteration process can be control led by setting
various input parameters such as the maximum
number of iterations, the degree of polynomial pre

conditioni ng, the level of output provided, and the
tolera nce for convergence. These solvers are avail
able in real double precision only.

Sparse Skyline Solvers

The sparse skyl ine solver l ibrary in DXML includes
a set of routines for the direct solution of a sparse
l inear system of equations with the matrix stored
using the sky line storage scheme. 13·14 The fol lowing
functions are provided .

• LDU factorization, which includes options for
the evaluation of the determinant and inertia,

partial factorization, statistics on the matrix, and
options for han d l ing small pivots.

• Solve, which i nc ludes mul tiple right-hand sides

and solves systems involving either the matrix or
its transpose.

• Norm evaluation, including 1-norm, infinity
norm, Frobenius norm, and the maximum abso

lute value of the matrbc

• Condition number esti mation, which includes
both the 1-norm and the i nfinity norm.

• Iterat ive refinement, including the componen t
wise relative backward error and the estimated
forward error bound for each solu tion vector.

• Simple and expert drivers.

This fu nctionality is provided for each of the fol
lowing storage schemes:

• For symmetric matrices:

- Profile- in storage mode

- Diagonal-out storage mode

D igital Technical journal Vol. 6 No. 3 Summer 1994

• For u nsymmetric matrices:

- Profile-in storage mode

- Diagonal-out storage mode

- Structura l ly sym metric profile- in storage

mode

These solvers are available in real double precision
on ly.

Software Considerations

As with any software effort, many software engi

neering issues were encou ntered during the design
and development of DXML. Some issues were spe
cific to math l ibraries such as the nu merical accu

racy and stabil ity of the routines, while others were
more general such as the design of a user i nterface,

testing of the software, error checking, ease of use,

and portabi l ity. We next discuss some of these key
design issues in further detai l .

Designing the Interface

The first task in creating a l ibrary was to decide the
fu nctional it y, fol lowed by the design of the inter
face. This included both the naming of the subrou
tines as wel l as the design of the parameter l ist. For

each subcomponent in DXML, the call ing sequence

was designed to be consistent across al l routines
in that subcomponent . In the case of the BLAS and
LAPACK l i braries, the public domain interface was

maintai ned to enable portabil ity of user code.
For the rou tines added by Digital, the routine

names were chosen to indicate the function being
performed as we l l as the precision of the data.
Furthermore, the parameter l ists were chosen

to provide a simple interface, yet a l low flexibi l ity
for the sophisticated user. For example, the sparse
solvers require various real and integer parameters.
By using arrays instead of scalar variables, a more

concise i n terface that did not vary from routine
to routine was obtained. I n addition, a l l solver
routines have arguments for real and integer work

arrays, even if these are not used in the code. This
not only provides a u n iform interface but also acts
as a placeholder for work arrays, should they be
required in the future.

Accuracy

The nu merical accu racy of the routines i n DXML is

dependent on the problem size as wel l as the algo

rithm used, which may vary within a routine. Since

performance optimization often changes the order
in which a computation is performed, identical

results between the DXML routines and the public

47

Scientific Computing Optimizations for Alpha

domain RLAS and LAPACK rout ines may not occur.

The accuracy of the resul t s obtained is checked hy

ensuring that the op t i mized versions of the llLAS
and LAPACK rou t i nes pass the p u b l i c domain tests

to with i n the specifi e d tolerance.

Error Processing

Most of the rou t i nes i n OX ML trap usage errors and

provide suffici e n t i n form ation so that the user can

identify and fix the problem. The low- leve l . f ine

grained computational rou tines, such as the llLAS
level I . do not provide this fu nction because the

overhead of testing and erro r trapping wo u l d s e ri

ously clegracle the performance.

In the case of BLAS 2 , BLAS 3. and LA PACK, the p u b

l ic domain error- reporting mechanism has been

mai n t a ined . If an i n p u t argu m e n t is i nval i d , such as

a negative val u e for the order of the matrix, the rou

t i ne pr ints out an error message and stops. If a fail
ure occu rs in the course of the algorithm, such as

a matrix being singular to wo rking prec is ion, an

error flag is set and control is retu rned to the call
i ng program.

The signal-processing rou tines report success or

fai l u re using a status function value. Further infor

mation on the error can be obtained by using a user

cal lable rou t i ne t hat prints ou t an error message a nd

an error flag. The user documentation indicates the

actions to be taken to recover from the error.
In the case of the sparse solvers, error is incli

cated by setting an error flag and print ing an ap pro
priate message if the p r i n t i n g option is enabled.

Control is always returned to the ca l l i ng program.

Testing

OXML rou ti nes are rested for correctness and accu

racy using a regressi o n rest su ite . This i n c l udes

both test code developed by D igital, as we l l as the

publ ic domain test codes for llLAS and I .APACK.
These codes are usecl n o t o n ly d u r i ng the i m ple

mentation and performance o p t i m ization of the

routines, but also d uring the b u i l d ing of the com

plete library from each of the subcomponents .

The test codes check each rou tine extensively,

i n clu ding checks for error exits , accuracy of the

resu lts obtained, invariance of read-only data and

t he correctness of a l l paths through the code. As

the complete regressi on tests take over 20 hours

to exec ute, two i n p ut data sets are used: a short one

that tests each rout i n e a n d can be used to m a ke a

qu ick check t h a t a l l su bcomponents comp i led and

b u i l t correctly, and a long data set that rests each

path through a routine a nd is thus more exhaust ive

48

M a n y of the ro u t ines, such as the FFTs aml l3LAS .),

are tested using random i n p u t data . However, some

routines, such as the sparse solvers, operate o n spe

cific data structures or matrices with specifi c prop

erties. These have been tested using mat rices

generated from the f i n i te d i ffe rence discretization

of partial d i ffe ren tial equations o r using t he matr i

ces in the Harwe i i-Boeing test s u i te. "

Anorher aspect to the OX1vlL regre ss i o n test pack

age is the i n clusion of a performance rest gauge .

This software tests the performance o f key rou tines

i n each component of DX,\H. and is u sed to ensure

that the performan ce of 0XML rou tines is not

adversely affected by changes i n compilers or the

operating svstems.

Pe1jormance Trade-ojfs

The design and opt im i za t i o n of the routines i n

DX:vi L often prompted a trade- off between perfor
mance on one h a n d , and accu racy and gen era l ity

o n the other. A l t hough every effort bas been made

not to sacrifice accuracy for performance. the

reordering of computations d u ring performance

o p t i mization m ay lead to resu l ts before optimiza

t i o n that are nor bit-for-bit ident ical to the resu l ts

after optim izat ion. J n other cases, performance has

been sacrificed to ensure gen e ra l i ty of a routine.

For example, a l though the matrix-free for m u l a t i o n

of t h e iterat ive solvers permits t h e use o f a n y sparse

matrix storage scheme. it could resu lt in a s l ight

degradation i n pe rformance due to less efficient

use of the instruction cache and the i nabi l i t y to

reuse some of the data in the registers.

Per:formance Optimization

DXM L rou t i nes have been designed to provide high

p erformance on t he Alpha systems. 11' These

rou t ines are ta i lored to t a ke advan tage of the sys

tem characterist ics such as the nu mber of floa t i ng

point registers. the size of the primary and

secondary data caches, and the page si ze. This opti

m ization i nvolves cha nges to data structures and

the use of new a lgori thms as well as the restructur
i ng of computation to effectivel y manage the mem

ory hierarchy.

Several ge neral tech niques are used across al l
DXML subcomponents t o i m p rove t he perfor

mance. '- These i n c l u d e t h e fol lowing tech n iqu es:

• U n ro l l ing loops to make better use of the

floati ng-poi n t p ipel i nes

• Reusing data in registers a n d caches whenever

possible

Vol. (> No . .i S/1111111<'1' I'J'J4 Digital Technical journal

DXML: A Higb-pe1jormance Scientific Subroutine Librm:y

• Managing the data caches effect ively so that the
cache h i t ratio is maxim ized

• Accessing data using stride- I computat ion

• Using algorithms that explo i t the memory h ierar

chy effectively

• Reordering compu tations to minimize cache and
translation bu ffe r thrash i ng

Al though many of these opt i mizations are done by
the comp i ler. occasional ly, for example i n the case

of the skyl ine solver. the data structu res or the
i m plementation of the a lgorithm are such that they

do not lend themselves to optim ization by the com
pi ler. In these cases, expl icit reordering of the com
putations is requ ired.

We next d iscuss these optimization techniques as

used in specific examples. Al l performance data is

for the DEC :)000 Model 900 system us ing the DEC

OSF/ 1 version 3.0 operating system. This work

station uses the Alpha 2 1 064A chip , running at 275

megahertz (J'viHz). The on-ch i p data and instruction
caches are each 16 ki lobytes (Kn) i n s ize, and the

secondary cache is 2 megabytes (MB) in size.
In the next section, we compare the perfor

m a nce of DXM L BLAS and LAPACK routi nes with the
corresponding pu bl ic domain rou ti nes. Both ver
sions are written in standard Fortran and compiled
using identical compi ler options.

Optimization of BLAS 1

BLAS 1 rou tines operate on vector and scalar data
only. As the opera ti ons and data stru ctures are sim
ple, there is l i t t le opportu n i ty to use advanced data

blocking and register re use techn iques. Neverthe
less. as the p lots in Fig ure I demonstrate, i t is pos

sible to opt im ize the BLAS l rou tines by careful
coding that ta kes advantage of the data prefetch
features of the Alpha 2 1064A chip and avoids data
path- rel ated stal I s. Jh. JH

General ly, the DXML rou t ines are 10 percent to 15

percent faster than the corresponding public
domain rou t i nes. Occasiona l ly, as i n the case of
DDOT for very short, cache- resident vectors, the
benefits can be much greater.

The shapes of the plots in F igure 1 rather dramat
ica l l y demonstrate the benefi ts of data caches. Each

plot shows very high performance for short vectors

that reside in the 16-KH, on-chip data cache, much
lower pe rforma nce for data vectors that reside in
the 2-MB, on-board secondary data cache, and even

lower performa nce when the vectors reside com

pletel y in memory.

Digital Technical jounwl Vol. () No . .l Summer 1994

250

I
\

200

(f) 1 50
a:: 0 -' LL
:2 1 00

- - - - - - - - -

o L_�--��--�������
6 8 1 0 1 2 1 4 1 6 1 8 20 22

VECTOR LENGTH (AS POWER OF 2)
KEY:

-- BLAS DAXPY
- - - - DXML DAXPY
· · · · · · · · · · BLAS DDOT
- · - - DXML DDOT

Figure I PeJ.formance of BLAS I Routines

DDOT and DAXP Y

Optim.ization of BLAS 2

BLAS 2 rou t ines operate on matrix, vector. and
scalar data. The data st ructu res are larger and more
complex than the BLAS 1 data structures and the
operations more compl icated . Accordi ngly, these

rou tines lend themse lves to more sophisticated
optim ization techniques.

Optimized DX.,\1l BLAS 2 routines are typica l ly 20
percent to 100 percent faster than the public domain
rou ti nes. Figure 2 i l lustrates this performance
improvement for the matrix-vector mu ltiply routine.

DGE.\1V. and the triangu lar solve routine. DTRSY.H

The DXML DGEMY uses a data-blocking technique

that asymptotical l y performs two floati ng-poi nt
operat i o ns for each mem ory access, compared to

the publ ic domain ve rsion, which performs two
floating-poi n t operations for every three memory

accesses. 19 This tec hnique is designed to m i n i mize
translation bu ffer and data cache misses and m axi
m ize the use of floating-point registers u' IH 2o The
same data prefetch considerations used on the BLAS
1 rout ines are also used on the BLAS 2 rou t i nes.

The DXJ\'IL version of the DTRSY rou tine partit ions
the problem such that a sma.l l triangu lar solve oper

ation is performed. The resu l t of th is solve opera

t ion is then used in a DGEM V operation to u pdate the

remainder of the vector. The process is repeated

unt i l the final triangu lar update comp letes the

operation. Thus the DTRSV rout ine rel ies heavily on

the optim izati o ns used in the DGEMY rou t ine .

49

Scientific Computing Optimizations for AJpha

1 40

1 20 I

1 00

(f) 0:: 80
0 -' u.
2 60

40

' ' ' ' ' ' ' ' - . '
.._ "' . - .

- - - . -
..,. _ _ _ _ 20

0

KEY:

200 400 600 BOO

ORDER OF VECTORS/MATRICES

-- BLAS DGEMV
-- - - DXML DGEMV

· · · · · BLAS DTRSV
- · - · - DXML DTRSV

1 000

Figure 2 Performance of BLAS 2 Routines

DGEMV and DTRSV

As with BLAS 1 routines, BLAS 2 rou t ines be nefit

greatly from data cache. Although the effect is less

dramatic for the BLAS 2 routines, Figure 2 clearly

shows the three-step profile observed in Figure 1 .

Best performance is achieved when both matrix

and vector fit in the primary cache. Performance is

lower but flat over the region where the data fits

on the secondary board level cache. The final per

formance plateau is reached when data resides

entirely in memory.

Optimization of BLAS 3
BLAS 3 rou tines operate primarily on matrices. The

operations and data structures are more compl i

cated that those of BLAS 1 and BLAS 2 rout i nes.

Typically, BLAS 3 routines perform many computa

tions on each data element. These routines exhibit a

great deal of data reuse and thus naturally lend them

selves to sophisticated optimization techniques.

DXML BLAS 3 rou t i nes are general ly two to ten

t imes faster than their public domain counterparts.

The plots in Figure 3 show these performance dif

ferences for the ma trix-matrix m u l tiply rou tine,

DGEMM, and the triangular solve routine with multi

ple right -hand sides, DTRSM 9

Al l performance optimization techniques used

for the DXML B LAS 1 and BLAS 2 routines are used

on the DXM L BLAS 3 routines. In particul ar, data

blocking techniques are used extensively. Portions

50

1 80

1 60

1 40

1 20

(f)
0:: 1 00
0 -'

I
I

� 80 I

60

40

20

0

KEY:

/ - -
I

I

200

-- BLAS DGEMM
- - - - DXML DGEMM

· BLAS DTRSM
- · - - DXML DTRSM

400 600

ORDER OF MATRICES

800 1 000

Figure 3 Performance of BIAS 3 Routines

DGEMM and DTRSM

of mat rices are copied to page-aligned work areas

where secondary cache and translation bu ffer

misses are eliminated and primary cache misses are

absolutely minimized.

As a n example, within the primary compute loop

of the DXJVIL DGEMM rou tine, there are no transla

tion bu ffer misses, no secondary cache misses, and,

on average, only one pri mary cache miss for every

42 floating-point operations. Performance within

this key loop is also enhanced by carefu l ly using

floating-point registers so that fou r floating-point

operations are performed for each memory read

access. Much of the DXML BLAS 3 performance

advantage over the publ ic domain routi nes is a

direct consequence of a greatly improved ratio of

floating-point operations per memory access.

The DXML DTRSM routine is optimized in a m a n

ner similar to its BLAS 2 counterpart, DTRSV. A small

triangu lar system is solved . The resu l ti ng matrix

is then used by DGEMM to update the remainder of

the right-hand-side matrix. Consequently, most

of the DXML DTRSM performance is directly attrib

utable to the DXML DGEMM routine. In fact, the tech

n iques used in DGEMM pervade DXM L BLAS 3
routines.

Figure 3 i l lustrates a key feature of DXML BLAS 3

routines. Whereas the performance of public

domain rou tines degrades sign ificantly as the

matrices become too large to fi t in caches, DXJ\1 L

Vol. 6 No. 3 Summer 1994 Digital Technical journal

DXML: A High-performance Scient1jic Subroutine Library

routines are relatively insensit ive to array size,

shape , or orientation." 9 The performance of a DXML

BLAS 3 routine typical ly reaches an asymptote and

remains there regard less of problem size.

Optimization of LAPACK

The LAPACK subroutine library derives a large

part of its h igh performance by using the opti

mized BLAS as build ing blocks w The DXML ver

sion of LAPACK is largely unmod ified from the

publ ic domain ve rsion. However, in the case of

the factorization routine for general matrices,

DGETRF, we have introduced changes to the

algorithm to improve the performance on Alpha

systems.

For example, while the original public domain

DGETRF routine uses Crout's method to factor a

matrix, the DXML version uses a left - looking

method . 1 1 Left - looking methods make better use

of the secondary cache and translation bu ffers than

the Crout method. Furthermore, the public domain

version of the DLASWP routine swaps a single

matrix row across an entire matrix . This is a very

bad technique for RISC machines; i t causes severe

cache and translation bu ffer thrashing. To avoid

this, the DXML version of DLASWP p erforms al l

swaps within colu mns, which makes much better

use of the caches and the translation bu ffer and

resu lts in a much improved performance of the

DXJ\IIL DGETRF rout ine.

The DGETRS routine was not modified. Its perfor

mance is solely attributable to use of optimized

DXM L routines.

Figure 4 shows the benefits of the optimizations

made to DG ETRF and the BLAS routines. DGETRF

makes extensive use of the BLAS 3 DGEMM and

DTRSM routines. The performance of DXML DGETRF

improves with increasing problem size largely

because DXML BLAS 3 romines do not degrade in the

face of larger problems.

The plots of Figure 4 also show the performance

ofDGETRS when processing a single right-hand-side

vector. In this case, DTRSV is the dominant BLAS

routine, and the performance differences between

the public domain and DXML DGETRS routines

reflect the performance of the respec tive DTRSV

routines. Final ly, although not shown, we note that

the performance of DXM L DGETRS is much better

than the public domain version when many right

hand sides are used and DTRSM becomes the domi

nant BLAS routine.

Digital Technicaljow·nal Vol. 6 No. 3 Summe1· 1994

1 40

1 20

1 00
(f)
a:
g 80
lJ._
::;;

60 I
I

40

20

0

KEY:

I
I

· '
/ '

'

200 400 600 800
ORDER OF VECTORS/MATR ICES

-- BLAS DGETRF
- - - - DXML DGETRF

· · · BLAS DGETRS
- · - - DXML DGETRS

1 000

Figure 4 Performance of LA PACK Routines

DGETRF and DGETRS (LDA = N + 1)

Optimization of the
Signal-processing Routines

We il lustrate the techniques used in optimizmg

the signal-processing routines using the one

dimensional, power-of-2, complex FFT.2 1 The algo

rithm used is a version of Stockham's autosorting

algorithm, which was origina l ly designed for vector

compu ters but works wel l, with a few modifica

tions, on a RISC architecture such as AJpha 22·2.1

The main advantage in using an au tosorting algo

rithm is that it avoids the initial bit-reversal permu

tation stage characteristic of the Cooley-Tukey

algorithm or the Sande-Tukey algorithm. This stage

is implemented by either precalculating and load

ing the permutation indices or calculating them

on- the-fly. ln either case, substantial amounts of

integer mul tipl ications are needed . By avoiding

these mu ltipl ications, the autosorting algorithm

provides better performance on Alpha systems.

This algorithm does have the disadvantage that

it cannot be done in-place, resulting in the use

of a temporary work space, which makes more

demands on the cache than an algorithm that can be

clone i n-place. However, this disadvantage is more

than offset by the avoidance of the bit-reversal stage.

The implementation of the FFT on the Alpha

makes effective use of the hierarchical memory of

the system, specifically, the 31 usable floating-point

5 1

Scientific Computing Optimizations for AJpha

registers, which are at the lowest, and therefore the
fastest, level of this h ierarchy. These registers are
ut i l ized as much as possi ble, and any data brought
into these registers is reused to the extent possible.
To accomplish this, the FFT rou tines i mplement the
largest radi ces possible for al l stages of the power
of-2 FFT ca lcu lat ion. Radix-8 was used for all stages
except the first, ut i l iz ing 16 registers for the data
and 14 for the twidd le factors 2 1 For the first stage ,
as a l l twiddle factors are I , radix-16 was used.

Figure 5 i l lustrates the performance of this a lgo
rithm for various sizes. Although the performance
is very good for smal l data si zes that fit into the pri
mary, 16 -KB data cache, it drops off qu ickly as the
data exceeds the primary cache. To remedy th is, a
blocking algorithm was used to better ut i l ize the
primary cache.

The blocking algorithm. which was developed
for computers with hierarchica l memory systems,
decomposes a large FFT into t wo sets of smal ler
FFTs 2·i The a lgorithm is implemented using four
steps:

I. Compute NI sets of FFTs of size N2.

2. Apply twid d le factors.

3. Compute N2 sets of FFTs of size N l .

4 . Transpose the N l b y N2 matrix into a n N 2 b y Nl
matrix .

200

1 80

1 60

(f) 1 40
ii:
g 1 20
lL
:2 1 00

80

60

40 �--�----�--�----�----�--�----�
6 8 1 0 1 2 1 4 1 6 1 8 20

SIZE OF FFT (AS POWER OF 2)
KEY:

-- - AUTOSO RTING
- - - - BLOCK I N G

52

Figure 5 Pet.Jornumce of 1-D Complex FFJ

In the above, N = Nl X N2. Steps (I) and (3) use
the au tosorting algorithm for small s izes. Jn
step (2), instead of precomputing all N twiddle
factors, a table of selected twiddle factors is com
pu ted and the rest ca lculated using trigonometric
identit ies.

Figure 5 compares the performance of the block
ing algorithm with the autosorti ng algorithm. Due
to the added cost of steps (2) and (4) , the maximum
computation speed for the block ing algorithm
(1 15 m i l l io n floating-point operations per second
[Mflops] at N= 2 12) is tower than the maximum
computation speed of the au tosorting a lgorithm
(192 Mftops at N= 2�). The crossover point
between the two algorithms is at a size of ap proxi
mately 2K. with the au rosorting a lgorithm perform
ing better at smat ter sizes. Based on the length of
the FFT. the ox:vt L routine automatically p icks the
faster algori thm. Note that at N= 2 10 , as the size
of the data and workspace exceeds the 2-:'-•!B
secondary cache, the performa nce of the blocking
algorithm d rops off.

Optimization of the Skyline Solvers

A sky l ine matrix (Figure 6) is one where only the
elements within the envetopt: of the sparse matrix
are stored. This storage scheme exploits the fact
that zeros that occu r before the first nonze ro ele
ment in a row or co l u m n of the ma tri x , remain
zero d u ring the facto rization of t he matr ix . pro
v i ded no row or col u m n intercha nges are made. l-l
Thus, by sroring the e nvelope of the matri x , no
additional storage is required for the fi l l - in that
occurs du ring the factorizatio n . Though the sl-.-y
t i ne storage scheme does not explo i t the sparsity
with in the envelope. i t a l lows for a static data
structure, and is therefore a reasonable compro
mise between organ izational simpl icity and com
putational efficiency

In the sky l ine solver, the system, Ax= b, where A

is an N by N matrix, and b and x are tV-vectors, is
solved by first factorizing A as A = l.DU, where L and
U are unit lower a nd u pper triangular matrices, and
D is a d iagona l matrix. The solut ion x is then calcu
lated by solv i ng in order. Ly = b, Dz=y, and Ux= z,
where y and z are tV-vectors.

In our d iscussion of performa nce optimization,
we concentrate o n the factorization routine as it is
often the most t ime-consuming part of an appl ica
t ion . The algori thm implemented in DXML uses a
tech n ique that generates a col umn (or row) of the

Vol. o No . .l SIIIIIIJ/l!l' /')')4 Digital Teclmicaljourrwl

DXML: A Highperformance Scientific Subroutine Library

Figure 6 Skyline Column Storage of
a Symmetric Matrix

factorization using an inner product fo rmulation.

Specifically, fo r a symmetric matrix A, Jet

A = (� (ur = .1-/
w r

�)
�) (�/ 0) cu.\1 w)

d 0 I

where the symmetric factorization of the lea d i ng

(N - I) by (N - 1) leadi ng principal submatrix M

has already been obtained as

M = v:; D.H U.u
S i nce t he vector u, of length (N - I) , and the scalar

s are known, the vector w, of length (N - 1) and the

scalar d can be determined as

and

The defi nition of w indicates that a col u m n of the

factorizati o n is obtai ned by tak ing the inner prod

uct of the appropriate segment of that colu m n with

one of the previous columns that has al ready been

calculated. Referring to Figure 7, the value of the

element i n location (i,j) is calcul ated by taking

the inner product of the elements in col u m n j
above the element in location (i,j) with the corre

sponding elements in column i. The entire colu mn

D igital Technical journal Vol. 6 No. 3 Summer 1994

COLUMN i COLUMN j

+ + - - - - - ·n
- - - - - -U

) LENGTH OF THE
INNER PRODUCT

FOR THE
EVALUATION
OF ELEM ENT (i. j)

- Row ;

Figure 7 Unoptimized Skyline

Computational Kernel

j is thus calculated starting with the first nonzero

element in the column and moving down to the

d iagonal entry.

The optimization of the sky line fac torizat ion i s

based o n t h e fol lowing t w o observations 25 26:

• The elements of column j, used in the evalua

tion of the element in location (i,j) , are a lso

used i n the evaluation of the element i n location

(i+ l ,j).

• The elements of col u m n i, used in the evalua

tion o f the element in locat i o n (i,j), are a lso

used i n the eva luation of the element i n locat ion

(i,j + l) .

Therefore, b y unrol l i ng both t h e inner loop o n i

and the outer loop o n), twice, we can generate the

entries in locations (i,j), (i+ l ,j), (ij+ 1) , (i+ 1 ,)+ 1)
a t the same time, as shown i n Figure 8 . These fou r

elements are generated using o n l y h a l f the memory

references made by the standard algorithm. The

memory references can be reduced further by

i ncreasing the level of u nrol l i ng. This is, however,

l imited by two factors:

• The number of float ing-point registers required

to store the elements being calcu lated and the

elements in the columns.

• The length of consecutive col u m ns i n the

matrix, which should be close to each other to

derive fu ll benefit from the unro l l i ng.

Based on these factors, we have u nrolled to a depth

of 4, generating 16 elements at a time.

53

Scientific Computing Optimizations for Alpha

LENGTH OF THE) INNER PRODUCT
FOR THE PARTIAL
EVALUATION OF
ELEMENTS (i , j)
(i + 1 , j), (i, j + 1)
and (i + 1 , j + 1)

� ROW i
ROW (i + 1)

Figure 8 Optimized Skyline

Computational Kernel

A similar technique is used in optimizing the for

ward elimination and the backward substitution.
Table 1 gives the performance improvements

obtained with the above techniques for a sym met
ric and an u nsym metric matrix from the Harwel l
Boeing collection . 1" The characteristics of the matrix

are generated using DXJ.\1l routines and were
included because the performance is dependent on
the profile of the sky line. The data presented is for

a single right-hand side, which has been generated
using a known random solution vector.

The resu lts show that for the matrices u nder con

sideration, the technique of reducing memory
references by u nroll i ng loops at two levels leads to
a factor of 2 improvement in performance.

Summary

In this paper, we have shown that optimized mathe

matical subroutine l i braries can be a useful tool in
improving the performance of science and engi
neering applications on Alpha systems. We have

Table 1 Performance I mprove ment in the Solution of Ax =b, Using the Skyl ine Solver on the
DEC 3000 Model 900 System

Harweii-Boeing matrix1s

Description

Storage scheme

Matrix characteristics
Order
Type

Condition number estimate
Number of nonzeros
Size of skyl ine
Sparsity of skyline
Maximum row (co lumn) height
Average row (column) height
RMS row (column) height

Factorization time (in seconds)
Before optimization
After opti mization

Solution time (in seconds)
Before opti mization
After opt imization

Maximum component-wise
relative error in solution
(See equation below.)

max I x(i) - x(i) I
I x(i) I

Example 1

BCSSTK24

Stiffness matrix of the Calgary
Olympic Saddledome Arena

Symmetric diagonal-out

3562
Symmetric

6.37E + 1 1
81736
2031722
95.98%
3334
570.39
1 1 35.69

66.80
35.02

0.82
0.43

0.1 6 E - 5

Example 2

ORSREG1

Jacobian from a model of
an oil reservoir

Unsymmetric profile-in

2205
Unsymmetric with
stru ctu ral symmetry
1 .54E + 4
1 4 1 33
1 575733
99.1 0%
442 (442)
357.81 (357.81)
395.45 (395.45)

23.1 2
1 3.02

0.32
0.17

0.50 E - 1 0

where x(i) i s the i-th component of the true solution, and x(i) i s the i-th component of t h e calcu lated solution.

54 Vol. 6 No 3 Summer 1994 Digital Technical journal

DXML: A High-performance Scientific Subroutine Library

described the fu nctionality provided by DXML,

discussed various software engineering issues
and i l lustrated techniques used in performance

optimization.

Future enhancements to DX!\1L i nclude symmet

ric multiprocessing support for key routines,
enhancements in the areas of signal processing and

sparse solvers, as wel l as further optimization of
rou tines as warranted by changes in hardware and
system software.

Acknawledgments

DXML is the joint effort of a number of individuals
over the past several years. We would l ike to
acknowledge the contribu tions of our col leagues,
both past and present. The engineers: Luca Broglio,

Richard Chase, Claudio Deiro, Laura Farinett i , Leo

Lavin, Ping-Charng Lue, Joe O'Connor, Mark
Schure, Linda Tel la, Sisira Weeratunga and John
Wilson; the technical writers: Cheryl Barabani ,
Barbara Higgins, Marl ! McDonald, Barbara Schott
and Richard Wolanske; and the management: Ned
Anderson, Carlos Baradello, Gerald Haigh, Buren
Hoffman, Tomas Lofgre n, Vehbi Tasar and David
Vel ten. We would also l ike to thank Roger Grimes at
Boeing Computer Services for making the Harwell
Boeing matrices so readily available.

References

1 . W Cowell , ed . , Sources and Development of

Mathematical Software (Englewood Cliffs,
NJ: Prentice-Hal l , 1984) .

2 . D. Jacobs, ed . , Numerical Software-Needs

and Availability (New York: Academic Press,
1978).

3.]. Dongarra,]. Bunch, C. Moler, and G. Stewart,

LINPACK Users' Guide (Philadelphia: Society
for Industrial and Applied Mathematics
[SIAM] , 1979).

4. B. Smith et a!, Matrix Eigensystem
Routines-EISPACK Guide (Berlin: Springer
Verlag, 1976) .

5 . Digital eXtended Math Library Reference

Manual (Maynard, MA: D igital Equipment

Corporation, Order No. AA-QOMBB-TE for VMS

and AA-QONHB-TE for OSF/1) .

D igital Tech11iCtll jour11al Vol. 6 No. 3 Summer 1994

6. C . Lawson, R. Hanso n, D. Kincaid, and
F Krogh, " Basic Linear Algebra Subprograms
for Fortran Usage," ACM Transactions on

Mathematical Software, vol . 5, no. 3 (Septem

ber 1979) : 308-323.

7. D. Dodson, R. Grimes, and]. Lewis, "Sparse
Extensions to the FORTRAN Basic Linear Alge
bra Subprograms," ACM Transactions on

Mathematical Software, vol . 17, no. 2 (June
1991) : 253-263.

8.]. Dongarra,]. DuCroz, S. Hammarl ing, and
R. Hanson, "An Extended Set of FORTRAN

Basic Linear Algebra Subprograms," ACM

Transactions on Mathematical Software,
vol. 14, no. 1 (March 1988): 1-17.

9.]. Dongarra,]. DuCroz, S. Hammarling, and

I . Duff, "A Set of Level 3 Basic Linear Alge
bra Subprograms," ACM Transactions on

Mathematical Software, vo l . 16, no. 1 (March

1990): 1-17.

10. E. Anderson et at . , LAPACK Users' Guide

(Philadelphia : Society for Industrial and
Applied Mathematics [SIAM] , 1992).

1 1 .] . Dongarra, I . Duff, D. Sorensen, and H . van
der Vorst, Solving Linear Systems on Vector

and Shared Memory Computers (Philadel
phia: Society for Industrial and Applied Math
ematics [SIAM] , 1991) .

12. R . Barrett et at . , Templates for the Solution of

Linear Systems: Building Blocks for Iterative

Methods (Phi ladelphia: Society for Industrial
and Applied Mathematics [SIAM] , 1993).

13. C. Felippa, "Solution of Linear Equations with
Skyl ine Stored Symmetric Matrix," Computer

and Structures, vol. 5, no. 1 (April 1975): 13- 29.

14 . I . Duff, A. Erisman, and]. Reid, Direct Methods

for Sparse Matrices (New York: Oxford
University Press, 1986).

15. I . Duff, R . Grimes, and]. Lewis, " Sparse

Matrix Test Problems," ACM Transactions on

Mathematical Software, vol. 15, no. 1 (March
1989): 1- 14.

55

Scientific Computing Optimizations for Alpha

16. Alpha AXP Architecture and Systems, Digital

Technical]ournal, vol . 4, no. 4 (Special Issue

1992).

17. K. Dowd, High Performance Compu ting

(Sebastopol, CA: O'Rei l ly & Associates, Inc . ,

1993).

18. DECcbip 21064-AA Microprocessor-Hard

ware Reference Manual (Maynard, tvlA:
Digital Equipment Corporation, Order No.
EC-N0079-72, October 1992).

19.]. Dongarra and S. Eisenstat, "Squeezing the
Most Out of an Algorithm in CRAY FORTRAN,"

ACM Transactions on Mathematical Soft

ware, vo l . 10, no. 3 (September 1984):
219-230

20. R. Sites, ed . , Alpha Architecture Reference

Manual (Burl i ngton, 1YlA: Digital Press, 1992).

2 1 . H . Nussbau mer, Fast Fourier Transforms and

Convolution Algorithms, Second Edition
(New Yo rk: Springer Ve rlag, 1982) .

56

22. D. Bai ley, "A H igh-perfor mance FFT Algorithm

for Vector Supercomputers," The interna

tional journal of Supercomputer Applica

tions, vol . 2, no. 1 (Spring 1988): 82-87.

23. P. Swarztrauber, " FFT Algorithms for Vector

Compu ters," Parallel Computing, vol. 1, no. 1
(August 1984): 45-63.

24. D. Bailey, " F FTs in External or Hierarchical

Memory," The journal of Supercomputing,

vol . 4, no. 1 (March 1990): 23-35.

25. 0. Storaasl i , D. Nguyen, and T. Agarwal,
" Para llel -Vector Solution of Large-Scale Struc
tural Analysis Problems on Supercompu ters,"
American Institute of Aeronau tics and

Astronautics (AIAA) journal, vol . 28, no. 7
(Ju ly 1990): 1 2 1 1 - 1216.

26. H . Samukawa, "A Proposal of Level 3 Interface
for Band and Skyline Matrix Factorization Sub
rou tine," Proceedings of the 1993 ACM Inter

national Conference on Super Computing,

Tokyo, japan (July 1993): 397-406.

Vr!l. 6 No . .3 Summer 1994 Digital Tecbnica/ journal

The KAP Parallelizer
for DEC Fortran and
DEC C Programs

Robert H. Kuhn
Bruce Leasure
Sanjiv M. Shah

The KAP preprocessor optimizes DEC Fortran and DEC C programs to achieve their

best performance on Digital Alpha systems. One key optimization that KAP per

forms is the parallelization of programs for Alpha shared memory multiprocessors

that use the new capabilities of the DEC OSF/1 version 3. 0 operating system with

DECthreads. The heart of the optimizer is a sophisticated decision process that

selects the best loop to parallelize from the many loops in a program. The preproces

sor implements a robust data dependence analysis to determine whether a loop is

inherently serial or parallel. In engineering a high-quality optimizer, the designers

specified the KAP software architecture as a sequence of modular optimization

passes. These passes are designed to restructure the program to resolve many of the

apparent serializations that are artifacts of coding in Fortran or C. End users can

also annotate their DEC Fortran or DEC C programs with directives or pragmas to

guide KAP's decision process. As an alternative to using KAP's automatic parctl

lelization capabilit]\ end users can explicitly identify parallelism to KAP using the

emerging indust1:v-stcmdard X3H5 directives.

The KAP preprocessor developed by Kuck &
Associates, Inc. (K AI) is used on Digital Alpha sys
tems to increase the performance of DEC Fortran
and DEC C programs. KAP accomplishes this by
restructuring fragments of code that are not effi
cient for the Alpha architecture. Essentially a super
optimizer, K AP performs optimizations at the
source code level that augment those performed
by the DEC Fortran or DEC C compilers . 1

To enhance the performance o f DEC Fortran and
DEC C programs on Alpha systems, KAI engineers
selected two challenging aspects of the Alpha archi
tecture as KAP targets: sym metric multiprocessing
(SMP) and cache memory. An additional design goal
was to assist the compiler in optimizing source
code for the reduced i nstruction set computer
(RISC) instruction processing pipeline and multiple
fu nctional un its.

This paper discusses how the KAP preprocessor
design was adapted to parallelize programs for SMP
systems running u nder the DEC OSF/1 version 3.0
operating system. This version of the DEC OSF/ 1
system contains the DECthreads product, Digital 's
POSJX-compliant multithreading l ibrary. The first

Digital Technical journal Vul. 6 No. 3 S11mmer 1994

part of the paper describes the process of mapping
paral lel programs to DECthreads. The paper then
discusses the key techniques used in the KAP
design. Final ly, the paper presents examples of how
KAP performs on actual code and mentions some
remaining challenges. Readers with a compiler
background may wish to explore Optimizing Super

compilers for Supercomputers for more details o n
KAP's techniques. 2

I n this paper, the term directive is used inter
changeably to mean directive, when referring to DEC
Fortran programs, and pragma, when referring to
DEC C programs. The term processor genera lly rep
resents the system component used in parallel pro
cessing. In discussions in which it is significant to
d istinguish the operating system component used
for parallel processing, the term thread is used.

The Parallelism Mapping Process

Figure 1 shows the i nput modes and major phases

of the compilation process. Parallelism is repre

sented at three levels in programs using the KAP
preprocessor on an Alpha SMP system. The first two
are input to the KAP preprocessor; the third is the

57

Scientific Computing Optimizations for Alpha

� - - - - - - - - -,

I
I M PLICIT PARALLELISM I

- -,
I EXPLICIT HIGH-LEVEL PARALLELISM I

I I

I ORDINARY DEC I
FORTRAN OR

I DEC C PROGRAM I

I I
L - - - - - - - - �

KAP PARALLELISM

DETECTION AND

OPTIM IZATION

I
I
I
I
I

KAP GUIDING

D IR ECTIVES

I
I
I
I
I

- - - - - 1
EXPLICIT LOW-LEVEL PARALLELISM

I

KAP-OPTIMIZED

FORTRAN OR

C OUTPUT FILE

I
I
I

L _ _ _ _ _ _ _ _ _ _ _ _j

DEC FORTRAN

OR DEC C

COMPILER

KAP ASSERTIONS

DEPENDENCE

ANALYSIS

I
I
I
I

- - - J

KAP PRE PROCESSOR

Figure 1 Parallelism Mapping Process

representation of parallelism that K AP generates.
The three levels of parallel ism are

1 . Implicit parallelism. Start ing from DEC Fortran

or DEC C programs, KAP automatical ly detects
parallel ism.

2. Expl icit high-level parallelism. As an advanced

feature, users can provide any of three forms:

58

KAP gu iding directives, K AP assertions, or X3H5
directives. KAP guiding directives give KAP hints
on which program constructs to parallel ize . KAP
assertions are used to convey information about

the program that cannot be described in the DEC
Fortran or DEC C language. This information can
sometimes be used by KAP to optim ize the pro
gram. Using X3H5 directives, the user can force
KAP to paral lelize the program in a certain way.3

Voi. 6 No. 3 Summer 1994 D igital Technical journal

The KAP Parallelizer for DEC Fortran and DEC C Programs

3. Explicit low- level parallelism. KAP translates

eitl1er of the above forms to DECthreads with the

help of an SMP support l ibrary. (The user could

specify paral lelism directly, using DECthreads;

however, KAP does not perform any optimiza

tion of source code with DECtlU"eads. Therefore,

the user should not mix this form of parallelism

with the others.)

Because the user can employ para l lelism at any

of the three levels, a discussion of the trade-offs

involved with using each level fol lows.

From DEC Fortran or DEC C Programs

The KAP preprocessor accepts DEC Fortran and DEC

C programs as input. Although starting with such

programs requires the compilers to intell igently

util ize a h igh-performance SMP system, there are

several reasons why this is a natural point at which

to start.

• Lots of software. Since DEC Fortran and DEC C
are de facto standards, there exists a large base of

applications that can be parallel ized relatively

easily and inexpensively.

• Ease of use. Given the high rate at which hard

ware costs are decreasing, eveqr workstation may

soon have multiple processors. At that point, i t

wil l be critical that programming a multiproces

sor be as easy as programming a single processor.

• Portabil ity. Many software developers with

access to a m u ltiprocessor already work in a het

erogeneous networking environment. Some sys

tems in such an environment do not support

expl icit forms of para l le l ism (either X3H5 or

DECthreads). The developers would probably

l ike to have one version of their code tllat runs

well on all their systems, whether uniprocessor

or mul tiprocessor, and using DECthreads would

cause their uniprocessors to slow down.

• Maintainabil ity. Using an intricate programming

model of para] lei ism such as X3H5 or DECthreads

makes it more difficult to maintain the software.

KAP produces KAP-optimized DEC Fortran or DEC

C as output. This fact is imponant for the fol lowing

reasons:

• Performance. Users can leverage optimizations

from both Digital's compilers and K AP.

• Integration. Users can employ all of Digital 's per

formance tools.

Digital Tecl:mical Journal Vol. 6 No. 3 Summer 1994

• Ease of use. Expert users like to " tweak" the

output of KAP to fine-tune the optimizations

performed.

With KAP Guiding Directives, KAP
Assertions, or X3H5 Directives

Although the automatic detection of parallelism is

frequently within the range of KAP capabil i t ies on

SMP systems, in some cases, as described below,

users may wish to specify the parallelism.

• In the SMP environment, coarse-grained paral

lelism is sometimes important . The higher in the

cal l tree of a program a preprocessor (or com

piler, as wel l) operates, the more difficu lt it is

for a preprocessor to paral lel ize automatically.

Even though the KAP preprocessor performs

both inlining and interprocedural analysis, the

higher in the call tree KAP operates, the more

l i kely it is that KAP will conservatively assume

that the parallel ization is inval id.

• Sometimes information that is available only at

run time precludes the preprocessor from auto

matically finding paral lelism.

• Occasionally, experts can fine-tune the paral

lelism to get the highest efficiency for programs

that are run frequent ly.

• For software that is more portable between sys

tems, it is sometimes important to get repeatable

parallel performance or to indicate where paral

lelism has been appl ied . In such cases, explicit

paral lelism may be preferable.

Three mechanisms are available to the user for

directing K AP to parallelism. The first mechanism

uses KAP guiding directives to guide KAP to the

preferred way to parallel ize the program. The sec

ond mechanism uses K AP assertions. The third

mechanism uses X3H5 -compl iant d irectives to

directly describe the parallelism. The first two

mechanisms differ significantly from the third. With

the first two, K AP analyzes the program for the feasi

bility of parallelism. With the third , KAP assumes

that parallelism is feasible and restricts itself to man

aging the details of implementing paral lelism. In

particular, the user does not have to be concerned

with either the scoping of variables across proces

sors, i .e . , designating which are private and which

are shared, or the synchronization of accesses to

shared variables 4 K AP guiding directives will not be

59

Scientific Computing Optimizations for Alpha

discussed in this paper. KAP assertions and how they

are implemented are discussed later in the section

Advanced Ways to Affect Dependences. A descrip

tion of the X3H5 d irectives follows.

The X3H5 model of parallelism is wel l struc

tured ; all operations have a begin operation-end

operation format. The paral lel region construct

ident ifies the fork and join points for paral lel

processing. Parallel loops identify units of work

to be d istributed to the available processors. The

critical section and one processor section con

structs are used to synchronize processors where

necessary Table 1 shows the X3H5 directives as

implemented in KAP.

To the DEC OSF/1 Operating System
with DECthreads

Although KAP does not optim ize programs that use

DECthreads directly, there may be some benefits to

specifying parallelism expl icitly using DECthreads.

• DECthreads al lows a user to construct almost any

model of paral lel processing fairly efficient ly

The high-level approaches described above are

l imited to loop-structured para l lel processing.

Some applicati ons obtain more paral lelism by

using an unstructured model . It can even be

argued that for some cases, unstructured paral

lelism is easier to understand and maintain.

• A user who invests the time to analyze exactly

where paral lelism exists in a program may wish

to forego the benefits mentioned above and to

capture the parallelism in detail with DECthreads.

In that manner, no efficiency is lost because the

preprocessor misses an optimization.

• The POSJX threads standard to which DECthreads

conforms is available on several platforms.

Table 1 X3H5 Directives As Implemented in KAP

Because this standard is broadly adopted and

language independent, it is only sl ightly less

portable than implicit parallelism.

The KAP preprocessor translates a program in

which KAP has detected implicit parallelism or a pro

gram in which the user expl icitly d irects parallelism

to DECthreacls. KAP performs this trans lation in two

steps. First, it translates the internal representation

into ca l ls to a paral lel SMP support l ibrary. Second ,

the support l ibrary makes cal ls to DECthreads.

The SMP support I ibrary implements various

aspects of X3H5 notation, as can be seen by com

paring Tables 1 and 2 .
In the paral lelism translation phase, K A P signifi

cantly restructures a program by moving the code

in a paral lel region to a separate subroutine. A cal l

to the SMP support l ibrary replaces the paral lel

region. This cal l references the new subroutine.

KAP examines the scope of each variable used in

the parallel region and, if possible , converts each

variable to a local variable of the new subroutine.

Otherwise, the variable becomes an argu ment to

the subrou tine so that it can be passed back out of

the parallel region.

Converting variables to local variables m akes

accessing these variables more efficient. A variable

that is referenced outside the paral lel region cannot

be made local and must be passed as an argument.

Shared Memory Multiprocessor
Architecture Concerns

Given its paral lelism model, the KAP preprocessor

requ ires operating system and hardware support

from the system for efficient paral lel execution .

There are three areas of concern: thread creation

and schedul ing, synchron ization between threads,

and data caching and system bus bandwidth.

Function X3H5 D irectives

To specify regions of parallel execution

To specify parallel loops

To specify synchronized sections of code
such that all processors synchronize

To specify that all processors execute sequential ly

To specify that only the f irst processor executes

60

C*KAP* PARALLEL REGION
C*KAP* END PARALLEL REGION
C*KAP* PARALLEL DO
C*KAP* END PARALLEL DO
C*KAP* BARRIER

C*KAP* CRITICAL SECTION
C*KAP* END CRITICAL SECTION
C*KAP* ONE PROCESSOR SECTION
C*KAP* END ONE PROCESSOR SECTION

Vol. (, No . .) Sumn1er 1994 D igital Technical journal

The KAP Parallelizer for DEC Fortran and DEC C Programs

Table 2 KAP SMP Support Libra ry

Fortran
C Entry Point Name Name Function

OSF/1 DECthreads
Subroutines Used

__ k m p_ e n t e r _ c s e c

__ k m p_ e x i t - c s e c

__ k m p_ f o r k

m p p e c s

m p p x c s

m p p f r k

To enter a critical section

To exit a critical section

To fork to several threads

p t h r e a d _ m u t e x _ l o c k

p t h r e a d _m u t e x _ u n l o c k

p t h r e a d _ a t t r_ c r e a t e ,
p t h r e a d_ c r e a t e

__ k m p_ f o r k - a c t i v e m p p f k d To inq u ire if already
parallel

(n o n e)

__ k m p_ e n d m p p e n d To join threads p t h r e a d _ j o i n ,
t h r e a d d e t a c h

__ k m p _e n t e r _o n e p s e c m p p b o p To enter a single
processor section

p t h r e a d _m u t e x _ l o c k ,
p t h r e a d _m u t e x _ u n l o c k

__ k m p _ e x i t _o n e p s e c m p p e o p To exit a single
processor sect ion

p t h r e a d _ m u t e x _ l o c k ,
p t h r e a d _m u t e x _ u n l o c k

__ k m p_b a r r i e r m p p b a r To execute a barrier wait p t h r e a d _m u t e x _ L o c k ,
p t h r e a d _ c o n d _w a i t ,
p t h r e a d _m u t e x_ u n l o c k

Thread Creation and Scheduling Thread cre

ation is the most expensive operation. The X3H5

standard minimizes the need for creating threads

through the use of paral lel regions. The SMP sup

port l ibrary goes further by reusing threads from

one parallel region to the next. The SMP support

library examines the value of an environment vari

able to determine how many threads to use. The

appropriate schedul ing of threads onto hardware

processors is extremely important for efficient

execution. The support l i brary relies on the

DECthreads implementation to achieve this. For

the most efficient operation, the l ibrary should

schedule at most one thread per processor.

Synchronization between Threads In the KAP

model of parallelism, threads can synchronize at

• A point where loop iterations are scheduled

• A point where data passes between iterations

(for col lection of local reduction variables only)

• A barrier point leaving a work-sharing construct

• Single processor sections

Two versions of the SMP support l ibrary have been

developed: one with spin locks for a single-user

environment and the second with mu tex locks for

a multiuser environment. Either l ibrary works in

either environment; however. using the spin lock

Digital Tech11ica/ journal vbl. 6 No . .3 Summer 1994

version in a single-user environment yields the

most efficient para llelism.

Using spin locks i n a mu ltiuser environment may

waste processor cycles when there are other users

who could use them. Using mu tex locks for a single

user environment creates unnecessary operating

system overhead. In practice, however, a system

may sh ift from single-user to mul tiuser and back

again in the course of a single run of a large pro

gram. Therefore, KAP supports all lock-environment

combinations.

Data Caching and System Bus Bandwidth

Multiprocessor Alpha systems support coherent

caches between processors. s To use these caches

efficiently, as a policy, KAP localizes data as much

as possible, keeping repeated references within

the same processor. Loca lizing data reduces the

load on the system bus ancl reduces the chances of

cache thrashing.

When all the processors simultaneously request

data from the memory, system bus bandwidth can

limit SMP performance. If optimizations enhance

cache locality, less system bus bandwidth is used ,

and therefore SMP performance is less l ikely to be

l imited .

KAP Technology

This section covers the issues of data dependence

analysis, preprocessor architecture, and the selec

tion of loops to parallel ize.

61

Scientific Computing Optimizations for Alpha

Data Dependence A nalysis-The Kernel
of Parallelism Detection

DEC Fortran and DEC C have standard ru les for the

order of execution of statements and expressions.

These rules are based on a serial model of program

execution. Data dependence analysis allows a com

piler to see where this serial order of execution can

be modified without changing the meaning of the

program.

Types of Dependence KAP works with the four

basic types of dependence:6

1 . Flow dependence, i .e . , when a program writes

a variable before it reads the variable

2 . Antidependence, i .e . , when a program reads

a variable before it writes the variable

3. Output dependence, i . e . , when a program

writes the same variable twice

4. Control dependence, i .e . , when a program state

ment depends on a previous conditional

Because dependences involve two actions on the

same variable, for example, a write and then a read,

KAP uses the term dependence arc to represent

information flow, in this example from the write to

the read.

Since these dependences can prevent paralleliza

tion, KAP uses various optimizations to eliminate

the different dependences. For example, an optimi

zation called scalar renaming removes some but

not al l antidependences.

Loop-related Dependences When dependences

occur within a loop, the control flow relations are

captured with d irection vector symbols tagged to

each dependence arc. 2 The transformations that

can be applied to a loop depend on what depen

dence direction vectors exist for that loop. The

symbols used in KAP and their meanings are

The dependence occurs within the same loop

iteration.

> The dependence crosses one or several itera

tions.

< The dependence goes to a preceding iteration

of the loop.

62

The dependence relation between iterations is

not clear.

or a combination of the above, for example,

< > The dependence is known not to be on the

same iteration.

When a dependence occurs in a nested loop, KAP

uses one symbol for each level in the loop nest. A

dependence is said to be carried by a loop if the cor

responding direction vector symbol for that loop

incl udes < , > , or *

In the fol lowing program segment

1 f o r (i = 1 ; i < = n ; i + +) {
2 t e m p a [i J ;
3 a [i J b [i] ;
4 b [i] = t e m p ; }

there is a flow dependence from statement 2 to

statement 4. There is an antidependence from state

ment 2 to statement 3 and from statement 3 to

statement 4. There are control dependences from

statement 1 to statements 2, 3, and 4 because exe

cuting 2, 3, and 4 depends on the i < = n condition.

Al l these dependences are on the same loop itera

tion; their direction vector is = .

Some dependences i n this program cross loop

iterations. Because temp is reused on each itera

tion, there is an output dependence from statement

2 to statement 2, and there is an antidependence

from statement 4 to statement 2. These two depen

dences are carried by the loop in the program seg

ment and have the direction vector > .

Data Dependence Analysis The purpose of depen

dence analysis is to build a dependence graph, i .e . ,

the collection of all the dependence arcs in the pro

gram. KAP bui lds the dependence graph i n two

stages. F irst, it bu ilds the best possible conservative

dependence graph 7 Then, i t applies filters that

identify and remove dependences that are known

to be conservative, based on special circumstances.

What does the phrase "best possible conserva

tive dependence graph" mean' Because the values

of a program's variables are not known at prepro

cessing time, in some situations it may not be clear

whether a dependence actually exists. KAP reflects

this situation in terms of assumed dependences

based on imperfect information. Therefore, a

dependence graph must be conservative so that

K AP does not optimize a program incorrectly. On

the other hand , a dependence graph that is too con

servative results in insufficient optimization.

In building the best possible dependence graph,

K AP uses the following optimizations: constant

propagation, variable forward substitution, and

Vol. 6 No. 3 Summer 1994 Digital Tech nical jou rnal

The KAP Parallelizer for DEC Fortran and DEC C Programs

scalar expansion. KAP does not, however, leave the

program optimized in this manner unless the opti

mizations will improve performance.

Advanced Ways to Affect Dependences When

there are assumed dependences in the program,

KAP may not have enough information to decide on

parallelism opportunities. KAP implements two

techniques to mitigate the effects of imperfect

i nformation at preprocessing time: assertions and

alternate code sequences.

Assertions, which are similar to directives in syn

tax, are used to provide information not otherwise

known at preprocessing time. KAP supports many

assertions that have the effect of removing assumed

dependences. Table 3 shows KAP assertions and

their effects 8.9 When the user specifies an asser

tion, the information contained in the assertion is

saved by a data abstraction cal led the oracle. When

an optimization requests that a data dependence

graph be built for a loop , the dependence analyzer

inquires whether the oracle has any information

about certain arcs that it wants to remove.

When accurate information is not known at com

pile time , a few KAP optimizations generate two

versions of the source program loop : one assumes

that the assumed dependence exists; the other

assumes that it does not exist. In the latter case, KAP

can apply subsequent optimizations, such as para!-

Table 3 KAP Assertions

Assertion

[N O] A R G U M E N T A L I A S I N G

[N O J B O U N D S V I O L A T I O N S

C O N C U R R E N T C A L L

Specifiers

lelizing the loop. KAP applies the two-version loop

optimizations selectively to avoid dramatically

increasing the size of the program. However, the

payback of parallel izing a frequently executed loop

warrants their use.

For example, the KAP C pointer disambiguation

optimization is employed in cases in which C point

ers are used as a base address and then incremented

in a loop . Neither the base address of a pointer nor

how many times the pointer will be incremented is

usually known at compile time. At run time, how

ever, they can be computed in terms of a loop

index. KAP generates code that checks the range of

the pointer references at the tail and at the head of

a dependence. If the two ranges do not overlap, the

dependence does not exist and the optimized code

is executed.

KAP Preprocessor Architecture

A controversial control architecture decision in

KAP is to organize the preprocessor as a sequence

of passes, generally one for each optimization per

formed . This design decision was controversial

because of the fol lowing concerns:

• Run-time inefficiency would occur in process

ing programs because each pass would sweep

through the intermediate representation for the

program being processed, causing some amount

of virtual memory thrashing.

Primary Effect

D 0 (<specifier>)

D 0 P R E F E R (<specifier>)

[N O J E Q U I V A L E N C E
H A Z A R D

S E R I A L , C O N C U R R E N T

S E R I A L , C O N C U R R E N T

Removes assumed dependence arcs

Removes assumed dependence arcs

Removes assumed dependence arcs

Guides selection of loop order strongly

Guides selection of loop order loosely

Removes assumed dependence arcs
(Fortran only)

[N O J L A S T V A L U E
N E E D E D (<specifier>)

P E R M U T A T I O N
(<specifier>)

N O R E C U R R E N C E
(<specifier>)

R E L A T I 0 N (<specifier>)

N O S Y N C

Variable names for
which [no] last
value is needed

Names of permutation
variables

Names of recurrence
variables

Relation loop index
known to be true

Digital Technicaljout-nal Vol. 6 No. 3 Summer 1994

Tunes the paral lel code and
sometimes removes assumed
dependences

Removes assumed dependence arcs

Removes assumed dependence arcs

Removes assumed dependence arcs

Tunes the parallel code which is
produced

63

Scientific Computing Optimizations for Alpha

• Added software development cost wou ld be

incurred because the KAP code that loops

through the intermediate representation would

be repeated in each pass.

The second concern has been dispelled. The

added modularity of KAP, provided by its multipass

structure, has saved development time as KAP has

grown from a moderately complex piece of code to

an extremely complex piece of code.

The KAP preprocessor uses more than 50 major

optimizations. The pass structure has helped to

organize them. In some cases, such as cache man

agement, one optimization is broken into several

passes. KAP performs some basic optimizations,

e .g. , deadcode el imination, more than once in dif

ferent ways. In some cases, such as scalar expan

sion, KAP performs an optimization to uncover

other optimizations and then performs the reverse

optimization to tighten up the program again.

The run-time efficiency issue is sti l l of interest.

There is always some benefit to making the prepro

cessor smaller and faster.

Selecting Loops to Parallelize

Paral lel izing a loop can greatly enhance the perfor

mance of the program. Testing whether a loop can

be paral lel ized is actua l ly quite simple, given the

data dependence analysis that KAP performs. A loop

can be parallelized if there are no dependence arcs

carried by that loop. The situation, however, can be

more compl icated. If the program contains severa.l

nested loops. it is important to pick the best loop to

parallel ize. Add itional ly, i t may be possible not on ly

to parallel ize the loop but also to optimize the loop

to enhance its performance. Moreover, the loops in

a program can be nested in very complex structures

so that there are many d ifferent ways to paral lelize

the same p rogram. In fact, the best option may be

to leave a l l the loops serial because the overhead of

para l lel execution may outweigh the performance

improvement of using mu ltiple processors.

The KAP preprocessor optimizes programs for

para l lel ism by searching for the optimum program

in a set of possible configurations, i .e . , ways in

which the original program can be transformed for

parallel execution. (In this regard, KAP optimizes

programs from a classical definition of numerical

optimization.) There is an object ive function for

evaluating each configuration. Each member of

the set of configurations is cal led a loop order. The

64

optimum program is the loop order whose objec

tive hmction has the highest performance score, as

discussed later i n this section.

Descriptions of loop orders, the role of depen

dence analysis, and the objective hmction, i .e . , how

each program is scored, fol low.

Loop Orders A loop order is a combination of

loop transformations that the KAP preprocessor has

performed on the program. The loop transforma

tions that KAP performs whi le searching for the

optimal paral lel form are

• Loop distribution

• Loop fusion

• Loop interchange

Loop distribution splits a loop into two or more

loops. Loop fusion merges two loops. Loop fusion

is used to combine loops to increase the size of the

paraUel tasks and to reduce loop overhead .

Loop interchange occurs between a pair of loops.

This transformation takes the inner loop outside the

outer loop, reversing their relation. If a loop is triply

nested , there are three factorial (31) , i .e . . six, d iffer

ent ways to interchange the loops. Each order is

arrived at by a sequence of pairwise interchanges.

To increase the opportunit ies to interchange

loops, KAP tries to make a loop nest into one that is

perfectly nested . This means that there are no exe

cutable statements between nested loop state

ments. Loop distribu tion is used to create perfectly

nested loops.

KAP examines a l l possible loop orders for each

loop nest. Each loop nest is treated independently

because no transformations between loop nests

occur at this phase of optimizat ion.

For example, an LU factorization program con

sists of one loop nest that is three deep and not per

fectly nested. Figure 2 shows the loop orders. Loop

order (a) is the origina l LU program. The KAP pre

processor first d istributes the outer loop in loop

orders (b) and (c). Next, K AP performs a loop inter

change on the second loop nest which is two deep,

as shown in loop order (d). Then, KAP interchanges

the third loop nest in loop orders (e) through (i).

Note that KAP eliminates some loop orders, (i) for

example, when the loop-bound expressions cannot

be interchanged . As explained above, there are six

d ifferent loop orders because the nest is triply

Vol. 6 No. 3 Summer 1')94 D igital Tecbnical journal

The KA P Parallelizer for DEC Fortran and DEC C Programs

(a) ORIGINAL LU (OUTLINED):

do i = 1 , n
/ * I n v e r t E l i m i n a t o r * /

d o k = i + 1 , n
/ * C o m p u t e M u l t i p l i e r s * /

e n d d o
d o j = i + 1 , n

d o k = i + 1 , n
/ * U p d a t e M a t r i x * /

e n d d o
e n d d o

e n d d o

(d) FOR SECOND NEST INTERCHANGE
SECOND do i LOOP:

do k = 1 , n
d o i = 1 , k - 1

/ * C o m p u t e M u l t i p l i e r s * /

REEXAMINE LOOP ORDERS
(e) THROUGH (i)

(b) DISTRIBUTED do i LOOP

d o i = 1 , n
/ * I n v e r t E l i m i n a t o r * /
e n d d o

d o i = 1 , n
d o k = i + 1 , n

/ * C o m p u t e M u l t i p l i e r s * /
e n d d o

d o j = i + 1 , n
d o k = i + 1 , n

/ * U p d a t e M a t r i x * /
e n d d o

e n d d o
e n d d o

(c) DISTRIBUTE do i LOOP AGAIN :

d o i = 1 , n
/ * I n v e r t E l i m i n a t o r * /

d o i = 1 , n
d o k = i + 1 , n

/ * C o m p u t e M u l t i p l i e r s * /
d o i = 1 , n

d o j = i + 1 , n
d o k = i + 1 , n

/ * U p d a t e M a t r i x * /

(e) FOR THIRD NEST
I NTERCHANGE do i AND do j

(g) FOR THIRD NEST
INTERCHANGE do j AND do k:

d o j = 1 , n d o i = 1 , n
d o i = 1 , j - 1 d o k = i + 1 , n

d o k = i + 1 , n d o j = i + 1 , n
/ * U p d a t e M a t r i x * / / * U p d a t e M a t r i x * /

l
(f) FOR THIRD NEST INTERCHANGE

do i AND do k :

L o o p O r d e r R e j e c t e d -
N e w b o u n d s s p l i t L o o p .
d o j = 1 , n

d o k = 2 , j
d o i = 1 , k - 1

/ * U p d a t e M a t r i x * /
d o k = j , n

d o i = 1 , j - 1
/ * U p d a t e M a t r i x * /

(h) FOR THIRD NEST
INTERCHANGE do i AND do k:

do k = 1 , n
d o i = 1 , k - 1

d o j = i + 1 , n
/ * U p d a t e M a t r i x * /

(i) FOR THIRD NEST INTERCHANGE
do i AND do j :

L o o p O r d e r R e j e c t e d -
N e w b o u n d s s p l i t l o o p .
d o k = 1 , n

d o j = 2 , k
d o i = 1 , k - 1

/ * U p d a t e M a t r i x * /
d o j = k , n

d o i = 1 , k - 1
/ * U p d a t e M a t r i x * /

Figure 2 Loop Ordersjo1' LV Factorization

D igital Tecbnical]ow·naf Vol. 6 No. 3 Summer 1994 65

Scientific Computing Optimizations for Alpha

nested. Since the loop nest in (d) was originally

nested with the triply nested loop at the outermost

do loop, K AP will reexamine these six loop orders

after the interchange in (d).

Dependence Analysis for Loop Orders Before a

loop order can be evaluated for efficiency, KAP deter

mines the val idity of the loop order. A loop order is

valid if the resulting program would produce equ iva

lent behavior. KAP tests validity by examining the

dependences in the dependence graph according to

the transformation being applied.

For example, the test for loop interchange validity

involves searching for dependence d irection vec

tors of a certain type. The direction vector (<, >)

indicates that a loop interchange is invalid . The

direction vectors (<,*), (*, >), or (*,*), if present, also

indicate that the loop interchange may be invalid .

Evaluation of a Loop Order After the KAP prepro

cessor determines that a loop order is valid, i t

scores the loop order for performance. KAP consid

ers two major factors: (1) the amou nt of work that

will be performed in parallel and (2) the memory

reference efficiency

The memory reference efficiency of a loop order

can degrade performance so much that it out

weighs the performance gained by executing a

loop i n paral lel . On an SMP, if a processor refer

ences one word on a cache l ine, it should reference

all the words contiguously on that line. In Fortran,

a two-dimensional array reference, A(iJ) , should be

parallelized so that the j loop is parallel and each

processor references contiguous columns of mem

ory. If a loop order indicated that the i loop is paral

lel , this reference would score low. If a loop order

indicated that the j loop is parallel, it would score

high. The score for the loop order is the sum of

the scores for a l l the references, and the highest

scoring loop order is preferred .

The score for a loop order depends on which

loops in the order can be parallel ized . For a given

loop nest, there may be several (or no) loops that

can be parallelized. The first step is to determine

if any loops can be parallelized . If multiple loops

can be parallelized, KAP selects the best one. KAP

chooses at most one loop for parallel execution.

KAP tests loops to determine whether they can

be executed in parallel by analyzing both the state

ments in the loop and the dependence graph. The

loop may contain certain statements that block

concurrentization. 1/0 statements or a call to a func-

66

tion or subroutine are examples. (Users can code

KAP assertions to flag these statements as parallel iz

able.) Second, data dependence conditions may

preclude parallelization. ln general, a loop that car

ries a dependence is not paralleli zable. (In some

cases, the user may override the data dependence

condition by al lowing synchronization between

loop iterations.) Fina lly, the user may give asser

tions that indicate a preference for making a loop

parallel or for keeping it serial .

Barring data dependence conditions that would

prevent parallelization, the amount of work that will

be performed in parallel determines the score of par

al lel izing a loop. (The user can also specify with a

directive that loops should not be parallelized unless

they score greater than a specified value.) In this

manner, KAP prefers to parallelize outer loops or

loops that are interchanged to the outside because

they contain the most work to amortize the over

head of creating threads for parallelism.

The actual paral lelization process is even more

complex than this d iscussion indicates. KAP applies

a number of optimizations to improve the quality of

the parallel code. If there is a reduction operation

across a loop, KAP paral lelizes the loop. Too much

loop distribution can decrease program efficiency,

so loop fusion is run to try to coalesce loops.

Performance Analysis

How does the KAP preprocessor perform on real

applications' The answer is as complex as the soft

ware written for these applications. Consider the

real-world example, DYNA3D, which demonstrates

some KAP strengths and weaknesses.

DYNA3D is nonlinear structural dynamics code

that uses the finite element analysis method. The

code was developed by the Lawrence Livermore

National Laboratory Methods Development Group

and has been used extensively for a broad range

of structural analysis problems. DYNA3 D contains

about 70,000 l ines of Fortran code in more than

700 subroutines.

When KAP is being used on a large program, i t

i s sometimes preferable t o concentrate on the

compute-intensive kernels. For example, KAP devel

opers ran six of the standard benchmarks for

DYNA3D through a performance profiling tool and

isolated two groups of three subroutines that

account for approximately 75 percent of the run

time in these cases. This data is shown in Table 4.
KAP's performance on some of these key subrou

tines appears in Table 5. KAP paral lelized all the

Vol. 6 No. 3 Summer 1994 Digital Technical journal

The KAP Parallelizer for DEC Fortran and DEC C Programs

Table 4 Performance Profiles of Six DYNA3D Problems

Problem

NIKE2D
Example

Profile (First Two I n itials of the
Subroutine and Percent of Run Time)

ST 19%, FO 1 5%, FE 1 2 % , PR 10%, HG 7%, HR 5 %

Key Call
Sequences*

(a) and (b)

(a) and (b) Cyl i nder Drop

Bar I m pact

I mpacted Plate

Single Contact

Clamped Beam

ST 20%, FO 1 5%, FE 1 1 %, PR 10%, HG 7%, H R 5%

WR 17%, ST 7%, FE 6%

SH 22%, TN 16%, TA 16%, YH 14%, BL 7%

YH 24%, SH 21 %, TN 7%, TA 7%, BL 6%

EL 1 2%, SH 1 2 % , TN 8%, TA 8%, BL 6%

None of interest

(c)

·call Sequences

(a) ST is called; ST calls PR; and then FE is called.

(b) HR is called; HR calls HG; and then FO is called.

(c) BL calls SH, then TA, and then TN.

Table 5 KAP's Performance on Key Subroutines

(c)

(c)

Subroutine Number of Number of Loops Maximum Number of Loops
after Fusion Loops Paral lel ized

STRAIN 5 5

PRTAL 9 9

FELEN 6 6

FORCE 9 9

H RGMD 5 5

HGX 4 4

loops in these subroutines. Since DYNA3D was

designed for a CRAY-1 vector processor, it is perhaps

to be expected that the K AP preprocessor would

pe rform well . KAP, however, is intended for a

shared memory multiprocessor rather than for

a vector machine. For this reason, KAP does more

than parallel ize the loops. The entries in the col

umn labeled " Nu mber of Loops after Fusion" show

how KAP reduced loop overhead by fusing as many

loops together as it could. KAP fused the five loops

in subroutine STRAIN into three loops and fused al l

n ine loops in subroutine PRTAL

Another example of KAP's optimization for an

SMP system is that in the doubly nested loop cases,

such as subroutine FORCE (see Figure 3), the

KAP preprocessor automatical ly selects the outer

loop for paral lel execution. In contrast, a vector

machine such as the CRAY-1 prefers the inner loop.

Because the kernels of DYNA3D code span multi

ple subroutines, cross compilation optimization is

suggested. There are three ways to do this: inl ining,

interprocedural analysis, and directives specifying

that the inner subroutines can be concurrentized.

Digital Tech11ical]our11al Vol. 6 No 3 Summer 1994

Nest Depth

1

1

2

3

1

2

3

s u b r o u t i n e F 0 R C E OUTER LOOP

d o 6 0 n = 1 , n n c

� PARALLELIZED

l e n = l c z c + n + n h 1 2 - 1
i O = i a (l n c)
i 1 = i a (l c n + 1) - 1

c d i r $ i v d e p
d o 5 0 i = i O , i 1

e (1 , i x (i))
e (1 , i x 1 (i)) + e p 1 1 (i)

5 0 c o n t i n u e

6 0 c o n t i n u e

Figure 3 Parallel Loop Selection

Using KAP's inlining capabi l ity gives KAP the

most freedom to optimize the program because

in this manner KAP can restructure code across

subroutines.

Figure 4 shows part of the cal l sequence of sub

routine SOLDE. (Subroutine SOLDE conta ins ca l l

67

Scientific Computing Optimizations for Alpha

s u b r o u t i n e S O L D E

c a l l H R G M D ------------...
s u b r o u t i n e H R G M D � WHOLE CALL

to enable inl ining au tomat ically to depth two of
subroutine SOLDE because it contains cal ls to many

other subrou tines that are not in the kernel. Here,
the user specified the subroutines to in l ine on the
command l ine. When the user specified inl ining,
KAP fused all the loops in subroutines H RGMD, HGX,

a nd FORCE to minim ize loop overhead, and then it
paral lel ized the fused loop.

: SEQUENCE f a l l H G X -----; INL INED

c a l l F O R C E .____/

Figure 4 lnlining a Kernel

sequence (b) of Table 4.) Subroutine SOLDE calls

subroutine HRGMD which cal ls subrou tine H GX .

Then subroutine SOLDE cal ls subroutine FORCE.

KAP supports inl in i ng to an arbitrary depth .
Inl ining in KAP can be automatic or control led from

the com mand l i ne. In this case, we did not want

I n some cases, the user can make simple restruc

turing changes that improve KAP·s optimizations.

Figure 5 shows a case in which fu sion was blocked
by two scalar statements between a pair of loops.
The first loop does not assign any values to the vari

ables used to create these scalars, so the user can

move the assignments above the loop to enable KAP
to fu se them.

s u b r o u t i n e S T R A I N

Finall y, the user can elect to specify the paral
lel ism directly. Figure 6 shows subrou tine STRAIN

with X3H5 directives used to describe the

? o 5 i = l f t , l l t
MOVE UP

s u b r o u t i n e S T R A I N
d t 1 d 2 = . 5 * d t 1
c r h o . 0 6 2 5 * r h o (L f t)
d o 5 i = l f t , l l t

: �TATEMENTS
e n d d o
d t 1 d 2 = . 5 * d t 1
c r h o = . 0 6 2 5 * r h o (l f t) e n d d o

d o 6 i d o 6 i L f t , l l t

e n d d o e n d d o

ALL c"kap· STATEMENTS
ARE X3H5 EXPLICIT
PARALLEL DIRECTIVES.

Figure 5 Assisted Loop Fusion

s u b r o u t i n e S T R A I N
c * k a p * p a r a l l e l r e g i o n
c * k a p * & s h a r e d (d x y , d y x , d 1)
c * k a p * & L o c a l (i , d t 1 d 2)
c * k a p * p a r a l l e l d o

d o 5 i = L f t , l l t
d y x (i) = . . .

5 c o n t i n u e
c * k a p * e n d p a r a l l e l d o
c * k a p * b a r r i e r

d t 1 d 2 = . . .
c * k a p * p a r a l l e l d o

d o 6 i = L f t , l l t

l f t , l l t

d 1 = d t 1 d 2 * C d x y (i) + d y x (i))
6 c o n t i n u e
c * k a p * e n d p a r a l l e l d o
c * k a p * e n d p a r a l l e l r e g i o n

Figure 6 X3H5 £y,.plicit Parallelism

68 Vol. 6 No. j S111nm�r 1994 Digital Tecb nical journal

The KAP Parallelizer for DEC Fortran and DEC C Programs

parallelism. In this case, the user elected to keep

the same unfused loop structure as in the original
cod e. This case is not dramatica l ly less efficient

than the fused version because the parallel region
causes KAP to fork threads only once.

A very sophisticated example of KAP usage occurs

when a user inputs a program to KAP that has
already been optimized by KAP. This is an advantage
of a preprocessor that does not apply to a compiler
because a preprocessor produces source code out
put. I n this case, the statements shown in Figure 6
were generated by KAP to i l lustrate X3H5 paral

lel ism. A user may want to perform some hand opti
mization on this output, such as removing the

barrier statement, and then optimize the mod ified
program with KAP again.

Challenges That Remain

Although the KAP preprocessor is a robust tool that
performs wel l in a production software develop

ment environment, several chal lenges remain.
Among them are adding new la nguages, fu rther
enhancing the optimization technology, and
improving KAP's everyday usabi l ity.

As the popular program ming languages evolve,
KAP evolves also. KAJ will soon extend KAP support
for DEC Fortran to Fortran 90 and is developing C++
optimization capabi l ities.

In optimization technology, KAJ's goal is to make
an SMP server as easy to use as a single-processor

workstation is today. "Automatic Detection of Par
al lelism: A Grand Chal lenge for High-Performance
Computing" contains a leading-edge analysis of par

al lelization technology. 10 The research reported
shows that further develop ing current techniques
can i mprove optimization technology. These tech
niques frequently involve the grand chal lenge of

compiler optimization-whole program analysis.
In a much more pragmatic d irect ion, the KAP

p reprocessor should be integrated with Digital's
compiler technology at the intermediate represen
tation level . Such integration would increase pro

cessing efficiency because the compiler would not
have to reparse the source code. In addition, inte
grat ion would increase the coord ination between
KAP and the compiler to imp rove p erformance for

the end user.
Increasing the usabil ity of the KAP preprocessor,

however, benefits the end user directly. KAP
engineers frequ ently talk to beta users and encour

age feedback. The fol lowing are examples of user
comments:

Digital Techrt icnl journal Vol. 6 No. 3 Swn-mer 1994

• Opti mizing programs is d ifficult when no sub
routine in the program takes more than a few

percent of the run time. As its usability i n this

area improves, KAP will become a substantial pro
ductivity aid . If a program is general ly slow, opti
mizing repeated usage patterns wil l al low the

program mer to use a comfortable programming
style and stil l expect peak system performance.

• Increasing feedback to the user would improve

KAP's usabil ity. When KAP cannot pe rform an
optimization, often the user can help in several

ways (e.g. , by providing more information at

compile time, by changing the options or direc
tives, or by making small changes to the source
code). KAP does not a lways make it clear to the
user what needs to be done. Providing such feed
back would improve KAP's usabil ity.

• I n tegration with other p erformance tools would

be usefu l . Alpha systems have a good set of per
fo rmance monitoring tools that can provide
clues about what to optimize in a program and
how. The next release of the KAP p reprocessor

will provide some simple tools that a user can

employ to i ntegrate KAP with tools l ike prof and
to track down performance differences.

On a final note, the fact that KAP does not speed

up a program should not always be cause fo r disap

pointment. Some programs a lready run as fast as
possible without the benefit of a KAP preprocessor.

Acknawledgments

We wish to acknowledge the Lawrence Livermore
National Laboratory Methods Development Group
and other users for providing applications that give

us insight into how to imp rove the KAP preproces
sor. We would l i ke to thank those at Digital who

have been i nstrumental in helping us del iver
KAP on the DEC OSF/ 1 platform, especially Karen
DeGregory, John Shakshober, Dwight Manley, and
Dave Velten. Everyone at Kuck & Associates partici
pated in the making of this product but of special
note are Mark Byler, Debbie Carr, Ken Crawford,
Steve Healey, David Nelson, and Sree Simhadri .

References

I . D . Bl ickstein e t a l , "The GEM Optimizing

Compi ler System," Digital Technical journal,

vol . 4, no. 4 (Special Issue 1992): 121-136.

69

Scientific Computing Optimizations for Alpha

2. M. Wol fe, Optimizing Supercompilers for

Supercompu ters (Cambridge, MA: MIT Press,

1989).

3. Parallel Processing Model Jot· High Level Pro

gramming Languages, ANSI X3H5 Document

Number X3H5/94-SD2, 1994.

4 . P Tu and D. Padua, "Automatic Array Privatiza

tion," Proceedings of the Sixth Workshop on

Languages and Compilers for Parallel Com

puting, vo l. 768 of Lecture Notes in Com

puter Science (New York: Springer-Verlag,

1993): 500-521 .

5. B. Maskas et a ! . , "Design and Performance of

the DEC 4000 AXP Departmental Server Com

puting System," Digital Technical journal,

vol. 4, no. 4 (Special Issue 1992): 82-99.

6. R. Allen and K. Kennedy, "Automatic Transla

tion of FORTRAN Programs to Vector Form,"

70

ACM Transactions on Programming Lan

guages and Systems, vol. 9, no. 4 (October

1987): 491- 542.

7 U. Banerjee, Dependence Analysis for Super

computing (Norwel l, MA: Kluwer Academic

Publishers, 1988).

8. KAP for DEC Fortran for DEC OSF/1 AXP User

Guide (Maynard, MA: Digital Equipment

Corporation, 1994).

9. KAP for C for DEC OSF/ 1 AXP User Guide

(Maynard, MA: D igital Equipment Corpora

tion, 1994).

10. W Blume et a! . , "Automatic Detection of Paral

lelism : A Grand Chal lenge for High-Perfor

mance Comput ing," CSRD Report No. 1348

(Urbana, IL: Center for Supercompu ting

Research and Development, University of

Ill inois at Urbana-Champaign, 1994) .

Vol. 6 No. 3 Summer 1.994 Digital Technical journal

I Further Readings

The D igital Technical Journal

publishes papers that explore

the technological foundations

of Digital's major products.

Each Journa lfocuses on at least

one product area and presents

a compilation of refereed papers

written by the engineers who

developed the products. The con

tent for the Journal is selected

by the journal Advisory Board.

Digital enginee1·s who would

like to cont1·ibute a paper to the

journal should contact the edito1·

at RDVAX::BLAKE.

Topics covered in previous issues of the

Digital Technical journal are as fol lows :

Alpha AXP Partners-Cray, Raytheon,
Kubota/DECchip 21071/21072 PCI Chip
Sets/DLT2000 Tape Drive
Vol. 6, No. 2, Spring 1994, EY-F947E-TJ

High-performance Networking /OpenVMS
AXP System Software/Alpha AXP PC Hardware
Vol. 6, No 1, Winter 1994, EY-QOl l E-TJ

Software Process and Quality
Vol. 5, No. 4, Fall 1993, EY-P920E-DP

Product Internationalization
Vol. 5, No. 3, Summer 1993, EY-P986E-DP

Multimedia/Application Control
Vol. 5, No. 2, Spring 1993, EY-P963E-DP

DECnet Open Networking
Vol. 5, No. 1, Winter 1993, EY-M770E-DP

Alpha AXP Architecture and Systems
Vol. 4, No. 4, Special Issue 1992. EY-.J886E-DP

NV AX-microprocessor VAX Systems
Vol. 4, No. 3, Summer 1992, EY-j884E-DP

Semiconductor Technologies
Vol. 4, No. 2, Spring 1992, EY-L521 E-DP

PATHWORKS: PC Integration Software
Vol. 4, No. 1, Winter 1992, EY-J825E-DP

Digital Technical journal VtJI. 6 No . .3 Summer 1994

Image Processing, Video Terminals, and
Printer Technologies
Vol. 3, No. 4, Fall 1991, EY-H889E-DP

Availability in VAXcluster Systems/Network
Performance and Adapters
Vol. 3, No. 3, Summer 1991, EY-H890E-DP

Fiber Distributed Data Interface
Vol. 3. No. 2, Spring 1991, EY-H876E-DP

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. I, Winte1· 1991, EY-F588E-DP

VAX 9000 Series
Vol. 2, No. 4, Fall l990, EY-E762E-DP

DECwindows Program
Vol. 2, No. 3, Summer 1990, EY-E756E-DP

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990, EY-C197E-DP

Compound Document Architecture
Vol. 2, No. 1, Winter 1990, EY-C196E-DP

Distributed Systems
Vol. 1, No. 9.]une 1989, EY-Cl79E-DP

Storage Technology
Vol. 1, No. 8, February 1989, EY-C l66E-DP

CVAX-based Systems
Vol. 1, No. 7, August 1988, EY-6742 E-DP

Software Productivity Tools
Vol. 1, No. 6, February 1988, EY-8259£-DP

VAXcluster Systems
Vol. I, No. 5, September 1987, EY-8258E-DP

VAX 8800 Family
Vol. 1, No. 4, February 1987, EY-67 1 1 E-DP

Networking Products
Vol. 1 , No. 3, September 1986, EY-6715 E-DP

MicroVAX II System
Vol. 1, No. 2, March 1986, EY-3474 E-DP

VAX 8600 Processor
Vol. I, No 1, August 1985, EY-3435E-DP

71

Further Readings

Subscriptions and Back Issues

Subscriptions to the Digital Technical journal

are avai lable on a prepaid basis. The subscription
rare is $40 00 (non-US $60 00) for four issues
and $75.00 (non-US $ 1 15.00) for eight issues.
Orders shou ld be sent to Cathy Ph i l l ips. D igital
Equipment Corporati on. 30 Porter Road l.,I 02/D 10,
Lit tleton. Massachusetts 01460, U.S.A . . Telephone:
(508) 486-2538, FAX: (508) 486-2444. Inquiries

can be sent electronical ly to d tj@digital .com.
Subscriptions must be paid in US dollars, and
checks shou ld be made payable to D igital
Equ ipment Corporat ion .

Single copies and past issues of the Digital

Technical journal are available for $ 16.00
each by call ing DECd irect at 1 -800-DJGITAL
(1-800-344-4825). Recent back issues of the

journal are avai lable on the Internet at
http ://w�w.d igital .com/info/DTJ/home.btml.
Complete D igital Internet l isti ngs can be
obtained by sending an electronic mail
message to info@ digita l .com.

Digital Research Laboratory Reports

Reports publ ished by Digital ·s research labora
tories can be accessed on the In ternet through

the World Wide Web or FTP. For access informa
tion on the electronic or hard-copy versions
of the reports, see http:/ /gatekeep er.dec.com/
hypertext/info/era . reports.html .

Digital Product Information

Readers of the jo urnal can keep up-to-date on
Digi tal 's products and services by su bscri bing
to the Digital Reference Sen •ice. To receive cur
rent information on a l l Digital 's products and
services on a regu lar basis. contact the Digital
Reference Service, PO. Box 6464, Ho l l iston, MA
0 1746. Withi n the United Stares, cal l (800) 494-4377
or (508) 429-5515, extension 765. Outside the United
States, cal l (508) 429-30 1 5 or send a facsimile to
(508) 429-6921 .

Technical Books and Papers
by Digital Authors

Applications of Petri Nets in Manufacturing

Systems fl!lodeling, Con trot, ct nd Perforrnance

A na�)'sis, Alan A. Desrochers and Robert Y. Al-jaar,
IEEE Press, New York. 1994 (ISfiN 0-87942-295-5)

72

This practicaL h ighly special ized book presents
theory and examples that clearly show how to use
the Petri net approach to model, contro l . and then
analyze the performance of these complex systems.
This book a lso brings together newly documented

appl ications of Petri nets in Japan and Europe and
makes them available to practi t ioners worldwide.

From this book. the reader wi l l learn how to model
complex manufacturi ng systems using Perri nets;
analyze the p erformance of the overa l l manu factur
i ng system in terms of production rates, machine
uti I ization, average in-process inventory, and other

measures; generate control software from the Petri
net model of an au tomated manufacturing system;
and synthesize Petri net models for large automated
manufacturing systems.

Applications of Petri Nets in Man ufacturing

Systems Modeling. Control, and Perforrncmce

Analysis wil l be of particu lar interest to researchers
in manufacturing systems engineering and ind ivid
uals i nvolved in production p l anning and control,
plant layout and design. and schedul ing of manu
facturing operations.

R. Abugov and K. Zinke, " Prioritization of Defect
Red uction Activity by Yield Impact,'' 1994 SEN/ICON
Ultraclean LVJanufacturing Co nference (October

1994)

M. Ackerman and R. Buckland. '' Mu lt iple Matrices
for a Marketing QFo;· Fiftb S)•mposium on Quality

Function Deployment (June 1994).

M. Ackerman and R. Buckland. "Successful QFD
Appl ication at Digita l : Unique Approaches and
Applicat ions of QFD to Add ress Business Needs ...
Fifth Symposium on Quality Function

Deployment (.June 1994)

H. Al i , J Steele,) . Bosco, and c;. Bartlett, " E lectro
mechanical Stu ely of ' No-Clean· Flux Corrosivity,"
Proceedings of the Eighth Electronic Materials

and Processing Congress (August 1993).

R . Al lmon, "Design of Po rtable Systems," Pro

ceedings of the IEEE Custorn In tegrated Circuits

Conference (May 1994) .

P Anick, "Adapting a Ful l -text Information Retrieval
System to the Computer Trou bleshoo ting Domain,"
Proceedings of the Set'enteenth A n nual Interna

tional ACM-51GIR Conference on Researcb and

Development in Infomwtion Retrieml (J uly 1994).

1-l'!/. 6 .Vo. j Sllll/111<!1' 1991 Digital Technical jo urnal

N. Arora and B. Doyle, "Model ing the 1-V Charac
teristics of Fully Depleted SOl MOSFETs Including
Self Heating," IEEE International Silicon -on

Insulator Conference Proceedings (October 1994).

N. Arora , B . Doyle, and D. Krakauer, ·· sPICE Model
and Parameters for Fu lly Depleted SOl MOS FETs,

Including Self-heating;· IEEE Electron Device Letters

(October 1994)

N. Arora, R. Rios, and C. Huang, " Impact of Poly
silicon Depletion Effect on Ci rcuit Performance
for 0.35tL CMOS Technology;· Proceedings of the

Twenty-fourth European Solid State Deuice

Research Conference (September 1 994).

D. Bhavsar and). Edmondson, "Testability Strategy
of the Alpha AXP 2 1 164 Microprocessor," Proceed

ings of the IEEE International Test Conference

(October 1994).

S. Bi lotta and D. Proctor, ·' Development of a Manu
facturable Low Pressure ROXNOX Oxidation Pro
cess." Adl'anced Semiconductor Manufacturing

Conference and Workshop Proceedings

(November 1994)

C. Brench and B. Archambeau lt , " Proposed Stan
dard EMI Modeling Problems." IEEE ln te·rnational

Symposium on Electromagnetic Compatibility

(August 1994).

C. Brench, " Heatsink Radiation as a Function o f
Geometry,'' IEEE International Symposium o n

Electromagnetic Compatibility (August 1994).

C. Brench, "Shield Degradation in the Presence
of External Conductors,'' IEEE International

Symposium on Electrom.agnetic Compatibility

(August 1994) .

j. Clement and A. Enver. "Modeling EJectromigration
induced Stress Buildup Due to Nonuniform Tem
perature," Materials Reliability in Microelectronics

IV Symposium Proceedings (April 1994).

W Cronin,]. Hu tchison, K . Ramakrishnan, and
H . Yang, "A Comparison of High-speed LANs,"
Proceedings of the IEEE Nineteenth Conference on

Local Computer Networks (October 1994).

W Dubie, " Networds: The Impact of Electronic
Text-Processing Uti l i ties on Writing," journal of

Social and Euolutionary Systems (November 1994).

Digital Technical journal VrJI. 6 No . .J Summer 1994

). Edmondson and P Rubinfeld , "An Overview of
the 21164 Alpha AXP Microprocessor," Hot Chips VI

Symposium (August 1994).

I

T. Fox, "The Design of H igh-Performance Micropro
cessors at Digital," Thirty-first Design Automation

Conference Proceedings (June 1994).

]. Grodstein, E. Lehman, H. Harkness, and
W Grundmann, "Optimal Latch Mapping and
Retiming within a Tree," JEEE/ACM Interna

tional Conference on Computer-aided Design

(November 1994).

C . Gross, " Method for Selecting Semiconductor
Equipment Using Empowered Teams," Advanced

Semiconductor Manufacturing Conference and

Workshop Proceedings (November 1994).

T. G uay, "CASE-based Reasoning for Knowledge
Acqu isition Suggestions," International journal

of Artificial Intelligence Tools (July 1994).

S. jong, " Exploring Paths toward Quality Infor
mation," Fortyjirst A nnual Society for Technical

Communication (May 1994).

C. juszczak and D. Lebel, ·' NFS Version 3 -Design
and Implementation," Summer 1994 USENIX
Technical Conference (June 1994).

D. K.rakauer and K. Mistry. " C ircuit I nteractions
Du ring Electrostatic Discharge," IEEE Electrical

Ouer Stress/Electrostatic Discharge Symposium

Proceedings (September 1994).

]. Lloyd , "E lectromigration Failure of Narrow A I
Alloy Conductors Containing Stress Voids,''
Materials Reliability in Microelectronics IV
Symposium Proceedings (April 1994).

. J . Lloyd, "E lectromigration Failure in Th in Film Con
ductors," Materials Reliabili�J' in Microelectronics

IV Symposium Proceedings (April 1994) .

P Martino and G. Freedman, " Predicting Solder
Joint Shape by Computer Modeling:' Proceedings

of the Forty-fourth Electronic Components and

Technology Conference (May 1 994).

T. Moore, "A Test Process Optimization and Cost
Modeling Tool,'' Proceedings of the IEEE Interna

tional Test Conference (October 1994).

73

Further Readings

D. Morin, T. Comard, M . Joshi, and K. Sprague,
"Calculating Error of Measurement on High-speed
Microprocessor Test," Proceedings of the IEEE
International Test Conference (October 1994) .

G. Papadeas and D. Gauthier, "An On-line Data
Collection and Analysis System for VLSI Devices
at Wafer Probe and Final Test," Proceedings of the

IEEE International Test Conference (October 1994).

M. Piasecki, K . Orvek, R. jones, and S. Dass, " Deep
UV Technology for 0. 35J.Lm Lithography," 1994 IEEE
Lithography Workshop (September 1994).

K. Ramakrishnan and P Biswas, " Performance
Benefits of Nonvolatile Caches in Distributed File
Systems," Concurrency: Practice and Experience

(July 1994).

K . Ramakrishnan and H. Yang, "The Ethernet
Capture Effect: Analysis and Solution," Proceed

ings of the IEEE Nineteenth Conference on Local

Computer Networks (October 1994).

K. Ramakrishnan and H. Yang, " FIFO Design for
a High-speed Network Interface," Proceedings

of the IEEE Nineteenth Conference on Local

Computer Networks (October 1994)

R . Razdan and K. Brace, " PRJSC Software Accelera
tion Techniques," IEEE International Conference

on Compute1· Design: VLSI in Computers and

Processors (October 1994).

A. Sathaye, "Appl ication of Supervisor Synthesis
for Controlled Time Petri Nets to Real-time Data
base Systems," 1994 A merican Control Conference

(June 1994)

S. Sathaye, "Conventional and Early Token Release
Schedul ing Models for the IEEE 802.5 Token Ring,"

journal of Real-Time Systems (May 1994).

S. Sathaye, "A Real-time Sched u l ing Framework
for Packet-switched Networks," Fourteenth Inter

national Conference on Distributed Compu ting

Systems (June 1994).

C. Schiebl, "Appl ication of EDX Spectroscopy
to Accurate Nondestructive Measurement of
CoSi Film Thicknesses du ring Semiconductor
Processing," Twenty-eighth Annual Microbeam

Analysis Society Meeting (August 1994).

74

C. Schiebl, " Continuous Fluorescence Correction
Factor for Layered Specimen,

.
. Twenty-eighth

Annual Microbeam A nalysis Society Meeting

(August 1994).

C. Schiebl, "Secondary Depth Distribution Gener
ated by Characteristic Fluorescence in Multi layer
Samples for Use in Quantitative EPMA," Twenty

eighth A nnual Micmbeam Analysis Society

Meeting (August 1994).

). Seyyedi, "Soldered joint Reliabil ity for Interstitial
Pin Grid Array Packages," journal of Surface Mount

and Related Technologies Group (October 1994).

H. Soleimani, "An Investigation of Phosphorous
Transient Diffusion in Sil icon below the Solid Solu
bil ity Limit and at a Low I mplant Energy," journal

of the Electrochemical Society (August 1994).

K . Steeples and D. Chang Kau , " Mu ltiply Charged,
Channeled , Ion I mplantation," Tenth International

Conference on Ion Implantation Technology

(June 1994)

K. Steeples, D. Chang Kau, M. Andreoli , and
K. Mistry, " Rapid I mplementation of a LA TID

Process," Tenth International Conference on

Ion Implantation Technology (June 1994).

N . Sul l ivan and S. Arsenault , "SEM/ EDS Ana lysis
Method for Bare Silicon Particle Monitor Wafers,"
Advanced Semiconductor Manufacturing

Conference and Workshop Proceedings

(November 1994).

N. Sul l ivan and R. Newcomb, "Critica l Dimension
Measurement in the SEM: Comparison of Backscat
tered vs. Secondary Electron Detection," Proceed

ings of the International Society of Photo-Optical

Instrumentation Engineers (SPIE): Integrated Cir

cuit Metrology, Inspection, and Process Control

VIII (February 1994).

B. Thomas, "Open VMS 1/0 Concepts Kernel
Processes;' Digita! Systemsjournal (July 1994).

B. Thomas, "Open VMS 110 Concepts: Software,"
Digital Systems journal (July 1994)

B. Thomas and K. Morse, "Open VMS AXP 1/0 Con
cepts," Digital Systems journal (June 1994).

Vol. 6 No. 3 Summer /994 Digital Technical]ourrral

A. Torabi, M . Mallary, and S. Marshal l , "The Effect
of Rise Time and Field Gradient on Nonl inear Bit
Shift in Thin Film Heads," The Sixth joint MMM
Intermag Conference (June 1994).

A. Torabi, M. Mallary, S. Marshall , S. Batra, and
S. Ramaswamy, " Performance Evaluation of D iffer
ent Pole Geometries in Thin Film Heads," The Sixth

joint MMM-Intermag Conference (June 1994).

M. Tsuk, " FASTHENRY: A Multipole-accelerated
3-D Inductance Extraction Program," IEEE Trans

actions on Microwave Theory and Techniques

(September 1994)

M. Tsuk and R . Evans, " Modeling and Measure
ment of the Power Distribution System of a High
performance Computer System," IEEE Topical

Meeting on Electrical Performance of Electronic

Packaging (October 1993).

R . Ul ichney, " Halftone Characterization in the
Frequency Domain," The Society for Imaging

Science and Technology's (IS&T's) Forty-seventh

Annual Conference (May 1994).

Digital Techntcaljourtwl Vol. 6 No. 3 Summer 1994

R . Ulichney, "The Void-and-cluster Method for
Dither Array Generation," Proceedings of the

International Society of Photo-Optical Instru

mentation Engineers (SPIE) (September 1993).

M. Utt, "A System for Discovering Relationships
by Feature," Proceedings of the Seventeenth

Annual International ACM-SIGIR Conference

on Research and Development in Information

Retrieval (Ju ly 1994).

). Vicente, " Network Capacity Planning," CMG '93
Conference (December 1993).

A . Vil lani , " Cohesive Mechanical Behavior of
Adhesive Materials," Proceedings of the 1993 ASME
International Electronics Packaging Conference:

Advances in Electronic Packaging 1993 (October
1993).

I

). Yang, " Reliabi l i ty Performance of an R3000-Based
MCM for Desktop Workstations," International Elec

tronics Packaging Conference (September 1993).

W Zahavi, " Modeling the Performance Budget,"
Computer Measurement Group Proceedings

(CMG '93) (September 1993).

75

I Recent Digital US. Patents

The following patents were recently issued to Digital Equipment Corporation. Titles and names supplied
to us by the US. Paten t and Trademark Office are reproduced exact(y as they appear on the original pub
lished patent.

4, 592,072 R. E . Stewart

5, 210,834 W Beach and). Zurawski

5,210,874 P Karger

5, 212,650 D. Hooper and S. Kundu

5,212,783 S. Sherman

5,214,770 R . Ramanujan, P Bannon,
and S. Steely

5.216,413 L. Sei ler,). Pappas, and
R. Rose

5,218,684 D. Hayes and V Triolo

5, 218,712 D. Bhandarkar, W Cardoza,
D. Cut ler, D. Orbits. and
R. Witek

5,220,468 M. Sidman

5, 220,674 W Morgan, D. Cobb, G Bel l .
and A . Carlson

5,221 ,422 S. Das and). Khan

5, 222,029 D. Hooper and S. Ku ndu

5,222,223 R . Hetherington, D. Webb,
T. Fossum,). Murray, and
D. Manley

5,222,224 S. Arnold, S. Delahunt,
M . Flynn, T. Fossum ,
R . Hetherington , and
D. Webb

5,226, 170 P Rubinfeld

5, 228, 129 S. Bryant and M . Harwood

5,230,067 B . Buch

5, 230,071 B . Newman

5,230,072 D. Smith and K. O ' Rourke

5,230,079 R. Grondalski

76

Decoder for Sel f-Clocking Serial Data Commu nications

High Speed Transfer of I nstructions from a Master to
a Slave Process

Cross-Domain Ca l l System in a Capabi l it y Based D igital
Data Processing System

Procedure and Data Structure for Synthesis and Trans
formation of Logic C i rcuit Designs

System Which Directional ly Sums Signals for Identifyi ng
and Resolving Tim ing I nconsistencies

System for Flushing Instruction- Cache Only When
Instruction- Cache Address and Data-Cache Address Are
Matched and the Execution of a Return-from-Execution
o r-Interrupt Command

Apparatus and Method for Specifying Windows with Priority
Ordered Rectangles in a Computer Video Graphics System

Memory Configuration System

Providing a Data Processor with a User-mode Accessible
Mode of Operations in Wh ich the Processor Performs
Processing Operations without Interruption

Disk Drive with Constant Bandwidth Automatic Gain Control

Local Area Print Server for Requesting and Storing Required
Resource Data and Forwarding Pri nter Status Message to
Selected Destination

Lithographic Technique Using Laser Scanning for Fabrication
of Electronic Components and the Like

Bitwise Implementation Mechanism for a C i rcuit Design
Synthesis Procedure

Method and Apparatus for Ordering and Queueing M u l tiple
Memory Requests

Scheme for Insuri ng Data Consistency between a P lural i ty
of Cache Memories and the Main Memory in a Mult iprocessor
System

Interface between Processor and Special Instruct ion
Processor in Digital Data Processing System

Synchronous Communication I nterface for Reducing the
Effect of Data Processor Latency

Bus Control C ircu i t for Latching and Mainta ining Data
Independently of Ti ming Event on the Bus Unt i l New
Data Is D riven Onto

Method of Control I ing the Variable Baucl Rate of Peripheral
Devices

System for Managing Hierarchical Information i n a D igital
Data Processing System

Massive ly ParalleJ Array Processing System with Processors
Selectively Accessing Memory Module Locations Using Address
in M icroword or in Address Register

Vol. 6 No . .i Su/1/mer 19')4 Digital Technical journal

5,235,693

5,237,574

5,239,635

5, 247,398

5,249, 187

5,249,293

5,251 ,322

5,255,367

5,261 , 1 13

5,266,409

5, 267, 175

5,276,892

5,278,840

5,280,617

5,287.463

5,291 ,581

5, 297,283

5,301 ,329

5,303,380

5,305,462

5,313,467

5,317,7 17

]. Lynch, K. Chinnaswamy,
P Goodwin,]. Tcssari, and
M. Gagl iardo

L Weng

R.E. Stewart, T E. Leonard,
and ST Lee

M. Sidman

W Bruckert and T Bissett

B. Schreiber, C. Cockcroft,
M. Ozur, R. Bismouth, and
D. Doherty

P Doy le,]. El lenberger,
E. jones, D. Carver, S. D iPirro,
B. Gerovac, W Armstrong,
E. Gibson, R . Shapiro,
K. Rushforth, and WC. Roach

W Bruckert, T Bissett,
D. Mazur, and]. Munzer

N. P jouppi

P H . Schmidt and j.C. Angus

D. Hooper

AS Olesin and R . M . Supnik

I) Bhandarkar, W Cardoza,
D. Cutler, D. Orbits, and
R. Witek

R .F. Brender and B .R . Brett

RC Frame and FA. Zayas

D. Bhandarkar, W Cardoza,
D. Cutler, D. Orbits, and
R. Witek

D. Cut ler, J Kel ly, and
F. Perazzoli

RC Frame and FA. Zayas

B. Foster, G. Brown, J Piazza,
]. Tenny, B. Nelson,
W Van Roggen, and
P Anagnostopoulos

R. Grondalski

G. Varghese, M . Fine, A. Smith,
and R. Szmauz

D. Bhandarkar, W Cardoza,
D. Cut ler, D. Orbits, and
R. Witek

Method and Apparatus for Reducing Buffer Storage in
a Read-Modify-Write Operation

Error-resilient I nformation Encoding

Virtual Address to Physical Address Translation Using Page
Tables in Virtual Memory

Automatic Correction of Position Demodulator Offsets

Dual Rail Processors with Error Checking on l/0 Reads

Computer Network Providing Transparent Operation
on a Compute Server and Associated Method

Method of Operating a Computer Graphics System Includ ing
Asynchronously Traversing Its Nodes

Fau l t Tolerant, Synchronized Twin Computer System with
Error Checking of 1/0 Communication

Apparatus and Method for a Single Operand Register Array
for Vector and Scalar Data Processing Operations

Hydrogenated Carbon Compositions

Database Access Mechanism for Ru les Utilized by a Synthesis
Procedure for Logic C ircui t Design

Destination Control Logic for Arithmetic and Logic Unit for
D igital Data Processor

Apparatus and Method for Data Induced Condition Signall ing

I

Automatic Program Code Generation in a Compiler System for
an Instant iation of a Generic Program Structure and Based on
Forma l Parameters and Characteristics of Actual Parameters

Method and Apparatus for Transferring Information over
a Common Para l lel Bus Using a Fixed Sequence of Bus
Phase Transitions

Apparatus and Method for Synchronization of Access
to Main Memory Signal Groups in a Multiprocessor Data
Processing System

Object Transferring System and Method in an Object Based
Computer Operating System

Double Unequal Bus Timeout

System for Processing Data to Facil itate the Creation
of Executable Images

Mechanism for Broadcasting Data in a Massively Parallel
Array Processing System

Integrated Communication Link Having Dynamical ly
Allocatable Bandwidth and Protocol for Transmission
of Allocation Information over the Link

Apparatus and Method for Main Memory Unit Protection
Using Access and Fault Logic Signals

Digital Techuical journal Vol. 6 No 3 Summer 1994 77

Call for Authors
from Digital Press

Digital Press has become an imprint of Butterworth-Heinemann, a major inter

national publisher of professional books and a member of the Reed Elsevier

group. Digital Press remains the authorized publisher for Digital Equipment

Corporation: the two companies are working in partnership to identify and pub

lish new books under the Digital Press imprint and create opportunities for

authors to publish their work.

Digital Press remains committed to publishing high-quality books on a wide

variety of subjects. We would like to hear from you if you are writing or thinking

about writing a book.

Contact: Frank Satlow

Publisher

Digital Press

313 Washington Street

Newton, MA 02158
Tel: (617) 928-2649
Fax: (617) 928-2640
fps@world.std.com

ISSN 0898-901X

Prin� in U.S.A. BY.S7991!-TJ/9j 01 14 14.� Copyright 0 Digital Equipment Corporation. All Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Design of the AlphaServer Multiprocessor Server Systems
	The AlphaServer 2100 I/O Subsystem
	DEC OSF/1 Version 3.0 Symmetric Multiprocessing Implementation
	DXML: A High-performance Scientific Subroutine Library
	The KAP Parallelizer for DEC Fortran and DEC C Programs
	Further Readings
	Recent Digital U.S. Patents
	Call for Authors from Digital Press
	Back cover

