
DECUS PROCEEDINGS

SPRING 1968

PAPERS AND PRESENTATIONS

of
Digital Equipment Computer Users' Society

~aynard, ~assachusetts

PAPERS AND PRESENTATIONS
of

Digital Equipment Computer Users' Society

PHYSICS, EDUCATION,

BIOMEDICINE, TYPESETTING

APRiL 26, 27

Bellevue Stratford Hotel
Philadelphia, Pennsylvania

CONTENTS

PREFACE •.•..•..........

A STIMULUS-RESPONSE PROGRAMME FOR
HOTEL ROOM INVENTORIES

D. W. Roberts •

THE FASBAC REMOTE ACCESS SYSTEM
Dan W. Scott . • • • •

ON-LINE ANALYSIS OF WIRE SPARK CHAMBER
DATA

P. F. Niccolai, R. H. Bicker, M. Edwards,

PAGE

v

5

and C. Swannack. . . • . . • •• 9

PAGE

A COMPUTER SYSTEM FOR ELECTRICAL ENGINEERS
David M. Robinson 71

COMPUTER TYPESETTING OF MATHEMATICAL
TEXT: THE INPUT LANGUAGE PROBLEM

Richard J. McQuillin. • • • . 77

USE OF PDP-8 FOR DRIVING PHOTOCOMPOSITION
MACHINES*

Richard Fait • • • • . • • • 85

PDP-9T TIMESHARING: PHASE I, MULTIPROGRAMMING
D. M. Forsyth, M. M. Taylor, and S. Forshaw. 87

PDP-8 ON-LINE DATA ACQUISITION SYSTEM EXTENDED MEMORY FORTRAN WITH AN 8K PDP-7
FOR HIGH ENERGY PHYSICS* Philip R. Bevington. • • . . • • . • . . • • 91

Paul Shrager and Larry Taylor • • • •. . 15

THE ON-LINE USE OF A PDP-9 AND AN
IBM 360/65 IN A PROTON-PROTON
BREMSSTRAHLUNG EXPERIMENT USING WIRE
CHAMBERS

D. Reimer, J. V. Jovanovich, J. McKeown,
and J. C. Thompson • . • • . . • . 17

AUTOMATIC FILM MEASUREMENT WITH A PDP-9
C. Drum, T. McGrath, and R. Van Berg. . . . 27

A COMPUTER-CONTROLLED SYSTEM FOR
AUTOMATICALLY SCANNING AND INTERPRETING
PHOTOGRAPHIC SPECTRA

C. A. Bailey, R. D. Carver, R. A. Thomas,
and R. J. Dupzyk . . • . . . • • • .• 31

A PDP-8 SYSTEM FOR BUBBLE CHAMBER
MEASUREMENTS

John Rayner • • • . • • • • • • • • • . • . 35

STRIP, A DATA DISPLAY AND ANALYSIS PROGRAM
FOR THE PDP-8, 8/1

John C. Alderman, Jr. . • • • . • . • • . . 37

BRINGING THE COMPUTER INTO THE HIGH
SCHOOL CLASSROOM

Michael L. Doren • • . . • • . . . • • . • 43

PDP-8/S IN THE HIGH SCHOOL CLASSROOM
Bud R. Pembroke and Dave Gillette. • 49

PROJECT ASC
Robert M. Metcalfe. • . . • . . . • • • • • 55

CLOSING THE EDUCATIONAL LOOP IN APPLIED
MATHEMATICS (THE ON-LINE CLASSROOM)

J. W. Elder. • . . . • • . . . 57

A SYSTEM FOR PRESENTING PROGRAMMED
INSTRUCTION TO T~E DEAF AND HEARING
IMPAIRED

K. E. Rigg and James A. Boehm, III 63

iii

IMPLEMENTATION OF AN ON-LINE REACTIVE
(TYPEWRITER) LANGUAGE*

David Z. Polack • . • . 99

DISC VERSION OF STRIP - A DATA DISPLAY
AND ANALYSIS PROGRAM FOR THE PDP-8, 8/1

John Alderman. . . . • . • . . . • . . • . 101

PDP-8 OSCILLOSCOPE DISPLAY OF MATHEMATICAL
FUNCTIONS USING FORTRAN ••.•.••••

August E. Sapega and Stephen' G. We II come . • 107

DPL - A DISPLAY PROGRAMMING LANGUAGE·
Jeffrey H. Kulick .•.•....•••.• 111

THE FASBAC SYSTEM - TIME DIVISION MULTI
PLEXING AND THE PDP-8

G. Friend and Paul J. Bell •••.••..• 119

A REAL-TIME MULTIPLE TASK EXECUTIVE PROGRAM
WITH A BUILT-IN CONSOLE UTILITY PACKAGE
FOR PDP-8/S AND PDP-8 COMPUTERS

C. D. Martin, Jr., and R. L. Simpson ..•. 123

FOCAL*
Rick Merr i II • • • . . • . . • • • • • . • . 1 29

A PDP-6 LANGUAGE FOR SIMULATING
COMPLICATED BIOCHEMICAL SYSTEMS

David Garfinkel • • • • • • • • 131

A GENERAL LANGUAGE FOR ON-LINE CONTROL
OF PSYCHOLOGICAL EXPERIMENTATION

J. R. Millenson •.•••.••..

A TAPE STORE FOR BIOCHEMICAL DATA
Harold W. Shipton • • • . . . • . .

· 137

· 145

AUTOMATIC SPECTROPHOTOMETRIC IDENTIFICATION
OF BACTERIA

Alan Ferry and Richard Martin . · 149

APPENDIX 1
Spring 1968 Symposium Program • 151

APPENDIX 2
Author/Speaker Index. • 159

APPENDIX 3
Attendees • . • 161

* Abstract On Iy

iv

PREFACE

This 1968 Spring DECUS Symposium boosted a record attendance of 270. The two-day session included,
along with the presentation of papers, workshops on software systems for the PDP-8, PDP-9, PDP-la,
Education, Modu les, and a pane I discussion on CI inical Laboratory automation. The Education workshop
was the first endeavor of the Education sub-group and it proved both informative and interesting.

The meeting facilities provided by the Bellevue-Stratford Hotel enabled us, at times, to hold three
simu Itaneous sessions successfu Ily.

Papers published in this volume have been printed as received from authors with no editorial changes.
In some cases, papers were not received in time for publication and abstracts of these papers have been
substituted. If the omitted papers are at some time submitted to the users group, they will be published
in the newsletter, DECUSCOPE. Reprints of papers presented here are available from the DECUS Office,
Maynard, Massachusetts 01754.

This proceedings also contains a list of meeting attendees, the program, and an author/speaker index.

Special thanks to Mr Henry Sparks, University of Pennsylvania, for his able assistance in the preparation
of the meeting and to, Professor Philip Bevington, Meetings Chairman, Professor Thomas Day, Dr. -Belmont
Farley, Dr. Sylvia Charp, Richard McQuillin, and Michael S. Wolfberg, session chairmen.

v

A STIMULUS-UESPONSE PROORAt'1l1E FOR
HOTEL n00i1 IN"VENTORIES

D. W. Roberts, E. D. P. ~ager
The Strand Hotel Limited, London, W. 1.

England.

ABSTRACT

The policy aims fulfilled by the programme are listed and
an outline of the original booking system is given. The
difficulties of this system are highlighted and the new system
is described.

The action of a single function is detailed and the devel
opment of a single message is traced through seven phases in
response to user requirements. The details of a useful method
of handling dated information are given.

The system has been extended to two other hotels.

The purpose of this paper is to describe a some
what unusual application in the field of business
management. It is unusual in being the first such
application, in having only intangible benefits, and
in having been an unqualified success. The justific
ation has always been expressed in terms of reducing
the problems inherent in the management of a major
hotel; the managers who now operate this system are all
convinced that it has simplified the decision-taking
in the control of the advanced bookings by presenting
adequate and accurate information in an easily
assimilated format. The unit, which was installed in
the Strand Palace Hotel in April 1967, was the first
time an hotel anywhere in the world had had a computer
exclusively for its advance booking office.

A brief description of the hotels in the group
would be advantageous here. The hotel which had the
first of these installations has 780 bedrooms, cater
ing for up to 3,500 guests per week, and the other
two central London hotels in the group have between
them a further 2,000 rooms, catering for up to 9,000
guests a week. These two hotels have been used as
control units for comparison of the agreed policy
criteria for the value of the new system. The avowed
policy aims in the hotel group can be sUIIllJE!d up very
simply in that the percentage of beds let (the
occupancy) should be maximised, and further, the
proportion of the rooms which are let to guests who
have prior written reservations (as opposed to walk
in or "chance" gue sts) should be maximi sed, wi thin
the first constraint. There are, of course, many
?ther criteria employed by the manager in running
an hotel but these are the only ones relevant to
this computer system.

The system of controlling bookings employed
previously in a hotel of this size has been the so
called "target" system, which consists chiefly of
estimating the number of vacant rooms on any given
day and accepting bookings up to that number (plus
a few to allow for non-arrivals) and disregarding
any information available about lengths of stay.
This system has proved reasonably effective during
most of the year because the trade shows a very clear
seasonal and day-to-day pattern and managers have

learned, by experience, how to allow for this. For
instance, "Tuesday is the busiest night of the week",
'there is always room on Sunday night", and similar
maxims work very well when combined with good detailed
knowledge of the reasons for sudden influxes e.g.
important exhibitions, sales, etc.

The pattern was frequently disrupted in two ways:
a) serious departures from previous years'demand e.g.
the World Cup football matches which resulted in fore
casts being made with no data available; b) errors of
judgement or of forecasting from known events e.g.
Easter 1967 fell early enough to coincide with the
optimum marriage dates for income tax refund purposes,
thus causing an unusually high proportion of honeymoon
business which has a significantly greater length of
stay than normal business. In both of these types of
disruption serious errors (of over - or under-booking)
could, and sometimes did, occur. It was quite clear
that the only way to overcome this problem was to
change from selling "targets" of vacant rooms to
selling actual numbers of vacant room-nights (a total
booking system).

The "target" system of recording bookings was
based on charts on which one mark was made for each
booking (on the expected date of arrival). This
involved an average of 350 marks per day. It seems
likely that about 5% of these were errors of one type
or another.

In the total booking system each of these book
ings would require, on average, about three marks each
on separate booking cards, thus raising the volume of
work to perhaps a thousand marks a day, and it is very
likely that the error rate wruld have increased ex
ponentially rather than linearly. It was therefore
decided that it would be impracticable to run a manual
total booking system for an hotel of this size
-because staff sufficiently intelligent to perform this
task accurately would not be prepared to perform so
monotonous a task. The exponentially increasing error
rate is equivalent initially to an asymptotic mono
tonically decreasing efficiency function.

NO. OP ERRORS
NO. CORRECT

NO. OP MARKS

FIGURE 1

EFFICIENCY %

NO. OF MARKS

FIGURE 2

In neither of these systems is any attempt made
to allocate specific rooms to guests prior to their
arrival as a non-arrival proportion of 10% of expected
guests is quite normal; figures as high as 40% have
been known. This simplifies the problem slightly, but
nevertheless it was felt that a form of electronic aid
was necessary. The information necessary for a total
booking system was available to the staff concerned
but there was no method of retreiving and reducing
this data into a usable form.

2

The original plan for this aid involved a purpose
built machine, containing approximately one thousand
words (365 days, each containing three classes) of core
store to be used as counters of available rooms with
hardware logic to add and subtract bookings and can
cellationso With the advent of the PDP-8/S, a stored
programme computer capable of providing this service,
and yet cheap enough to be used exclusively for this
purpose, was available on the market. One of these
was ordered in January of this year and we took delivery
early in March of a basic 4K machine with a teletype.
This machine is a 12-bit word, serial logic machine
with a cycle time of 6 microseconds costing, in the
table model, £4,357 including duty. The programming
was done in the machine's mnemonic assemberlanguage.
All input-output is via the ASR-33 teletype in the
configuration we use.

The programme performs several separate and
distinct functions in a stimulus-response mode on
data stored in a diary allocated 2008 to 37038 0 Each
day in the diary consists of five words, word one
containing the date and day of week, word two the
available single rooms, word three the available
double-bedded rooms, word four the available twin
bedded rooms and word five the available three-bedded
rooms for that day.

The most important function is BOOK. The message
for this operation is initiated by the operator enter
ing B on the teletype. The computer responds by
typing BOOK, provided that this is the first letter
of a message entered. The numbers and classes of
rooms are then entered and typed back by the machine.
The operator enters F and the computer types FROM,
the date of arrival is then entered and typed. The
operator enters ALT MODE (a non-printing key) and
the computer replies TO. The departure date is then
entered and typed back. The end-of-message signal is
given by a full-stop. The message is stored (using
only characters entered by the operator) in locations
3704 onwards, up to 3m. The message is then
chec~d for validity and ~he rooms booked subtracted
from the numbers available. In the event of the number
of available rooms of any class on any day passing pre
arranged thresholds, warning messages are typed to the
operator, instructing her to refer the particular days
to the Manager for possible closure of bookings.

Since this paper is all applica:tiviis paper I
go over the system development in some detail.

--.: , ,
..... ..L..L

The inception of the project grew out of a brief
to examine the systems in use in the hotel in the light
of modern management methods and equipnent. It was
evident in the early stages of this, study that advance
bookings were a source of many management problems,
and that although a total booking'system would solve
many of these problems it was impossible to use such
a system satisfactorily using manual methods.

A study group was set up consisting of the Hotel
Manager, the Assistant Manager, the Bookings Supervisor,
the O.R. Manager, the 0 & M Manager and myself (then,
Systems Analysis Manager) to investigate the problem
of introducing a total booking system and from this
group a recommendation was made to purchase a PDP-8/S
to maintain an inventory of rooms available for a year
ahead.

The initial installation went into full use
during April, 1967 and the hotel bookings have been
controlled entirely on the basis of the computer
provided information since the first week in May.

During the early stages of implementation
various amendments were made to the basic programme de
sign to accommodate the desires of the staff of the
office using the machine, and the managers controlli~g
them. These I shall demonstrate by tracing one
message's development through the various phases of
programme amendment.

1. The original warning messages from the
programme to refer single bookings on 20/8 urgently
to the manager for action as they are 5 rooms over
booked. This is the message as it was designed in the
first instance.

2. The first modification was to eliminate
each crossed zero and replace it by the letter 0
as it was claimed that crossed zero would confuse
the staff. This amendment was introduced at the
planning stage before the installation of the machine.

3. Within a few days of introduction of the
system double spacing of these messages was eliminated
because the messages were quite legible single spaced.

1) URGENT 2¢/8 SINGlE -5

2) URGENT 20/8 SINGlE -5

3) URGENT 20/8 SINGlE -5
4) U 20/8 S -5
5) U 20/8$ S -5
6) 20/8$ S -5
7)

Further amendments to this message are, I now
feel, unlikely, though we may decide that it is totally
redundant. The indications from detailed discussions
with the managers are, however, that this is improbable.

The derivation of the date and day of week is
identical throughout the programme and is dependent
on a subroutine called I~OUT which interprets a con
densed bit-pattern date from the diary of the machine.
This consists of a single word split into three fields:
bits 0 to 4 inclusive contain the day number in the
month, bits 5 to 8 inclusive contain the month number
and bits 9 to 11 inclusive contain the day of the week
(1 for Sunday, 2 for Monday, etc.). If the day-of~week
field contains all zero bits the day-letter is printed
as N and if the entire word is zero the programme
recognises this as a non-existent day. This is useful
because it enables us to have a 372-day year (12 months
each of 31 days) and simply suppress any operations
for non-existent days.

DAY NUMBER :-IONTH NUMBER DAY OF WEEK

FIGURE 4

FIGURE 3 The address of a given date in the diary is

4. One second per line was saved some weeks
later by reducing the message by 10 characters and
printing only the initial letters of the URGENT and
the SINGlE. This step had been contemplated initially
but was delayed until the users were familiar with the
system messages.

5. The day of week was introduced into all
computer-generated dates on the specific request of
the manager who chiefly took decisions based on the
machine. The codes used are $ for Sunday, M for
Monday, ? for Tuesday, W for Wednesday, T for
Thursday, F for Friday and S for Saturday.

6. Since the reference of dates to the manager
for action was never immediate the degree of urgency
indication was next deleted, together with a sizeable
programme sector which performed the relevant tests.

7. Finally, the messages were all made optional
on the action of Switch 11 and are now only printed
out when they are called for by the manager for
decision-taking sessions; typically these occur two
or three times during the course of each day.

3

therefore (37*(M-l)+D)*5+175 where M:Month and D:Day
in octal.

The extension of the use of this system to the
other two major hotels in the group took place last
autumn, taking advantage of the seasonal luI]
immediately after the Motor Show.

THE FASBAC REMOTE ACCESS SYSTEM

Dan W. Scott
Manager, Remote Processing Services

Technical Services Division
University Computing Company

Dallas, Texas

ABSTRACT

FASBAC is a conversational system which facilitates
setting up runs. for the University Computing Company
Direct Access Computer utility, via remote low speed
terminals in the customers' offices. It is also the
basis for a general-purpose direct access file sys
tem.

SUCCESSFUL TIME SHARING

Time sharing has become within the com
puting world the subject of lengthy de
bates on milli-second response time,
swapping strategies, exotic memory manage
ment techniques, and whether bits should
be colored blue or green. Were these
truly critical parameters, the world would
still be waiting for its first commercial
quick response remote access system. For
tunately these are not the real 1ssues,
since time sharing has become highly suc
cessful with what are regarded as primi
tive systems. It would be well to examine
the reasons behind the success.

First, it should be noted that time
sharing and batch processing systems have
two things in common: they use essential
ly the same kind of hardware) and they are
both shared by many users.

Unlike batch processing, however, time
sharing has brought convenience and sim
plicity to computing.

The successful time sharing system differs
from the typical batch processing system
in four significant areas.

1. It offers convenient physical access.

2. It offers quicker response.

3. It offers simple communication in both
programming and control languages.

4. It offers program and data storage and
editing facilities.

Simple communication with the computation
al facility is obviously attractive to the
commercial user of calculational services;
but, historically, progress in making
general purpose systems easy to use was
relegated to a secondary priority for many
years after the appearance of FORTRAN.
However, in specialized applications area~
such as numerical control, report genera
tion, CPM/PERT, and circuit analysis, new
languages reduced the communication pro
blems between the user and the computer.
Finally, JOSS, developed by the RAND

5

Corporation, and BASIC, developed by Pro
fessor Kemeny of Dartmouth College, ap
peared. Both the JOSS and the Dartmouth
BASIC Systems reduced greatly the impedance
mismatch between programming systems and
the general engineering user.

These systems demonstrated that an accept
able commercial system must not only be
physically convenient, but must be intel
lectually approachable as well. A sense
that the machine is non-critical is im
portant; these direct access systems ap
pealed to many customers because errors are
more rapidly corrected in privacy; a mis
take is pointed out by the computer with a
slap on the wrist, instead of the face.

As important as well thought-out program
ming languages, are simplified, well
thought-out text editors and file systems.
This element is not even now widely ap
preciated: the advantage to a user of
ready access to calculational power, and,
at the same time, of ready access to the
power of computer-aided program filing,
data filing, and editing. This file manipu
lation facility is the very foundation which
makes simplicity technically attainable in
the successful general purpose, remote ac
cess, computation system.

So, people are willing to pay for access to
computational facilities. But this access
must be both physically and intellectually
convenient, and must apply as much as pos
sible to all aspects of the computer utili
ty business--commercial as well as techni
cal, filing as well as computational. In
summary, these requirements must be satis
fied: reasonable programming languages,
reasonable file languages, convenient ac
cess to the facilities, and for many appli
cations, quick response.

THE UNIVERSITY COMPUTING COMPANY
COMPUTER UTILITY DESIGN

There are several approaches to remote com
puter sharing design. On the one hand, we
have the systems typified by the GE-265,
the Dartmouth GE-625, and the SDS-94d
small-scale time sharing systems. What

these facilities do, they do well; how
ever, they are of limited value to many
potential users because of the limited
resources allocated to each user. The
objective of other designs has been to
maximize the usefulness of a large pro
cessor. The central processor and its
peripheral storage is intended to be fully
available to each remote user, at the same
time that it is carrying on conversations
with all users. But the centralized ap
proach has two drawbacks: (1) Complex
and expensive implementation; (2) Poor
cost/performance ratio.

Our approach with the UCC FASBAC design
is to decentralize the large-scale pro
cessing; to distribute functions among
subsystems; to be eclectic, selecting
small, slow, processors and memories to do
those things they do more economically, to
allow the user of the large processor its
unrestricted power. We combine the two
implementation approaches just mentioned.

The UCC direct access design comprises
three independent subsystems; the large
scale UNIVAC 1108 subsystem for compilation
and numerical computation, the COPE remote
terminal subsystem for high-speed card in
put and print output, and the FASBAC re
mote terminal subsystem for conversational
input and output editing. The UCC Direct
Access System might well be called a
large-scale time sharing system.

Two of these subsystems have required
major development efforts by the University
Computing Company for their creation, and
all require substantial continuing de
velopment.

In order to supply physical access for
large volume work, we have put high-speed
card reader and printer terminals as close
as possible to the user: this is our COPE
communications facility. Second, we are
developing a low volume communications fa
cility~ FASBAC, for file manipulation and
text editing. This conversational iext
editing facility uses low to medium speed
terminals in the users' offices and mass
storage at the UCC utility center, and is
connectable on demand to the 1108 and to
the high-speed terminals.

The COPE subsystem mUltiplexes remote
high-speed card readers and printers into
the UNIVAC 1108 (Fig. 1). Figure 1 is
simplified, and does not show, for example,
the COPE communications controller. Both
this central multiplexor and the remote
terminal controllers use Digital Equipment
Corporation PDP-8 processors. The COPE
development is proprietary to UCC, but was
a natural outgrowth of the UNIVAC 1107
EXEC-2 remote 1004 facility. However,
quantitatively;" its performance to cost
ratio is much better. COPE provides un
restricted access to the 1108 when masses
of data are to be moved. The very speed
of the data transfer inhibits, of course,
meaningful dialogue with a person.

6

THE FASBAC SUBSYSTEM DESIGN

As we have just seen, COPE facilitates bulk
input and output of files by readers and
printers which are close to the customer.
However, file editing, output file browsing,
input file corrections--the low volume, con
versational elements of accomplishing jobs
--are done via the FASBAC Teletype termin
als.

FASBAC has as its objectives the increase
in usefulness of the powerful UNIVAC 1108
systems to the low volume conversational
user, and the provision of a basis for im
mediate remote access to bulk storage.

Technically, FASBAC is simply a communica
tions-oriented text editing facility with
bulk storage (Fig. 2); that is, it has a
file system for mass storage, it has edit
ing programs, and these facilities are
conven~ently available to individual cus
tomers through remotely located terminals
which time-share a small central processor.

Text can be entered, stored, retrieved, and
manipulated via low-cost, low-speed termin
als suitable for text entry and display.
This text may also be input to or output
from the UNIVAC 1108 processor. The pro
cessing by the 1108 is then in its normal
batch mode of scheduling, with multi-priori
ty queueing. To the 1108, the PDP-9 pro
cessor looks like a card reader and printer.

In addition, FASBAC terminals can indirect
ly access the COPE terminals through the
1108 (Fig. 3).

The constraints of the FASBAC subsystem
must be observed: low volume input, low
volume output, and low volume file pro
cessing (even though the files themselves
can be large). Because of the relatively
small memory of the PDP-9, quicker response
to sequential processing of large files is
obtained when the processing is done by
the large-scale machine.

The first objective of FASBAC is to pro
vide convenience and quick response to the
large-scale computer programmer. The files
which he manipulates via FASBAC in a con
versational mode are UNIVAC 1108 program
files and data files to be executed by the
large-scale processor. Formerly, users had
to edit or control the editing of their
files by means of physical manipulation of
punched cards. FASBAC automates these pro
cedures of entering and updating, doing
away with the constraints of physical unit
records, and making the file editing fa
cilities context oriented. The user then
has personal access to the UNIVAC 1108 with
out an operator being required for the
mechanics of program and data entry.

The text editing programs include both line
replacement methods, as used in JOSS and
BASIC, and context-replacement methods, as
used in the MIT, DEC, and other editors.
In addition, FASTRAC, a re--entrant resident

interpretive program, is used for general
purpose text manipulation. The choice of
methods is left to the preference of the
user.

The file system is straightforward) like
that of BASIC, from the viewpoint of file
naming, but includes more features to con
trol access. An unusual feature allows
efficient use of a file both for sequen
tial and random access purposes.

Now for a description of the implementa
tion details of these FASBAC features.

In contrast to the centralized approach)
the FASBAC design has a hierarchy of pro
cessors. The control of the conversa
tional complex is the operating system and
the programs executed in the PDP-9. All
the seemingly intelligent and friendly
conversational aspects of character and
file manipulation are carried out by the
small processors, not the 110B.

The PDP-9 subsystem is a large configura
tion for its model. It has 32,000 words
of I-microsecond lB-bit memory, all pro
cessor options) a half million word drum
with B.95 millisecond average latency, a
1,000 card pe~ minute reader, a 600 line
per minute ASCII printer, 3 DEC magnetic
tapes, and high speed paper tape I/O. The
PDP-9 is the heart of the conversational
system. It directs all functions and con
trols directly all I/O devices except
those low speed devices connected to the
PDP-B.

The PDP-B supplies the low· speed communi·
cations interfaces. It is connected to
the PDP-9 through a high-speed data chan
nel. Each PDP-B can handle the equivalent
of 32 Teletype circuits) each 110 baud,
or any of three other speeds. It has no
line bit buffers) and samples each line
under program control at B times the line
bit rate. This feature allows a variety
of data formats and clock rates. The PDP-B
also does character transliteration, moni
tors the lines, answers the phone, hangs
Upj and dials out. The drum buffering of
the messages is done by the PDP-9. A
PDP-8 can also be located remotely to the
PDP-9, and used as a line concentrator,
using a duplex voice circuit.

ASCII character codes are used in the file
system and from the Teletype terminals
through the PDP-9 up to the UNIVAC 1108
interface. The UNIVAC 110B software pre
sently requires six-bit Fieldata code.

The mass storage device is the UNIVAC
FASTRAND II drum. A multi-access con
troller, which also does drum address
translation, was developed by the Uni
versitj Computing Company and Wetsmantel
Associates. This controller allows the
UNIVAC 110B and two PDP-9 processors to
share access to the FASTRAND II drum. It
also provides separate duplex paths for
core to core processor communication, be
tween the 110B and two PDP-9's.

7

The UNIVAC 110B subsystem is reserved for
the computational muscle of the complex.
From the viewpoint of the PDP-9, it is used
as a peripheral device, for unrestricted
batch queued work on the 110B. Note that
the :conversational user enters jobs only
indirectly into the 110B, via the PDP-9.

HARDWARE SELECTION

Time-sharing hardware is essentially simi
lar to batch processing hardware. There
are certain differences of emphasis. In
addition to general criteria, such as an
ticipated reliability, maintainability,
and satisfactory delivery schedule, the
cost of the system must be evaluated in
terms of other criteria regarding perform
ance:

First, the processor must have a good means
of handling I/O. For example, the inter
rupt scheme must be efficient, and allow
multiple, dynamically changeable priorities.
A variety of various speed devices must be
attachable at a cost, in each case, ap
propriate to the device's requirements.
These devices range from bulk store through
swapping drums to large numbers of slow
speed terminals of various speeds and line
disciplines.

Secondly, a variety of communications
oriented interfaces must exist for the sub
system. The low-speed modem control must
handle dial in and dial out, as well as
private wire service. There must be high
speed modem interfaces.

The processor and memory word size must
handle efficiently characters of at least
seven bits each, as this size character is
better for conversational terminals than
the six bit character. The choice of word
size is also dictated by the requirements
of interfacing with the 36-bit UNIVAC 110B.

Finally, the designer of the conversational
processor must have made the appropriate
economic trade-offs, for a given total
cost, between processor and memory speed on
the one hand, and elaborateness of the in
struction repertoire on the other hand. If
there are to be many simultaneous users,
lots of memory is required; but the ele
mentary operations performed by the pro
cessor are rather simple-minded. Therefore,
it is essential for the designer of an
economic processor not to sacrifice memory
size and speed for an elaborate instruction
set.

In summary, the criteria for the FASBAC
processor hardware involved the exercise of
judgment, to form an opinion regarding the
final cost/performance ratio of a configu
ration, as of a certain date, but using
different criteria than the usual ones of
arithmetic capability. Needless to say,
the ideal hardware was not found.

CONCLUSIONS

The major engineering advantage of the UCC

FASBAC design concept is the decoupling
of many of the conversational elements
of remote access from the highly efficient
batch processing 1108 and the COPE high
speed card readers and printers. This
master/slave design approach has been used
in about 80% of the successful general
purpose time-sharing systems of the past.
We are just pushing the concept a little.
We feel that this decoupling from the
large, expensive, processor is the only
economically rational approach to give
conversational access to a major computer
such as the UNIVAC 1108. Quick reaction
to a ~eys-t ro ke is no t economical wi th the
same expensive processor and memory that
can also invert a hundred by a hundred
matrix in-~ few seconds. The hierarchy
of processors and memories is a present
day econom~c necessity.

It has been demonstrated in the software
area that. several stages of impedance
matching are necessary between the user
and the computer system. The UCC Direct
Access utility utilizes stages of im
pedance matching in order to handle ef
ficiently-the wide range of computer
applications which today's users create.

r-------...,

SLOW SPEED
TELETYPEWRITER

USER'S SITE

I
I

L _______ ..J

Figure 2 - FASBAC

FASBAC
(CONVERSATIONAU

8

r-------...,
I I
I I
I I
I I
I I
I I
I I
I
I
I
IHIGH SPEED
{ARD READER

HIGH SPEED I
PRINTER I

I
I

I
I
I
I

USER'S SITE I
I L _______ ..J

Figure 1 - COPE

COPE
(TOO FAST FOR

DIALOGUE)

F ASBAC/COPE/UNIVAC-1I08 CONFIGURATION

TTY ______ ~

TTYLJ~~ __ ~ I

CR
PTR

Figure 3 - The UCC Direct-Access Computer Utility

ON-LINE ANALYSIS OF WIRE SPARK CHAMBER DATA

P. F. Niccolai, R. H. Bicker, M. Edwards, and C. Swannack
Carnegie-Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

A PDP-7 background/foreground mode of time sharing
for on-line analysis of wire spark chamber data will be
discussed. The background mode analyzes a representative
sample of wire spark chamber data in the time available
between interrupts from the wire spark chamber logic, an
interface between the wire spark chambers and the.PDP-7.
The foreground mode logs data from the wire spark chamber
logic onto magnetic tape. The experimenter is given con
trol of the cyclic operations via the Teletype keyboard
and may interrupt the program at any time to retrieve
the output from the background mode. The particular
analysis required from the background mode must be de
cided prior to load time and selected from the programs
stored on DECtape. This program will be discussed as
applied to pion absorption by light nuclei experiment at
the Carnegie-Mellon University, Nuclear Research Center.

INTRODUCTION

The Carnegie-Mellon University Nuclear Re
search Center has built up a flexible hardware
system for utilizing wire spark chambers, the
center of which is a Digital Equipment Corporation
PDP-7. Figure 1 illustrates the expansion of the
basic PDP-7 with 8K of memory to include the fol
lowing items.

1. Two TU-55 transports with the 550
control.

2. A sequential/random access Ampex core
memory with 8192, 18 bit words and a cycle time
of 1.5 ~sec.

3. An Ampex TM-ll IBM compatible magnetic
tape transport with a speed of 120 ips and a re
cording density of 556/800 bpi. The transport is
now hard wired at 556 bpi. The magnetic tape
control was built by laboratory personnel and
is essentially similar to DEC's 57A magnetic
tape control with the exception of unit and
density selection options.

4. Anelex line printer - 647A option,
300 lpm.

5. A Houston Omnigraphic Model 6650
incremental plotter with a speed of 3 inches
per second.

6. An interface between the ferrite core
wire spark chambers and the PDP-7, henceforth
referred to as the wire spark chamber logic
(WSCL). The WSCL will scan 4000 wires in 1
msec.

7. We also have on order a Tektronix 611
storage display with a screen size of 16 x 21 cm.

This equipment and the ferrite core wire
chambers are presently being used for the pion
absorption by light nuclei experiment and will
later be used for scattering experiments.

9

The laboratory's future hardware plans in
clude the addition of a magneto strictive spark
chamber readout system for experiments conducted
at larger accelerator sites.

The repetition rate for a wire spark chamber
experiment may be as high as 2000 events per
second. At this repetition rate an experiment may
typically consist of several million events, each
with 100 numbers. The all important advantage of
an on-line computer is its capacity for monitoring
the performance of the apparatus and immediately
analyzing the results of the experiment. Prompt
feedback to the experimenter facilitates time
saving alterations of experimental parameters.

A complete and immediate analysis of each
event would require large blocks of time on a
large scale computer and at a high data transfer
rate. Thus, this laboratory's economic alterna
tive was the PDP-7, which we use to record the
digitized WSCL readout on magnetic tape while cal
culating randomly sampled events. We call this a
background/foreground mode of time sharing. Pro
cessing random events is the background operation.
Data logging is the foreground operation.
(Figure 2).

The software which we are currently engaged in
programming is a set of program modules which may
be selected by the experimenter at load time. He
will either create a new program by typing in the
names of available program modules displayed on
the CRT or retrieve a previously created program
from DECtape.

OPERATIVE SOFTWARE MODULES

These independent modules are similar in
structure to FORTRAN subroutines and most of the
background mode program modules are in our FORTRAN
library for post-run analysis - the main difference
being in the I/O handling.

Each module has 3 paths: 1) initialization,
2) analysis, and 3) a hard copy output cycle. Its
path is selected by the main program flow in com
munication with the interrupt system. The argu
ment list of each module consists of a set of
global parameters which are typically the path
selector parameter, the location of data arrays
input to the output from a given module.

Foreground Modules

The first module selected by the experimenter
must always be the foreground module, two of which
are currently in our library, CHAMIN for the fer-
rite core WSCL input data and MAGIN for
the ma~netic tape input of data. The initializa
tion p~th of th~ for~ground modules sets up the
program interrupt service routine. After the
first pass, the program cycles through the back
ground modules, returning to the foreground module
only to service interrupts from the wire spark
chamber logic (CHAMIN) or to load external
memory from a magnetic tape record (MAGIN).

Both CHAMIN and MAGIN use the external
Ampex memory as an I/O buffer. CHAMIN loads data
from the WSCL into the accumulator, from there into
the external 8K memory and finally into the one
event buffer. (Figure 2) Although a hardware flag
is associated with each WSCL word, an entire event
is read into external memory and the one event
buffer after each WSCL interrupt. The mean time be
tween the formation of a data word in the WSCL, 35
~sec, is less than the time required to process
instructions for storing each data word in its
appropriate areas of memory and dismissing the
interrupt. The filling of the one event buffer
sets a software' flag which is monitored by the
background program only as it requires information
for its process buffer. The filling of the pro
cess buffer from the one event buffer is done by a
background module and necessitates the turning off
of the program interrupt. Before dismissing the
CHAMIN foreground module, a check is made on each
event to determine the need for dumping the con
tents of external memory onto a record of magnetic
tape. The dumping of external memory onto mag
netic tape is done via the gather write mode of
the 57A interface and takes approximately .7
seconds per record which includes time for start-up,
writing, back spacing, and re-reading data for
verification.

MAGIN fills the external memory via the
scatter read option of the 57A interface. The
one event buffer is then filled from the external
memory instead of from the WSCL as in CHAMIN.

Background Modules

Before proceeding to some typical back
ground modules, a description of the WSCL data
word and the geometry of the planes is in order.
The WSCL data word is 18 bits, 4 of which are
used for flags and 14 of which are used to locate
the wire. The number of words per event is
variable due to multiple sparks or no sparks in a
chamber. Two types of chambers are currently in
use at the Nuclear Research Center; 1) beam cham
bers and 2) range chambers. Beam chambers are true
wire spark chambers in that the ground plane of
each consists of parallel wires spaced at 20/ inch.
They are used to detect the precise location of a
particle track. The range chambers measure a
particle's energy by its range. All that is re-

10

quired of these chambers is an indication that a
particle has passed through a given gap. The plane
for each gap is divided into three concentric squares
whose areas are labeled middle, guard, and outer.
(Figure 3).

The flag bit assignment for both types of
chambers is as follows for the given bit on a 1:

BIT

a

1

USE

Flags the presence of'a pair - two
adjacent wire sparks in a beam
chamber or two successive middle,
guard or outer areas going off in
a range chamber (as contrasted to
two adjacent wires sparking in a
beam chamber).

Flags the presence of a triple -
three adjacent wires sparking in the
beam chambers or three adjacent areas
in the range chambers.

2 Flags the first word of an event.

3 Flags the last word of an event.

Our beam chambers average approximately 1.5
wires per spark and, since approximately 50% of our
data contains pairs and triples, the reservation of
bits a and 1 to flag pairs and triples respectively,
saves a corresponding amount of magnetic tape when
logging data. It also considerably simplifies the
spark configuration background module.

The remaining 14 bits are used to denote the
wire number (4 bits - 16 wires per group) and group
number (10 bits - 1024 possible groups). A given
chamber has a variable number of groups.

A data buffer, referred to as the geometry
buffer, adapts all program modules to a given
chamber geometry. The data buffer is split into
two parts, 1) the beam chamber descriptors, and
2) the range chamber descriptors.

The beam chamber descriptors have the follow
ing 18 bit format:

BIT

a

1

USE

I-flags the end of a segment (cluster
ing of chambers along a straight line)

a-flags a horizontal chamber
I-flags a vertical chamber

2-8 reserved to indicate the spacing be
tween chambers if it varies - they are
currently spaced equidistantly

9-18 last group number for a given chamber

The range chamber descriptors are essentially the
same, except that bits 1 and 2 are used to in
dicate the presence of a middle, guard or outer
area, with bits 3-8 reserved for the gap size.
Figure 4 illustrates the chamber configuration for
the pion absorption by light nuclei experiment.

The main program flow depends upon the order
in which the background modules were selected and
the order of selection, as well as communication
with the interrupt service routine, determines the

path through the background modules from initia
lization to analysis to output. The cycling of
the background mode is terminated by a ~eyboard
i~errupt when the experimenter salects either
1) the beginning of the output cycle, # or
2) a return to the loading phase by typing a $
on the keyboard. The background mode is also
automatically forced into the hard copy output
cycle for overflowing the event counter or when
the end of the magnetic tape is reached.

The currently operative background modules
are primarily of a maintenance nature. Complete
kinematic analyses are performed during post
run analysis on both the PDP-7 and the Univac 1108.
The background modules operational on line are
SEVTB, WIRMAP, CONFIG, EFFB and DEVB.

SEVTB monitors the one event buffer, fills
the process buffer from the one event buffer, and
computes single.number data such as the total
number of events analyzed and the number of blank
events. This module exits only after processing
a non-blank event with a monotonically increasing
set of numbers.

WIRMAP computes a histogram of the number of
times each wire is sparked, thereby giving an
immediate indication of such malfunctions as
group drivers and sense amplifiers in the WSCL.
Output from WIRMAP may be selected on both the
line printer and the plotter. Its input data is
the path selector, the process buffer and the
geometry buffer. Its output data is the wire map.

CONFIG calculates the configuration of the
sparks in a given chamber and forms a histogram
which counts the number of blanks, singles, pairs,
triples, quadruples, 2-separated, 3-separated and
others in each chamber. CONFIG also computes the
co-ordinates for a given set of horizontal and
vertical wire numbers. Thus its input data is
the path selector, the process buffer and the
geometry buffer. Its output data is the con
figuration histogram and the co-ordinate data
for each plane.

EFFB computes the efficiencies of the beam
chambers. Its input data is the path selector,
the set of co-ordinates for each plane and the
geometry buffer. Its output data is the efficiency
calculation for each plane.

DEVB is used for a cluster of 3 beam chambers
to compute the deviation of the middle chamber from
a straight line. DEVB then computes a histogram
of deviations, ± 4 wires from a straight line, for
each chamber. The step size is quarter wire num
bers. Its input is the co-ordinate data calculated
in CONFIG, the path selector and the geometry
buffer. Its output data is the deviation histogram&

The list of both foreground and background
modules is open ended. We are currently operating
with DECTRIEVE and the basic software for the PDP-7
to prepare, assemble, and load our modules and have
been awaiting the PDP-9 advanced software, in
particular MACRO-9 before completing the executive
which will select and load our program modules from
DECtape. We are also awaiting the arrival of the
Tektronix scope display. Consequently the user must
now prepare a paper tape with a list of the program
modules and their arguments, and a paper tape with
the geometry buffer. Finally he must select the
appropriate paper tape sources for the modules and

11

macro-definitions before obtaining an absolute
binary from the PDP-7 symbolic assembler. The only
changes to the PDP-7 symbolic assembler which have
been made are a tailoring so that it fits on the
DECTRIEVE system and a modification of the TEXT
pseudo to generate 6 bit ASCII (eliminates need for
the wordy teletype package in our system). The
basic Editor has also been altered to fit into the
DECTRIEVE system, output a page on the line printer,
and use ASCII as its normal I/O mode. All absolute
binaries are compatible with DECTRIEVE.

FUTURE SOFTWARE DEVELOPMENT

The executive as it is being written will rely
upon a bootstrap in the upper portion of memory to
retrieve the executive itself. The loaded executive
would first inquire about the preservation of
external memory and any portion of internal memory
which should be stored in DECtape either as a per
manent part of the system or temporarily. The
executive would then list on the scope display, pro
grams capable of fitting into available memory.
Selections would be made from the teletype by typing
a single alphanumeric call character displayed with
the program name. The display .list would be up
dated after each selection or a subsequent page
displayed if a carriage-return were typed in lieu of
any displayed selection. Program modules will be
checked before displaying their name to eliminate
those whose individual memory requirements exceed
the area remaining. Arguments required by the pro
gram modules will be inquired of the experimenter
as each program module is selected. All output
from the executive would be on the scope display,
all input via the teletype keyboard of DECtape.
Teletype input into the executive is for non-routine
runs or experimental variations. Routine pro
cedures would be prepared on pre-punched paper tape
and read onto a DECtape file.

The selection procedure will be terminated by
the experimenter or the executive itself when all
remaining program modules individually require more
memory than remains. The program modules will be
stored in external memory after retrieving them from
one pass over_DECtape, building up an image of the
internal 8K memory. After building up the program
in external memory a map will be output and con
trol transferred to a resident program stored just
below the bootstrap which will load the operational
program from external memory into central core
filling in absolute addresses thereby destroying
the executive. The executive program may be re
trieved at any time by its resident bootstrap by
restarting the computer at the bootstrap starting
address or typing the $ when running a program
loaded via the executive system.

We have delayed finalizing this system in
order to avoid a duplication of effort in writing
a relocatable macro-assembler and believe once
MACRO-9 is working on our PDP-7 that the major
portion of the software development will be the
writing of a loader compatible with our proposed
executive.

* This work has been supported in part
by the U. S. Atomic Energy Commission,
contract AT(30-l)-882.

Paper Tape
Punch

DATA ACClJl.ruLATOR

PDP-7

Internal 8K ~leDlOry

FIG. 1

EXPANDED PDP..:7

External
8K

~Iemory

r---- -------------------,

PROCESS BUFFER

approximately lOOI---~----I
words of memory

DATA REDUCTION
PROGRAM

remainder of
memory

ONE EVENT
BUFFER

approximately 100
words of memory

FIG. 2

BACKGROUND/FOREGROUND DATA FLOW

12

Background Mode

Foreground Mode

IDDLE

OUTER

FIG. 3

RANGE CHAMBER CONSTRUCTION

MAGNET

FIGURE 4
SPARK CHAMBER CONFIGURATION (PLAN VIEW)

PION ABSORPTION BY LIGHT NUCLEI

13

.,
I-

$
i

/:;
COUNTER • 3

8.(+)

j"
82 (-) '

PDP-8 ON-LINE DATA ACQUISITION SYSTEM FOR HIGH ENERGY PHYSICS*

Paul Shrager and Larry Taylor
Un iversity of Pennsylvan ia

Phi ladelphia, Pennsylvania

Abstract

This presentation will be a description of an on-line data acquisition
system for magneto strictive spark chamber readouts in high energy
physics. The system outputs to an incremental magtape un it and CRT
display tube. The system includes a real-time clock, high speed
paper tape reader, 24-channel A-D converter for experimental para
meter monitoring.

In addition to data acquisition and output data verification, simple
on-line analysis is performed, including histograms showing distribution
of sparks in chambers. The oscilloscope display includes a reconstruction
of the elementary particle event that occurred in the spark chamber.

*This paper was not received for publ ication.

15

THE ON-LINE USE OF A PDP-9 AND AN IBM 360/65
IN A PROTON-PROTON BREMSSTRAHLUNG

EXPERIMENT USING WIRE CHAMBERS

D. Reimer
Institute for Computer Studies, University of Manitoba, Winnipeg, Canada

and
J. V. Jovanovich, J. McKeown, and J. C. Thompson

Physics Department, University of Manitoba, Winnipeg, Canada

ABSTRACT

The system allowing conversation between two com
puters (PDP-9 and IBM 360/65) and an on-line data
analysis from a wire chamber experiment is described.
Wire chambers and scintillation counters are inter
faced to the PDP-9 which is connected to the IBM
360/65 via a standard DEC high speed data link. The
PDP-9 performs preliminary analyses and selection
of detected events. A FORTRAN program residing in
a small partition of the 360/65 memory completes
kinematic analyses of events accepted by the PDP-9,
stores the results on magnetic tape, and returns
formed histograms to the PDP-9 for visual display
or graphical plotting.

INTRODUCTION

The two computer system at the Univer
sity of Manitoba cyclotron is composed of a
PDP-9 linked to an IBM 360/65 via a standard
DEC high speed data link. The PDP-9 part of
the system and its applications in three
different ghysics experiments was described
previouslyl. In this paper the use of both
computers in the proton-proton bremsstrah
lung experiment is discussed. A simplified
schematic presentation of the experimental
setup (the wire chamber spectrometer and
computer system) is given in Fig.l, and a
brief description is presented below (see
ref.l for more details).

A beam of 45 MeV protons from the
Manitoba cyclotron strikes a 20 cm long
gaseous H2 target (see Fig.I). Each of the
two outgoing protons pass through two of
the four wire chambers (WCHI-WCH4) and into
plastic scintillation counters (SI and S2).
Information from wire chambers defines pro
ton trajectories, and pulse heights from
the counters determine their energies. The
PDP-9 assembly program tries to reconstruct
a vertex from proton trajectories, i.e. to
establish within an accuracy of several
millimeters whether both observed protons
come from the same point in the target. If
they do, the relevant coordinates of the
proton trajectories and counter pulse
heights are sent to the IBM 360/65 computer,
otherwise the event is rejected. The latter
computer then performs a full kinematic and
statistical analysis of the event using
Fortran programs, and returns some histo
grams of interest to the PDP-9 for visual
on-line display on the oscilloscope, or for
plotting on an x-y plotter (CALCOMP). Data

17

computed from each good event is also stored
on a magnetic tape by the IBM 360/65 for
later off-line sorting, selecting and histo
gramming.

In Section (A) the data-link hardware
and software is discussed. Section (B) ex
plains software written for and used in p-p
bremsstrahlung experiment while concluding
remarks are made in Section (C).

(A) DATA-LINK

Data-Link Hardware
The data-link 2 is the standard DEC

long line high speed data-link (DX36B-DX09B)
connected to the PDP-9 via a Data Channel
and to the 360 via a Selector Subchannel
(Channel). The distance between the two com
puters is about 1,900 feet, allowing a maxi
mum data transfer rate of 50,000 bytes per
second.

The 360 controls whether the Input/Out
put (I/O) operation is to be a read or write,
to which the PDP-9 must respond by reading
Data-Link status registers to ascertain the
operation and set appropriate bits. The data
link hardware packs PDP-9 words to be trans
ferred in four different ways to make them
compatible with the byte oriented System
360. These options are:
1) 1 byte (8 bits) to/from rightmost 8 bits

of 1 PDP-9 word,

2) 2 bytes (16 bits) to/from rightmost
16 bits of 1 PDP-9 word,

3) 3 bytes (6 binary zeros and 18 bits) to/
from 1 PDP-9 word,

4) 4 bytes (14 bi nary zeros and 18 bits) to/
from 1 PDP-9 word.

The last option has been used to transfer
data to/from Fortran programs.

To establish the reliability of the
data-link a large block of data was written
from the 360 into PDP-9 memory, the same
data read back, and then compared. This ex
periment was carried out at various times
and for various time intervals, ranging
from several minutes to three hours. The
number of bytes transferred ranged from
1.6 million to 500 million. A total of
12 bits were dropped on one data transfer
(this during the three hour run). The 500
million bytes transferred during the three
hour run is an order of magnitude greater
than the amount of data expected to be
transferred during the lifetime of the wire
chamber experiment.

Data-Link Software
It is possible to drive the PDP-9 from

the 360 using normal Fortran READ and WRITE
statements. This allows a maximum data
transfer of only 20 PDP-9 words for each
READ or WRITE. To circumvent this limita
tion and to allow certain types of error
recovery, channel programs 3 were written
in 360 Assembly language. Thus the Fortran
program calls an assembler subroutine with
two entry points called PDPR and PDPW, to
initiate data-link transfers. Each transfer
is accomplished in three stages:

1) Initial Selection,
2) Data Transfer, and
3) Ending Sequence.

They are all handled by the 360 Selector
Channel to which the PDP-9 Automatic Priori
ty Interrupt (API) service routine must re
spond.

The flow of information between the two
computers is presented in Fig.2. As indi
cated in this figure, the communication
sequence is always initiated by the 360/65
with a standard CALL PDPR or CALL PDPW
statement placed anywhere in the Fortran
program which runs on-line with the PDP-9.
After the subroutine PDPR (or PDPW) has
been called a READ/WRITE is requested from
the 360/65 Operating System which subse
quently issues a Start Input Output (510)
instruction to the channel. The Operating
System returns to batch processing mode and
no further 360 action is required for the
data transfer until the PDP-9 signals that
the operation is complete. The Channel now
sets some control bits and Initial Selec
tion Done (ISO) flag which causes an API
interrupt on the PDP-9. As there are alto
gether six flags which can cause a data
link API interrupt, the API service routine
first determines which flag caused the
interrupt and then clears it. When an ISO
flag is detected, another status register
is read to determine whether a READ or
WRITE operation was requested by the Chan
nel. The PDP-9 Data Channel (DCH) is
initialized by providing the starting ad
dress minus one and word count of the data
to be transferred to the PDP-9 memory. The
Data Transfer (DT) bit, the R/W bit, and

18

pack option are set up for the data-link.
Then control is returned to the interrupted
PDP-9 program by breaking from the API serv
ice routi ne.

At this point the memory to memory data
transfer takes place requiring no PDP-9 or
360/65 CPU attention. The time required for
the data transfer depends on the number of
PDP-9 words and pack option used. It takes
about 80 ~sec to transfer one PDP-9 word
(18 bits) to/from one 360 word (32 bits).
When the 360/65 byte count and/or the PDP-9
word count goes to zero, the Channel sets
the Data Transfer Done (DTD) flag causing an
API interrupt on the PDP-9. The service rou
tine clears DTD flag and tests if a parity
error was made. To signal the PDP-9 users
program that the 360 has transferred data,
the Data Link State (DLS) word in PDP-9
memory is set to one. Control is then re
turned to the interrupted PDP-9 program.

The Channel is "hung" until the users
program calls a PDP-9 subroutine DLINK which
allows the third stage of the three stage
data transfer sequence to proceed. This is
feasible since the data link is the only
device at present attached to the Channel.
Thus completion of the three stage sequence
occurs only when required by the logic of
the users program. The subroutine DLINK
tests if the data transfer is completed and
if not, waits until it has, then sets Ending
Sequence (ES) fl ag, sets the DLS word to
zero, and sets Channel and device end. The
Channel then sets the Ending Sequence Done
(ESD) flag which causes an API interrupt on
the PDP-9. As before, this flag is cleared
and control is returned to the interrupted
PDP-9 program. As all three stages of the
data transfer are now complete the Channel
causes an 10 interrupt on the 360 and control
returns to the originally called assembler
subroutine (PDPR or PDPW).

From the PDP-9 point of view the transfer
is completed at the end of the second stage.
The reason for organizing the software in
the above manner is because at this stage of
360 software development the 360 cannot be
interrupted by the PDP-9. To allow the 360
to process data while the PDP-9 collects more
events the Fortran program on the 360 is
usually so organized that each "CALL PDPW"
is followed by a "CALL PDPR". This allows
the two computers to function asynchronously.
If the sequence involves only successive
READ's from or WRITE's to the same memory
locations in the PDP-9 the two computers
must function synchronously.

(B) SOFTWARE FOR THE p-p BREMSSTRAHLUNG
EXPERIMENT

Several different programs are usea ln
the p-p bremsstrahlung experiment. Most of
them belong to three general classes: (1)
programs with only PDP-9 on-line to the ex
perimental equipment, (2) programs with both
PDP-9 and 360/65 on-line to the experiment
and (3) programs using both computers but
not on-line to the experiment. The last cat
ego r y wi 11 always be ref err e d to as II 0 f f -
line" programs.

We have three programs from the first
class. They are mainly used for testing of
experimental equipment. When taking and pro
cessing data a machine language PDP-9 pro
gram (called "Vertex") and a Fortran 360/65
program (called "Kinematics") are used to
gether. The needs of the experiment require
several different versions of these programs
(coded as VI, V2, ... KINl, KIN2, ... etc.)
to be readily available. For off-line data
analyses several Fortran programs are used
and in general they can be called from the
PDP-9 teletype console. To cope with this
large and ever expanding variety of programs,
we have organi zed all of our software wi th
in the framework of two specially written
monitors, one for the PDP-9 and the other
for 360/65.

Description of Monitors

The PDP-9 Symbolic Assembler Language
Monitor (SALMON) is present all the time in
the POP-9 memory, occupying the lower 2600 8

locations. It handles three basic input
output operations, namely teletype, DEC
tape, and data-link, performs some elemen
tary bookkeeping, and requests and accepts
control messages from the experimenter.
SALMON uses Program Interrupt (PI) and
Automatic Priority Interrupt (API) features
of the PDP-9 to allow interleaving of the
above and any of the other Input-Output
devices used. By typing appropriate mnemon
ics of two characters SALMON loads the se
lected program from DEC tape into a pre
designated section of the PDP-9 memory and
starts its execution. This feature enables
us to "overlayll programs without disturbing
areas of memory which might include the
collected data or constant parameters.
SALMON also handles the above mentioned
Input-Output operations whenever they are
requested by the users program. In this
case normal entrance points into SALMON are
through a set of JMS (jumps to subroutine)
instructions to absolute addresses. This
feature enables programmers to assemble
their programs independently of SALMON.

The monitor for Fortran programs used
on the 360/65 (called FORMaN) is a very
short program also written in Fortran. It
is based entirely on a feature of the 360
system of overlaying Fortran subroutines.
Therefore, all of the Fortran programs we
are using are declared as subroutines and
FORMaN merely selects the one which was
called from PDP-9 by typing its four char
acter name.

Description of On-Line Programs

So far three different PDP-9 programs
have been used for testing the equipment
and they do not require the 360/65 on-line.
These programs are: (1) "Hardware Test"
used for the initial testing of ferrite
core readouts, interfaces and electronics,
(2) "Wire Histogram" used to test the re
lative efficiency of spark chamber wires
and ferrite cores by making histograms of
i n d i vi d u a 1 wire fir i n g s, and (3) II Wire
Chamber Efficiency" used for the initial

19

or routine testing of sparking efficiency.
Wire Histogram and Wire Chamber Efficiency
programs normally display selected histo
grams on the oscilloscope or plot them on
the CALCOMP plotter. All three can also
have data printed on the teletype or written
on the DEC tape. As these programs are
rather simple and are not on-line to 360
they will not be discussed here.

The Vertex and Kinematics programs are
the most important ones as they are used
for on-line real time data taking and ana
lysis with the two computers. They are also
the most interesting from the software
point of view as they employ virtually all
available facilities, hence, they will be
described in some detail.

A simplified flow diagram of Vertex and
Kinematics programs is given in Fig.3. The
following procedure is used in loading and
executing these programs: With SALMON re
siding in the memory of PDP-9, the experi
menter types the mnemoni c II IN" whi ch loads
a special initialization program from the
DEC tape. This program is used first to re
ceive constants from the teletype or paper
tape and store them in the memory. These
constants are to be used by the Vertex pro
gram to be loaded later. Afterwards, the
360 operator is asked, via an interphone,
to load FORMaN into partition. On execution,
FORMaN requests the 360 operator to enable
the Data Link by manually flipping a switch.
When this is done, FORMaN requests from the
experimenter the name of the program to be
executed by the 360/65. The experimenter
responds by typing the name of the program
(say KINl) which is automatically loaded
into 360 partition together with the pro
gram constants. The execution of KINI is
begun at this point and the experimenter
must specify whether magnetic tape or
printer are to be used and must type the
bookkeeping information essential for a
complete record of the run. Afterwards, he
is asked by KINI if he wants to change pro
gram constants and if so, he does it in a
way described below and in Fig.4. When
KINI is ready to accept data, the experi
menter loads a Vertex program (say VI)
which initializes itself by reading in the
program constants previously stored in
memory by the IN program. The program VI
then turns on the fast electroni cs, jumps
into an oscilloscope display routine and
waits for an interrupt. When a wire chamber
interrupt comes, the ferrite cores are read
into the computer, decoded, track coordi
nates computed, double track ambiguities
resolved, and an attempt is made to recon
struct a vertex. If successful the track
coordinates, scintillation counter pulse
heights, and event number are stored in a
buffer whereupon the PDP-9 returns to the
display routine. If at any time the experi
menter wants to terminate or suspend the
run he types an appropriate code on the
teletype and a key word (termination index)
is entered into the output data buffer.
When this buffer is full, its contents are
transferred to the 360/65. KINI begins the
analysis of each event by recomputing the

vertex and imposing more stringent accept
ance cri teri a than the PDP-9. If the event
passes this test the angles and energies
of outgoing protons (corrected for energy
lost before reaching the scintillators),
gamma ray, and incident proton are calcu
lated. In addition the errors of each of
these quantities and a x2 value are com
puted. At this point all of the information
received from PDP-9 and that computed by
KINI is stored on magnetic tape. Finally,
three single histograms, a two-dimensional
histogram and a scatter plot are updated.
After all the data from a given transfer
have been orocessed the histoqrams and
scatter plot are sent back to-the PDP-9
for display. The termination index is
then tested and depending on its value the
data taking and processing is continued,
suspended or ended. If suspended KINI re
quests a change in histogram constants and
the experimenter enters the new values.
KINI then clears histograms to zero and the
data taking continues as if it were not
i n t err u pte d . I fan end 0 f run i s re cog n i zed
some bookkeeping information is requested,
the cross sections are calculated and some
relevant information is returned to PDP-9.
At this point the experimenter may move the
obtained histograms into a separate buffer
area and initiate an independent CALCOMP
routine which can plot histograms simulta
neously with the execution of the next run.

The flow diagram of the basic write and
read sequence used throughout the initial
ization program is given in Fig.4. A mes
sage composed of a certain number of alpha
meric characters which is defined and
stored in the Fortran program is first
translated from the EBCDIC code (used by
our 360/65) -into ASCII code (used by PDP-9)
by calling an assembler subroutine. Another
assembler subroutine unpacks words from
4 characters to 2 characters/word and by
calling the PDPW subroutine, the message
is sent to the PDP-9 which types it. At
this point the experimenter must reply and
has a choice between alphameric or numeric
information. The numeric information can be
entered into the PDP-9 from paper tape or
the teletype and can be c~anged after entry
but before transmission to 360. The 360
must know whether to expect alphameric or
numeric information. If alphameric informa
tion is received it is packed from 2 to 4
characters per word and translated from
ASCII to EBCDIC code. As numeric informa
tion is always transferred in integer form
the received numbers are usually floated
and normalized as needed by KINI or any
other FORTRAN program.

Description of Off-Line Programs

The most important off-line program is
Correlate (CORR) which reads from magnetic
tape data taken in the past in one or more
runs, stores it temporarily on disk, com
bines it as requested, and produces histo
grams in a manner very similar to that of
KINI. The histogram constants are read in
from PDP-9 using the same initialization

20

program (IN) as in the case of the VI-KINI
programs. The histograms are also returned
to the PDP-9 for display on the oscilloscope
or plotting on CALCOMP plotter, or they can
be printed on the 360 printer.

For practical reasons it is very impor
tant to be able to call and run CORR from
the PDP-9 console as it provides a facility
for "quasi-on-line" data processing. Often
a situation would arise when the information
obtained from VI-KINI programs is insuffi
cient to make some decisions concerning
further data taking. In this case the ex
nprimpntpr mav wish to summarize results of
~;~i~~~-~~ns-~a~~~ i~-t~~ p~st ~nd with CORR
he can obtain this information within a few
minutes.

Some other off-line programs of minor
significance are used. For instance, when
processing data with a program sitting in
360 partition the printing must be done com
pletely off-line. Therefore, in those in
frequent cases when we want printer output
(the availability of CALCOMP plotter and
teletype reduces significantly the need for
printed output), the results must first be
temporari ly stored on disk or tape and ther,
printed out using a special program to be
run in batch processing mode, rather than
controlled from PDP-9.

(C) CONCLUSION

Not many two computer systems have been
used for on-line data processing in accel
erator experiments. The system which seems
to be in the most advanced stage is the one
existing at CERN4. Our experience with the
system described here is still limited and
therefore it would be difficult to present
a detailed analysis of its advantages and
shortcomings. Nevertheless, some remarks
are in order.

1) In our system the PDP-9 and 360/65
are used in a complimentary manner. The
PDP-9 controls directly all experimental
equipment, all output devices an experiment
er needs while taking data, and performs
some data processing. These operations
abound in logic decisions and special input/
output instructions but need very little
arithmetic to be performed. Therefore, the
programming for PDP-9 is done in assembly
language. Long arithmetic operations are
relatively easy to program in Fortran and
not likely to be changed very often so they
are done on 360/65. This division of the
software between the two computers confines
most of the alterations to the more acces
sible PDP-9.

2) The 360/65 Operating System used is
able to overlay subroutines belonging to
the same program. This feature enables us
to overlay Fortran programs in a very simple
manner and run them in a relatively small
partition with 56K bytes (14,336 words)
only. If need be, our program could be over
layed in a more complex manner and fitted
into a smaller partition. When this parti-

tion is reserved for our programs there are
110K bytes (27,160 words) of the 360/65
memory available for batch processing wnich
is sufficient for most of the regular 360/65
users. As a consequence, the scheduling of
the 360/65 allows us to use the partition
up to 16 hours/day and 5 days/week. (Pre
sently, the 360/65 is being used 15 shifts/
wee k.)

3) The PDP-9 monitor enables us to over
lay our PDP-9 programs resulting in an effi
cient use of its memory. The monitor also
allows us to change programs with ease
using DEC tape although this is rather a
slow device. The use of disk or drum would
be preferable.

4) The selection of 360/65 programs is
controlled entirely by the experimenter
from the PDP-9 teletype. The 360/65 operator
must intervene only to load and unload the
partition, to cnange magnetic tapes, and to
initiate off-line printout on the printer.

Not all of the software described in
this paper has been tested over an extended
period. Software development has been great
ly assisted by the use of raw information
from the wire chambers (non-processed out
put from ferrite cores and pulse heights
from analog to digital converters) which
was stored on DEC tape during a previous
run. In Fig.5a we present a photograph of
three histograms which have been computed
on-line by the 360/65, returned to the
PDP-9 and displayed on the oscilloscope. In
Fig.5b we reproduce a scatter plot also
computed on-line by the 360/65 and returned
to the PDP-9 but now plotted on the CALCOMP
plotter. These histograms and scatter plot
have been produced using only very pre
liminary calibration constants, hence scales
are not presented.

ACKNOWLEDGEMENTS

We are very grateful to Professor
B. A. Hodson, Director of the Institute
for Computer Studies, who has made every
effort to allow our extensive use of the
360/65; and to Mr. J. Epp and Mr. P. Cau
field for scheduling the use of the 360/65.

It is a great pleasure to express our
thanks to Professor D. O. Wells for some
discussions concerning data-link hardware
and software and for supervising the in
stallation of the data-link; to Mr. R.
Kawchuk for writing CALCOMP subroutines;
to Mr. D. Peterson for writing Hardware
Test and Wire Histogram programs; and to
Mr. L. Greeniaus for the Correlate program.

We acknowledge the financial support of
the Atomic Energy Control Board of Canada
which made this work possible.

REFERENCES

1 L. W. Funk, J. V. Jovanovich, R. Kawchuk,
R. Kin g, J. M c Ke own, C. A. Mill e r ,
D. Peterson, D. Reimer, K. G. Standing,

21

and J. C. Thompson; Proc. DECUS Fall 1967
Symposium, Nov. 11-12, 1967, p.187-192.

2 S. Booth, "PDP-9 to IBM System/360 Selec
tor Channel High Speed Data Link at the
University of Manitoba"; Digital Equipment
Corp., December 20, 1967 (unpublished).

3 IBM System/360 Operating System Manuals:
Form C28-6550, "System Programmers Guide";
Form C28-6647, "Supervisor and Data Manage
ment Macro-Instructi ons"; Form A22-6821,
"Principles of Operation".
4 T. R. Bell, B. C. Levrat, P. J. Marcer,
and E. M. Palandri, "A Data Link between
Two Computers"; CERN 67-31, December 21,
1967 (unpublished).

H2
TARGET

S.

Figure 1

CYCLOTRON
BUILDING

FAST
ELECTRON ICS

PDP-9

WITH

EAE, API
+ 8K

MEMORY

r- 1900'1

COMPUTER
BUILDING

IBM
360/65

WITH
2~S6 K
BYTES

!56 K
BYTES

PARTITION

Manitoba cyclotron computer system as used in the
p-p bremsstrahlung experiment. The Fortran programs
used on-line with the PDP-9 reside in a 56K byte
partition of the 360/65.

z
a

f-

Z

c:::
I.J.J
I..L.
V)

Z
e(
c:::
f--

e(

f-
e(
Cl

I.J.J
U
Z
I.J.J
=>
0-
I.J.J
V)

Cl
Z
I.J.J

360/65 SELECTOR SUBCHANNEL
DATA LINK & DATA CHANNEL

PDP-9

TRANSFER CONTROL TO
OPERATING SYSTEM TO
INITIATE CHANNEL

SET
AND
API

API SERVICE ROUTINE
CLEAR ISO HAG
DETERMINE R/W
SELECT ADDRESS AND
WORD COUNT FOR DCH
SET DT AND R/W FLAG
SET PACK OPTION

INPUT/OUTPUT

I
I
I
I

----------------------------+------------------------

Fi g u re 2

I

TO/FROM
PDP-9 MEMORY

API SERVICE ROUTINE
CLEAR DTD FLAG
SET DLS= 1
TEST PARITY ERROR

I ARBITRARY TIMEI

USERS PROGRAM

&

Flow diagram of the basic communication sequence
between the PDP-9 and 360/65. Dashed-dotted hori
zontal lines separate the three stages of the se
que n c e. II Arb i t r a r y Tim e II i s de term i ned by the log i c
of the users program.

23

1--------·-·---·---r-----------·--1

I

' IBM 360/65 ! PDP- 9

1

'

FORTRAN MONITOR AND I START UP AND
INITIALIZATION OF INITIALIZATION OF

, KINEMATICS PROGRAM VERTEX AND KINEMATICS I ,PROGRAM

I !

'I I
OPERATOR ENABLES DATA LINK AND
LOADS FORTRAN MONITOR INTO PARTITION

.............. ';;

............... " ~-....... t"

I
....... ~

, ~

I

I

I

I

I

I

KIN2

CORR

NO

KINEMATICS PROGRAM

I---~' -----

I

I

I

I

I
TRANSFER DATA
BUFFER AND
TERMINATION INDEX

VERTEX PROGRAM

NO

j

I

I

I

I

I
I

I

I

! "i I L._._._._. _____ . ____ ~ __ . __________________ ~

Fi gure 3 Flow diagram of the main PDP-9 and 360/65 programs
as used in the p-p bremsstrahlung experiment.

24

TRANSLATE
ASCII TO
EBCDIC

ANALYZE
RESPONSE

360/65 PDP-9

TRANSLATE
ALPHAMERIC
FROM EBCDI
TO ASC II

EXPECTS
ALPHAMERIC

PACK FROM
2 CHARS/WRD
TO 4/WORD

Fi g u re 4

UNPACK FROM
4 CHARS/WORD
TO 2/WORD

SEND
MESSAGE
TO PDP-9

o
o
o
o

EXPECTS
INTEGER
NUMBERS

FLOAT
NORMALIZE

PRINT
MESSAGE
ON TELY

TYPE IN
ALPHAMERIC
REPLY

SEND REPLY
TO 360

TYPE IN
NUMBERS

Flow diagram of the basic communication sequence
as used in the system described.

25

Z
0
~
0
O!
a..
l-
I.
C) --~
lL
0

>-
C)
O!
W
Z
W ,
N
W

El -E2 SCATTER PLOT FOR P-P ELASTIC

)(x

)()(x x

)()(xx xxx)(

x
)()(xx x xxx XX)(

x
x x x xx xxx

xx x xx xxx

x x x

x x x xx

x)(x

x x

x x x

x

E1 -ENERGY OF LEFT PROTON

Figure 5 (a) Photograph of three histograms computed on
360/65 by the Kinematics program, returned to the
PDP-9 and displayed on the oscilloscope. (b) Two
dimensional scatter plot as computed in a similar
manner and plotted on CALCOMP plotter. In this case
each point represents one event.

26

AUTOMATIC FILM MEASUREMENT WITH A PDP-9

C. Drum, T. McGrath, R. Van Berg
University of Pennsylvania
Phi ladelphia, Pennsylvania

ABSTRACT

The University of Pennsylvania's high energy physics group employs a PDP-9
to control and record digitizings from a Hough-Powell flying spot digitizer.
It is not possible with the small computer to perform anyon-line analysis or
tract reconstruction of non-predigitized bubble and spark chamber photographs.
Therefore the system relies on CRT displays and simple checking algorithms for
monitoring the quality of the digitizing. The system in general and especially
the non-standard software and peripherals are described.

Figure 1 shows a more or less typi cal frame of the bubble
chamber film that we are measuring. This format is peculiar
to the Penn-Princeton accelerator with a stereo triad as in
di cated and a BCD data box and strobe mark for automati c
frame number recognition. You will note that there are only
a small number of tracks in each view; this is basic to the
whole phi losophy of the series of experiments using the HPD,
as the automatic track following programs which do the pat
tern recognition are sti II at an early stage of development
and are easi Iy confused and greatly slowed up by any large
number of tracks. Fortunately the bubble chamber at PPA
cycl es very rapi dl y so that it is st ill possi bl e to obtai n a re 1-
atively large number of events in a reasonable time.

Our problem, then, is to get precise measurements of the
co-ordinates of the tracks and fiducials in each of the three
views, and then ship these off to the track following, spatial
reconstruction, and fitting programs.

The machine which we use to do the actual measurement, a
Hough-Powell, or flying spot, digitizer (HPD), is a large
and ungainly mechanical scanner. Figure 2 shows the basic
opti cal set u-p for one of the two intermeshed orthoganal scan
systems -- all focusing and collimatimati ng lenses, the en
tire normal scanning system, and most of the mechanical
complexity has been omitted, so use your imagination freely.
The light from a mercury vapor lamp is collimated onto a pair
of small glass fibers that act as crossed cylindri cal lenses and
bring the light to a point focus. The eight curved fibers
(only one is shown) are mounted in a large disk which ro
tates at about 3500 RPM - thus the moving curved fiber pass
ing over the fixed straight fiber creates a rapidly moving
spot or line of light. The light in the moving spot is then
split and half of it passes through a ruled grating. As the
spot moves across the grating the photomultiplier picks up
the variations in intensity and allows one, by counting, to
measure precisely (to 1.5 !-1m) the position of the spot along
the scanline. Meanwhile the remainder of light from the
spot is bounced around and through the fi 1m, whi ch is vac
uum clamped to the prism - the variation in output of the
video photomultiplier then is a measure of the density of the
film and by simply discriminating this video signal and using
the fast discriminator signal to interrogate the grating counter

27

one may get the position of a black speck on the film. While
the spot is moving left to right (or vertically, in the case of
the other channel) the prism to which the film is clamped is
being moved hydraulically outward so that by digitizing (to
an accuracy of about 2 !-1m) the position of the hydraulic
stage one obtains the other co-ordinate of the speck you
have measured.

The reason for having the two scanning systems (the normal
one with a vertically moving spot and horizontally moving
stage, and the orthogonal or abnormal scan with horizontal
spot and effectively vertical stage motion) is that the stage
motion is fairly coarse (about 50 !-1m between scan lines),
and one is likely to miss or get very few digiti zings from a
track running roughly parallel to the spot motion.

The sequence of measuring a picture, then, goes something
like this: first move the film into position with the desired
frame clamped to the prism in the proper spot (the fi 1m is
prescanned by human scanners, and frames of interest are
recorded on punch cards), secondly, position the mechani
cal stage at the proper place, then measure in the desired
mode (there are a number of options on measuring speed and
output format which must be speci fi ed) from poi nt A to poi nt
B, stop and repeat the cycle at a rate of about 2 pi ctures per
minute. The HPD itself has a large amount of electronic
hardware hung on it that performs the mundane operations of
stage moti on and fi I m motion, as we II as th e somewhat more
exotic tasks of grating counting, video discrimination, and
co-ordinate transfer. However, there still must be a general
purpose computer to organize and control this hardware.

The computer used in this measuring process must do at least
two things - 1) send commands to the HPD to set up for and
to initialize a given scan, and 2) accept the digitizing from
the HPD as the film is read and store these digitizings some
where.

Most other HPD installations have a very large computer of
7094 to 6600 or B8500 size, and are thus able to do a good
deal of track following and noise rejection - sometimes even
rough spatial reconstruction for checking purposes - before
outputing the digitizings or a reduced set thereof on magnetic

tape. However, we grew up with a 7040 as control and out
put machine so none of this was possible and digitizings are
in our case simply dumped with a minimum of processing onto
magnetic tape for later analysis by a large computer. Thus
the use of PDP-9 to control the HPD is really a step up for
us in terms of speed and cost, though loss of certain versa
tility of the larger 7040 system is somewhat painful.

The HPD/pDP-9 interface (figure 3) essentially imitates the
direct data channel of the 7040. The functions to be per
formed consist of four major activities; (1) sending commands
to position the fi 1m on the proper frame (movefilm) (2) com
mands to position the measuring stage in preparation for scan
ning (move stage) (3) commands for scanning (set mode), (4)
accepting the resuiting digitizings. Since commands are not
given while digitizings are being received, the two types of
data are gated onto a bidirectional bus. Due to the high
data rate 1 MHz maximum), the long cables (50ft.), and
our previous success with the 7040 data transmission system,
it was decided to use IBM N line drivers and terminators.

Each of the three commands requires a 36 bit word (one 7040
word) whi ch together specify the parameters for measuring
one vi ew of a frame.

Commands are issued in two words of 18 bits each, and their
function and whether 1st or 2nd group of 18 bits is determined
by the subdevice bits. One view then requires 6 PDP-9
words. The HPD is assigned two device selectors which in
conjunction with the sub-device bits gives eight possible
combinations. The extra two words are used to send useful
messages, such as END OF FILM, END OF PROGRAM,
and certain alarm conditions to the HPD operator. Data is
entered into control registers from the HPD bus by means of
lOP pulses. lOP 1 sets the function in accordance with the
devi ce and sub-device levels, simulating a 7040 sense out
put reset, lOP 2 enters the data and simulates a channel
ready write. lOP 4 is used to initiate the operation speci
fied by the command and has no 7040 analogy. The main
difference between IBM data lines and those of the 9 is that
the 7040 waits for a signal from the attached device before
removing data from its output bus through one of the DMA
channels. Digitizings may consist of three types of data.
(1) Frame number of picture currently being scanned, (2)
stage position coordinates and (3) spot position coordinates.
Registers containing this data are alternately gated onto the
HPD bus during read time under control of the HPD read
logic. At word count overflow the DMA is inhibited and
waits for the program to reinitialize the word and address
counters and reset the interrupt flag. At the end of a scan
the HPD sets an end of file flag which interrupts the machine
and resets the READ SELECT flag. The HPD then awaits the
six command words for the next view. At this point it is
probably useful to go over the software part of the system.

Presently the overall operation is strongly centered around
an IBM 7040. The 7040 has a very sophisti cated assembly
language system called IBMAP. One of the features of the
IBMAP system is the ability to define op codes, pseuod-ops
etc. Using this feature we were able to define the entire
instruction set of the PDP-9 plus our own unique instruction
codes for the HP D and for the drum. The reasons that we
chose to pursue the use of the 7040 assembly programs rather
than the PDP-9 software packages were the following. The
first, and main, reason was that the 7040 was avai lable and
we were able to write, assemble, and partially debug our

28

major PDP-9 programs before our own PDP-9 was installed.
Second, the powerful I/O devices of the 7040, especially
the 600 line/minute printer gave us a tremendous advantage
over our teletype for assembly listings etc. And, third, our
familiarity with the MAP language, plus our inherent re
luctance to make a clear break with a working system. As
of th is report, the system has worked our extreme Iy we II a 1-
though several problems have cropped up; mainly the strong
possibility that the 7040 will be phased out of the University
sometime this summer. And also the fact that as far as our
own group is concerned the avai lable time on the 7040 has
been greatly reduced.

The operation of the assembly system is as follows: The users
source deck or decks are assembied by the iBMAP system and
loaded into 7040 core. (It might be interesting to note that
at this point that the programs, especially large programs
can be divided up into sub-programs, sub-routines and as
sembled independently. Thus at load time an overall deck
may contain a source deck to be assembled and binary decks
of sub-programs, sub-routines that were assembled previously.)
The linking, etc. and actual loading is done by the IBLDR
section of the system. When the entire program has been
loaded into 7040 core, an auxiliary program called MTAPE
loader written by our group is called into execution. The
function of MTAPE is to translate the program in core from
7040-36 bit instructions to PDP-9-18 bit instructions. The
translated instructions are placed on magnetic tape with a
format very similar to the rim format Paper tape with two
18 bit words required for the storage of each instruction.
The actual time of translation for a program that occupies
approximately 8k of PDP-9 memory takes only several seconds
of 7040 time. Our PDP-9 is physically located in the same
building as the 7040, and therefore it only takes a few min
utes to take the tape from the 7040 and prepare it for input
on the PDP-9. To load the magnetic tape on the PDP-9 we
use a several hundred word hardware read-in paper tape
program.

Presently our HPD operating system consists of a resident
monitor, and a system tape. The function of the monitor
is to call into execution from the system tape anyone of n
possible programs. The three programs presently on the tape
are: utility program for tape copying, tape dumping; the
HPD control program; the off-line display program; and
fourth, data, giving desired frame numbers and other book
keeping information whi ch is required by the HPD control
program. The present bubble chamber experiment requires
that the film be pre-scanned on manual scanning machines
and a minimum of information recorded on magnetic tape.
For example, certain events with wide angle interactions
will have to be scanned twice; one along the incoming
beam tracks, second, perpendi cular to the incoming beam.
A flag indicating whether or not this is required will be fed
to the control program as part of the above data.

The control program must issue commands to the HPD to po
sition the film on the desired frame on the basis of frame
numbers read by the HPD and transmitted to the PDP-9.
Whi Ie the correct frame is being found commands must be
issued so that the stage is positioned to digitize the desired
view within the frame. During this experiment, where every
frame has three views, at least three scans must be made of
each desired frame, and some frames will require an addi
tional orthogonal scan for each view or a total of six scans
per frame. When the stage is in proper position and the

correct frame found, the control program sends a command
to begin digitizing. The control program has three input
buffers, each 1040 words long to receive HPD digitizings.
The three buffers are filled in a rotating manner and are
processed by a data checking program, a CRT scaling pro
gram, and the output tape writing program. The buffering
scheme operates in an asynchronous manner. This is, the
rate at which the buffers are filled by the HPD does not
necessarily have to be the same rate at which the data is
being processed and written on output tape. However, there
lies the danger that on extremely dense portions of the pic
ture the digitizing rate may exceed the abi! ity of the PDP-9
to process and output data and produce a buffer overflow.
To avoid this condition, we originally started out with four
cycling buffers then reduced the number to three and even
in experimenting with two have encountered buffer over
flow only occasionally due to the extremely fast processing
speed of the PDP-9.

To ensure high quality output from the HPD it is essential
that some means be provided for monitoring the digitizings.
Lacking a large on-line computer, we have found a CRT dis
play of digitizings (figure 4) almost as good. However, the
control program occupies most of 8k of core so that a simple
scope display is not feasible. We have therefore added a
Vermont Research magneti c drum to the system for temporary
storage of coordinates to be displayed, automatic refresh,
and for convenience in storing programs for qui ck recall.
The main feature. of the drum interface is its ability to out
put data directly to a 34D scope interface without tying up
the PDP-9. In the display mode data is written as 18 bit
words with bits 8-17 containing the actual scaled coordinate.
Bit 0 is used as a flag for stage co-ordinates and bit 1 on
signifies end of data. During display the output of the drum
shift register is gated directly into the 34D interface instead
of into the DMA. The control program scales incoming data
and then writes the scaled data on the drum while simultan
eously writing the unscaled digiti zings on tape. When the
entire picture is on the drum or when the allotted number of
tracks set aside for scaled data has been filled, instructions
are sent to the drum to display the drum stored information.
Displays can be held whi Ie the HPD keeps digitizing frame
after frame or interesting sections of pictures can be expanded
digitally on the CRT. One very useful feature of thi s dis
play is in the setting up of different HPD parameters; poten
tiometers can be adjusted and then the result seen immediately
by measuring and displaying the same frame over and over
while adjustments are being rTD de. The data is also monitored
internally by the program where it is checked for monotoni
city, scan line separation, etc. The output tape, besides
containing digitized information, also contains various re
cords summing all errors detected in checking the digiti zings,
number of records per view, the scan line separation, and
various other useful information.

The next step in the chain of operations is processing the
digitized tapes. This brings into play an extremely large
basi cally fortran written program called ATF, automatic
track finding program. Currently this is being run on two
computers one located on campus, IBM 360/65 and the other
at NYU-the CDC 6600. The present processing rate for an
event on the MOD 65 is approximately 30 seconds. The out
put from the ATF program, the coordinates of interesting
tracks, are fed into two kinematic programs called thresh
and grind which hopefully yield the final physics output on
the event.

29

Figure 1

.-.....
•

ORTHOGONAL SUW OPTICS

PPA bubble chamber film Figure 2 Simplified HPD scan optics

Figure 3

Figure 4

D A
foot D
A~----1D
o R.

o A
tot D
A~-----iD
I R.

w.
c.

c
o
tot
N
D.

:.
1 1 -

• .,ra.llfT IN ,a.'J'xx.rL"~.u

-
DA.TA F'LOW

I';'"
: - - -

1- r I' HPD-02

PDP-9 - HPD t drum interfacing block diagram

'£ypical CRT display with frame and view numbers

30

A COMPUTER-CONTROLLED SYSTEM FOR AUTOMATICALLY SCANNING

AND INTERPRETING PHarOGRAPHIC SPECTRA

C. A. Bailey, R. D. Carver, R. A. Thomas, and R. J. Dupzyk
Lawrence Radiation Laboratory, University of California

Livermore, California

ABSTRACT

In analytical spectrography, the most time-consuming portion of
an analysis is the scanning and interpreting of the photograph
ically recorded spectra. A system has been devised to shorten
this time considerably by using a small digital computer to
control the scanning densitometer and subseq,uently to calculate
abundances from the photographic data.

The following description applies specifically to spark-source
mass spectrography; however, adaptation to other systems would
be relatively straightforward. A typical photoplate from our
spectrograph contains several thousand lines from as many as
twenty graded exposures, and represents approximately sixty
five e~ements. Starting with the most intense exposure, the
optical transmission of each line is measured using a Grant
microphotometer. These transmissions as well as the position
of each line are stored in a PDP-8 computer. The computer
initiates and 90mpletely controls the scanning, and simulta
neously converts each line position to an exact mass number
from a calibration performed at the beginning of the scan. The
computer is programmed to distinguish between lines and empty
areas on the photoplate, and all the graded exposures of each
line are recorded before the scanning continues to the next
line. Backgrounds are continuously upgraded and recorded a
long with their adjacent line densities. After the desired
area of the photoplate has been scanned, an emulsion calibra
tion is calculated from the data stored in the computer. Then
all line densities on the linear portion of the calibration
curve are converted to ionic abundances. Total time involved
in scanning twenty exposures on a fifteen inch photoplate is
now approximately five hours.

The Lawrence Radiation Laboratory has had a CEC
21-110 $park Source Mass Spectrometer in operation
for five years. Two years ago the chemists and
electrical engineers started looking for a way to
simplify and improve the reduction of the data
which is taken on photographic plates.

Several available systems of both plate reader and
densitometer were looked into and found to have
hard wired programs not applicable to what we want
ed to do. We concluded that we had to design the
system ourselves.

The Grant Microdensitometer was found to be an ex
cellent plate reader capable of being operated by
computer controlled stepping motors. The densi
tometer was coupled to a Digital EQuipment Corpor
ation PDP-8 computer to construct our present
system.

The first component in the system is a Spark Source
Mass Spectrograph, CEe 21-110. The ions from a
sample are collected on a 211 x 15 11 glass photo
plate. The mass lines occurring on the plate come
from elemental and compound ions, singly and multi
ply charged. Twenty graded exposures can be col
lected on a plate. Each exposure is 2mm in length.
For our purposes lIexposure II means the number of
ions striking the photographic plate; this value is
expressed in Coulombs. The second component in the

31

system is a Grant Microdensitometer. It has an
accuracy of + 1 micron in the X and Y directions.
The densitometer is stepped in one micron increments
in the X direction and five micron increments in the
Y direction. There are two viewing screens avail
able. One is a projection through a 22 power zoom
lens which allows a closeup of the area being scanned.
The second screen is an analog signal from the de
tector displayed on a cathode ray tube. It is used
for adjusting the scanning slits.

The readout is an analog-to-digital converter (ADC)
connected to the photomultiplier output. The ADC is
capable of twelve-bit resolution with a digitizing
time of 35 microseconds.

The actual plate stage drive is accomplished by using
two hundred steps per revolution digital 'stepping
motors. The X-drive incorporates a 5:1 gear reduc
tion which results in a scale of one micron per step.
No gear reduction is used on the Y-drive, therefore
the scale is 5 microns per step. Motor speed was
selected to allow instant start-stop-reverse resporne
without resorting to controlled speed-up to compen
sate for inertial effects.

The interface from the PDP-8 to the microdensitometer
uses only one device selector. The device selector,
by program control, puts out any one, or a combina
tion of three Iar pulses.

IOT-TWO is used to transfer nine status conditions,
such as X ready, Y ready, + X limit, etc., into the
accumulator. All but two of the status conditions
set the flag. IOT-FOUR actuates any one of nine
different control functions depending on what bit
or bits are set in the accumulator. Typical con
trol functions are, step + X, step -Y, clear flag,
interrupt on, etc.

The interface provides interrupt cap"",bili ty, but it
is not being used with the present program.

The third component is the Digital Equipment Cor
poration PDP-8. It is the 4k version equipped with
two Dectape transports and the extended arithmetic
element (EAE). The code occupies all of core. The
floating point package-D is used for all the input,
output, and most of the calculations. Control and
operation of the system is done entirely with soft
ware.

The following describes the interaction between the
operator and the Grant/PDP-8 system. The emulsion
calibration for the plate is made by exposing the
plate to the rhenium isotope spectrum at varying
intensities, changing the magnet setting between
exposures in order to offset the lines. These line
density-ratios are fitted into the Hull equation
relating plate density to exposure (Fig. 1). The
exponent R is calculated to be used later to cal
culate relative abundances of the ions striking the
plate.

The input for this process is through the teletype
(TrY). The operator types the number of rhenium
lines to be read and a value for the transmission
at infinite exposure (Tinf).

When the specified number of lines has been read
the computer waits for the operator to realign the
stege to read from low mass to high mass over the
range he desires. When alignment is complete the
operator types in a starting and a final location
in microns, four mass numbers, and their locations
on the plate. These masses are careful~ chosen
prominent lines distributed across the range of
interest and are fitted into a mass number calibra
tion equation (Fig. 2). "A" and "B" are determined
and used later to calculate the mass number, of
each unknown line from its location on the p~ate.
Twenty exposure values are typed in corresponding
to the number of Coulombs each line was exposed.
At this point the computer is put in complete con
trol, and the operator is no longer needed.

The following is a description of the peaks en
countered on a typical photographic plate and the
way the computer code handles them.

The first peak is a singlet in a clean portion of
the plate. The peak reading process always starts
with the most intense exposure. The code calcu
lates a peak detection threshold value. This value
is an arbitrary decrease in the transmission cal
culated from the background values (Fig. 3). This
value is updated every one ninth of a mass unit if
a peak has not been detected. A peak is determined
by testing to see if the incoming transmission value
is below the peak detection threshold. If a peak
is detected it is checked to see if it is an honest
peak. This check is necessary because of nonin
formity in the emulsion. If it is an honest peak
its peak top is determined and two background values
one ninth of a mass unit on either side of the peak
top are taken. One ninth of a mass unit is an ar
bitrary distance selected to reach over the very
dense lines and yet not encounter other mass lines

32

from multiply charged ions. There are not a con
stant number of exposures for each mass line, so
the following method is used to determine when all
the lines for a individual mass have been read. Two
questions are asked of the PDP-8. 1) Have twenty
exposures been racked? If yes then it does not look
for more information; if no the second question is
asked. 2) Is the transmission of this peak top be
low a threshold value calculated from the background
values of the previous exposure? If yes, then the
stage is racked one exposure in the positive Y
direction, the direction of lesser exposure, and
the data are stored in a buffer in core. If no,
then all the data from that line have been measured
and the code racks back to the most intense ex
posure and continues to look for a new mass.

The second peak is a doublet. The first mass line
encountered in a doublet is read in the same manner
as a singlet except that the background values are
now taken at one ninth mass unit on one side and at
the minimum in the valley between the peaks. The
computer is aware that there is a mass on its high
mass side. When it has finished the first mass
line it then scans the high mass line. Because the
various exposures are not perfectly perpendicular
to each other it was necessary to make sure that
the stage returned to the peak top of the most in
tense exposure of each mass line encountered before
starting to look for a new mass line. This was
especial~ necessary in the case of doublets.

The third peak is one that lies in fog. Fog is
caused by the ions from a very abundant element
scattering due to residual charge build-up. Fog on
plates may have a transmission value as small as
5%. The process of updating the peak threshold
detection value every one ninth of a mass unit de
scribed earlier allows very light lines to be found
in the very dark fog. The process of checking to
see if the peak top value is darker than the thres
hold calculated from the previous exposure allows
all the exposures for a mass line to be read.

The entire plate is read and the data are stored on
the Dectapes in two block segments. The following
information is stored: The mass number, from eq. 1
the transmission at the peak top, the transmission
at the two background positions, and the exposure
value.

The teletype output is shown in Figure 4, 1) The
percent transmission of the Re 185 and Re 187,
2) the R values for each Re ratio, calculated from
the Hull equation, 3) and the average R value.

Following this are the data for all detected masses
on the plate typed in the following fashion (Fig.
5), 1) The mass number, 2) the percent transmission
of the peak top and the two background values,
3) the abundance of the peak top and the two back
grounds and a net abundance, 4) the average abun
dance and the percent error. The average abundance
is a weighted average so that all exposure values
could be used in the calculation. The weighting
function is parabolic.

It was found that the numbers from the Grant/PDP-8
system agreed with hand calculation to within 5%.
This is very good agreement as spark source work is
usual~ quoted to a factor of two. There is no
reason to believe that the Grant/PDP-8 numbers are
not better. Standard samples are difficult to
prepare.

To conclude let us compare the time spent in read
ing and reducing the data from one plate. Start
ing from the time that the plate is developed,

dried, and ready for reading until relative abun
dances are in hand: 1) The Grant!PDP-8 system takes
one half hour of operator time, and for a typical
geological sample about eleven hours of system time,
approximately 5 hours for reading the plate and 6
hours for typing the data. It can be set up before
closing time and answers are ready at opening time
the next morning. 2) With the standard system an
operator is almost always required to put the data
out on chart paper, convert it to IBM cards and run
a short code on a CDC 3600 taking a total time of
three or four days.

The Grant PDP-8 system is a great improvement over
the old system. It should be adapted readily to
other plate or film reading systems.

We would like to thank Dr. G. W. Barton, Jr. for
his help in deriving the equations to weight the
average abundance and to calculate a percent error
for the average abundance.

This work was performed under the auspices of the
Unites States Atomic Energy Commission.

33

Emi MASS

Figure 1 Hull Eq~tion for Emulsion Calibration Figure 2 Mass Calibration Equation

Threshold = Average Bkg. - (% * Average Bkg.)

Figure 3 Threshold Equation

%T RE 185 & RE 187
+~.4749693E+.02
+~.49~l.098E+.02
+.0.5264959E+.02
+~.5235654E+~2
+~.56~1952E+.02
+.0.648596~E+.02
+.0.6923.075E+~2
+~.691.0865E+~2
+~.8329668E+.02
+~.78~2197E+.02

R VALUES
+~.94673~2E+~.0
+~.1~2846~E+.01
+.0.1~62~21E+~1
+~.8881528E+.0~
+~.8849648E+~.0
+~.1~49275E+~1
+~.1114296E+~1
+.0.1~79682E+.01
+~.1~14555E+~1
+.0.1131831E+~1

+.0.3592184E+.02
+.0. 363614.0E+.02
+.0.39365~8E+.02
+~.4119656E+.02
+~.4483516E+~2
+.0.5196582E+.02
+.0. 56.04394E+.02
+~.5633699E+~2
+~.7479852E+~2
+~.6656897E+.02

To

T187
R Log

To

T185

AVE R VALUE +.0.9789795E+~.0
l/R VALUE +~.1~21472E+~1

- T187

- Tinf

- T185

- Tinf

Figure 4 Rhenium Data and R Value

MASS +~.3127783E+~2
%T
+~.1582418E+.02
+~.2~61~5~E+~2
+~.27~3295E+~2

A{T)
+~.3143612E-~4
+~.445~~17E-~4
+~.6113529E-~4

%Bl
+~.2749695E+~2
+~.3262516E+~2
+~.4163136E+~2

A(B)
+~.14913~.0E-.04
+~.23~9754E-~4
+~.3~88~63E-~4

%B2
+~.242.0~24E+~2
+~.3~~61~4E+~2
+~.3748472E+~2

A(B)
+~.1787448E-~4
+~.2616.0'48E-.0'4
+.0'.3698~68E-~4

AVE ABND +.0.2337621E-~4 peT ERROR +.0'.1.0'.0'89.0'4E+~2

Abund Emi * VMass ~ Exposure

Log (1.67)

A(NET)
+~.15.0'4238E-.0'4
+~.1987115E-.0'4
+~.272.0'463E-.0'4

Figure 5 Data Output Mass, Percent Transmission
for Mass, and Relative Abundance for Mass

34

A PDP-8 SYSTEM FOR BUBBLE CHAMBER MEASUREMENTS*

John Rayner
University of Maryland
College Park, Maryland

ABSTRACT

This paper describes an on-line measuring system in whi ch the PDP-8
is used both as an up-down scaler for an image plane digitizer and to super
vise the measure in an attempt to prevent the most common measuring errors.
This error prevention is accomplished by having the program institute most of
the necessary procedures through messages to the measurer on a Teletype and
by elementary checking of the input data. Another aim of the system is to
replace cards with IBM compatible magneti c tape as the output medium • To
this purpose a Digi-Data Stepping Recorder has been interfaced to the PDP-8.
It is planned to expand the system to four measuring stations in the future.

The PDP-8 measuring system is a low cost approach to
the film measurement bottleneck in high energy physics. Un
like PEPR which aims at replacing the human operator, the
PDP-8 system is an attampt to increasing her efficiency by
catchi ng the more common errors on the spot, and by speed-
i ng up the measurement process.

The error prevention objective is approached in two
ways. First most operator actions are initiated by the com
puter through messages to the operator on an on-line tele
type. Second all input to the system is checked by the com
puter for format and consi stancy.

The measurement speedup is achieved in several ways.
The greatest gain in speed is probably due to the use of the
computer to buffer the input, thus avoiding the wait for
punching the coordinates. In line with this the program is
designed to read in each measurement within 70 !-lS, theo
reti cally allowing measurements to be taken on the fly. It
is also hoped that routing all control and paramter informa
tion through the teletype will lend itself to simplicity and
speed. Fi nally the choice of an image plane digitizer
simplifies the process of moving from point to point on the
film.

The present system consists of a PDP-8 computer; a
mangiaspago biradial image plane digitizer mounted on an
overhead projector scanning table; a teletype for operator
computer communication; a Digi -Data 1420, 556 character
inch, 200 step per second, stepping recorder; an on-line
clock for program timing; and the necessary interfaces.

To keep the cost of the system as low as possible, the
PDP-8 is used as an up-down counter for the measuring ma
chine. This is accomplished through the increment feature
of the Data Break. Due to the nature of the opti cal encoders
and the mechanics of up-down decoding it is convenient to
keep the two low order bits of each coordinate in the inter
face. Overflow or underflow of this count of four causes
one of four memory locations in the PDP-8 to be incremented.
The true displacement can then be calculated by subtracting

35

the down counts from the up counts, and adding in the low
order bits, which are read in from the interface when a
measurement is made. Since one 12 bit PDP-8 word is in
suffi cient to accumulate the largest possible displacement
the scalers are periodically checked for overflow under con
trol of the clock. When overflow is detected an overflow
counter is incremented. To avoid the problem of the counter
contents changing during read-in for points taken on the fly,
two sets of four locations are used alternately.

The digital stepping recorder was chosen for its relatively
low cost, and simplicity in interfacing and programming. The
tape deck itself has automatic lateral and longitudinal parity,
inter-record and end-of-fi Ie gap generation, and an optional
read head an electronics. The interface converts between
the 6-bit tape format and the 12-bit PDP-8 word.

The clock which can be enabled and disabled under
computer control has a 880 cycle rate for compatibil ity with
projected serial teletype interfaces, which will be used when
additional measuring machines are added to the system.

When the program is started the computer asks for the
date and then waits for the operator to type it in. The system
is then waiting for a measurer to sign on. This is accomplished
by typing S. The computer responds by typing SIGNON and
asks for the measurers ID number and then the roll number.
The number can be changed between events by typing R, to
which the computer responds by typing ROLL and waiting
for the new roll number to be typed • To measure an event
the measurer types N. The computer then types NEXT
EVENT and asks for the various event parameters, such as
frame number and event type. Since the event type number
is geometry dependent the computer can calculate the
number of tracks to be measured. The computer then types
VI EW I and requests a home measurement. This is accomp-
I ished by placing the measuring head in a slot fixed to the

*Work supported in part by the U. S. Atomi c Energy Com
mission.

table and pressing the record foot switch of H on the tele
type. Th i s serves to zero the counters. The counters can
then be checked by placing the head in the home slot and
typing H. If the counters are within a tolerance limit of
zero the computer types HOME OK, otherwise, it types
BAD HOME and requests remeasurement of the vi ew. After
the home check the computer requests fiducial measurements.
When three fiducials have been measured the computer types
TRACK I. When track 1 has been measured the measurer
types T. The computer then types TRACK 2 and the pro
cedure is repeated until all tracks have been measured. The
computer then requests a home measurement to check the
counters. If they check, the same procedure is then fol
lowed for views two and three. At any time the last mea
surement r track r view or event can be deleted by typing
D followed by M, T, V, or E. When the measurer is fin
ished she signs off by typing E.

The program is completely interrupt driven, that is, all
program action is initiated by an interrupt from a periph-
eral device. Interrupts are handled by a two-phase multi
priority interrupt monitor. The first phase of the monitor,
which acts with the interrupts disabled, saves the trapped
address and then determines which device initiated the
interrupt and set a flag for phase two. The second phase
then transfers control to the various service routines in the
order of their priority. Each device has a unique priority
and interrupts by high priority devi ces are completely ser
viced before those of lower priority. If a high priority inter
rupt occurs during the processing of one of lower priority,
the high priority interrupt is serviced before processing is
continued on the low priority one.

Teletype output is taken care of by two subroutines: a
teletype service routine and a teletype monitor. The ser
vice routine can output either single ASCII characters or
messages stored in a six-bit stripped code. These characters
and messages can be queued up by the teletype monitor, thus
permitting concatenation of phrases, words, and individual
characters with little cost in time to the calling program
sinc9 it doesn't hqve to wait for the teletype to be free.
When the service routine finishes outputting one message
it pi cks up the next one from the queue unti I the queue is
empty.

The teletype input routine performs two functions: it
accepts commands from the measurer in the form of single
letters, and it accepts and stores parameters. On receiving
a command letter the routine looks it up in the current com
mand table and transfers control to the appropriate routine
which types a response and initiates the required action. If
the letter is not in the current table, the routine types a
question mark and exists. Since there are several command
tables it is possible to limit the legal commands to those
that are appropriate at the time. In the parameter mode the
routine accepts a string of digits, and stores them in a tem
porary stack. On receiving a terminating character the
digits are packed two to a word with leading zero::; inserted
and transferred to the main input/output buffer. After the
last parameter in a group, control is passed to a routine
which initiates the next required action.' The address of
this routine, as well as the number of digits in each para
meter and the message requesting it, is stored in a table,
thus, allowing the input format to be easily changed. If
the input character is not a digit or terminating character

36

a question mark is typed and the temporary stack reset.

Tape output is initiated by the tape monitor and carried
out by the tape service routine. To conserve space measure
ments are output a track at a time. The tape output is swing
buffered. That is there are two buffers which interchange
roles as input and output buffers. Each output is in the form
of a 7094 FORTRAN IV binary record. The record consists
of a heading block specifying the type of record, and a
possibly void, parameter or measurement data block.

The measurement service routine assembles the coordinates
from the up and down counters, the overflow counters and the
two least b its read from the interface. Also read from the
interface are three bits indicating which views are turned on.
These are used to prevent measurement of the wrong view.
The home measurements are only used to check the counters
and are not stored while the fiducial and track measurements
are propagated to the input/output buffer. Interna Ily the
coordinates are kept in three word floating point form for the
floating point interpreter, but they are stored in the output
buffer in fixed po int form, with the coordinates packed in
three words. We hope in the future to fit a curvature to
each three consecutive points, and by requiring that each
curvature be within some multiple of the standard deviation
from mean, to re ject poorly measured tracks. In addition
the fiducials can be checked by comparing the interfiducial
distances with their nominal values.

STRIP, A DATA DISPLAY AND ANALYSIS PROGRAM
FOR THE PDP-8, 8/1

John C. Alderman, Jr., Research Engineer
Georgia Institute of Technology

Nuclear Research Center
900 Atlantic Drive

Atlanta, Georgia 30318

ABSTRACT

This program, using the PDP-8, high speed paper tape reader,
and type 34 display, accepts paper tape data listings and
displays the result on the display unit. Some elementary
computations are made on the data and are also displayed.
The program is deliberately designed to be open-ended, and
most users will want to add features peculiar to their own
problem. Almost all functions are carried out in subroutine
form, and these subroutines can be called either from the
keyboard or within another subroutine.

INTRODUCTION:

At the Georgia Tech Nuclear Research Center there
are in progress a number of small scale experiments,
each involving several graduate students. All of
these experiments use a data acquisition system
which includes an on-line PDP-8. Our need is for
a data processing system which will produce clearly
interpretable results from the experiment in a re
latively short period of time, since otherwise the
apparatus may not be available for a repeat of the
experiment.

Since most of the experiments take data as a func
tion of some equal increments of an independent
variable, a straightforward data display and reduc
tion program has been devised for use with the type
34 display unit.

Two programming assumptions have been made:

(1) While computers are relatively good at doing
computations, they are singularly unimaginative
in making decisions; while graduate students
may be capable of doing the computations, they
are singularly unwilling to do so.

Consequently, the present version of STRIP de
pends on the computer for almost all of'the
calculations, and the user for all of the de
cisions.

(2) Any programming system which is to be used by
several groups, must be easily expanded in
order to change and/or add functions to the
original system. In the case of inexperienced
programmers in particular, these changes and
additions must be facilitated to the extent
that the user can make the needed changes with
out spending a great deal of time learning the
nuances of sophisticated assembly (PAL) lan
guage programming.

These considerations led to the development of
STRIP, a PDP-8 program which produces a two-di
mensional display with the independent (equal
increment) variable along the horizontal (X) axis,
and the dependent variable along the vertical (Y)
axis. Also included in the display is the result
of some elementary numeric computations on the dis
played data (i.e. the address of the maximum, its
value, and the area under the displayed curve).
These numbers can be used by the operator to deter
mine parameters for later calculations.

37

In order to optimize data handling and display, two
buffers are used. One contains the original data
and the other data to be displayed. The display
routine continuously circulates through the later,
refreshing the display at a rate of about 20 times
a second.

In the current STRIP version the operator/user ma
nipulates the parameters of a calculated Gaussian
to fit his data. This is especially useful since
many types of experimental data show such a Gaussian
distribution, and the parametric form is desired
for further data reduction. Since the fitting oper
ation is accomplished by the user implicitly, the
background does not have to be specified explicitly,
simplifying the operation of obtaining the Gaussian
parameters themselves.

Data Storage

The data for the program are stored in two buffers
in the computer memory. The floating point data
buffer contains each value of the original data
stored in a 3 word floating decimal point format,
as used by the standard Floating Point Packages.
These data are used as the basis for most of the
computations, but are not disturbed by these comp
utations (exceptions are the input routine "R",
and the permanent Gaussian subtraction routine "#").
The display buffer is stored in a 10 bit one-word
integer format, suitable for deposition into the
Y axis register of the type 34 display unit. The
display routine cycles through this buffer display
ing each point in turn while incrementing the hor
izontal axis by the appropriate horizontal step
size.

A feature of the display routines is that as the
display buffer is "built" by making computations
on the data in the floating point buffer, the re
sult is normalized before conversion to the 10
bit integer which is stored in the display buffer.
Thus the display always occupies the maximum ver
tical displacement on the screen. The routine
that calculates the data display also normalizes
the horizontal axis step size to make maximum use
of the screen.

Keyboard Monitor

The keyboard monitor interprets the characters

struck by the operator, and calls the corresponding
subroutine from a table of starting addresses stor
ed in page zero. The list of legal characters is
expandable, and terminated by a zero. The display
routine is incorporated into the keyboard monitor
flag test, such that the flag for the keyboard is
tested after each look through the display. The
display is refreshed about 20 times a second (de
pending upon the number of points displayed). The
most time-consuming operation of the display is the
generation of the title, and a NOP can be inserted
in the calling location for the titles subroutine,
if desired.

The keyboard monitor presently recognizes a number
of control characters: which are listed as Table I.
The functions are self-explanatory, and the user
will become familiar with them very quickly.

KEY

L
U
C
F
D
R
S
t!

G
H
CTRL+
BELL
CTRL+
C

Table I

STRIP CONTROL KEYS

FUNCTION

Lower Boundary Marker
Upper Boundary Marker
Change to New Boundaries
Fetch Between Boundaries
Reset Boundaries
Read Input Data
Strip Trapezoid
Display Gaussian
Subtract Gaussian (display)
Get Gaussian Parameters

Permanent Upper Boundary

Return to Monitor (".")
Subtract Gaussian (data)

Let us assume that data has been entered into the
data buffer (by using the R command), and that the
shape of the observed peaks is a true Gaussian, ob
scured by noise. (See Figure 1). In order to begin
with some reasonable values for the Gaussian para
meters, let us narrow the limits by typing an:

IF=+ 1 102

U=+ 160 150

C (See Figure 2)

Now we have narrowed the display to two peaks.
Since the taller of the two peaks is the "MAX" on
the display, and the endpoints of the display look
as if they are on the flat portion of the background
we strike the "s" key. This causes the trapezoidal
area between the zero reference and the value of the
data at the absissa of the end points to be sub
tracted from the data. (See Figure 3). Notice that
the display is renormalized to fill the screen. The
new "AREA" and "MAX" are valid for the subtracted
display. Notice that nothing has been done to the
data in the "data buffer" (as you can discover by
striking the "F" key, returning the display to its
previous result by again hitting "S"). Now enter
the subroutine that gets the Gaussian parameters
by striking the "H" key. The program types out (in
floating point E format) the current Full Width
Half Maximum, and waits for a new value, or some
non-numeric character. The standard deviation and

38

the current value of the peak height are typed, and
again the program waits for a new number. When the
first non-numeric character is typed, the current
value of the location of the peak (in units of
channels, but not necessarily integer values of the
channel number!) is typed and a new value accepted.
When the next non-numeric character is typed, the
area is computed and typed, and the program returns
to the keyboard monitor. Note that there is no
change in the display (See Figure 4).

In order to get some idea of the height of the rigbt
hand peak, set the L limit to 127 temporarily, and
expand the display with the C key (See Figure 4).
Since the display is 11077 high, the right hand
peak seems to be about 8000. The full width half
~aximum should be about 8.5, and the peak occurs at
133. Now strike the H key and enter those para
meters:

H
FWHM= +O.OOOOOOE+OO 8.5 Sigma= +0.~61162E+Ol
HEIGHT= +O.OOOOOOE+OO 8000 At +O.OOOOOOE+OO 133
AREA= +0. 72458lE+05

In order to be able to observe the background, reset
the L limit to 102. Now let's look at the Gaussian
as it is generated in the program, by striking the
J key. (See Figure 5). That seems to be pretty
reasonable, so we subtract the curve in Figure 5
from that in Figure 2, and get Figure 6. The para
meters entered seem to be good, but it might be
possible to improve the "fit" if we moved the chan
nel number .25 to the right.

H
FWHM= +0.850000E+Ol SIGMA= +0.361l62E+Ol
HEIGHT= +0.800000E+04 AT +0.133000E+03 133.25
AREA= +0. 72458lE+05

F
G (See Figure 7)

That doesn't look as good as the previous result.
Maybe the width needs to be changed.

H
FWHM= +0.850000E+019 SIGMA= +0.382407E+Ol
HEIGHT: +0.800000E+04 AT +0.133250E+03 133
AREA= +0. 767203E+05

F
G (See Figure 8)

That looks better, let's make it even wider now.

H
FWHM= +0.90000E+ol 9.5
HEIGHT= +0.800000E+04
AREA= +0.809826E+05

F
G (See Figure 9)

SIGMA= +0.403652E+Ol
AT +0.133000E+03

Much better. We are pretty close to the trees, so
we can examine the forest better from a distance.
To get the original full screen display, strike the
D key.

D
G (See Figure 10)

From this viewpoint, it is obvious that the peak is
a little too tall. Let's try 8500 for the HEIGHT

parameter.

H
FWHM= +0.950000E+Ol
HEIGHT= +0.800000E+04
AREA= +0. 860.440E+05

F
G (See Figure 11)

SIGMA= +0.403652E+Ol
8500 AT +0.133000E+03

Thatts just a hair too much, try 8400.

H
FWHM= +0.950000E+Ol
HEIGHT= +0.850000E+04
AREA= +0. 850317E+05

F
G (See Figure 12)

SIGMA= +0.403652E+Ol
8400 AT +0.133000E+03

Thatts pretty good. Perhaps you could better the
tlfLttl by spend.ing more time adjusting the para
meters, but the improvement in the results would
probably not warrant the effort. The differences
in the last several moves are on the order of a few
percent, and with data of this type, it probably
isn't possible to do much better than that without
using some sort of least squares technique.

Modification of STRIP

Let us suppose that a user has a requirement for a
special r~utine to subtract a known background run
from the current data field. Specifications for
the subroutine might be:

Obtain a normalization factor from the operator/
user and then read the data while point-by-point
subtracting the product of the normalization factor
times the input data from the resident spectrum and
leaving the result in the resident spectrum.

The flow chart for this routine is Figure (13), the
listing is Figure (14). The normalization factor
is obtained by asking the operator for that number.
The input routine is setup for reading from the
high speed paper tape reader by depositing zero in
location 56, then the DO pseudo-operation is used
to call the initialization routine for the loop,
after which the GET routine is used to get a num
ber from the paper tape reader. The short computa
tion in the floating point package substitutes the
result of subtracting NORM times the just obtained
number from the contents of the location pointed to
by 11 (location 105).

The CONT routine updates the pOinters, and tests
for the end of the loop. When the loop has been
satisfied, the subroutine returns to the keYboard
monitor for the next command (and restores location
56 to 7777 to enable keyboard input).

Notice that the program co~ing is relatively simple
and that many functions are really calls to various
subroutines, either in the Floating Point Package
or the STRIP package.* One tricky point is that
the user must be sure that the locations in the
keyboard character and directory tables correspond,
and do not interfere with other key-called func
tions active in the package (see page 1 of the
HULME routine* for additional keYboard called func
tions) .

*A listing of STRIP and the Gaussian routine HULME
is available from the author.

39

Loading and Debugging User-Written Subroutines

The disc resident version of STRIP has some coding
at 3600, which tests the switch register at load
time, and halts if SR=O. The user may now use the
Middle of Core Loader (MOCL) at 3777, and/or the
version of ODT (DEC-08-cOCI-PA) at 1000. If ODT is
to be used, the contents of location 445 (BASE2*)
must be changed, since the display buffer will over
write ODT (1000-1577) otherwise. Debugging is not
usually hampered by moving the display buffer up
into the end of the floating point buffer area,
since a limited display field is acceptable when
debugging. The arrangement is intentionally design
ed to put the MOCL loader, and ODT in data areas
which will be overwritten by data during the normal
operation of STRIP, since these programs would pre
sumably need to be used only at load time of STRIP.

The non-disc-resident version of STRIP can use the
standard binary (SA 7777) loader and ODT (1000-1577)
in a similar manner,

Applications:

STRIP has proved useful in a wide variety of appli
cations, in spire of the fact that it has been avail
able for only 32 months.

Since the data input routine for STRIP is via the
Floating Point Package (FPP) , the input has the
restrictions mentioned in the FPP writeup. Since
the FPP output format is compatable with the input
to STRIP, it can be used to plot data generated in
FORTRAN, CALCULATOR, or FOCAL, or any other program
using the FPP for output. (A minor modification to
the input routines will allow the program to be used
in installations without the high speed paper tape
reader) .

Spooner et all ~se the disc resident version of
STRIP for an almost on-line plotter (as well as for
initial data reduction) for data from a neutron
diffractometer data acquisition system. The facil
ity for rapid turn-around and the availability of
Polaroid camera pictures of the display have made
a significant improvement in the operation of their
diffractometers. For example, the data used as the
subject of the example in this paper was taken from
such an experiment. The central peak (see Figure 1)
of the data is the result of poor collimation of the
incident beam, and the availability of the display
allowed the experimenters to correct this situation
before using up more beam time (eaCh point on the
plot represents 10 minutes of neutron beam time!).

In another application, a study of filtration
2
of

particles through sand beds by Champlin et al has
been made possible by STRIP. The volume of data
acquired by the experimenter (about 500, 400 chan
nel spectra) and the difficulties of dealing with
the rather complicated background in this experi
ment were such that some mechanized data reduction
scheme is required. Normal fitting techniques prov
ed elusive, because of the aforementioned difficult
background situation.

~e obvious use of STRIP is for reduction of data
from Pulse Height Analysers. The saving in time of
this method over hand methods of analysis has signi
ficantly improved the work done by a group doing
neutron activation analysis. The tlaccuraci' of the
results seems to compare favorably with tedious
graphical methods usually involving centroid deter-

mination, and "block counting" integration methods.
By use of the "#" key which permanently subtracts
the currently defined Gaussian from the data buffer,
it is possible to completely separate the peaks in
a complicated spectrum from the background, which
may be quite complicated in shape also. In one cas~
the user was able to separate a small peak of 10%
of the area of a large peak, which "laS well up on
the "skirt" of the large peak.

Conclusion:

STRIP is a data display program that is easily used
by the experimenter to examine and partially reduce
his data. The reliance upon the judgement of the
user in fitting operations nake it very useful in
situations where normal least squares techniques
are unsatisfactory, and the facility for expansion
and change within the program make it possible for
the program to "grow" toward solving the particu
lar needs of a large number of widely different
applications.

0267 7451
0270 0000

0154 4100

FIGURE 14

I SUBROUTINE TO SUBTRACT BACKGROUND
/SPECTRUM TIMES OPERATOR-SUPPLIED
/NORMALIZATION FACTOR, FROM THE
/RESIDENT SPECTRUM.
I CALL WITH "W" KEY, AND SUPPLY
/NORMALIZATION FACTOR AS ASKED FOR.
/FAST TAPE READER WILL THEN READ
/BACKGROUND SPECTRUM WHILE SUBTRACTTIl"G
INORMALIZED SPECTRUM FROM EACH POINT.

DO=JMS I 111
CONT=JMS I 112
FNTR=JMS I 7
FNEG=l¢
Il=1¢5

/ SETUP TNIZE W KEY
*267

*154

*4100

-327
o

W /ENTRY TIl" DIRECTORY TABLE

4100 0000 W,
4101 4726
4102 4727

o /BACKGRaJ.ND SUBTRACTION ROU
JMS I CRLFP /TINE .
JMS I MESSAG /MESSAGE PRTIl"TOUT

4103 1617
4104 2215
4105 7540
4106 0000
4107 4531
4110 4407
4111 6330
4112 0000
4113 3056
4114 4511
4115 4531
4116 4407
4117 3330
4120 0010
4121 1505
4122 6505
4123 0000
4124 4512
4125 5700
4126 4170 CRLFP,

1617 INO /ROUTINE
2215 /RM
7540 1= SP
o
JMS I 131 / INPUT NORM
F.NTR /ENTER F,L()ATTIl"G POTIl"T
FPUT NORM / STASH FACTOR
FEXT
DCA 56 /56=0 IS FAST READER
DO /CONDITION
JMS I 131 /INPUT A NUMBER
FNTR
FMPY NORM
FNEG
FADD I 11
FPUT I 11 /(Il)=(!l)-NORM*NUM-
FEXT /BER
CONT
JMP I W
4170 /SEE LISTTIl"G

4127
4130
4131
4132

CONT
CRLFP
DO
FNEG
FNTR
11
MESSAG
NORM
W

40

4274 MESSAG,
0000 NORM,
0000
0000

4512
4126
4511
0010
4407
0105
4127
4130
4100

4274
0
0
0

SETUP FOR
FAST INPUT

(I1)=(I1) - NORM*NUMB

NOT DONE

FIGURE 13

Figure 1 Figure 2

Figure 3 Figure 4

Figure 5 Figure 6

4·1

Figure 7 Figure 8

Figure 9 Figure 10

Figure 11 Figure 12

42

BRINGING THE COMPUTER INTO THE
HIGH SCHOOL CLASSROOM

Mi chael L. Doren
Deerfield High School

Deerfield, Illinois

ABSTRACT

This paper is geared primarily for high school mathematics teachers, department
chairmen, supervisors and others interested in computer education at the second
ary level. Some ideas on how the PDP-8/S, in combination with an inexpensive
closed-circuit TV setup, can be used to enri ch concepts taught in all levels of
high school classes are presented. Emphasis is on the goals and ways and means
of more effective use of the computer in the high school classroom.

This paper is presented to the Digital Equipment Computer
Users Society 1968 Spring Symposium in the spirit of sharin~
some ideas on how to use a computer installation effectively
in a high school classroom. All uver this country, schools
are becoming increasingly aware of the important role of the
computer in our society. Indeed, many schools could not
schedule their classes without the use of a computer; yet too
few schools include computer education as part of their sched
ule of classes. Schools are becoming increasingly anxious to
get the computer lIinto ll their curricula. Decisions are being
made; ways and means are being settled upon. Should the
school purchase a small computer that wi II allow its students
to get their hands on it and really see how it operates, even
though it has limited capabilities in problem solving? Should
the school enroll in a time-sharing plan giving students little
opportunity for hands on operation but providing tremendous
problem-solving potential? Until recently, any high school
(of average financial means) desiring computer education for
its students has had only the above options. Financially well
off districts could have both the small accessible computer and
the teletype line to a large installation.

But now a new type of computer has been offered on the
market that provides a third, and a preferable, alternative.
Digital's PDP-8/S and PDP-8/I sell and lease for prices that
are within the financial capabilities of many schools. Yet
these machines offer the two advantages of computer educa
tion: (1) They allow capable students to get their hands on
the computer; program in machine language, watch the lights
that step through their programs, see and investigate the
working parts, and learn how the computer works; and (2)
they have sufficient core memory to accept more sophisticated
programming languages and to allow for the successful solution
of almost any problem that would arise in a high school class
room. At Deerfield High School, we have had computer
education for three years. For the first two years we had
the small, accessible, limited type of computer which I men
tioned earlier. This year we purchased a PDP-8/S, and we
are quite pleased with its ability to fulfill our needs. Along
with the new computer, we have initiated some new ideas
that we feel add greatly to our abi I ity to make the computer
a vital part of our mathematics curriculum. Under department
chairman, Karl Wildermuth, I believe that Deerfield has
played a pioneering role in computer education. This paper

43

concerns ways and means; it is not a technical dissertation on
a complex subject but rather a way of putting pen to the ideas
that Mr. Wi Idermuth and .our staff have developed so that
other schools may be encouraged to enter into the computer
education field and may share some of the benefits of our
experience.

COMPUTER EDUCATION AT DEERFIELD

At Deerfield High School, we have two primary purposes
for computer education within the mathematics department:
(1) To teach computer operation and programming to those
students who are capable of learning it; and (2) to use the
computer to provide enrichment for our courses at all levels
within the department. To implement the first of these two
objectives, we offer two courses in computer education.
Fundamentals of Digital Computation, M-22, is a one-semester
-:ourse for above-average students who have had at least
three years of mathematics. The course of study includes
Boolean algebra, the electronic hardY"are of the computer,
and intensive work in computer programming and operation.
(see Computers and Automation., March, 1968, page 28 for
an outl ine of this course) In addition to M-22, we are pre-
paring a course for interested sophomores and juniors called
Introduction to Computers, M-16. This six-week course will
enable students to use the Calculator Mode, Fortran, FOCAL,
and other languages to solve problems that they meet in their
mathematics, science, and business courses.

Approximately fifty students enroll in our M-22 course
each year, and we hope to have about fifty more in the in
troductory course. These students are given complete access
to the computer itself and the off-line teletype that we have
located in our computer laboratory. Many of these students
become very good programmers, and others show remarkable
talent in working with the electronic and technical aspects
of computer operation. Indeed, I am confident that several
of these students will eventually select vocations in the com
puter field, and I feel that their high school experience has
been an important factor in this selection. However, this
alone does not justify the existence of the computer at Deer
field High School. We feel that the second objective named
above is equally important. We believe that it is extremely
worthwhile to use the computer at all levels of coursework

within the department, from modified algebra to calculus.
Any teacher who has tried to teach the quadrati c formula to
freshman algebra students or Pascal's Theorem to a statistics
class would agree that the computer enables him to do a
better job of teaching many topics. Secondly, such use of
the computer exposes nearly the entire student body to the
capabilities and limitations of the computer. In this age,
when those who do not understand the complexities of mathe
mati cs and automation fear or bel ittle the contribution of the
computer to our society, this friendly exposure can be very
helpful. Furthermore, it is far more reasonable to justify the
expense of computer educati on on the basis of 2000 students
rather than on one or two hundred. Therefore, I feel that it
is just as important that our curriculum seeks to give exposure
to the average and below-average student as it is to give
depth and competence to the above-average student.

Reaching the above-average student is relatively more
easily done. We merely (if I may be allowed literary under
statement) place some good students in a room with a compet
ent teacher and a computer. Throw in a few textbooks and
some manuals and we have computer education that is as good
as our teacher, computer, and students can provi de. But when
we are talking about 2000 students, 15 teachers, and one
computer, the problem takes on some, new aspects, andltis
just these aspects to which I devote this paper.

CLASSROOM USES FOR A COMPUTER

The problem boils down to trying to develop some system
wh i ch wi II enab I e a II teachers to use the computer ina II of
their classes in sudi'C way as to improve genuinely the level
of instruction and create a real interest among the students.
First, we must decide what goals, or educational objectives,
are served by the use of a computer demonstration. I have
found that the computer can be a definite aid in both the
deductive and inductive learing processes. After I have
proved a theorem to my class (Hero's formula for the area of
a triangle, for example), the computer can be used to give
repeated exampl es to demonstrate that the theory is val i d.
The theory is introduced, black-board examples are given,
then several examples can be worked on the compul'er to be
verified by the students. The homework assign~d, which is
designed to practice and apply the theory, can be checked
the next day on the computer. This is good deductive learn
ing, adding the incentive for the student to be able to IImatch
the computer. II In addition, the program can be written to
detect unreal isti c data entries (such as negative sides if Hero's
formula were being programmed); and a diagnostic statement
can be typed, making the student more aware of the dangers
and excepti ons found ina theorem.

With good students and advanced concepts, the computer
can be a strong encouragement to inductive learing. Several
well-planned computer examples enable many students to
IIdiscover ll theorems for themselves. Using a Fortran program
that computes binomial coefficients, I was able to show my
statistics class {or they were able to show me} that

(n)+(n)= (n+1)
r r+1 r+l

Thus, they were more wi II i ng to attempt a formal proof of
Pascal's Rule after they had discovered it for themselves.
After a few more examples, they were ready to prove that

44

n

r.=o

In any course that involves a great amount of theory, a com
puter demonstration can create the need for that theory -- a
nice alternative to teacher-imposed needs.

In the realm of high school mathematics there are many
topics which lend themselves effectively to computer demon
strati ons. A teacher or group of teachers can go through a
textbook and find many ideas that can be programmed for
classroom use. At Deerfield we have written some seventy
programs for use in our curriculum. They range from simple
concepts such as IIprime factorization of an integerll to more
advanced ideas like the lIupper triangulation of a 3x4 matrix. II
Every course should offer at least five or six opportunities
each semester to bring the computer into play. In an advanced
algebra course, for example, the computer can be used to
demonstrate such topics as:

1. Quadratic Formula
2. Distance Formula, Midpoint Formula
3. Linear Equations
4. Law of Si nes
5. Law of Cosines
6. Arithmetic Progressions
7. Geometric Progressions
S. Evaluation of Determinants
9. Solution of System of Equations

10. Parabola Discussion
11. Circle, Ellipse, Hyperbola
12. Conic Section Identifier
13. Operations on Complex Numbers
14. Factorials
15. Permutations, Combinations
16. Binomial Coefficients
17. De Moivre's Theorem
lS. Logarithms

In addition, the calculator mode of PDP-SIS will demonstrate
the following ideas met in advanced algebra:

1. Order of Operati ons
2. Group, Field Properties
3. Roots and Powers
4. Evaluation of Polynomials
5. Trigonometric Identities
6. Fraction-to-Decimal Conversion

PROGRAMMING FOR CLASSROOM USE

After having decided what topics are appropriate for
computer demonstrations in a high school classroom, the
actual programming of the concepts must be done. PDP-SIS
offers two programming languages that are relatively simple
and very well-suited to this purpose: a version of Fortran that
is similar to those used with the large computers and a new
language, FOCAL. These languages are easy to use, but
they allow the solution of quite sophisticated problems. This
past summer, several of our faculty members spent three weeks
writing programs in Fortran. A source language print-out of
each program, along with a few example problems, were
compiled into a loose-leaf booklet. Copies were made and
distributed to each member of our department faculty. As
new programs are added and old programs are revised, each
teacher is given a copy to place in his booklet. We are now

in the process of rewriting these programs in the new FOCAL
language. Each of these programs has five features that I
believe are essential in a program that is to be used for
classroom demonstrations.

Clear request for data input. Each program begins with a
very specific request for data. This allows the operator or
teacher (who may not have written the program) to enter the
correct data in the correct order.

Well-formatted output. The results and answers are very
clearly stated so that the teacher need do very little inter
pretation of the results for his class.

Diagnostics and "IF" tests. All entries of data are carefully
checked for appropriateness. If a number must be positive,
an "IF" test should be applied to be sure that it is. If the
data must meet other requirements, these too should be
tested; and the program should be written to inform the
operator of the error that he has made. These error dia
gnostics come into play when a sincere error is made (which
can happen when the operator is unfami I iar with the I imita
tions of a concept) or may be called up intentionally by the
teacher in his selection of data (to encourage the students
to find out why the computer has rejected the data). The
error di agnosti cs can be programmed ina I ight-hearted way
to give the students a chance to see the computer with a
more "human" personality. It is, however, important for
the students to know that these "human II characteristi cs are
the result of humans. The computer is quick, accurate,
obedient, and dumb. It can often find answers when the
data are completely unrealistic; it takes a human being to
reason that the data are not ri ght •

Programmed recycle. The first statement of a program should
be numbered and the last statement should recycle the pro
gram to its start. In this way, many examples can be done
without having to re-address to console. Using the computed
GO TO function of Digital's Fortran, the same program can
be used to perform several related tasks, such as computation
of mean, third, or fourth proportionals or finding either the
missing leg or hypotenuse of a right triangel. In this way,
the time needed to read in a new program can be saved.

Algorithmic solution and mnemonic variable names. When
ever possible the program should be written so that solutions
are performed in the same manner in whi ch they would be
performed by students. With due respect for the restri cti ons
imposed by integer and floating-point considerations, the
variables used in the program should be mnemonically close
to the ideas they represent (e.g., DIST for "distance",
SUMX for "sum of the X'S", etc.) By doing this, a program
becomes a useful resource for a student who is trying to learn
how to program a computer.

The following excerpts from teletype input-output (from
a program entitled "Parabola Discussion ") wi II serve to i lIus
trate the first two features mentioned above:

Data Request:

PLEASE TYPE IN A, B, AND C
OF Y = AXX + BX + C

45

Input:

1, -6, 9

Output:

P= + ~.25%~~E+~
H= +~.3~~~E+1
K= +~.~~~~E+~

FOCUS IS (+~.3%%~~~E+ 1 ,+%.25¢%%%E+%
DIRECTRIX IS Y = -%. 25%~~~E+~

Y -INTERCEPT IS (%, + %. 9%~%%fdE+1

PARABOLA IS TANGENT TO THE X-AXIS
AT (+~.3fd~~~~E+1 ,m
TABLE OF COORDINATES

-%. 2%%%%%E+ 1
-~. 175%%%E+1
-%. 15%%~E+1
-%. 125fd~fdE+ 1

+ ~.25~%%%E+2
+ %. 225625E+2
+ %. 2~25%~E+ 2
+ ~. 18~625E+2

(Computer will give 40 ordered pairs.)

The following example illustrates an error diagnostic
being called up:

Data Request:

PLEASE TYPE IN A, B, AN D C
OF Y = AXX + BX + C

Input:

fd, 5, 8

Output:

SWEETHEART! IF A = %,
THIS AIN'T NO PARABOLA

This excerpt from the actual Fortran program shows the
use of mnemonic variable names and the algorithmic approach:

7~; P = 1./ (4. *A)
VH = -2. *P*B
VK = C - VH*VH/ (4. *P)
FY = VK + P
DIR = VK - P
DISC = B*B - 4. *A *C
IF(DISC) 71, 72, 73

BRINGING THE COMPUTER INTO THE CLASSROOM

The five features I have mentioned above wi II make a
program for classroom use far more effective than a hasti Iy
prepared program. It is important to acquaint each teacher
in the department with the programs available for his use in
the classroom so that he may be encouraged to make full
use of the computer facility. Implicit in all of this discussion,

however, is the need to bri ng the computer physi cally "i nto"
the classroom. Several different techniques are avai lable
for any school, and I believe that we have tried them all.
We, of course, had to rule out having a PDP-8/S in each
classroom, which would be the ideal situation but a little
too expensive. When we had a very sma II com puter, we
placed it on a cart enabling us to roll it into any classroom.
This worked fairly well but caused considerable wear and
tear on the computer as well as a few anxious moments when
we "lost" it for a period of time. Next, we tried keeping
the computer in one room and moving classes about in a
"musical classrooms" situation. While all of these ideas
have some merit, they involved difficulties which dis
courage computer use by teachers. For thi s reason, I see
oilly two worthwhile alternatives. First, an input-output
device may be placed in each classroom. However, not all
teachers are able to effectively control the physi cal entry
of programs and data; and if the output device is a teletype,
only few members of the class can actually see the output.
And having a teacher read numbers from a sheet of yellow
paper does not provide a very dynamic classroom use of the
computer.

For the above reasons, we at Deerfield have settled upon
a closed-circuit television system as the most effective means
of bringing our computer into each classroom. Our system
consists of five elements:

1. Computer Laboratory
2. Closed-Circuit Television
3. Two-Way Communication
4. Computer Laboratory Assistants
5. Computer Laboratory Supervisor

I must preface this discussion by noting that our school built
a new wing last summer, enabling us to plan an effective
computer installation with the architect and electrician.
However, these ideas can be used in an existing structure
without having to tear down walls or bui Id new ones.

Our computer laboratory is centrally located among
our ten mathematics classrooms. It is about half the size of
a classroom and has one door opening directly into the cor
ridor and one to the adjacent mathematics department office.
The lab contains our PDP-8/S, two teletypes (one on-line
and one off-I ine), two television cameras (one for focusing
directly on the teletype output and the other for use in black
board demonstrations), a vi deo tape recorder, an intercom
panel (which offers two-way voice communication to any
classroom), m i c rophones, headphones, and vari ous am pi i fi ers,
transformers, and signal spl itters. This area also houses our
mathemati cs I ibrary and si x study carrels. Students can use
the lab area to work at the computer, to make up a test, or
to prepare reports or projects using the available resources.
Each classroom is equipped with a wall-mounted 23-inch
television, a ceiling-mounted speaker-microphone, and a
call-button which activates a light and buzzer in the com
puter lab.

Each period of the school day, a team of two or three
student lab assistants is assigned to the lab in lieu of a re
gular study hall assignment. These students were selected
by the department after an initial petitioning meeting last
fall. I had five times as may appl icants as there were open
ings for Computer Lab Assistants (CLA's). With the help of
my fellow faculty members, I pi cked those students who

46

seemed most dependable and able to learn the necessary
tasks. Training took place in six after-school sessions held
over a period of three weeks. During this time, they were
able to learn how to operate the television equipment, the
intercom, the basic fundamentals of the teletype, and how
to read a Fortran or FOCAL program into storage. It is not
essential that these students know how to program, but I
offered "voluntary" lessons in Fortran programming at which
the attendance was quite good. When there is no other
"business" in the lab, these CLA's use their assigned periods
to increase their knowledge of computer operation and pro
gramming. Many of them have become quite ski lied and I
feel have obtained a truly salable skill in the computer field.
Our system depends upon their ability and willingness to help.
They have petitioned the Student Counci i for recognition as
a school organization, and with the possibility of carry-over
members for next year, they should require less of my super
visory time. In return for my time as computer laboratory
supervisor, I am released from an assignment in a study hall
or lunchroom.

A classroom computer demonstration is initiated by the
teacher. He needs merely to press the call-button in his
classroom, and a CLA will answer from the lab and find out
what he would like to have done. The necessary program
can be read into storage and the television cameras can be
focused while the teacher turns on his TV, pulls the curtains,
and dims the classroom lights. When the program is in stor
age, the CLA presses "start" and the data request is typed;
the whole class can see this request. The teacher specifies
the data to be entered, the assistant enters the data, and
the output is typed. Again the whole class sees all of this
and hears the sounds of the teletype as it goes through its
paces. The students themselves can have a chance to specify
the data and to have the computer at their command. Per
haps their choice of data will call up one of the programmed
error diagnostics, and they will have the added advantage of
trying to learn why the computer would not accept their data.
The whole demonstration can be a very exciting learning pro
cess.

With the extremely simple new FOCAL language, a
ski lied teacher can actually do the programming for and
with the class. In this way, the students can get a real
feeling for the programming process and for the algorithm
being performed. The simple "ASK", "SET", and "TYPE"
commands give the students a sense of participation and in
volvement r which in my opinion cannot be paralleled in
any other type of learning experience -- not to mention its
positive effects on the enrollment for M-16 and M-22.

As we become more experienced, we are finding more
and more uses for the computer and the television equipment.
Since this equipment involves a considerable expense, full
usage is important to the department and essential to the
school board. We have found the TV to be a very success
ful means of team teaching. On an experimental basis this
year, two other teachers and I taught advanced algebra to
juniors using a TV-Team approach. Two or three times per
week a twenty-minute lecture was presented in the lab and
shown to the three separate classes over the TV. The CLA's
act as camera men and technical assistants. New material
can be presented in this way, and questioning can be car
ried out through the use of the intercom. Although we are
sti" in the process of anal yzi ng the data coli ected after the
first semester, we expect to find that despite a few inherent

IIhostilities ll on the part of the students, they were able to
achieve at a level comparable to the non-team classes.

Every mathemati cs facul ty has some members who are
more skilled in certain areas than their colleagues. We
have found that the TV and video tape recorder provide an
excellent means of sharing this talent with the whole de
partment. One member of our staff who has had more back
ground in non-Euclidean geometry prepared a thirty-minute
tape on this subject that was shown to all of our geometry
classes over a two-day period. Simi lar tapes have been pre
pared on a variety of subjects that have enriched our curri
culum at all levels. If a teacher needs to be absent from a
class, he can prepare a taped lecture to be shown to his
class. Certainly these ideas can be extended to bring about
more efficient use of the available staff. Teachers have
also found the closed-circuit TV useful in showing graphs or
charts to their classes right out of the answer book, thus
saving the time and expense of recopying these visual aids
on a transparency or ditto master. Incidental uses include
instructional TV network programs and the showing of a movie
to many classes when we have had access to the film only
one day. All of these ideas support my belief that closed
circuit TV is by far the best method to bring the computer
into the classroom as well as offering many ways to improve
the effi ciency and effectiveness of instruction.

SOME PROBLEMS

Our first year with this system has not been without its
problems. Generally these difficulties fall into one or two
categories; problems of a technical nature with the equip
ment, and problems that involve personnel. At times, some
of the technical bugs seemed overwhelming, but we have
made progress in solving them. The IIJungle ll is what I refer
to as the area of the lab containing the various amplifiers,
signal splitters, and the intercom panel. Some sort of out
side, technical help is needed so that the necessary changes
(ex: switching from live to tape TV, from the computer out
put camera to the long-range camera) can be reduced to a
few toggle switches rather than the time consuming and con
fusing reshuffling of input and output wires, plugs, jacks,
and terminals. A semester of experimentation is advisable
in order to discover exactly what the needs will be, but
after that time a professional electrician should be called
upon to help simplify the lab operation.

Another rather serious problem arises when the computer
itself runs down (as all of them do from time to ti me, es
pecially if students are allowed to operate them). Our ex
perience with the Digital Equipment Corporation has been
quite favorable thus far. To any school that is planning to
buy a computer, I would recommend finding a company that
has a branch office in your area and one that is anxious to
increase its participation in the computer education field.
Companies that sell or lease computers to educational ac
counts must not fail to realize that vast differences exist
between educational and business concerns.

Whi Ie schools have very defi nite costs, both fixed and
variable, they have nothing tangible to claim as output or
production and therefore no IIprofits" from which to finance
costly repairs. High schools cannot employ computer ex
perts or technicians, and existing staffs need all the help
they can get in keeping their equipment running and in
receiving technical help and ideas.

47

We are far more able to solve problems that are con
cerned with personnel and students. Our greatest need is for
in-service training for our teachers in the use of the computer.
A summer workshop, conducted by a qualified faculty mem
ber, or after-school sessions can help out in this area, but
school administrations must be willing to bear the necessary
costs. A teacher needs to feel competent in the use of new
equipment, or he wi II not use it. The demands on his time
require that the equipment be as easy to use as possible. The
use of a computer involves a fundamental change in teaching
technique, which is difficult even for teachers of short tenure.
But if we agree that computer education is a valuable and
worthwhi Ie undertaking for today's high school, then it is up
to us to begin discussing our goals and the means for imple
menting them. I hope this paper has helped.

(I wish to gratefully acknowledge the help of Karl Wildermuth,
Louis Crouch, and Michael Knight in preparing this paper.)

PDP-Sis IN THE HIGH SCHOOL CLASSROOM

Bud R. Pembroke and Dave Gillette
Computer Instruction NETWORK

Salem, Oregon

ABSTRACT

The presentation will cover the present use of the PDP-Sis as
a portable computer in several curricular areas in schools
within the Computer Instruction NETWORK. The use of machine
language will be discussed along with the use of CINIC as a
"Load and Go" conversational compiler. CINIC "Computer
Instruction NETWORK Instructional Compiler" was patterned
after a subset of BASIC for the 4K core memory of the PDP-Sis.
The authors will include a description of the instructions,
examples of programs, and a candid explanation of advantages
and limitations of this language.

The Computer Instruction NETWORK is an ESEA Title
III Federal Project, covering a four-county area in
Oregon. Our purpose is to assist high school stu
dents in the learning of computer concepts. Com
puters as an area of study, is our main goal, rather
than using computers to assist the student in prob
lem-solving in other phases of the curriculum. We
feel that in order ~o fulfill our objectives, a
student must have hands-on experience. Each pupil
should be able to press the buttons in running his
own program. Computers are supplied for each of the
schools cooperating in the C. I. NETWORK. We have
been using the least expensive general-purpose
PDP-Bls and other similar machines. These are port
able enough to allow a sharing of machinery among
several schools.

We strive to make effective use of classroom time.
In addition to the computer and the on-line tele
type, each classroom also has another teletype
leased from the telephone company. Thus, one stu
dent can be pre-punching programs on tape, while
another is running or debugging his program.

Also, to conserve machine time during the class
period, we use what we call load-and-go preparation
programs. These allow the student to pre-punch an
appropriate tape on the off-line teletype, and read
it into the computer. As the tape is being read,
the preparation program is translating the teletype
codes into machine language instructions which are
immediately stored in the computer's memory. Now
as soon as the tape has been read, the program is
ready to be run. There is no waiting for inter
mediate tapes to be punched or processed. Opera
tional at the present time are the Machine Language
Loader (MALL) and C. I. NETWORK's Instructional
Compiler (CINIC). Assembly Loader of C. I. NETWORK
(ALCIN) is still in the developmental stage.

The Machine Language Loader program allows the pro
grammer to type the first address of a block of
computer storage, and then type the instructions or
data to be deposited in that block. The MALL pro
gram translates the octal teletype codes into ma
chine binary configuration and deposits each word
in successive storage locations. A new block may
be started at any time, by typing the first address
of that block. When using this procedure, the only
storage locations not available to the programmer
are the page and a half containing the RIM, BIN,
and MALL loading programs.

49

As the student learns the language that the compurer
uses, he can grasp a much clearer idea of the con
cepts involved in machine operation. One way of
teaching about an instruction or programming con
cept is to allow the machine to be in Single In~ruc
tion mode. The students can observe the various
registers and notice how the computer deals with
the data and addresses during each instruction.
Debugging can be done in a similar way. A student
can try a program that does not run correctly, oper
ating one instruction after the other on his own.
By observing the console lights, he can find the
incorrect steps in his procedure. This, of course,
is meaningful only to the programmer who is familiar
with the octal representation of the instructions,
data, and addresses.

Since the C. I. NETWORK is, in most cases, teaching
the most basic concepts of computer use to complet~
ly inexperienced people, we must start slowly and
simply. The first programs are restricted to page
zero. This eliminates much of the complicated
explanation that would have to be covered for ad
dressing on the other pages.

The first program introduced is extremely elementary.
(See diagram one.)
But many concepts are
illustrated by this
program. First, the
students must realize
that the computer
stores each instruc
tion and piece of
data in a memory 10-
cation.

0020
0021
0022
0023
0024

1023
1024
7402
0005
0006

START,

X,
Y,

TAD X
TAD Y
HLT

Then starting the program at the first instruction
allows the machine to process the instructions in
sequential order until a Jump or Halt occurs. The
use, operation, and procedure for writing memory
reference instructions, must be introduced. The
form and use of data in the machine is explained
in terms of their previous knowledge of Binary and
Octal arithmetic. All these fundamental concepts
can be learned by working with straight-line pro
grams like this one.

The idea of causing the computer to make a choice
based upon the value of a datum can be presented
along with an appropriate skip instruction or two.
As more kinds of instructions are introduced, the

concept of looping is needed. One of the simplest
loops to explain is a multiplication by repeated
addition. The use of a counter as an end of loop
decision is given in this type of loop. Print-out
loops give a variety to the loop concept. Teaching
the needed lOT instructions, and showing the process
of the modification of instructions, allows students
to have the computer type messages. Another basic
concept that is introduced at this time is the use
of the comparison of teletype codes as an end-check
on the loop. Additional concepts that we feel are
basic are the initialization of variables and the
use of subroutines.

If time allows, other more sophisticated programming
ideas can be presented to the class. But all addi-
... ~~_~1 __ ~~_~~~_~ ~~_~~_ ... ~ .~~ •• 1..:1 ~~~_1 .. h~ ~~~h~_
L..LVLLCl.L P.LV5.L.QUU.U..L.L.L5 \..oVU\...CPLO WUUJ..U CJ.LJ.LJ.l-'.LY UOC::: '-VlLUJ.L-

nations of the above-mentioned basic concepts. Of
course the hardware features of the particular ma
chine in use, such as the increment and skipmstruc
tion, indirect addressing, auto-indexing, interrupt,
etc., can also be learned if the computer is to be
available for an extended period of time.

The third and final phase of our computer language
requirements was that of a compiler language. We
felt that this language should satisfy the follow
ing requirements:

The language should give an understanding and re
flect recent developments in computers and com
pilers.

It should be a language that would simplify the
teaching of fundamental programming techniques
with a minimum of extraneous and superfluous com
piler requirements.

Third, it should be a language that would allow
high school students to use the compiler as a
tool in math, science, and social studies classes.

There should be a minimum turnaround time and not
use up valuable class time compiling the programs.

And finally, we felt that hands-on experience is
valuable and would prefer on-line debugging.

The model we picked to pattern our language after
was the compiler language "BASIC". This is a time
sharing language with a wide-spread and growing
usage, and, as a result, would be a "living lan
guage" satisfying our requirements.

Our language, "CINIC", Computer Instruction NET
WORK's Instructional Compiler, is a subset of BASIC.
It is a "load and go" conversational compiler on a
standard PDP-8/s with a 4K memory and a model 33
A.S.R. teletype input and output.

The following is a description of CINIC's instruc
tion and command repertory:

Writing the Program

Below is a sample program written in CINIC. The
program computes the total amount paid back in a
year for a given principal and rate of interest.

10 PRINT "PLEASE TYPE THE PRINCIPAL AND INTEREST RA'IE"
20 INPUT P, I
30 LET A = P*I+P
40 PRINT "AMOUNT IS" A
50 GO TO 10
60 END

50

Explanation of program:

Statement 10:
The computer will type on the Teletype:

PLEASE TYPE THE PRINCIPAL AND INTEREST RATE

Statement 20:
The computer will type a "?" and wait while you
type the principal and then the interest rate.

Statement 30:
(p times I) plus P will be computed.

Statement 40:
The computer will type out

AMOUNT IS (and the value for the amount)

Statement 50:
The computer will then "loop" back to statement
10 and repeat the above operations.

Statement 60 indicates the last instruction.

Statement Numbers

Each statement must be preceded by a two-digit number
(10 through 99). You may type statement numbers in
any order. The program will run in numerical order.

Instructions

Following each statement number is an instruction.
The instructions possible are:

a. PRINT
b. INPUT
c. LET
d. GO TO
e. IF, THEN
f. END

a. PRINT

The PRINT instruction commands the computer to type
If PRINT is followed by a letter or series of let
ters, the values assigned to these variables will
be typed. If a comma is used to separate the var
iables, five spaces will be output between the nu
merical values. If PRINT is followed by any series
of characters enclosed within quotation marks, the
enclosed characters will be reproduced exactly.
Examples:

27 PRINT A
The Tty would print the value for A in expo
nential form. If A were equal to 25, then
+0. 2500000E+02 would be typed. (See explana-

tion of exponential form.)

35 PRINT "AMOUNT IS"
The Tty would type
AMOUNT IS

41 PRINT
The above statement is interpreted by the com
puter as a wish for a blank line.

b. INPUT

The input instruction should be followed by a let
ter or series of letters separated by commas. When
the instruction is executed, the computer will type
a "?", stop, and wait for you to type the values

you wish assigned to each variable.
Example:

21 INPUT A, B
On executing this instruction, the computer
would give the following results if you typed
a "5," and a "7,"
5,

? 7,

c. LET

The LET instruction is used to define a value for
a variable. This assigned value may be a single
number or an algebraic expression involving some
arithmetic operations. The arithmetic operations
possible are:

sign operation example
+

-k:

/
1"

()

add
subtract
multiplication
divide
exponentiation
(exponents may be
integer constants
only)

A + Z
3 - 5.03
B of, C
12/3
A'1" 2 (means A2)

parentheses may be used in pairs to clarify
any algebraic expression.

Order of priority of operations:

1. Values inside parentheses
2. Powers or exponents
3. Multiplication and division
4. Addition and subtraction
Operations are performed from left to right for
all operations with equal priorities. In the
absence of parentheses in a formula involving
only multiplication and division, the opera
tions are performed from left to right. This
means that A/B'~ gives a value for (A/B)'~.

32 LET S = 5
Defines the variable S as equal to 5.

40 LET Y = 4*A*X~2+X
Defines Y to equal 4AX2+X

55 LET Y ~ 2*(2*A-B)/3
Defines Y to equal 2(2A-B)

3

d. GO TO

A GO TO instruction is always followed by a state
ment number, directing the computer to go to anoth
er statement. The computer will execute instruc
tions in numerical order unless re-directed by a
GO TO statement or an IF, THEN statement.

23 GO TO 14
This statement redirects the computer to take
statement 14 as its next instruction.

e. IF, THEN

This statement allows the computer to make a deci
sion.

20 IF X = 0 THEN 85
The computer will go to statement 85 if X = 0;
otherwise, it will execute the next statement
after 20.

51

34 IF X < N THEN 97
If X is less than N, statement 97 will be exe
cuted. If not, the next statement after 34 will
be executed.

f. END

The END statement must be the last statement in the
program, and must contain the largest statement
number used in the program. END signals the com
puter that the entire program has been loaded.

Corrnnands

When the computer types "READY", it is indicating
that it is waiting for a corrnnand or instruction. It
will type "READY" after:

You type an END statement indicating the program is
complete.
It has executed the program.
It receives a stop corrnnand, "S", from the keyboard.

If at this time you type:
NEW the computer clears the memory of an old pro

gram and waits for your new program.

RUN the computer will execute your program.

A statement number and statement the computer
will add this new instruction to the existing
program.

S If, while the computer is running a program,
you wish it to stop, type "S". It will stop
and type READY. (This will not operate dur
ing an input statement.)

STORED PROGRAM

Computers are unable to solve a problem unless a
"program", or list of instructions, has been stored
in the computer memory. To solve a problem, then,
the programmer must follow a sequence of three steps:

1. Write the program. Using the CINIC language,
write a list of instructions which will solve the
given problem.

2. Load the program. Load the list of instructions
into the computer memory. This is usually done by
simply typing the program on the Teletype keyboard.

If someone else is using the computer, you may punch
a program tape by typing your program on a separate,
off-line Teletype with the tape punch ON. Then carry
your program tape to the computer's Teletype and in
sert the tape in the tape reader. After the computer
types READY, type "NEW", a Carriage Return, and place
the tape reader switch in START position. The pro
gram will be quickly loaded into memory. After the
tape has loaded, place the tape reader switch in STOP
position.

3. Run the program. Loading a program is like load
ing a gun: You are only prepared for action; nothing
happens until you pull the trigger. After a program
has been loaded, you execute or run the program by
typing "RUN" and a Carriage Return on the Teletype.

Numbers

All numbers are limited to seven digits. Decimal
points may be used if preceded by a number. If a

number larger than seven digits is desired, exponen
tial form may be used.

Exponential Form

Numbers written in exponential form (or "scientific
nation") consist of two parts separated by the let
ter "E": the significamt. digits of the mnnber, fol
lowed by a power of ten. To find the true number,
multiply the indicated number by the indicated power
of ten. For example:

0.5120000E+03

would be interpreted as 0.512 X 103 , or 512. (The
"E" stands for "Exponent".) ~~milarly, 0.lOOOOOOE-09
_____ ~.3 1... _ ~1... _ _ ___ _ _ f""I 1 v 1 f""I ~~ f""I (\(\(\(\(\(\(\(\(\1
WUU.LU ut::::. L1lt::: ::ta.tlLt:::: a.::;, V.J.. .l\. LV 'J.L V.VVVVVVVVV.L.

All numbers output from the computer will be normal
ized and printed in exponential form. Thus:

0.83572l0E+03

would be interpreted as 835.721

Variables

A variable may be defined as any single alphabetic
character, A through Z.

Legal Characters

Any numeric or alphabetic character may be used in a
program. All other characters and punctuation marks
are illegal, with the following exceptions:

1. Those operators defined in a LET statement.
2. Anything inside quotation marks in a PRINT
statement.
3. Commas used outside quotation marks in a PRINT
statement to generate five spaces or to separate
variables in an INPUT statement.
4. ,), < may be used in an IF, THEN statement.
5. Decimal points may be used if preceded by a num
ber. (Example: 0.52)
6. Spaces may be used anywhere, as needed.
7. Carriage returns to indicate the completion of
a statement or command.
8. Line feeds when nec.essary after a carriage re
turn.

Error Messages

If a statement is incorrectly typed, an error mes
sage may be typed by the computer. All error mes
sages start with an "E" and are followed by an error
code letter and a statement number.

EA indicates a general format error.
Correction: Check your statement with descrip

tion of correct format under Instructions.
Check also forms for Numbers, Variables, and

Legal Characters

EB indicates a statement number error.
Correction: See Statement Numbers

EC indicates the length of statement exceeds
acceptable limits for CINIC. (about 65 char

acters)
Correction: Divide into two statements

ED indicates the total length of the program ex
ceeds acceptable limits for CINIC.
Correction recompile and:

52

1. Omit errors
2. Omit any unnecessary groups of parentheses

in LET statements
3. Reduce size of and/or omit PRINT state

ments

EE indicates the total number of constants exceeds
the limits of CINIC (about 50)
Correction: Recompile and limit the number of

constants

Example:
you type
Error message

70 LET X-5
EA 70 (Format error in statement 70)

Making Corrections in a Program (On-Line)

If an error is made while typing on-line (connected
to the computer), simply type a semi-colon, carriage
return, and re-type the statement.

After a program has been executed, if you wish to
insert or change a statement, just type the desired
statement or statements.

To delete an entire statement, type the same state
ment number followed by a carriage return.

To replace a statement, type the same statement num
ber and the new statement.

To insert a new statement between two other state
ments, choose any previously unused statement number
that falls numerically between the two other state
ments.

After all corrections are made, type "RUN" and a Car
riage Return to execute the corrected program.

CINIC has some definite advantages in classroom in
struction. As can be seen from the preceding para
graphs, corrections may be made easily on-line.
There is no classroom time lost in compiling the
programs; spacing is completely optional, and turn
around time is an immediate response. The following
example requires no format statement.

60 PRINT "THE ANSWER IS" A

There are no fixed or floating point requirements as
this let statement demonstrates.

35 LET A = 2l*(X*I)t3-(5.2l*6.23E-3)

The concepts of looping can be taught readily as in
t'he example below. Also, this gives a student the
chance to study relationships between dependent var
iables. In this case, the radius is allowed to range
and the area can be observed.

20 PRINT "RADIUS AREA"
30,LET R 1
40 LET A - 3.l4l6*Rt2
50 PRINT R, A
60 LET R = R+l
70 GO TO 40

Give~ the mathematical background with only a fewmin
utes' instruction, students can write programs such
as the one below. Then, by experimenting, will dis
cover more about programming and the mathematics in
volved as in this case we must consider those cases
where "D" is zero.

PJ!.. + BY C
GX + HY I

10 INPUT ABC G H I
20 LET D A*H-G*B
30 LET X = (C*H-I*B)/D
40 LET Y = (A*I-G;~)/D
50 PRINT "X="X, "Y="Y

CINIC does have limitations. The first of these is
the necessity to keep programs short. Programs
should be kept to less than 20 to 30 statements de
pending on the type of statement. The output mode
is limited to exponential form. There are no func
tions available and lastly the student cannot list
his program. In order to overcome these limitations
we have attempted to supplement study by using time
sharing with a larger computer for those problems
that require a stronger language.

With our multi-level language approach to computer
science in the high school, we, of the C. I. NETWO~
feel that the students get a good, well-rounded
exposure to computers and programming. Although we
do not claim to train technologically-capable pro
grammers, a student, upon finishing our introductory
course, can more easily decide whether a profession
in computers would appeal to him or not. If the
desire is present, he can go on for more training
that will finish preparing him for a job in the vast
computer field. Our plan is to continue this pro
cedure in the future, adding refinements as they are
completed.

53

PROJECT ASC

Research and Development in the
~ppl i cation of ~mall .somputers

Report of Progress and Findings
Apri I 26, 1965

Robert M. Metcalfe, Director
Project ASC, Room 13-3013

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

This, the first progress report of Pro ject ASC, wi II briefly describe the
origin of Pro ject ASC, its goals, and opening hypotheses. Findings on
the injection of a particular small computer (Digital Equipment Corpora
tion - PDP-SiS) into an atmosphere of education and research are dis
cussed and some conclusions are made. (The bulk of interesting data
presented in the ASC progress report as found in its descriptive program
listings, have been omitted from this report.)

PRELIMINARY HYPOTHESIS AND GOAL

The computer world is in the midst of a raging debate con
cern ing the relative advantages of big-time time-sharing and
the dedicated small computer. This debate includes the
time-sharing vs batch-processing disagreement. Project ASC
was borne with the idea that the range of appl i cations for
which computers are suited is such as to require more than
just one computer or one computer mode. It has been felt
that the large computer system is being over sold and the
small computer given less attention than it deserves in this
debate. Pro ject ASC began with the hypothesis that there
are many applications suitable for the small computer and its
goa I is to discover these appl i cations.

THE COMPUTER FACILITY

The point to be made is that the words II computer faci lity" as
used here do not denote the traditional massive conglomera
tion of men, equipment, and paper but a small, compact,
relaHvely inexpensive laboratory with a markedly unimpres
sive and yet work-oriented atmosphere.

The Project ASC computer is a basic PDP-Sis digital compu
ter (costing under $10,000) with its standard paper tape
teletype input-output terminal. The computer shares a small
room with a desk, standard electrical outlets, a bookcase, a
mimeograph machine, an IBM time-sharing console, a handy
shoebox for spurious paper tapes, a chalkboard, and a number
of chairs varying from one to four.

The most important contents of the room turn out to be, in a
addition to the computer itself, the chalkboard and the shoe
box, and one chair {not to mention chalk}.

OPERATIONS

It is the general philosophy of the project that with a little
help the computer is its own best salesman. The general

55

method for publicizing the availability of the computer to
would-be users is word-of-mouth.

Three main audiences are approached. The first of these is
composed of members of the M. I. T. undergraduate student
body who might find use for the computer in their schoolwork
and in pursuing their own interests. The second audience
consists of high school students enrolled in the computer pro
gramming courses offered by the M. J. T. High School Studies
Program as sponsored by the Technology Community Associa
tion. The third audience is the M. J. T. facu Ity who might
find use for the small computer in their research.

The approach used in all three cases is to introduce the goals
of the project, to enthusiastically offer technical assistance
in writing programs, and to arrange for computer availabi I ity
with the six keys to room 13-3013 a 1I0cated to the pro ject.
The burden of generating ideas for using the small computer
is left largely to the individual from whom initiative must
come.

A norm is established among those who express interest in
using the computer which holds that time spent by people
fami I iarizing others with the computer operation is to be
matched, in turn, by those taught in teaching others. The
establishment and maintenance of this norm is found to be
surprisingly easy and amazingly successful in encouraging
productive activity on the computer.

RESEARCH PROJECTS

There are generally three types of programming done on the
Project ASC computer. There is programming to learn how
to program the computer, termed II Experience" programm ing;
there is programming directed toward the development of
usefu I production-type programs, termed" Do" programming;
and there is programming to aid the programmer in under
standing ideas, termed II Concept" programming. In all of
these instances it has become clear that the development of

the computer program is often equal to, if not greater than,
in importance its actual production running. It should be
understood that "small computer programming" is different in
several qualitative ways from programming the big machines.

COMMENTS ON THE PROGRAMMING LANGUAGE:

FOCAL

If the success of the project can be attributed to anyone
thing, it would be FOCAL. The language fulfills the basic
requirements of a good programming language. It is easy to
learn, possesses powers which can be tapped conveniently at
successively higher levels of sophistication and has been de
signed well for its intended purpose.

The FOCAL programming language on the PDP-S gains much
in the way of convenience and efficiency by its implemen
tation in an interpretive system. This allows for unreluctant
test for speedy debugging. This debugging capability might
be harnessed for broader appl ications if a FOCAL compi ler
were written to allow the efficient running of debugged
algorithms on the PDP-S or other machines. It is suggested
strongly that there is sufficient evidence to prompt a large
scale interpreter-compiler system experiment in various en
vironments (PDP-l0 say) to test its effectiveness in increasing
programming efficiency.

COMMENTS ON THE COMPUTER - THE PDP-S/S

The PDP-S/S has proven itself to be an extremely useful and
reliable small computer. Perhaps the only comment to be
made which does not reflect the highest esteem for the S/S
in its class is the often-heard complaint about the slow paper
tape reader on the ASR-33. Enough said.

CONCLUSION

Above all else Project ASC has discovered to date that the small
small computer has its greatest potential in the field of edu
cation. It has been observed that an unobtrusive device
tucked crisply away in a small room has been able to attract
the attentions (in varying degree) of well over thirty students
~nd several facu Ity members without any offering of specifi c
rewards such as salary or course credit. It has been observed
that by some mechanism, which at this time escapes identi
fication, the availability of a small computer as briefly des
cribed here has led to unexpected excitement in the work of
these students in their varying discipl ines.

A scheme of computer usage which emerges from the experi
ence of this project so far would have small computers scat
tered about educational institutions as ready tools for people
engaged in the process of learn ing - students and facu Ity
alike. This scattering should very definitely involve the
placement of small computers in living groups. The small
computer offers low cost computation with low units of in
troduction, simplicity of operation, and reliability.

56

CLOSING THE EDUCATIONAL LOOP IN APPLIED MATHEMATICS
(THE ON~LINE CLASSROOM)

J. W. Elder
Department of Applied Mathematics and Theoretical Physics

Cambridge, England

ABSTRACT

Lectures supported by demonstration have an immediate impact
on students impossible with chalk and blackboard alone. In
essentially conceptual areas of knowledge, such as applied
mathematics, demonstrations are often impossible and the
cumbersome input/output procedure of note taking and under
standing after much midnight oil and personal supervision is
inevitable. The educational loop can be closed right in the
classroom in the following way. Tbe lecturer is provided with
a control box on which are some knobs and switches connected
to a computer (housed elsewhere) and a closed circuit TV
monitor(s), the camera of which is watching the computer
displ~ screen. Parameters are entered from the knobs and
tasks initiated from the switches and the results are
displ~ed in graphical form. The lecturer has continuous
control over his problem parameters, and may choose settings
arising from discussion in the class. TYpical problems
involve systems of ordinary or partial differential equations.
Separate "workshops" which simulate the equivalent of a
physicists laboratory session reinforce the lecture material
and provide the student with an opportunity to use his
ini tia ti ve •
An "experimental" hybrid computer system incorporating a PDP8,
currently in use in the D.A.M.T.P., Cambridge, will be
described and illustrated in a movie. A system using a PDP9
is now being designed.

POINT OF VIEW

The idea of feedback control is an old one. Advance
towards some desired state is achieved by repeatedly
altering the course of action in a manner determined
by the proximity of that state. In some situations,
for example in process industries, such techniques
are highly developed. Until recently however in the
case of digital computers only the most primitive
feedback was possible. Consider the user of a
batch processing machine with the continual need to
inspect acres of line printer output and repeatedly
resubmit his job. Of late this situation has been
partially alleviated by the use of on-line consoles
in project Mac, the Universit.y of Cambridge Titan
on-line system. and several others. A similar
situation has existed in the laboratory, but this is
rapidly changing, notably due to firms like DEC,
towards the on-line experiment. Even so very few
on-line experiments involve much feedback.

Let me, briefly refer to a scheme which does. In
this Department we have a small portable computer
called HADES - Hybrid Analogue Digital Experimental
system. It is designed to control, measure,
analyse and display data from laboratory models of
fluid ¢ynamical processes in the oceans (Elder 1967).
The idea is to obtain a closed experimental
environment, including the investigator, with a
high degree of interaction and feedback. The hard
ware is in essence a PDPB, TAG)O analogue computer,
an analogue/digital interface and a variety of
experimental apparatuses and their associated
servo-systems. The eAtire experiment is run from
the teletype keyboard just as if one were at a

57

very sophisticated on-line console to a "computer".
This machine gives one a completely different
attitude to experimental work. Our experience, as
yet in early days, has nevertheless been so
favourable that we simply asked the question; "If
we can have an on-line experiment why not an on
line classroom?".

The control situation in the classroom is normally
even more primitive than for many of the machines
referred to above. We are all familiar with the
large lecture room, the recitation of the lecturer,
and no interaction at all. Admittedly this is an
extreme case. Small· classes , tutorial sessions and
seminars relieve this situation but are only part of
the solution. The student must still spend an
unnecessary amount of time finding out what its all
about. In subjects, e.g. Physics, where lecture
room demonstrations and laboratory classes are
possible the opportunity for interaction between
the subject material, the teacher and the student is
high. This is not always the case in subjects, like
applied mathematics, where a lot of the material is
conceptual rather than concrete. It is here that
the idea of the on-line classroom is so important.
This is not to suggest that similar techniques are
not of value in other subjects, they are (Thwaites
1967), but since the material of applied mathematics
is readily represented by means of a computer it is
a good subject with which to explore the idea of
the on-line classroom.

The feature of a computer which opens up the new
possibilities for using it as a teaching aid in
applied mathematics is that a complex calculation
can be carried out and the result displayed

apparently instantaneously. Thus, once the
computer programme for a certain type of problem has
been prepared, both teacher and students can
concentrate their minds on the mathematical
structure and the physical significance of the
results obtained in a continuing dialogue with the
machine. Out of this opportunity of examining a
problem directly the student should develop a feel
ing for what is likely to happen and for the intrin
sic mathematical and physical properties of the
system represented by the problem. A computer
provides the same kind of possibilities, in teaching
a mathematically formulated problem, provided by
demonstrations and laboratory work in science;
teacher and students can participate directly in
the investigation, and can learn by inference.

There are two main ways in which a computer could
help the teaching of applied mathematics. One is
as an aid in the delivery of lectures, corresponding
to a demonstration in in the course or a science
lecture. The other is as a means of allowing
'practical' work by a student, corresponding to
the planned laboratory work of a science student.

IN THE LECTURE THEATRE

A lecture theatre is equipped with a display screen
and a control box linked to a computer elsewhere in
the building. The display screen is part of a
closed-circuit television system, with the camera
recording the output screen of the computer. The
lecturer's control box contains a number of push
buttons, each of which can initiate a separate task,
and knobs with variable settings, each one of which
allows the lecturer to change the value of a para
meter involved i:'l the computational problem. For
each task button on the lecturer's box there is a
list of commands in an auxiliary digital controller.
Real-time working by the lecturer is essential, and
a hardware system which does this is described below.

Snch a computer-display system can be called on by
the lecturer at the appropriate points in his
exposition. The image on the display screen is
normally a curve traced out by a moving spot which
corresponds to the evolving output from the
computer. Tbe lecturer could of course come to the
lecture with the same set of curves already drawn
on a slide for prOjection. The chief advantages
of the computer-display are first that it has more
impact on the audience, through being a I new'
investigation, the results of which unfold before
the eyes of the students, second that a continuous
range of variation of the relevant parameters is
available to the lecturer, and third that the
timing of the various stages of the computation is
at the lecturer's choice, so that he can make a
smooth integration of the demonstration and bis own
exposition.

Some idea of what can be done was shown in a film
at the meeting for the following three mathematical
problems drawn from different parts of applied
mathematics:

(1) The harmonic oscillator with a forCing term

The behaviour of a simple damped oscillator is
shown first. The dependence of the form of the
oscillations on frequency and rate of damping is
seen both in a graph of displacement against time
and displacement a.ge.inst velocity. (AS an aside,
the combination of two oscillators produces
Lissajous figures and beats.) The output of one

58

oscillator is then allowed to feed the input of the
other to represent

Y + kY + a2y = A sin bt

The output is seen to be in the form of beats,
whose amplitude and length increase as resonance
is approached. Change of the damping constant
effects the peak amplitude of the OSCillations,
the 'sharpness' of the resonance, and the form of
the beats.

(2) Van der Pol's eguation and limit cycles

The computer integrates the equation

for various initial conditions, and the result is
displayed both as a graph of y against t and
as a curve in the (y,y)- plane. This is the
simplest model of self-excited non-linear
oscillations, e.g. relaxation oscillations in a
triode circuit. The parameter e , governing non
linear behaviour, is varied by turning a knob, and
the effect on the development of steady non-linear
oscillations is shown. The approach to a steady
limit cycle is a striking feature of the display.

(3) Linear oscillator in quantum mechanics

This example is an attempt to convey the idea
of quantisation, or the existence of eigenvalues
and eigenfunctions. The Schrodinger equation in
the form d2Y/dx2 = (x2 - a) is integrated, and
the solutions for y are displayed. The energy
parameter a is varied over a continuous range,
to show changes in the general properties of y
(e.g. y is oscillatory for -at < x < ai, has
points of inflexion for x = + a2 and is of
exponential type for x2 > a). The boundary
conditions are that y be normalizable, which
implies that, for x2 > a, y must be of

. decreasing exponential behaviour as x increases.
That this is possible only for certain discrete
eigenvalues of a is demonstrated; and several of
the eigenfunctions may be "tuned in" to show the
relationship between the eigenvalue and the number
of nodes in the eigenfunction.

IN THE WORKSHOP

The idea of students undertaking work on a
computer either individually or in small groups is
more familiar, and the desirability of such work as
a complement to lectures on numerical analysis is
widely recognised. The only novel feature of our
scheme is that practical work with a computer, when
co-ordinated with lecture courses, makes a
contribution to the students' understanding of sub
jects other than numerical analysis itself. For
applied mathematics the contribution is particular
ly important since that subject involves both
advanced mathematical methods and end-products in
numerical form. Work of this type has been familiar
for many years to the engineer who uses analogue
computers.

Practical computer work in applied mathematics
serves two purpose~ the stUdents learn the tech
niques of numerical work by practice, and they
improve their understanding of the mathematical
structure and physical significance of the problem.
These twin purposes are analogous to those served
by practical work in a laboratory by a science

student; experimental techniques are acquired, and
the topics on which they are employed are understood
better. And just as laboratory practical work pro
vides scope for initiative and manual skill, so
too does machine-aided practical work provide the
student of applied mathematics with scope for the
development of qualities not normally needed in
study from books and analytical exercises.

One of the most instructive ways of using the mach
ine is as a simulation of an experimental investiga
tion. For example, the quantum mechanical inter
action between two particles might be represented
on the analogue computer by an interaction potential
whose form is unknown to the student. The student
performs "scattering experiments" on this simulation
and collects data, on the basis of which he can try
to develop simple models of the unknown potential
function and test them by making predictions for
comparison with "experiment". Exercises of this
kind place the student in a conceptual environment
difficult to achieve with conventional teaching
aids.

Three examples of typical practical exercises are
given below:

(1) Evaluation of a Simple Function

Find the second zero of the Bessel function
JO(x) to four-figure accuracy, using the routine
for calculating Bessel functions provided.

Instructions: (i) Write a program that evaluates,
tabulates and plots the function ~(x) over the
range xI < x < x2 (XI > 0) , dividing this range
into N intervals. These processes can be done
using routines described below, which are available
in the system library; (ii) Use this program to
obtain ~(x) for 0.< x < 10 with an appropriate
choice for N. This gives a preliminary estimate
of the zero; (iii) Now repeat this process in
the neighbourhood of the zero to get an accurate
result.

Details of routines: (i) Bessel functions: routine
calculating Bessel functions JO(X) for specified
values of X and N to accuracy given by D;
(ii) Tabulation: routine for tabulating values of
the function Y(X) for If values of the argument
x.
(2) Numerical 80lution of Parabolic Partial
Differential Equations

Write a program for solving the heat flow equation

with boundary conditions T = TI at x = 0,
T = T2 at x = 1, and initial values T(x) = f(x)
at t = o. Use a two-level explicit finite differ
ence scheme to solve the problem with your own
choice of f(x) and investigate the stability of
this scheme.

Instructions: Choose units of time so that the
equation can be rewri tten ~ = TXX and take
fixed intervals At and Ax in t and x. Let

T j = T (j A~) n Llt)

Then integrate the equation using the finite differ
ence scheme

r~+1 = T~ t
))

(T ~t t T ~ - t T ")'). At itttJ1.
J I r'

Choose Ax = 0.05 (which is sufficiently accurate)
and take At = 0.001. Solve the problem until an
effectively uniform temperature is attained (t = 1,
S8\Y), and tabulate and plot T(x) at intervals of
0.1 in t. Now investigate the effect of varying
the value of s = At/ (Ax)2 by altering the time
step ~t. The difference scheme is stable for
s < ~ (see Richtmyer and Morton: Difference methods
for initial value problems). Show that the accuracy
of the solution is not significantly affected if
s < 0.48 and discuss the development of instability
for s = 0.52,0.6,1.0. Are the growth-rates in
accordance with theoretical predictions?

() A Quantum Scattering Problem

We wish to investigate the possibility that two
particles (reduced mass m) interact through some
unknown potential VCr) ,where r is their
separation. We limi t ourselves to the case of
states of zero relative orbital angular momentum,
when the radial Schrodinger equation becomes

[~;\ -u(r} + k1.] ':1 = 0

with boundary condition Yeo) = 0, where
u(r) = gm VCr) and k2 = ~ E, E being the

",,1. ii'"
kinetic energy of relative motion when the
particles are too far apart to interact (we assume
that u(r) = 0 for r > some ro).

The analogue computer has been wired up to represent
this system and you may 'experiment' with it in the
following w8\Y:

Knob 1 controls the value of k and you may assume
~t full setting of this knob, ~k2 »u(r) ,
a:ny r •

The Display shows (1) if switch 1 is up, a graph of
y(r) against r for r > r l , where r , > ro but
if otherwise unknown; (2) if switch 1 is down a
graph of A sin kr against r , for the same
values of r as in (1), A being an unspecified
constant.

~ controls the scale of the r axis.

~ controls the scale of the y and a sin kr
axes.

Instructions: (a) Using knobs 1, 2,) and switch 1
carry out 'experiments' to determine the scattering
phase shift for a range of different energies E and
plot a graph of scattering cross section against
energy; (b) Using the sub-routine for the integra~
tion of ordinary differential equations which you
developed in an earlier class, programme the
digital computer to investigate solutions for
various functions u(r) of your own choice; the
idea being to try to find a u(r) which will give
a theory in good accord with your 'experimental'
phase shifts. (e.g. you might first try a square
well of adjustable depth d and range a, and
find the 'best' d and a); (c) When you have
found a suitable u(r) , determine the number of
bound states which it can support.

HARDWARE

The essence of the hardware problem is the need
59 for real-time and reasonably fast working. Many

parts of the student curriculum involve systems of
ordinary differential equations, which presents a
task ideally suited to an electronic analogue
computer. Other parts involve algebraic problems,
especially those arising from finite-difference
representations of partial differential equations.
This demands a digital computer of sufficient
power to handle a partial differential equation
in time and one space dimension with ease and
some simple equations in two space dimensions
perhaps with difficulty. The hybrid computer
system meets this need, and also satisfies the
real-time demand for most of the tasks at a cost
very much smaller than would be possible with only
a digital computer. A convenient aspect of the
proposed system is that each of the three main
components, digital computer, analogue computer 7

and controller, can be used independently. A
system adequate for this task is sketched in the
diagram below.

HADES already makes available the core of the system
but it lacks the extra consoles and an adequate
digi tal computer. Hence at the moment only one
task or group can be handled at a time. In the
machine envisaged, the controller, a PDP8/I with 8k
of core, will spend its time handling the devices,
editing text and data and doing only a small amount
of "_arithmetic" - that required by the analogue
simulation and short tests of Fortran routines.
Problem solutions will be evaluated in the two
main computers a TAG60 and a PDP9.

It will make it easier for the reader unfamiliar
with analogue computers to indicate how our machine
works. The analogue computer used by Hades is a
small desk top machine with 20+ amplifiers used as:
10 integrator-summers, 6 multipliers, 5 inverter
summers, and a number of special servo systems.
The following controls are available all of which
can be under PDP8 control in "slave" mode: pot set,
reset, hold, compute, sample, and repetitive opera
tion. The control state can be determined from the
PDP8 by reading the digital input buffer or controll
ed by setting the digital output buffer. In ''master''
mode the analogue computer runs independently of
the PDP8.

Analogue computer programmes are set up by point
to point wiring on a removable patchboard. These
matters are dealt with in detail in numerous books.

SOPl'WARE

Because of the small store of our PDP8 and the
need for real time operation a command language
based entirely on compiler techniques is not
suitable. Hence for the moment ~e use a simple
interpretive system similar to those in DEC
programmes like DDT, Editor, Mllltianalyser, etc.
The programme works in two modes. In "outer mode"
commands are obeyed as soon as they are read from
the teletype, either manually inserted or from
a prepared tape. On returning to outer mode the
bell is rung to signify that the programme is
wai ting for a command. In "inner mode" commands
can only be obeyed as part of a sequence (possibly
containing only one member). Commands, messages
and data are entered in outer mode in numbered
text strings. These strings m8\Y be edited if
required. Some of these strings may be arithmetic
commands which can be compiled in outer mode or
cumpiled and run in inner mode. The arithmetic
system we have used so far is basically the DEC
floating point package. An outline of the commands

60

available is shown in the table below.

Let me illustrate the use of the commands. The
demonstration shown in the film and described above
used the command string:

[HIC < 300, S1, AXKUAYK, T4, > D300, HQ2, (0)]

Which in words is: inspect the remote switch
register, initiate the data table, set the analogue
computer to compute, displ8\Y and store on the fly
300 pairs of points pausing for 4 clock pulses
between each pair of readings, then reset the
analogue computer and displ8\Y all the data points
as a graph; after that inspect the remote switches
which control pause, continue or restart, if
continued display text, and then go and restart
endlessly. In this case we had:

(1) the analogue computer in slave mode

(2) the ADC channels 1 and 2 connected via the
ganglion to the analogue computer

(3) the interval timer set to 0.01 sec

(4) the three problems wired solely on the analogue
patchboard

(5) problems selected by direct switching and
parameters entered directly from the patchboard.

In calculations involving digital arithmetic the
command T4, above might be replaced by (2) where
string 2 is for example:

*2, [S~, < 4, A Lit, 21, T-1,,>]
which in words is: select channel 3, convert and use
this as an input variable to arithmetic routine 4,
with output sent to DAC1, pause for 1 clock pulse
and do 4 times. Here (2) represents a function
generator and 14, might be

#/r, [F AS S E XJ
~hich in words is: float the current ~ord (call it
u) and evaluate the function y - exp (sin (u + b»,
fix it and place in the current word. In this case
ADC input 3 and DAC output 1 would be ~ired on the
patchboard as if they were the input and output of
a variable function generator.

The basic arrangement of labelled strings allows
easy modification of individual strings and is
particularly convenient when setting up a new task.

THE FUTURE

One does not need to be a Jules Verne, an H.G. Wells
or a Malthus to make grandiose predictions about
the future developments of on-l~computer/ displSl
systems in education. But the essence of the si tua
tion is this. The computer can act as a store and
processor of information - a knowledge machine.
Access to such a machine is one w8\Y to give the
student an opportunity to take part in the business
of gathering, manipulating and processing knowledge
at an early age and in an enjoyable wq. He can
become a user and a creator rather than an un
interested spectator.

This use of a computer-displq facility is too
novel for reliable predictions of its scope and
value. Some fields of mathematical physiCS, for

example ones which involve ordinary differential
equations, obviously allow wider use of a computer
display in lectures than others. But it is clear
that many topics can be made more interesting and
more readily understandable with the help of comput
ation carried out and displayed in the lecture
theatre and that there is need for extensive use
of this relatively new aid.

ACKNOWLEDGMENTS

The HADES project is supported by the U.K. Natural
Environmental Research Council and indirectly, in
providing facilities in the department available
to the project, by the British Admiralty and I.B.M.
(U.K.) Ltd. The co-operation of Digital Equipment
Corporation (U.K.) Ltd., Systems Computers
(Newcastle-upon-T,yne, U.K.) and Pye T.V.T.
(Cambridge, U.K.) is gratefully acknowledged as is
the continuing day-to-day involvement in developing
the machine of: Mr. Peter Blench, Mr. David Cheesley,
Mr. John Davidson, }1r. David Lipman, l'1r. Mike
Wakefield. I especially wish to thank the graduate
students of my IIHybrid simulation" class for their
enthusiasm and help, notably that of Mr. Philip
Hazel. Dr Alan Burgess and Dr Nigel Weiss have
been heavily involved with the teaching project.
But more than any other factor we are indebted to
the help and encouragement of Professor George
Batchelor, Head of the Department.

REFERENCES

Elder J.W. 1967 "The laboratory is my computer"
Decus Proceedings, Third European Seminar
pp. 19 - 22

Thwaites, Bryan 1967 "1984: I1athematics/Computers?"
Bull Inst. of Haths. and Applications. Dec.

TABLE OF C01-lMANDS

outer Mode

Enter text string number h as Thext]

List text string .,

Edit text string "

Compile text string" to Floating Point
package interpretive code

Enter text into master control string,
equivalent to :/I 0 ~

Pass control to start of master control
string

Inner Hode

A

8

Read ADC in to current word (a regis ter on
page zero)

Bring contents of current data table
location into current word

C Set analogue computer to compute

Dl1, Display tJ pairs of points (the graph
is normally drawn 1000 times)

E "J Examine location n and put in current
word

Fn, Enter n into the current word

c;. Ring gong

I Initialize data table pointer
61

H Examine digital input buffer (reads e.g.
remote switChes)

k Keep the contents of the current word in
the data table

Ln, Load and run compiled arithmetic code
string

N Print CRLF

On, Print text string h

p Print the contents of the current word

qn, Display text string n on the
oscilloscope

~ Reset analogue computer

Sh, Select multiplexor channel

Tn
J

viai t n clock pulses

U Increase the multiplexor channel by

\I Lower pen on X-Y recorder

Wn, Wri te contents of current word in
location

x
y

Load 34D display X buffer from current
word

Load 34D display Y buffer from current
word

~n Send the contents of the current word to
, DAC number

Cn) Do command string "

<n,~t> Evaluate the text n times and continue.

8/9
r-----'--"h",-Da....,.t-a~ Interface

Digital

Computer

PDP9

Channel
110
Bus

Disc Store

PDPS/l

62

Control

Analogue
Computer

Ta960

.c
CO -

Display TV Camera

- -- - ,
Teletype

,
I C-

O
Display .r:.

tn
~

Control Box I ~

0
I .J ~ 1- - - --

1 of 10 consols

'----11
I TV I
I Display I

I
I I
I Control I

Box L ___ ::J -

A SYSTEM FOR PRESENTING PROGRAMMED INSTRUCTION
TO THE DEAF AND HEARING IMPAIRED

K. E. Rigg and James A. Boehm, III
New Mexico State University, Department of Speech

Las Cruces, New Mexico

ABSTRACT

A digital system for presenting programmed instruction of lan
guage concepts to hearing impaired and deaf children is dis
cussed. The system presents controlled visual and auditory
stimuli to the learner, requiring either a matching-to-sample
response with four solutions or the solution of a straight
four choice task. The system reinforces correct responses
with a variety of visual, auditory, and primary reinforcers
including pulsed pure tones, colored lights, tokens and can
dies. This system is complete in that it includes the basic
teaching unit, its own instrumentation, data reduction, and
provisions for making programs.

PROBLEM

The major problems in education of the deaf and the
hearing impaired are summarized by the single word
"language." Deaf children entering a school for
the deaf at the age of five have ha~ so few lan
guage experiences that their language behavior is
idiosyncratic. Instructors of the deaf agree that
it is generally a simple matter to teach the deaf
child to name objects; but a very difficult matter
to teach the spatial relationships of these objects.
The concepts "over," "under," "by," and "on" often
require four years of patient instruction. Since
these concepts are vital to effective communication,
we decided that they could be presented more effi
ciently through programmed instruction.

A systems analysis demonstrated the cost effective
ness of straight-line intrinsic programming. The
basic premise of this type of programmed instruc
tion is that the student is led to an operationally
defined goal behavior through a series of small
step approximations (frames) which are designed so
that the student will make a minimum number of er
rors; further, the accuracy of the learner's perfor
mance is confirmed at every step and he can pace his
learning rate. Programs of this type are designed
for a specific population and are thoroughly tested
to determine their efficiency. An instrumentation
system was needed to facilitate the testing of a
program to teach the concepts "over," "under," "by, II
and "on" to deaf children.

The expected parameters of this instructional sys
tem, as generalized from other types of programmed
learning for normal children, were:

1. That each set (daily unit) of the program would
take no more than 15 minutes to complete.

2. The error rate would be less than 10%.

3. Latency would be a function of the amount of in
formation contained in each frame.

4. No response strategy would be noted.

63

SYSTEM DESCRIPTION

General

The design criteria for the instrumentation system
were determined by the predicted measurement param
eters. The instrumentation system is in two sepa
rate units: a teaching machine unit consisting of
a control logic system, a stimulus presentation sys
tem, and a data instrumentation system; and a pro
gram preparation and analysis unit consisting of a
code generator system and a data reduction system.
This separation was necessitated by the fact that
the deaf test population is located at Santa Fe,
New Mexico, which is three hundred miles from New
Mexico State University.

The teaching machine is housed in a rectangular con
sole measuring 4'x2'x3' and is designed to present
both auditory and visual stimuli. A tape recorder
and master control panel are located on the back of
the unit. An optics system and slide projector are
located inside the console above the control logic
and data instrumentation modules, all of which are
accessible through a locking door on the rear of the
unit. The student sits at a fold-down desk at the
front of the unit facing an eye level rear projec
tion screen with the appropriate response hardware.
Two screen/response units are easily fitted to the
machine. The first consists of a 6 3/4"xlO" rear
projection screen with four response push buttons
directly under it, and an audio output jack in the
lower right hand corner. This is designed for tasks
requiring full screen presentation. The second
screen/response unit is designed for a match-to
sample task and is built on the same frame design
except that the response push buttons are incorpor
ated into the screen. This screen is divided hori
zontally into two equal areas. The top half is di
vided into three sections, with the center section
having enough freedom of movement so that when any
part of it is pushed, a micro-switch located behind
it will close. This center section is the "sample"
area. The bottom half of the screen is divided in
to four equal areas, designed to move independently
of each other. These areas and their associated
micro-switches constitute the response decision in
dicators.

The teaching machine presents programmed instruc
tion in a corrective mode. This requires that the
machine present information continuously until a
response is made. If the response is correct, the
machine immediately advances to the next frame; if
incorrect, it re-presents the frame until a correct
response is made. The accuracy of response to a
visual stimulus is confirmed by flooding the screen
with green light when the response is correct or by
turning off the slide projector lamp when the re
sponse is incorrect. Auditory information is pre
sented repetitively at a rate variable between two
and thirty seconds. The accuracy of response to an
auditory stimulus is confirmed by a 0.3 second 125
Hz tone and green light if the response is correct
or by the absence of these stimuli if the response
is incorrect.

The teaching machine optics system is designed to
operate in the high ambient light encountered in
elementary classrooms, and the auditory system is
designed to provide a calibrated binaural output
with sufficient power for the hearing impaired
child. The auditory system optimum output is 120
db re .0002 dynes/cm2 complex noise with peak lim
iting at 130 db. Each channel of the auditory sys
tem is adjustable from the master control panel in
calibrated 10 db steps from 80 db.

The teaching machine data instrumentation system
provides information about the student's perfor
mance. The information encoded in this data output
consists of the following:

1. The number of times the learner listened to an
auditory stimulus before making a response.

2. Response accuracy.

3. Response definition, i.e., which button was
pushed.

4. Response latency.

Response latency is defined in three ways, the se
lection of definition being dictated by the type of
program administered. In a match-to-samp1e program,
the student must confirm the sample by pushing the
"sample" area at the top of the screen in order to
see the possible choices; thus, in this mode, laten
cy is defined as the time elapsed between sample
confirmation and decision response. In a program
using the full screen presentation, latency is de
fined as the elapsed time between presentation of a
new slide and decision response. In an auditory
program, latency is defined as the time between the
onset of the verbal stimulus and the decision re
sponse. The appropriate latency definition is se
lected by the operator from a three positon rotary
switch located on the master control panel.

The teaching machine tape recorder serves a dual
purpose. It provides the recorded auditory stimuli
for verbal programs, and also provides the coded in
formation serving as the input to the control logic.
The control logic system performed its operations on
an electronically defined "frame" as shown in Figure
1. The code pulses, when read into the control log
ic, define the correct response for that frame, ad
vance the slide projector, and control the direction
of tape travel.

64

Code Generator

The first requirement in designing the overall sys
tem was a code generator to be used in recording
code groups on magnetic tape. The design criteria
for the code generator were:

1. Frequency modulated output.

2. Fifteen unique code words.

3. Variable frame duration.

4. Manual, manual-auto and automatic control of
code generation.

Previous work had shown that recording code groups
in amplitude form, using inexpensive tape recorders,
was unreliable due to the A-C coupled amplifiers re
moving the D-C component and causing distortion of
the code pulses. Tape drop-outs of 20 db lasting
200 ms are common with inexpensive tape recorders,
further militating against AM recording. Because of
its inherent insensitivity to these problems, fre
quency modulation was selected.

The code generator output is a quiescent frequency
of 3 KHz which is deviated to 6 KHz. These frequen
cies were selected because they lie within the re
sponse of the inexpensive tape system. The 3 KHz
deviation means that a 2.5 ms pulse provides a mini
mum of 12 zero crossings for the frequency discrim
inator in the teaching machine to detect a pulse.
The FM code word is derived by digital methods block
diagrammed in Figure 2. The quiescent and deviation
frequencies are derived from a crystal clock, insur
ing stability and uniform pulse width and improving
reliability.

The code generator word control is supplied by five
gates, each of which can be set to generate words of
one to fifteen pulses. Thus, distinct code groups
can be generated for each response button and a
special purpose code can be generated. The teaching
machine is wired for the following correspondence:

Button Number of Pulses

1 1
2 2
3 4
4 8

Auto Clear 10

The auto clear code allows the insertion of informa
tion frames in the body of a program which do not
require responses from the student.

The operator, having set up the word control gates
for the number of pulses desired, can now control
the generation of these pre-set codes in three
modes:

1. Manua1--The operator opens the appropriate word
control gate at whatever interval he desires allow
ing completely variable frame duration.

2. Manua1-Auto--The operator pre-selects frame
length with the timing unit controls (Fig. 2), and
initiates the timing cycle by opening the first word
control gate. In this mode the frame time is pre
set and can be varied from two to thirty seconds.

3. Automatic--The operator punches the appropriate
code sequence on paper tape, pre-selects the frame
length, and starts the timing cycle. The paper
tape reader is advanced and the word control gate
is read by the code generator control unit.

The code generator fires a Iitalk l).ghtll 0.6 seconds
after each code group so that the speaker can re
cord the appropriate auditory stimulus for each
frame.

Teaching Machine Control Logic

The design criteria for the teaching machine con
trol logic were as follows:

1. Present auditory, visual, and audio/visual
frames in a corrective manner.

2. Present visual information continuously and au~
ditory information repetitively until a response is
made.

3. Present visual information in either full
screen-four choice response mode or match-to~sample
mode.

4. Allow only one response per presentation.

5. Confirm responses with appropriate reinforcer.

6. Reject incompatible codes generated by momen
tary power failures or other line voltage tran
sients.

The control logic copsists of 34 DEC logic modules
whose inputs are detived from the code channel of
the tape recorder and the student response buttons;
their outputs control the slide projector, tape re
corder, confirmation circuits, audio system, and
data instrumentation. All power system controls
are solid state, eliminating unreliability due to
relay contact arcing and bounce and minimizing pow
er transients.

The control logic system, as block diagrammed in
Figure 3, functions as follows. At T1 (Fig. 1) the
frequency modulated code pulses of frame one are in
troduced into the frequency modulation discrimina
tor. Here they are detected and made to conform to
DEC logic level and rise time requirements. The
code is then stored until a correct response is made
by the student. At T2 the student hears the audi
tory stimulus if appropriate. Time T2-T1 allows the
tape recorder to come up to full speed after a re
verse. If the student does not respond by T3, the
first pulse read into the control logic from frame
two code word will cause the tape recorder to re
verse direction. At this point the audio input is
gated off since the tape recorder must playback in
both directions. The code group at T1 will reverse
tape direction and turn on the audio. This opera
tion continues until the student makes a response.
The slide projector advances when new code words are
read into storage; therefore, the visual presenta
tion remains the same during this operation. The
student can respond at any time during this se~
quence. If his response is correct, appropriate
reinforcers are fired and the stored code is
cleared. The audio and the projector lamp are
turned off until the code for frame two is read into
storage, which turns them back on and advances the
slide projector. If the student makes an incorrect
response at any time during the control sequence,

65

the audio and slide projector lamp are turned off
and the response buttons are locked out. When the
frame one code at Tl next reverses the tape record
er the audio and slide projector are turned on and
the student must respond again.

In the match-to-samp1e mode the operation of the
control logic is identical to the above with the
added constraint that the student is required to
confirm the sample before pressing any of the re
sponse decision buttons. This procedure must be
followed for every new frame and after every error.

The code ten detection circuit functions as a clear
command, turns on the audio and slide projector
lamp, and cycles the slide projector.

Santa Fe, New Mexico (machine location) experiences
frequent momentary power failures during late April
and May which are caused by daily thunder showers
lasting about an hour each afternoon. For this
reason it was necessary to incorporate invalid code
detection in the control logic. For example, a
power line transient could cause a count of nine to
be stored and without detection the student would
never get out of that frame. Invalid code detec
tion operates as though a correct response had been
made; the system advances to the next frame, caus
ing only a minimal loss of data.

Teaching Machine Data Instrumentation

The design requirements for the system were:

1. The system should be reliable and noise insensi
tive.

2. The system should measure latency of response
with a repeatability of .:: 2 IDS, error~ 10 ms.

3. The system should record which response button
the student pushed.

4. The system should record the accuracy of re
sponse.

The operation of the data instrumentation system is
diagrammed in Figure 4. The data output consists of
two channels of FM information. The design consid
erations for these frequency modulated channels are
the same as those for the code generator. These two
channels of information are recorded on an inexpen
sive tape recorder for reduction at a later time.
Channel A of the recorder records the start latency
pulse which has a 20 ms width. The pulse generator
which drives the channel B frequency modulator is
wired for the following correspondence:

Button Pushed Number of 2.5 ms Pulses

1 1
2 3
3 5
4 7

The right/wrong detector adds one pulse when the re-
sponse is correct.

Data Reduction System

The design criteria for the data reduction system
were to display the following information in print
out:

1. Latency (1500 counts/second).

2. Response accuracy.

3. Number of times the student listened to an au
ditory stimulus before making a response.

4. Latency error.

The data reduction system incorporates 28 DEC logic
modules, a Beckman 1453 printer and a Beckman 7360A
counter, as diagrammed in Figure 5. Any start la
tency pulse on channel A of the data tape resets
the Beckman counter and opens its input gate; it
begins totalizing one half the counts of the chan
nel A quiescent frequency. When a response code
word is detected on channel B of the data tape, the
Beckman counter input is gated off. The response
code word is counted by DEC logic and the response
decision button number is gated out to the printer.
An odd (wrong)/even (right) detector controls the
printer ribbon so that right responses are printed
in red and wrong responses are printed in black.
DEC logic modules also count the number of start
latency pulses without intervening responses and
gate this information out to the printer, which dis
plays the number of times the student listened to
an auditory stimulus before making a response. De
tection of a response code word on channel B of the
data tape causes a print command to be issued to
the printer. Because the DEC logic modules are so
much faster than the printer, it is not necessary
to delay the print command to insure that the data
are stored in the printer.

The Beckman counter-printer combination locks out
all incoming data during a print sequence, necessi
tating provisions for detecting coincidence between
print cycle and latency start. When coincidence is
detected, a nine (9) is generated on the latency
error line and a false start is generated by the DEC
logic so the response will not be missed. The la
tency error print-out shows that a maximum error of
400 ms has been introduced into that datum. In
practice, the only time a latency error can be gen
erated is when the student is using the machine im
properly. That is, he can only generate a latency
error by responding before he is presented with the
information in the frame. If he does this the data
print-out indicates it clearly.

CONCLUSION

The system functioned as expected in all respects.
Its ruggedness was tested and found adequate in
3,600 miles of demonstration traveling in a compact
van which was several orders of magnitude less se
vere than the environmental test it received during
its tenure at the School for the Deaf. It presented
and instrumented over 15,000 frames without system
failure, and mechanical wear is negligible. The
teaching machine was operated by people unskilled in
electronics who performed well under no supervision.
Five teachers of the deaf and one undergraduate col
lege student majoring in teacher education were
trained to operate the machine in two hours. In
that time they were trained to operate the teaching
machine and instrumentation recorder and to perform
minor maintainance--replace projector lamp, clean
heads, etc.

Initially a small amount of data was lost due to op
erator error and defective instrumentation tape.
This was quickly remedied without effecting the ex
periment.

66

The data format proved to be invaluable in analysis
of the programmed instruction materials under test.
The concept program met all of its expected objec
tives, in fact the error rate was so low that many
of the fast latency frames will be deleted in the
interest of economy. The measurement parameters
proved to be more than adequate, and latency was
demonstrated to be a good indicator of the difficul
ty of a frame. The greatest improvement indicated
by our use of the system would be the addition of a
small computer to take over the computational load.

ACKNOWLEDGEMENTS

Support for this research was from the Bureau of
Education for the Handicapped, contract number CEC-
4~7~000183-0183.

The authors wish to thank Jean C. Rigg, who wrote
the concept program, and Jerry Wiant, who did the
majority of the digital design.

CODE PULSES FROM FM DISC
CONTROL LOGIC

VOICE FROM TAPE RECORDER
CH A CONTROL LOGIC

ADVANCE SLIDE CO~~D
FROM CONTROL LOGIC

.6 SEC

2-30 SEC

Figure 1 Electronically Defined "Frame"

TIMING
UNIT

CODE GEN ... FM GEN CH A , 7

+ Cfll-
.... CODE GEN TALK

CONTROL LIGHT

~ ~
~1ANUAL PAPER TAPE

MIKE SELECTOR READER

J

Figure 2 FM Code Generator System

67

TAPE
RECORDER

I

r
,;

H CH A CODE FM DISC 1-7-r

1 TAPE
RECORDER

CH B VOTn:

I
TAPE

RECORDER FORWARD-REVERSE \ CONTROL

BUTIONS I
...

SAMPLE \
1-4 .I

SLIDE
PROJECTOR

I HALF SCREEN

SLIDE LAMP
"' PROJECTOR ADVANCE SLIDE
~

" CONTROL
GREEN LIGHT FLOOD

HEADPHONE

T
HEADPHONE AUDIO ON-OFF

CONTROL RIGHT TONE

AUDITORY STIMULUS

PRESS SAMPLE BUTION

BUTION ARM COMMAND

FROM CONTROL LOGIC

RESPONSE BUTTONS 1-4

~

"'

.I

"

"'
I'

"
Figure 3

START
LATENCY

PULSE GEN

Figure 4

I ... r
STORAGE j ~ RIGHT-WRONG

DETECT

~ frv-

r f ~ f"

..... " ,
I 7

/rv"

iL
.....
,/

'\

f

Control Logic System

ADD 1 PULSE
IF CORRECT

'\

"'

RIGHT-WRONG DETECTOR CONTROL.LOGIC

Data Instrumentation System

68

I RIGHT~

r.~ 1 DIRECfION SENSE ~
r ~ , I

'1.0-

,

\
./

~-H DETEC;O CODE ~

~~

/' ~

~

'\

TAPE
RECORDER

"

OUTPUT C

TAPE REC

OUTPUT C

TAPE REC

H A INST
r

ORDER

H B INST

ORDER

FN
DISC

FM ~ t-
DISC

FLIP ~~ BECKl'4AN I LATENCY 1 BECKMAN I FLOP COUNTER I '1 PRINTER
J... j ~ J I' J~

~
DETECT NUMBER BUTTON PUSHED

OF PULSES

t
DETECT EVEN PRINT IN RED OR BLACK

NUMBER OF PULSES

LATENCY ERROR PRINT 9
~

COUNT VOICE STIMULI 1-9 ,

Figure 5 Data Reduction System

69

A COMPUTER SYSTEM FOR ELECTRICAL ENGINEERS

David M. Robinson
University of Delaware

Department of Electrical Engineering
Newark, Delaware 19711

ABSTRACT

Educational computer applications usually center on
the problem solving capabilities of general-purpose
machines. The electrical engineer is peculiar in
that he must become more deeply involved in the com
putational system than is suggested by this casual
use. His concern arises by virtue of his responsi
bility for the conception and design of the computer
itself and for its hardware adaptation to a variety
of applications.

A system has been evolved which is functionally di
rected at the problems generated by the realization
of computers or computer-like systems. This system
is described and a number of typical student problems
discussed. The problem examples chosen illustrate
the range of levels which may be encompassed using
the system, the versatility of the system and prob
lems which may be of some general interest.

INTRODUCTION

The advent of modern electronic computers
has expanded the scope of nearly all areas
of scientific endeavor. The electrical
engineer is perhaps most acutely affected
by this expansion by virtue of his two-fold
interest"in computer processes. He is, as
are his colleagues of other scientific dis
ciplines, excited by the use aspects of the
capabilities now at his disposal. He is,
perhaps, even more deeply involved by vir
tue of his responsibilities for the congep
tion and design of the computer itself, and
for its hardware adaptation to a variety of
applications.

It is to the second phase of the electrical
engineers involvement with computers that
our educational activities are directed,
that is, to his involvement in the realiza
tion of computers or computer-like systems.
Several courses have been instituted in
this area and others have been modified or
updated to bring about what we feel is a
reasonable balance between the usual treat-

.ment of continuous or analog systems and
the treatment of discontinuous or digital
systems. Related laboratory studies have
been enhanced by the purchase of a small
digital computer (PDP-8) and the introduc
tion of this machine into a system which
permits physical access to all of thees
sential computer functions. This system
has been called a "generalized digital sys
tem" since it also incorporates facilities
for patching connections to external digi
tal building blocks so that an extension of
the computer or an interfacing system may
be rapidly established.

Several laboratory experiments and exer
cises have been developed about .this system

71

Some of these are extremely simple exercises
which serve to establish familiarity with
the machine, its coding, logic levels, etc.
Some experiments are rather sophisticated
real-time data processing adventures. These
experiments were designed to support a num
ber of course activities at quite different
levels.

In this paper, this generalized digital sys
tem will be described and several example
problems outlined. These examples are by no
means exhaustive; they have been chosen to
illustrate the range of levels which may be
encompassed using the experimental system,
the versatility of the system, and to have
an example from several of the particular
related course areas.

THE GENERALIZED SYSTEM

The generalized system is conceptually and
practically simple. Central to the system
is a Digital Equipment Corporation PDP-8
Computer. A number of supporting digital
building blocks are mounted in adjacent
frames with a patch panel which permits the
rapid establishment of interconnections be
tween these peripheral elements and the com
puter. All of the usual computer interfac
ing lines appear as terminated points on
this patch panel.

The majority of the logical building blocks
are completely unspecified, that is, any
logic module may be substituted in the
patching arrangement. It has been found
that a few specific functions are repeated
in a great many interfacing problems, and
these functions have therefore been prewired
on the patch panel (two binary up-counters
and one binary up-down counter). Seven de
vice selectors with precut codes are

included in the interface. In addition,
two 12 bit switch registers, two 12 bit
light registers, some momentary contact
switches and free indicator lights are
available as a portion of the generalized
interface. Trunk lines are available for
two 12 bit registers (24 lines) which may
be connected to divorced equipment such as
analog tape transport, digital tapes, etc.

An analog to digital converter is included
in the system. Present planning includes
the addition of a multiplexer and facili
ties for digital to analog conversion. The
system is by no means static: we are pre
sently adding additional equipment racks
for the inclusion of micrologic circuits.
In this subsection of the system all com
puter interfacing lines are level converted
to the appropriate voltages for connection
to this logic line.

EXAMPLE EXPERIMENTS

As previously indicated, several example
experiments are outlined in this section.
When the system was first conceived, the
faculty felt responsible for specification
of a number of problems to be implemented
on this system. We felt that we would be
hard pressed to find a sufficient number of
examples to insure full utilization of the
system. However, the students have sug
gested problems which cover the gamut from
time-sharing and multi-programming to auto
matic control of the coffee pot. Most of
the following examples were chosen from
student suggested projects.

Experiment A

The Electrical Engineering Department is
responsible for the instruction of computer
science majors of the College of Arts and
Science in a course that is oriented to
wards the hardware and architecture of com
puting systems. For the most part these
students will have had no experience with a
digital computer, at a more intimate lang
uage level than Fortran. We find that a
simple machine language program tracing ex
periment is extremely effective in estab
lishing the system remoteness of the For
tran language. A simple type-out routine
is coded in Fortran; this program is com
piled and loaded along with the Fortran op
erating system. The routine is then exe
cuted in a single step machine language
mode so that all of the required steps of
masking, code conversion, communication
with a peripheral device, etc. may be ex
amined. This experiment is, of course, ex
tremely simple; however, it does illustrate
the fact that the generalized digital sys
tem finds considerable use even at early
instructional levels.

Experiment B

The computer science students soon become
moderately proficient assembly level lang
uage programmers on this machine. This is
not a part of the course per se; but the
relation between "hardware" and "software"

72

which is discussed, quite often naturally
brings up coding problems. Near the end of
the course they are capable of more ambi
tious experiments in which additional com
mands are added to the repertoire of the
computer. An example of this is the addi
tion of a "hardware" inclusive OR command.
In this experiment a program controlled in
put-output transfer is initiated to transfer
the contents of two core memory locations to
external registers. The peripheral portion
of the system exclusive OR's these registers
and transfers the data back into the accumu
lator of the computer. Now, of course, the
computer can accomplish a similar end result
with a subroutine of some 15 or so state
ments. The student is thus faced with a
real example of what is often called the
"hardware-software" trade off.

Experiment C

Certain electrical engineering courses place
emphasis on the electronic circuitry in
volved in computers. A design problem in
this area is assigned in which the students
must do a rather complete "worst-case" de
sign of a discrete element NOR gate. This
design requires that a certain fan-in, fan
out requirement be met with any transistor
from a given distribution. The computer
system is used in the evaluation of this de
sign, that is, in testing of the circuits.
The students use the University Central Com
puting Center in the design computations.
The generalized system is used in testing
the physical circuit which they have design
ed and built. These circuits are plugged
into the system interfaced and output loads
are connected by the computer while the cir
cuit voltages are tested with the analog to
digital converter. The computer gives the
student a grade on the lab experiment which
indicates how well he met the design objec
tives.

Experiment D

A course discipline area is developed in the
theory of simple sequential systems. As an
example problem, an asynchronous, sequentia~
single error correction, coder and decoder
are realized using NAND gates. This sub
system is patched into the generalized sys
tem and the computer is used to generate
code groups which are transmitted to and re
ceived from the transmission system. A ran
dom error generator (computer subroutine)
creates errors in the transmission path.
The computer further analyzes the transmis
sion and reports the performance statistics
of the transmission system.

Experiment E

The s1ngle cycle and three cycle data-break
transfers are difficult concepts for the
students to assimilate. This is not because
they are conceptually difficult but because
of the large number of signals which must be
recognized and carefully timed. A simple
experiment serves to illustrate both of
these data-break facilities. We call this
experiment a hardware clear core. In this

interface the single cycle data-break is
first called to set 0 into core location 0
and 1 into location 1. The three cycle
data-break is then initiated with the word
count register as location zero accompanied
by presentation of all zeroes on the data
lines. This has the net effect of clearing
the remaining core locations. The single
cycle data-break may again be called to
clear location 0 and 1 if total core clear
ing is required. However, the application
here is to illustrate the data-break facil
ities.

Experiment F

A number of student projects are being exe
cuted using this generalized system. In
project courses of this nature, rather com
prehensive problem areas are suggested to
the students. They may then pursue a solu
tion of the problem for either one or two
terms of their senior year. One example
of such a problem is a pulse height analy
zer. This problem will be described in a
bit more detail than have the previous
problems, since it serves to illustrate
the students approach and the analyzer may
be of some general interest.

This pulse height analyzer is a bit unique
in that the pulses are of only about 30
nano-seconds duration and the counting in
terval must be short (about 50 micro-sec
onds) with no gaps between successive count
intervals. Two senior students have solved
this problem by building an asynchronous
sequential circuit which transmits an out
put pulse whenever its input pulse meets
the proper amplitude criterion. A descrip
tion of this system is shown in Figure 1.
Two comparators (DEC-W520) are used as de
cision elements to determine if the input
signal has passed either the low threshold
voltage VL, the high threshold voltage VH,
or both. The results of these deci
sions, that is, the output of the compara
tors, are described by Boolean variables H
and L. A flow table which describes the
required circuit action for a variety of
input sequences is shown in Figure 1.
(Note that flow tables of this type are
described in Reference 1).

This flow table may be successfully as
signed internal state variables fl and f2
as shown. From the flow table, the
excitation table of Figure 1 may be derived
From these tables, the excitation functions
(Fl and F2) and the output function (Z) may
be derived.

A logic diagram which will realize these
excitation and output functions using NOR
elements is shown in Figure 2. Figure 3
indicates the performance of this pulse
height detector in response to rather nar
row in time pulses. Notice that pulses
less than the low threshold produce no out
put as is also true for pulses greater than
the high threshold. Pulses with amplitudes
between these thresholds produce standard
100 nano-second output pulses.

These output pulses are directed to one of
73

a pair of up-counting registers in a sequen
tial sub-system. These registers alternate
ly store the count for the appropriate
counting interval and then dump the stored
count directly into a core memory location
using the computer three cycle data-break
facility. The entire analyzer is patched
on the generalized system. The computer
controls the count interval and keeps track
of the appropriate core locations.

At the moment the two threshold voltages
(VH and VL) are manually set. We have pro
posed to add digital to analog conversion
facilities to the system so that the comput
er may be used to control the amplitude
thresholds which establish the pulse height
criterion.

The support software for this problem has
also been developed by the students. In
this instance a rather short symbolic pro
gram suffices to accumulate the data and
simply punch it out for later entry into a
larger computer for analysis. In this
sense, this system is functioning as an on
line data retrieval system for later off
line processing.

Experiment G

A final example problem is a shock measure
ment system. In this system two pressure
transducers are mounted on a moving vehicle.
A shock wave is transmitted past these two
transducers. The relative time of arrival
of the shock wave at each transducer and the
length of shock duration at each transducer
is measured by a system which is attached to
the moving vehicle. This portion of the
system further converts this information for
transmission over a telemetry link to a re
ceiver. The typical input sequences shown
in Figure 4 represents a possible received
signal in this system. The time Toto Tl
represents the shock duration time on one
transducer while the time T2 to T3 repre
sents the shock duration time on the other
transducer. The physical reasoning is not
important to our discussion, but the times
of interest are the time difference TO to Tl
and TO to T2. In some instances, for exam
ple, the second typical input sequence, T2
may precede TO. Notice that the two trans
ducers modulate the signal differently so
that it is always possible to identify TO as
an amplitude increase of two units while T2
results in an amplitude increase of one
unit. Typical order of magnitude times for
these events are TO to Tl about 200 to 400
~s and TO to T2 from about 800 ~s to -300
~s. It is deduced from other engineering
calculations that +1 micro-second would
yield sufficient accuracy in the measurement
of these time durations.

The received signal is fed to three compara
tors with three threshold voltages estab
lished for these comparators. The compara
tors then .yield decisions about crossing
threshold level VA as a Boolean variable A,
Vb as variable Band Vc as variable C.
These inputs are further decoded to produce
the Boolean variables Xl,X2,X3 and X4 which
indicate respectively the number of

thresholds which have been crossed. These
signals and their logical decoding are all
shown in Figure 4. The information of in
terest could be recovered if these X vari
ables were fed to a subsystem which pro
duced 1 megocycle output pulses on 3 lines
called Zl,Z2 and Z3. The Zl output should
then drive an up-counter which records TO
to Tl time differences. The Z2 output
should drive the up count line while Z3
drives the down count line of an up-down
counter which records TO to T2 time differ
ences.

A natural solution to this problem then is
suggested as a synchronous or clocked se
quential system. A flow table for such a
system is shown in Figure 5. (Note that
this flow table must be interpreted differ
ently from the previous flow table and is
described in Reference 2). The clock is
not shown in the flow table; it's operation
being understood. A state assignment is
executed and the excitation tables, also
shown in Figure 4, are derived from this
flow table. These excitation tables are of
the type described by Marcus. 2 From these
tables the excitation and output functions,
shown in Figure 5 may be derived. If these
functions are realized using the standard
Digital Equipment Company's flip-flops and
gates, a possible logic diagram is as shown
in Figure 6.

This subsystem does not complete the shock
measuring system. These outputs Zl,Z2 and
Z3 are fed to two counters or registers
which, upon completion of an experiment,
store the register contents in specified
core locations by calling the three cycle
data-break facility. The total experiment
consists 0f observing several hundred of
such shock waves which are generated in
bursts at a possible rate of some 6000
shocks per minute.

The support programming for this system was
also executed by the students. In this in
stance considerable calculation must be
made with the data. It was felt that the
Fortran language was a more efficient ve
hicle for such calculations. Hence, the
programming problem became one of establis~
ing proper linkage to control the interface
and data-break entry within the framework
of Fortran.

74

CONCLUSIONS

The present status of this system then is
one in which a number of experiments have
been developed in support of a rather large
variety of course work. A tremendous pos
sibility exists for future developments of
this sort. That is, the system configura
tion is sufficiently versatile so that only
lack of the students imagination precludes
his open-minded approach to a problem. It
thus seems that this modest investment has
sparked considerable interest and serious
thoughts.

There is a major drawback to our present
system configuration. When the students
actually become involved, the interest is
dampened by a tedious wait for the machine.
The student must suppress his desire to see
his system work while he waits a consider
able time for the compiler or assembler or
system to be loaded into the computer. We
are anticipating remedying this situation by
the addition of a high speed reader and
punch and perhaps a disc pack in the very
near future. Even with this present draw
back, we find this system is effective. It
is used in regularly scheduled laboratories
which support this effort; these are only
really effective for some of the early very
short experiments or for demonstrations.
This system is at all times available to
the students. It operates in open labora
tory environment. We have scheduled courses
which would usually be involved in the use
of this equipment in alternate semesters to
help alleviate the timing problems.

REFERENCES

1. Maley, G.A. and Earle, John, The Logic
Design of Transistor Digital Computers,
Prentlce-Hall, Inc., Englewood Cllffs,
New Jersey, 1963.

2. Marcus, M.P., Switching Circuits for
Engineers, prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1962.

~L

i 00 01 10 11 l
1 Z-

OO Q) 2. 4 5 1
1~1. 00 01 10 11

DO 00 01 10 10

01 3 ® 4 5 t 01 it ot 10 10

11 @ 2- 4 5 0 11 i1 01 10 10
10 1 ® ® ® 1 10 00 10 10 10

FLOW TABLE. E.~C'TATION TABLE.

FIGURE 1

Fl = W + L f1 .. L +1 r:
Ii: ~' f~ + l-l'L f;

EXCITATION Z= (+1 ~2.)
FUNCTIONS

PULSE HEIGHT DETECTOR - DESCRIPTION

PULSE. LE.SS TWAN
LOW THRES\.tOLD

PU LSE. SATISFIES
COUNT CRI1E.RION

FIGURE 2 PULSE HEIGHT DETECTOR - LOGIC DIAGRAM

PULSE GREATER TItAN
14 \Ci~ T~RE.SI-lOlD

l1M[SCALE lOOnS/eM
AMPLITUDE. 500 MV/CM

(OUTPUT 2. V/cM)

FIGURE 3 PULSE HEIGHT DETECTOR - PERFORMANCE

TYPICAL I~PUT SE.QI.IE.NC!£S

FIGURE 4 SHOCK MEASUREMENT SYSTEM - FRONT END

1-,~ 'lC. XI. X, X4

00 00 10
3 011

1- 111

11 00- It·- 111 111

01 012- 11- 011,1- 111

10 to! 10! 111 111

ASSIGNE.D FLOW TABLE

S,:,Xa. +X4 R,: X'~L
51 & XI + X.. R2.&X,~,

K-S FLIP-FL.OP

E.XC ITATION FUNCTIONS

X, Xl X3 x. ..
1~1 0 1 o 1 o 1 o 1

FF 0 0 I 1 I 0 I 1 I

t 1
o 0 1 I 0 I 1 I

0 0 0 0 0 1 1 1 1
FFz 1

I 0 I I I I I I

EXCITATlON(MARCU~)TA8LE.

Z!,:. X., +)(4

22,:' X~1~ + X'''a~1L
-2.,!Po X2.1~ "')(\1"~
OUT PUT FUMc:.T,()I(S

FIGURE 5 SHOCK MEASUREMENT SYSTEM - DESCRIPTION

x:
1~

FIGURE 6 SHOCK MEASUREMENT SYSTEM - LOGIC DIAGRAM

76

COMPUTER TYPESETTING OF MATHEMATICAL TEXT:
THE INPUT LANGUAGE PROBLEM

Richard J. McQuillin
Inforonics, Inc.

Cambridge, Massachusetts 02139

ABSTRACT

This paper presents some results of research in
computer typesetting of mathematical text. In
particular, attention is given to the representa
tion of complex symbolism using a conventional key
board. Emphasis is on how keying conventions can
be established to provide an input system that is
useable by the editorial staff of a publisher of
mathematics articles.

Experimental results are given based on a test
sample using these keying conventions. The results
show how the system can be utilized to computer type
set Mathematical Reviews.

An extension of the symbol representation scheme is
presented, whereby complex two-dimensional mathe
matical expressions may be conveniently expressed
and proofread at the input keyboard.

INTRODUCTION

There are a number of levels of complexity
in information processing in the enviD£n
ment of a scientific professional society.
At one level is the roster of members; at
another the processing of bibliographic
headings and indexes in a review journal;
and yet another in the processing of scien
tific journal information in general. It
has been known for a long time how to main
tain a computer file with names, addresses,
affiliations, etc. Mailing lists are
usually printed using an upper case line
printer. Many society membership lists are
maintained and published in this manner.
Comparatively recently there have been two
(at least) new hardware developments that
have influenced the storage of information
within computer files: the upper and lower
case line printer and the high speed photo
composition devices. Typical of this latter
development are the inexpensive and rapid
Photon Model 713 and the very high speed
Photon 900, Merganthaler Linotron, RCA
Videocomp, and Alphanumeric Photocomposi
tion System. In order to produce output
worthy of these devices it is necessary to
store two more items of information: case
shifts and diacritical marks. At this
point it is possible to represent all out
put codes on the input keyboard. Typical
input devices are the Friden Flexowriter
and the Dura Mach 10 tape punching type
writers. With this degree of sophistica
tion it is possible to produce good quality
membership rosters.

The next thing that may be automated is the
production of bibliographic headings, such
as would appear in Mathematical Reviews, or
indexes. From now on we will be talking

77

photocomposition exclusively, and immedi
ately there is a new dimension, font shifts.
The author's name and title of his work are
typeset in bold face, while the source docu
ment is typeset in italic font. This font
information is acquired by a typesetting
program in two ways: explicitly and im
plicitly. Most of the font information is
acquired implicitly in the Inforonics' Text
Processing System. The program "knows"
when it is processing the title, for example.
However, computer typesetting is a world of
non-conformity, and there are times when
the implicit method is not enough. The key
board operator must have the capability of
explicitly specifying a font. This is done
in a manner similar to the ASCII specifica
tions. (See reference l .) A special code
is assigned the keyboard as an escape code.
Thus the symbol following an escape code
will specify a new font. If the escape code
is the graphic symbol D , we may specify
the italic font by ~. The escape code
concept may be genera 1zed to 1nclude non
Roman alphabets such as Greek and mathemat
ics. In this way the input keyboard may be
used to represent many, many symbols. An
example of a mathematics keyboard is given
in Figure 1. This, then, gives the capa
bility of composition of bibliographic head
ings and indexes.

At this stage, we have been discussing as
pects of traditional text processing.
Clearly if we are to compose general mathe
matical expressions, something more must be
considered: two-dimensionality. There must
be some way of expressing the relative posi
tion of one symbol to another. We have
developed a language to deal with this

problem called STIL, the Standard Typeset
ting Input Language. Since the problem of
computer composition is open-ended, the
language is also open-ended. It also fol
lows that any translator to process the
language must be extendable (self-extending).

An important constraint on any language of
this type is that it must be easy to use
for average editorial personnel; that is,
non-programmers. This research was initia
ted with the hope of evolving the composi
tion programs into a production system.
Time-motion studies were carried on at the
American Mathematical Society to determine
keyboard conventions. Several different
keyboard languages were studied with the
hope of optimizing, keying, proofreading,
and error correction.

THE MATHEMATICAL REVIEWS EXPERIMENTS

In order to test our concepts, a sample of
bibliographic headings were keyed at the
Mathematical Reviews Office in Ann Arbor,
Michigan. Some 2000 headings were keyed,
using a Dura Mach 10 tape producing type
writer. The information was keyed in a
format similar to the existing MR card
files. Therefore, the information had to
be analyzed implicitly. Thus, if the title
had been identified, then the following pos
sibilities could occur: (1) two spaces would
introduce the language and/or summary state
ment; (2) carriage return-tab would intro
duce the source document; and (3) carriage
return n: - tab would introduce notes. The
entire process can be described in a recog
nition diagram, as given in Figure 2.

It turns out that as the recvgnition diagram
gets more complicated, the chance of error
increases. As long as it is simple it is
an effective means of item recognition.
However, in the test sample, it was found
that there were some 300 headings that had
at least one format error. Presumably the
percentage would decrease with increasing
experience of the keyboard operator, how
ever.

A second method of item recognition is the
explicit tag. In order to test this method,
some 96 Mathematical Reviews headings were
prepared in the American Mathematical Soci
ety Office in Providence, Rhode Island.
Here we have a two column format where the
left column contains the tag identifiers,
and the right column'the information. Thus,
the left column might contain the tag doc,
which the right column J. London Math.~c.
A sample of bibliograph1c head1ngs prepared
in this way is given in Figure 3.

Another purpose of the test information
keyed at Providence was to investigate
problems of keying mathematics text, as
would appear in the text part of a mathe
matical review. In the test, the text
information was keyed separately from the
headings. The two were then merged togeth
er after they were identified. A sample of
text, math review number, and subject clas
sification number is given in Figure 4.

78

The samples were selected from an actual is
sue of Mathematical Reviews (Vol. 33, No.6,
June 1967) under the following constraints:
(1) no multiple line mathematical expres
sions; (2) no symbols that were not on the
existing AMS Photon 200 disc.

In the sample in Figure 4, one sees the use
of the font shift. For examplec=Ji F (x,l)
c=Jn shifts into italic font and then back
~ormal font (for that item). The informa
tion is then typeset to give an output as
shown in Figure 5.

In general, it was concluded that a great
deal of mathematics text could be composed
using a bibliographic typesetting programs
but in general some means had to be devel
oped to handle multiple line mathematic ex
pressions before a product system to do any
thing beyond an index would be practical.

GENERAL MA~HEMATICAL TYPESETTING SYSTEM

It was clear from experiments with Mathemat
ical Reviews te~t that a new composition
system had to be designed to handle mathe
matical text if any type of production sys
tem was to be realized. Indexes can be
composed for a good percentage of the time,
but occasionally titles contain complex
mathematical expressions.

The problem of creating a production system
for mathematics text may be thought of in
two parts: (1) design of a keyboard language;
(2) design of computer programs to accom
modate an essentially open-ended computer
language. A computer system to process
mathematics text is given in Figure 6. It
consists of three main parts:

A. The Translator translates codes and
symbols of the keyboard language into a
Standard Typesetting Input Language, cal
led STIL.

B. The Preprocessor, or Scanner, trans
lates mathematical text as expressed in
STIL into printing codes, suitable to
drive a photocomposition machine. It also
transmits spatial information from the key
board language into the typesetter, as well
as handling macros.

C. The Typesetter, or Composer, composes
the mathematical text into a format suit
able to drive a photocomposition machine.

THE KEYBOARDING LANGUAGE

The keyboard language has been designed in
a two-column format. The right column al
ways contains straight text matter, while
the left column contains symbols of various
types. When the input information is being
processed, the translator processes the
information on a symbol-by-symbol basis.
The following symbol types can exist:

A. Mnemonics - Mnemonics are used to
represent printing symbols'. When a
mnemonic is seen it is translated into
one of the standard fonts of STIL.

B. Primatives - A primative is a parameter
of the typesetter. For example, line
measure, point size, page size, etc.

C. Composition Operators - The composition
operator is used to call procedures within
the typesetter. For example, sub and sup
invoke routines within the typesetter which
compute the proper spatical orientation for
subscripts and superscripts.

D. Action Operators - The action operator,
when seen invokes some procedure within the
preprocessor. For example, new symbols may
be defined with the define action operator,
and jobs are terminated w1th the finis ac
tion operator.

E. Hybrid Operators - The hybrid operator
is a combination of the composition operator
and the action operator. When it is encoun
tered, procedures are invoked in both the
typesetter and the preprocessor. For ex
ample, the hybrid operators author, title,
footnotes require processing in both----
programs.

F. Macros - Macros may be used in the key
board language as a shorthand notation.
Obviously, when there are repetitive group
ings of symbols they need not be keyed over
and over again. A production system must
contain macro capability. As the keyboard
operator became more experienced, one would
expect more use of macros.

A representative list of these symbol types
is given in Figure 7. A sample of input
keying is given in Figure 8.

THE STANDARD TYPESETTING INPUT LANGUAGE
STIL

In order to do research in keyboard lan
guages, it is necessary to have some in
variant language which most of the system
can process. The concept is to have any
keyboard language immediately translated
into the standard language. The standa~d
language STIL has been specified. It is a
functional language, and operations are
represented in functional notation for ease
of processing. STIL is not intended to be
especially easy to proofread. The language
may be considered as two things: operators,
or functions, and operands. The method of
the ASCII escape codes was used to identify
operators. If we denote the ESC code by
the graphic c=J, then all operators are
preceeded by a r-l. In addition to opera
tors following We D , there may be paren
theses 0 (, D) and separators D, .
Thus the-maThemat1cal expression: ----

a + b
a-=b

would be represented in STIL as:

o div c:t:J a + b Q a - b

(Here the c=J () and ~ are overprinted
for readabTIITy~)-

79

Characters are represented! font overlays
in STIL. For example, the might be
represented as c=J4c, where it would be in
the c position ~e 4th font. There are
2008-symbols per font.

SYSTEM EXTENDABILITY

The composition system has been designed to
be easily extended. The mechanism for this
has been the define action operator. A
number of things can be defined: macros,
composition operators, action operators,
hybrid opera tors, character tables, and sym
bolic locations within the Preprocessor and
Typesetter. With this capability new and
more sophisticated definitions can be built
up from previous definitions.

ACKNOWLEDGEMENTS

The author wishes to express graditude to
the staffs of the American Mathematical So
ciety and Mathematical Reviews for their as
sistance in language specifications and test
information input preparation. The work was
supported by Grant GN-583 to the American
Mathematical Society by the National Science
Foundation.

REFERENCES

1. "USA Standard Code for Information
Interchange" Document USAS X3.4 - 1967.
United States of American Standards Institute,
10 East 40th Street, New York, 10018.

2. "Development of Computer Aids for Tape
Control of Photocomposition Machines: Report
No.1, Mechanization of Mathematical Reviews
Office Procedures," American Mathematical
Society, Providence, Rhode Island, March 1967.

3. "Development of Computer Aids for Tape
Control of Photocomposition Machines: Report
No.2: Extension of the System of Preparing
Computer-Processed Tape to Include the Set
ting of Multiple Line Equations." American
Mathematical SOCiety, Providence, Rhode Is
land, July 1967.

4. R. J. McQuillin, "Development of Computer
Aids for Tape-Control of Photocomposition
Machines: Part C, Computer Typesetting of
Multiple Line Expressions" Inforonics,
Report to the American Mathematical Society,
March 1968.

AMS KEYBOARD OVERLAYS

t rTl xlxl +r;l .~ =r:i ?Gl ar-l In If(l ~[] (I ~
lL2-J 2l!J 3L2.J 4l2J sl2j '~7L2J sl!J ;w 0 0 lW al.LJ

Om math

MATHEMATICS FONT

Figure 1. AMS Keyboard Overlays

80

ITEMS:

l. Control No.
2. Author's name

(tab) 3. Standard form of author
4. Key Index entry

(cr)
5. Name, not author, to

be indexed
6. Title and Cyrillic

title
7. Language and/or Summary

k: (tab> 10. Notes.
II. Source Doc.

NOTE: 12. of source Vol. doc.
k: (tab> 13. Year, issue, and

<tab>
(sp) means space ~

(tab) means tab ca m: source pages of doc.
14. Secondary source. <cr) means carriage ~

~
ca

~
~ ..

ca t:

~ A
~

~ 0 v
~

return 15. Vol. of sec. source.
m: <tab> 16. Year, issue, and pages

of sec. source.
17. Reviewer's name. 2 (Sp>
20. Reviewer's address

(cr> n: <tab> 22. Subject number.
23. Date sent to reviewer
24. *if source doc. is a

(cr) <tab) book.

2 (SP)
~ ________ @ 1 <sp.>

C=exit ~(cr)

Figure 2.

cont

aut

title

doc

val

yr

iss

rev

reva

2 <cr) r: (tab>

Recognition Diagram for Mathematical Reviews
Information Input

32021

Cossels, J. W. S.

Diophantine equations with special reference
to elleptic curves.

J. London Mathematical Society

41

1966

193-291

Lewis, D. J.

(Ann Arbor, Michigan)

Figure 3. Input by Explicit Tagging

81

control 23014 add mrnum 33 #7305
subj add 10
text add In his work [Arch. Math. Phys.[JR17 CJ n

(1851), 1-85] Arndt gave the theory of transformation and equivalence
of binary cubic forms. Arnd"s basic idea is that equivalence of two
given forms implies equivalence of their Hessians. The Hessian of a
cubic form is a quadratic form, and the question of equivalence may
be solved by Gauss" classical theory. DO

text add Let [J iF (x, y)r1 n be a binary biquadratic
form. The fundamental covariants of (J ~ [J n, the Jacobian and the
Hessian are forms of degree 6 and 4, respectively. Thus Arndt"s ideas
do not apply to solving the general problem of equivalence. However,
in certain cases they may be extended to the present problem. In this
paper the author extends ArndtTis idea to forms of degree 4 whose
Galois group is the transitive group of order 8 or a sub-group of it.
In this case, the Jacobian of the form has a factor of the second
degree with rational coefficients. This factor is shown to play the
same role for solving some questions in the theory of transformation
and equivalence as does the Hessian in Arndt"s theory. Using the
basic idea, the author solves the problem of equivalence of 2 forms
by constructing a fundamental system of resolvents of the polynomial o iF (x, 1) 0 n and thus reducing the problem to solving the
problem of equivalence of two quadratic forms. The author also gives
some examples which illustrate his method of solution.C] CJ '

Figure 4. Text Input for Mathematical Reviews

33 #7527
Kuramochi, Zanjiro

On the k.1ages of connected pieces of covering surfaces. I.
Proc. Japan Acad. 39 (1963), 21-26.

Let w = f(z) be analytic in 1 z 1 < 1. The author considers
the distribution of the set {-I(C(p, wJ) in I z 1 < 1, where
C(p, wJ = I w: 1 w - wo I < p}. Let R be a Riemann surface
with positive boundary and let R. be an exhaustion with
compact relative boundary oR •. Let G C G' be open sets in
R. Let w.(z) be the least positive superharmonic function in
G' such that w.(z) ~ 1 on G n (R - RJ. Set w(R n G, z,
G') = lim w.(z) and call it H.M. of (G n R). Let G be a
domain in : z 1 < 1. If there exists no bounded harmonic
function in G vanishing on oG, i.e., w(G n R, z, G) = 0, we
say that G is almost compact. Let C(p, wJ be a circle in the
w-plane. Then f-1(C(p, wJ) is composed of at most enum
erably many components gh gz, .•.. If an open set G C
U gj, then G is called a D.G. of f-1(C(p, wJ).
One result is the following. Let 1 f(z) 1 ~ Mini z 1 < 1. (a)

Let G be a D.G. of {-l(C(p, wJ) and let G' be a D.G. of
{-l(C(p', wJ) containing G: p < p'. Then w(G n R, z) > 0 if
and only if there exists at least one component g' of G' such
that w(G n R, z, g') > 0 for any p' > p. (b) Let Gel z: 1 Z 1

< 1} be open. If lim sup meas Iz E G: Izi = rl > 0, then
w(G n B, z) > O. (c) Let G be a D.G. of f-1(C(p, wJ) such
that every component of G is almost compact. Put G" = G
n f-1(C(p", wJ), p" < p. Then lim sup measlz E G": Izi =

r} = 0 for any p" < p. Results are obtained in two other
MacLane, G.R. (Lafayette, Ind.)

Figure 5. Typeset Review

82

Language 1 Translator

ILangUage 2 HTranslator 1:::10------

Language n

~~and-
Input
Lan
guage

~--~Translator n~------~

ypesetter ----' ...
~~proces-

~-tI~Typesetter

THE MATHEMATICAL TYPESETTING SYSTEM

Figure 6. The COMPOSE System

Mnemonics Action Operators

alpha define

gera fix

mdash finis

less

thin

Composition Operations Hybrid Operators

sub dpy

sup dit

int author

div title

Macros Primatives

m(x,y,z) Is 10

meas 260

it

Figure 7. COMPOSE System Symbol Types

83

to
Composing

Machine

VERBALIZATION

Title L sup p

Author

footnote number (1)

footnote

return para

obrak bo 4 return cbrak

L sup 1 baseline

L sup p baseline

L sup p baseline

obrak bo 3 return cbrak.

lead six para sm

ital

f (x) = sum udr k = 0

baseline ovr inf baseline a

sub k baseline x sup k

baseline, a sub k baseline

gto 0 , 0 Ito x It 1.

I Ito P Ito inf

flush left (1) center

Figure 8.

behavior of power series with positive

coefficients

Richard Askey

Supported in part by N. S. F. grant

GP-3483.

Heywood

and others have considered integra

bility theorems for power series and

Laplace transforms that are analogous

to known results for Fourier series

and transforms. These results are all

weighted

results. Here we obtain an

theorem which is analogous to the well

known

result of Hardy and Littlewood

Theorem.

Let

Then for

The Two Column Format

84

USE OF PDP-8 FOR DRIVING PHOTOCOMPOSITION MACHINES*

Richard Fait
Digital Equipment Corporation

Maynard, Massachusetts

Abstract

A brief look at the use of our DECtape and DECtape Disk Systems
to produce punched paper tape input to various photographic units
will be given.

*This paper was not received for publ ication.

85

PDP-9T TIMESHARING: PHASE I, MULTIPROGRAMMING

D. M. Forsyth*
Department of Psychology, Harvard University

M. M. Taylor
Defence Research Establishment Toronto

S. Forshaw
Defence Research Establishment Toronto

ABSTRACT

The PDP-9T is a PDP-9 with the addition of paging hard
ware, special traps, and modifications which translate lOT
instructions into specific calls to the system monitor.
Phase 1 of software development for the system permits sev
eral processes to occupy core simultaneously. All input/
output is handled by the system monitor. Real-time tasks
have high priority and are generally interrupt driven, i.e.,
are activated as necessary to process data. Background
tasks such as editing, assembling and debugging are allo
cated time by an algorithm which seeks to give all background
tasks equal amounts of running time. A total of three to six
users may be simultaneously active.

1. HARDWARE SPECIFICATIONS

The PDP-9T is a standard PDP-9 to which cer
tain modifications have been made. l These modifi
cations affect the way in which memory is addressed,
the trapping of certain instructions, and the
handling of the lOT instruction.

Memory addressing has been modified by intro
duction of a paging system. Memory is organized in
pages, each page 2048 words in length. The high
order four bits found in the Memory Address Register
(MAR) on each memory fetch refer to a virtual page,
and are used to specify one of 16 mapping registers.
The contents of this register point to the real
page of core in which the system has placed the vir
tual page specified by the users program. The low
order 11 bits in the MAR specify a word within the
page. The user's pages may be non-contiguous; the
address transformation, or mapping, is automatic
and invisible to the programmer. All users have a
potential virtual memory of 16 pages (32K). Each
mapping register consists of 9 bits. Bit 0 is used
to specify Memory Out of Core (MO), indicating that
the requested page exists but is not currently in
core. Bit 1 is used to indicate Read Only (RO)
pages, which may not be modified. These bits will
be of particular use to the Phase II System which
will swap pages between core and a one-million word
disk.

The PDP-9T will operate in one of two modes:
User Mode or Monitor Mode. Two separate sets of
mapping registers are provided, a User ~ and a
Monitor!:!!2.. The map used on any memory fetch is

*Work done at Harvard was supported by Grant l-ROl
GM-15258 from the National Institute of General
Med ica 1 Sc iences •

87

a function of the mode currently in effect. A few
instructions may not be executed in User Mode, and
attempts to do so will cause an Error Trap. Two
such instructions are HLT and OAS, which have no
meaning in a time-sharing environment. The unique
nature of the XCT command requires that XCT chains
be aborted when ~ interrupt is pending; the se
quence will be trapped before granting the in
terrupt. Faults related to the memory mapping (MO,
RO) will also result in Error Traps.

No lOT commands are permitted in User Mode.
The instruction class is preserved, however, and
utilized to effect communication with the Monitor:
when an lOT abbcc is encountered in user mode, the
8-bit quantity abb is used as a pointer to one of
256 entries in S-;onitor table. The table entry is
executed, providing rapid-access to read-only sys
tem parameters (e.g., time of day) as well as low
overhead entry to system routines. This class of
instructions is relabeled as XMR - execute monitor
register.

The software which is sketched in the follow
ing paragraphs is being implemented at Harvard and
Toronto on 32K machines with EAE, API, 8 or more
DECtapes (there are two Tape Control Units on the
Harvard system), a Type 340 Display system with
character and vector modes (on the Toronto system),
4 teletypes, lineprinter, a 200 usec core clock
(the Real-Time Clock), a 1.2 usec peripheral clock
(the Quantum Timing Clock), and a variety of other
peripherals.

II. PRIORITY ALLOCATION

The goal of all time-sharing systems is the
proper allocation of resources (e.g. core, CPU time,
I/O channels) among various users so as to optimize,

according to some external criterion, the utiliza
tion of these resources. This requires assignment
of priority; if two or more processes are ready to
run in the same CPU at the same time, one must be
given a higher priority than the other or neither
will run. The PDP-9T is basically an interrupt
driven machine designed to act in response to sig
nals generated in the external world. An attempt
is made to establish priorities of service based on
the response latency requirements of each process.
Some processes must respond to an external signal
rapidly, but execute a small amount of code. Others
may be able to defer their response, but will re
quire longer running times.

The standard Automatic Priority Ir.terr~pt op
tion on the PDP-9 mediates this type of situation.
Four hardware and four software levels of priority
are provided, in addition to background (in the
PDP-9T, the standard Priority Interrupt is dis
abled). Eight or more devices may be multiplexed
to each hardware level, and any number of queues
attached to each software level. Hardware inter
rupt levels intercept signals from the external
world, strobing in data and releasing the signaling
devices. Processing of incoming data will ordinar
ily be deferred to a lower priority routine.

Software priorities in the PDP-9T do not
closely parallel the hardware priority structure.
Level 4, the highest software level, is reserved
for the execution of certain system routines, e.g.
those invoked by user's XMR instructions. These
will always be short routines, running less than 2
msec. They are placed at this level to avoid the
problem of re-entrance. Hardware level codin~ is
forbidden use of these routines. Levels 5, 6 and 7
are used for various ~nitor functions such ~~ _
TCB queues, etc. The lowest level in the
machine, baCkground, is the level at which all user
code is executed. Users are explicitly denied the
use of API channels, but may define sections of code
which are to be run in response to hardware inter
rupts. The decision as to when to run a user must
be made by the monitor in terms of algorithms which
are not hardware implemented.

The distribution of functions by priority in
the Phase I System will be as follows:

1-

2

3

4

5,6

7

Background

Function

Error Trap handling routines, Disk,
Power Failure

DECtape, A/D conversion, Fast ex
perimental devices

Data-phone, Light Pen, 340 Display,
Line Printer, Paper Tape Reader/
Punch

Teletype LT09A System (to 16 tele
types), 200 msec, Clock, 1.2 msec.
Clock, slow experimental devices.

Monitor code whose execution may be
charged to the user, e.g. I/O setup,
arithmetic routines.

Monitor functions.

Hierarchy of queues of user TCBs (see
Section III).

A 11 user code.

N.B. All user code is executed at background
level, all Monitor code at level 7 or higher.

88

III. PHASE I MONITOR MODULES

Multiprogramming software is being produced for
the PDP-9T as a temporary system. A more sophis
ticated time-sharing system using page swapping
techniques and a back-up disk will be completed
within 12-18 months. In the interim, however, a
simple multiprogramming capacity will serve two
major functions. It will permit three or four users
to edit and debug programs while one or two real
time experiments are being run. It will also pro
vide a useful test bed in which to experiment with
modules designed for the final system. However, it
should be emphasized that it is not the first step
in the evolution of a final system. While the
Phase ! (~11tiprogramming only) and Phase II
(swapping) Systems may have some common components,
Phase II is regarded as a totally separate entity.

Each active user in the multiprogramming en
vironment will be represented in the monitor by a
User Control Block (UCB). The UCB contains book
keeping information such as the user's name, time
of day when logged in, CPU time used, etc. The UCB
also contains information concerning peripheral
equipment which has been assig~d to the user, such
as DECtape units, teletype, etc., and a number of
pointers. Two of these are a pointer to a string of
Virtual Memory Control Blocks (VMCBs), and a
pointer to a string of Task Control Blocks (TCBs).

The VMCB contains the memory map image of the
user which must be loaded into the mapping regis
ters at run time. Information necessary to main
tenance of this image is also preserved in this
area. In the Phase I System, a user will ordinar
ily have but one VMCB. In the Phase II System, any
number are possible.

The TCB contains all of the data relevant to a
task (process). The task is the basic element of
both the Phase I and Phase II Systems. A task is a
logically autonomous sequence of code. Most pro
grams which h~ve been written for the PDP-4/7/9
would be considered as single tasks in this sense;
those which utilize interrupts, however, might be
regarded as multiple-task systems, consisting of a
background task and separate tasks which handle
each interrupt. Thus, there may be more than one
task in a single virtual memory. In the Phase I
System, most users will operate a single task in a
single virtual memory, although this will be largely
a decision made by the programmer and not dictated
by constraints in the system.

The entries in the TCB are those needed to ac
tivate the task, such as the address of the VMCB
used by the task, and the values of active registers
such as the PC, AC, MQ, etc., which must be saved
and restored when tasks are de-activated or acti
vated. Each TCB contains the value of the time
quantum allocated to the task, a pointer to the UCB
to which the task belongs, pointers to routines,
which can activate or de-activate the task, and a
number of other desiderata.

The disposition of each page in core is re
corded in 16 Core Control Blocks (CCBs), and a num
ber of other control blocks are maintained by the
Monitor for various purposes. The action of the
system can be adequately described, however, in
terms of UCBs, VMCBs, TCBs, and the scheduling al
gorithms which utilize them.

IV. PHASE I TASK SCHEDULING

Scheduling in a time-sharing system is the pro
cess by means of which the CPU is made available to
tasks in an orderly manner. Each task is allowed to
run for a duration determined by its time quantum,
at the expiration of which the next task is run.
Ordinarily, tasks are organized into running queues,
sets of tasks strung together by pointers in the
TCBs. A task which has just finished running might
be placed at the end of the queue, while the new
task at the head of the queue is fired up. Often,
particularly in the PDP-9T systems, tasks will run
to completion or reach a point at which I/O is re
quired before the time quantum expires. Such tasks
are removed from the running queues, placed in a
wait condition, and are said to be in a sleep state.
When a signal arrives at the CPU for a task which
is asleep (e.g. from an I/O completion, or an active
experimental device), the task must be awakened and
placed in the appropriate running queue. Any number
of running queues may be hierarchically arranged to
impose a priority structure, establishing a two-fold
order in which tasks are to be run (e.g. all tasks
in queue A before any in queue B).

Scheduling may conveniently be regarded as a
two-part process. First, decisions must be made as
to the time quantum to be allocated to each task,
when to place a task in a queue, when to remove it,
etc. These decisions must then be implemented by a
process which activates and de-activates tasks at
the appropriate times.

At any given point in time there are a large
number of tasks in core, only one of which will ac
tually be running. If it is a user task, running
at background level (with respect to the API), it
may be temporarily suspended by a hardware inter
rupt. When the hardware interrupt is serviced,
control may return to the interrupted task. Or, the
hardware interrupt service may have invoked a soft
ware interrupt which will be granted before control
returns to the interrupted user task. During execu
tion, the user may issue an XMR to perform some
computation, which will be performed by the monitor
at API level 4.

Eventually, the user's time quantum will run
out, or the user will request a lengthy I/O trans
fer. In the first case, the user will be placed at
the bottom of the running queue. In the second,
the user will be 'put to sleep', to be 'awakened'
when the transfer is complete. In either event,
the CPU will then be given to the task which is
next in the priority structure. User's time quanta
are metered by the 1.2 usec external clock, which
is automatically gated by API activity: the clock
runs free at background and at level 4, but does
not tick when other API levels are active. Thus
the user is charged only for CPU time expended
directly in his behalf.

The allocation problem, of course, is the
heart of time sharing, and in the PDP-9T is accom
plished by a system program called the Operator.
In the Phase I Monitor, the Operator performs
rather simple chores.. Tasks will be given a time
quantum (e.g. 20 msec.) , and placed on one of sev
eral queues. An attempt will be made to distribute
CPU time to foreground users (real-time tasks) as
needed, and to provide background users with equal
amounts of time. It is inevitable, of course, that
even with four or five users the system will spend

89

most of its time doing nothing, i.e. waiting for I/O
transfers. The Phase I System will generally be
core-bound, and active users will receive excellent
service.

The Operator will also be responsible for allo
cating peripheral devices to users, as requested by
the user at run time via the teletype. The Operator
allocates pages of core to users, runs the user's
DECtapes, retrieving and writing user files, and
loads system programs such as DDT into the user's
virtual memory.

V. THE USER MACHINE

The preceding background is sufficient to per
mit a brief consideration of the kind of machine an
ordinary user will be working with. The User
Machine (as it might be specified in a PDP-9T Hand
book) has an order code which resembles that of the
PDP-9, but is vastly superior. While HLT and OAS
have disappeared, along with all lOTs, the XMR in
struction class has added such instructions as
'LOGU~', 'DIVIDE', 'ARCTAN', etc. All I/O is
handled by XMR instructions, such as TDN (type con
tents of AC as a decimal number), DTREAD (read a
DECtape record), PUNCH (punch low order 8 bits of
AC, if punch is available to this task). All I/O
coding will reside in the monitor, and will be
shared by all users.

The fact that the machine is paged is of no in
terest to the programmer in the Phase I System, al
though it will become tactically useful in the
Phase II System (e.g. fetching pages into core from
the disk is time-consuming, and should be avoided
even at the expense of duplicating constants in each
page).

The user will start a session by logging in,
requesting DEC tape assignment and such other periph
eral devices as may be desired, load whatever pro
grams may be required from his DECtape, perhaps ask
for DDT, and proceed as though on an ordinary PDP-9.
When finished, he will log out to free the console
and core for the next user.

VI. AUXILLIARY SOFTWARE

A number of software packages are being devel
oped for the Phase II System which will be available
on the Phase I System (and on most PDP-4/7/9s as
well). The necessity of incorporating many features
relevant to the time-sharing monitor in the assem
bler package, as well as the very speCial require
ments on I/O handling, forced us to conclude that it
would be more efficient to write our own software
than to tailor the Advanced Software Package. Thus
we are writing an assembler, linker, DDT, DECtape
package, teletype package and disk package, to
gether with a number of other systems of some
general utility. These packages will be described
in future papers.

1pDP-9T: Compatible Time-sharing for the Real-Time
Laboratory, M. M. Taylor, D. M. Forsyth & L. Selig
man, DECUS Proceedings, Fall, 1967.

* EXTENDED MEMORY FORTRAN WITH AN 8K PDP-7

Philip R. Bevington
Physics Department, Stanford University

Stanford, California

Abstract

A hardware modification to the PDP-7 and a FORTRAN
subroutine are described which permit the use of
Extended Memory coding in FORTRAN II with an 8K
memory PDP-7. Normally, this coding permits the
storage of large data arrays outside the basic 8K
of memory which contains the program and the
Operating Time System. In the present system the
extra memory is supplied by DECtape. A scratch
pad conSisting of several pages of 128 words each
is retained within the basic 8K memory so that
access to the DECtapes is relegated to transfers
of blocks. Interpretation of extended memory
addresses is accomplished by trapping indirect
addresses outside of basic memory and using soft
ware to modify these addresses. Such a system
permits the use of larger arrays for data manipulation
at the expense of time required for DECtape handling.
In most cases, however, improved techniques of
manipulation through the use of larger and more
arrays than offsets this expenditure of time. The
philosophy of design and the relative advantages
and disadvantages of such a system are discussed.

Introduction

One of the most frustrating disadvan
tages of using FORTRAN on small scien
tific computers such as the PDP-7/9 is the
inefficient use of computer memory. In
FORTRAN II of the basic software for these
computers, for example, the operating time
system occupies 3klO locations in memory,
and I/O and arithmetic subroutines can fill
another 2klO locations. For a computer
with an 8k memory this leaves only 3klO
locations for programming and data storage.

Similarly the version of FORTRAN IV
supplied with the Advanced Software Package
is so inefficient that even with 16k rea
sonably sophisticated programs are hard
pressed for room for data storage. The
obvious solution of increasing the core
memory storage is not always economically
feasible.

In order to expand the capability of
FORTRAN (and of Assembly language programs)
we have developed for use with the SCANS
(Stanford Computers for the Analysis of
Nuclear Structure) system a method of
storing and accessing large arrays of data
outside of the core memory of a PDP-7. Two
types of storage may be utilized by slightly
different techniques. The more efficient,
but more expensive, is another similar com
puter, complete with processor and memory.
The more easily available type is a conven
tional bulk storage device, such as DECtape,
disk, or drum.

91

The SCANS system has provision for
both of these types of storage, using
either an 8k PDP-9 or DECtapes, according
to the demands of the particular situation.
This report will describe the philosophy
and techniques developed to implement
Extended Memory FORTRAN II on an 8k PDP-7
with these memory storage devices.

Hardware

In order to provide compatibility with
existing software, the entry to bulk storage
must simulate the normal use of Extended
Memory. But since only data arrays are to
be treated in this manner, most of the com
plexity of the paging hardware of the
Extended Memory can be omitted. It is suf
ficient for most purposes that the inter
preting monitor respond to any indirect
addressing outside of the conventional 8k
of core memory.

In FORTRAN II of the Basic Software
System there is provision for storage of
arrays of data in Extended Memory. The
entire program, including the Operating
Time System, must reside in the basic 8k
core memory. The specification EXTEND MODE
acts in the same way tnat COMMON does to
identify arrays which are to be stored in

* Supported in part by the National Science
Foundation

the Extended Memory. All references to
elements of these arrays are by indirect
address instructions. The address can be
any location up to 32k, using bits 3 and 4
to address locations outside of the basic
Sk.

Addresses cannot exceed 15 bits or 32k
because the interrupt procedure and JMS
instruction utilize bits 0, 1, and 2 to
store the contents of the LINK, EM and TRAP.
Indirect address instructions such as JMP
I ¢ to return from an interrupt must not be
interpreted as referring to Extended Memory.

Figure 1 shows how the I/O Trap of the
PDP-i was modified to provide a hardware
interrupt under the proper conditions. The
Trap flip-flop on the right is controlled
by the Trap switch on the console. Actually
this flip-flop could have been replaced
completely by a single inverter, but since
the Trap was already wired it was easier to
leave it like this.

If the Trap is enabled by the Trap
switch, the Trap flag on the left is set
(at time T4 of the cycle) whenever the
processor is in the Defer mode (indicating
indirect addressing) and either or both
bits 3 or 4 of the Memory Buffer (which
holds the indirect address) are non-zero.
The Trap flag initiates a Program Interrupt
with the PC forced to location 2. At time
T4 of the Break cycle the Trap flag is reset.
All other conventional use of the Trap has
been removed.

Figure 2 shows additional modifications
to the Central Processor. All normal device
flags are gated by the Program Interrupt
Enable flag before requesting a Program
Interrupt. The Trap flag is inserted in
parallel so that it can interrupt even
without the Program Interrupt being enabled.
The software Trap-on and Trap-off instruc
tions were bypassed completely.

This particular modification was
installed because the original version of
FORTRAN II was not compatible with use of
the Program Interrupt. We have modified
the I/O library subroutines to protect them
from interrupts even while using wait loops
for all I/O. This hardware modification
will therefore be restored for compatibility
with routines using the Program Interrupt.
Since both the PI and the Trap make use of
location ¢, they must be able to inhibit
each other until the contents of location
¢ can be saved.

The most important modification to the
Central Processor is that the Execute cycle
is inhibited if a Trap-Interrupt occurs.
Normally an Execute cycle will follow any
Defer cycle. If, however, the Trap flag is
on, the Execute cycle is inhibited and a
Break cycle occurs instead. This allows
the interpreting monitor to interrupt an
Extended Memory instruction before execu
tion.

92

Software for Computer Storage

The interpreting monitor for data
storage in another computer is illustrated
in Figure 3. XTENDi is a FORTRAN II
subroutine written almost exclusively in
Basic Assembler language which uses an
Interprocessor Buffer to a PDP-9 for stor
age and access of data. The three lines
of instruction preceding the location
BEGIN perform initialization. Somewhere
in the main program there must be a call
to the subroutine. When the subroutine is
called it deposits a JMP instruction in
location 2 and issues a PBLF command (raise
Parameter flag) to the Interprocessor
Buffer to synchronize the corresponding
interpreting monitor in the PDP-9.

The program XTEND9 in the meantime is
waiting idly in the associated PDP-9. When
the PBLF command is issued by the PDP-I, an
interrupt occurs in the PDP-9 which starts
the program at the beginning, restarts the
interrupt, and waits idly for the first
data word.

When a trap interrupt occurs in the
PDP-i, the subroutine XTENDi is entered at
BEGIN from location 2. The contents of the
AC are transferred to the PDP-9 (sent by
PBLT and received by RDLO) and stored in
the variable AC. The next few lines
retrace the path of the interrupt to
retrieve the offending instruction and
combine the instruction code with the
indirect address to form a new instruction
to be executed in the PDP-9. For example,
the instruction LAC I (35000 would be
interpreted as LAC 15000 (truncating the
address modulo Sk).

The new instruction is transferred to
the PDP-9 and executed. If the PC is
incremented or the LINK is set during exe
cution, this is noted, and the LINK and PC
increment are returned to the PDP-i. The
contents of the AC after execution are also
returned to the PDP-i and the interpreting
monitor returns to the main program. The
PDP-9 remains in a state of waiting idly
for the next such instruction.

Philosophy of Bulk Storage

The philosophy of approach for bulk
storage is that since access to individual
elements of bulk devices is intolerably
slow, data must be transferred to and from
the device in blocks and stored in the
memory in pages. In principle Extended
Memory need only be used for large arrays
of data, and the data are generally
referred to successively in blocks, as, for
example, in DO loops of FORTRAN.

The interpreting monitor thus has two
parts. The main part interprets an indi
rect address instruction and modifies the
address to refer to the appropriate loca
tion within a temporary scratch page in
memory. This requires a comparison between
the actual address and the range of

addresses corresponding to each of the
scratch pages. This part of the inter
preter is thus similar to that for computer
storage and introduces a similar time
delay.

The second task of the interpreting
monitor is to retrieve blocks of data from
the bulk storage device whenever the appro
'priate data block is not already in core.
This requires replacing one of the pages
already in core back into the bulk storage
before loading the desired block into the
same page.

For DECtape a convenient size of page
is 256 words, corresponding to the maximum
data storage per DECtape block. Where there
is room in the program for more than lk 0
words of scratch pages this may be a re~son
able size. But in general, for reasonably
complex programs, lklO of memory is an upper
limit to the space available for scratch
pages. Experience has shown that for most
programs it is desirable to have provision
for 6-8 pages simultaneously, so that refer
ences to elements of several arrays can be
made in the same set of calculations.

It is important, of course, that the
arrays stored for use in this manner should
be referred to by the main program only in
blocks, i.e., with iterative references to
successive elements within a block. The
size of the blocks referred to need not be
the same sizes as the pages, but one must
avoid referring to such data in a true ran
dom manner.

Software for Bulk Storage

For storage and access of data in bulk
storage, therefore, the interpreting monitor
must be slightly more sophisticated than
that for computer sotrage, as shown in
Figure 4. XTENDT is a FORTRAN II subroutine
written almost wholly in Basic Assembly
Language which utilizes a DECtape for
Extended Memory. As before the subroutine
inserts a JMP instruction into location 2
when first called by the main program. It
also rewinds DECtape unit ¢ (or 8).

When a Trap Interrupt occurs, the con
tents of the AC are stored and the original
instruction is retrieved to find the corre
sponding instruction code and desired
address. The address is first compared with
a table to see if the contents of that loca
tion are already stored on a scratch page in
memory. If the most significant bits of
the desired address agree with one of the
table addresses, the routine jumps to the
appropriate page handler. Otherwise a
new page containing the new address must
be retrieved from the DECtape.

This subroutine uses up to 8 such
scratch pages with each page containing
128 locations. The actual number of pages
desired is specified by the main program
as NPMAX. The pages are stored at the top
of COMMON from location 120008 down.

93

The transfer subroutine writes the
oldest page in memory back onto DECtape
and reads the appropriate block from DEC
tape back into that same page making it
the youngest page. The variable NPAGE
~ndicates the number of the youngest page,
l.e., the one most recently retrieved from
DECtape. The block number of the DECtape
is taken as the appropriate high order
bits 3-10 of the address, right justified,
so that each block contains 128 locations.
The first 100g blocks of the tape are not
used because they correspond to the basic
8k core memory. The next 300 blocks pro
vide the equivalent of an add~tional 24k
of core.

Figure 5 shows how the instruction is
executed once the appropriate page is in
core. Only the seven least significant
bits 11-17 of the address are used and
these are added to the starting address of
the page to find the correct address.
This is combined with the instruction code
and deposited in the location XECUTE. The
contents of the AC and LINK are restored
and the instruction is executed with appro
priate incrementing of the PC before
returning to the main program.

Conclusions

In the case of the computer to com
puter transfer, the routine occupies
almost no memory and requires 52 cycles or
91 ~sec to execute Extended Memory instruc
tions. For the bulk storage routine the
memory requires about lkl (depending on
the number of pages) and ~he time is 55-76
cycles or about 100 ~sec per instruction
if the address is already in core. For
most FORTRAN programming, the LINK and PC
servicing portions of the interpreting
monitor can be omitted. For such a versio~
the corresponding times are 75 ~sec for
computer-computer transfer and 90 ~sec for
bulk storage.

For data arrays in FORTRAN this extra
time is not generally much of a disadvan
tage. In floating point manipulation, for
example, the time required for an arith
metic or library subroutine operation is
considerably larger. Even for displays the
increment time is usually tolerable. The
time added to a general computation is a
small percentage of the total time.

For DECtape storage, however, the time
added per transfer is about 1 sec. Care
must be taken, therefore, to optimize the
program flow so that references to arrays
occur mainly in blocks. For example
iterations in a DO loop which treat ~any
elements of a few arrays should complete
all possible manipulations of each element
or group of 128 elements before proceeding
to the rest of those arrays.

Experience with a typical data reduc
tion program (GRASP) has shown that if the
rate of transfer is kept down to an average
of less than 1 per 5 sec, the increase of
time in calculations required for the trans-

fer is compensated for by the fact that the
availability of more arrays simplifies the
calculation. In normal GRASP, for example,
a polynomial background curve must be com
puted from the polynomial coefficients at
each step of the least-squares fitting pro
cedure. In GRASP with Extended Memory, the
background curve is calculated once and
stored in an array for subsequent use.
Similarly, the display routine normalizes
each data pOint on the fly before display
to avoid storing a normalized spectrum.
With Extended Memory the normalized spectrum
can be stored so that the added time for
retrieval is balanced by the 1088 of time
needed for normalization.

This system can, of course, be used
equally well for programs written in
Assembly language, such as data acquisition
programs. In this case the Trap Interrupt
and interpreting monitor are not necessary,
but they provide an easy way of updating 8k
programs to 16k memory with almost no change
in the basic program. Data acquisition pro
grams cannot utilize the bulk storage tech
nique without considerable modification
because of their random access nature.

In conclUSion, the computer-computer
transfer is a very viable technique, where
facilities exist. The DECtape storage
simulates Extended Memory at some notice
able disadvantage. A compromise utilizing
a disk or drum should provide the optimum
response.

94

---I
I

;-81t'5 - - -- :
1 J3¢ 1 ,
,

- -I
1

o

,
1- - - - - - -_._- - 1
1 B II 5 1

KJ4 1

-I

PROG-· B
T4

T4

I PROG-.8 TRAP
SWITCH

, 5113
: J 22
- - -,- - - - 1

T4
o

T Po. AP (I)

L

V
V

BII7
HZ4

I.
8117 ,
J23

,- - - - - - - -

TRA P I

FLA c;. (~) 1

v
u

(f) "\-

MB 4 (0) --.----::..... ... /\

IA3 --'--.....

81/5
J21 I

--<:>E SET

- -'1: SET

"'--T"- RPT(O

,
1

I 8113 ,
1 KJ9 '
1- - - - - - I

I

BIIS '
H2¢ I

,
I

8113
KI9 _!

BII~ - - ,.

J8 ' v
T4~U 1 \,1

INTER- B T 1\ I ,

SCANS SYSTEM PDP-7-2
E.XTENDED MEMO~,(TR.AP

1 0 F 2..
'------------------

1-----1-------,-----

R
ANY-F

B

p

TRAl'
: FLA G til 1

PI E. (I) I
1-'
,B1I7 I SI(2)S : B 1(>5
I L 18 'L2.3 1 LIS
!- - - - - '- - - - - - - ~ - - - -

seA N S 5 YS T EM PDP -7- 2

BE.v,,,, tHo", 4/69 2 OF 2.

95

XTEND TAPE SUBROUTINE 3/68
SUBROUTINE XTEND TAPE <NPAGE~ NPMAX)

C EXTENDED MEMORY FORTRAN SUBROUTINE USING DECTAPE
C PHIL BEVINGTON, STANFORD UNIVERSITY
C NPAGE = PRESENT PAGE NUMBER
C NPMAX = NUMBER OF PAGES (MAXIMUM OF 6)
SOCTAL LMQ=652000 LACQ=641002
S LRS=640500 ALS=640700 DECIMAL

DIMENSION MATRIX<8,128)
COMMON MATRIX
\I/RITE 3009
NEXTB = 1

SOCTAL
S LAC (JMP .1 DAC 2 /ENTRANCE FROM TRAP

RETURN
s
S .1 .. DAC #AC
S.2, LAM-l ADD 0
S LAC I TEMP AND (NOP
S LAC I TEMP AND (17777
S LAC I TEMP ADD <1
S AND (77600
S SAD ADDRI JMP PAGEl
S SAD ADDR2 JMP PAGE2
S SAD ADDR3 JMP PAGE3
S SAD ADDR4 JMP PAGE4
S SAD ADDRS JMP P,t\GE5
S SAD ADOR6 JMP PAGE6
S SAD ADDR1 JMP PAGE1
S SAD ADOR8 JMP PAGE8
S DAC #NADDR
S JMS TRANSFER

SPAGEl, LAC ADDR
S ADD (11600
S
SPAGE2, LAC ADDR
S ADD (11400
S
SPAGE3 .. LAC AODR
S ADD (11200
S
SPAGE4, LAC ADDR
S ADD (11000
S
SPA6E5, LAC ADDR
S ADD (10600
S
SPAGE6, LAC ADOR
S ADD (10400
S
SPAGE1, LAC ADDR
S ADD (10200
S
SPAGE8, LAC ADDR
S ADD (10000
S
SEXECUTE .. ADD INSTR
S DAC XECUTE LAC AC
SXECUTE .. XX SKP
S JMP I 0
S
SADDRI .. 1600
SADDR2, 7600
SADDR3~ 7600
SADDR4, 7600
SADDR5~ 7600
SADDR6~ 7600
SADDR7, 7600
SADDRS .. 7600
SDECIMAL

END

DAC ffTEMP
DAC HINSTR
DAC TEMP
DAC HADDR

JMP .2

AND <177
JMP EXECUTE

AND <177
JMP EXECUTE

AND (177
JMP EXECUTE

AND <177
JMP EXECUTE

AND (177
JMP EXECUTE

AND <177
JMP EXECUTE

AND (177
JMP EXECUTE

AND (177
JMP EXECUTE

ISZ 0

96

/SAVE AC
/FETCH INSTRUCTION

ICHECK IF PAGE IN MEMORY

IPAGE NOT IN MEMORY
/LOAD PAGE INTO MEMORY

IADDRESS IN PAGE 1

IADDRESS IN PAGE 2

IADDRESS IN PAGE 3

/ADDRESS IN PAGE 4

IADDRESS IN PAGE 5

/ADDRE~~ IN PAGE 6

/ADDRESS IN PAGE 7

IADDRESS IN PAGE 8

IEXECUTE INSTRUCTION

)< T E!\O 7 3/ 1/6 P'
SUGROJIINE XIEND7
CONTINUE

SOCIAL
~ P8lP=70222~

S TDlO=702225
s
s
s

~

lAC <..HYl,l BEG I N
I'BlP
i<ETUr:N

SBEGIN, PHlT
::;

S
S
S
S
.s
S
.s
<' ..J

<:

LAM-l
LtlC I ADD
lAC I AODk
LAC I ADDK
fOlO
I~DlO

~Cr\

lAC 0
KDLO
JM? I 0
END

X TEN D 9 3/ I /68

1/

PBPF=7022(31
T Dl 0 = 702225

ADD '" ANI) (NOt'
AND (17117
AND (17777
Jf'I.? • - I
JMP · -)
SL.A
SPA
JMP · -)

SKP PBPF
CAF ION

22/

CONTI NUE,
ROlO
kDlO

CAF PBEiJ

Cll
JMP
JMP

lAC AC XiC:

.-}

• - I

SKP ISL. PC
lAC PC RAl
TDlO JMP .-1
lAC AC TOlO
JMP CONTINUE

S TAi<T BEG I N

PBlT=70222il
~Dla=702253

DAC 2

OAC IIA[)DK

l)AC #INSlk
DAC ADDi"\
ADD I ''-5 Tl-:

I Sf. ~)

Sll

PBEP=70226L1
i<!DlO=702253

Jf":P BEGI N
JMP I 0

ION

DiM #PC
DAC fAC
DAC .+2

DAC AC

JMi"' • - 1

97

/TRAP ENTRY
/INITIAlILE PDP-9

/SEND AC
/LOCAIE INSTRUCTION
/OKIGINAL INSTRUC1IUN
/0kIGINAl AI)DKE~S

/NEW IN~TRucrION

/SEND IN~rRUCfION
/READ LINK AND PC
/~ET lINK AND PC

/REPl..) AC
/RE I URI\I

/INITIALIZE LOOP FOR PDP
/IGNORE PDP-9 INTERRUPTS

/ENABlE INTEKkU~T

/CLEAR lINK AND PC+l
/READ AC
/KEAD INSTR~CTI0N

/EXECUTE INSTRuCTION
/ I NCR~M ENT PC+ 1
/SEND lINK AKD PC+l

/ SEND AC

IMPLEMENTATION OF AN ON-LINE REACTIVE (TYPEWRITER) LANGUAGE*

David Z. Polack
University Computing Company

Dallas, Texas 75207

Abstract

The language processor to be discussed is designed for use via reactive
typewriter. It accepts, names, stores and man ipu lates character strings
which may be used as names, data and/or procedure. List processing
techniques are uti I ized in the processor implementation.

The presentation is in the form of a tutorial session, which first places
the language processor within the framework of the University Computing
Company's FASBAC System. Subsequent discussion wi II include:

1. a brief description of the language for those unacquainted with it,

2. discussion of memory allocation in terms of the necessary coding,
strings, stacks, vectors, communication zones, etc.,

3. the methodology of handling various strings,

4. dynamic II Garbage Collect",

5. special handling of defined primitives,

6. additional primitives not included in previous literature,

7. discussion period.

Reference may be made to: TRAC, A Procedure-Describing Language for
the Reactive Typewriter; Calvin N. Mooers; Communications of the ACM,
Volume 9/Number 3/March, 1966.

*This paper was not received for publ ication.

99

DISC VERSION OF STRIP

A DATA DISPLAY AND ANALYSIS PROGRAM

FOR THE PDP-8, 8/1

John Alderman
Georgia Institute of Technology

Nuclear Research Center
900 Atlantic Drive

Atlanta, Georgia 30318

ABSTRACT

A version of STRIP has been developed to take advan
tage of the storage capabilities of the DF32 Disc
Storage Unit. Techniques of overlay generation and
calling, data storage and retrieval, and programming
philosophy for open-ended programs to be modified
by unskilled users are described.

INTRODUCTION

This paper is primarily concerned with the difficul
ties of the programmer in using the new Disc System
Monitor software, the subject of this morningts
report by Mr. Conley. Examples of coding are taken
from the presently on-going revision of STRIP*,
which will make extensive use of the disc, for both
program overlay and data storage.

The new systems programming has the very limiting
assumption that all disc software must be compat
able with DECTAPE hardware. Thus, even though the
disc hardware is randomly addressable, with word
transfers of up to 4096 words, the monitor soft
ware assumes all files are 128 words long, and that
each block is to be addressed and transfered indi
vidually.

I have some objections to this assumption:

(1) Most peripherals on the PDP-8 are serial-by
character in nature, and are capable of handling
variable length blocks of data. Examples are:
Paper tape, IBM compatable magnetic tape, cards,
display units, and communications lines. An ap
propriate name for these might be fTrecord oriented
devices fT . The restriction to fixed block length
requires a rather complicated file access system,
in order to fill/empty only fixed length blocks
from these record oriented devices.

(2) If a record oriented disc storage system were
employed it would be possible to make all I/O
resemble (IBM compatable) tape records, including
the disc (and DECTAPE too, since it would be a
special case). One advantage to such a system is
that a modular I/O system can be constructed for
such a system, which will result in much simpler,
highly recursive, programming for data handling
between peripherals on the computer. This record
oriented I/O system is used on many larger systems
(CDc6600, Univac 1108, are examples) and the ef
ficiency of operation would also benefit the PDP-8,
since some of the difficulties of beginner pro
grammer are involved with routine I/O programming.

This is, of course, not to say that variable length
storage systems do not have their pro~lems. The
primary difficulty for a small system like the
PDP-8, is that the Directory Name table would have
to be larger, and that some sort of "automaticfT disc

101

reshuffling system would have to be employed to re
structure the disc when a file is deleted. My feel
ing is that the efficiency of storage utilization
afforded by the variable length system, along with
the considerable increase in access speed (the 33
ms access time for the disc must be allotted for
each fixed length block, but only one such wait is
necessary for a variable length record) available
by making use of the disc hardware, would more than
offset the difficulties of a longer DN table, and
the disc reshuffling at delete time.

Regardless of the above considerations, the pre
sently implemented system is available, and it is
possible to use it to do most of the program over
lay storage and data manipulation that a user de
sires.

DATA STORAGE AND RETRIEVAL

Since all storage on the disc is in SAM blocks of
12810 words, I have written a subroutine to access
the disc (see Figure 1). This subroutine has argu
ments specifying function, starting core location,
and starting SAM block number, and is called IMPORT/
EXPORT (IE). The routine is self contained, calls
the system I/O routine at 7642, and requires only
2610 locations within the user's program. With it,
any file on the disc can be accessed, if the start
ing SAM block number is known. The file will be
placed in core with each page stored contiguously
(note that it is not necessary to make the core
starting address a page boundary if data is being
transferred!). With a change of the FUNCTION argu
ment, it is possible to write on a previously saved
file. The same routine can be used to handle the
actual transfer of program overlays.

As an example of the use of IMPORT/EXPORT, I have
written a disc accessing version of STRIP*. This
first version is very straight-forward, in that it
uses the last few pages of the disc (ours is a two
disc system) as the data storage area for the Float
ing Point data buffer mentioned in the writeup.
Since only one page at a time is accessed from the
disc, the version of IE used does not have the test
of IELNK. Notice that the scratch blocks are a~
dressed by an absolute SAM block number. Since
the scratch file is not defined (by the "SAVEn oper
ation), the DN table has no entry for it, which

means that that area of the disc is "blank" as far
as subsequent "SAVE" operations is concerned. Of
course it is incumbent upon the user to insure that
nothing of interest is destroyed when using that
scratch area. The feature of using a non-defined
~ile as scratch is very useful, since otherwise the
disc tends to get cluttered up with unused files.

In the case of the user's program needing to access
a defined file, however, it must obtain the start
ing SAM block number. Figure 2 is the listing of a
program to obtain the starting SAM block number.
The main routine interrogates the operator for the
NAME of the file, and then call the subroutine
DNSRCH (based upon coding supplied by Roger Pyle),
which searcbes the DN table for the name, and then
the SAM directory table for the starting block
number, which is returned to the calling routine
in the accumulator. The main program then types
this out in octal. This program is both a useful
operational program (especially when debugging
disc routines) and an example of the use of the
subroutineDNSRCH from within the user's program.
With this subroutine (which can be on overlay),
the user can find any file on the disc, and by
using IE for actual transfers, can use that file
from within his program.

DISC STRIP - Features

DISC STRIP will differ from the previous version,
primarily in the internal working of the program.
The calculations and usage of the program will be
very similar.

With the advent of the disc storage unit (DF32),
it has become possible to take advantage of the
larger storage area available for program overlays
and data, as well as complete programs. DISC
STRIP will make extensive use of the overlay fea
ture. The present rule is that all overlay pro
grams must not occupy more than two contiguous
pages of core (if they are to access data also)
and they will be loaded into the overlay area
when the keyboard is struck. Since many programs
will not occupy a whole page, and it is desireable
to make maximum use of the available diSC, there
will be a call to a keyboard interpreter at the
beginning of each overlay section. This interpret
er will look up the character typed, in its field
of keyboard functions available IN THE CURRENT OVER
LAY ONLY. If the function is not in the current
overlay function table, the next overlay is called,
and the process repeats until a legal function is
found, or all the overlays have been called.
In the later case, an error exit to the monitor
is taken.

This scheme of chaining overlays with a function
table stored in each, lends itself to expansion by
adding new overlays at the end of the chain, and
adjusting the table of available overlays (each of
which is referenced by its starting SAM block num
ber). The core resident package will also have pro
visions for accessing data files from the disc,
and (as before) the user need not concern himself
about the location of the data, but simply address
es it indirectly via a moving pointer in page zero.
The limitation of the number of points displayed
is arbitrarily set at 1024 by the 10 bit hardware
of the type 34 display unit.

102

A new feature of DISC STRIP will be the full utili
zation of the TEKTRONIX type 601 (or 611) storage
oscilloscope. Since each point on the display can
be displayed permanently as it is computed, there
is no requirement for a display buffer, which ma
terially improves the data storage problem. Also
there is no requirement for a titles buffer, and
the titles will actually be another keycalled func
tion. The storage scopes may be erased under pro
gram control, and there will be another keycalled
function for doing so.

As a result of the number of keycalled functions
available, it becomes of interest to be able to
quickly program a series of calls to these func
tions. A new feature of DISC STRIP will be an ele
mentary interpretive assembler, which will assemble
calls to keyboard functions (including numerical
arguments), and then allow the user to specify a
key to call the new function ensemble. This will be
a recursive process, and the main limitations will
be the basic functions available, and the amount of
disc storage room available for these routines,
and the data.

Availabili ty:

I have a working version of STRIP, using the disc
for data storage only. This version does work, but
only as a patCh for the older version. The only
advantage to using the patch, is that data fields
of up to about 650 data points may be displayed.
All of the commands for the patch version are ident
ical with the previous writeup, and the user can
only tell the difference, by the inordinate length
of time required to do his computations.

DISC STRIP has been partially coded. Most of the
computational subroutines are copied from the pre
vious version, so the only additional coding requir
ed is the overlay and data access control structures.

The release date on DISC STRIP will probably be in
early June. It will be submitted to the DECUS library
at that time, but there is naturally some delay in
the distribution of a new program through DECUS,
since it must be reviewed. I will be glad to pro
vide "under-the-table" copies to prospective users,
until it becomes a burden on my time.

Conclusions

The disc CAN be used for both data storage, and pro
gram overlay storage. The documentation available
from DEC doesn't show the programmer how to do it,
but the examples of this paper should be sufficient
to get most programmers started.

A new, somewhat fancy, DISC STRIP will be out short
ly, for users who might want it.

/Page ¢¢¢1

/IMPORT/EXPORT , A WHOLESALE DISC/CORE SWAPPING ROU-
/TIl't"'E

~
ICAJ.;L BY JMS IE /ACC MUST BE ClEAR
/ 3 OR 5 /3=REA.D, 5=WRITE ON DISC
/ CORE / CORE STARTING ADDRESS
I BLOCK IGIVEN BY DNSRCH&SMSRCH
I ERROR RETURN /
I NORMAL RETURN I ACC CLEAR
IAVERAGE ACCESS TIME =25 MS

IE, ¢ /ENTRY
TAD I IE
DCA IEFUNC
ISZ IE
TAD I IE
DCA IECORE
ISZ IE
TAD I IE
ISZ IE

/GET FUNCTION

/GET CORE SA

/GET BLOCK NUMBER (OCTAL)

IELOOP, DCA IEBIK
JMS I SYSIO
:3 IEFUNC,

IEBIK,
IE CORE ,
IELNK,

~
¢

/ERROR EXIT

IE2¢¢,
SYSIO,

0200

0201
0202

0203
0204
0205
0206
0207

P210
0211
0212

0213
0214
0215
0216
0217

0220
0221
0222

0223

0224

JMP I IE
TAD IECORE
TAD IE2¢¢
DCA IECORE
TAD IELNK
SZA
JMP IELOOP
ISZ IE
JMP I IE
2¢¢
7642

/NEXT PAGE
/FURNISHED BY SYSIO
lEND OF FILE?
INO
/YES
/EXIT NORMAL

/TEST ROUTINE FOR DNSRCH
ITYPE IN YOU FILE NAME, AND IT
IREPLIES WITH OCTAL
ISTARTING SAM: BLOCK NUMBER

6032 START, 6032
/INITIALIZE THE FLAGS

6046 6046
4230 RO, JMS CRLF

/NORMALIZE TELEPRINTER
4244 JMS GET
7106 RTL CLL
7006 RTL
7006 RTL
3306 DCA WORD1

/SAVE 1ST LEFT HALF
4244 JMS GET
1306 TAD WORD1
3306 DCA WORD1

/SAVE 1ST PACKED WORD
4244 JMS GET
7106 RTL CLL
7106 RTL CLL
7006 RTL
3307 DCA WORD2

/ SAVE 2!\'D LEFT HALF
4244 JMS GET
1307 TAD WORD2
3307 DCA WORD2

/SAVE 2ND PACKED WORD
4244 JMS GET

/LOOKING FOR REWRN
1227 WHAT, TAD QUEST

103

/TOO MANY CHARACTERS
0225 4236 JMS PRINT
0226 5200 JMP START
0227 0277 QUEST,277

0230 0000
0231 1276
0232 4236
0233 1277
0234 4236
0235 5630
0236 0000
0237 6041
0240 5237
0241 6046
0242 7200
0243 5636
0244 0000

0245 6031
0246 5245

0247 6036

0250 6046

0251 3270

0252 1270

0253 1271

0254 7450
0255 5303

0256 1272

0257 7450
0260 5202

0261 1273

0262 7650
0263 5702

0264 1270

0265 1274
0266 0275

0267 5644
0270 0000
0271 7563
0272 7616
0273 0174
0274 0040
0275 0077
0276 0215
0277 0212
0300 0400
0301 0240
0302 7600
0303 1277
0304 4236
0305 4700
0306 0000
0307 0000
0310 5224

0311 3333

CRLF,

PRINT,

o
TAD CR1
JMS PRINT
TAD LF
JMS PRINT
JMP I CRLF
o
6041
JMP.-1
6046
CIA
JMP I PRJNT

GET, 0
/GETS CHARAGTERS

W31
JMP .-1

/NOT READY YET
6036

/OK, GET IT
6046

/ECHO IT
DCA CHAR

/SAVE
TAD CHAR

/ENTER TESTING ROUTJN.E
TAD MCR

/IS IT REWRN
SNA
JMP CR

/YES
TAD MRO

/IS IT RUEOUT
SNA
JMP RO

/YES
TAD MCTRLC

/IT IT CTRL C
SNA CIA
JMP I MONRET

/YES, EXIT TO MONITOR
TAD CHAR

/GET THE CHARA.C'rER AGAJN
TAD p40
AND C77

/STRIPPED ASCII+40 OUTPUTED

CHAR,
MCR,
MRO,
MCTRLC,
p40,
C77,
CRl . ,
LF,
SRCH,
SP,240

JMP I GET
o
-215
215-377
377-203
40
77
215
212
DNSRCH

MONRET, 7600
CR,TAD LF
JMS PRINT

WORD 1 ,
WORD2,

JMS I SRCH
o
o
JMP WHAT

/ERROR EXIT!

/NOW WE HA. VE THE SAM BLOCK NUMBER
lIN THE AC

DCA PTEM
/SAVE IT

0312 1334 TAD M4 0441 1700 TAD I DNT3
0313 3332 DCA DCN lYES, COMPARE THE NEXT 2 CHARS

IINITIALIZE DIGIT COUNTER TO 4 0442 7041 CIA
0314 1333 TAD PTEM 0443 1277 TAD DNT2
0315 7004 RAL 0444 7640 SZA CIA
0316 7004 PNU2, RAL I ARE THESE CHARS SAME?
0317 7006 RTL 0445 5263 JMP DNNOTF INO
0320 3333 DCA PTEM 0446 1220 TAD DNFUNC
0321 1333 TAD PTEM lYES, INCREMENT POINTER TO
0322 0335 AND PCON 17 0447 1300 TAD DNT3
0323 1336 TAD PCON+l 1260 lLOOK AT FILE EXTENSION
0324 4236 JMS PRINT 0450 3300 DCA DNT3
0325 1333 TAD PTEM 0451 7332 CIA STL RTR
0326 2332 ISZ DCN lIS THIS A BINARY PROGRAM?
0327 5316 JMP PNU2 0452 0700 AND I DNT3
0330 7200 CIA 0453 1302 TAD DN6000
0331 5202 JMP RO 0454 7640 SZA CIA
0332 0000 DCN, 0 0455 5264 JMP DNNOTF+l
0333 0000 PTEM, 0 INO CONTINUE SEARCH
0334 r{774 M4, -4 0456 1672 TAD I DNFSBN
0335 0007 PCON, 7 lYES, GET 1ST SAM BLOCK NR
0336 0260 260 0457 3313 DCA CDSAM

'*400 ISETUP CALL TO SAM DIRECTORY
/DIRECTORY SEARCH SUBROUTINE 0460 1274 TAD DNSAMC
ICALLING SEQUENCE 0461 5304 JMP SMSRCH
/ 0462 5600 BADRET, JMP I DNSRCH
/JMS I (DNSRCH 0463 1220 DNNOTF, TAD DNl!UNC
/CHARACTERS 1,2 ISEE NOTE BELOW IINCREMENT POINTER BY FOUR
I CHARACTERS 3,4 0464 7001 IAC
IERROR RETURN FOR NON-FOUND NAME 0465 1300 TAD DNT3
lOR 1/0 ERROR 0466 3300 DCA DNT3
/NORMAL RETURN (AC=START BWCK) 0467 2301 ISZ DNKTR

/ 0470 5232 JMP DNTEST
0471 5213 JMP DNREAD

INOTE: EACH CHARACTER IS STRIPPED 0472 0602 DNFSBN, DNBUF+2
/ASCII+40(8) 0473 0177 DNSTRT, 177

READ==3 0474 0000 DNSAMC, 0
0400 0000 DNSRCH 0 0475 7747 DNKT, -31
0401 1600 TAD I DNSRCH 0476 0000 DNT1, 0
0402 3276 DCA DNTl 0477 0000 DNT2, 0
0403 3274 DCA DNSAMC 0500 0000 DNT3, 0
0404 2200 ISZ DNSRCH 0501 7777 DNKTR, -1
0405 1600 TAD I DNSRCH 0502 6000 DN6000, 6000
0406 3277 DCA DNT2 DN77=C77
0407 2200 ISZ DNSRCH DNBUF=DNSRCH+200
0410 1273 TAD DNSTRT 0503 0077 CD77, 77

I GEl' ADDR OF 1ST DN BLOCK 0504 7041 SMSRCH, CIA
0411 3221 DCA DNBLOK 0505 3371 DCA CDSMVA
0412 5217 JMP DNIO IMINUS SAM NR TO CDSMVA
0413 1223 DNREAD, TAD DNLINK 0506 3364 DCA CDSMPT

I GET NEXT BLOCK NR FROM LINK I SEl' BLOCK COUNTER TO ZERO
0414 7450 CDD, SNA 0507 13r(1 CDSMRD, TAD CDSMVA
0415 5262 JMP BADRET 0510 3366 DCA CDSMTl
0416 3221 DCA DNBLOK 0511 4774 JMS I SYSIO
0417 4774 DNIO, JMS· I SYSIO lREAD THE SAM BLOCK INTO BUFFER
0420 0003 DNFUNC, READ 0512 0003 CDRD4, READ
0421 0000 DNBLOK, 0 0513 0000 CDSAM, 0
0422 0600 DNCOR, DNBUF 0514 0600 CDCORE, DNBUF
0423 0000 DNLINK, 0 0515 0000 CDSMLK, 0
0424 5262 JMP BADRET IERROR 0516 5262 JMP BADRET IERROR
0425 1275 TAD DNKT 0517 1363 TAD CDM2
0426 3301 DCA DNKTR 0520 3372 DCA CDSMSW
0427 1220 TAD DNlruNC 0521 1303 TAD CD77
0430 1222 TAD DNCOR ISET MASK FOR BLOCKS 0-177

ISET POINTER TO 1ST DN ENTRY 0522 3367 DCA CDSMMT
0431 3300 DCA DNT3 0523 1365 CDSML2, TAD CDM200
0432 1700 DNTEST, TAD I DNT3 ISET COUNTER TO -200

I COMPARE ENTRY WITH PROGRAM 0524 3370 DCA CDSMCT
0433 2274 ISZ DNSAMC 0525 1314 TAD CDCORE
0434 2300 ISZ DNT3 /SET BLOCK POINTER
0435 7041 CIA 0526 3373 DCA CDCORX
0436 1276 TAD DNT1 0527 1773 CDSMLP, TAD I CDCORX
0437 7640 3ZA CIA 0530 0367 AND CDSMMT

lIS THIS THE DESIRED NAME? 0531 1366 TAD CDSMT.l
0440 5263 JMP DNNOTF INO 0532 7650 SNA. CIA

104 lIS THIS THE DESIRED BLOCK?

0533 5357 JMP CDSMFD
lYES, EXIT SUBROUTJNE

0534 2373 ISZ CDCORX
INo, CONTINUE SEARCH

0535 2364 ISZ CDSMPT
0536 2370 ISZ CDSMCT
0537 5327 JMP CDSMLP
0540 1362 TAD CD7700

0541
lEND OF 1ST PASS, CHANGE MASK

3367 DCA CDSMMT
0542 1366 TAD CDSMTk
0543 7106 CLL RTL

I SET TEST WORD FOR BLOCKS 200
0544 7006 RTL
0545 7006 RTL
0546 0367 AND CDSMMT
0547 3366 DCA CDSMT1
0550 2372 ISZ CDSMSW
0551 5323 JMP CDSMI2
0552 1315 TAD CDSMLK
0553 7450 SNA

lIS THIS THE LAST SAM BLOCK?
0554 5262 JMP BADRET

lYES, SAM NR NOT FOUND
0555 3313 DCA CDSAM

0556
INo, CONTINUE SEARCH

5307 JMP CDSMRD
0557 2200 CDSMFD, ISZ DNSRCH

I SAM NR WAS FOUND, LOA.D THE
0560 1364 TAD CDSMPT
0561 5600 JMP I DNSRCH

lRETURN TO CALLER
0562 7700 CD7700, 7700
0563 7776 CDM2, -2
0564 0000 CDSMPT, 0
0565 7600 CDM200, -200
0566 0000 CDSMT1, 0
0567 0000 CDSMMT, 0
0570 0000 CDSMCT, 0
0571 0000 CDSMVA, 0
0572 0000 CDSMSW, 0
0573 0000 CDCORX, 0

0574 7642 SYSIO, 7642

BADRET 0462
enCORE 0514
CDCORX 0573
CDD 0414
CDM2 0563
CDM200 0565
CDRD4 0512
CDSAM 0513
CDSMCT 0570
CDSMFD 0557
CDSMLK 0515
CDSMLP 0527
CDSMI2 0523
CDSMMT 0567
CDSMPT 0564
CDSMRD 0507
CDSMSW 0572
CDSMT1 0566
CDSMVA 0571
CD77 0503
CD7700 0562
CHAR 0270
CR 0303
CRLF 0230
CR1 0276
C77 0275
DCN 0332
DNBLOK 0421
DNBUF 0600

105

DNCOR 0422
DNFSBN 0472
DNFUNC 0420
DNIO 0417
DNKT 0475
DNKTR 0501
DNLINK 0423
DNNOTF 0463
DNREAD 0413
DNSAMC 0474
DNSRCH 0400
DNSTRT 0473
DNTEST 0432
DNT1 0476
DNT2 0477
DNT3 0500
DN6000 0502
DN77 0275
GET 0244
LF 0277
MCR 0271
MCTRLC 0273
MONRET 0302
MRO 0272
M4 0334
PCON 0335
PNU2 0316
PRINT 0236
PTEM 0333
p40 0274
QUEST 0227
READ 0003
RO 0202
SMSRCH 0504
SP
SRCH
START
SYSIO
WHAT
WORD1
WORD2

¢17¢
¢171

¢642

¢646

¢653

¢655

¢667

¢677

¢735

¢753

¢762

¢767

1624

0301
0300
0200
0574
0224
0306
0307

/PAGE ¢¢¢¢
!DISC STRIP
/PATCHES TO SETUP FOR DISC DATA BUFFER
SETUP=JMS I DIPNTR
INDEX::i:JMS I DAPNTR
*17¢

4¢42 DAPNTR,DA
4¢¢¢ DIPNTR,DI

*642
4571 SETUP

*646
457¢ INDEX

*653
4571 SETUP

*655
457¢ INDEX

*667
4571 SETUP

*677
457¢ INDEX

*'735
4571 SETUP

*'753
45'!¢ INDEX

*'762
4571 SETUP

*'767
457¢ INDEX

*1624
4571 SNlUP

"'1631

1631 457¢ llIDEX 4~41 ¢¢53 DIP42,52
*164¢ /SUBROUTINE TO INCREMENT & TEST POINTERS

164¢ 4571 SETUP lIT WILL CALL NEXT PAGE OF DATA AUTOMAT I
*1676 4¢42 ¢¢~¢ DA, ¢ / ACCESS DISC SUBROUTINE / CALLY

1676 457¢ llIDEX 4¢43 21 5 ISZ Il
*1- 34 3 4¢44 21,05 ISZ Il

4343 4571 SETUP 4¢45 21P5 ISZ Il/INDEX Il BY 3
*1-352 4¢46 2274 ISZ DANUM/TEST COUNTER

4352 457¢ llIDEX 4¢47 5264 JMP DATEST
*1-413 4¢5¢ ~~~ FILE

4413 4571 SETtJP 4P51 WRITE
*1-425

4425 457¢ llIDEX /PAGE ¢¢¢2

¢42¢ ~~~~
*1-2¢

4¢52 NOP 2312 ISZ IEBLK
~4~1 NOP 4~5~ 2276 ISZ DAEND/TOO MANY FILES?
~422 7~~~ NOP If¢54 741¢ SKP
¢423 i~~~ NOP 4¢55 5172 JMP QUEST-l/YES, ERROR EXIT
¢424 NOP 4¢56 ~~~ FILE

*1-34 t~~~ READ

¢434 i~~~ NOP 1317 TAD IE34¢¢
¢435 NOP 4¢.61 31¢5 DCA Il
¢436 7¢¢¢ NOP 4¢62 1275 TAD DAM43

*1-45 4¢63 3274 DCA DANUM
4¢64 21¢6 DATEST,ISZ 1¢6
4¢65 21¢7 ISZ 107
4¢66 2673 ISZ I CNTRPT
4¢67 56¢¢ J.MP I DI

/PAGE ¢¢¢1 4¢7¢ 00~~ FILE
4¢71 \}'RITE

/DATA ACCESS INITIALIZATION 4P72 5642 CM'P I DA
4¢73 ¢446 CNTRPr,446

Il=1¢5 4¢74 ¢¢¢¢ DANUM,¢
QUEST=173 4¢75 ~~~~ NOP
lFl14 4¢76 DAEND,¢/-FlLE # FOR TESTING
READ=3 4¢77 776¢ DIMFTL,776¢/-FlLE # STORED ***TEST***
WRlTE=5 41¢¢ ~~~~ IE, ¢ /ENTRY
*1-¢¢¢ 41¢1 CLA. CLL
DAM43=DIM42 41¢2 17¢¢ TAD I IE /GET FUNCTION
DABU:FR=DI-2¢¢ 41¢3 3311 DCA IEFUNC
FlLE=JMS IE 41¢4 23¢¢ ISZ IE

4¢¢¢ ¢¢¢¢ DI,¢ 41¢5 1317 TAD IE34¢¢
4¢¢1 73¢¢ CU\. CLL 41¢6 3313 DCA IECORE
4~2 3242 DCA DA/CLEAR BliICKCOUNTER (DA) 41¢7 3314 DCA IELNK
4 ¢3 ill4 TAD L/ GET If)W LIMIT 4ll¢ 472¢ JMS I SYSIO
4¢¢4 124¢ TAD DIM42/SUBTRACT BLOCKLENGTH 4 ill ¢¢¢3 IEFUNC, 3
4¢¢5 2242 ISZ DA/STEP BIf)CK COUNTER 4112 ~~~~ IEBLK, ¢
4¢¢6 75¢¢ SMA/NEGATIVE ? 4113 IECORE, ¢
4¢¢7 52O¥ JMP .-3/NO 4114 ¢¢¢¢ IELNK, ¢
4¢1¢ 1241 TAD DIP42 4115 5172 JMP QUEST-l/ERROR EXIT
4¢ll 3l¢5 DCA Il/I! IS TEMP STORAGE NOW 4116 ~~~ JMP I IE /EXIT NORMAL
4¢12 11¢5 TAD Il 4117 IE 34¢¢ , DABUFR
4¢13 1275 TAD DAM43 412¢ 7642 SYSIO,7642
4¢14 3274 DCA DANUM/INITIALlZE COUNTER 4121 7775 M3,-3
4¢15 11¢5 TAD Il/MULTIPLY BY 3

4¢73 4¢16 71¢4 CLLRAL CNTRPT
4¢17 11¢5 TAD Il DA 4¢42
4¢2¢ 1321 TAD M3 DABUFR 3~¢
4¢21 1317 TAD IE34¢¢ DAEND 4 76
4¢22 31¢5 DCA Il/I/NOW POINTS TO FIRST DATA POINT DAM43 4¢75
4¢23 734¢ CU\. CLL GMA/AO::.:-l DANUM 4P74
4¢24 1242 TAD DA/ GFr BIf)CK COUNTER DAPNTR ¢17¢ IEFUNC 4111
4¢25 1237 TAD DIBLK/ GET 1ST FILE NUMBER DATEST 4¢64 IELNK 4114
4¢26 3312 DCA IEBLK DI 4¢¢¢ IE34¢¢ 4117
4¢27 724¢ CU\. GMA/AC=-l DIBLK 4¢37 llIDEX 457¢
4¢3¢ 1277 TAD DIMFIL/ GET -NUMBER OF FILES DIMFIL 4¢77 Il ¢1¢5
4¢31 1242 TAD DA /ADD BIf)CK COUNTER DIM42 4¢4¢ L ¢114
4¢32 3276 DCA DAEND DIPNTR ¢171 M3 4121
4¢33 43¢¢ FILE DIP42 4¢41 QUEST ¢173
4¢34 ¢¢¢3 READ FILE ti~~ READ ¢¢¢3
4¢35 4511 JMS I 111 IE SETUP 4571
4¢36 56¢¢ JMP I DI IEBLK 4112 SYSIO 412¢
4¢37 ¢6¢¢ DIBLK,6¢¢ IE CORE 4113 WRITE ¢¢¢5
4¢40 7725 DIM42, -52

106

fDPm! O~CILLOSCOPE DISPLAY OF
MATHEMATICAL FUNCTIONS USING FORTRAN

Ee ~~p§~aJ Prafee~ar af E"gineerin~
- ang

Stephen G. Welleame~ Stugent
Department af Engine@rin~

Trini ty Callege

ABSTRACT

A seneral.purpa~e pragram far a~eilla~eope gi~play af
mathematieal Iunetiana will be described. Sinee the main
pra~ram i~ written in FORTRAN the user need only in~ert the
FORTRAN ~tatement of hia funetian in a standard laeatian. At
abject time h@ ipeeifi@i the rlnge of the independent vari~ble.
Fel1ewinl a ~ea1inl eomputatien~ the aealeg function is eoma

puted and a table af valuei lenerated. These are displayed en
an e~eillaieep@ by meani of a binary program whieh is laaded at
FORTRAN ebjeet time. Interactive featurei allow the u~er ta
reBipeeify-th@ ranse of the independent variable ta mere e1eie-
1y @~amine the varieus rangei af the funetian under study.

The iy~tem deieribed uses a PDP·8 with 4X core, and a type
34D aici1laseape display unit,

O~eilla2eape display~ af sinlle-valued
mathematical functiani af the ferm y • f(x) are
readily aeeempli§hed uiin8 a '0'·8 with 4k memory,
and a type l~D display. The system deieribed in
thi~ paper u~es bath FORTRAN and PAL prosramming
lan~ua~es. A itandard Tektranix type 561 or 564
a§eillaieape, having an 8 x 10 em, display area is
u§@~, Th@ diiplayed functian cans1its of over 200
individual x~y eeardinat@ values, and some 50 scale
m@rKi far a ealibrated display.

Inter@ctiv@ prosrammins features allow the user
te sp@eify a re-ealeulation of function values to
display different ranles ef interest in either the
independent or dependent variable by typing appro~
priat@ eammands durins the display. Scalins of the
di§play is autamatiea~ly carried out during cqrnpu
tatian se the Uier need not anticipate or estimate
maximu~ or minimum value, ot the function. By use
ef the interaetive feature the user ean re-specify
fynetian ranges until he obtains an appropriate
di§pl@y far his needs. functions with variable
parameter§ may be presrammed in such a way that
the§@ parameter~ may alae b@ re-§peeitied to in
vesti~ate the effeets of sueh variatianl.

Thi~ pralra~minl system combines thale features
of FORTRAN and PAL best suited to the specific re~
quirements af each part of the program, The main
prasram 11 written in FORTRAN, This allows the user
te specify the function of intere.t in the form of
a simple mathematical FORTRAN statement one or two
lines lonl' To use the programming system for his
Q~n epeeittc p~ob~em the user n,~d eh,ng' only this
statement 10 that it rcprlsentl the function he
wilhe. di.played, All calculatians are carried out
i~ the FOR.TRAN pOftion af the system. Uae 11 mlde
of .11 FORTRAN fe,ture" 8uch II comput.tion in
floating·point mede, accessibility to the library of
function., Ind ule of the input/output routine. of
FOR.TRAN.

For the display af the function eaeh function
value ta be ~hawn mu~t be ~pecif1ed in terms gf its
x,y eogrdin.te~. theMe values are eamputed J scaled,
converted ta integer farm, translated sa thlt all
values are appropriate positive values, and
Btored in arrays, Upon completion of these calm
culatians , program control transfers to the binary
portion af this system, whese prinCipal function is
to aeeeBS the data stared in arrays. Individual
x,y coordinate paints are transferred from the array
ta the x Ind y registers of the display control.
The rate at which the di~play 1s processed by the
binlry prasram is rapid enoush lo-that I stable,
flicker-free, display is pre.ent on I conventional
oscilloscope.

FORTRAN PROGRAM DETAILS

When the user initlally enters the program hd
is asked to type in the range he desires- for the
independent variable. Trial values af the function
are computed to estimate maximum and minimum values
af the dependent variable. The rana' of both vari
ables, and the Ic.lel of bath the x and y axes, in
units per scale division, are then typed out so the
user has a permanent record of this. Detailed cal
culation of array valuel then praceeds, and when
completed, the funetian display is presented on the
oscilloscope.

Havins inspected the display the user can re
specify a new range for either v.riable by typing
CTRL P on the teletype. He is then required to
specify whether-he wishes to change the range on x
or y. If he specifies a new range en x the scaling
of y proeeed~ ss befo~e. How~ver he may re-specify
the range on y, IS far example to get a convenient
scale factor, and thus he re-speetfies the range of
y for the previously establt.hed ranse of x. No
attempt ia made when scaling y for a specified x to
h,ve the y scale factor adjusted to standard values.
Thus the uaer will usually need ta re-specify y

107 after initial examination of the function to get a

good scale factor for the y axis.

In order that meaningful results be obtained
from the display, scale markings are computed in the
FORTRAN program using scaling data as derived from
the program, and these marks are displayed along
with the function itself.

BINARY PROGRAM DETAILS

The binary program, assembled using PAL, is
loaded at object time by the FORTRAN object system
loader. The FORTRAN object system will properly
load this binary program, but will give a check sum
error, since the check sum is calculated differently
in FORTRAN than in PAL. The essential point is that
the FORTRAN operating system loader will recognize
the location counter setting feature of PAL (e.g.
*7400), and load the binary program into the
specified locations.

When loading this system for use the binary
program is loaded before the FORTRAN object program~
Execution of the FORTRAN program can then begin im
mediatetly upon loading of the FORTRAN object pro
gram.

When first loaded the binary program occupies
part of the FORTRAN working area, specifically the
last page, locations 7400-7546. At the beginning
of the FORTRAN program a short binary routine loaded
into location 7367 is transferred to.· This routine
relocates the main binary program to occupy lo
cations 7600-7764. Thus all of FORTRAN working area
is available and used for data storage, and all
FORTRAN features remain intact.

Operation of this dual system of FORTRAN and
binary programs is possible because of the "simple
minded" way in which the FORTRAN compiler assigns
variable name locations. It starts from location
7577 and works down in storage, allocating locations
in the order in which variable names appear in the
FORTRAN PROGRAM. By using a standard DIMENSION
statement at the beginning of the FORTRAN program
the programmer can be certain of the exact location
of the data associated with each variable in the
program, including the initial address of data
arrays. This information is obtained from the
Symbolprint program following FORTRAN compilation.

The binary program uses the addresses of the
FORTRAN arrays through indirect address link-ups.
Once FORTRAN has computed and stored its data in
arrays, the binary program is entered. The x and y
toordin~·tes of each point are transferred to the x
and y registers of the 34D display control" and dis
played on the oscilloscope. The address of the next
pair of points is obtained by use of the ISZ
instruction to increment the current addresses. A
separate counter is used to note the end of the data
array. Upon reaching the end of the array the
statuscl the teletype is checked. If no message is
waiting, the data array addresses are re-initialized,
and th~ program lobps on the data again. Ifan
appropriate message is in the teletype buffer con
trol is transferred back to the FORTRAN program
where the user may re-specify variable ranges as
described earlier.

CONCLUSION

By judicious programming using both FORTRAN
and PAL displays of mathematical functions are
readily accomplished. There is adequate data

108

storage to obtain displays with good detail. User
oriented features allow for readily programming
functions of interest, and for specifying ranges of
interest for the display. The display is scaled,
and accurate values easily read off the display.

-D.$" 0

109

.,

'"M "" "'wo I,,.,, W,.\II"

'.,111. fJvNC."." ,.,. Ji

.Ttl-)·'- ~'Il' 4- .~'.z/' ·~~'II&

~ ""'''t:/ I
- ~"'.rl&

I.'
tr
.,

'" ,,.~ '(-)
~' • ", '" ,. + ..

-.,
!f •• ' '" IK> .., (I"") • .11 tV,' II) H,,,,r,,)
-.fI .. p) '" 6.'1,tt) 7

'J·X·~! "X/f! .~/ "'~X.'
"0

9~t .. A §I~~tAY 'IO@iAMMiN@ LAN@yAGE

J@fff@Y M, KUli@k
Meer@ 9@Reel ef il@@tri@al in~in@@rin~

University ef '@nnsYlvaHia
'Rila@@l~Ria; p@nnsyivania i9104

9Pt aliew§ th@ @@finitien ef siffi~i@ data §efUetUf@s sueh as
~eiHes an@ li~es"an~ t~@ @@finitien ef arBitfafily eeffi~ie~
~tru@tur@s eall@8 ~is~laY~feu~s, A elass ef s@t e~@faeef§
{lfii A @ Dfi •••) all6Ws ER@ Us@f Ee §@l@@tiv@iy tfav@fs@ a
data s~f~etuf@~ ~~.~aft ef e~~ ~~finieienal lan~Ua~@; a
€effi~UEaUenai faeHiEY U aVaUaTH@ wRi@R aHew§ th@ d@f!:
nitien ef §tfu@tUf@s al~efiehffiieallYI

D~t @~@faE@s iH twe ffie@@Sa fh@ fifsE; an iHt@faetiv@ ffieg@~
~llew§ tR@ Us@f te @e~ift@; @i§~layj ang ffieaify sefUeeUfes
ffeffi a fel@ty~e eensele, Th@ s@eeng ffiea@; knewn as seef@a
~fe~faffi; allew§ eh@ Us@f tie @@fift@ a s@~U@n@@ ef DPL @arn=
ffiinas aH@ th@H @~@eUE@ th@ffi as a pfe~faffi. D@@lslen and
f~@UfSiv@ eall stae@ffienes af@ available W~@ft ep@faEifi~ In
th@ seef@@ pfegfaffi ffieg@I

BACKGROUND

This research on a Display Programming Language
(DPL) , is the outgrowth of two areas of interest
of the author. The first stems from his work in
developing a generalized data structure for graph
ics*. The basic structure developed assigns many
attributes to each structure, only one of which is
a display attribute. DPL is an extension of the
set of primitives developed for the specification
of the display attribute.

The second area of interest was studying the ef
fective organization of 2 processors in a graph
ics problem-solving environment. One of the
first problems encountered was the "division of
labor" between the two types of processors avail
able, a large scale computer, and a small display
computer. We represent pictorially these proces
sors as follows:

Large

Computer
Display
Computer

8<~
Transmission
from processor A
to processor B

MACHINE ORGANIZATION

One possible organization of these processors
would be to have a high speed link between the
two machines. The large computer would process
all requests for each service from the user (in
terrupts, etc.). Each time a change was to be
made, a completely new display file would be sent
over to the display computer. The display com
puter would send the large computer requests for
processing, in the form of cues and nothing else.

*A Generative Grammar and Data Structure for Com
puter Display of Chemical Graphs. August 1968.

111

Large
Computer

Display
Computer

There are two defects in.this type of organization.
First, to ensure reasonable response time to the
user of the graphics system, the channel connecting
the two computers must be very fast. The usually
available transmission lines of 2000-2400 bits per
second would be much too slow for this type of
operation. If one used a high capacity line, then
the costs would be much greater. In addition, the
number of possible users would also be much lower
since each would need his own private line, as
opposed to the 2000 bit/second lines which are
dial-up, and generally available.

Another defect in this design class, is that it re
quires a "relatively" dedicated computer. All
service requests from the user require servicing by
the large computer, and an environment would have
to be established that allows fast access. For in
stance, no swapping of a graphics task would be
possible in a multiple task system.

We therefore come to the conclusion that the proces
sing task must be shared between the small and large
computers, and that the small computer must be able

to perform some of the processing functions that
the user might want. To do this, the display com
puter must have some form of data base in it,
representing the displayed structure.

DATA BASES

There are two possible organizations for data
bases in this multi-processor environment. The
first is to send to the small computer a chunk of
the data base that exists in the large computer.
In particular the chunk that represents the struc
ture to be displayed would be sent to the display
computer. When the display computer makes changes
in this data base, they must be sent to the large
computer, to enable it to make the appropriate
changes in its data base. What we have done is to
reduce somewhat the need for channel communication
and reduce greatly the demands placed on the large
computer for processing service requests.

Another possible organization is to have complete
ly different data bases in the display computer
and in the large computer. To describe its data
base to the display computer, the large computer
encodes the data base up in an intermediate lan
guage, which is sent to the display computer.
Likewise, the display computer sends records of
changes to its data base by the user, in an inter
mediate language. It was this approach that was
chosen, and DPL is a language to encode the large
computers data base for transmission to the dis
play computer.

LANGUAGE CRITERIA

A set of criteria was established that the display
language was to meet. Following is a list of
these criteria:

Console Operation

The language was to be so constructed that the
user could write programs in the language, at the
console of the display computer, and each state
ment was to be meaningfqJ. In other words, ,the'
interpreter for the display language would have
to have an incremental mode of operation.

Stored Program Control

The language was to be ,such that sequences of in
structions in the language could be executed under
some form of loop control. In addition to having
immediately interpreted instructions (console
operation) other instructions could be used in a
stored program computer mode.,

Basis on DEC-338

There was to be a certainamol,lnt of hardware de
pendence, but this was to be kept to a minimum.
The basic assumption was that the dis1i1ay'screerf.
had an (x,y) addressable, sc,ieen:. "

338 Hardware Feature's Available

Certain 338 hardware features were to be made
available to the user in a generalizedform':i.f
possible. These were to include at least, the
ability to use the pushbrtttons, the blink feature

'and the light pen of the 338 syste~~

Basic Primitives in Definitinal Mode

There was to be a small set of basic primitive,
with which the user was to be able to define basic
elements. These were to include at least text,
points, lines.

Constructable Higher Level Structures

Given any set of the basic primitives, one must be
allowed to group these together under a common name.
From then on, the name could be used instead of the
list of primitives. At the user's option, the de
fined structure should be relocatable and hence,
usable asa subroutine anywhere on the screen. This
feature was to be available at any level of defini
tion.

Computation

There was to be some amount of computational ability
available, at least at the level of definition (i.e.
12 bit arithmetic). More powerful arithmetic was to
be available from the higher level processor.

Logical Operations

There was to be a number of logical operations,
transfer of control, etc., to allow non-sequential
execution of stored progri:lms. The decisions were
to be based on both user generated and computed
conditions.

Light Pen Sensitive Structures

It should be possible to make structures light pen
sensitive. The user should be able to specify
where (what processor) to transfer to under the
condition of a light pen "hit".

Structure Manipulation

For any structure that was defined, the user should
have the ability to search down the structure. He
should be able to look for a particular element and
select it if he desires. He should be able to de
signate them as selected or distinguished elements
and operate on them.

Generated Symbols

There should be a, process available to: allow the
user to generate names~ of o,bjeccts and ;use tqe.,
genera ted names. The user s,hould have' acces s to
the na~es ?s easily' as, .. g?mes ,generated explicitly
by program statements.'

Input Output

There should be an input/output facility for the
language to allow communication in the following
directions:

LARGg,COMl'V'mR ~" DISPLAY COMPUTER

LARGE GoMPuTER'---?' n!SPLAY USER

DISPJAY, COMPUTER .~' .. LARGE' COMPUTER

OISPIAY COMPUTER ~'DISP'LAY USER

DISPLAY USER

DISPLAY USER

-> DISPlAY, COMPUTER

~ LARGE, COMPUTER

SPECIFICATION OF THE LANGUAGE

Modes of Operation

In the current version of DPL, there are two modes
of operation, reactive typewriter and stored pro
gram.

Modes of Operation

/
Reactive

A: Point (0000, 0000)
Stored Program

·Instruction
·/And, Instruction

In the reactive typewriter mode, as each instruc
tion is read in from the teletypewriter, it is
decoded and executed. If the instruction is
preceded by

(a)

(b) • /NAME,

then the instruction is stored away for later
execution. If the instruction is preceded by
(b) above, then NAME is the name of that instruc
tion. Transfer of control instructions (defined
later) transfer to named statements.

STATEMENT TYPES

DEFINITIONAL
primitive
recursive

LOGICAL
transfer of control
logical test

GENERATED SYMBOLS

ARITHMETIC
Algebraic
Logical

COMMAND

STRUCTURE SEARCH

INPUT/OUTPUT

There are seven basic statement types in DPL, and
each is broken down into one or more sub classes.
Each will be explained below. Most of the state
ments have the following form:

NAME:OPERATION<MODIFIER>(OPERANDs)

However, only certain statements have all of the
above options.

Varbles and Names

In the definitions below, we will use the follow
ing terms:

TERM

NAME 1 POINTNAME
DISPLAYGROUPNAME .

VARBLE

INTERPRETATION

Any. str~ng, 1-5 characters

A varble is an expression
which evaluates to a octal
value of x,suth that,

113

a :::; x :::; 7777

There are a number of dif
ferent VARBLES, and they
will be discussed below in
VARBLES PART II and PART III.
The first type of VARBLE is
the constant.

NNNN

where

Definitional Statements - Primitive

POINTNAME:POINT(VARBLEl,VARBLE2)

This defines a point on the screen with name
POINTNAME at (x,y) coordinates (VARBLEl,VARBLE2)

LlNENAME:LlNE(POINTNAMEl,P01NTNAME2)

This defines a line between the points
POINTNAMEI and POINTNAME2 and the name of the line
is LINENAME.

NAME:DISPLAYGROUP(LlNENAME,DISPLAYG~OUPNAME •••)

This defines the set of objects in the operand
field named NAME. Any number of items may appear
in the operand field.

TEXTNAME:TEXT(any ASCII text)

This defines the text string in ~he operand field
assigning the name TEXTNAME.

CONSTANTNAME:CONSTANT(VARBLE)

This defines the structure with name CONSTANTNAME,
to have the value of VARBLE and class constant which
can be used in arithmetic operations described be
low.

Definitional Statements - Recursive

NAMEA:DISPLAYGROUP(NAMEA, ••••)

This redefines displaygroup NAMEA so that the new
elements specified in (NAMEA, ••••) will be added to
the elements in the displaygroup. The name of the
displaygroup can appear anywhere in the operand list
and as many times as desired. If the displaygroup
was originally a relocatable subroutine, then
multiple occurrences of that name may result in
relocated pictures for each occurrence.

LAB:LlNE <RELATIVE> (A,B) FIGURE DEFINED

LBC:LlNE <RELATlv&~ (B,C)

LCA:LlNE <RELATIVE> (G,A)

LAC:LlNE <RELATIVE> (A,C)

TRI:DISPLAYGROUP (LAB ,LAC ,LBC,LCA,LAC) L1
TRI:DISPLAYGROUP(TRI,TRI)

TRI:DISPLAYGROUP(TRI,LAC,TRI) M /1/1
Modifiers to Definitional Statements

A modifier to a definitional statement appears in
the form:

This will result 1n the defined strY~tute blinking
at a rate gf 2 times a seeond, wben diepla¥ed.

Thi~ will r~sYlt 1n the defined sttYttYfe appearing
at ifitensity 0 whefi it is displayed.

Th~ ~ynta~tiQ effeet gf ~h!e statement is ttl femtlve
all beam poeltionifi~ information tr~ the operands
itl detining the new stru~ttire. The semantit
results are that the new sttuttufe eonslsts of
displacement ve~tgrSj father than lines between
fixed points,

For example:

B :POINr (0100,0100)

LAB:LINE(A,B)

LABR:LINE< RELATIVE> (A,B)

FIGURE CONSTRUCTED

LAB

/
(0000,0000)

LABR /
DISPLAY OF LAB FOLLOWED

/
(0000,0000)

DISPLAY OF LAB FOLLOWED

(0100,0100)

(~X 100

l::r.y 100)

BY LAB

(0100,0100)

BY LABR

LABR (0200,0200)

/
LAB (0000,0000)

ARITHMETIC STATEMENTS

NAME:PLUS(VARBLEl,VARBLE2)

This assigns to name NAME the class constant, and
assigns to it the value VARBLEl+VARBLE2

NAME:MINUS(A,B)

This assigns to name NAME the class constant and
assigns k to it the value VARBLEl-VARBLE2

NAME :TIMES (A,B)

This assigns to name NAME the class constant, and
the value VARBLEl*VARBLE2

NAME : DIVIDE (A, B)

114

ThiS aBBlf!jtHi to name N~fhE! ti laes tH3nStanf an~
assigns to it the value VAiltEl!VAlltE2

NAMEIANDeVAIltEl,VARltE2)

This aeei~ns to ftame NAME the slass esftstafiE afid
ass1f!jft§ to H the value VARltE 1 "VARltE~

NAME:OR(VARBtEl,VARBtEa)

This assigns to name NAME the Elass eOfistaftt and
the value VARILE 1 V VARDt:ll! 2

This insttuetion slears the screen of all previous
contents, ~ener~t~s and exe@utes the display file
asso~iated with the items in the ~petand field.

:AP~ND <NAME J' i j>

This operates like the EXECUTE G~and ~b~vej but
does n~t cleat the s@re@n bef~re di§playin~ the
speCified operands. This is used for ~ddin~ to
the contefits of the screen.

In both of these instructions, one may apply the
modifiers as indicated in the section on modifiers
applicable to definitional statements. For
example:

:EXECUTE< BLINK> (NAME, •••)

Logical Statements

(a) TRANSFER OF CONTROL STATEMENTS

:GOTO(PROGRAMNAME)

This transfer control unconditionally to program
statement PROGRAMNAME. It does not save the
current program location.

: CALL (PROGRAMNAME)

This transfers control to program statement
PROGRAMNAME. It pushes down the current program
location.

: RETURN

This pops up the address of the last call encoun~
tered and returns control to it, plus 1 statement.
Upon executing a top level RETURN, control returns
to the te Ie type.

(b) LOGICAL TESTS

:IF(VARBLEl.EQ.VARBLE2)Sl

If the value of VARBLEI equals the value of
VARBLE 2 , then statement Sl is executed, else 81 is
skipped, 81 can be any legal DPL statement.

:IF (VARBLE 1.LT.VARBLE2)

If the value of VARBLEI is less than that of
VARBLE2 then statement Sl is executed, else Sl is
skipped.

: IF (VARBLEI.GT.VARBLE2)Sl

If the valUe ef VARBLEl i§ 8fea~er fRan €Hat af
VARBtE~ tReft §€a~effi@ft~ 81 i§ @R@eytee, el§@ 91 is
§ki~~eg,

\iAAfiLs f3 }'af f li

1ft a@@i~ieft te the erigifiaiiJ @@fifieg ~arEle,
eetal eeft§€aft€§, we Ra~@ a@@i€iefial varBl@§ tRat
eerre§~efi@ €6 tRe vafieu§ §J§~@ffi elemefit§: TR@se
are giveft 13elewi

~Xg~!P§iNfN~ TR@ K eeergifiate ef paifit
P@iN'fNMm

~Y~~iP@iNfN~ Th@ Y eaer@lfia€e af paint
P@iNTNMm

~FBifi> The eefi@i~ian sf pUsR=Bu€€erl n

Example

=1 if eft

=@ if eff

The following classes are
already defined:

1 = POINT

2 = LINE

3 = DISPLAYGROUP

4 = STORED PROGRAM

5 = GENERATED SYMBOL

6 = GENERATED SYMBOL

7 = CONSTANT

10 = TEXT

11 = PUSHDOWN

400 = BLINKED STRUCTURE

1000 = RELATIVE STRUCTURE

2000 = UNINTENSIFIED STRUCTURE

:IF(<PB:n >.EQ.OOOl) : GOTO (PROG) (executed if
PBn is on)

NAME:PLUS(<XCPT:A >, <YCPT:A » (sets NAME to
be A + A)

x Y

:IF(<CLCPT:A >.EQ.0002)Sl (executed if A is a
line)

Micro Definitional Instructions

To correspond to the above variables, we have in
structions that allow one to selectively access
the X and Y component of a point and the class
component of a structure:

NAME:XSET(VARBLE)

115

THe i eampafi@fit sf peint NAME i§ set €e tR@ valUe
af VMBLE

Th@ Y eeffipefiefi€ af ~eifit NAME is set €e the value
ef VARB!JE:

NAME:e§ET(vARBBE}

THe eLA§§ eempen@fi~ af §trHEtufe NAME is §@t te tHe
vallie af VARBLE:

TRere is availaBle ~e the us@r ene Basi€ ~fimi€iv@
fef fraE~ing §uEH ~Raf tH@ u§@f ~ill fiaf flav@
ta ~rae@§§ tR@ ligfif ~@fi aetivi€y Riffi§@if: IRi§
preee§s i§ eall@@ 13y a §tatemefit ef tR@ fellewifig
ferm!

(b) The user can track the square with the
light pen to the desired position.

(c) Finally, when the user has finished track
ing, he touches the target (+) with the
pen to end the tracking sequence.

(d) The coordinates of the upper left corner
of the box are assigned as the coordi
nates of point NAME.

Alternative ly

NAME : POINT (<CTRAC »

wi 11 operate as <TRACK >does except that the
tracking square is not repositioned to the lower
left hand corner before commencing tracking. This
feature is useful for generating continuous figures.

Generated Symbols

A facility for generating names of symbols is avail
able to the user. It is called by the folloWing
statement:

NAME: SYMBOLGEN

This assigns to NAME, the name of the generated
symbol. All future uses of NAME are equivalent to
using the generated symbol. One can have any
number of names representing generated symbols,
and the same symbols can be used over again to
represent a new generated symbol.

Example • IPI ,A: SYMBOLGEN
.A:POINT(<TRACK»
• B : SYMBOLGEN
• B : POINT (<.: CTRAC>
• C : SYMBOLGE N
.C:LINE(A,B)
.D:DISPLAYGROUP(D,C)

• :EXECUTE (D)
• :GOTO(Pl)

This program will read in two points, from the light
pen and assign them to generated symbols A and B.
Then it will define a line in terms of A and B
called C, also a generated symbol. Finally it
appends to the current definition of D, the new
line C, and displays it. If we had not used gen
erated symbol features, we could only define one
line, display it, and re-define it.

Structure Search

With the ease of generating symbols that is avail
able with the symbolgen feature, a handle is needed
on all of the generated symbols. In addition to
this, we also want a generalized process that will
enable to search a structure selectively, for a
particular. element. For this purpose, the follow
ing instructions have been defined:

:PUSHDOWN(NAME, •••)

This defines structure NAME to be of class pushdown.
That is, when a definition is put into it, the
previous definition is saved and the new one is
added to the top. Redefinition of other structures
in general, results in the loss of the previous
definition. The above statement is used in con
junction with the following statement:

:LET(NAME l)BE (NAME 2)

This pushes down onto NAMEI the definition of
NAME2. If NAMEI is empty, then this definition is
the only definition ofNAME2. If NAMEI already
stood for something then the previous definition is
pushed down and the new one added to the top.

:FOR(NAMEl)E (NAME2)DO(NAME3)

This allows NAMEI to index over the elements of
structure NAME2. The element that is used is
changed (indexed further up in the structure) each
time NAME3 is encountered until NAME2 is emptied.

For example, we want to select out of structure Z,
all the lines that it consists of and group them
under displaygroup LINES. If there is a display
group in Z we want to further index down this
displaygroup so that LINES will have in it all the
lines that compose the structure.

:PUSHDOWN (B)
:LET (B)BE (Z)
./Pl,:FOR(C) E (B)DO(P2)
• :IF(<CLCPT:C >.EQ.002) :GOTO(lINE)
• :LET (B)BE (C)
• :GOTO(P2)
./LlNE,LlNE:DISPLAYGROUP(LIN]S,C)
. /P2 ..•

Text VarHl.bles

It is desirab Ie to display as a-result of computa
tion some variab les such .as number, text strings,
etc. To do this, the following variab les may
appear in text strings only:

<OCTAL: NAME> The ASCII equivalent of the
variable NAME, converted into an

116

octal number. The value of X when
the statement is defined is used.

< TEXT: NAME > The ASCII string denoted by the
structure NAME is inserted into
the text string.

<C/R> Returns the beam to the beginning
of this line but displaced one line
lower than the original line.

Input Output Varbles Part III

To allow the user to enter information from the
teletype the following VARBLES are also available:

<READ : TEXT>

<READ:OCTAL>
<READ : DECIMAL>

A text string is read in from the
teletypewriter assigned as the
value of this VARBLE up to the
input C/R.

Reads in a 4 digit number and
converts it into a 12 bit binary
number according to the speci
fied conversion.

Light Pen Sensitive Structures

It is desirable to allow the user to denote cer
tain structures as being light pen sensitive and if
the light pen ever touches them when displayed, to
transfer to a special routine. This is done by the
appropriate trap time program at the time the light
pen hit occurs.

:TRAP« LPHIT:NAMEl» (NAME2)

This will trap to processor NAME2 if the light
pen ever touches the structure NAME 1. NAMEI can be
of class line, text, or displaygroup.

: INHIBIT « LPHIT : NAME 1>)

This will inhibit interrupts on this structure so
that it will become light pen insensitive.

: ENABLE

This will enable all traps that are currently defin
ed to be enabled again. When a light pen hit
occurs, all traps will be disabled until this in
struction is executed, to prevent continuous trap~
ping on one condition.

<LPEN>

This is a VARBLE that will represent the name of
the object that caused the light pen hit if a trap
occurs because of light pert hits .

NOTE: During the processing of these traps the old
address of the program is saved and can be returned
to by executing. the RETURN operation.

EVALUATION AND' CONCLUSION

DPL was originally designed to serve as a descrip
tion language for a higher level data structure.
It was intended that the display attribute of the
structures would be specified in a DPL like lan
guage. DPL was extended in a number ~f ways over
and above this primitive definitional level. This

was to give the user an effective way of using the
display computer without necessarily having the
support of a large scale computer system.

It is easy to define structures that look like the
above. However, the DPL data base would allow
connectivity at only two points, the beginning

Toward these aims DPL was a very successful effort.
Because of the facilities of the language even
relatively sophisticated prDblemsare easily
handled in a small number of statements. One can
easily, and in a few minutes, construct both use
ful programs and interesting graphical structures.

and the end of the structure, and hence, this
structure would not truly be represented.by the
data base. It appears thataml,lch more compli
cated data base is really neede.d for,powerful
graphics. We would for instance iike to say that
this is a PNP transistor, of type... The base
is connected to terminal Al or circuit K3, etc.

On the other hand, experience with DPL has shown
its inadequacies for forming the basis of a really
power graphic system. Because of the lack of
ability to establish relationships between data
elements the structure constructed, 'while graphic
ally complex, have simple data bases. Hence the
DPL data base does not really reflect the structure
involved.

DPL is a useful tool to those who are able to
accept the limited data base upon which it builds
its structures. It will allow its users from the
teletype to define, display and redefine graphical
structures. Towards this end DPL is a useful tool
to the user of a display computer.

For example:

Johnson, Timothy E ~ "Sketchpad III -Experimental Graphical Connnunication
with a Digital Computer," ESL Labs. Department of Electrical
Engineering, Massachusetts Institute of Technology, Ma,y' 1963,
AD1f: 406-855.

Lang, C. A., Polansey, R. B., Ross, D. T. "Some Experiments with an
Algorithmic Graphical Language," ESL Lab., Department of
Electrical Engineering, Massachusetts Institute of Technology,
August, 1965~

Lindsay, R. K. Pratt, T. W ~, Shaves, K. M. "An Experimental Syntax
Directed Data Structure Language, Rand Corp., April 1965,
AD1f: 614782.

Mann, W. C. "Language Facilities for Man, Machine, and Relational Data,"
Office of Naval Research, Information Systems Branch RPT #1062,
April 1967, ~F 651-973.

Ross, D. T. "Notes for Lectures on Graphical Connnunication", ESL Lab.
Department of Electrical Engineering, Massachusetts Institute
of Technology, June 1965.

Sutherland, I. E. "Sketchpad - A Man Machine Graphical Connnunitation
System", Massachusetts Institute of Technology, June 1963
~f:404-549.

Suth~rland, W. R. "On-Line Graphical Specification of Computer Pro'ceduxe:s",
Lincoln Lab., Massachusetts Institute of Technology; 'Group 23,
Report 405, May 1966, ~f: 639-734.

Wessler, Barry. "TRAC D", Masters Thesis, Department of Electrical
Engineering, Massachusetts Institute of Technology, May 1967.,

117

§fIUJafYfiE 6EFINlfl@N

iiiaiill¥.!
~AM~:f3SjHft8S8SiS888j
NAMe:bIHel f3SINfNAMe1f38iNfNAMel
NAME:BI§f3~A~G,,8~f3iNAME ;;;j
tltAMeiTeffLI
~AM~:e8R§fAHfteeSsj

.m1if..ilU
~AMeA: BI§f3bAraFl8~f3iNAMell;:; I

AbBEEHiAie

iH~btl§{t1lel
iH~IN~§iAleJ
AifIMe§I§lel
AieiVIBel81eJ
baiiesl

;\:ANaI8 j €1
IH3R ISlel

LOGICAL

Transfer of Control

:GOTO(NAMEl
:CAL.L.(NAMEl
:RETURN

L.ooicai Test

:IF(A.L.T.BlSI

=IF(A.GT.BlSI
:IF(A.EQ.BlSI

NAME GENERATION

A:SYMBOLGEN

COMMAND

:EXECUTE(NAME I,NAME2 ... l
: APPEND(NAME, ... l
:DEL.ETE

Figure 2

MICRO DEFINITIONAL

A:XSET(Bl
A:YSET(B)
A:CSET(Bl

Defined Classes

1- POINT

2- L.INE
3- DISPL.AYGROUP
4-PROGRAM
5-GENERATED SYMBOL.

S-GENERATED SYMBOL.
7-CONSTANT
10-TEXT

II-PUSHDOWN

400- BL.lNKED STRUCTURE

1000- REL.ATlVE, STRUCTURE

2000- UNINTENSIFIED STRUCTURE

Figure 3 118

if3~§j:jB8WNINAMEj

q~.E..fiNAM~J ~iNAMEI

:FSIHNAMehiNAMel Be H~AMEj

blBFlf f'EN

: fRAp i€ bf3j:jiT: NAMEI~1 H~AM E 21

: INRi § if!<ibpA iT: NAMEi~1

ieHA8be

~bI3EN~
e8nfSiAi NSffil 8f iff~EhJfi ~if BY lii~f PIR
8ilFiAi Ealf jAf'FFil~f

<BLINK> <UNINTENSIFY>

BLINK-- BL.INKS PICTURE

UNINTENSIFY-- DISPLAYS PICTURE AT 0 INTENSITY
RELATIVE--ALLOWS DEFINITION OF SUBROUTINES

NAME: DISPLAYGROUP<BLINK>(..)
NAM E: DIS PL.AYGROUP<RELATlVE">{ ... l
NAME: DISPLAYGROUP<UNINTENSIFY>(... l

Figure 5

SPECIAL VARIABLES

SYMBOL

<PB:N)

<XCPT:A)
<YCPT:A)
<CL.CPT)

<OCTAL:NAME) I
<DECIMAL:NAME)
<TEXT:NAME>

<CR)

<READ:TEXT) 1
<READ: OCTAL.>
<READ: DECIMAL.)

VALUE

{ -0 if push button N off

1 • I if push button N on

X,Y,and CL.ASS components of
a structure. X and Yare defined
for points only

Used in TEXT instructions to

encode computed variables into
text strinos

j In tut strino, positions beam to
t beoinnino of new line

Reads in from console Teletype,
the appropriate value

Figure 6

!~~ ¥A§~A§ §¥.§!~~ ~ !~M~ ~~vI§Ig~
MQ~!!~~~~~~@ AN~ !~~ ~~~~§

9: ~: ffi@!H~
g@~§Y!~§fl~~ ~@~@~@ ~FB~~§§i~g . §~g ,

fl§y! J: ~@l!
§@fl§Y!e§~e~ ~y§~@~ ~~§igfl

Qfl!V@f§!;¥ g@m~Y;!~~ §@~B§fl¥
~§!!e§~ !@~e§

ASS T1U,ST

gefeWef@ m@e!f!Eee!@fl§ eR@ §@feWef@ e@EflR!SY@§ ¥@F eR@
@ffiE!@Re He!!i~ee!@fl @f efl~ e§§ ~e;e 8@mmgfliEe;i@R§
§y§;@m §§ § i@W=§B@§e=i!n@ ~Y!~!Bi§~@f f@f efl§ Yfli=
V@F§!~¥ §@~~Y~ifl~-§@m~§fl¥'§ ~A§~A§ ~§ffi@;§ AEE§§§ §¥§~§ffi
§f§ e§§Ef!~@e:

fAeB~~A~VNIVERSIT¥ 55MBUTIN6 eSMBAN¥

~n@ fA§~A§ §f§e§m §@!R~ @§v@!@~@e W!ehifl
~fl§ ~@efln!ee! §§fV!E§§ ~!Vi§!@fl @f
Yn!V§f§!e, §@m~Y;!n~ §Bm~§n, !§ e E@m=
~Y~ifi~ §,§E@ffi Wn!Efl ~!V@§ eR§ EY§eBffi§f§ @f
Y'§'§I §!ffiYitgn§@Y§~ f§m@e§ gEE@§§ ;@ En§
YNIVA§ ll§§ @9Y!Bffi§fle §; @Yf ~§e§ 8§n;§f§
vie ~§¥~@efe ~@Y!e§§:

~@eflniEgl §@fV!e@§ ~!v!§!@n ne§ eW@ Bf!n=
giPel ~Y§!R@§§§§! ~fl~Y §f@! -

1, e e@~BYE!flg §§fV!E@ §Yf§§Y §Y§!fi@§§
Y§!n~ YNIVA§ lI§§ @ijY!~m@Rt! eRe

~, e §@fiEfe~E Bf@gfemm!fig BB§fee!Bfi wh'@~
~f@@Y@@§ ~f@~fi@;efY §@ftwe!@ fYfifi!R~ @fi
~fl@ 11§§ efi@ eVe!le~l§ E@ @Yf EY§E@m§f§!
Tn@ @@fiEfe@t ~f@~femm'fi~ @~§fe;'@n e!§@
Wf!~@§ ~f@~fem§ f@f @ifl§! ;,~§§ @f §~Y'~=
m@Rgl ~Yi in§ ~f!fi@!pel §m~Re§!§ !§ @fi
iR@ @@v@l@~m@ne @f ~!@~f'§EefY e~~l!@e~!@n
~f@~fem§ f@f tn@ VN%VA§ ll§§,

TR@ f§V@RY@ ~§fi§feE@e §, e 1§f~§=§@e1@
@@mpY~~fi~ §,§e§m !§ ~@f§ ~f ~~§~ e @y~@=
tt@fi @¥ th@ nYm~@f @f ~@@~l@ wh@ @§§@§§
tfl@ @qY!~m@fit !R ~ ~!V@fi ~@!!@@ @f t!ffi@!
Tnt§ i§ th§ @e@fi@ffiig f@Yfi§e;!@fi @f tR@
~Yff@Rt i@fi~fgti@fi @f mYl~!:~f@iF~mm!Ri'
my~t!=PF@g@§§@f @9Y!Pffi@fiE! W!~h ~h!§
@qY!pm@fit, m@f@ ItieR-@R§ Y§§f m~, ReV§
egg§~§ ~@ ~~~ m~@h!R@ ~~ ~~@ ~~ffi@· ~n@
fA~iAe ~f@~§gt) tn@fiJ §§@~§ e@ !R~f@e§§
tR@ ~g~e feet@f @fi @Yf @~!§t!~g @@y!gm@nt~
~ft§ t~ Q~v@lgp R@W ~BB~!@~I~~~~ f~f ~h~i
@~Y1pm§n~. - . -

~!BAe . ~l6JE_~_T 6eALS

QYf tftitt~l ~@~1§ ~f@;

1. to pr~vige ~ur ~ys~~m~rs with a ~emote
f!l@ iRqY!fY, yp~~t.@, aR~ ~e~~h jg~ !nit!=
&ti@R ~~p~b!l!t,~ ~R~ -

2. ta pr~v!~@ ~y~ Pf~gf~~~~Rg §t~ff w~th
~ f@m@t@ ~~@§§§ Pf@gf~m @@V@~gPffi@Rt gRg
!h'!HI~ f~@t1.1:;" - - -

§Yf @~B§f!@fl@@ w!th BF@V!SY§ ~!m@~§h§f!~g
§if§~§m§ !R§!§§t@§ ifl~~ th!§ !§tt§f ~F§e .
!§ @fi@ sf f@~!~ ~eif=sffJ §!fiE§ !t h@l~§
f@eYE§ ~f@~fgmm!a.~ t!m@~ eR@ ~fB~feffim!fig
E!m@ !§ e~@Yt th@ ffi@§; @~~@fi§!V@ §!fi~l@
e@mms@!t¥ !fi th@ ~@mBYe@F ~Y§!fl@§§!

~HE FASBA6 S¥S~EM Iti BRIEF (Fig. 1)

~h@ ~A§~A§ §¥§;§m g@Rf!~Yf~i!@fi @@mpf!§@§
Eh@ f~11@w!fi~ §qY!~m@fi;!

1! ~@l§pf!Rt§F @@V'~@§ !R §Y§t@ffi§f§'
gff!§@§, 9f §@ffi§Wfl§f@ _b9Yi tfl@!f §ii@§,
Tfl@§@ &@~@pF!nt@F §§V!E@§ ffi~f ~@ ~@Rfi@~t@@
@!tfl§f @V@f e flef@ W!f§§ g!fEy!t! 9f @V@f
~h@ ~Y@!!E §w!;@H@@ i§;@ph9H§ fi@EW@f~, &9
;R§ §@ffiffiYR!@et!@fi§ mYlt!~~§~@f§t

Th§§§ §@mffiYR!@ei!@fi mYl&!Bl§~@f§ ~f@
~!~,§r ~§§ ~ei§ §@ffimYR!@e~'@fi§ ~'§i@m§!
~~@Yi wn!@H ffi@f@ ~~i§fl Tn@ ffiYlt!pl@~@f§
~f§ @@fifi@§&@§ i9 iH@ fAi~A§ §?§§@m @~@@Y~
t!V@ ~f@§@§§@f, tfl@ §~§t@m @9fitf911@f~ vte
@!~h@F ~fi ffl~@'Bf@~@§§@F ~yff§f @f e g!gfi=
~'@@@ ~§te ~~~@ Ini@ffe~@, m@@@m§~ §Rg ~
V@~~@ ~fe@@ ~f;~Ve~§ W~f@ ~@l@ph@fi@ ~tf~Ytt.

tH@ @~@~Yitv@ Pf@~@§§9F !§ ifi iYfB e@R~
R@§t@@ i@ §R@ YNIVA~ 'A~~~A~~ II ffl§§§

§~@f3~~ e~v!~@ §~~ e@ e~@ V~%VAe 110i
~@~~Y~~f, v!~ ~ ~~~~f~@t.§f;y mYlt.~~;@~~f,

~!R@@ tR@ fYR§~~@R§ ~f iH@ @~§@y~~v@ Pf@~
g@§~@r: h3v@ ~@@~ @gV~f@@ !fi §~~ih@F p~p§¥
(~~~ fA~~A§ ~g~@~g A@§g~§ §y~+gM ~y P§~ w.
~g@~~), W@ w!11 ~Qng@~tr~~@ QR Ih@ @~~
~3!1@@ fY~~t~QR§ !mpl@ffl@Rt@@ tR iR@ §y§~@~
ff@fit @R@, tn@ ~~e P3§~ e@mmYfi!g§~tg~§
B.y§~@m,

THE 680 DATA eOMMUNIGATI§NS
S v. S If EJf] a e-srCFTEr~4

Th@ ~~o ~e~ p@ffa.fms ~h~ f~~l@wi~g fYR~~
1;1p~~ I -

1. IE feg~~v~~ ~a~a ffom §Rd EraRsmits
@§t3 ~Q th~ lQw~~g@§@ (le.~§ t.h§~ lOO
p.~Y4§) ~~l§p~!q~e.l @~V~~@§ C~~R@~t~@ ~Q

the PDP-8 computer via a dataset inter
face, Serial Line Multiplexor, and a
Serial Line Interface.

2. It performs message buffering and 10'·
cal editing.

3. It transmits messages to and receives
messages from the PDP-9 via either an
Interprocessor Buffer or a high-speed Data
Communications Interface.

4. It handles the remote (dial-up) termin
al line discipline, answering and hanging
up the phone checking for disconnected
lines, etc.

5. It handles program and har~ware fault
detection and recovery.

The low-speed data line interface pro~ram
may accommodate mixed speed lines with
varied character lengths and start-stop
configurations. Message buffering is
handled on a "line" basis, where a line
may consist of a fixed number of characters,
or a v~riab1e number of characters, not ex
ceeding some arbitrary number, terminated
by a carriage return or other meta char
acter.

Local editing of the incoming text con
sists of handling character delete and
line delete functions and trapping con··
tinuous BREAK characters.

Remote terminal line discipline includes
the detection of incoming calls) the as
signment of data channels to varied in
coming customers, the monitoring of the
data line condition) and the orderly
termination of calls and initialization
of channels for reuse by the next cus·'
tomer.

Faalt detection and recovery procedures
include examination of the data lines for
faults and initiation of program reload
in th~ case of catastrophic program
failure.

~~TA COMMUNICATIONS SYSTEM DESIGN

CONSIDERATIONS

Some of the considerations which affect
the design of the DCS program include:

1. A high instantaneous memory load,
which may reach 97% of the available
memory time for short periods.

2. A high interrupt rate due to the de
sign of the serial line multiplex unit,
with its attendant short interrupt cycle.

3. A large number of incoming lines,
requiring the service of several lines
at each interrupt.

4. A "hidden" asynchronous memory load
applied by the Interprocessor Buffer,
which operates on the 3-cycle data break.

A simplified algorithm for calculating the

120

average memory load is shown as Figure 3.
This algorithm calculates the memory load
which must be sustained in order not to
lose incoming data. It does not show the
load necessary to do the local editing,
line buffering, and other housekeeping
tasks.

680 DCS LIMITATIONS

There are a number of fairly serious limi
tations inherent in the use of the 680 DCS
as a line multiplexor.
tations are:

Some of these limi-

1. A limited addressing capability, in
cluding the lack of an index register.

2. A small instruction repertoire.

These limitations are inherent in computers
with short word lengths, and the PDP-8 de
sign is perhaps the best possible compro
mise in the use of the available bits be
tween add~essing capability and instruction
repertoire.

SOFTWARE APPROACH (Fig. 4)

The FASBAC 680 DCS program attempts to meet
the functional requirement~ for a multi
line interface by a combination of hardware
and software techniques. The 680 DCS pro
gram is organized on a multi-priority basis
with six modules, each of which ig entered
in order of its priority, and is not exited
until it has nothing further to do. These
six modules are programmed in two groups.

The first group operates with the program
interrupt system disabled in what we will
call "Real Time", and is entered upon the
occurrence of any hardware interrupt.
There are two modules in this group, the
Line Service module, and the Other Inter
rupt Service module.

The Line Service module checks the flags
set by the various clocks in the Serial
Line Multiplex unit. If any of these flags
are set, the appropriate lines are sampled
for input data, complete input characters
are collected and put in an input character
queue, and waiting output data is trans
mitted. The exit from this module is back
to the beginning of the module~ and this
process is repaated until no further clock
flags are found.

The Other Interrupt Service module is then
entered to test for the occurrence of in
terrupts from such devices as the Interpro
cessor Buffer, console teletype keyboard/
printer, etc. Any such interrupts are
serviced by resetting the flag, saving any
volatile data and making an entry in a
table of subroutine calls (which is
normally filled with NOP's). Exit from the
Other Interrupt Service module is made to
the location at which the original inter
rupt occurred.

The second group of modules operates with
the interrupt system enabled in what we

will call "Spare Time".

There are four such modules. The highest
priority is given to the message buffering
of incoming characters queued by the real
time line service module) and to the
furnishing of output characters to this
module. Second priority goes to the exe
cution of tasks set up by the real time
Other Interrupt Service module. Any such
tasks, when they are entered, erase them
selves from the table of subroutine calls
and, when they are completed, exit to the
highest priority spare time module.

After all spare time character input-output
service and spare time interrupt service
is completed, the third spare time module
is entered. This module is a table of
lower priority tasks set up by other,
higher priority tasks. When completed,
these tasks also exit to the spare time
character I/O service module. If no spare
time tasks are waiting, a diagnostic and
fault locating procedure is initiated.

This modular approach increases program
running time and memory space requirements,
because of the many necessary queues and
pointers. However, it does accomplish
the objective of avoiding instantaneous
overloads in the memory load of the pro
cessor (load leveling).

JHE HARDWARE APPROACH

The standard D.E.C. furnished hardware
configuration has been modified by us,
or to our specification, in several re
spects to meet some of the special re
quirements of the FASBAC system. These
modifications are in the areas of:

1. automatic failure recovery

2. dataset control

3. additional machine status displays,
and

4. the addition of an index register.

The program failure recovery subsystem
senses program halts or their logical
equivalent and automatically loads a wired
bootstrap program into PDP-8 memory. This
bootstrap program then reloads the main
program and sets it running.

The dataset control subsystem senses and
controls the condition of Bell System 103
Series datasets, or equivalent. It senses
the Ring and Carrier Status leads from the
dataset, and controls the Data Terminal
Ready and Request to Send leads to the
dataset.

Indexing (Fig. 5) in the PDP-8 is accom
plished by cheating, since all of the 12
bits in the PDP-8 word are already used.
It is not possible to specify explicitly
indexing on memory reference instructions.
Our approach is to use implied indexing.
The register used for the index is the
line select register, which is part of

121

the 685 Serial Line Multiplexor. This
7-bit register is inclusively-ORed with
memory address bits 5-11 if certain other
logical conditions are present. These
conditions are that the index register is
enabled, not inhibited, and that the DEFER
cycle is in progress. The limitations of
this techn~q~e are obvious, but it is
quite adequate for the addressing of the
many tables found in a communications
multiplexor, and quite essential for the
successful operation of this one.

A gate to turn the register on and off is
required, since not all indirect memory
referenc~s need to be indexed, and the
inhibit function is necessary in order to
restore the state of the index register
on/off switch when exiting the interrupt
handler. Suitable instructions are pro
vided to operate these functions.

The machine status display additions con
sist of bringing the 7 bits of the index
register, the two bits of the 689 ADF
group counter, the 689 ADF enable flip
flop, and the index register on/off flip
flop to the lamp positions normally used
for the MQ display.

SOME OBSERVATIONS

It won't be possible to.make a detailed
functional critique of the system in
a few paragraphs, or even ina book.
However, we would like to pass on some of
our more important conclusions concerning

.the use of this equipment and these pro
gramming techniques for the low speed
line multiplexing functions.

The first is that the development effort
put into the improvement of the PDP-8 ad
dressing capabi1~ty, by the addition of
the indexing facility, has been highly
rewarded. The program is much shorter
than it would be otherw~se, with a con
comitant reduction in the number of in
structions executed.

The second conclusion is that, for a pro
gram as large as the FASBAC 680 DCS EXECU
TIVE, a PDP-8 Assembler running on a
larger, faster machine is worth many times
its cost, by reducing turnaround time and
frustration. We developed such a PDP-8
Assembler, running on the UNIVAC 1108, and
we have found it extremely helpful. This
assembler is available as a proprietary
program from University Computing Company.

YNIVA@ 'I@§

§§§ ~g§ ~~RV b@Ml!N§
§AbgYbAf!§N

§l !'! §,ffl ~ :t T~l

f? !!! (§: ~§'l§~§ll ~l N~

b !'! ~§@1 t(§l*§~/II~ !ll~~//IIltRij

W~§B~ :

§l !!! §I'F 'N~Yif §!11!YIH W~EI ~E~/m
fl !'! lNif!1m~'I' mmg ml~, m~YIHN§ TI!,

mtl~Tn"YH
/.I !!! NYMgE~ @f IHmm'f b!Ne T¥m (m!1D§)

T2 !'! TTl mml!!N 'FIMe, m/lNTmY~'f
~~ !!! ~Y/II~e~ !If blNe§ @f T¥II~ ~
§~ !'! ~1'F~T@~gHAI!~€HR A§§eM§b¥ 'FIMEr m/PI'I'
~~ !'! §H Jl4TE8~ mn @f 'I'¥~E ~, "T~/§E@I
RI !!! I~'F~BPB@€m!!1! ~~ff~B TaA~~f~B b@AD

Ct,~ m/m)

'~gYf~ 3 ~ &00 ~e~ K~mQry t@idiftl
Qijl~yl~t~~ll

122

i~g oe~ fUNCiIONAb
~~Qel< r;HAg~AM

'iSYf~ ~ = 680 ~e~ Kyl,i="i@,ity
F'~Sf§m i~b@m§ti@

A REAL-TIME MULTIPLE TASK EXECUTIVE PROGRAM WITH A BUILT-IN
CONSOLE UTILITY PACKAGE FOR PDP-8/s AND PDP-8 COMPUTERS1

C. D. Martin, Jr. R. L. Simpson
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37830

ABSTRACT

An executive routine was developed for the PDP-8/S and PDP-8
computers. This routine schedules process control tasks in
real-time and establishes operating priorities. The program
(including the utility package) occupies about one-third of
a 4096-word memory block and accommodates eight major control
tasks. The only hardware addition to the standard computer
configuration required by the executive is a real-time interrupt.

INTRODUCTION

If a digital computer is to be used effectively for
process control, a means must be provided for sched
uling various programs that the computer is to
execute and for assigning an operational priority to
each program. As an exam~le of the diversity of the
programs, the program having the highest priority in
a system might be one for scanning the analog inputs
to the computer, digitizing them, checking them
against prestored limits, initiating the printout of
messages alerting operators that signals are out of
limits, and storing the digitized values in locations
accessible to other programs. The program having the
next highest priority might be a control algorithm
for examining the digitized analog signals, comparing
them against desired values, and initiating a control
output to minimize the difference. These might be
followed by other programs such as one for printing
periodic logs and one for writing the digitized data
on magnetic tape for further processing by a larger
computer.

Scheduling the execution of the programs, maintain
ing priorities, and coordinating the use of input
output equipment by several programs are accom
plished by a program called a real-time executive.
Various actions within the system are triggered by
hardware interrupts from input-output equipment and
from a real-time clock. A real-time clock gives the
time of day while an internal computer clock syn
chronizes the computer operations.

MEMORY REQ;uIREMENTS AliJD SYSTEM OVERHE:A.D

The real-time executive was developed for the PDP-8
and 8/s computers to schedule the execution of eight
different computer programs, or tasks, at desired
time intervals. Input-output functions are co
ordinated so as to eliminate conflicts between tasks.
The system can be expanded to accommodate more tasks.
An initial limit of eight tasks was selected,
because the computer used for developing the system
had a memory of only 4K words (see memory map, Fig.
1). The executive system now requires about 57~0
or 11008 words of memory, and the on-line--off-line
utility package occupies about 64010 or 12008 words
of memory, leaving the remainder of the memory for
system tasks.

1Research sponsored by the U.S. Atomic Energy
Commission under contract with the Union Carbide
Corporation.

123

The system operates in response to a 60-hertz inter
rupt in the PDP-8 computer and a 10-hertz interrupt
in the PDP-8/s computer. System overhead for the
PDP-8/S computer is about 8%, leaving 92% of the
available time for task execution. The overhead for
the PDP-8 computer is about 3%.

REAL-TIME SCHEDULING

Real time is maintained in the system in two memory
words, the cycles counter and the minute counter.
In response to a clock interrupt, the cycles counter,
which is set initially with the negative number of
cycles per minute, is incremented by one count.
When the count becomes zero, the minute counter,
which is set initially with the negative number of
minutes in a day, is incremented. By use of these
counters the time of day can be calculated for log
purposes. Every minute, iv-hen the cycles counter be
comes zero, the counter is initialized with the
negative number of cycles in a minute. At midnight,
when the minute counter becomes zero, the minute
counter is reset with the negative number of minutes
in a day.

Several tables are used for internal control and
status indication of the system. In every table
each entry corresponds to a given task. The tasks
are numbered 0 to 7 in decreasing order of priority;
that is, task number 0 has the highest priority, and
task number 7 has the lowest priority. All tables
are arranged in this manner to make it easier to
index all tables with a single pointer, which is
called the task count. The task count can be added
to the starting address of any table to form the
address of the table entry for the particular task.
If no task is being executed the task count is 108 .
The tables are as follows:

1. The status table indicates the status of
a task at a particular time.

2. The location table contains the entry
point of each task.

3. The period table contains the negative
number of minutes between consecutive
executions of a task.

4. The offset table controls executions of
tasks to optimize scheduling.

5. The cycles and minutes rundown tables
are counters for the time between
executions of tasks.

6. The printer queue table contains the
address of the first ASCII character
to be printed for each task.

7. The floating-paint-package queue table
is used to store the return address to
the task after the floating point pack
age has been used.

STATUS TABLE

The information bits in each word of the status
table

1.

2.

3·

4.

are as follows:

If bit 0 is a 1, the task has been
actuated for execution.

If bit 1 is a 1, the task is waiting
for the completion of an input-output
function.

If bit 2 is a 1, the task has been
interrupted.

If bit 3 is a 1, the task is waiting
for the floating-point packa~e.

5. If bits 4 through 11 are all a zero,
the task is not scheduled to be actuated
by the clock.

If a task is to be scheduled by the clock, at least
one of these bits must be set at a 1.

A task can be actuated for immediate execution by
setting bit 0 to a 1 by the keyboard utility pack
age or by another task~ The execution of a task
is begun or the execution of a previously inter
rupted task is resumed as a result of a scan of the
status table which is scanned after every clock,
keyboard, and printer interrupt, and after com
pletion of a task. The scan is always started with
the entry corresponding to the highest priority
task (task 0). The first task found whose bit 0 is
a 1 and whose bit 2 is a zero is executed from the
address in the location table. Bit 2 will always
be a 1 if either bit 1 or bit 3 is a 1, but not
vice versa; that is, a task waiting for the com
pletion of an input-output function or the floating
point package must have been interrupted. If bit 2
is a 1 and bit 3 is a zero, the registers are re
stored and execution is resumed from the interrupted
address. If bit 3 is a 1 (waiting for the floating
point package), the floating-paint-package busy
flag is checked; if the package is busy, the task
count is incremented and the next task is checked.
If not busy, the busy flag is set, the registers
are restored, and execution is resumed from the
interrupted address.

OFFSET, MINUTES RUNDOWN, AND CYCLES RUNDOWN TABLES

The offset table indicates the period in negative
number of cycles for a task having a period less
than 1 min.

Every entry in the cycles rundown table is incre
mented every clock cycle to keep the next execution
time current with the clock. When an entry in this
table becomes zero, the corresponding entry for the

124

same task in the minutes rundown table is incremented.
If the corresponding entry too becomes zero, the task
is actuated (bit 0 in the status table is set), and
the minutes rundown table is reset from the corres
ponding entry in the period table. The entry in the
cycles rundown table is reset to the corresponding
entry in the offset table if the period for that
task is less than 1 min, otherwise the entry in the
cycles rundown table is set to the negative number
of cycles per minute.

PRINTER CONTROL

The printer queue table has an entry for each task.
The pointer to the task that is using the printer is
called the printer busy flag, and it is loaded with
the task nlliliber. w~ilen a task calls for a printer
output, the location of the first ASCII character to
be printed is stored in the printer queue table
entry for that task. Once the output for that task
is started, the address is incremented every time a
character is printed, and the contents of the incre
mented address are examined for a negative number.
When a negative number is found, the entry in the
table is zeroed, bit 1 in the status word for that
task is cleared, and the table is scanned for a non
zero entry to start another output on the printer.
If no requests are in the printer queue table, the
printer busy flag equals 109 •

INTERRUPT HANDLER

The following list describes the interrupts that the
real-time executive is set up to handle (Fig. 2):

1. Low power--The response to this interrupt is
to store the contents of the accumulator,
of the link, and of the program counter
(return address), to store a "jump to a
restart routine" instruction in cell zero,
and to halt to wait for the power to be
restored. When power is restored, the
computer is automatically started at cell
zero. The "jump to a restart routine" in
struction is executed, and the restart
routine restores the contents of the accu
mulator and the link, and jumps to the next
instruction in the program that had been
interrupted.

2. Clock--The response to this interrupt updates
the time-of-day clock (cycles and minutes
counters), checks for zero in the minutes
counter (indicates midnight), and increments
the cycles rundown entry in each task. Since
this incrementing could result in the actu
ation of a higher priority task (having a
higher priority than the task interrupted by
the clock), the contents of the registers for
the interrupted task are saved and are re
stored before execution of the interrupted
task is resumed.

3. Keyboard--This interrupt occurs when there is
a character in the teletype output buffer
awaiting transfer to the accumulator. This
character is checked to determine if it is an
"Alt ModI! (alternate mode) character. If it
is, the utility package is actuated for im
mediate execution. If it is not, the char
acter is stored, and the "input-output in
progress" bit in the status word for the
utility package is cleared so that execution
Qf the task will be resumed after the status

table has been scanned and no task is found
for execution that has a higher priority.

4. Printer--This interrupt occurs when the
printer has typed a character and is ready to
type another. The response procedure was ex
plained in the description of the printer
queue table.

5. Parity--Only the PDP-8/S computer is equipped
with this interrupt as a standard hardware
feature. Since the result of any parity error
will soon become evident, the parity errors
are counted by incrementing a parity counter
and an attempt is made to resume execution of
the interrupted task.

The analog-to-digital converter (ADC) interrupt was
removed from the interrupt buss on the PDP-8/S com
puter. All analog-to-digital conversion is done in
a task, because a check for an ADC flag requires 38
~sec, but conversion (using the AD8S) requires only
20 ~sec. Also, since contents of the registers are
saved after every interrupt, the PDP-8/S computer re
quires more than 1180 ~sec and the PDP-8 computer
requires more than 75 ~sec to save registers. Thus
the removal of the ADC interrupt results in a signi
ficant time saving.

. REGISTER SAVE

To maintain continuity during execution of a task,
the contents of eight "registers" are saved when
execution of a task is interrupted, because it might
happen that a task with a higher priority than the
one in execution will be actuated. When execution
of the interrupted task is resumed, the task must
first be restored to its previous state. The regis
ters saved are the AC, the link, the return address
in the interrupted task, and core memory locations
0016, 0017, 0020, 0021.

GENERAL CONSIDERATIONS

When a task is completed, the task return to the
executive must be through a task ~omuletion routine
which clears bits 0 through 3 in the status word for
that task and then scans the status table for another
task awaiting execution or waits for an interrupt.

All input-output operations must be scheduled by the
executive program. When scheduled, all messages are
output intact; that is, once a character string is
started, all of that string will be printed before
another character string will be started. All key
board input is processed through the utility pack
age.

The floating-point package was changed so that it
could be used by a task through the real-time
executive.

CONSOLE UTILITY PACKAGE

BY use of the console utility package the operator
or programmer can communicate with the computer
either on-line or off-line; that is, he can type a
mnemonic code which will set up the following oper
ation: store into the memory from the keyboard,
read and punch binary paper tape, obtain an octal
dump, actuate a program to be executed only once
("one shot"), clear defined parts of the memory, set
defined parts of memory to a specific bit config
uration, and disable the keyboard. Before any
instructions or information can be stored in the

125

memory from the keyboard or paper tape, the limits
of the storage must have been specified. This pre
vents arbitrary storage and destruction of any
program outside the "legal" limits.

The utility program checks all characters typed from
the keyboard to determine that the characters are
the proper type (alphabetic or numeric) for their
position in the instruction. If they are not, the
teletype bell will ring, and the character will not
be accepted. For example, letters are accepted only
as the first two characters, then a comma, and then
only octal numbers. Usually, the utility package is
run as the task of highest priority, but it can also
run at any other priority level.

The console utility package functions with their
mnemonic commands are given in the following list:

AR ,:xxxx , IT'[':{

CL,XXXX,YYIY

GO,XXXX

MW ,:xxxx, YYYY ,
ZZZZ

PT,:xxxx,YYYY

RT,:XXXX

TI,XXXX,YYYY

TO,XXXX,YYYY

FI

Defines the first and last
addresses of the legal core
storage area.

Clear to zero from XXXX to yyyy.

Go to :xxxx and execute as lowest
priority (one shot) task.

Sets ZZZZ into the core from
XXXX to YYIY .

Punches binary tape of core from
:xxxx to YYYY (inhibits all
other teletype message outputs
from tasks).

Reads binary tape; location can
be offset by XXXXs words
(integer number of pages).

Store into location XXXX the
the contents yyyy.

Type out the contents ofXXXX
through yyyy.

Disables the keyboard input to
all characters except "ALT
MOD" and makes all core
locations illegal.

0000

0200

0400

0600

~ooo

~200

~400

1600

2000

2200

2 4 0 0 ::::······:······:·A· . 'R" E' . 'A" :.:.:.:.:.:.:.:.:.:.:.:.
::.'::::::.':, ::,'::::.','.',': ..•...................... -.-... -... -.................. .

2600 :.:.:.:.:.:.:': AVA i LA B -C E :.:.:.:.:.: . . :.:.:.:.:.:.: ':.:.:.:.:.:
3000 :::::::::::: FOR' 'S'YSTE'M':::::::::: - -- -_

3400

3600

..................................

..................................

ORNL-DWG 68-4687

Memory Mapfor4K PDP-8 Real-Time Multiple

Figure 1 Memory Map for a 4K PDP-8 Real-Time Multiple Task system

126

LOW POWER
INTERRUPT
PROGRAM

CLOCK
INTERRUPT
PROGRAM

KEYBOARD/READER
INTERRUPT
PROGRAM

PRINTER/PUNCH
INTERRUPT
PROGRAM

PARITY ERROR
INTERRUPT
PROGRAM

ORNL-DWG 68- 4688

NO TASK FOUND INTERRUPTS ON-
TO EXECUTE WAIT FOR

SCAN STATUS
LIST FOR TASK

TO EXECUTE

INTERRUPT

TASK FOUND TO EXECUTE

RESTORE
REGISTERS IF

TASK HAS BEE N
I NTERRUPTE D

INTERRUPTS OFF
--------; CLEAR STATUS

WORD BITS

Schematic Flow Chart of Real-Time Multiple
Task Executive for PDP-8/PDP-8S Computers.

Figure 2

127

FOCAL*

Rick Merrill
Digital Equipment Corporation

Maynard, Massachusetts

Abstract

A new small computer language called FOCAL has been designed and
written at DEC to be used in Formu lating On-Line Ca leu lations in
Algebraic Language. This paPer is a discussion of how size (3K), power
04 functio~s), and flexibility (several options) were achieved in
designing an easy-to-use language and in programming it for the PDP-8
fam i Iy of computers.

*This paper was not received for publication.

129

A PDP-6 LANGUAGE FOR SIMUIATING COMPLICATED BIOCHEMICAL SYSTEMS

Johnson Research Foundation
Department of Biophysics and Physical Biochemistry

University of Pennsylvania
Philadelphia, Pennsylvania 19104

ABSTRACT

A language for simulating biochemical systems composed of com
plex sets of chemical reactions is described. This is written
in FORTRAN IV; a machine-independent version of it has been pre-

. pared, but is appreciably more powerful when set up for on-line
interaction, which is presently done with a PDP 6 including card
reader, printer, and scope display. The input is in the form of
chemical reactions and associated numbers, on cards; output in
tabular and graphical form. The principal mathematical operation
is the solution of differential equations representing the time
behavior of the chemical concentrations, but alternative mathe
matical treatments are being added. A number of applications of
this language will be described.

For about ten years the author and his associ
ates have been engaged in simulation of complex chem
ical systems. l ,2 The mathematical operation involved.
is primarily the solution of differential equations
by numerical methods, but the actual input language
is that of chemistry. Digital computer programs have
been developed to convert chemical reactions into
differential equations, solve them by numerical
methods, and edit the results into tabular or gra};hic
form.

This type of work is commonly done with analog
computers, which are particularly well adapted to
solve differential equations. Why then bother with
a digital computer, in particular with a digital the
size ofa PDP-6? There are two principal reasons
for this: the number of differential equations to
be considered, and their behavior.

To represent a biochemical system of any com
plexity it is usually necessary to solve at least
dozens of differential equations, and somet~mes even
hundreds. Furthermore, these differential equations
are often quite non-linear, and as a result are
beyond the capabilities of any but the largest a~
computers.

The coefficients which are required to make
these differential equations represent biochemical
reality, (especially if real enzymes are involved),
are such as to make the equations very badly be
haved. Sometimes it is impossible to scale these
numbers into an ordinary analog computer. When they
are used in differential equations on a digital
solved numerically computer it requires tens of
thousands of integration steps to reproduce a smooth
curve that superficially looks as if it might reason
ably require a few hundred. Hence the need for a
large and fast digital computer. Specialized analog
computers have been or are being built which may
help with this problem, but they are not generally
available. Hybrid computers might be useful here.

A series of programs have been prepared, being
revised from computer to computer, to meet this nee1
These have accepted as input some form of chemical
reaction accompanied by initial conditions, and have
produced output in the form of graphs of the dif
ferential equation solutions against time, and/or

131

tabulations of results (usually of the state of the
simulated system at any time). Such programs also
have the capability of acting as differential eqIBtion
compilers. They have sometimes been accompanied by
auziliary routines, which have been able to do thi~
as complicated as conducting pattern recognition
studies on the results of a systematic single enzyme
simulation. The general format for all of these is
that a generator program accepts the chemical
equations and produces a routine to solve the cor
responding differential equations; this routine then
starts from input initial conditions, and solves the
equations to yield graphical and tabular output.

The fundamental algorithm for converting chem
ical reactions to differential equations is as
follows: Multiply together the concentrations of
all the chemicals mentioned on the operative (usuaDW
left) side of a reaction, times the appropriate rate
constant; and for each substance appearing or dis
appearing in the reaction, these products (called
fluxes) are summed, with proper Sign, to yield the
time derivative of the concentration of that sub
stance For the reaction A + B = C + D (the equals
sign indicates reverSibility) there are the fluxes:

Kl (A)(B) = flux 1

K2(C)(D) = flux 2, and

dA = flux 2 _ flux 1.
dt

Two types of modification to this algorithm are
provided. It is possible that in a reaction more
than one molecule of a given substance may appear or
be consumed. In this case it is necessary that the
flux for that reaction be multiplied by an appropri
ate coefficient (called stoichiometry) when being
summed into the differential equation. Sometimes it
happens that a substance (such as a catalyst) can
help control the rate of a chemical reaction without
appearing or disappearing in it at all; here it is
necessary to have the concentration of such a sub
stance multiplied into the flUX, which is not in
cluded in the sum for the derivative of that sub
stance.

Once the differential equations (invariably
with respect to time) have been compiled and are
ready for solution, their initial conditions are
inputted and the equations themselves are then eolved
with the simplest possible method, the first-order
Euler method. This choice of differential equation
solving method may sound strange, as higher order
methods usually work better. However, with the
particular numbers to be found in realistic chemical
or biochemical systems, first-order methods seem to
perform better then higher-order methods. This is
not dependent on things like roundoff error; indee~
it has been observed in calculations with desk cal
culators as well as with computers of widely differ
ing wqrd-length, used by a variety of people.
Usually a great accuracy is not required of the dif
ferential equation solver; few biochemical systems
can be measured with an accuracy or oe~~er then one
per cent, and often the error is much greater.

The newest version of this language has just
been implemented on the PDP-6. Actually it is a
specialized and more powerful version of a language
which is as machine independent as possible and is
described in detail elsewhere3 . This language is
written in FORTRAN IV, and is as consistent as
possible with the requirements of the FORTRAN IV
compilers of most large computers. The only respaX
in which it is not fully machine independent is that
machines with short word lengths (32 bits) require
the arithmetic to be done in double precision; the
36-bit word of the PDP-6 appears to be long enough
to permit single precision operation.

In effect this constitutes a two-pass compiler:
in the first pass chemical reactions are converted
to differential equations, written in FORTRAN: in
the second pass these are compiled by the FORTRAN
compiler, along with some subroutines whose dimen
sioning is dependent on the size of the system
being studied. These are then loaded together with
a subroutine library to produce an operating progran,
which is commonly used fairly often before requiring
revision. This language is intended primarily for
batch processing machines, and iE completely card
and printer oriented. It is possible to add user
supplied subroutines at a number of pOints to per
form services that the language in general is not
explicitly intended for; thus far these appear to
have been ,very much on an individual prob1em-de
pendeqt basis. This program set up for a simple
test system occupies 17k of core on the PDP-6,
requires one DEC tape for the program itself, and
the equivalents of card reader input and printer
output.

Running simulation in a batch mode, however, is
not the most efficient way of dOing simulation.
In fact the principal reason why our facility has a
PDP-6 is to permit easy interaction between a user
and the machine. Accordingly a PDP-6 specific
version of this computer-independent program has
bp.en prepared, which permits much greater flexibil
ity in user interaction. It will accept the same
input as the computer-independent version, and per
form the same calculations, but the user interac~
is quite different. This version, in addition to
the usual teletype and DEC tape, requires 25k of
core, the scope, and the equivalents of card reader
and line printer.

To make this PDP-6 version a variety of graphi
cal output and teletype subroutines have been added
to the machine-independent language; more may be
added later. It is expected that the primary in-

132

put will still be on cards, but the user has the
ability to change or add input from his teletype,
when the machine is running in time-sharing mode,
and to see the partial results as they are calcula~
either on teletype, on the printer, or on the scope
display. The user may in particular start from a
given situation and modify it as partial results are
obtained.

The principal graphic output (when graphic out
put is desired) with the PDP-6 is a graphical dis
play scope as exemplified in Figure 1. This is
relatively expensive in terms of core storage (8K),
but not in terms of computer time. Substantially
the same display normally appears on the printer or
a printer substitute (usually "fcrthe permanent re
cord"), and may also be put out on the plotter.
While one can it necessary follow a simular picture
on the printer as it is produced, this is definitely
inferior, both because there is less resolution and
because the most recent part of the picture is still
hidden by the printer ribbon. The scope can show
up to 8 curves of concentration against time simul
taneously, the curves being identified by their line
quality (which does not show up well in the photo
graph, Figure 1) and specified by cards in the ini~
condition input. A mechanism is provided whereby
the user may delete curves that are not currently
useful to him, before or during a calculation.
Graphical output may also be stored on a scratch
tape for further processing.

Availability of a teletype on-line, especially
in conjunction with graphical output permits the
user to do the following things:

(1) Specify when he wants a printout of the
state of the system being simulated (the current
rate constants, fluxes, and concentrations and the
derivatives and second derivatives of the latter).
This is put out on the printer.

(2) Specify when he wants a subset (designated
by card input) of the above, which may go out either
on the printer or the teletype.

(3) Repeat this calculation, with initial
condition changes specified by teletype.

(4) Go on to the next calculation specified
on cards, with or without initial condition changes
from teletype before starting.

(5) Make changes in the computation in pro
gress and then continue. This includes changing
concentrations, rate constants, etc., and also
changing the permissible length of the calculation,
the maximum and minimum integration step Sizes, etc.

(6) A ny reasonable combinat ion of the above,
as well as stopping all computations. This com
bination of capabilities permits the user to specify
a set of models on cards, work with each of these
(modifying it) until he is satisfied with it, and
then go on to the next.

It is hoped to extend the convenience features
so that this will be nearly as conven;,ent to use
as an analog computer. As a possible alternative
input arrangement, we have added a series of
potentiometers to our scope display (Figure 2).
When all the appropriate software is written, it
will be possible to use these as inJut devices to
this program, probably by having each potentiometer
be a multiplying factor for some number initially

specified to the routine with cards.

In the simplest possible application this could
replace a teletype input at the beginning of a cal
culation, (and probably does not offer much advan~
over it). However, it is sometimes necessary to
continuously vary an input throughout a calculation.
Thus far this has been done mostly to simulate the
effect of some of a model's environment which can
not be readily modeled by the set of differential
equations which the computer is working. An example
is shown in Figure 3, which is part of an ongoing
study on an oscillating glycolytic system. This
shows an enzyme velocity prof~le as a function of
time, which might be imputted in this way. Here
the user can by suitably twiddling the potentiometem,
evolve such a curve by setting the correct momentary
value needed to make things come out right and
having the computer keep track of what he has been
inputting. If necessary one may go part-way back
through the calculation (there is provision to save
designated states of the system and start from th~)
and repeat this input operation with slightly dif
ferent potentiometer settings to get a fit. This
operation would seem to involve sufficient pattern
recognition so that it is more easily done, at least
in the early stages, by a man looking at a scope
than by any automatic optimization routine.

Some flexibility is specifically built into the
program to compensate for the differences in behaVokr
between the card reader and a DECtape assigned as a
card reader. Mechanisms are provided to in effect
tell the program about its environment, which the
monitor will not do for it. The card reader par
ticularly differs from a DEC tape in the way it is
buffered, and if one is to read part way through a
deck of cards, do some computation and then read
more, different arrangements are necessary in the
two cases.

It is possible that this language may be ex
tended in a higher-level direction, so as to make
the individual calculations part of automatic
optimization techniques, for example, or even to
have processes that may be described as artificial
intelligence. An example is in trying to fit a
given experimental curve by a given simulated
mechanism; the computer may find the best fit, de
cide that it is not adequate and that it deviates
in a certain way (e.g., by having the computed
curve be too low at the longer time intervals) and
then revise the mechanism so as to adjust for this
and go back and fit it over again. It is unlikely
that this can be made completely independent of
human intervention in the near future, but such a
process probably will be more efficient if the com
puter and the human are cooperating than if either
is doing it alone.

The input fo~t and some of the aspects of
machine independence are the result of the experUnce
of a number of people, and the contribution of
Dr. E. M. Chance II to both of these should be par
ticularly acknowledged. This work was supported by
grant FR-15 from the National Institutes of Health.

References

1. Garfinkel, D., Rutledge, J.D., and Higgins,
J.J. l TIm. Assoc. Comput. Mach. ~, 559 (1961).

2. Garfinkel, D., Simulation of Biochemical
Systems, in Computers in Biomedical Research, Vol. ~
ed. by B. Waxman and R.W. Stacy. Academic Press

133

Inc., New York, (1965) p. 111.

3. Garfinkel, D., Computers and Biomedical
Research (in the press).

Figure 1 Photograph taken from the 340 Scope Display showing concentrations
as a function of time. The lines are distinguishable by their detailed
fine structure, which is difficult to photograph.

1~

o

Figure 2 Potentiometers mounted on the scope display unit.

16Q

140

120

100

80

60

40

20

(\
I
I
I , ,
I
I ,
I ,
I
I ,
I
I
I ,

----'

50

---PFKASE

(\ , , , , , , , , , ,
I , ,
I , , , , , ,

~ I
\ ,
\ I
\ I ,_ --------------/'

I
I
I
I
I
I
\
\ ,-.... _,."",.- ----

I

58 66 76
Minutes

82 90
I

98

Figure 3 A profile of enzymatic activity as a function of time (phosphofructokinase
in an oscillating glycolytic system), as an example of a type of input
which may be inserted with the scope potentiometers.

135

A GENERAL LANGUAGE FOR ON-LINE CONTROL OF PSYCHOLOGICAL EXPERIMENTATION

J. R. Millenson
Dept. of Psychology, University of Reading

Reading, England

.ABSTRACT

A problem-oriented language is being developed for on-line process
control of psychological experimentation. The language consists of
nested blocks of simple English statements familiar to every exper
imental psychologist. The function of this language is to produce an
Automated Contingency Translator (ACT) which samples and updates a num
b~r of independent time=shared experimental environments 60 times a sec.
Experimental procedures are mapped by the ACT compiler from the English
statements into a probabilistic finite state network in list structure
format. An independent operating system (which in the PDP 8, 4K ver
sion overwrites the compiler) then executes the list structure automata:
that is, runs the experiments, records and retreives data and admits
low priority background programs in any available dead time.

Psychologists have made extensive use of com
puters for data reduction and for simulation
studies of behavioral processes. They have
been, with some notable exceptionsl ,4,15,17
somewhat more diffident in applying computers
directly to a third major class of problems,
namely the laboratory control of their exp
eriments. With the appearance of the small,
fast, accessible, and relatively inexpensive
general purpose machines this reluctance on
the part of psychologists can no longer be
principally ascribed either to economical or
instrumentation difficulties.

If we look closely at the situation we dis
cover that for problems such as statistical
analysis and data reduction, flexible routines
and sub-programs for building a variety of
special programs have been standardized in
the algebraic-like languages of FORTRAN and
ALGOL. Similarly in the fields of artificial
intelligence and simulation of human problem
solving by heuristic methods, well established
special purpose interpreters such as IPL-V,
LISP, and COMIT provide the investigator with
a convenient language to formulate and man
ipulate his problems. In the field of labor
atory control, however, the absence of any such
general problem-oriented l anguages 5 is con
spicuous. Psychologists who wish to use the
small computer to program experiments are gen
erally obliged to learn a complex and unfamiliar
code to communicate with their machine. Many
are deterred by this language barrier;even for
those who surmount it, the low-level machine or
assembly languages that they have had to learn
prove a poor vehicle for easy expression and
creative exploration of new procedures. There
have been attempts4 to use existing problem
oriented languages to do the job. But these

137

problem oriented languages are oriented for the
wrong problem, and thus whileFORTRAN, for in
stance, makes algebraic formula translation and
manipulation a routine exercise, it provides far
less obviously a natural language for the logical
structure of process control applications.

The key to a natural language for psychological
procedures is an adequate theory of those procedures.
While there have been a few attempts in the past to
formulate the independent procedural variables of
psychology into a unified framework8 ,9,14 these
attempts have contained important restrictions and
indeterminancies which limit their general app
lication to all procedures of the field. Recently,
however, A. G. Snapper and his associates6,16
employed the concepts of cybernetic machine theory2
to demonstrate what amounts to a proof that all
behavioral procedures can be formulated as finite
state automata. They exploited this discovery to
write a very general program for the PDP 8 computer
to process control in real time a variety of animal
conditioning procedures associated with schedules
of reward and punishment.

Neither Snapper's group, nor Marlowe7, who also
seems to have seen the implications of finite state
automata theory for a general problem-oriented
psychological process-control language, went so
far as to evolve a general language for framing the
procedures of psychology. Marlowe explicitly noted
the practical difficulties in developing such a
language and speculated as to whether "the effort
required ••• might offset a:n::r gain made by using such
a programming language" (p. 10). There is reason to
believe that this conclusion was overcautious. In
what follows, the aims and lexical-grammatical prop
erties of a compiler written for the Digital Equip
ment Corporation PDP 8 family, purporting to estab
lish such a language, are described.

General Aims

From the outset it appeared that five major

conditions would have to be satisfied by the lan
guage. Firstly, the language was to be a perfect
ly general problem-oriented one, oriented to the
particular problems arising in on-line process
control of behavioral experiments. It must be
able, without any ad hoc additions to its basic
form,to describe, and therefore given the support
hardware, carry out the procedures of nearly all
experiments ever done in experimental psychology.
Only in that case could the kind of generality that
would permit the investigator to use the language
as a conceptual model or vehicle for creating
his procedures of the future be assured. The util
ity of these new procedures, far more than its
ability to simulate the procedures of the past is
likely to constitute the ultimate justification
of the language. It was thus apparent that the
language should provide no special constraints for
any one area of psychology, even though at present
certain areas (for example, automation of condition
ing techniques, recording of neuro-electrical
phenomena) might be more obviously computer oriented
than others.

A correlary to this first condition was that since
the language was to provide a variety of inves
tigators with differing backgrounds and theor
etical dispositions with a general .tool, the lan
guage must not possess a bias towards anyone
particular method of analysis within psychology.
Thus it should be possible for any psychologist
of whatever persuasion to be able to describe his
procedures in this language. The general nature of
Snapper et aI's contribution assured that since all
psychological procedures could be reduced to a
state diagram, in principle this would indeed be
the case. But the actual language that was to
map that state diagram to a computer data structure
must still contain as few idiosyncratic theoretical
connotations as possible. For instance, while the
language would clearly evolve with the ubiqui tious
terms of stimulus and response, it must in no way
commit the investigator to a reflex psychology.
Stimuli and responses, or if the investigator pre
fers, environmental ~ituations and behavioral ~ep
etoires, are simply a natural and operational way
to talk about the changes in environments and
behavior patterns of living organisms that make up
psychological experiments.

Secondly, parameter modification had to be inte
gral, simple, yet powerful. As 110 and others17
have pointed out elsewhere the special promise of
the high speed digital computer in controlling
psychological procedures lies in its ability to
adjust rapidly to very intimate behavioral proper
ties of the subject. That adjustment consists of
modifications, depending on the moment to moment
status of those behavioral properties, not only of
quantitative parameters but possibly even the very
structure of the procedure.

Thirdly, the fundamental features of the program
had to be viable with a minimum hardware config
uration:(e.g., a PDP 8/S with 4K of core and a
single teletype) so as to make the computer a
feasible economic proposition in even small lab-

138

oratories. At the same time, the program should
possess sufficient flexibility to expand easily its
command features so as to exploit the additional
hardware of fortunate users with extra core, back
up memory, auxilIary teletypewriters, display scopes,
analogue converters, and so forth.

Fourthly, however complex the hardware input/
output interface might in reality turn out to be
at circuit level, it must appear to the psychologist
programmer wishing to control it as simple as poss-'
ible:e.g., with PDP 8 machines, a simple 12-bit
parallel word. Thus the program, unlike ALGOL, but
like FORTRAN, would standardize its input/output
instructions by assuming a standardized interface
terminal. Thus, compleX microprogrammed machine
input/output commands as such need never be seen
directly by the programmer.

Fifthly, finally, and perhaps most important of all,
the vocabulary, syntax, and grammar of the command
language must be as close as possible to a simple
English of everyday usage not unlike that which the
investigator might employ in describing the procedures
of his experiment to a colleague. The ability to use
the language should therefore require almost no
learning, it should be as insensitive to syntactical
formalities (e.g., critical spacing, correct spelling,
etc.) as possible.

Implementation in situ

A typical multi-access environment in which the
computer might be expected to act as a process
controller and data recorder for psychological lab
oratories is shown in Fig. 1. A PDP 8/S central
processor is shown there directing the procedures
and recording the data from four experimental sta
tions. The system shown is slightly expanded from
minimal configuration, containing an additional
output teleprinter used exclusively for printing out
critical results of the experiments, and a hi-speed
paper tape punch for outputting selected aspects of
the raw data.

In psychological experiments in environments of the
sort shown in Fig. 1, a key role of the computer is
to provide automatic control of the relations or
contingencies that the experimenter desires to hold
between selected aspects of the behavior of the sub
jects, and subsequent presentation and maintenance
of selected changes in the subject~' environments.
The language that is to be described for this gen
eral task amounts to an Automated Contingency Trans-
lator, hence its mnemonic name, ACT. -

The associated r/o hardware for each of the sta
tions of Fig. 1 must eventually terminate in two 12-
bit words. One of these words registers the outputs
(responses) from the subject and is read into the
main arithmetic register of the computer, the acc
umulator. The other word consists of an input bit
configuration and is strobed to the subject from the
accumulator. A typical configuration for a rat
subject in a conditioning experiment appears in Fig.
2. Only a portion of the two distinct words are
used, 8 bits for R outputs and 6 bits for stimulus
inputs. Learning the octal number system to desig
nate the behavior and environment events that he
wishes to control is very nearly the only specialized
computer knowledge that the psychologist is obliged
to acquire. The use of octal labels for stimulus and
response events is an important way of simplifying
the program to meet, in a small machine, all the aims

described above. Thus, R115 set in Fig. 2 corres
ponds to the closing of a switch by the experimenter
and a certain value (17) of a 5 bit analgoue vol
tage taken from electrodes attached to the skin of
the subject. S5 corresponds to a compound stimulus:
the presence of a 30 cps tone and the presence of a
small "houselight" in the subject's chamber. In the
protype installation for testing ACT these stimulus
outputs represent -24 v to ground levels, and the
inputs represent switch closures. Nevertheless the
language of ACT itself is completely independent of
how assertion voltages come to be on the R input
lines, and what work one chooses to do with the
assertion voltages the computer puts on the S out
put lines.

Writing in the language of ACT is expedited by
first drawing a modified state diagram of the des
ired procedures. The units of these state diagrams
are the state, shown as a rectange or a rectangular
solid in Fig. 3, labeled with the actual environ
mental conditions; and the transitions from one
state to another shown as the vectored lines in
Fig. 3 with actual time or response values as
labels. states may be (1) nested, as shown by the
representation of boxes within boxes; and (2) they
may be organized into multiple sets, or planes, of
states as shown by the independenceof the top por
tion of the figure from the bottom portion. Not
shown in the pictures is the ability to mOdify at
each occurrence of a unique state the value of
variable parameters of the experiment, and the
execution of a variety of data retreival routines
such as PRINTING, TAPING, DISPLAYING and so forth.
These additions to the purely procedural contingen
cies relate ACT to the automata oriented REACTION
HANDLER of Newman12 , an intriguing correspondence
since Newman's program was designed for an entirely
different task environment, that of expediting
communication between on-line users and graphical
light-pen displays.

To program his experiment the psychologist first
works out a state diagram of it by listing the
various sequential conditions and the temporal or
behavioral events that will cause one condition
to change to another. Then he connects up his
structure with vectored lines corresponding to the
contingency logic of the experiment. He then adds
any special states he may need purely for recording
purposes, or any states used for trapping the occ
urrence of rare or special experimental results.
Then, referring to a representation of his input!
output words (c.f., Fig. 2) he assigns numerical
values to the states, the behavioral response events,
and the times.

What are his restrictions on such labeling?
Firstly ACT is a completely synchronously driven
system. An external clock which in the prototype
operates at line frequency (60 hz) restricts res
olution of updating events to 60 times a second.
Thus the shortest duration of a state is approx
imately 16.7 msec. (This is of course not a con
straint of the language per se, only of the par
ticular implementation of it. In the PDP 8 or 8/1
a far faster clock would be practicable.) Secondly,
the values of states must correspond to actual octal

139

equivalents of l2-bit numbers. State 9 is thus
ambiguous; response 72413 is too large.

Once in a state diagram, the procedure is ready
to be mapped to the basic English of ACT. The
vocabulary of ACT is shown in Fig. 4. It will be

S1. 2
R4
U55
I,J, ••• N

SYMBOLS

ENGLISH WORDS

WREN, WHILE, GIVE

IF
AFTER
FOLLOWING

GO, THEN, GO TO

PROBABILITY

t
4-

(tab)
&

Figure 4 Legal ACT I symbols and words.

V(J)

+

observed that the with exception of only a few
special symbols, the vocabulary consists of simple
English words, S, U, and V letter abbreviations for
states, R abbreviations for responses, and the
integers I through N for integer variables. In
order to distinguish states that are associated
with the same environmental conditions (e.g., the
same octal output word) but which occur at diff
erent points in the procedure and are therefore
associated with different experimental conditions,
a "point" followed by a unique number, less than or
equal to 778 is used as a way of distinguishing
such states. The ordinal number to the right of
the point has no significance except to provide a
unique arbitrary label.

STATEMENTS

In ACT there are six different classes of legal
statements utilizing this vocabulary. Examples
of these classes are shown in Fig. 5. (1) Init
ialization of the integer variables by parameter
assignment where the meaning should be self-evident.
Such assignments are limited to the range -2048 < I <
+2048. (2) Declarations of fixed or variable
states in S, U, or V state sets. Thus, writing a
declarative statement beginning with WREN, GIVE,
or WHILE followed by a state identifier amounts
pictatorially to drawing a box. (3) Transition
statements, of which there are three types.
Writing one of these transition statements is
equivalent to drawing a line away from one state
rectangle to another. The six examples of tran
sitions illustrate different features of the voc
abulary. Response transitions begin with IF and
designate a fixed (R2), variable (R(K)), or anal
ogue (lO<.R<.L) behavioral output for initiating
a change in state. Time transitions are straight
forward, with the upper limit being 72 hr, the lower
limit being 1 unit (of time--determined by the clock)
and variable times (being single precision integer)

I = 4
J = 7
N = 7772

INTEGER ASSIGNMENTS

DECLARATIONS

WHEN Sl
GIVE U12.5
WHILE V(J)

TRANSITIONS

IF R2 GO TO S44
T"G'I 0() D(V\ ,.,,, m" ,n C. 0
.J...L0 c....;; J.l\L'!t...) U"V .LV V.LU.U

IF (10 <.R < L) GO TO S5
AFTER 2 MIN GO WITH PROBABILITY = 3/32 TO S4
AFTER K UNITS THEN U2

FOLLOWING J S55.2 THEN GO TO Sl.¢

WHEN Sl
WHEN Sl

WHEN Sl
WHEN Sl

PARAMETER MODIFICATION

CN = N + 41
tJ = K & SWITCH REGISTER)

DATA RETREIV AL

(PRINT "EXPERIMENT FINISEED oja//3
(PUNCH 2J

RECORD DATA

1 IN Sl: Rl LATENCY
2 IN S3: Rl COUNT
3 IN S5.1:R4 SUM
4 IN -q-~K/: S2 COUNT
5 IN V16.7:V16.7 TIME

Figure 5 Six classes of legal ACT statements

restricted to 16.7 msec. units specification.

The first time transition (line 4 above under
TRANSITIONS) illustrates an additional feature of
ACT, namely its ability to describe probabil
istic procedures. Probabilities of the form A/B
where A must be greater than or equal to B, and
B must be a negative power of two, less than or
equal to 2-7, may be specified for any transition.
Probabilities so specified produce berno~uli dis
tributions of events. In the prototype they are
hardware generated by the peaks of a noisy diode
counting in a 7-bit shift register.

The third class of transition, shown as the last
line under TRANSITIONS in Fig. 5, is a second order
transition in which an R or Time transition from
any given state to another, at some point in the
state diagram, can trigger yet another transition
for a different state at a different level or in
a different state plane. Second order transitions
are essential for communication between state
planes, and for making possible the changes in a
procedure after a certain number of organism det
ermined events, such as numbers of stimulus pre
sentations of a given sort.

(4) Parameter modification form a fourth group
of legal statements. These consitute in ACT I
simple three-operant ALGOL assignment statements
written immediately after a state declaration

140

and enclosed within square brackets. In ACT I
the operators are limited to addition and sub
traction (,,&" means to add the switch register)
and only a single such statement may be written
per state declaration.

(5) Data retreival statements shown just lower
in this figure are also written at state declar
ation time. They make it possible to type
messages and to retreive various data stored by
the five recording directives shown below them.
The numerals after PRINT or PUNCH refer to the
line numbers of (~) the record statements.

The manner by which these statements are com
D~nea. ~nl:iO a program is straightforward. The
statements are written one statement per tele
printer line, sequentially and in a block form
suggestive of ALGOL. A given state is first
declared, its integer parameter modifications or
data retreival orders enclosed within square
brackets, and on subsequent lines all the poss
ible transitions for that state are listed one
by one. Another state is then declared and its
transitions listed; and so on. State diagrams
seem to most easily be constructed and read from
left to right; so that the top of the page of ACT
statements will generally correspond to the left
side of a state diagram. For legibility the
transitions of a state are indented one tab stop
in from the declaration statement. Nesting of
states within states is accomplished by maintain
ing a one-to-one relation between tabular inden
tation of the declared state to degree of nesting.

An example of a simple complete program to
control the scheduling of a 3-second food
reward to a confined p.igeon subject for each
key peck on a plastic disk only after a minute
of non-reward has passed, appears in Fig. 6.
The program is initiated by a special non-printing
character (WRU). The compiler (in 4K versions
loaded by the user, in 8K versions called down
by monitor) then prints out an installation
identification followed by a new line and the
word EXPERIMENT. The user types in a comment
identifying his experiment, followed by a carriage
return character. The ACT compiler then asks for
a number for the station where the experiment is
to be carried out. (This number is none other
than the Wl03 device code for the station.) Upon
receipt of this number the compiler will respond
BUSY if the station is already in use, or if not
busy with the approximate number of lines available
for program. The user then types any initialization
lines, the first declaration (Sl), its transition,
the next declaration (Sl.l), its transition, and
the third declaration (S3) and its transition.
AIry desired comments are preceded by the "/,, symbol.
Finally a $$ terminates compilation.

Not shown in Fig. 6 are occurrences of any one of
45 compiler diagnostics. These advise the user of
syntatical (mispellings, illegal combinations of
symbols, spurious characters, and so forth) or
semantic (attempts to direct transitions from one
state plane to another, or from one level of
nesting to another, exceeding the upper limit of
probabilities, failing to declare a state that is
referred to in a transition line and so forth)errors.
Syntactical diagnostics occur immediately upon
receipt of the illegal character. Semantic dia
gnostics occur only at the termination of the

current line.

The completion of the program leaves a data
structure corresponding to the state diagram res
ident in core. The prototype system has 2K of
core available to accomodate eight independent
stations and at anyone time, all eight may be
occupied with programs of moderate complexity.

In practice a developed program would be stored
on paper tape, and entered whenever it was desired
to run. In the 4K version once all desired
programs are resident, an operating system to
execute the data structure is loaded overwriting
the compiler, and thenceforth the teletypewriter
serves only to print data messages; or if the
data rates are low, to punch in coded form the
significant events tagged with their relative times
of occurrence. There is only one diagnostic at
run time: "AVAILABLE UPDATE TIME EXCEEDED" followed
by the station last completed in the queue. The
example of Fig. 6 servies to illustrate the sim
plicity and naturalness of the language format
for the problems for which it is directed.

An important feature of the language is its
ability to incorporate new increasingly sophis
ticated design features without affecting the
format of previous programs. Thus, the obviously
desirable ability to have compiler and executive
in~ core together with a monitor to schedule their
priorities along with other perhaps unrelated
background programs is a feature being developed
for SK systems. Users will type in new programs
from one teletype while the central processor
continues concurrent control of other experiments.
Yet these and further refinements will affect only
the power of the language system, not its format.

Conclusiorn

In summary, the language that has evolved permits
multi-access control of up to eight independent
laboratory environments. The language includes
facilities for modification of experimental par
ameters which, while simple, are powerful enough
to permit the experimenter to produce procedures
whose quantitative properties and/or qualit~tive
structures can adjust to subtle on-going char
acteristics of the input behavior of the subjects.
The language provides primitive facilities for
retreiving the raw data of the experiment as it
is being generated in a form suitable for later
input to a conventional off-line data analysis
program. An important feature of the language
is that its very nature is such as to preclude the
possibility of any user overwriting any other user.
Thus the language permits trouble-free time sharing
of the central processor. Finally, as should be
obvious, although ACT was written with the psychol
ogist principally in mind, the language is a very
general one. Whenever some aspect of an environ
ment is to be controlled as a function of inputs
from other aspects of that environment, as in
chemical process control, machine tool control,
biomedical monitoring, and other industrial and
scientific applications13, ACT may provide a
convenient method of implementing computer control
by non-professional personel.

141

ACKNOWLEDGMENJ:S

I thank J. D. Keehn, C. D. Webster, D. P. Hendry,
W. Lennon, and D. Taylor for numerous suggestions
towards the development of the language described.

References

1. Blough, D. The reinforcement of least
frequent interresponse times. J. expo Anal.
Behav., 1966, 9, 5S1-591.

2. Gill, A. Introduction to the theory of
finite-state machines. New York: McGraw
Hill, 1962.

4. Hendry, D. P. and Lennon. W. On-line pro
gramming II, in Symposium, Automation of
behavioral experiments, Washington D.C.,
(APA) September, 1967.

5. Husky, H. D. An introduction to procedure
oriented languages, in F. L. Alt and M.
Rubinoff (Eds.) Advances in Computer, New
York: Academic Press, 1964.

6. Knapp, J. Z., Kushner, H. K. and Snapper,
A. G. Finite automata: a notation system
and methodology for modeling and experimental
control. (unpub), 1967.

7. Marlowe, L. A general purpose programming
system for the LINC computer. DECUS Biomed
ical Symposium Procedings, June 1967.

S. Mechner, F. A notation system for the des
cription of behavioral procedures. J. expo
anal. Behav., 1959, 2, 133-150.

9. Millenson, J. R. Principles of behavioral
analysis. (Chap. 6) Macmillan: New York,
1967.

10. Millenson, J. R. Maintaining avoidance
behavior in the guinea-pig by an automated
contingency translator. Alcoholism and
Drug Addiction Research Foundation (Toronto)
Project No. 168, Sub study, 1967.

11. Millenson, J. R. An automated contingency
translator ACT I, A computer system for
Process control of psychological experimenta
tion. Psychonom. Bull, 1967, 1, 17.

12. Newman, W. M. A system for interactive
graphical programming. Imperial College
(London) Computer Technology Group report 67/7,
October 1967.

13. Savas, E. S. Computer control of industrial
processes. New York: McGraw Hill, 1965.

14. Schoenfeld, IV. N., Cumm':.ng, W. 1tl. and Hearst,
E. On the classification of reinforcement
schedules. Proc. Nat. Acad. Sci., 1956, 42,
563-570.

15. Shimp, C. P. Reinforcement of least
frequent sequences of choices. J. expo
anal. Behav., 1967, 10, 57-65.

16. Snapper, A. G., Kadden, R. M., Knapp, J. Z.,
and Kushner, H. K. A notational system and
computer program for behavioral experiments.
DECUS Biomedical Procedings, June 1967.

17. Weiss, B., and Laties, V. G. Reinforcement
schedule generated by an on-line digital
computer. Science, 1965, 148, 658-661.

142

Figure 1 A typical multi-access psychological environment controlled
by a rack-mounted PDP S/S central processor. Four experimental stations,
one input teletype (left), an input/output teletypewriter (bottom), and a
high speed punch are shown connected to the central processor.

143

on Skin conductance

ROff 000 008 B8 8

I 1 0 0
100 40 20 10

on Shock

S off
000 000 HHH

-----.J

Food

I I

0 1 0 1 0
40 20 10

E - switch

88 8
, Lever

0 I R 115

30 cps Housel i te

8H8
3cps

, -
0 155

Figure 2 l2-bit S-input / R-output words compared
for illustrative purposes ivith two areal
~us banks of toggle switches~ Only 8
bits (switches) of the R-output word and
only 6 bits (switches) of the S-input
word are in use.

S3

Figure 3 Two nested i~epen~ent f~ents of nestpd state diagrams
for representing the contingencies of behavioral
experiments.

U.RF~OING PSY POPS/S ACT I CO"PIL~R
£XPERIH~T PIG~ON FIX~D INTERvAL (FI .')
STATION S
PROCEDURE (0871 LIN~S AVAILABLE)

I lSI_HOUSELIGHTS ONLY S3=R~INFORCEM~NT

I GIVE 51
2 AFTER I MIN GO TO 51.1
3 WHEN Sl.t
.- IF R I GO TO 53
S WHEN S3
6 AFTER 3 SEC GO BACK TO SI
., ss

R£CO~D
1 IRECORD ROUTINES NOT YETWRITTEN

8011 LINES STILL AVAIL
PROGRAM ACCEPTED 00004096 MIN 29 APRIL 68

~~Sl 11 mi"l S1.1 1 R 1 ·1 S3

Figure 6

~ec
144

A simple program typeout and its associated
sta~e diagram. Lines typed by the computer
are underlined.

A TAPE STORE FOR BIOCHEMICAL DATA

Harold W. Shipton
University of Iowa

Iowa City, Iowa

ABSTRACT

A means for recording low data rate signals on an inexpensive tape
recorder and a program to read these data is described. The tech
nique is especially suited to biochemical applications.

Signals from many biophysical instruments (e.g.,
amino-acid analysis) are characterized by their low
data rate and by the relatively long duration of an
experimental run. Traditionally the output from
such devices is displayed on a strip-chart recorder
having a rebalance time of the order of one second.
The data are inherently suited to analysis by
digital computer and have been so treated by a num
ber of workers. Operations such as integration and
base line drift correction are tedious to perform
by hand but are easily implemented on a small scale
laboratory computer; a machine such as a LINC can
easily handle the output from many photometric de
vices. The major difficulty in use of computers for
this type of application results from the difficulty
of entering the data into the machine in an econo
mical and orderly fashion. The LINC, in common
with some other machines, is designed for on-line
real time operation and if it can be dedicated to
data collection, no serious problems of interfacing
arise. In most laboratories, however, the computer
is in use for other projects and economy dictates
some form of intermediate storage for the biochem
ical data. (In some circumstances the "interrupt"
feature can be used. However, other programs run
ning on the machine are not always written in
interruptable form; this applies especially to the
assembly program used for software development.)
Two systems of intermediate storage suggest them
selves: punched paper tape or an off-line incre
mental magnetic recorder. In practice if either of
these solutions is used, a separate recorder is
necessary for each instrument because there are
formidable problems of data organization in any
feasible time sharing system.

This paper describes a technique for recording such
slowly varying signals on inexpensive tape recor
ders of the type used as office dictating machines.

There are many methods for transforming low fre
quency analog data so that it can be recorded as an
audio frequency signal; in the most common the
data signal modulates the frequency of an audio
oscillator. On replay this signal is demodulated
and filtered so that the original data are recover
ed. This method suffers from two major disadvan
tages. Firstly, if the DC component of the signal
is to be recovered accurately, the tape speed must
either be maintained within close limits or rela
tively complicated feedback techniques must be used
to compensate for variations in it. Secondly,
the ta~e motion is continuous during recording an
extravagance which must be paid for not only in
terms of tape consumed but also in terms of replay
time.

To overcome these limitations and to achieve a
highly reliable but inexpensive store the scheme

145

outlined in Figure 1 has been used. A clock is
used to produce pulses at rates compatible with
the analog signal data rate (for example in
amino-acid analysis this is approximately I pulse
per 5 seconds). These are accumulated in a time
register which can conveniently be a conventional
binary counter. Provision is made for manually
clearing the counter at the onset of each experi
mental run.

The analog signal from the strip-chart recorder
is converted to digital form by means of an 8 bit
shaft encoder with which is associated a storage
register (R). Initially, the signal value is
loaded into R and at each clock pulse the contents
of R are compared with the contents of the shaft
encoder. If they match (i.e., there has been no
change in the value of the input signal) no further
action is taken, but if the contents have changed,
the following sequence of events is initiated. The
data register is updated to contain the new shaft
encoder value. The tape recorder start switch is
activated, and a preset delay circuit (one shot) is
fired. This delay is long enough to allow tape
motion to become well established. At the con
clusion of this delay period a scanning oscillator
examines the contents of each section of the time
and data registers so that a serial 20 bit word
appears at the output of the gates. Signal and
data bits account for 17 bits; the additional bits
are used for control purposes and to separate the
time and data portions of the word. During the
entire scan period a level is present which serves
to control the FSK oscillator (see below). Data
are recorded on the tape by frequency shift keying
(FSK) an audio generator. At the end of the data
block tape motion is stopped and the system re
mains quiescent until a further change in signal
level occurs.

The frequency shift keye~ is of an unusual design
(Figure 2) in that the audio oscillator runs at
8fO where fO is the carrier frequency; this is then
divided down by a 3 bit binary counter which can be
reset to 0 at the count of 3, 4 or 6 according to
which of three gates are enabled. The outputs are
further divided by a binary counter so that fre
quencies of fO, _._4_, an~ are available. These

3fO 3fO "" tone pulses are associated respectively with space,
"binary 0," and "binary 1" of the data word. For
most small tape recorders fO = 5khz is a conven
ient and easily recorded choice of carrier.

Several variations on the above system have been
tried in differing circumstances, but will not be
described in detail since they are readily imple
mented by standard electronic techniques. They
include a means for shortening the data word by

omitting that portion which contains the signal
magnitude and using a single bit to indicate the
direction of change. The function is reconstructed
in the decoding process by a method akin to Lebes
que integration.

The electronic circuits have not been fully de
scribed since it is unlikely that others will wish
to duplicate them exactly. The system is readily
constructed from TTL logic and for those who
require further information a set of prints can be
obtained from the Bioengineering Resource Facility,
University of Iowa, Iowa City, Iowa 52240.

Playback is accomplished by running the tape con
tinuously and feeding the output signal into an
analog channel of a LINC computer. This permits
high reliability decoding and reconstruction of
the original data.

In essence the program which examines the signal
measures the frequency of the carrier by counting
zero crossings for unit time and from this computes
the permissable limits of fl and fh' Thus the
tape speed need only be constant for the time re
quired to transfer one data word (typically 150
milliseconds) and even in recorders which have no
capstan drive this is easily achieved. Since many
cycles of audio signal are counted during each
data bit an occasional drop out is tolerable.
Several versions of the decode program are in use.
A flow diagram (Figure 3) of the complete program
and of the frequency measuring sub-routine (Figure
4) are appended.

Summary. The system has been found to be a useful
substitute for incremental methods when the data
rates are low and extensions of the method show
promise in several biomedical applications.

It is a pleasure to acknowledge the detail design
work of Mr. John W. Emde of the Bioengineering
Resource Facility of the University of Iowa. This
work was supported by Grant #GM15907 from the
National Institutes of Health.

146

R,
Time Register

9 Bits

R2
Data Input------~ Data Register

8 Bits

"
Sense Set

,~

Control and Scan

Figure 1 Block Diagram of Basic System

Oscillator Reset f
8fo

..... 3 Bit Counter Flip-Flop ,

22

LI~
Input Lines L2~ Gates

L3~

Figure 2 Frequency Shift Keyer

147

To Recorder

)

Out

NO

NO

YES

~
~

OVERALL FLOW DIAGRAM

YES

Figure 3 Overall Flow Diagram

148

TAPE DECODE
MEASURE FSR

(CLEAR 2A AND SET CLOCK IR)

~ YES < ~;~~D ~EXIT TO 2A

~

tNO

(NOISE PROTECT)

INDEX CLOCK

~---~EXIT TO 2A

(NOISE PROTECT)

Figure 4 Frequency Measuring Sub-routine

AUTOMATIC SPECTROPHOTOMETRIC IDENTIFICATION
OF BACTERIA

Alan Ferry and Richard Martin
QEI

tVinchester. Massachusetts

ABSTRACT

Present research at the Office of Naval Research is reported on
a project to automatically identify bacteria using only spectro
photometric information. The numbers to be extracted from the
measurement are fluorescence to phosphorescence ratio, emission
spectrum peak wavelengths, and parameters of phosphorescent
decay. A procedure for resolving components of a multiple
exponential function is discussed.

This report describes some on-going research into
the feasability of extracting enough numbers from
luminosity measurements on bacteria to develop an
identifying dictionary. In the functioning "auto
matic bacteria identifyer", a dictionary lookup
would be, made by the same computer that processes
the luminosity data (actually micro-spectrophoto
meter output), and the type or class of bacteria
in the sample would be printed out. With the idea
that it would be desirable to some day have a
number of these devices available, minimum appa
ratus configuration has been made a design consider
ation.

In cases when there is an outer non-membraneous
layer to a bacterium, it is usually cellulose.
Therefore, most re-emitted light arises from sur
face membrane lipo-proteins. Photon emission from
amino acids, the structural units of proteins, is
always from singlet or triplet decays; and, in
these experiments, is always·f.romthe loWest energy
level of an excited state to the ground state. The
half-life of a singlet state is of the order of
10-

15 seconds, and the light emf. tted by radiative
decay from singlet to ground is referred to as
fluorescence. Since the half-life of the triplet
state is much longer (order of 10

3 to 101 seconds),
the associated emission (phosphorescence) continues
for a much longer time.

A spectrum obtained under continuous illumination
is the sum of fluorescence and phosphorescence.
If the illuminating beam is ,chopped, the recorded
light is largely phosphorescence. The ratio of the
integral under the fluorescent spectrum to that
under the phosphorescent spectrum can then be
calculated and becomes one number for the bacterium
signature.

Peak positions in the spectrographs are the emission
frequencies and will be a set of numbers contributed
to the dictionary. We hope to handle the problem
of resolving multiple peaks using a technique
suggested by Dr. Ian Bush of the Medical College of
Virginia. The leading edge of the last peak in a
superimposed group would be functionally generated,
point by point, from the decaying edge. When the
entire peak has been resolved in this way. its
position would be determit~ed and the peak would be
subtracted from the composite. If the composite
were a double peak, the remainder would be a single
peak, the first one. If there were more than two,
the procedure would be repeated until one peak

149

remained.

To be able to measure the phosphorescent emission
at all requires special apparatus consideration.
Because of the long lifetime of the excited triplet
state, non-radiative transition, especially thermal
ones, compete so favorably with photon emission
that virtually no light is given off at room temper
ature. Reduction of the thermal energy in the
sample is brought about by making the measurements
at low temperature with the culture maintained as
a glass rather than as a suspension in liquid media.
Liquid nitrogen temperature, 77°K. is being used as
standard.

The "glow" in response to a flash of light decays
n

as a multiple exponential of the form L AlE -CXjt

j=l

n < 10 , and if the decay parameters could be
determined. another set of numbers would be avail
able. In keeping with plans for a "minimal con
figuration", we Originally began the project with
PDP-8S's, It has become clear, however, these
will not be adequate, and we plan to be using 81's
with DECTape. Our procedure for examining the
decay information begins with an interrupt trigger
from the light source signaling the 8s to begin
reading one datum through its AID converter every
millisecond. To implement the data input a 1 kc
real time clock was installed. It was desired to
have available the inherent stability of a crystal
clock. and, since the 8S is too slow to efficiently
use the slowest crystal oscillators, it was neces
sary to include a down-counter network to obtain
a 1 kc clock pulse rate. Advantage was taken of
the R202 modules necessary for the down-counter to
create the follOWing clock instructions:

1. Skip on clock flag set.
2. Clear clock flag and connect to interrupt.
3. Clear clock flag and disconnect from interrupt.

TWo alternative averaging techniques are employed
for noise reduction. By one procedure, which is
technically more difficult but gives better resu1t~
identical runs are repeated and the data points are
averaged across runs. Another method smoothes a
single run by sampling every millisecond and stor
ing the average of n (4 S n S32) data. That this
arithmetic mean is inappr~priate for exponential
functions is a valid objection, and a ~eometric
mean calculation should be used. This improvement,

however, will require the faster PDP-8! system. In
any case. there are stored at this point a thousand
numbers representing a multiple exponential function
we wish to resolve into components.

Au example of a double exponential of the form

At-ext + BE- pt is shown in figure lAo

This function was generated in place of the de
scribed data acquisition to eliminate the noisQ for
demonstration. Operations described below for
estimating the parameters of one exponential
component then stripping it from the multiple are
applied by the program as though the data had been
sampled from the micro-spectrophotometer. In
Figure 2 is shown. indicated by crosses, a semilog
plot of the same double exponential function. The
program operates on the log transformed data in
groups of fifty beginning at the right and proceed
ing left ten at a time. For each fifty points the
best straight line by least squares is calculated.
When the last slope calculated differs from the
first by a factor greater than m, the process halts
and the average slope and intercept of all the
calculations in the series are printed. The factor
m is a specifiable operating parameter whose best
value must be experimentally chosen with consider
ation for whether it is more desirable to chance
missing a component or picking up an extra one.
When the slowest decaying component has been esti
mated (in this example B exppt) , shown as a solid
line in Figure 2, it is stripped from the composite
leaving the other components as a residue as shown
in lB. The least squares calculations are repeated
on the log transform of the residue (dots in Figure
2) and another component (broken line in Figure 2)
is found. Since the exaup Ie was a double exp~
nential. the procedure ends. The slope of the
semilog plot (log I (t)) of a multiple exponential
at any point can be expressed as

IAi(-ai)E -ai t

y (t) = .,.!::i=:..!...l --I(t'"'"") --

and this expression could be used to correct each
estimated component after others have been found.
We have not found yet, however, that such a refine
ment is necessary.

We would like to mention two other approaches to the
problem of resolving mUltiple exponentials. A
least squares fit to the complete. untransformed,

n

function L: Ai E -exi t
i=l

could be made. but to

apply this method conveniently. the number (n) of
components should be known in advance.

A different approach, which we have not tried, is
based on the fact that the Fourier transform of an
exponential function has peak heights that are
measures of the exponents.

BIBLIOGRAPHY

1. E. L. Bell and R. Garcia, "Fitting Multi
Component Exponantial Decay Curves By Digital
Computer". SAM-TR-65-59. August 1965.

2. M. B. Danford, "Some Problems on the Use of
Negative Exponential Curves in Biology".
SAM-TR-65-4, March 1965.

3. At B. Callahan and S. M. Pizer, "Applicability

CD
"C

~
Q.
E
«

CD
"C

~

of Fourier Transformation Analysis to Biolo,i
cal Compartmental Hodels", in Patte, Edelsack,
Fein, and Callahan, NATURAL AUTOMATA AND USEFUL
SIMULATION. Spartan ~ooks. Wash.", D.C •• 1966 ..

4. S. V. Konev, "Fluorescence and Phosphorescence
of Proteins and Nucelic Acids". (trans. from
Russ.), Plenum Press, N.Y., 1967.

ACKNOWLEDGMENT

Supported in part by Office of Naval Research, BSD,
Medicine and Dentistry Branch, N0014-68-6-0372,
NR304-50l. Reproduction in whole or part is per
mitted for any purpose of the U.S. Government.
We would like to thank Dr. K. Boerman and Dr. A. B.
Callahan for their direction and COmments.

Time

A. Multiple Exponential

"
"

",

Fig. I Time

B. Residue

c.
E
«

150

C'I
o

..J

Time Fig. 2

APPENDIX 1

DECUS SPRING 1968 SYMPOSIUM PROGRAM

Be Ilevue Stratford Hote I
Philadelphia, Pennsylvania

Apri I 26 and 27, 1968

FRIDAY - APRIL 26

General Session - Terrace Room (Morning)

Chairman: Prof. Philip R. Bevington, Stanford University

8:30-9:45 Registration, 18th floor lobby

10:00 Opening - Prof. Philip R. Bevington

Welcome - Prof. John W. Carr, III, Chairman
of the Graduate Group Comm ittee for Computer
and Information Sciences, Moore School of
Electrical Engineering, University of
Pennsylvania

10:30 A STIMULUS-RESPONSE PROGRAM FOR
HOTEL ROOM INVENTORIES
David W. Roberts, London, England

The policy aims fulfilled by the program are listed and an
outl ine of the original booking system is given. The diffi
culties of this system are highlighted and the new system
described.

The action of a single function is detai led and the develop
ment of a single message is traced through seven phases in
response to user requ irements. The details of a usefu I method
of handling dated information are given.

The system has been extended to two other hotels.

11 :00 THE UCC FASBAC PROJECT
Dan W. Scott, Un iversity Computing Company,
Technical Services Division, Dallas, Texas

Remote large-volume input and output facilities are available
from the University Computing Company UNIVAC 1108 Com
puter Uti lity. The FASBAC text editing system now under
deve lopment will be described. This new conversational
system facilitates setting up runs for the UNIVAC 1108 via
remote Teletypes in the customers' offices.

12:0,0 Lunch - Rose Garden

SESSION I (Afternoon)

Chairman: Thomas Day, University of Maryland

1: 15 ON-LINE ANALYSIS OF WIRE SPARK
CHAMBER DATA
Phylis F. Niccolai and Robert H. Bicker,
Carnegie-Me lion University, Nuclear Research
Center, Saxonburg, Pennsylvania

A PDP-7 background/foreground mode of time sharing for
on-line analysis of wire spark chamber data will be discussed.
The background mode analyzes a representative sample of
wire spark chamber data in the time avai lable between in
terrupts from the wire spark chamber logic, an interface be
tween the wire spark chambers and the PDP-7. The foreground
mode logs data from the wire spark chamber logic onto mag
netic tape. The experimenter is given control of the cyclic
operations via the Teletype keyboard and may interrupt the
program at any time to retrieve the output from the back
ground mode. The particular analysis required from the
background mode must be decided prior to load time and
selected from the programs stored on DECtape. This program
wi II be discussed as appl ied to pion absorption by I ight nuclei
experiment at the Carnegie-Mellon University Nuclear
Research Center.

151

1 :45 PDP-8 ON-LINE DATA ACQUISITION
SYSTEM FOR HIGH ENERGY PHYSICS
Pau I Shrager and Larry Taylor, Un iversity of
Pennsylvania, Philadelphia, Pennsylvania

This presentation will be a description of an on-line data
acquisition system for magneto strictive spark chamber
readouts in high energy physi cs. The system outputs to an
incremental magtape unit and CRT display tube. The system
includes a real-time clock, high speed paper tape reader,
and 24-channel A-D converter for experimental parameter
monitoring.

In addition to data acquisition and output data verification,
simple on-line analysis is performed, including histograms
showing distribution of sparks in chambers. The, osci Iloscope
display includes a reconstruction of the elementary particle
event that occurred in the spark chamber.

2:15 THE ON-LINE USE OF PDP-9 AND 360/65
I N A PROTON-PROTON BREMSSTRAHLUNG
EXPERIMENT USING WIRE CHAMBERS
D. Reimer, J. V. Jovanovich, J. McKeown,
D. Peterson, and J. C. Thompson, Institute
for Computer Studies and Physics Department,
University of Manitoba, Manitoba, Winnipeg,
Canada

The system a Ilowing conversation between two computers
(PDP-9 and IBM 360/65) and an on-line analysis of a wire
chamber experiment wi II be described. Wire chambers and
scintillation counters are interfaced to the PDP-9 which is
connected to the IBM 360/65 via a standard DEC high speed
data link. The PDP-9 performs preliminary analyses and
selection of detected events. A FORTRAN program residing
in a small partition of 360/65 memory completes kinematic
analyses of events accepted by the PDP-9, stores the resu Its
on magnetic tape, and returns formed histograms to the PDP-9
for visual display or graphical plotting.

2:45 AUTOMATIC FILM MEASUREMENT WITH A
PDP-9
C. Drum, T. McGrath, and R. Van Berg,
Department of Physi cs, Un iversity of
Pennsylvania, Philadelphia, Pennsylvania

The University of Pennsylvania's High Energy Physics Group
employs a PDP-9 to control and record digitizings from a
Hough-Powell flying spot digitizer. It is not possible with
the small computer to perform anyon-line analysis or track
reconstruction of non-predigitized bubble and spark chamber
photographs. Therefore, the system re I ies on CRT displays
and simple checking algorithms for monitoring the quality of
the dig it i z in gs .

This paper des~ribes the system in general and especially
the non-standard software and peripherals.

3:15 Coffee

3:30 A COMPUTER-CONTROLLED SYSTEM FOR
AUTOMATICALLY SCANNING AND
INTERPRETING PHOTOGRAPHIC SPECTRA*
C. A. Bailey, R. D. Carver, R. A. Thomas,
and R. J. Dupzyk, Lawrence Radiation
Laboratory, University of California,
Livermore, California

In analytical spectrography, the most time-consuming
portion of an analysis is the scanning and interpreting of
the photographi ca lIy recorded spectra. A system has been
devised to shorten this time considerably by using a small
digital computer to control the scanning densitometer and
subsequently to calculate abundances from the photographic
data.

152

The following description applies specifically to spark
source mass spectrography; however, adaptation to other
systems wou Id be relatively straightforward. A typical
photoplate from our spectrograph contains several thousand
I ines from as many as twenty graded exposures and represents
approximate Iy sixty-five elements. Starting with the most
intense exposure, the optical transmission of each line is
measured using a Grant microphotometer. These transmissions
as we II as the position of each I ine are stored in a PDP-8
computer. The computer initiates and completely controls
the scanning and simultaneously converts each line position
to an exact mass number from a calibration performed at the
beginning of the scan. The computer is programmed to
distinguish between lines and empty areas on the photoplate,
and a!! the graded exposures of each I ine are recorded before
the scanning continues to the next line. Backgrounds are
continuously upgraded and recorded along with their adjacent
I ine densities. After the desired area of the photoplate has
been scanned, an emulsion cal ibration is calcu lated from
the data stored in the computer. Then all line densities on
the linear portion of the calibration curve are converted to
ionic abundances. Total time involved in scanning twenty
exposures on a fifteen inch photoplate is now approximately
two hours.

* This work was performed under the auspices of the U.S.
Atomic Energy Commission

4:00 A PDP-8 SYSTEM FOR BUBBLE CHAMBER
MEASUREMENTS
John Rayner, University of Maryland,
College Park, Maryland

This paper describes an on-line measuring system in which
the PDP-8 is used both as an up-down scaler for an image
plane digitizer and to supervise the measurer in an attempt
to prevent the most common measuring errors. This error
prevention is accomplished by having the program institute
most of the necessary procedures through messages to the
measurer on a Teletype and by elementary checking of the
input data. Another aim of the system is to replace cards
with IBM compatible magnetic tape as the output medium.
To this purpose a Digi-Data Stepping Recorder has been
interfaced to the PDP-8. It is planned to expand the system
to four measuring stations in the future.

4:30 STRIP, A DATA DISPLAY AND ANALYSIS
PROGRAM FOR THE PDP-8, 8/1
John Alderman, Georgia Institute of Technology,
Atlanta, Georgia

This program, using the PDP-8, high-speed paper tape
reader, and Type 34 display, accepts paper tape data
listings and displays the result on the display unit. Some
elementary computations are made on the data and are
also displayed. The program is deliberately designed to
be open-ended, and most users wi II want to add features
peculiar to their own problem. Almost all functions are
carried out in subroutine form, and these subroutines can be
called either from the keyboard or within another subroutine.

6:30 Reception - North Cameo Room

7:30 Dinner - Rose Garden

SESSION II - EDUCATION, NORTH CAMEO ROOM (Afternoon)

Chairman: Dr. Sylvia Charp, Phi ladelphia Board of Education

1 :15 BRINGING THE COMPUTER INTO THE
HIGH SCHOOL CLASSROOM
Michael L. Doren and Karl P. Wildermuth,
Deerfield High School, Deerfield, til inois

This presentation is geared primarily for high school teachers.
Our ideas on how the PDP-8/S, in combination with an in
expensive closed-circuit TV setup, can be used to enrich
concepts taught in all levels of high school classes wi II be
discussed. Emphasis and discussion will be on the following
points:

1. What concepts lend themse Ives to effective use of the
computer.

2. What criteria should be considered in writing a FORTRAN
program for use in a classroom demonstration.

3. How to effectively bring the computer physically into
the classroom.

a. Slides on our computer laboratory with its closed
circuit TV facilities and two-way intercom to each of
our classrooms.

b. Training of student lab assistants to help teachers
make these demonstrations.

4. Discussion of strengths and weaknesses observed.

1 :40 PDP-8/S IN THE HIGH SCHOOL
CLASSROOM
Bud Pembroke and Dave Gilette, Computer
Instruction NETWORK, Salem, Oregon

The presentation will cover the present use of the PDP-8/S
as a portable computer in several curricu lar areas in schools
within the Computer Instruction NETWORK. The use of
machine language will be discussed along with the use of
CINIC as a II Load and Go" conversational compiler. CINIC
II Computer Instruction NETWORK Instructional Compi ler"
was patterned after a subset of BASIC for the 4K core memory
of the PDP-8/S. The authors wi II include a description of
the instructions, examples of programs, and a candid expla
nation of advantages and lim itations of this language.

153

2:15 PROJECT ASC - THE SMALL COMPUTER IN
EDUCATION
Ri chard R. Karash, Richard L. Mazer,
RobertM. Metcalfe, and Clyde E. Rettig, Jr.,
MSC Associates, Boston, Massachusetts

ASC is a research project conducting investigations into
applications of the small computer made possible jointly by
Digital Equ ipment Corporation and the Massachusetts Institute
of Technology. The project ASC computer (PDP-8/S) has
been made available along with complete technical assistance
to a number of people at M .I.'T. involved in research, edu
cation, and administration. Some interesting results on the
effect of this computer·s availability in an educational
environment, suggestions on how to optimize the benefits of
such computers· services, and a few hints to improving the
computers themselves for future educational applications have
been collected and will be presented.

2:40 CLOSING THE EDUCATIONAL LOOP IN
APPLIED MATHEMATICS
Dr. John Elder, Department of Applied
Mathematics and Theoretical Physics,
University of Cambridge, Cambridge, England

Lectures supported by demonstration have an immediate
impact on students impossible with chalk and blackboard
alone. In essentially conceptual areas of knowledge, such
as appl ied mathematics, demonstrations are often impossible
and the cumbersome input/output procedure of note taking
and understanding after much midnight oil and personal
supervision is inevitable. The educational loop can be
closed right in the classroom in the following way. The
lecturer is provided with a control box on which are some
knobs and switches connected to a computer (housed elsewhere)
and a closed circuit TV monitor{s)' the camera of which is
watching the computer display screen. Parameters are entered
from the knobs and tasks initiated from the switches and the
results are displayed in graphical form. The lecturer had
continuous control over his problem parameters, and may
choose settings arising from discussion in the class. Typical
problems involve systems of ordinary or partial differential
equations. Separate "workshopsll which simu late the equ iva
lent of a physicists laboratory session reinforce the lecture
materia I and provide the student with an opportun ity to use
his initiative.

An II experimental ll hybrid computer system incorporating a
PDP-8, currently in use in the DAMTP, Cambridge, will be
described and illustrated in a movie. A system using a PDP-9
is now being designed.

3:05 Coffee

3:15 A SYSTEM FOR PRESENTING PROGRAMMED
INSTRUCTION TO THE DEAF AND HEARING
IMPAIRED
K. E. Rigg and James A. Boehm, III, New
Mexico State University, Department of Speech,
Las Cruces, New Mexico

A digital system for presenting programmed instruction of
language concepts to hearing impaired and deaf children
will be discussed. The system presents controlled visual and
auditory stimuli to the learner, requiring either a matching
to-sample response with four solutions or the solution of a
straight four choice task. The system reinforces correct
responses with a variety of visual, auditory, and primary
reinforcers including pulsed pure tones, colored lights, tokens
and candies.

This system is complete in that it includes the basic teaching
unit, its own instrumentation, data reduction, and provisions
for making programs.

3:35 A COMPUTER SYSTEM FOR ELECTRICAL
ENGINEERS
Dr. David M. Robinson, Department of
Electrical Engineering, University of
Delaware, Newark, Delaware

Educational computer applications usually center on the
problem solving capabi lities of general-purpose machines.
The electrical engineer is pecu liar in that he must become
more deeply involved in the computational system than is
suggested by this casual use. His concern arises by virtue
of his responsibility for the conception and design of the
computer itself and for its hardware adaptation to a variety
of applications.

A system has been evolved which is functionally directed at
the problems generated by the realization of computers or
computer-like systems. This system is described and a number
of typical student problems discussed. The problem examples
chosen illustrate the range of levels which may be encompassed
us i ng the system, the versat iI i ty of the system and prob I ems
which may be of some general interest.

4:00 EDUCATION SUBGROUP WORKSHOP
Chairman - Mrs. Judith B. Edwards, Director,
Computer Instruction NETWORK, Salem,
Oregon

Welcome and Introduction of Participants
Short (10 minute) Mini-Papers Presented by Education Users

1. "The Computer and Pomfret" by Wi II iam Hrasky
2. "The Computer and Teacher In-Service" by Bud Pembroke
3. Plus additiona I papers (to be announced)

Organizational Structure of the Education Subgroup
Round Table Discussion:

Topics: Curricular applications of small computers in
education
The computer in the junior high school
What concepts shou Id be taught?
Teacher training
Language Levels for instruction
Vocational training programs

6:30 Reception - North Cameo Room

7:30 Dinner - Rose Garden

SESSION III - TYPESETTING AND MODULES WORKSHOP, NORTH LOUNGE (Afternoon)

Chairman: Richard J. McQuillin, Inforonics, Inc.

1: 15 COMPUTER TYPESETTING OF MATHE
MATICAL TEXT: THE INPUT LANGUAGE
PROBLEM
Richard J. McQuillin, Inforonics, Inc.,
Cambridge, Massachusetts

This paper presents resu Its of some research in computer
typesetting of mathematical text. In particular, attention
is given to the representation of complex symbolism using
a conventional keyboard. i Emphasis is on how keying con
ventions could be established to provide an input system that
is usable by the editorial staff of a publisher of such articles.

Experimental results are given based on a test sample using
these conventions. The results show how the system can be
uti I ized to computer typeset Mathematical Reviews.

An extension of the symbol representation scheme is presented,
whereby complex two-dimensional mathematical expressions
may be expressed in functional notation. This wou Id lead to
a typesetting language for handling complex typography at
the input keyboard.

154

1:45 USE OF PDP-8 FOR DRIVI NG PHOTO
COMPOSITION MACHINES
Richard Fait, Digital Equipment Corporation,
Maynard, Massachusetts

A brief look at the use of Digital's DECtape and DECtape
Disc Systems to produce punched paper tape input to various
photographic units.

2:45 Discussion Period

3:15 Coffee

3:30 MODULES WORKSHOP

Discussion on Computer Interfacing Techniques with 11M" and
"K" Series Modules by a Representative of Digital Equipment
Corporation.

6:30 Reception - North Cameo Room

7:30 Dinner - Rose Garden

SATURDAY - APRIL 27

SESSION I - PDP-9 SOFTWARE WORKSHOP, TERRACE ROOM (Morning)

Chairman: Prof. Philip R. Bevington, Stanford University

10:00 PDP-9T TIME SHARING SOFTWARE -
PHASE I: MULTIPROGRAMMING
D. M. Forsyth, Psychology Department,
Harvard University, Cambridge, Massachusetts,
and M. M. Taylor and S. Forshow, Defence
Research Estab I ishment Toronto , Toronto,
Ontar io, Canada

The PDP-9T is a PDP-9 with the addition of paging hardware,
special traps, and modifications which translate lOT instruc
tions into specific calls to the system monitor. Phase lof
software deve lopment for the system perm its several processes
to occupy core simu Itaneously. All input/output is handled
by the system monitor. Real-time tasks have high priority and
are generally interrupt driven, e.g., are activated as nec
essary to process data. Background tasks such as editing,
assembling and debugging are allocated time by an algorithm
which seeks to keep constant the product of invocation rate
and time quantum. The minimal system requires a PDP-9T
with 16K of memory and 4 DECtapes.

10:30 EXTENDED MEMORY FORTRAN WITH AN
8K PDP-7*
Phil ip R. Bevington, Department of Physics,
Stanford University, Stanford, California

A hardware modification to the PDP-7 and a FORTRAN sub
routine are described which permit the use of Extended
Memory coding in FORTRAN II with an 8K memory PDP-7.
Normally, this coding permits the storage of large data
arrays outside the basic 8K of memory which contains the
program and the Operating Time System. In the present
system the extra memory is suppl ied by DECtape. A scratch
pad consisting of several pages of 256 words each is retained
within the basic 8K memory so that access to the DECtapes is
relegated to transfers of blocks. Interpretation of extended
memory addresses is accompl ished by trapping indirect ad
dresses outside of basic memory and using software to modify
these addresses. Such a system perm its the use of larger
arrays for data manipulation at the expense of time required
for DECtape handl ing. In most cases, however, improved
techniques of manipulation through the use of larger and more

arrays more than offsets this expenditure of time. The phi
losophy of design and the relative advantages and disadvan
tages of such a system are discussed.

*Supported by National Science Foundation

11 :00 IMPLEMENTATION OF AN ON-LINE
REACTIVE (TYPEWRITER) LANGUAGE
David Z. Polack, University Computing
Company, Dallas, Texas

The language processor to be discussed is designed for use
via reactive typewriter. It accepts, names, stores and
manipulates character strings which may be used as names,
data and/or procedure. List processing techniques are
utilized in the processor implementation.

The presentation is in the form of a tutorial session, which
first places the language processor within the framework of
the University Computing Company's FASBAC System. Sub
sequent discussion will inc lude:

1. A brief description of the language for those unacquainted
with it.

2. Discussion of memory allocation in terms of the necessary
coding, strings, stacks, vectors, communication zones, etc.

3. The methodology of hand ling various strings.

4. Dynamic II Garbage Collect ll
•

5. Special handling of defined primitives.

6. Additional primitives not included in previous literature.

7. Discussion Period

Reference may be made to: TRAC, A Procedure-Describing
Language for the Reactive Typewriter; Calvin N. Mooers;
Communications of the ACM, Volume 9/Number 3/March,
1966.

12:00 Lunch - Rose Garden

SESS ION I (Afternoon)

1: 15 PDP-9 MONITOR SYSTEM WORKSHOP
David Leny and James Murphy, Digital
Equipment Corporation, Maynard, Massachusetts

This lecture, informal discussion period and demonstration is
directed towards the design philosophy of the PDP-9
ADVANCED Software Monitor System which centers on user
convenience and optimum hardware utilization.

The sub-topics will be:

1. The comprehensive, device independent, input/output
programming system which includes handlers for all the
standard peripheral devices.

2. The expa·nsion and specialization capabilities of the
155

system to utilize all central processor and standard or non
standard peripheral options.

3. The keyboard control for automatic storage, retrieval,
loading execution of all systems and user programs.

4. Complete error analysis at monitor, input/output and
system program leve Is.

5. Background/Foreground (two user time sharing) Operating
System.

It is advised that the attendees prepare for this workshop by
reading the Monitors Manual (DEC-9A-MAB,0-D) of the
ADVANCED Software System. Copies may be obtained by
contacting your local DEC Sales Office.

3:30 A REAL-TIME, MULTIPLE TASK EXECUTIVE
PROGRAM WITH A BUILT-IN CONSOLE
UTILITY PACKAGE
C. P. Martin, Jr., and R. L. Simpson, Oak
Ridge National Laboratory, Oak Ridge,
Tennessee

An Executive Routine has been developed for the PDP-sis
and PDP-S computers which schedu les process control tasks in
real time and establishes operating priorities. The program
including the utility package) occupies about one-third of a
4096 word memory block and accommodates eight major control
tasks. The only hardware addition of the standard computer
configuration requ ired by the Executive is a real-time interrupt.

3:45 FOCAL
Rick Merrill, Digital Equipment Corporation,
Maynard, Massachusetts

A new small computer language called FOCAL has been de
signed and written at DEC to be used in Formu lating On- Line
Calculations in Algebraic Language. This paper is adiscussion
'Of how size (3K):" power (14 functions), and flexibility
(several options) were achieved in designing an easy-to-use
language and in programm ing it for the PDP-S fam i Iy of
computers.

SESSION II - PDP-S SOFTWARE WORKSHOP, NORTH CAMEO ROOM (Morning)

Chairman: Michael S. Wolfberg, Moore School of Electrical
Engineering, University of Pennsylvania

10:00 PDP-S (DISK) OPERATING SYSTEM
Char les Conley, Digital Equipment Corporation,
Maynard, Massachusetts

This lecture and discussion session is devoted to a presentation
of the design philosophy of the PDP-S Disk software. The
primary features exhibited are ease of use, increased thru-put
and user I iberation from operator panel switch dependency.

The following topics will be discussed:

1. The philosophy behind the monitor development and the
benefits to the user.

2. The user monitor commands and internal structure of the
monitor, including the core requirements, limitations, ex
tensions, and I/o device handling.

3. The standard system programs attached to the Disk system,
both for 4K memory and extended memory. A complete dis
cussion wi II be given describing the way programs are saved
on the Disk, the general usage of the Disk as a program
storage and data file storage device.

It is advised that the attendees prepare for the workshop by
reading the PDP-8 Disk Software (Basic) Manual (DEC-OS
SBAB-D). Copies may be obtained by contacting the local
DEC Sales Office.

12:00 Lunch - Rose Garden

SESS ION II (Afternoon)

1:15 DISC VERSION OF STRIP - A DATA
DISPLAY AND ANALYSIS PROGRAM FOR
THE PDP-S, S/I
John Alderman, Georgia Institute of Tech
nology, Atlanta, Georgia

A version of STRIP has been developed to take advantage of
the storage capabil ities of the DF32 Disc Storage Un it. Tech
n iques of overl ay generat i on and ca II i ng, data storage and
retrieval, and programming phi losophy for open-ended pro
grams to be modified by unski lied users are described.

1 :45 PDP-S OSCILLOSCOPE DISPLAY OF
MATHEMATICAL FUNCTIONS USING
FORTRAN
A. E. Sapega and S. G. Wellcome,
Trinity College, Hartford, Connecticut

A general-purpose program for oscilloscope display of
mathematical functions wi II be described. Since the main
program is written in FORTRAN the user need only insert the
FORTRAN statement of h is function in a standard location.
At object time he specifies the range of the independent
variable. Following a scaling computation, the scaled
function is computed and a table of values generated. These
are displayed on an osci Iloscope by means of a binary program
which is loaded at FORTRAN object time. Interactive features
allow the user to re-specify the range of the independent
variable to more closely examine the various ranges of the
function under study.

156

The system described uses a PDP-S with 4K core and a type
34D osci lIoscope display un it.

2:15 A DISPLAY PROGRAMMING LANGUAGE
(DPL)
Jeffrey H. Kulick, Moore School of Electrical
Engineering, University of Pennsylvania,
Philadelphia, Pennsylvania

This paper presents a description of a programming language
for the PDP-S/33S known as Display Programming Language
(DPL) and illustrates its use. This language has been imple
mented by the author. DPL allows the definition of simple
data structures such as points and lines and the definition of
arbitrari Iy complex structures called Displaygroups. A class
of set operators (FOR A E B DO ...) allows the user to
selectively trave;seQ data structure. As part of the defini
tional language, a computational facility is available which
allows the definition of structures algorithmically.

DPL operates in two modes. The first, an interactive mode,
allows the user to define, display, and modify structures from
a Teletype console. The second mode, known as stored pro
gram, allows the user to define a sequence of DPL commands
and then execute them as a program. Decision and recursive
call statements are avai lable when operating in the stored
program mode.

2:45 THE FASBAC PROJECT-TIME DIVISION
MULTIPLEXING FOR THE PDP-S
George E. Friend and Paul J. Bell, Technical
Services Division, University Computing
Company, Da II as, Texas

Hardware modifications and software techniques for the
efficient utilization of the 6S0 Data Communications System
as a low-speed-line multiplexor for the University Computing
Compan/s FASBAC Remote Access System are described.

3:15

3:30

Coffee

Discussion Session

II Use of Large Computers for the Assembly of
PDP-S Programs ll

SESSION III - BIOMEDICAL, NORTH LOUNGE (Morning)

Chairman: Prof. Belmont Farley, Johnson Foundation,
University of Pennsylvania

10:00 A PDP-6 LANGUAGE FOR SIMULATING
COMPLICATED BIOCHEMICAL SYSTEMS
David Garfinkel, Johnson Research Foundation,
University of Pennsylvania, Philadelphia,
Pennsylvan ia

A language for simulating biochemical systems composed of
complex sets of chemical reactions is described. This is
written in FORTRAN IV; a machine-independent version of
it has been prepared, but is appreciably more powerfu I when
set up for on-line interaction, which is presently done with a
PDP-6 including card reader, printer, and scope display. The
input is in the form of chemical reactions and associated
numbers, on cards; output in tabular and graphical form. The
principal mathematical operation is the solution of differential
equations representing the time behavior of the chemical
concentrations, but alternative mathematical treatments are
being added. A number of applications of this language will
be described.

10:30 A GENERAL LANGUAGE FOR ON-LINE
CONTROL OF PSYCHOLOGICAL
EXPERIMENTATION
J. R. Millenson, Department of Psychology,
University of Reading, Reading, England

A problem-oriented language is being developed for on-line
process control of psychological experimentation. The lan
guage consists of nested blocks of simple English statements
fam i liar to every experimental psychologist. The function of
this language is to produce an Automated Contingency Trans
lator (ACT) which samples and~pdates a ~mber of ind;pendent
time-shared experimental environments 60 times a second.
Experimental procedures are mapped by the ACT compiler from
the English statements into a probabilistic finite state network
in list stru cture format. An independent operat i ng system
(which in the 4K version overwrites the compiler) then executes
the list structure automata: i. e., runs the experiments, re
cords and retrieves data and admits low priority background
programs in any available dead time.

11 :00 TAPE STORE FOR BIOCHEMICAL DATA
Harold W. Shipton, College of Medicine,
University of Iowa, Iowa City, Iowa

Signals from many biophysical instruments (e.g., gas chro
matographs) are characterized by their low data rate and by
the long duration of an experimental run. Operations such
as integration and base I ine drift correction are tedious to
perform by hand but are easily implemented on a small scale

157

laboratory computer; a machine such as a LI NC can easi Iy
hand I e the output from many photometr i c dev ices. The LI NC
is designed for on-line real-time operation, and if it can be
dedicated to data collection, no serious problems of inter
facing arise. In most laboratories, however, the computer is
in use for other projects and economy dictates some form of
intermediate storage such as punched paper tape-for the
biochem ical data.

In the system to be described an entertainment or office tape
recorder is used. The analog signal (y) is continuously com
pared with its previous value and when a significant change
is detected, tape motion begins and an arbitrary time code
is written on the tape. From the time values and direction of
change y = f{t) is reconstructed by a simple LI NC program
when the tape is entered off I ine to the computer. The program
is written to that variations in tape speed or recording level
have a min imum chance of introducing errors.

The system is simple, inexpensive and reliable enough to be
used in routine laboratory appl ications.

11 :30 BIOPHOSPHORESCENT ANALYSIS
Alan Ferry and Richard Martin, Q. E.I.,
Computer and Information Systems,
Winchester, Massachusetts

If ultraviolet light is flashed on a bacterial plaque at 77°
Kelvin, an optical triplet state of the ring membered ammino
acids is induced and the organisms phosphoresce. Since the
functional time decay of the phosphorescence is a sum of
exponentials, bacterial samples may be characterized by
parameters (coeffi cients and exponents) of the decay. Com
puter programs have been written to reduce noise in micro
spectrophotometer output sampled by the PDP-sis and to
obtain the exponential parameters by successively stripping
off each component. This research and development is being
supported by the Office of Naval Research, BSD, Medicine
and Dentistry Branch.

12:00 Lunch - Rose Garden

1: 15

Topics:

SESSION III (Afternoon)

CLINICAL LABORATORY AUTOMATION
PANEL DISCUSSION

3. What are the capabilities of the ideal system for total
automation in the clinical laboratory?

4. How shou Id one implement such a system?

1. The benefits to be derived from Clinical Chemistry
Automation.

Pane I Members:

Dr. G. Phillip Hicks (Panel Leader) - University of Wisconsin
a. With respect to improved chemistry and quality
control. Dr. Ralph Thiers - Duke University

b. With respect to decreasing laboratory costs, Dr. M. A. Evenson - University of Wisconsin
tCllir'ninn+inn ,..I.::.ri,...nl {QIrt"'I"'\t"C:: nrl"'\"irlinl"'f f',.,C::+Qr cQr\/i,...,::. _ •••••••• _ ••• ,::;:1 -'-"--' _a._ ' '-'_l"_"'~ ._ __ -11'._-'
and better organ ization of the reported test resu Its. Prof. William Wattenburg - Berkeley Scientific Laboratories

2. The dedicated laboratory computer versus the general
purpose hospital data processing system for clinical laboratory
automation.

Dr. Hugo Pr ibor - Perth Amboy

10:00

12:00

SESSION IV, PINK ROOM (Morning and Afternoon)

Discussion on developments in multiprocessor
PDP-1 O's. Hardware configurations and
programming methods will be discussed and
analyzed.

Lunch - Rose Garden

1 :15 PDP-6/10 SOFTWARE WORKSHOP

Chairman: David R. Friesen, Digital Equipment Corporation

Discussion of systems' software and new systems planned. A
significant new PDP-10 product announcement wi II be made.

DEMONSTRATIONS

The following equipment wi II be available for demonstrations.
Specific detai Is on time, etc. wi II be posted at the registration
desk on Friday morning.

1. PDP-8 and DEC-338
Moore School of Electrical Engineering

Use of the PDP-8 as a satellite to the IBM 7040.
Appl i cations and systems programs for the DEC-338 Programmed

Buffered Display.
Various display demonstrations on the DEC-338.

2. PDP-9
Physics Department, David Rittenhouse Laboratory

Control of Hough-Powell On-Line Flying Spot Digitizer

3. PDP-6
Johnson Foundation, Richards Bui Iding

Time-Shared System, Biomedical Applications

158

APPENDIX 2

AUTHOR/SPEAKER INDEX

PAGE

Alderman, John C., Jr. STRI P, A Data Display and
Ana lysis Program for the
PDP-S, S/I 37

Alderman, John C., Jr. Disc Version of STRIP -
A Data Display and Analysis
Program for the PDP-S,
S/I •.•••..... 101

Ba i I ey, C. A. A Com puter-Contro II ed
System for Automatically
Scanning and Interpreting
Photographic Spectra. 31

Bell, Paul J. The FASBAC System - Time
Division Multiplexing and
the PDP-S ..••..• 119

Bevington, Phi lip R. Extended Memory FORTRAN
with an SK PDP-7 . • • . 91

Bicker, R. H.

Boehm, James A., III

Carver, R. D.

Doren, Michael L.

Drum, C.

Dupzyk, R. J.

Edwards, M.

Elder, J. W.

Fait, Richard

Ferry, Alan

Forshaw, S.

On-Line Analysis of Wire
Spark Chamber Data . •• 9

A System for Presenting
Programmed Instruction to the
Deaf and Hearing Impaired 63

A Computer-Controlled
System for Automatically
Scanning and Interpreting
Photographic Spectra. • • 31

Bringing the Computer into
the High School Classroom 43

Automati c Fi 1m Measurement
with a PDP-9 • • • • • • 27

A Computer-Controlled
System for Automatically
Scann ing and Interpreting
Photogra ph i c S pe ctra. . • 31

On-Line Analysis of Wire
Spark Chamber Data . •• 9

Closing the Educational
Loop in Applied Mathematics
(The On-Line Classroom) . 57

Use of PDP-S for Driving Photo
Composition Machines*. . S5

Automat i c Spectrophotometr i c
Identification of Bacteria • 149

PDP-9T Timesharing: Phase I,
Mu Itiprogramming S7

159

Forsyth, D. M.

Friend, G.

Garfinkel, David

Gill ette, Dave

Jovanovich, J. V.

Kulick, Jeffrey H.

Mart in, C. D., Jr.

PAGE

PO P-9T Timesharing: Phase I,
Multiprogramming. S7

The FASBAC System - Time
Division Multiplexing and
the PD P-S . . . • . • . . 119

A PDP-6 Language for Simulating
Complicated Biochemical
Systems • . • • • . . . • 131

PDP-siS in the High School
Classroom . • • • • • . • 49

The On-Line Use of a PDP-9
and an IBM 360/65 in a Proton
Proton Bremsstrahlung Experiment
Using Wire Chambers • . • 17

DPL - A Display Programming
Language . • 111

A Real-Time Multiple Task
Executive Program with a
Built-In Console Utility
Package for PDP-Sis and
PDP-S Computers . . . • • 123

Martin, Richard Automatic Spectrophotometric
Identification of Bacteria • 149

McGrath, T. Automatic Film Measurement
with a PDP-9. • • 27

McKeown, J. The On-Line Use of a PDP-9
and an IBM 360/65 in a Proton
Proton Bremsstrahlung Experiment
Using Wire Chambers . • • 17

McQuillin, Richard J. Computer Typesetting of
Mathematical Text: The Input

Merrill, Rick

Metcalfe, Robert M.

Millenson, J. R.

Niccolai, P. F.

Pembroke, Bud R.

Polack, David Z.

Language Problem 77

FOCAL* .• 129

Project ASC . 55

A General Language for On-Line
Control of Psychological
Experimentation. . • • . . 137

On-Line Analysis of Wire Spark
Chamber Data • • • . .• 9

PDP-siS in the High School
Classroom • . . • • • . • 49

Implementation of an On- Line
Reactive (Typewriter)
Language* • • • • • • • • 99

Rayner, John

Reimer, D.

Rigg, K. E.

Roberts, D, W.

Robinson, David M.

Sapega, August E.

Scott, Dan W.

Shipton, Harold W.

Shrager, Pau I

Simpson, R. L.

Swannack, C.

A PDP-S System for Bubble
Chamber Measurements . . 35

The On-Line Use of a PDP-9
and an IBM 360/65 in a Proton
Proton Bremsstrahlung Experiment
Using Wire Chambers. . • 17

A System for Presenting
Programmed Instruction to the
Deaf and Hearing Imparied 63

A St i mu I us- Response Programme
for Hotel Room Inventories 1

A Computer System for Electrical
Engineers. . . • • . • • 71

PDP-S Osci Iloscope Display
of Mathematical Functions
Using FORTRAN. • • • • 107

The FASBAC Remote Access
System • . • . • . • •• 5

A Tape Store for Biochemical
Data •••••••••• 145

PDP-8 On-Line Data Acquisition
System for High Energy
Physics* • • . . • • • • 15

A Real-Time Multiple Task
Executive Program with a
Built-In Console Utility
Package for PDP-sis and P
PDP-8 Computers 123

On-Line Analysis of Wire
Spark Chamber Data • •• 9

Taylor, Larry PDP-8 On-Line Data Acquisition
System for High Energy
Physics* . • • . • • • • 15

Taylor, M. M. PDP-9T Timesharing: Phase I,
Multiprogramming • . • • S7

Thomas, R. A. A Computer-Controlled System
for Automatically Scanning
and Interpreting Photographic
Spectra. • • • • • • • • 31

Thompson, J. C. The On-Line Use of a PDP-9
and an IBM 360/65 in a Proton
Proton Bremsstrahlung Experiment
Using Wire Chambers. . . 17

Van Berg, R. Automatic Film Measurement
with a PDP-9 • • • . • • 27

Wellcome, Stephen G. PDP-8 Oscilloscope Display
of Mathematical Functions
Using FORTRAN. . • • • 107

160

Mr. James Richard Dowell
Digital Equipment Corporation

Mr. John Allen Jones
Digital Equipment Corporation

Mr. W. Meier
Applied Logic Corporation

Mr. Fredr i c M. Strange
Lawrence Radiation Laboratory
University of California

Dr. Bruce J. Biavati
Columbia University

Mr. William B. Bell
Columbia University

Mr. Howard Moraff
Cornell University

Mr. Erich R. Knobi I
Cornell University

Mr. Steven L. Bard
U.S.A. Nuclear Defense Laboratory

Miss Ann G. Duffy
South Windsor High School

Dr. Dewey Johnson, Jr.
Equitable Life Assurance Society

Mr. James R. Masek
Electro-Optical Systems, Inc.

Dr. Mark G. Pfe i ffer
La Salle College

Mr. A. J. 0 1 Eustachio
DuPont

Mr. A. R. Bri ggs
E .1. du Pont Company

Mr. Dona Id R. Johnson
DuPont

Ms. Linda J. Shaffer
University of Pennsylvania

Mr. Norman Zamcheck
Leary Laboratory and Harvard
Medical School

Mr. Gregory G. Vereos
Perth Amboy General Hospital

Mr. John K. Moore
Cornell Medical Community
Computer Project

Dr. Roy W. Bonsnes
Cornell University Medical College

APPENDIX 3

ATTENDANCE

Mr. Christopher L. Cross
Carnegie-Mellon University

Dr. Henry P. Schwarz
Philadelphia General Hospital

Mr. J. N. Burns
Becton-Dickinson and Company

Mr. William Kirkham
Perth Amboy General Hospital

Mr. Norman A. Thetford
Perth Amboy General Hospital

Mr. James D. Hamm
Perth Amboy General Hospital

Miss Sylvia Blatt
N. Y. C. Department of Health

Mr. James H. Birgie
Smith Kline and French

Mr. Roy S - Taylor
Department of Defense

Mr. Richard C. Hewitt
Bell Telephone Laboratories

Mr. Howard C. Johnson
Be II Telephone Laboratories

Mr. Jeffrey H. Ku lick
Moore School of Electrical Engineering
University of Pennsylvania

Mr. Robb N. Russell
Moore School of Electrical Engineering
University of Pennsylvania

Mr. Richard N. Freedman
Massachusetts Institute of Technology

Mr. Robert Berger
Bell Telephone Laboratories

Mr. Jack Harvey
Communications and Systems

Miss Maxine Paulsen
DHEW- PHS-BDPEC- NCCDC-

Mr. Pau IE. Andree
Eastman Kodak Company

Mr. AI fred D. Ford
Department of Defense

Mr. Chari es W. B lomqu ist
Oceanics, Inc.

Mr. Lewis A. Maylath
Sm ith KI ine and French

Mr. James D. McFadden
Williamson Trade School

Mr. Michael L. Doren
Deerfield High School

Mr. Bud R. Pembroke
Computer Instruction NETWORK

Mr. William N. King
Digital Equipment Corporation

Prof. Thomas B. Day
University of Maryland

Miss Martha Sifnas
Digital Equipment Corporation

Mrs. Joan K. Fine
Digital Equipment Corporation

Ms. Jean J. Bartik
Auerbach Computer Corporation

Mr. Wa Iter C. Janney
Arthur E. Spe II issy and Associates, Inc.

Dr. Robert G. Glasser
University of Maryland

Mr. Robert R. Bishop
Digital Equipment Corporation

Mr. Lawrence Portner
Digital Equipment Corporation

Mr. Dave Friesen
Digital Equipment Corporation

Mr. William G. McNamara
Heart Disease and Stroke Control Program Digital Equipment Corporation

Mr. Ronald E. Medei Mr. John B. Wyatt, Jr.
Western Electric Company, Inc. Digital Equipment Corporation

Mr. Raymond H. Booth Mr. Stanley Joseph Goliaszewski, Jr.
Western Electri c Company, Inc. La Salle College

Mr. H. N. Longenbach Mr. David Garfinkel
Western Electric Company, Inc. University of Pennsylvania

Mr. Do Ie Hur I iman Mr. Richard Van Berg
Pr i n ceton Un i vers i ty University of Pennsylvania

Dr. Engelbert Ziegler
Max-Planck-Institut, W. Germany

Mr. Stephen F. Jackson
United Aircraft Corporation

Mr. Richard J. McQuillin
Inforonics, Inc.

Mr. Stanley E. Forshaw

Mr. Michael S. Wolfberg
Moore School of Electrical Engineering
University of Pennsylvania

Mr. Charles Drum
University of Pennsylvania

Mr. Thomas McGrath
University of Pennsylvania

Defence Research Establishment Toronto Mr. Orin C. Hansen, Jr.

Mr. Allen F. Stormont
Bell Telephone Laboratories

Mr. William C. Menke
Digital Equipment Corporation

Mr. David E. Leney
Digital Equipment Corporation

Mr. Charles H. Conley
Digita I Equipment Corporation

Mr. John Margolf
Columbia University

Mr. Douglas A. Kent
Lawrence Radiation Laboratory
University of Cal ifornia

Mr. Robert Sundberg
Massachusetts Institute of Technology

Mr. Arthur M. Krdy
Lawrence Radiation Laboratory
Un i vers ity of Co I iforn i a

Mr. Louis J. Bartscher
Minneapolis-St. Paul Sanitary District

Mr. Richard L. Curtis
Aluminum Company of America

Mr. Ralph L. Bailey
Western Electric Company

Mr. Alan Ferry
Q. E. J.

Prof. Phi I ip R. Bevington
Stanford University

Mr. Stephen G. We II come
Trinity College

Mr. Anthony J. Palmieri
Alphanumeric, Inc.

Dr. W. H. Highleyman
DATA TRENDS, Inc.

Mr. John B. Locke
Rutgers University

Yale University

Mr. Peter W. Lucas
Yale University

Mr. Frank Hugh Byers
Mass. Eye and Ear Infirmary

Mr. Thomas J. Foley
U.S. Naval Air Development Center

Mrs. Phylis F. Niccolai
Carnegie-Mellon University

Mr. Max J. Lanzendorfer
Graphic Services, Inc.

Mr. Royal M. Gibson
Graphic Servi ces, Inc.

Mr. Joseph Mass i mo
Brown University

Mr. E. W. vVhite
Be II Telephone Laborator i es

Mr. David M. Robinson
University of Delaware

Mr. R. E. Hummer
University of Maryland

Mr. Talbot Baker
Taft School

Mr. Anatole M. Shapiro
Brown University

Major Robert A. Leach
U.S. Military Academy

Mr. Michael Rossin
On-Line Systems, Inc.

Mr. William T. Lyon
Aluminum Company of America

Mr. John F. 0' Donne II, Jr.
Time, Inc.

Mr. Paul M. Skern
Sweda International

Ms. Sue Kietzer
Whirlpool Corporation

162

Mr. John Van Drasek
Whirlpool Corporation

Mr. Redmond Sage
Whirlpool Corporation

Mr. Harv Le I and
Whirlpool Corporation

Mr. Tom Allen
Whirlpool Corporation

Mr. Milton W. Petruk
Un iversity of Alberta, Canada

Mr. J. D. Dyment
Digital Equipment of Canada

Mr. G. David Singer
Night Vision Laboratory

Ms. Jean C. Rigg
New Mexico State University

Mr. David Z. Polack
University Computing Company

Mr. R. L. Simpson
Union Carbide Corporation

Mr. John Alderman
Georgia Institute of Technology

Mr. J. R. Millenson
University of Reading, England

Mr. Robert Edwin Hi II
Geotec, Inc.

Mr. Wayne T. Patri ck
Herald Publishing Company

Mr. Richard L. Mather
The Upjohn Company

Mr. Edward B. Core II
University Hospital, Michigan

Mr. Stephen F. Car Ison
Minneapolis-St. Paul Sanitary District

Mr. James A. Field
University of Waterloo, Canada

Mr. James L. Downs
Badger Meter Manufacturing Company

Mr. James J. Murphy, Jr.
Digital Equipment Corporation

Mr. Roger A. Due
Naval Ammun ition Depot

Mr. D. A. Dalby
Bedford Institute

Mr. Thomas M. Ell iott
Digital Equipment Corporation

Mr. R. LaFrance
Canadian Research and Development

Mrs. Ange la J. Cossette
Digital Equipment Corporation

Mrs. Jeanne M. Gabrish
Digital Equipment Corporation

Mrs. Rita M. Fryatt
Digital Equip~ent Corporation

Mr. Wayne G. Dengel
Digital Equipment Corporation

Mr. Garth Thomas
Ohio State University Hospital

Mr. John Elder
University of Cambridge

Mr. Robert D. Mcinnis
Digital Equipment Corporation

Mr. Redmond Sage
Whirlpool Corporation

Mr. J. G McHardy Mr. J. R. Storey
University of Western Ontario Computing Defense Research Board/DRTE
Centre

Dr. Sylvia Charp
Phi ladelphia Board of Education

Mr. Mort Ruderman
Digital Equipment Corporation

Mr. Ray Lindsay
Digital Equipment Corporation

Mr. James G. Smith
Pennsalt Chemicals Corporation

Mr. Rolf Nordhagen
University of Oslo

Dr. Arnold H. Fainberg
Pennsalt Chemicals Corporation

Mr. David B. Denn ison
Digital Equipment Corporation

Mr. Robert Fernekes
Dow-Jones & Company, Inc.

Mr. Samue I J. Wynch
RCA

Mr. Sypko Andreae
University of Cal ifornia
Lawrence Radiation Laboratory

Mr. John Seuter
Stanford University

Mr. Don Barker
Digital Equipment Corporation

Mr. John C. Smallwood
Pennsalt Chern ical Corporation

Mr. Frank Mina
Digital Equipment Corporation

Mr. Malcolm C. Bruce
N. I. H.

Mr. Anthony J. Stracciolini
University of Pennsylvania

Mr. Alex Marusak
Oak Ridge National Laboratory

Mr. Ronard A. Morrison
General Electric Company

Mr. Ron Ragsdale Mr. John Jorgensen
Ontario Institute for Studies in Education Digital Equipment Corporation

Mr. J. J. H. Park
N. R. C.

Mr. William Godwin
Educational Testing Service

Mr. Lauren Taylor
University of Pennsylvania

Mr. Arthur E. Sumner
RPA Computer Techniques, Inc.

Mr. Pau I W. Knortz
Potter Instruments Company

Mr. Wi lIiam F. Weihner
Stanford University

Mr. David Boer Cotton
Digital Equipment Corporation

Mr. Jack J. Shrager
Federal Aviation Agency

Mr. Paul Weinberg
University of Pennsylvania

Mr. O. Choi
RCA

Mr. D. F. Bottson
RCA

Mr. Frederick R. Kling
Educational Testing Service

163

Mr. Wi II iam Kiesewetter
Digital Equipment Corporation

Mr. Richard Karash
Massachusetts Institute of Technology

Mr. Alan Ricketts
Digital Equipment Corporation

Mr. Richard F. Fait
Digital Equipment Corporation

Mr. Alfred G. Delker
Pennsylvania Hospital

Mr. Donald T. Payne
Educational Testing Service

Aloysius J. Polaneczky
Pennsalt Chem icals Corporation

Mr. Herman W. Vreenegoor
NIH

Mr. Robert Margolies
University of Pennsylvania

Mr. John A. W. Richardson
Potter Instruments Company

Mr. Norman Doelling
Digital Equipment Corporation

Mr. Phi I iffe Dumont
University of Pennsylvania

Mr. A. L Boni
E. I. du Pont

Dr. R. J. Kobr in
Mobil Research & Development Corporation

Mr. Joel A. Miller
LOG IC, Incorporated

Caro I Sombers
Sombers Associates, Inc.

Bino Nanni
Digital Equipment Corporation

Mr. Frederick L. Hiltz
Cornell University

Mr. Ted Hess
Appl ied Logic Corporation

Mr. Neal Laurance
Ford Motor Company

Pauline Erickson
Digital Equipment Corporation

Mr. Rochelle Lauer
Yale University High Energy Physics
Gibbs Laboratory

Mr. Andrew L. Sz i lard
University of Western Ontario

Mr. Will iam F. Carr
University of Wisconsin Medical School

Mr. Heinz-Wolfgang Kohler
University of Wisconsin Medical School

Mr. Thomas E. Spurrier, Jr.
University of Alabama Medical Center

Claudia Gail Coun
Computer Sciences Corporation

Mr. Gerald A. Masek
Presbyterian - St. Lukes Hospital

Mr. Paul E. Lund
University of California
Lawrence Radiation Laboratory

Andre M. Gagnoud
University of Pennsylvania

Mr. Richard Bigelow
COSSECC

Mr. Pau I Stewart Shrager
University of Pennsylvania

Mr. Rod Belden
Digital Equipment Corporation

Mr .. D. W. Roberts
The Strand Hotel Limited

Dr. Bernard Migler
Behavioral Design Associates

Mr. Richard M. Merr ill
Digital Equipment Corporation

Mr. Peter P. Goldstern
Mr. Fred R. Sias, Jr. Digital Equipment Corporation
University of Mississippi Medical Center

Mr. C. K. Stone
Mr. G. E. Friend Digital Equipment Corporation
University Computing Company

Mr. Dan W. Scott
University Computing Company

Mr. Robert L. Callery
Minneapolis - St. Paul Sanitary District

Mr. August E. Sapega
Trinity College

Mr. Kenneth G. Pave I
Trinity College

Mr. Adam S. Hanauer
New York University

Mr. Russe II B. Ham
U. S. Public Health Service

Mr. D. Gerd Dimmler
Brookhaven National Laboratory

Carolyn A. Bailey
University of California
Lawrence Radiation Laboratory

Dr. Walter H. Moran, Jr.
West Virginia University

Mr. Harold L. Pearson
West Virginia University

Mr. George S. Cooper
LOGIC, Inc.

Bishnu Das Pradhan
University of Pennsylvania

Mr. David M. Forsyth
Harvard University

Karen A. Jackson
Un ited Aircraft Research Laboratories

Mr. Richard Wales Macmillian
Communications & Systems, Inc.

Kay E. Rigg
New Mexico State University

Judith B. Edwards
Computer Instruction NETWORK

Alan David Loceff
Information Control System, Inc.

Mr. David Hartsig
Information Control Systems, Inc.

Mr. Allan Be lIenger
University of Rochester

Belmont G. Farley
University of Pennsylvania

Mr. Harold E. Dixler
Nuclear Structure Research Laboratory
University of Rochester

Mr. Harold W. Shipton
Miss Barbara Williams University of Iowa
Mobil Research & Development Corporation

Mr. R. D. Benham
Batte Ile- Northwest

164

Mr. L. Richard Turner
NASA - Lewis Research Center

Mr. HaroldR. Krall
RCA - Electronic Components Division

Mr. S. L. Cooke, Jr.
University of Louisville

Mr. Joel S. Pratt
Digital Equ ipment Corporation

Mr. Boyd R. Borri II
Brogan Associates Inc.

Mr. Richard E. Wyckoff
Intertype Company

Mr. P. J. Be II
University Computing Company

Mr. D. R. Reimer
Institute for Computer Studies
University of Manitoba

Mr. John Rayner
University of Maryland

Mr. David W. Gillette
Computer Instruction NETWORK

Dr. Donald W. Webert
School of Veterinary Medicine
University of Pennsylvania

Mr. Robert Snyder
Digital Equipment Corporation

Mr. Michael Edwards
Carnegie - Mellon University

Mr. V. Michael Powers
The University of Michigan

Mr. Richard J. Dejohn
Digital Equipment Corporation

Mrs. Evelyn Dow
Digital Equipment Corporation

Miss Julia Johnson
Digital Equipment Corporation

Miss Margret Noble
Digital Equipment COrporation

Mr. John J. O'Connell, Jr.
Digital Equipment Corporation

Cary W. Armstrong
Digital Equipment Corporation

Mr. John W. Carr, "'
Moore School of Electrical Engineering
University of Pennsylvania

Mr. Ri chard Gruen
Digital Equipment Corporation

Mr. D. McArthur
Hahnemann Medical College & Hospital

Dr. Wi Iliam P. Boger
Wayne, Pennsylvania

Mr. Kirstein
Institute of Computer Science

Mr. Spencer Lauer
West Haven, Connecticut

Mr. James Pitts
Digital Equipment Corporation

Mr. Malcolm Sheinker
Digital Equipment Corporation

165

PRINTED IN U.S.A.

	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	xBack

