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PREFACE 

This 1968 Spring DECUS Symposium boosted a record attendance of 270. The two-day session included, 
along with the presentation of papers, workshops on software systems for the PDP-8, PDP-9, PDP-la, 
Education, Modu les, and a pane I discussion on CI inical Laboratory automation. The Education workshop 
was the first endeavor of the Education sub-group and it proved both informative and interesting. 

The meeting facilities provided by the Bellevue-Stratford Hotel enabled us, at times, to hold three 
simu Itaneous sessions successfu Ily. 

Papers published in this volume have been printed as received from authors with no editorial changes. 
In some cases, papers were not received in time for publication and abstracts of these papers have been 
substituted. If the omitted papers are at some time submitted to the users group, they will be published 
in the newsletter, DECUSCOPE. Reprints of papers presented here are available from the DECUS Office, 
Maynard, Massachusetts 01754. 

This proceedings also contains a list of meeting attendees, the program, and an author/speaker index. 

Special thanks to Mr Henry Sparks, University of Pennsylvania, for his able assistance in the preparation 
of the meeting and to, Professor Philip Bevington, Meetings Chairman, Professor Thomas Day, Dr. -Belmont 
Farley, Dr. Sylvia Charp, Richard McQuillin, and Michael S. Wolfberg, session chairmen. 

v 



A STIMULUS-UESPONSE PROORAt'1l1E FOR 
HOTEL n00i1 IN"VENTORIES 

D. W. Roberts, E. D. P. ~ager 
The Strand Hotel Limited, London, W. 1. 

England. 

ABSTRACT 

The policy aims fulfilled by the programme are listed and 
an outline of the original booking system is given. The 
difficulties of this system are highlighted and the new system 
is described. 

The action of a single function is detailed and the devel
opment of a single message is traced through seven phases in 
response to user requirements. The details of a useful method 
of handling dated information are given. 

The system has been extended to two other hotels. 

The purpose of this paper is to describe a some
what unusual application in the field of business 
management. It is unusual in being the first such 
application, in having only intangible benefits, and 
in having been an unqualified success. The justific
ation has always been expressed in terms of reducing 
the problems inherent in the management of a major 
hotel; the managers who now operate this system are all 
convinced that it has simplified the decision-taking 
in the control of the advanced bookings by presenting 
adequate and accurate information in an easily 
assimilated format. The unit, which was installed in 
the Strand Palace Hotel in April 1967, was the first 
time an hotel anywhere in the world had had a computer 
exclusively for its advance booking office. 

A brief description of the hotels in the group 
would be advantageous here. The hotel which had the 
first of these installations has 780 bedrooms, cater
ing for up to 3,500 guests per week, and the other 
two central London hotels in the group have between 
them a further 2,000 rooms, catering for up to 9,000 
guests a week. These two hotels have been used as 
control units for comparison of the agreed policy 
criteria for the value of the new system. The avowed 
policy aims in the hotel group can be sUIIllJE!d up very 
simply in that the percentage of beds let (the 
occupancy) should be maximised, and further, the 
proportion of the rooms which are let to guests who 
have prior written reservations (as opposed to walk
in or "chance" gue sts) should be maximi sed, wi thin 
the first constraint. There are, of course, many 
?ther criteria employed by the manager in running 
an hotel but these are the only ones relevant to 
this computer system. 

The system of controlling bookings employed 
previously in a hotel of this size has been the so
called "target" system, which consists chiefly of 
estimating the number of vacant rooms on any given 
day and accepting bookings up to that number (plus 
a few to allow for non-arrivals) and disregarding 
any information available about lengths of stay. 
This system has proved reasonably effective during 
most of the year because the trade shows a very clear 
seasonal and day-to-day pattern and managers have 

learned, by experience, how to allow for this. For 
instance, "Tuesday is the busiest night of the week", 
'there is always room on Sunday night", and similar 
maxims work very well when combined with good detailed 
knowledge of the reasons for sudden influxes e.g. 
important exhibitions, sales, etc. 

The pattern was frequently disrupted in two ways: 
a) serious departures from previous years'demand e.g. 
the World Cup football matches which resulted in fore
casts being made with no data available; b) errors of 
judgement or of forecasting from known events e.g. 
Easter 1967 fell early enough to coincide with the 
optimum marriage dates for income tax refund purposes, 
thus causing an unusually high proportion of honeymoon 
business which has a significantly greater length of 
stay than normal business. In both of these types of 
disruption serious errors (of over - or under-booking) 
could, and sometimes did, occur. It was quite clear 
that the only way to overcome this problem was to 
change from selling "targets" of vacant rooms to 
selling actual numbers of vacant room-nights (a total 
booking system). 

The "target" system of recording bookings was 
based on charts on which one mark was made for each 
booking (on the expected date of arrival). This 
involved an average of 350 marks per day. It seems 
likely that about 5% of these were errors of one type 
or another. 

In the total booking system each of these book
ings would require, on average, about three marks each 
on separate booking cards, thus raising the volume of 
work to perhaps a thousand marks a day, and it is very 
likely that the error rate wruld have increased ex
ponentially rather than linearly. It was therefore 
decided that it would be impracticable to run a manual 
total booking system for an hotel of this size 
-because staff sufficiently intelligent to perform this 
task accurately would not be prepared to perform so 
monotonous a task. The exponentially increasing error 
rate is equivalent initially to an asymptotic mono
tonically decreasing efficiency function. 
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In neither of these systems is any attempt made 
to allocate specific rooms to guests prior to their 
arrival as a non-arrival proportion of 10% of expected 
guests is quite normal; figures as high as 40% have 
been known. This simplifies the problem slightly, but 
nevertheless it was felt that a form of electronic aid 
was necessary. The information necessary for a total 
booking system was available to the staff concerned 
but there was no method of retreiving and reducing 
this data into a usable form. 

2 

The original plan for this aid involved a purpose
built machine, containing approximately one thousand 
words (365 days, each containing three classes) of core 
store to be used as counters of available rooms with 
hardware logic to add and subtract bookings and can
cellationso With the advent of the PDP-8/S, a stored
programme computer capable of providing this service, 
and yet cheap enough to be used exclusively for this 
purpose, was available on the market. One of these 
was ordered in January of this year and we took delivery 
early in March of a basic 4K machine with a teletype. 
This machine is a 12-bit word, serial logic machine 
with a cycle time of 6 microseconds costing, in the 
table model, £4,357 including duty. The programming 
was done in the machine's mnemonic assemberlanguage. 
All input-output is via the ASR-33 teletype in the 
configuration we use. 

The programme performs several separate and 
distinct functions in a stimulus-response mode on 
data stored in a diary allocated 2008 to 37038 0 Each 
day in the diary consists of five words, word one 
containing the date and day of week, word two the 
available single rooms, word three the available 
double-bedded rooms, word four the available twin
bedded rooms and word five the available three-bedded 
rooms for that day. 

The most important function is BOOK. The message 
for this operation is initiated by the operator enter
ing B on the teletype. The computer responds by 
typing BOOK, provided that this is the first letter 
of a message entered. The numbers and classes of 
rooms are then entered and typed back by the machine. 
The operator enters F and the computer types FROM, 
the date of arrival is then entered and typed. The 
operator enters ALT MODE (a non-printing key) and 
the computer replies TO. The departure date is then 
entered and typed back. The end-of-message signal is 
given by a full-stop. The message is stored (using 
only characters entered by the operator) in locations 
3704 onwards, up to 3m. The message is then 
chec~d for validity and ~he rooms booked subtracted 
from the numbers available. In the event of the number 
of available rooms of any class on any day passing pre
arranged thresholds, warning messages are typed to the 
operator, instructing her to refer the particular days 
to the Manager for possible closure of bookings. 

Since this paper is all applica:tiviis paper I 
go over the system development in some detail. 

--.: , , 
..... ..L..L 

The inception of the project grew out of a brief 
to examine the systems in use in the hotel in the light 
of modern management methods and equipnent. It was 
evident in the early stages of this, study that advance 
bookings were a source of many management problems, 
and that although a total booking'system would solve 
many of these problems it was impossible to use such 
a system satisfactorily using manual methods. 

A study group was set up consisting of the Hotel 
Manager, the Assistant Manager, the Bookings Supervisor, 
the O.R. Manager, the 0 & M Manager and myself (then, 
Systems Analysis Manager) to investigate the problem 
of introducing a total booking system and from this 
group a recommendation was made to purchase a PDP-8/S 
to maintain an inventory of rooms available for a year 
ahead. 



The initial installation went into full use 
during April, 1967 and the hotel bookings have been 
controlled entirely on the basis of the computer
provided information since the first week in May. 

During the early stages of implementation 
various amendments were made to the basic programme de
sign to accommodate the desires of the staff of the 
office using the machine, and the managers controlli~g 
them. These I shall demonstrate by tracing one 
message's development through the various phases of 
programme amendment. 

1. The original warning messages from the 
programme to refer single bookings on 20/8 urgently 
to the manager for action as they are 5 rooms over
booked. This is the message as it was designed in the 
first instance. 

2. The first modification was to eliminate 
each crossed zero and replace it by the letter 0 
as it was claimed that crossed zero would confuse 
the staff. This amendment was introduced at the 
planning stage before the installation of the machine. 

3. Within a few days of introduction of the 
system double spacing of these messages was eliminated 
because the messages were quite legible single spaced. 

1) URGENT 2¢/8 SINGlE -5 

2) URGENT 20/8 SINGlE -5 

3) URGENT 20/8 SINGlE -5 
4) U 20/8 S -5 
5) U 20/8$ S -5 
6) 20/8$ S -5 
7) 

Further amendments to this message are, I now 
feel, unlikely, though we may decide that it is totally 
redundant. The indications from detailed discussions 
with the managers are, however, that this is improbable. 

The derivation of the date and day of week is 
identical throughout the programme and is dependent 
on a subroutine called I~OUT which interprets a con
densed bit-pattern date from the diary of the machine. 
This consists of a single word split into three fields: 
bits 0 to 4 inclusive contain the day number in the 
month, bits 5 to 8 inclusive contain the month number 
and bits 9 to 11 inclusive contain the day of the week 
(1 for Sunday, 2 for Monday, etc.). If the day-of~week 
field contains all zero bits the day-letter is printed 
as N and if the entire word is zero the programme 
recognises this as a non-existent day. This is useful 
because it enables us to have a 372-day year (12 months 
each of 31 days) and simply suppress any operations 
for non-existent days. 

DAY NUMBER :-IONTH NUMBER DAY OF WEEK 

FIGURE 4 

FIGURE 3 The address of a given date in the diary is 

4. One second per line was saved some weeks 
later by reducing the message by 10 characters and 
printing only the initial letters of the URGENT and 
the SINGlE. This step had been contemplated initially 
but was delayed until the users were familiar with the 
system messages. 

5. The day of week was introduced into all 
computer-generated dates on the specific request of 
the manager who chiefly took decisions based on the 
machine. The codes used are $ for Sunday, M for 
Monday, ? for Tuesday, W for Wednesday, T for 
Thursday, F for Friday and S for Saturday. 

6. Since the reference of dates to the manager 
for action was never immediate the degree of urgency 
indication was next deleted, together with a sizeable 
programme sector which performed the relevant tests. 

7. Finally, the messages were all made optional 
on the action of Switch 11 and are now only printed 
out when they are called for by the manager for 
decision-taking sessions; typically these occur two 
or three times during the course of each day. 
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therefore (37*(M-l)+D)*5+175 where M:Month and D:Day 
in octal. 

The extension of the use of this system to the 
other two major hotels in the group took place last 
autumn, taking advantage of the seasonal luI] 
immediately after the Motor Show. 





THE FASBAC REMOTE ACCESS SYSTEM 

Dan W. Scott 
Manager, Remote Processing Services 

Technical Services Division 
University Computing Company 

Dallas, Texas 

ABSTRACT 

FASBAC is a conversational system which facilitates 
setting up runs. for the University Computing Company 
Direct Access Computer utility, via remote low speed 
terminals in the customers' offices. It is also the 
basis for a general-purpose direct access file sys
tem. 

SUCCESSFUL TIME SHARING 

Time sharing has become within the com
puting world the subject of lengthy de
bates on milli-second response time, 
swapping strategies, exotic memory manage
ment techniques, and whether bits should 
be colored blue or green. Were these 
truly critical parameters, the world would 
still be waiting for its first commercial 
quick response remote access system. For
tunately these are not the real 1ssues, 
since time sharing has become highly suc
cessful with what are regarded as primi
tive systems. It would be well to examine 
the reasons behind the success. 

First, it should be noted that time 
sharing and batch processing systems have 
two things in common: they use essential
ly the same kind of hardware) and they are 
both shared by many users. 

Unlike batch processing, however, time 
sharing has brought convenience and sim
plicity to computing. 

The successful time sharing system differs 
from the typical batch processing system 
in four significant areas. 

1. It offers convenient physical access. 

2. It offers quicker response. 

3. It offers simple communication in both 
programming and control languages. 

4. It offers program and data storage and 
editing facilities. 

Simple communication with the computation
al facility is obviously attractive to the 
commercial user of calculational services; 
but, historically, progress in making 
general purpose systems easy to use was 
relegated to a secondary priority for many 
years after the appearance of FORTRAN. 
However, in specialized applications area~ 
such as numerical control, report genera
tion, CPM/PERT, and circuit analysis, new 
languages reduced the communication pro
blems between the user and the computer. 
Finally, JOSS, developed by the RAND 
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Corporation, and BASIC, developed by Pro
fessor Kemeny of Dartmouth College, ap
peared. Both the JOSS and the Dartmouth 
BASIC Systems reduced greatly the impedance 
mismatch between programming systems and 
the general engineering user. 

These systems demonstrated that an accept
able commercial system must not only be 
physically convenient, but must be intel
lectually approachable as well. A sense 
that the machine is non-critical is im
portant; these direct access systems ap
pealed to many customers because errors are 
more rapidly corrected in privacy; a mis
take is pointed out by the computer with a 
slap on the wrist, instead of the face. 

As important as well thought-out program
ming languages, are simplified, well 
thought-out text editors and file systems. 
This element is not even now widely ap
preciated: the advantage to a user of 
ready access to calculational power, and, 
at the same time, of ready access to the 
power of computer-aided program filing, 
data filing, and editing. This file manipu
lation facility is the very foundation which 
makes simplicity technically attainable in 
the successful general purpose, remote ac
cess, computation system. 

So, people are willing to pay for access to 
computational facilities. But this access 
must be both physically and intellectually 
convenient, and must apply as much as pos
sible to all aspects of the computer utili
ty business--commercial as well as techni
cal, filing as well as computational. In 
summary, these requirements must be satis
fied: reasonable programming languages, 
reasonable file languages, convenient ac
cess to the facilities, and for many appli
cations, quick response. 

THE UNIVERSITY COMPUTING COMPANY 
COMPUTER UTILITY DESIGN 

There are several approaches to remote com
puter sharing design. On the one hand, we 
have the systems typified by the GE-265, 
the Dartmouth GE-625, and the SDS-94d 
small-scale time sharing systems. What 



these facilities do, they do well; how
ever, they are of limited value to many 
potential users because of the limited 
resources allocated to each user. The 
objective of other designs has been to 
maximize the usefulness of a large pro
cessor. The central processor and its 
peripheral storage is intended to be fully 
available to each remote user, at the same 
time that it is carrying on conversations 
with all users. But the centralized ap
proach has two drawbacks: (1) Complex 
and expensive implementation; (2) Poor 
cost/performance ratio. 

Our approach with the UCC FASBAC design 
is to decentralize the large-scale pro
cessing; to distribute functions among 
subsystems; to be eclectic, selecting 
small, slow, processors and memories to do 
those things they do more economically, to 
allow the user of the large processor its 
unrestricted power. We combine the two 
implementation approaches just mentioned. 

The UCC direct access design comprises 
three independent subsystems; the large
scale UNIVAC 1108 subsystem for compilation 
and numerical computation, the COPE remote 
terminal subsystem for high-speed card in 
put and print output, and the FASBAC re
mote terminal subsystem for conversational 
input and output editing. The UCC Direct 
Access System might well be called a 
large-scale time sharing system. 

Two of these subsystems have required 
major development efforts by the University 
Computing Company for their creation, and 
all require substantial continuing de
velopment. 

In order to supply physical access for 
large volume work, we have put high-speed 
card reader and printer terminals as close 
as possible to the user: this is our COPE 
communications facility. Second, we are 
developing a low volume communications fa
cility~ FASBAC, for file manipulation and 
text editing. This conversational iext 
editing facility uses low to medium speed 
terminals in the users' offices and mass 
storage at the UCC utility center, and is 
connectable on demand to the 1108 and to 
the high-speed terminals. 

The COPE subsystem mUltiplexes remote 
high-speed card readers and printers into 
the UNIVAC 1108 (Fig. 1). Figure 1 is 
simplified, and does not show, for example, 
the COPE communications controller. Both 
this central multiplexor and the remote 
terminal controllers use Digital Equipment 
Corporation PDP-8 processors. The COPE 
development is proprietary to UCC, but was 
a natural outgrowth of the UNIVAC 1107 
EXEC-2 remote 1004 facility. However, 
quantitatively;" its performance to cost 
ratio is much better. COPE provides un
restricted access to the 1108 when masses 
of data are to be moved. The very speed 
of the data transfer inhibits, of course, 
meaningful dialogue with a person. 
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THE FASBAC SUBSYSTEM DESIGN 

As we have just seen, COPE facilitates bulk 
input and output of files by readers and 
printers which are close to the customer. 
However, file editing, output file browsing, 
input file corrections--the low volume, con
versational elements of accomplishing jobs 
--are done via the FASBAC Teletype termin
als. 

FASBAC has as its objectives the increase 
in usefulness of the powerful UNIVAC 1108 
systems to the low volume conversational 
user, and the provision of a basis for im
mediate remote access to bulk storage. 

Technically, FASBAC is simply a communica
tions-oriented text editing facility with 
bulk storage (Fig. 2); that is, it has a 
file system for mass storage, it has edit
ing programs, and these facilities are 
conven~ently available to individual cus
tomers through remotely located terminals 
which time-share a small central processor. 

Text can be entered, stored, retrieved, and 
manipulated via low-cost, low-speed termin
als suitable for text entry and display. 
This text may also be input to or output 
from the UNIVAC 1108 processor. The pro
cessing by the 1108 is then in its normal 
batch mode of scheduling, with multi-priori
ty queueing. To the 1108, the PDP-9 pro
cessor looks like a card reader and printer. 

In addition, FASBAC terminals can indirect
ly access the COPE terminals through the 
1108 (Fig. 3). 

The constraints of the FASBAC subsystem 
must be observed: low volume input, low 
volume output, and low volume file pro
cessing (even though the files themselves 
can be large). Because of the relatively 
small memory of the PDP-9, quicker response 
to sequential processing of large files is 
obtained when the processing is done by 
the large-scale machine. 

The first objective of FASBAC is to pro
vide convenience and quick response to the 
large-scale computer programmer. The files 
which he manipulates via FASBAC in a con
versational mode are UNIVAC 1108 program 
files and data files to be executed by the 
large-scale processor. Formerly, users had 
to edit or control the editing of their 
files by means of physical manipulation of 
punched cards. FASBAC automates these pro
cedures of entering and updating, doing 
away with the constraints of physical unit 
records, and making the file editing fa
cilities context oriented. The user then 
has personal access to the UNIVAC 1108 with
out an operator being required for the 
mechanics of program and data entry. 

The text editing programs include both line
replacement methods, as used in JOSS and 
BASIC, and context-replacement methods, as 
used in the MIT, DEC, and other editors. 
In addition, FASTRAC, a re--entrant resident 



interpretive program, is used for general 
purpose text manipulation. The choice of 
methods is left to the preference of the 
user. 

The file system is straightforward) like 
that of BASIC, from the viewpoint of file 
naming, but includes more features to con
trol access. An unusual feature allows 
efficient use of a file both for sequen
tial and random access purposes. 

Now for a description of the implementa
tion details of these FASBAC features. 

In contrast to the centralized approach) 
the FASBAC design has a hierarchy of pro
cessors. The control of the conversa
tional complex is the operating system and 
the programs executed in the PDP-9. All 
the seemingly intelligent and friendly 
conversational aspects of character and 
file manipulation are carried out by the 
small processors, not the 110B. 

The PDP-9 subsystem is a large configura
tion for its model. It has 32,000 words 
of I-microsecond lB-bit memory, all pro
cessor options) a half million word drum 
with B.95 millisecond average latency, a 
1,000 card pe~ minute reader, a 600 line 
per minute ASCII printer, 3 DEC magnetic 
tapes, and high speed paper tape I/O. The 
PDP-9 is the heart of the conversational 
system. It directs all functions and con
trols directly all I/O devices except 
those low speed devices connected to the 
PDP-B. 

The PDP-B supplies the low· speed communi·
cations interfaces. It is connected to 
the PDP-9 through a high-speed data chan
nel. Each PDP-B can handle the equivalent 
of 32 Teletype circuits) each 110 baud, 
or any of three other speeds. It has no 
line bit buffers) and samples each line 
under program control at B times the line 
bit rate. This feature allows a variety 
of data formats and clock rates. The PDP-B 
also does character transliteration, moni
tors the lines, answers the phone, hangs 
Upj and dials out. The drum buffering of 
the messages is done by the PDP-9. A 
PDP-8 can also be located remotely to the 
PDP-9, and used as a line concentrator, 
using a duplex voice circuit. 

ASCII character codes are used in the file 
system and from the Teletype terminals 
through the PDP-9 up to the UNIVAC 1108 
interface. The UNIVAC 110B software pre
sently requires six-bit Fieldata code. 

The mass storage device is the UNIVAC 
FASTRAND II drum. A multi-access con
troller, which also does drum address 
translation, was developed by the Uni
versitj Computing Company and Wetsmantel 
Associates. This controller allows the 
UNIVAC 110B and two PDP-9 processors to 
share access to the FASTRAND II drum. It 
also provides separate duplex paths for 
core to core processor communication, be
tween the 110B and two PDP-9's. 
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The UNIVAC 110B subsystem is reserved for 
the computational muscle of the complex. 
From the viewpoint of the PDP-9, it is used 
as a peripheral device, for unrestricted 
batch queued work on the 110B. Note that 
the :conversational user enters jobs only 
indirectly into the 110B, via the PDP-9. 

HARDWARE SELECTION 

Time-sharing hardware is essentially simi
lar to batch processing hardware. There 
are certain differences of emphasis. In 
addition to general criteria, such as an
ticipated reliability, maintainability, 
and satisfactory delivery schedule, the 
cost of the system must be evaluated in 
terms of other criteria regarding perform
ance: 

First, the processor must have a good means 
of handling I/O. For example, the inter
rupt scheme must be efficient, and allow 
multiple, dynamically changeable priorities. 
A variety of various speed devices must be 
attachable at a cost, in each case, ap
propriate to the device's requirements. 
These devices range from bulk store through 
swapping drums to large numbers of slow
speed terminals of various speeds and line 
disciplines. 

Secondly, a variety of communications
oriented interfaces must exist for the sub
system. The low-speed modem control must 
handle dial in and dial out, as well as 
private wire service. There must be high
speed modem interfaces. 

The processor and memory word size must 
handle efficiently characters of at least 
seven bits each, as this size character is 
better for conversational terminals than 
the six bit character. The choice of word 
size is also dictated by the requirements 
of interfacing with the 36-bit UNIVAC 110B. 

Finally, the designer of the conversational 
processor must have made the appropriate 
economic trade-offs, for a given total 
cost, between processor and memory speed on 
the one hand, and elaborateness of the in
struction repertoire on the other hand. If 
there are to be many simultaneous users, 
lots of memory is required; but the ele
mentary operations performed by the pro
cessor are rather simple-minded. Therefore, 
it is essential for the designer of an 
economic processor not to sacrifice memory 
size and speed for an elaborate instruction 
set. 

In summary, the criteria for the FASBAC 
processor hardware involved the exercise of 
judgment, to form an opinion regarding the 
final cost/performance ratio of a configu
ration, as of a certain date, but using 
different criteria than the usual ones of 
arithmetic capability. Needless to say, 
the ideal hardware was not found. 

CONCLUSIONS 

The major engineering advantage of the UCC 



FASBAC design concept is the decoupling 
of many of the conversational elements 
of remote access from the highly efficient 
batch processing 1108 and the COPE high
speed card readers and printers. This 
master/slave design approach has been used 
in about 80% of the successful general 
purpose time-sharing systems of the past. 
We are just pushing the concept a little. 
We feel that this decoupling from the 
large, expensive, processor is the only 
economically rational approach to give 
conversational access to a major computer 
such as the UNIVAC 1108. Quick reaction 
to a ~eys-t ro ke is no t economical wi th the 
same expensive processor and memory that 
can also invert a hundred by a hundred 
matrix in-~ few seconds. The hierarchy 
of processors and memories is a present
day econom~c necessity. 

It has been demonstrated in the software 
area that. several stages of impedance 
matching are necessary between the user 
and the computer system. The UCC Direct 
Access utility utilizes stages of im
pedance matching in order to handle ef
ficiently-the wide range of computer 
applications which today's users create. 
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ON-LINE ANALYSIS OF WIRE SPARK CHAMBER DATA 

P. F. Niccolai, R. H. Bicker, M. Edwards, and C. Swannack 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

ABSTRACT 

A PDP-7 background/foreground mode of time sharing 
for on-line analysis of wire spark chamber data will be 
discussed. The background mode analyzes a representative 
sample of wire spark chamber data in the time available 
between interrupts from the wire spark chamber logic, an 
interface between the wire spark chambers and the.PDP-7. 
The foreground mode logs data from the wire spark chamber 
logic onto magnetic tape. The experimenter is given con
trol of the cyclic operations via the Teletype keyboard 
and may interrupt the program at any time to retrieve 
the output from the background mode. The particular 
analysis required from the background mode must be de
cided prior to load time and selected from the programs 
stored on DECtape. This program will be discussed as 
applied to pion absorption by light nuclei experiment at 
the Carnegie-Mellon University, Nuclear Research Center. 

INTRODUCTION 

The Carnegie-Mellon University Nuclear Re
search Center has built up a flexible hardware 
system for utilizing wire spark chambers, the 
center of which is a Digital Equipment Corporation 
PDP-7. Figure 1 illustrates the expansion of the 
basic PDP-7 with 8K of memory to include the fol
lowing items. 

1. Two TU-55 transports with the 550 
control. 

2. A sequential/random access Ampex core 
memory with 8192, 18 bit words and a cycle time 
of 1.5 ~sec. 

3. An Ampex TM-ll IBM compatible magnetic 
tape transport with a speed of 120 ips and a re
cording density of 556/800 bpi. The transport is 
now hard wired at 556 bpi. The magnetic tape 
control was built by laboratory personnel and 
is essentially similar to DEC's 57A magnetic 
tape control with the exception of unit and 
density selection options. 

4. Anelex line printer - 647A option, 
300 lpm. 

5. A Houston Omnigraphic Model 6650 
incremental plotter with a speed of 3 inches 
per second. 

6. An interface between the ferrite core 
wire spark chambers and the PDP-7, henceforth 
referred to as the wire spark chamber logic 
(WSCL). The WSCL will scan 4000 wires in 1 
msec. 

7. We also have on order a Tektronix 611 
storage display with a screen size of 16 x 21 cm. 

This equipment and the ferrite core wire 
chambers are presently being used for the pion 
absorption by light nuclei experiment and will 
later be used for scattering experiments. 
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The laboratory's future hardware plans in
clude the addition of a magneto strictive spark 
chamber readout system for experiments conducted 
at larger accelerator sites. 

The repetition rate for a wire spark chamber 
experiment may be as high as 2000 events per 
second. At this repetition rate an experiment may 
typically consist of several million events, each 
with 100 numbers. The all important advantage of 
an on-line computer is its capacity for monitoring 
the performance of the apparatus and immediately 
analyzing the results of the experiment. Prompt 
feedback to the experimenter facilitates time
saving alterations of experimental parameters. 

A complete and immediate analysis of each 
event would require large blocks of time on a 
large scale computer and at a high data transfer 
rate. Thus, this laboratory's economic alterna
tive was the PDP-7, which we use to record the 
digitized WSCL readout on magnetic tape while cal
culating randomly sampled events. We call this a 
background/foreground mode of time sharing. Pro
cessing random events is the background operation. 
Data logging is the foreground operation. 
(Figure 2). 

The software which we are currently engaged in 
programming is a set of program modules which may 
be selected by the experimenter at load time. He 
will either create a new program by typing in the 
names of available program modules displayed on 
the CRT or retrieve a previously created program 
from DECtape. 

OPERATIVE SOFTWARE MODULES 

These independent modules are similar in 
structure to FORTRAN subroutines and most of the 
background mode program modules are in our FORTRAN 
library for post-run analysis - the main difference 
being in the I/O handling. 



Each module has 3 paths: 1) initialization, 
2) analysis, and 3) a hard copy output cycle. Its 
path is selected by the main program flow in com
munication with the interrupt system. The argu
ment list of each module consists of a set of 
global parameters which are typically the path 
selector parameter, the location of data arrays 
input to the output from a given module. 

Foreground Modules 

The first module selected by the experimenter 
must always be the foreground module, two of which 
are currently in our library, CHAMIN for the fer-
rite core WSCL input data and MAGIN for 
the ma~netic tape input of data. The initializa
tion p~th of th~ for~ground modules sets up the 
program interrupt service routine. After the 
first pass, the program cycles through the back
ground modules, returning to the foreground module 
only to service interrupts from the wire spark 
chamber logic (CHAMIN) or to load external 
memory from a magnetic tape record (MAGIN). 

Both CHAMIN and MAGIN use the external 
Ampex memory as an I/O buffer. CHAMIN loads data 
from the WSCL into the accumulator, from there into 
the external 8K memory and finally into the one 
event buffer. (Figure 2) Although a hardware flag 
is associated with each WSCL word, an entire event 
is read into external memory and the one event 
buffer after each WSCL interrupt. The mean time be
tween the formation of a data word in the WSCL, 35 
~sec, is less than the time required to process 
instructions for storing each data word in its 
appropriate areas of memory and dismissing the 
interrupt. The filling of the one event buffer 
sets a software' flag which is monitored by the 
background program only as it requires information 
for its process buffer. The filling of the pro
cess buffer from the one event buffer is done by a 
background module and necessitates the turning off 
of the program interrupt. Before dismissing the 
CHAMIN foreground module, a check is made on each 
event to determine the need for dumping the con
tents of external memory onto a record of magnetic 
tape. The dumping of external memory onto mag
netic tape is done via the gather write mode of 
the 57A interface and takes approximately .7 
seconds per record which includes time for start-up, 
writing, back spacing, and re-reading data for 
verification. 

MAGIN fills the external memory via the 
scatter read option of the 57A interface. The 
one event buffer is then filled from the external 
memory instead of from the WSCL as in CHAMIN. 

Background Modules 

Before proceeding to some typical back
ground modules, a description of the WSCL data 
word and the geometry of the planes is in order. 
The WSCL data word is 18 bits, 4 of which are 
used for flags and 14 of which are used to locate 
the wire. The number of words per event is 
variable due to multiple sparks or no sparks in a 
chamber. Two types of chambers are currently in 
use at the Nuclear Research Center; 1) beam cham
bers and 2) range chambers. Beam chambers are true 
wire spark chambers in that the ground plane of 
each consists of parallel wires spaced at 20/ inch. 
They are used to detect the precise location of a 
particle track. The range chambers measure a 
particle's energy by its range. All that is re-

10 

quired of these chambers is an indication that a 
particle has passed through a given gap. The plane 
for each gap is divided into three concentric squares 
whose areas are labeled middle, guard, and outer. 
(Figure 3). 

The flag bit assignment for both types of 
chambers is as follows for the given bit on a 1: 

BIT 

a 

1 

USE 

Flags the presence of'a pair - two 
adjacent wire sparks in a beam 
chamber or two successive middle, 
guard or outer areas going off in 
a range chamber (as contrasted to 
two adjacent wires sparking in a 
beam chamber). 

Flags the presence of a triple -
three adjacent wires sparking in the 
beam chambers or three adjacent areas 
in the range chambers. 

2 Flags the first word of an event. 

3 Flags the last word of an event. 

Our beam chambers average approximately 1.5 
wires per spark and, since approximately 50% of our 
data contains pairs and triples, the reservation of 
bits a and 1 to flag pairs and triples respectively, 
saves a corresponding amount of magnetic tape when 
logging data. It also considerably simplifies the 
spark configuration background module. 

The remaining 14 bits are used to denote the 
wire number (4 bits - 16 wires per group) and group 
number (10 bits - 1024 possible groups). A given 
chamber has a variable number of groups. 

A data buffer, referred to as the geometry 
buffer, adapts all program modules to a given 
chamber geometry. The data buffer is split into 
two parts, 1) the beam chamber descriptors, and 
2) the range chamber descriptors. 

The beam chamber descriptors have the follow
ing 18 bit format: 

BIT 

a 

1 

USE 

I-flags the end of a segment (cluster
ing of chambers along a straight line) 

a-flags a horizontal chamber 
I-flags a vertical chamber 

2-8 reserved to indicate the spacing be
tween chambers if it varies - they are 
currently spaced equidistantly 

9-18 last group number for a given chamber 

The range chamber descriptors are essentially the 
same, except that bits 1 and 2 are used to in
dicate the presence of a middle, guard or outer 
area, with bits 3-8 reserved for the gap size. 
Figure 4 illustrates the chamber configuration for 
the pion absorption by light nuclei experiment. 

The main program flow depends upon the order 
in which the background modules were selected and 
the order of selection, as well as communication 
with the interrupt service routine, determines the 



path through the background modules from initia
lization to analysis to output. The cycling of 
the background mode is terminated by a ~eyboard 
i~errupt when the experimenter salects either 
1) the beginning of the output cycle, # or 
2) a return to the loading phase by typing a $ 
on the keyboard. The background mode is also 
automatically forced into the hard copy output 
cycle for overflowing the event counter or when 
the end of the magnetic tape is reached. 

The currently operative background modules 
are primarily of a maintenance nature. Complete 
kinematic analyses are performed during post 
run analysis on both the PDP-7 and the Univac 1108. 
The background modules operational on line are 
SEVTB, WIRMAP, CONFIG, EFFB and DEVB. 

SEVTB monitors the one event buffer, fills 
the process buffer from the one event buffer, and 
computes single.number data such as the total 
number of events analyzed and the number of blank 
events. This module exits only after processing 
a non-blank event with a monotonically increasing 
set of numbers. 

WIRMAP computes a histogram of the number of 
times each wire is sparked, thereby giving an 
immediate indication of such malfunctions as 
group drivers and sense amplifiers in the WSCL. 
Output from WIRMAP may be selected on both the 
line printer and the plotter. Its input data is 
the path selector, the process buffer and the 
geometry buffer. Its output data is the wire map. 

CONFIG calculates the configuration of the 
sparks in a given chamber and forms a histogram 
which counts the number of blanks, singles, pairs, 
triples, quadruples, 2-separated, 3-separated and 
others in each chamber. CONFIG also computes the 
co-ordinates for a given set of horizontal and 
vertical wire numbers. Thus its input data is 
the path selector, the process buffer and the 
geometry buffer. Its output data is the con
figuration histogram and the co-ordinate data 
for each plane. 

EFFB computes the efficiencies of the beam 
chambers. Its input data is the path selector, 
the set of co-ordinates for each plane and the 
geometry buffer. Its output data is the efficiency 
calculation for each plane. 

DEVB is used for a cluster of 3 beam chambers 
to compute the deviation of the middle chamber from 
a straight line. DEVB then computes a histogram 
of deviations, ± 4 wires from a straight line, for 
each chamber. The step size is quarter wire num
bers. Its input is the co-ordinate data calculated 
in CONFIG, the path selector and the geometry 
buffer. Its output data is the deviation histogram& 

The list of both foreground and background 
modules is open ended. We are currently operating 
with DECTRIEVE and the basic software for the PDP-7 
to prepare, assemble, and load our modules and have 
been awaiting the PDP-9 advanced software, in 
particular MACRO-9 before completing the executive 
which will select and load our program modules from 
DECtape. We are also awaiting the arrival of the 
Tektronix scope display. Consequently the user must 
now prepare a paper tape with a list of the program 
modules and their arguments, and a paper tape with 
the geometry buffer. Finally he must select the 
appropriate paper tape sources for the modules and 
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macro-definitions before obtaining an absolute 
binary from the PDP-7 symbolic assembler. The only 
changes to the PDP-7 symbolic assembler which have 
been made are a tailoring so that it fits on the 
DECTRIEVE system and a modification of the TEXT 
pseudo to generate 6 bit ASCII (eliminates need for 
the wordy teletype package in our system). The 
basic Editor has also been altered to fit into the 
DECTRIEVE system, output a page on the line printer, 
and use ASCII as its normal I/O mode. All absolute 
binaries are compatible with DECTRIEVE. 

FUTURE SOFTWARE DEVELOPMENT 

The executive as it is being written will rely 
upon a bootstrap in the upper portion of memory to 
retrieve the executive itself. The loaded executive 
would first inquire about the preservation of 
external memory and any portion of internal memory 
which should be stored in DECtape either as a per
manent part of the system or temporarily. The 
executive would then list on the scope display, pro
grams capable of fitting into available memory. 
Selections would be made from the teletype by typing 
a single alphanumeric call character displayed with 
the program name. The display .list would be up
dated after each selection or a subsequent page 
displayed if a carriage-return were typed in lieu of 
any displayed selection. Program modules will be 
checked before displaying their name to eliminate 
those whose individual memory requirements exceed 
the area remaining. Arguments required by the pro
gram modules will be inquired of the experimenter 
as each program module is selected. All output 
from the executive would be on the scope display, 
all input via the teletype keyboard of DECtape. 
Teletype input into the executive is for non-routine 
runs or experimental variations. Routine pro
cedures would be prepared on pre-punched paper tape 
and read onto a DECtape file. 

The selection procedure will be terminated by 
the experimenter or the executive itself when all 
remaining program modules individually require more 
memory than remains. The program modules will be 
stored in external memory after retrieving them from 
one pass over_DECtape, building up an image of the 
internal 8K memory. After building up the program 
in external memory a map will be output and con
trol transferred to a resident program stored just 
below the bootstrap which will load the operational 
program from external memory into central core 
filling in absolute addresses thereby destroying 
the executive. The executive program may be re
trieved at any time by its resident bootstrap by 
restarting the computer at the bootstrap starting 
address or typing the $ when running a program 
loaded via the executive system. 

We have delayed finalizing this system in 
order to avoid a duplication of effort in writing 
a relocatable macro-assembler and believe once 
MACRO-9 is working on our PDP-7 that the major 
portion of the software development will be the 
writing of a loader compatible with our proposed 
executive. 

* This work has been supported in part 
by the U. S. Atomic Energy Commission, 
contract AT(30-l)-882. 
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PDP-8 ON-LINE DATA ACQUISITION SYSTEM FOR HIGH ENERGY PHYSICS* 

Paul Shrager and Larry Taylor 
Un iversity of Pennsylvan ia 

Phi ladelphia, Pennsylvania 

Abstract 

This presentation will be a description of an on-line data acquisition 
system for magneto strictive spark chamber readouts in high energy 
physics. The system outputs to an incremental magtape un it and CRT 
display tube. The system includes a real-time clock, high speed 
paper tape reader, 24-channel A-D converter for experimental para
meter monitoring. 

In addition to data acquisition and output data verification, simple 
on-line analysis is performed, including histograms showing distribution 
of sparks in chambers. The oscilloscope display includes a reconstruction 
of the elementary particle event that occurred in the spark chamber. 

*This paper was not received for publ ication. 
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THE ON-LINE USE OF A PDP-9 AND AN IBM 360/65 
IN A PROTON-PROTON BREMSSTRAHLUNG 

EXPERIMENT USING WIRE CHAMBERS 

D. Reimer 
Institute for Computer Studies, University of Manitoba, Winnipeg, Canada 

and 
J. V. Jovanovich, J. McKeown, and J. C. Thompson 

Physics Department, University of Manitoba, Winnipeg, Canada 

ABSTRACT 

The system allowing conversation between two com
puters (PDP-9 and IBM 360/65) and an on-line data 
analysis from a wire chamber experiment is described. 
Wire chambers and scintillation counters are inter
faced to the PDP-9 which is connected to the IBM 
360/65 via a standard DEC high speed data link. The 
PDP-9 performs preliminary analyses and selection 
of detected events. A FORTRAN program residing in 
a small partition of the 360/65 memory completes 
kinematic analyses of events accepted by the PDP-9, 
stores the results on magnetic tape, and returns 
formed histograms to the PDP-9 for visual display 
or graphical plotting. 

INTRODUCTION 

The two computer system at the Univer
sity of Manitoba cyclotron is composed of a 
PDP-9 linked to an IBM 360/65 via a standard 
DEC high speed data link. The PDP-9 part of 
the system and its applications in three 
different ghysics experiments was described 
previouslyl. In this paper the use of both 
computers in the proton-proton bremsstrah
lung experiment is discussed. A simplified 
schematic presentation of the experimental 
setup (the wire chamber spectrometer and 
computer system) is given in Fig.l, and a 
brief description is presented below (see 
ref.l for more details). 

A beam of 45 MeV protons from the 
Manitoba cyclotron strikes a 20 cm long 
gaseous H2 target (see Fig.I). Each of the 
two outgoing protons pass through two of 
the four wire chambers (WCHI-WCH4) and into 
plastic scintillation counters (SI and S2). 
Information from wire chambers defines pro
ton trajectories, and pulse heights from 
the counters determine their energies. The 
PDP-9 assembly program tries to reconstruct 
a vertex from proton trajectories, i.e. to 
establish within an accuracy of several 
millimeters whether both observed protons 
come from the same point in the target. If 
they do, the relevant coordinates of the 
proton trajectories and counter pulse 
heights are sent to the IBM 360/65 computer, 
otherwise the event is rejected. The latter 
computer then performs a full kinematic and 
statistical analysis of the event using 
Fortran programs, and returns some histo
grams of interest to the PDP-9 for visual 
on-line display on the oscilloscope, or for 
plotting on an x-y plotter (CALCOMP). Data 

17 

computed from each good event is also stored 
on a magnetic tape by the IBM 360/65 for 
later off-line sorting, selecting and histo
gramming. 

In Section (A) the data-link hardware 
and software is discussed. Section (B) ex
plains software written for and used in p-p 
bremsstrahlung experiment while concluding 
remarks are made in Section (C). 

(A) DATA-LINK 

Data-Link Hardware 
The data-link 2 is the standard DEC 

long line high speed data-link (DX36B-DX09B) 
connected to the PDP-9 via a Data Channel 
and to the 360 via a Selector Subchannel 
(Channel). The distance between the two com
puters is about 1,900 feet, allowing a maxi
mum data transfer rate of 50,000 bytes per 
second. 

The 360 controls whether the Input/Out
put (I/O) operation is to be a read or write, 
to which the PDP-9 must respond by reading 
Data-Link status registers to ascertain the 
operation and set appropriate bits. The data
link hardware packs PDP-9 words to be trans
ferred in four different ways to make them 
compatible with the byte oriented System 
360. These options are: 
1) 1 byte (8 bits) to/from rightmost 8 bits 

of 1 PDP-9 word, 

2) 2 bytes (16 bits) to/from rightmost 
16 bits of 1 PDP-9 word, 

3) 3 bytes (6 binary zeros and 18 bits) to/ 
from 1 PDP-9 word, 

4) 4 bytes (14 bi nary zeros and 18 bits) to/ 
from 1 PDP-9 word. 



The last option has been used to transfer 
data to/from Fortran programs. 

To establish the reliability of the 
data-link a large block of data was written 
from the 360 into PDP-9 memory, the same 
data read back, and then compared. This ex
periment was carried out at various times 
and for various time intervals, ranging 
from several minutes to three hours. The 
number of bytes transferred ranged from 
1.6 million to 500 million. A total of 
12 bits were dropped on one data transfer 
(this during the three hour run). The 500 
million bytes transferred during the three 
hour run is an order of magnitude greater 
than the amount of data expected to be 
transferred during the lifetime of the wire 
chamber experiment. 

Data-Link Software 
It is possible to drive the PDP-9 from 

the 360 using normal Fortran READ and WRITE 
statements. This allows a maximum data 
transfer of only 20 PDP-9 words for each 
READ or WRITE. To circumvent this limita
tion and to allow certain types of error 
recovery, channel programs 3 were written 
in 360 Assembly language. Thus the Fortran 
program calls an assembler subroutine with 
two entry points called PDPR and PDPW, to 
initiate data-link transfers. Each transfer 
is accomplished in three stages: 

1) Initial Selection, 
2) Data Transfer, and 
3) Ending Sequence. 

They are all handled by the 360 Selector 
Channel to which the PDP-9 Automatic Priori
ty Interrupt (API) service routine must re
spond. 

The flow of information between the two 
computers is presented in Fig.2. As indi
cated in this figure, the communication 
sequence is always initiated by the 360/65 
with a standard CALL PDPR or CALL PDPW 
statement placed anywhere in the Fortran 
program which runs on-line with the PDP-9. 
After the subroutine PDPR (or PDPW) has 
been called a READ/WRITE is requested from 
the 360/65 Operating System which subse
quently issues a Start Input Output (510) 
instruction to the channel. The Operating 
System returns to batch processing mode and 
no further 360 action is required for the 
data transfer until the PDP-9 signals that 
the operation is complete. The Channel now 
sets some control bits and Initial Selec
tion Done (ISO) flag which causes an API 
interrupt on the PDP-9. As there are alto
gether six flags which can cause a data
link API interrupt, the API service routine 
first determines which flag caused the 
interrupt and then clears it. When an ISO 
flag is detected, another status register 
is read to determine whether a READ or 
WRITE operation was requested by the Chan
nel. The PDP-9 Data Channel (DCH) is 
initialized by providing the starting ad
dress minus one and word count of the data 
to be transferred to the PDP-9 memory. The 
Data Transfer (DT) bit, the R/W bit, and 
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pack option are set up for the data-link. 
Then control is returned to the interrupted 
PDP-9 program by breaking from the API serv
ice routi ne. 

At this point the memory to memory data 
transfer takes place requiring no PDP-9 or 
360/65 CPU attention. The time required for 
the data transfer depends on the number of 
PDP-9 words and pack option used. It takes 
about 80 ~sec to transfer one PDP-9 word 
(18 bits) to/from one 360 word (32 bits). 
When the 360/65 byte count and/or the PDP-9 
word count goes to zero, the Channel sets 
the Data Transfer Done (DTD) flag causing an 
API interrupt on the PDP-9. The service rou
tine clears DTD flag and tests if a parity 
error was made. To signal the PDP-9 users 
program that the 360 has transferred data, 
the Data Link State (DLS) word in PDP-9 
memory is set to one. Control is then re
turned to the interrupted PDP-9 program. 

The Channel is "hung" until the users 
program calls a PDP-9 subroutine DLINK which 
allows the third stage of the three stage 
data transfer sequence to proceed. This is 
feasible since the data link is the only 
device at present attached to the Channel. 
Thus completion of the three stage sequence 
occurs only when required by the logic of 
the users program. The subroutine DLINK 
tests if the data transfer is completed and 
if not, waits until it has, then sets Ending 
Sequence (ES) fl ag, sets the DLS word to 
zero, and sets Channel and device end. The 
Channel then sets the Ending Sequence Done 
(ESD) flag which causes an API interrupt on 
the PDP-9. As before, this flag is cleared 
and control is returned to the interrupted 
PDP-9 program. As all three stages of the 
data transfer are now complete the Channel 
causes an 10 interrupt on the 360 and control 
returns to the originally called assembler 
subroutine (PDPR or PDPW). 

From the PDP-9 point of view the transfer 
is completed at the end of the second stage. 
The reason for organizing the software in 
the above manner is because at this stage of 
360 software development the 360 cannot be 
interrupted by the PDP-9. To allow the 360 
to process data while the PDP-9 collects more 
events the Fortran program on the 360 is 
usually so organized that each "CALL PDPW" 
is followed by a "CALL PDPR". This allows 
the two computers to function asynchronously. 
If the sequence involves only successive 
READ's from or WRITE's to the same memory 
locations in the PDP-9 the two computers 
must function synchronously. 

(B) SOFTWARE FOR THE p-p BREMSSTRAHLUNG 
EXPERIMENT 

Several different programs are usea ln 
the p-p bremsstrahlung experiment. Most of 
them belong to three general classes: (1) 
programs with only PDP-9 on-line to the ex
perimental equipment, (2) programs with both 
PDP-9 and 360/65 on-line to the experiment 
and (3) programs using both computers but 
not on-line to the experiment. The last cat
ego r y wi 11 always be ref err e d to as II 0 f f -
line" programs. 



We have three programs from the first 
class. They are mainly used for testing of 
experimental equipment. When taking and pro
cessing data a machine language PDP-9 pro
gram (called "Vertex") and a Fortran 360/65 
program (called "Kinematics") are used to
gether. The needs of the experiment require 
several different versions of these programs 
(coded as VI, V2, ... KINl, KIN2, ... etc.) 
to be readily available. For off-line data 
analyses several Fortran programs are used 
and in general they can be called from the 
PDP-9 teletype console. To cope with this 
large and ever expanding variety of programs, 
we have organi zed all of our software wi th
in the framework of two specially written 
monitors, one for the PDP-9 and the other 
for 360/65. 

Description of Monitors 

The PDP-9 Symbolic Assembler Language 
Monitor (SALMON) is present all the time in 
the POP-9 memory, occupying the lower 2600 8 

locations. It handles three basic input
output operations, namely teletype, DEC 
tape, and data-link, performs some elemen
tary bookkeeping, and requests and accepts 
control messages from the experimenter. 
SALMON uses Program Interrupt (PI) and 
Automatic Priority Interrupt (API) features 
of the PDP-9 to allow interleaving of the 
above and any of the other Input-Output 
devices used. By typing appropriate mnemon
ics of two characters SALMON loads the se
lected program from DEC tape into a pre
designated section of the PDP-9 memory and 
starts its execution. This feature enables 
us to "overlayll programs without disturbing 
areas of memory which might include the 
collected data or constant parameters. 
SALMON also handles the above mentioned 
Input-Output operations whenever they are 
requested by the users program. In this 
case normal entrance points into SALMON are 
through a set of JMS (jumps to subroutine) 
instructions to absolute addresses. This 
feature enables programmers to assemble 
their programs independently of SALMON. 

The monitor for Fortran programs used 
on the 360/65 (called FORMaN) is a very 
short program also written in Fortran. It 
is based entirely on a feature of the 360 
system of overlaying Fortran subroutines. 
Therefore, all of the Fortran programs we 
are using are declared as subroutines and 
FORMaN merely selects the one which was 
called from PDP-9 by typing its four char
acter name. 

Description of On-Line Programs 

So far three different PDP-9 programs 
have been used for testing the equipment 
and they do not require the 360/65 on-line. 
These programs are: (1) "Hardware Test" 
used for the initial testing of ferrite 
core readouts, interfaces and electronics, 
(2) "Wire Histogram" used to test the re
lative efficiency of spark chamber wires 
and ferrite cores by making histograms of 
i n d i vi d u a 1 wire fir i n g s, and (3) II Wire 
Chamber Efficiency" used for the initial 
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or routine testing of sparking efficiency. 
Wire Histogram and Wire Chamber Efficiency 
programs normally display selected histo
grams on the oscilloscope or plot them on 
the CALCOMP plotter. All three can also 
have data printed on the teletype or written 
on the DEC tape. As these programs are 
rather simple and are not on-line to 360 
they will not be discussed here. 

The Vertex and Kinematics programs are 
the most important ones as they are used 
for on-line real time data taking and ana
lysis with the two computers. They are also 
the most interesting from the software 
point of view as they employ virtually all 
available facilities, hence, they will be 
described in some detail. 

A simplified flow diagram of Vertex and 
Kinematics programs is given in Fig.3. The 
following procedure is used in loading and 
executing these programs: With SALMON re
siding in the memory of PDP-9, the experi
menter types the mnemoni c II IN" whi ch loads 
a special initialization program from the 
DEC tape. This program is used first to re
ceive constants from the teletype or paper 
tape and store them in the memory. These 
constants are to be used by the Vertex pro
gram to be loaded later. Afterwards, the 
360 operator is asked, via an interphone, 
to load FORMaN into partition. On execution, 
FORMaN requests the 360 operator to enable 
the Data Link by manually flipping a switch. 
When this is done, FORMaN requests from the 
experimenter the name of the program to be 
executed by the 360/65. The experimenter 
responds by typing the name of the program 
(say KINl) which is automatically loaded 
into 360 partition together with the pro
gram constants. The execution of KINI is 
begun at this point and the experimenter 
must specify whether magnetic tape or 
printer are to be used and must type the 
bookkeeping information essential for a 
complete record of the run. Afterwards, he 
is asked by KINI if he wants to change pro
gram constants and if so, he does it in a 
way described below and in Fig.4. When 
KINI is ready to accept data, the experi
menter loads a Vertex program (say VI) 
which initializes itself by reading in the 
program constants previously stored in 
memory by the IN program. The program VI 
then turns on the fast electroni cs, jumps 
into an oscilloscope display routine and 
waits for an interrupt. When a wire chamber 
interrupt comes, the ferrite cores are read 
into the computer, decoded, track coordi
nates computed, double track ambiguities 
resolved, and an attempt is made to recon
struct a vertex. If successful the track 
coordinates, scintillation counter pulse 
heights, and event number are stored in a 
buffer whereupon the PDP-9 returns to the 
display routine. If at any time the experi
menter wants to terminate or suspend the 
run he types an appropriate code on the 
teletype and a key word (termination index) 
is entered into the output data buffer. 
When this buffer is full, its contents are 
transferred to the 360/65. KINI begins the 
analysis of each event by recomputing the 



vertex and imposing more stringent accept
ance cri teri a than the PDP-9. If the event 
passes this test the angles and energies 
of outgoing protons (corrected for energy 
lost before reaching the scintillators), 
gamma ray, and incident proton are calcu
lated. In addition the errors of each of 
these quantities and a x2 value are com
puted. At this point all of the information 
received from PDP-9 and that computed by 
KINI is stored on magnetic tape. Finally, 
three single histograms, a two-dimensional 
histogram and a scatter plot are updated. 
After all the data from a given transfer 
have been orocessed the histoqrams and 
scatter plot are sent back to-the PDP-9 
for display. The termination index is 
then tested and depending on its value the 
data taking and processing is continued, 
suspended or ended. If suspended KINI re
quests a change in histogram constants and 
the experimenter enters the new values. 
KINI then clears histograms to zero and the 
data taking continues as if it were not 
i n t err u pte d . I fan end 0 f run i s re cog n i zed 
some bookkeeping information is requested, 
the cross sections are calculated and some 
relevant information is returned to PDP-9. 
At this point the experimenter may move the 
obtained histograms into a separate buffer 
area and initiate an independent CALCOMP 
routine which can plot histograms simulta
neously with the execution of the next run. 

The flow diagram of the basic write and 
read sequence used throughout the initial
ization program is given in Fig.4. A mes
sage composed of a certain number of alpha
meric characters which is defined and 
stored in the Fortran program is first 
translated from the EBCDIC code (used by 
our 360/65) -into ASCII code (used by PDP-9) 
by calling an assembler subroutine. Another 
assembler subroutine unpacks words from 
4 characters to 2 characters/word and by 
calling the PDPW subroutine, the message 
is sent to the PDP-9 which types it. At 
this point the experimenter must reply and 
has a choice between alphameric or numeric 
information. The numeric information can be 
entered into the PDP-9 from paper tape or 
the teletype and can be c~anged after entry 
but before transmission to 360. The 360 
must know whether to expect alphameric or 
numeric information. If alphameric informa
tion is received it is packed from 2 to 4 
characters per word and translated from 
ASCII to EBCDIC code. As numeric informa
tion is always transferred in integer form 
the received numbers are usually floated 
and normalized as needed by KINI or any 
other FORTRAN program. 

Description of Off-Line Programs 

The most important off-line program is 
Correlate (CORR) which reads from magnetic 
tape data taken in the past in one or more 
runs, stores it temporarily on disk, com
bines it as requested, and produces histo
grams in a manner very similar to that of 
KINI. The histogram constants are read in 
from PDP-9 using the same initialization 
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program (IN) as in the case of the VI-KINI 
programs. The histograms are also returned 
to the PDP-9 for display on the oscilloscope 
or plotting on CALCOMP plotter, or they can 
be printed on the 360 printer. 

For practical reasons it is very impor
tant to be able to call and run CORR from 
the PDP-9 console as it provides a facility 
for "quasi-on-line" data processing. Often 
a situation would arise when the information 
obtained from VI-KINI programs is insuffi
cient to make some decisions concerning 
further data taking. In this case the ex
nprimpntpr mav wish to summarize results of 
~;~i~~~-~~ns-~a~~~ i~-t~~ p~st ~nd with CORR 
he can obtain this information within a few 
minutes. 

Some other off-line programs of minor 
significance are used. For instance, when 
processing data with a program sitting in 
360 partition the printing must be done com
pletely off-line. Therefore, in those in
frequent cases when we want printer output 
(the availability of CALCOMP plotter and 
teletype reduces significantly the need for 
printed output), the results must first be 
temporari ly stored on disk or tape and ther, 
printed out using a special program to be 
run in batch processing mode, rather than 
controlled from PDP-9. 

(C) CONCLUSION 

Not many two computer systems have been 
used for on-line data processing in accel
erator experiments. The system which seems 
to be in the most advanced stage is the one 
existing at CERN4. Our experience with the 
system described here is still limited and 
therefore it would be difficult to present 
a detailed analysis of its advantages and 
shortcomings. Nevertheless, some remarks 
are in order. 

1) In our system the PDP-9 and 360/65 
are used in a complimentary manner. The 
PDP-9 controls directly all experimental 
equipment, all output devices an experiment
er needs while taking data, and performs 
some data processing. These operations 
abound in logic decisions and special input/ 
output instructions but need very little 
arithmetic to be performed. Therefore, the 
programming for PDP-9 is done in assembly 
language. Long arithmetic operations are 
relatively easy to program in Fortran and 
not likely to be changed very often so they 
are done on 360/65. This division of the 
software between the two computers confines 
most of the alterations to the more acces
sible PDP-9. 

2) The 360/65 Operating System used is 
able to overlay subroutines belonging to 
the same program. This feature enables us 
to overlay Fortran programs in a very simple 
manner and run them in a relatively small 
partition with 56K bytes (14,336 words) 
only. If need be, our program could be over
layed in a more complex manner and fitted 
into a smaller partition. When this parti-



tion is reserved for our programs there are 
110K bytes (27,160 words) of the 360/65 
memory available for batch processing wnich 
is sufficient for most of the regular 360/65 
users. As a consequence, the scheduling of 
the 360/65 allows us to use the partition 
up to 16 hours/day and 5 days/week. (Pre
sently, the 360/65 is being used 15 shifts/ 
wee k. ) 

3) The PDP-9 monitor enables us to over
lay our PDP-9 programs resulting in an effi
cient use of its memory. The monitor also 
allows us to change programs with ease 
using DEC tape although this is rather a 
slow device. The use of disk or drum would 
be preferable. 

4) The selection of 360/65 programs is 
controlled entirely by the experimenter 
from the PDP-9 teletype. The 360/65 operator 
must intervene only to load and unload the 
partition, to cnange magnetic tapes, and to 
initiate off-line printout on the printer. 

Not all of the software described in 
this paper has been tested over an extended 
period. Software development has been great
ly assisted by the use of raw information 
from the wire chambers (non-processed out
put from ferrite cores and pulse heights 
from analog to digital converters) which 
was stored on DEC tape during a previous 
run. In Fig.5a we present a photograph of 
three histograms which have been computed 
on-line by the 360/65, returned to the 
PDP-9 and displayed on the oscilloscope. In 
Fig.5b we reproduce a scatter plot also 
computed on-line by the 360/65 and returned 
to the PDP-9 but now plotted on the CALCOMP 
plotter. These histograms and scatter plot 
have been produced using only very pre
liminary calibration constants, hence scales 
are not presented. 
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AUTOMATIC FILM MEASUREMENT WITH A PDP-9 

C. Drum, T. McGrath, R. Van Berg 
University of Pennsylvania 
Phi ladelphia, Pennsylvania 

ABSTRACT 

The University of Pennsylvania's high energy physics group employs a PDP-9 
to control and record digitizings from a Hough-Powell flying spot digitizer. 
It is not possible with the small computer to perform anyon-line analysis or 
tract reconstruction of non-predigitized bubble and spark chamber photographs. 
Therefore the system relies on CRT displays and simple checking algorithms for 
monitoring the quality of the digitizing. The system in general and especially 
the non-standard software and peripherals are described. 

Figure 1 shows a more or less typi cal frame of the bubble 
chamber film that we are measuring. This format is peculiar 
to the Penn-Princeton accelerator with a stereo triad as in
di cated and a BCD data box and strobe mark for automati c 
frame number recognition. You will note that there are only 
a small number of tracks in each view; this is basic to the 
whole phi losophy of the series of experiments using the HPD, 
as the automatic track following programs which do the pat
tern recognition are sti II at an early stage of development 
and are easi Iy confused and greatly slowed up by any large 
number of tracks. Fortunately the bubble chamber at PPA 
cycl es very rapi dl y so that it is st ill possi bl e to obtai n a re 1-
atively large number of events in a reasonable time. 

Our problem, then, is to get precise measurements of the 
co-ordinates of the tracks and fiducials in each of the three 
views, and then ship these off to the track following, spatial 
reconstruction, and fitting programs. 

The machine which we use to do the actual measurement, a 
Hough-Powell, or flying spot, digitizer (HPD), is a large 
and ungainly mechanical scanner. Figure 2 shows the basic 
opti cal set u-p for one of the two intermeshed orthoganal scan 
systems -- all focusing and collimatimati ng lenses, the en
tire normal scanning system, and most of the mechanical 
complexity has been omitted, so use your imagination freely. 
The light from a mercury vapor lamp is collimated onto a pair 
of small glass fibers that act as crossed cylindri cal lenses and 
bring the light to a point focus. The eight curved fibers 
(only one is shown) are mounted in a large disk which ro
tates at about 3500 RPM - thus the moving curved fiber pass
ing over the fixed straight fiber creates a rapidly moving 
spot or line of light. The light in the moving spot is then 
split and half of it passes through a ruled grating. As the 
spot moves across the grating the photomultiplier picks up 
the variations in intensity and allows one, by counting, to 
measure precisely (to 1.5 !-1m) the position of the spot along 
the scanline. Meanwhile the remainder of light from the 
spot is bounced around and through the fi 1m, whi ch is vac
uum clamped to the prism - the variation in output of the 
video photomultiplier then is a measure of the density of the 
film and by simply discriminating this video signal and using 
the fast discriminator signal to interrogate the grating counter 

27 

one may get the position of a black speck on the film. While 
the spot is moving left to right (or vertically, in the case of 
the other channel) the prism to which the film is clamped is 
being moved hydraulically outward so that by digitizing (to 
an accuracy of about 2 !-1m) the position of the hydraulic 
stage one obtains the other co-ordinate of the speck you 
have measured. 

The reason for having the two scanning systems (the normal 
one with a vertically moving spot and horizontally moving 
stage, and the orthogonal or abnormal scan with horizontal 
spot and effectively vertical stage motion) is that the stage 
motion is fairly coarse (about 50 !-1m between scan lines), 
and one is likely to miss or get very few digiti zings from a 
track running roughly parallel to the spot motion. 

The sequence of measuring a picture, then, goes something 
like this: first move the film into position with the desired 
frame clamped to the prism in the proper spot (the fi 1m is 
prescanned by human scanners, and frames of interest are 
recorded on punch cards), secondly, position the mechani
cal stage at the proper place, then measure in the desired 
mode (there are a number of options on measuring speed and 
output format which must be speci fi ed) from poi nt A to poi nt 
B, stop and repeat the cycle at a rate of about 2 pi ctures per 
minute. The HPD itself has a large amount of electronic 
hardware hung on it that performs the mundane operations of 
stage moti on and fi I m motion, as we II as th e somewhat more 
exotic tasks of grating counting, video discrimination, and 
co-ordinate transfer. However, there still must be a general 
purpose computer to organize and control this hardware. 

The computer used in this measuring process must do at least 
two things - 1) send commands to the HPD to set up for and 
to initialize a given scan, and 2) accept the digitizing from 
the HPD as the film is read and store these digitizings some
where. 

Most other HPD installations have a very large computer of 
7094 to 6600 or B8500 size, and are thus able to do a good 
deal of track following and noise rejection - sometimes even 
rough spatial reconstruction for checking purposes - before 
outputing the digitizings or a reduced set thereof on magnetic 



tape. However, we grew up with a 7040 as control and out
put machine so none of this was possible and digitizings are 
in our case simply dumped with a minimum of processing onto 
magnetic tape for later analysis by a large computer. Thus 
the use of PDP-9 to control the HPD is really a step up for 
us in terms of speed and cost, though loss of certain versa
tility of the larger 7040 system is somewhat painful. 

The HPD/pDP-9 interface (figure 3) essentially imitates the 
direct data channel of the 7040. The functions to be per
formed consist of four major activities; (1) sending commands 
to position the fi 1m on the proper frame (movefilm) (2) com
mands to position the measuring stage in preparation for scan
ning (move stage) (3) commands for scanning (set mode), (4) 
accepting the resuiting digitizings. Since commands are not 
given while digitizings are being received, the two types of 
data are gated onto a bidirectional bus. Due to the high 
data rate 1 MHz maximum), the long cables (50ft.), and 
our previous success with the 7040 data transmission system, 
it was decided to use IBM N line drivers and terminators. 

Each of the three commands requires a 36 bit word (one 7040 
word) whi ch together specify the parameters for measuring 
one vi ew of a frame. 

Commands are issued in two words of 18 bits each, and their 
function and whether 1st or 2nd group of 18 bits is determined 
by the subdevice bits. One view then requires 6 PDP-9 
words. The HPD is assigned two device selectors which in 
conjunction with the sub-device bits gives eight possible 
combinations. The extra two words are used to send useful 
messages, such as END OF FILM, END OF PROGRAM, 
and certain alarm conditions to the HPD operator. Data is 
entered into control registers from the HPD bus by means of 
lOP pulses. lOP 1 sets the function in accordance with the 
devi ce and sub-device levels, simulating a 7040 sense out
put reset, lOP 2 enters the data and simulates a channel 
ready write. lOP 4 is used to initiate the operation speci
fied by the command and has no 7040 analogy. The main 
difference between IBM data lines and those of the 9 is that 
the 7040 waits for a signal from the attached device before 
removing data from its output bus through one of the DMA 
channels. Digitizings may consist of three types of data. 
(1) Frame number of picture currently being scanned, (2) 
stage position coordinates and (3) spot position coordinates. 
Registers containing this data are alternately gated onto the 
HPD bus during read time under control of the HPD read 
logic. At word count overflow the DMA is inhibited and 
waits for the program to reinitialize the word and address 
counters and reset the interrupt flag. At the end of a scan 
the HPD sets an end of file flag which interrupts the machine 
and resets the READ SELECT flag. The HPD then awaits the 
six command words for the next view. At this point it is 
probably useful to go over the software part of the system. 

Presently the overall operation is strongly centered around 
an IBM 7040. The 7040 has a very sophisti cated assembly 
language system called IBMAP. One of the features of the 
IBMAP system is the ability to define op codes, pseuod-ops 
etc. Using this feature we were able to define the entire 
instruction set of the PDP-9 plus our own unique instruction 
codes for the HP D and for the drum. The reasons that we 
chose to pursue the use of the 7040 assembly programs rather 
than the PDP-9 software packages were the following. The 
first, and main, reason was that the 7040 was avai lable and 
we were able to write, assemble, and partially debug our 
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major PDP-9 programs before our own PDP-9 was installed. 
Second, the powerful I/O devices of the 7040, especially 
the 600 line/minute printer gave us a tremendous advantage 
over our teletype for assembly listings etc. And, third, our 
familiarity with the MAP language, plus our inherent re
luctance to make a clear break with a working system. As 
of th is report, the system has worked our extreme Iy we II a 1-
though several problems have cropped up; mainly the strong 
possibility that the 7040 will be phased out of the University 
sometime this summer. And also the fact that as far as our 
own group is concerned the avai lable time on the 7040 has 
been greatly reduced. 

The operation of the assembly system is as follows: The users 
source deck or decks are assembied by the iBMAP system and 
loaded into 7040 core. (It might be interesting to note that 
at this point that the programs, especially large programs 
can be divided up into sub-programs, sub-routines and as
sembled independently. Thus at load time an overall deck 
may contain a source deck to be assembled and binary decks 
of sub-programs, sub-routines that were assembled previously.) 
The linking, etc. and actual loading is done by the IBLDR 
section of the system. When the entire program has been 
loaded into 7040 core, an auxiliary program called MTAPE 
loader written by our group is called into execution. The 
function of MTAPE is to translate the program in core from 
7040-36 bit instructions to PDP-9-18 bit instructions. The 
translated instructions are placed on magnetic tape with a 
format very similar to the rim format Paper tape with two 
18 bit words required for the storage of each instruction. 
The actual time of translation for a program that occupies 
approximately 8k of PDP-9 memory takes only several seconds 
of 7040 time. Our PDP-9 is physically located in the same 
building as the 7040, and therefore it only takes a few min
utes to take the tape from the 7040 and prepare it for input 
on the PDP-9. To load the magnetic tape on the PDP-9 we 
use a several hundred word hardware read-in paper tape 
program. 

Presently our HPD operating system consists of a resident 
monitor, and a system tape. The function of the monitor 
is to call into execution from the system tape anyone of n 
possible programs. The three programs presently on the tape 
are: utility program for tape copying, tape dumping; the 
HPD control program; the off-line display program; and 
fourth, data, giving desired frame numbers and other book
keeping information whi ch is required by the HPD control 
program. The present bubble chamber experiment requires 
that the film be pre-scanned on manual scanning machines 
and a minimum of information recorded on magnetic tape. 
For example, certain events with wide angle interactions 
will have to be scanned twice; one along the incoming 
beam tracks, second, perpendi cular to the incoming beam. 
A flag indicating whether or not this is required will be fed 
to the control program as part of the above data. 

The control program must issue commands to the HPD to po
sition the film on the desired frame on the basis of frame 
numbers read by the HPD and transmitted to the PDP-9. 
Whi Ie the correct frame is being found commands must be 
issued so that the stage is positioned to digitize the desired 
view within the frame. During this experiment, where every 
frame has three views, at least three scans must be made of 
each desired frame, and some frames will require an addi
tional orthogonal scan for each view or a total of six scans 
per frame. When the stage is in proper position and the 



correct frame found, the control program sends a command 
to begin digitizing. The control program has three input 
buffers, each 1040 words long to receive HPD digitizings. 
The three buffers are filled in a rotating manner and are 
processed by a data checking program, a CRT scaling pro
gram, and the output tape writing program. The buffering 
scheme operates in an asynchronous manner. This is, the 
rate at which the buffers are filled by the HPD does not 
necessarily have to be the same rate at which the data is 
being processed and written on output tape. However, there 
lies the danger that on extremely dense portions of the pic
ture the digitizing rate may exceed the abi! ity of the PDP-9 
to process and output data and produce a buffer overflow. 
To avoid this condition, we originally started out with four 
cycling buffers then reduced the number to three and even 
in experimenting with two have encountered buffer over
flow only occasionally due to the extremely fast processing 
speed of the PDP-9. 

To ensure high quality output from the HPD it is essential 
that some means be provided for monitoring the digitizings. 
Lacking a large on-line computer, we have found a CRT dis
play of digitizings (figure 4) almost as good. However, the 
control program occupies most of 8k of core so that a simple 
scope display is not feasible. We have therefore added a 
Vermont Research magneti c drum to the system for temporary 
storage of coordinates to be displayed, automatic refresh, 
and for convenience in storing programs for qui ck recall. 
The main feature. of the drum interface is its ability to out
put data directly to a 34D scope interface without tying up 
the PDP-9. In the display mode data is written as 18 bit 
words with bits 8-17 containing the actual scaled coordinate. 
Bit 0 is used as a flag for stage co-ordinates and bit 1 on 
signifies end of data. During display the output of the drum 
shift register is gated directly into the 34D interface instead 
of into the DMA. The control program scales incoming data 
and then writes the scaled data on the drum while simultan
eously writing the unscaled digiti zings on tape. When the 
entire picture is on the drum or when the allotted number of 
tracks set aside for scaled data has been filled, instructions 
are sent to the drum to display the drum stored information. 
Displays can be held whi Ie the HPD keeps digitizing frame 
after frame or interesting sections of pictures can be expanded 
digitally on the CRT. One very useful feature of thi s dis
play is in the setting up of different HPD parameters; poten
tiometers can be adjusted and then the result seen immediately 
by measuring and displaying the same frame over and over 
while adjustments are being rTD de. The data is also monitored 
internally by the program where it is checked for monotoni
city, scan line separation, etc. The output tape, besides 
containing digitized information, also contains various re
cords summing all errors detected in checking the digiti zings, 
number of records per view, the scan line separation, and 
various other useful information. 

The next step in the chain of operations is processing the 
digitized tapes. This brings into play an extremely large 
basi cally fortran written program called ATF, automatic 
track finding program. Currently this is being run on two 
computers one located on campus, IBM 360/65 and the other 
at NYU-the CDC 6600. The present processing rate for an 
event on the MOD 65 is approximately 30 seconds. The out
put from the ATF program, the coordinates of interesting 
tracks, are fed into two kinematic programs called thresh 
and grind which hopefully yield the final physics output on 
the event. 
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A COMPUTER-CONTROLLED SYSTEM FOR AUTOMATICALLY SCANNING 

AND INTERPRETING PHarOGRAPHIC SPECTRA 

C. A. Bailey, R. D. Carver, R. A. Thomas, and R. J. Dupzyk 
Lawrence Radiation Laboratory, University of California 

Livermore, California 

ABSTRACT 

In analytical spectrography, the most time-consuming portion of 
an analysis is the scanning and interpreting of the photograph
ically recorded spectra. A system has been devised to shorten 
this time considerably by using a small digital computer to 
control the scanning densitometer and subseq,uently to calculate 
abundances from the photographic data. 

The following description applies specifically to spark-source 
mass spectrography; however, adaptation to other systems would 
be relatively straightforward. A typical photoplate from our 
spectrograph contains several thousand lines from as many as 
twenty graded exposures, and represents approximately sixty
five e~ements. Starting with the most intense exposure, the 
optical transmission of each line is measured using a Grant 
microphotometer. These transmissions as well as the position 
of each line are stored in a PDP-8 computer. The computer 
initiates and 90mpletely controls the scanning, and simulta
neously converts each line position to an exact mass number 
from a calibration performed at the beginning of the scan. The 
computer is programmed to distinguish between lines and empty 
areas on the photoplate, and all the graded exposures of each 
line are recorded before the scanning continues to the next 
line. Backgrounds are continuously upgraded and recorded a
long with their adjacent line densities. After the desired 
area of the photoplate has been scanned, an emulsion calibra
tion is calculated from the data stored in the computer. Then 
all line densities on the linear portion of the calibration 
curve are converted to ionic abundances. Total time involved 
in scanning twenty exposures on a fifteen inch photoplate is 
now approximately five hours. 

The Lawrence Radiation Laboratory has had a CEC 
21-110 $park Source Mass Spectrometer in operation 
for five years. Two years ago the chemists and 
electrical engineers started looking for a way to 
simplify and improve the reduction of the data 
which is taken on photographic plates. 

Several available systems of both plate reader and 
densitometer were looked into and found to have 
hard wired programs not applicable to what we want
ed to do. We concluded that we had to design the 
system ourselves. 

The Grant Microdensitometer was found to be an ex
cellent plate reader capable of being operated by 
computer controlled stepping motors. The densi
tometer was coupled to a Digital EQuipment Corpor
ation PDP-8 computer to construct our present 
system. 

The first component in the system is a Spark Source 
Mass Spectrograph, CEe 21-110. The ions from a 
sample are collected on a 211 x 15 11 glass photo
plate. The mass lines occurring on the plate come 
from elemental and compound ions, singly and multi
ply charged. Twenty graded exposures can be col
lected on a plate. Each exposure is 2mm in length. 
For our purposes lIexposure II means the number of 
ions striking the photographic plate; this value is 
expressed in Coulombs. The second component in the 
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system is a Grant Microdensitometer. It has an 
accuracy of + 1 micron in the X and Y directions. 
The densitometer is stepped in one micron increments 
in the X direction and five micron increments in the 
Y direction. There are two viewing screens avail
able. One is a projection through a 22 power zoom 
lens which allows a closeup of the area being scanned. 
The second screen is an analog signal from the de
tector displayed on a cathode ray tube. It is used 
for adjusting the scanning slits. 

The readout is an analog-to-digital converter (ADC) 
connected to the photomultiplier output. The ADC is 
capable of twelve-bit resolution with a digitizing 
time of 35 microseconds. 

The actual plate stage drive is accomplished by using 
two hundred steps per revolution digital 'stepping 
motors. The X-drive incorporates a 5:1 gear reduc
tion which results in a scale of one micron per step. 
No gear reduction is used on the Y-drive, therefore 
the scale is 5 microns per step. Motor speed was 
selected to allow instant start-stop-reverse resporne 
without resorting to controlled speed-up to compen
sate for inertial effects. 

The interface from the PDP-8 to the microdensitometer 
uses only one device selector. The device selector, 
by program control, puts out any one, or a combina
tion of three Iar pulses. 



IOT-TWO is used to transfer nine status conditions, 
such as X ready, Y ready, + X limit, etc., into the 
accumulator. All but two of the status conditions 
set the flag. IOT-FOUR actuates any one of nine 
different control functions depending on what bit 
or bits are set in the accumulator. Typical con
trol functions are, step + X, step -Y, clear flag, 
interrupt on, etc. 

The interface provides interrupt cap"",bili ty, but it 
is not being used with the present program. 

The third component is the Digital Equipment Cor
poration PDP-8. It is the 4k version equipped with 
two Dectape transports and the extended arithmetic 
element (EAE). The code occupies all of core. The 
floating point package-D is used for all the input, 
output, and most of the calculations. Control and 
operation of the system is done entirely with soft
ware. 

The following describes the interaction between the 
operator and the Grant/PDP-8 system. The emulsion 
calibration for the plate is made by exposing the 
plate to the rhenium isotope spectrum at varying 
intensities, changing the magnet setting between 
exposures in order to offset the lines. These line 
density-ratios are fitted into the Hull equation 
relating plate density to exposure (Fig. 1). The 
exponent R is calculated to be used later to cal
culate relative abundances of the ions striking the 
plate. 

The input for this process is through the teletype 
(TrY). The operator types the number of rhenium 
lines to be read and a value for the transmission 
at infinite exposure (Tinf). 

When the specified number of lines has been read 
the computer waits for the operator to realign the 
stege to read from low mass to high mass over the 
range he desires. When alignment is complete the 
operator types in a starting and a final location 
in microns, four mass numbers, and their locations 
on the plate. These masses are careful~ chosen 
prominent lines distributed across the range of 
interest and are fitted into a mass number calibra
tion equation (Fig. 2). "A" and "B" are determined 
and used later to calculate the mass number, of 
each unknown line from its location on the p~ate. 
Twenty exposure values are typed in corresponding 
to the number of Coulombs each line was exposed. 
At this point the computer is put in complete con
trol, and the operator is no longer needed. 

The following is a description of the peaks en
countered on a typical photographic plate and the 
way the computer code handles them. 

The first peak is a singlet in a clean portion of 
the plate. The peak reading process always starts 
with the most intense exposure. The code calcu
lates a peak detection threshold value. This value 
is an arbitrary decrease in the transmission cal
culated from the background values (Fig. 3). This 
value is updated every one ninth of a mass unit if 
a peak has not been detected. A peak is determined 
by testing to see if the incoming transmission value 
is below the peak detection threshold. If a peak 
is detected it is checked to see if it is an honest 
peak. This check is necessary because of nonin
formity in the emulsion. If it is an honest peak 
its peak top is determined and two background values 
one ninth of a mass unit on either side of the peak 
top are taken. One ninth of a mass unit is an ar
bitrary distance selected to reach over the very 
dense lines and yet not encounter other mass lines 
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from multiply charged ions. There are not a con
stant number of exposures for each mass line, so 
the following method is used to determine when all 
the lines for a individual mass have been read. Two 
questions are asked of the PDP-8. 1) Have twenty 
exposures been racked? If yes then it does not look 
for more information; if no the second question is 
asked. 2) Is the transmission of this peak top be
low a threshold value calculated from the background 
values of the previous exposure? If yes, then the 
stage is racked one exposure in the positive Y 
direction, the direction of lesser exposure, and 
the data are stored in a buffer in core. If no, 
then all the data from that line have been measured 
and the code racks back to the most intense ex
posure and continues to look for a new mass. 

The second peak is a doublet. The first mass line 
encountered in a doublet is read in the same manner 
as a singlet except that the background values are 
now taken at one ninth mass unit on one side and at 
the minimum in the valley between the peaks. The 
computer is aware that there is a mass on its high 
mass side. When it has finished the first mass 
line it then scans the high mass line. Because the 
various exposures are not perfectly perpendicular 
to each other it was necessary to make sure that 
the stage returned to the peak top of the most in
tense exposure of each mass line encountered before 
starting to look for a new mass line. This was 
especial~ necessary in the case of doublets. 

The third peak is one that lies in fog. Fog is 
caused by the ions from a very abundant element 
scattering due to residual charge build-up. Fog on 
plates may have a transmission value as small as 
5%. The process of updating the peak threshold 
detection value every one ninth of a mass unit de
scribed earlier allows very light lines to be found 
in the very dark fog. The process of checking to 
see if the peak top value is darker than the thres
hold calculated from the previous exposure allows 
all the exposures for a mass line to be read. 

The entire plate is read and the data are stored on 
the Dectapes in two block segments. The following 
information is stored: The mass number, from eq. 1 
the transmission at the peak top, the transmission 
at the two background positions, and the exposure 
value. 

The teletype output is shown in Figure 4, 1) The 
percent transmission of the Re 185 and Re 187, 
2) the R values for each Re ratio, calculated from 
the Hull equation, 3) and the average R value. 

Following this are the data for all detected masses 
on the plate typed in the following fashion (Fig. 
5), 1) The mass number, 2) the percent transmission 
of the peak top and the two background values, 
3) the abundance of the peak top and the two back
grounds and a net abundance, 4) the average abun
dance and the percent error. The average abundance 
is a weighted average so that all exposure values 
could be used in the calculation. The weighting 
function is parabolic. 

It was found that the numbers from the Grant/PDP-8 
system agreed with hand calculation to within 5%. 
This is very good agreement as spark source work is 
usual~ quoted to a factor of two. There is no 
reason to believe that the Grant/PDP-8 numbers are 
not better. Standard samples are difficult to 
prepare. 

To conclude let us compare the time spent in read
ing and reducing the data from one plate. Start
ing from the time that the plate is developed, 



dried, and ready for reading until relative abun
dances are in hand: 1) The Grant!PDP-8 system takes 
one half hour of operator time, and for a typical 
geological sample about eleven hours of system time, 
approximately 5 hours for reading the plate and 6 
hours for typing the data. It can be set up before 
closing time and answers are ready at opening time 
the next morning. 2) With the standard system an 
operator is almost always required to put the data 
out on chart paper, convert it to IBM cards and run 
a short code on a CDC 3600 taking a total time of 
three or four days. 

The Grant PDP-8 system is a great improvement over 
the old system. It should be adapted readily to 
other plate or film reading systems. 

We would like to thank Dr. G. W. Barton, Jr. for 
his help in deriving the equations to weight the 
average abundance and to calculate a percent error 
for the average abundance. 

This work was performed under the auspices of the 
Unites States Atomic Energy Commission. 
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Emi MASS 

Figure 1 Hull Eq~tion for Emulsion Calibration Figure 2 Mass Calibration Equation 

Threshold = Average Bkg. - (% * Average Bkg.) 

Figure 3 Threshold Equation 

%T RE 185 & RE 187 
+~.4749693E+.02 
+~.49~l.098E+.02 
+.0.5264959E+.02 
+~.5235654E+~2 
+~.56~1952E+.02 
+.0.648596~E+.02 
+.0.6923.075E+~2 
+~.691.0865E+~2 
+~.8329668E+.02 
+~.78~2197E+.02 

R VALUES 
+~.94673~2E+~.0 
+~.1~2846~E+.01 
+.0.1~62~21E+~1 
+~.8881528E+.0~ 
+~.8849648E+~.0 
+~.1~49275E+~1 
+~.1114296E+~1 
+.0.1~79682E+.01 
+~.1~14555E+~1 
+.0.1131831E+~1 

+.0.3592184E+.02 
+.0. 363614.0E+.02 
+.0.39365~8E+.02 
+~.4119656E+.02 
+~.4483516E+~2 
+.0.5196582E+.02 
+.0. 56.04394E+.02 
+~.5633699E+~2 
+~.7479852E+~2 
+~.6656897E+.02 

To 

T187 
R Log 

To 

T185 

AVE R VALUE +.0.9789795E+~.0 
l/R VALUE +~.1~21472E+~1 

- T187 

- Tinf 

- T185 

- Tinf 

Figure 4 Rhenium Data and R Value 

MASS +~.3127783E+~2 
%T 
+~.1582418E+.02 
+~.2~61~5~E+~2 
+~.27~3295E+~2 

A{T) 
+~.3143612E-~4 
+~.445~~17E-~4 
+~.6113529E-~4 

%Bl 
+~.2749695E+~2 
+~.3262516E+~2 
+~.4163136E+~2 

A(B) 
+~.14913~.0E-.04 
+~.23~9754E-~4 
+~.3~88~63E-~4 

%B2 
+~.242.0~24E+~2 
+~.3~~61~4E+~2 
+~.3748472E+~2 

A(B) 
+~.1787448E-~4 
+~.2616.0'48E-.0'4 
+.0'.3698~68E-~4 

AVE ABND +.0.2337621E-~4 peT ERROR +.0'.1.0'.0'89.0'4E+~2 

Abund Emi * VMass ~ Exposure 

Log (1.67) 

A(NET) 
+~.15.0'4238E-.0'4 
+~.1987115E-.0'4 
+~.272.0'463E-.0'4 

Figure 5 Data Output Mass, Percent Transmission 
for Mass, and Relative Abundance for Mass 
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A PDP-8 SYSTEM FOR BUBBLE CHAMBER MEASUREMENTS* 

John Rayner 
University of Maryland 
College Park, Maryland 

ABSTRACT 

This paper describes an on-line measuring system in whi ch the PDP-8 
is used both as an up-down scaler for an image plane digitizer and to super
vise the measure in an attempt to prevent the most common measuring errors. 
This error prevention is accomplished by having the program institute most of 
the necessary procedures through messages to the measurer on a Teletype and 
by elementary checking of the input data. Another aim of the system is to 
replace cards with IBM compatible magneti c tape as the output medium • To 
this purpose a Digi-Data Stepping Recorder has been interfaced to the PDP-8. 
It is planned to expand the system to four measuring stations in the future. 

The PDP-8 measuring system is a low cost approach to 
the film measurement bottleneck in high energy physics. Un
like PEPR which aims at replacing the human operator, the 
PDP-8 system is an attampt to increasing her efficiency by 
catchi ng the more common errors on the spot, and by speed-
i ng up the measurement process. 

The error prevention objective is approached in two 
ways. First most operator actions are initiated by the com
puter through messages to the operator on an on-line tele
type. Second all input to the system is checked by the com
puter for format and consi stancy. 

The measurement speedup is achieved in several ways. 
The greatest gain in speed is probably due to the use of the 
computer to buffer the input, thus avoiding the wait for 
punching the coordinates. In line with this the program is 
designed to read in each measurement within 70 !-lS, theo
reti cally allowing measurements to be taken on the fly. It 
is also hoped that routing all control and paramter informa
tion through the teletype will lend itself to simplicity and 
speed. Fi nally the choice of an image plane digitizer 
simplifies the process of moving from point to point on the 
film. 

The present system consists of a PDP-8 computer; a 
mangiaspago biradial image plane digitizer mounted on an 
overhead projector scanning table; a teletype for operator
computer communication; a Digi -Data 1420, 556 character 
inch, 200 step per second, stepping recorder; an on-line 
clock for program timing; and the necessary interfaces. 

To keep the cost of the system as low as possible, the 
PDP-8 is used as an up-down counter for the measuring ma
chine. This is accomplished through the increment feature 
of the Data Break. Due to the nature of the opti cal encoders 
and the mechanics of up-down decoding it is convenient to 
keep the two low order bits of each coordinate in the inter
face. Overflow or underflow of this count of four causes 
one of four memory locations in the PDP-8 to be incremented. 
The true displacement can then be calculated by subtracting 
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the down counts from the up counts, and adding in the low 
order bits, which are read in from the interface when a 
measurement is made. Since one 12 bit PDP-8 word is in
suffi cient to accumulate the largest possible displacement 
the scalers are periodically checked for overflow under con
trol of the clock. When overflow is detected an overflow 
counter is incremented. To avoid the problem of the counter 
contents changing during read-in for points taken on the fly, 
two sets of four locations are used alternately. 

The digital stepping recorder was chosen for its relatively 
low cost, and simplicity in interfacing and programming. The 
tape deck itself has automatic lateral and longitudinal parity, 
inter-record and end-of-fi Ie gap generation, and an optional 
read head an electronics. The interface converts between 
the 6-bit tape format and the 12-bit PDP-8 word. 

The clock which can be enabled and disabled under 
computer control has a 880 cycle rate for compatibil ity with 
projected serial teletype interfaces, which will be used when 
additional measuring machines are added to the system. 

When the program is started the computer asks for the 
date and then waits for the operator to type it in. The system 
is then waiting for a measurer to sign on. This is accomplished 
by typing S. The computer responds by typing SIGNON and 
asks for the measurers ID number and then the roll number. 
The number can be changed between events by typing R, to 
which the computer responds by typing ROLL and waiting 
for the new roll number to be typed • To measure an event 
the measurer types N. The computer then types NEXT 
EVENT and asks for the various event parameters, such as 
frame number and event type. Since the event type number 
is geometry dependent the computer can calculate the 
number of tracks to be measured. The computer then types 
VI EW I and requests a home measurement. This is accomp-
I ished by placing the measuring head in a slot fixed to the 

*Work supported in part by the U. S. Atomi c Energy Com
mission. 



table and pressing the record foot switch of H on the tele
type. Th i s serves to zero the counters. The counters can 
then be checked by placing the head in the home slot and 
typing H. If the counters are within a tolerance limit of 
zero the computer types HOME OK, otherwise, it types 
BAD HOME and requests remeasurement of the vi ew. After 
the home check the computer requests fiducial measurements. 
When three fiducials have been measured the computer types 
TRACK I. When track 1 has been measured the measurer 
types T. The computer then types TRACK 2 and the pro
cedure is repeated until all tracks have been measured. The 
computer then requests a home measurement to check the 
counters. If they check, the same procedure is then fol
lowed for views two and three. At any time the last mea
surement r track r view or event can be deleted by typing 
D followed by M, T, V, or E. When the measurer is fin
ished she signs off by typing E. 

The program is completely interrupt driven, that is, all 
program action is initiated by an interrupt from a periph-
eral device. Interrupts are handled by a two-phase multi
priority interrupt monitor. The first phase of the monitor, 
which acts with the interrupts disabled, saves the trapped 
address and then determines which device initiated the 
interrupt and set a flag for phase two. The second phase 
then transfers control to the various service routines in the 
order of their priority. Each device has a unique priority 
and interrupts by high priority devi ces are completely ser
viced before those of lower priority. If a high priority inter
rupt occurs during the processing of one of lower priority, 
the high priority interrupt is serviced before processing is 
continued on the low priority one. 

Teletype output is taken care of by two subroutines: a 
teletype service routine and a teletype monitor. The ser
vice routine can output either single ASCII characters or 
messages stored in a six-bit stripped code. These characters 
and messages can be queued up by the teletype monitor, thus 
permitting concatenation of phrases, words, and individual 
characters with little cost in time to the calling program 
sinc9 it doesn't hqve to wait for the teletype to be free. 
When the service routine finishes outputting one message 
it pi cks up the next one from the queue unti I the queue is 
empty. 

The teletype input routine performs two functions: it 
accepts commands from the measurer in the form of single 
letters, and it accepts and stores parameters. On receiving 
a command letter the routine looks it up in the current com
mand table and transfers control to the appropriate routine 
which types a response and initiates the required action. If 
the letter is not in the current table, the routine types a 
question mark and exists. Since there are several command 
tables it is possible to limit the legal commands to those 
that are appropriate at the time. In the parameter mode the 
routine accepts a string of digits, and stores them in a tem
porary stack. On receiving a terminating character the 
digits are packed two to a word with leading zero::; inserted 
and transferred to the main input/output buffer. After the 
last parameter in a group, control is passed to a routine 
which initiates the next required action.' The address of 
this routine, as well as the number of digits in each para
meter and the message requesting it, is stored in a table, 
thus, allowing the input format to be easily changed. If 
the input character is not a digit or terminating character 
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a question mark is typed and the temporary stack reset. 

Tape output is initiated by the tape monitor and carried 
out by the tape service routine. To conserve space measure
ments are output a track at a time. The tape output is swing 
buffered. That is there are two buffers which interchange 
roles as input and output buffers. Each output is in the form 
of a 7094 FORTRAN IV binary record. The record consists 
of a heading block specifying the type of record, and a 
possibly void, parameter or measurement data block. 

The measurement service routine assembles the coordinates 
from the up and down counters, the overflow counters and the 
two least b its read from the interface. Also read from the 
interface are three bits indicating which views are turned on. 
These are used to prevent measurement of the wrong view. 
The home measurements are only used to check the counters 
and are not stored while the fiducial and track measurements 
are propagated to the input/output buffer. Interna Ily the 
coordinates are kept in three word floating point form for the 
floating point interpreter, but they are stored in the output 
buffer in fixed po int form, with the coordinates packed in 
three words. We hope in the future to fit a curvature to 
each three consecutive points, and by requiring that each 
curvature be within some multiple of the standard deviation 
from mean, to re ject poorly measured tracks. In addition 
the fiducials can be checked by comparing the interfiducial 
distances with their nominal values. 



STRIP, A DATA DISPLAY AND ANALYSIS PROGRAM 
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ABSTRACT 

This program, using the PDP-8, high speed paper tape reader, 
and type 34 display, accepts paper tape data listings and 
displays the result on the display unit. Some elementary 
computations are made on the data and are also displayed. 
The program is deliberately designed to be open-ended, and 
most users will want to add features peculiar to their own 
problem. Almost all functions are carried out in subroutine 
form, and these subroutines can be called either from the 
keyboard or within another subroutine. 

INTRODUCTION: 

At the Georgia Tech Nuclear Research Center there 
are in progress a number of small scale experiments, 
each involving several graduate students. All of 
these experiments use a data acquisition system 
which includes an on-line PDP-8. Our need is for 
a data processing system which will produce clearly 
interpretable results from the experiment in a re
latively short period of time, since otherwise the 
apparatus may not be available for a repeat of the 
experiment. 

Since most of the experiments take data as a func
tion of some equal increments of an independent 
variable, a straightforward data display and reduc
tion program has been devised for use with the type 
34 display unit. 

Two programming assumptions have been made: 

(1) While computers are relatively good at doing 
computations, they are singularly unimaginative 
in making decisions; while graduate students 
may be capable of doing the computations, they 
are singularly unwilling to do so. 

Consequently, the present version of STRIP de
pends on the computer for almost all of'the 
calculations, and the user for all of the de
cisions. 

(2) Any programming system which is to be used by 
several groups, must be easily expanded in 
order to change and/or add functions to the 
original system. In the case of inexperienced 
programmers in particular, these changes and 
additions must be facilitated to the extent 
that the user can make the needed changes with
out spending a great deal of time learning the 
nuances of sophisticated assembly (PAL) lan
guage programming. 

These considerations led to the development of 
STRIP, a PDP-8 program which produces a two-di
mensional display with the independent (equal
increment) variable along the horizontal (X) axis, 
and the dependent variable along the vertical (Y) 
axis. Also included in the display is the result 
of some elementary numeric computations on the dis
played data (i.e. the address of the maximum, its 
value, and the area under the displayed curve). 
These numbers can be used by the operator to deter
mine parameters for later calculations. 
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In order to optimize data handling and display, two 
buffers are used. One contains the original data 
and the other data to be displayed. The display 
routine continuously circulates through the later, 
refreshing the display at a rate of about 20 times 
a second. 

In the current STRIP version the operator/user ma
nipulates the parameters of a calculated Gaussian 
to fit his data. This is especially useful since 
many types of experimental data show such a Gaussian 
distribution, and the parametric form is desired 
for further data reduction. Since the fitting oper
ation is accomplished by the user implicitly, the 
background does not have to be specified explicitly, 
simplifying the operation of obtaining the Gaussian 
parameters themselves. 

Data Storage 

The data for the program are stored in two buffers 
in the computer memory. The floating point data 
buffer contains each value of the original data 
stored in a 3 word floating decimal point format, 
as used by the standard Floating Point Packages. 
These data are used as the basis for most of the 
computations, but are not disturbed by these comp
utations (exceptions are the input routine "R", 
and the permanent Gaussian subtraction routine "#"). 
The display buffer is stored in a 10 bit one-word 
integer format, suitable for deposition into the 
Y axis register of the type 34 display unit. The 
display routine cycles through this buffer display
ing each point in turn while incrementing the hor
izontal axis by the appropriate horizontal step 
size. 

A feature of the display routines is that as the 
display buffer is "built" by making computations 
on the data in the floating point buffer, the re
sult is normalized before conversion to the 10 
bit integer which is stored in the display buffer. 
Thus the display always occupies the maximum ver
tical displacement on the screen. The routine 
that calculates the data display also normalizes 
the horizontal axis step size to make maximum use 
of the screen. 

Keyboard Monitor 

The keyboard monitor interprets the characters 



struck by the operator, and calls the corresponding 
subroutine from a table of starting addresses stor
ed in page zero. The list of legal characters is 
expandable, and terminated by a zero. The display 
routine is incorporated into the keyboard monitor 
flag test, such that the flag for the keyboard is 
tested after each look through the display. The 
display is refreshed about 20 times a second (de
pending upon the number of points displayed). The 
most time-consuming operation of the display is the 
generation of the title, and a NOP can be inserted 
in the calling location for the titles subroutine, 
if desired. 

The keyboard monitor presently recognizes a number 
of control characters: which are listed as Table I. 
The functions are self-explanatory, and the user 
will become familiar with them very quickly. 

KEY 

L 
U 
C 
F 
D 
R 
S 
t! 

G 
H 
CTRL+ 
BELL 
CTRL+ 
C 
# 

Table I 

STRIP CONTROL KEYS 

FUNCTION 

Lower Boundary Marker 
Upper Boundary Marker 
Change to New Boundaries 
Fetch Between Boundaries 
Reset Boundaries 
Read Input Data 
Strip Trapezoid 
Display Gaussian 
Subtract Gaussian (display) 
Get Gaussian Parameters 

Permanent Upper Boundary 

Return to Monitor (".") 
Subtract Gaussian (data) 

Let us assume that data has been entered into the 
data buffer (by using the R command), and that the 
shape of the observed peaks is a true Gaussian, ob
scured by noise. (See Figure 1). In order to begin 
with some reasonable values for the Gaussian para
meters, let us narrow the limits by typing an: 

IF=+ 1 102 

U=+ 160 150 

C (See Figure 2) 

Now we have narrowed the display to two peaks. 
Since the taller of the two peaks is the "MAX" on 
the display, and the endpoints of the display look 
as if they are on the flat portion of the background 
we strike the "s" key. This causes the trapezoidal 
area between the zero reference and the value of the 
data at the absissa of the end points to be sub
tracted from the data. (See Figure 3). Notice that 
the display is renormalized to fill the screen. The 
new "AREA" and "MAX" are valid for the subtracted 
display. Notice that nothing has been done to the 
data in the "data buffer" (as you can discover by 
striking the "F" key, returning the display to its 
previous result by again hitting "S"). Now enter 
the subroutine that gets the Gaussian parameters 
by striking the "H" key. The program types out (in 
floating point E format) the current Full Width 
Half Maximum, and waits for a new value, or some 
non-numeric character. The standard deviation and 
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the current value of the peak height are typed, and 
again the program waits for a new number. When the 
first non-numeric character is typed, the current 
value of the location of the peak (in units of 
channels, but not necessarily integer values of the 
channel number!) is typed and a new value accepted. 
When the next non-numeric character is typed, the 
area is computed and typed, and the program returns 
to the keyboard monitor. Note that there is no 
change in the display (See Figure 4). 

In order to get some idea of the height of the rigbt 
hand peak, set the L limit to 127 temporarily, and 
expand the display with the C key (See Figure 4). 
Since the display is 11077 high, the right hand 
peak seems to be about 8000. The full width half 
~aximum should be about 8.5, and the peak occurs at 
133. Now strike the H key and enter those para
meters: 

H 
FWHM= +O.OOOOOOE+OO 8.5 Sigma= +0.~61162E+Ol 
HEIGHT= +O.OOOOOOE+OO 8000 At +O.OOOOOOE+OO 133 
AREA= +0. 72458lE+05 

In order to be able to observe the background, reset 
the L limit to 102. Now let's look at the Gaussian 
as it is generated in the program, by striking the 
J key. (See Figure 5). That seems to be pretty 
reasonable, so we subtract the curve in Figure 5 
from that in Figure 2, and get Figure 6. The para
meters entered seem to be good, but it might be 
possible to improve the "fit" if we moved the chan
nel number .25 to the right. 

H 
FWHM= +0.850000E+Ol SIGMA= +0.361l62E+Ol 
HEIGHT= +0.800000E+04 AT +0.133000E+03 133.25 
AREA= +0. 72458lE+05 

F 
G (See Figure 7) 

That doesn't look as good as the previous result. 
Maybe the width needs to be changed. 

H 
FWHM= +0.850000E+019 SIGMA= +0.382407E+Ol 
HEIGHT: +0.800000E+04 AT +0.133250E+03 133 
AREA= +0. 767203E+05 

F 
G (See Figure 8) 

That looks better, let's make it even wider now. 

H 
FWHM= +0.90000E+ol 9.5 
HEIGHT= +0.800000E+04 
AREA= +0.809826E+05 

F 
G (See Figure 9) 

SIGMA= +0.403652E+Ol 
AT +0.133000E+03 

Much better. We are pretty close to the trees, so 
we can examine the forest better from a distance. 
To get the original full screen display, strike the 
D key. 

D 
G (See Figure 10) 

From this viewpoint, it is obvious that the peak is 
a little too tall. Let's try 8500 for the HEIGHT 



parameter. 

H 
FWHM= +0.950000E+Ol 
HEIGHT= +0.800000E+04 
AREA= +0. 860.440E+05 

F 
G (See Figure 11) 

SIGMA= +0.403652E+Ol 
8500 AT +0.133000E+03 

Thatts just a hair too much, try 8400. 

H 
FWHM= +0.950000E+Ol 
HEIGHT= +0.850000E+04 
AREA= +0. 850317E+05 

F 
G (See Figure 12) 

SIGMA= +0.403652E+Ol 
8400 AT +0.133000E+03 

Thatts pretty good. Perhaps you could better the 
tlfLttl by spend.ing more time adjusting the para
meters, but the improvement in the results would 
probably not warrant the effort. The differences 
in the last several moves are on the order of a few 
percent, and with data of this type, it probably 
isn't possible to do much better than that without 
using some sort of least squares technique. 

Modification of STRIP 

Let us suppose that a user has a requirement for a 
special r~utine to subtract a known background run 
from the current data field. Specifications for 
the subroutine might be: 

Obtain a normalization factor from the operator/ 
user and then read the data while point-by-point 
subtracting the product of the normalization factor 
times the input data from the resident spectrum and 
leaving the result in the resident spectrum. 

The flow chart for this routine is Figure (13), the 
listing is Figure (14). The normalization factor 
is obtained by asking the operator for that number. 
The input routine is setup for reading from the 
high speed paper tape reader by depositing zero in 
location 56, then the DO pseudo-operation is used 
to call the initialization routine for the loop, 
after which the GET routine is used to get a num
ber from the paper tape reader. The short computa
tion in the floating point package substitutes the 
result of subtracting NORM times the just obtained 
number from the contents of the location pointed to 
by 11 (location 105). 

The CONT routine updates the pOinters, and tests 
for the end of the loop. When the loop has been 
satisfied, the subroutine returns to the keYboard 
monitor for the next command (and restores location 
56 to 7777 to enable keyboard input). 

Notice that the program co~ing is relatively simple 
and that many functions are really calls to various 
subroutines, either in the Floating Point Package 
or the STRIP package.* One tricky point is that 
the user must be sure that the locations in the 
keyboard character and directory tables correspond, 
and do not interfere with other key-called func
tions active in the package (see page 1 of the 
HULME routine* for additional keYboard called func
tions) . 

*A listing of STRIP and the Gaussian routine HULME 
is available from the author. 
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Loading and Debugging User-Written Subroutines 

The disc resident version of STRIP has some coding 
at 3600, which tests the switch register at load 
time, and halts if SR=O. The user may now use the 
Middle of Core Loader (MOCL) at 3777, and/or the 
version of ODT (DEC-08-cOCI-PA) at 1000. If ODT is 
to be used, the contents of location 445 (BASE2*) 
must be changed, since the display buffer will over 
write ODT (1000-1577) otherwise. Debugging is not 
usually hampered by moving the display buffer up 
into the end of the floating point buffer area, 
since a limited display field is acceptable when 
debugging. The arrangement is intentionally design
ed to put the MOCL loader, and ODT in data areas 
which will be overwritten by data during the normal 
operation of STRIP, since these programs would pre
sumably need to be used only at load time of STRIP. 

The non-disc-resident version of STRIP can use the 
standard binary (SA 7777) loader and ODT (1000-1577) 
in a similar manner, 

Applications: 

STRIP has proved useful in a wide variety of appli
cations, in spire of the fact that it has been avail
able for only 32 months. 

Since the data input routine for STRIP is via the 
Floating Point Package (FPP) , the input has the 
restrictions mentioned in the FPP writeup. Since 
the FPP output format is compatable with the input 
to STRIP, it can be used to plot data generated in 
FORTRAN, CALCULATOR, or FOCAL, or any other program 
using the FPP for output. (A minor modification to 
the input routines will allow the program to be used 
in installations without the high speed paper tape 
reader) . 

Spooner et all ~se the disc resident version of 
STRIP for an almost on-line plotter (as well as for 
initial data reduction) for data from a neutron 
diffractometer data acquisition system. The facil
ity for rapid turn-around and the availability of 
Polaroid camera pictures of the display have made 
a significant improvement in the operation of their 
diffractometers. For example, the data used as the 
subject of the example in this paper was taken from 
such an experiment. The central peak (see Figure 1) 
of the data is the result of poor collimation of the 
incident beam, and the availability of the display 
allowed the experimenters to correct this situation 
before using up more beam time (eaCh point on the 
plot represents 10 minutes of neutron beam time!). 

In another application, a study of filtration
2
of 

particles through sand beds by Champlin et al has 
been made possible by STRIP. The volume of data 
acquired by the experimenter (about 500, 400 chan
nel spectra) and the difficulties of dealing with 
the rather complicated background in this experi
ment were such that some mechanized data reduction 
scheme is required. Normal fitting techniques prov
ed elusive, because of the aforementioned difficult 
background situation. 

~e obvious use of STRIP is for reduction of data 
from Pulse Height Analysers. The saving in time of 
this method over hand methods of analysis has signi
ficantly improved the work done by a group doing 
neutron activation analysis. The tlaccuraci' of the 
results seems to compare favorably with tedious 
graphical methods usually involving centroid deter-



mination, and "block counting" integration methods. 
By use of the "#" key which permanently subtracts 
the currently defined Gaussian from the data buffer, 
it is possible to completely separate the peaks in 
a complicated spectrum from the background, which 
may be quite complicated in shape also. In one cas~ 
the user was able to separate a small peak of 10% 
of the area of a large peak, which "laS well up on 
the "skirt" of the large peak. 

Conclusion: 

STRIP is a data display program that is easily used 
by the experimenter to examine and partially reduce 
his data. The reliance upon the judgement of the 
user in fitting operations nake it very useful in 
situations where normal least squares techniques 
are unsatisfactory, and the facility for expansion 
and change within the program make it possible for 
the program to "grow" toward solving the particu
lar needs of a large number of widely different 
applications. 

0267 7451 
0270 0000 

0154 4100 

FIGURE 14 

I SUBROUTINE TO SUBTRACT BACKGROUND 
/SPECTRUM TIMES OPERATOR-SUPPLIED 
/NORMALIZATION FACTOR, FROM THE 
/RESIDENT SPECTRUM. 
I CALL WITH "W" KEY, AND SUPPLY 
/NORMALIZATION FACTOR AS ASKED FOR. 
/FAST TAPE READER WILL THEN READ 
/BACKGROUND SPECTRUM WHILE SUBTRACTTIl"G 
INORMALIZED SPECTRUM FROM EACH POINT. 

DO=JMS I 111 
CONT=JMS I 112 
FNTR=JMS I 7 
FNEG=l¢ 
Il=1¢5 

/ SETUP TNIZE W KEY 
*267 

*154 

*4100 

-327 
o 

W /ENTRY TIl" DIRECTORY TABLE 

4100 0000 W, 
4101 4726 
4102 4727 

o /BACKGRaJ.ND SUBTRACTION ROU
JMS I CRLFP /TINE .
JMS I MESSAG /MESSAGE PRTIl"TOUT 

4103 1617 
4104 2215 
4105 7540 
4106 0000 
4107 4531 
4110 4407 
4111 6330 
4112 0000 
4113 3056 
4114 4511 
4115 4531 
4116 4407 
4117 3330 
4120 0010 
4121 1505 
4122 6505 
4123 0000 
4124 4512 
4125 5700 
4126 4170 CRLFP, 

1617 INO /ROUTINE 
2215 /RM 
7540 1= SP 
o 
JMS I 131 / INPUT NORM 
F.NTR /ENTER F,L()ATTIl"G POTIl"T 
FPUT NORM / STASH FACTOR 
FEXT 
DCA 56 /56=0 IS FAST READER 
DO /CONDITION 
JMS I 131 /INPUT A NUMBER 
FNTR 
FMPY NORM 
FNEG 
FADD I 11 
FPUT I 11 /(Il)=(!l)-NORM*NUM-
FEXT /BER 
CONT 
JMP I W 
4170 /SEE LISTTIl"G 

4127 
4130 
4131 
4132 

CONT 
CRLFP 
DO 
FNEG 
FNTR 
11 
MESSAG 
NORM 
W 

40 

4274 MESSAG, 
0000 NORM, 
0000 
0000 

4512 
4126 
4511 
0010 
4407 
0105 
4127 
4130 
4100 

4274 
0 
0 
0 

SETUP FOR 
FAST INPUT 

(I1)=(I1) - NORM*NUMB 

NOT DONE 

FIGURE 13 
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BRINGING THE COMPUTER INTO THE 
HIGH SCHOOL CLASSROOM 

Mi chael L. Doren 
Deerfield High School 

Deerfield, Illinois 

ABSTRACT 

This paper is geared primarily for high school mathematics teachers, department 
chairmen, supervisors and others interested in computer education at the second
ary level. Some ideas on how the PDP-8/S, in combination with an inexpensive 
closed-circuit TV setup, can be used to enri ch concepts taught in all levels of 
high school classes are presented. Emphasis is on the goals and ways and means 
of more effective use of the computer in the high school classroom. 

This paper is presented to the Digital Equipment Computer 
Users Society 1968 Spring Symposium in the spirit of sharin~ 
some ideas on how to use a computer installation effectively 
in a high school classroom. All uver this country, schools 
are becoming increasingly aware of the important role of the 
computer in our society. Indeed, many schools could not 
schedule their classes without the use of a computer; yet too 
few schools include computer education as part of their sched
ule of classes. Schools are becoming increasingly anxious to 
get the computer lIinto ll their curricula. Decisions are being 
made; ways and means are being settled upon. Should the 
school purchase a small computer that wi II allow its students 
to get their hands on it and really see how it operates, even 
though it has limited capabilities in problem solving? Should 
the school enroll in a time-sharing plan giving students little 
opportunity for hands on operation but providing tremendous 
problem-solving potential? Until recently, any high school 
(of average financial means) desiring computer education for 
its students has had only the above options. Financially well
off districts could have both the small accessible computer and 
the teletype line to a large installation. 

But now a new type of computer has been offered on the 
market that provides a third, and a preferable, alternative. 
Digital's PDP-8/S and PDP-8/I sell and lease for prices that 
are within the financial capabilities of many schools. Yet 
these machines offer the two advantages of computer educa
tion: (1) They allow capable students to get their hands on 
the computer; program in machine language, watch the lights 
that step through their programs, see and investigate the 
working parts, and learn how the computer works; and (2) 
they have sufficient core memory to accept more sophisticated 
programming languages and to allow for the successful solution 
of almost any problem that would arise in a high school class
room. At Deerfield High School, we have had computer 
education for three years. For the first two years we had 
the small, accessible, limited type of computer which I men
tioned earlier. This year we purchased a PDP-8/S, and we 
are quite pleased with its ability to fulfill our needs. Along 
with the new computer, we have initiated some new ideas 
that we feel add greatly to our abi I ity to make the computer 
a vital part of our mathematics curriculum. Under department 
chairman, Karl Wildermuth, I believe that Deerfield has 
played a pioneering role in computer education. This paper 
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concerns ways and means; it is not a technical dissertation on 
a complex subject but rather a way of putting pen to the ideas 
that Mr. Wi Idermuth and .our staff have developed so that 
other schools may be encouraged to enter into the computer 
education field and may share some of the benefits of our 
experience. 

COMPUTER EDUCATION AT DEERFIELD 

At Deerfield High School, we have two primary purposes 
for computer education within the mathematics department: 
(1) To teach computer operation and programming to those 
students who are capable of learning it; and (2) to use the 
computer to provide enrichment for our courses at all levels 
within the department. To implement the first of these two 
objectives, we offer two courses in computer education. 
Fundamentals of Digital Computation, M-22, is a one-semester 
-:ourse for above-average students who have had at least 
three years of mathematics. The course of study includes 
Boolean algebra, the electronic hardY"are of the computer, 
and intensive work in computer programming and operation. 
(see Computers and Automation., March, 1968, page 28 for 
an outl ine of this course) In addition to M-22, we are pre-
paring a course for interested sophomores and juniors called 
Introduction to Computers, M-16. This six-week course will 
enable students to use the Calculator Mode, Fortran, FOCAL, 
and other languages to solve problems that they meet in their 
mathematics, science, and business courses. 

Approximately fifty students enroll in our M-22 course 
each year, and we hope to have about fifty more in the in
troductory course. These students are given complete access 
to the computer itself and the off-line teletype that we have 
located in our computer laboratory. Many of these students 
become very good programmers, and others show remarkable 
talent in working with the electronic and technical aspects 
of computer operation. Indeed, I am confident that several 
of these students will eventually select vocations in the com
puter field, and I feel that their high school experience has 
been an important factor in this selection. However, this 
alone does not justify the existence of the computer at Deer
field High School. We feel that the second objective named 
above is equally important. We believe that it is extremely 
worthwhile to use the computer at all levels of coursework 



within the department, from modified algebra to calculus. 
Any teacher who has tried to teach the quadrati c formula to 
freshman algebra students or Pascal's Theorem to a statistics 
class would agree that the computer enables him to do a 
better job of teaching many topics. Secondly, such use of 
the computer exposes nearly the entire student body to the 
capabilities and limitations of the computer. In this age, 
when those who do not understand the complexities of mathe
mati cs and automation fear or bel ittle the contribution of the 
computer to our society, this friendly exposure can be very 
helpful. Furthermore, it is far more reasonable to justify the 
expense of computer educati on on the basis of 2000 students 
rather than on one or two hundred. Therefore, I feel that it 
is just as important that our curriculum seeks to give exposure 
to the average and below-average student as it is to give 
depth and competence to the above-average student. 

Reaching the above-average student is relatively more 
easily done. We merely (if I may be allowed literary under
statement) place some good students in a room with a compet
ent teacher and a computer. Throw in a few textbooks and 
some manuals and we have computer education that is as good 
as our teacher, computer, and students can provi de. But when 
we are talking about 2000 students, 15 teachers, and one 
computer, the problem takes on some, new aspects, andltis 
just these aspects to which I devote this paper. 

CLASSROOM USES FOR A COMPUTER 

The problem boils down to trying to develop some system 
wh i ch wi II enab I e a II teachers to use the computer ina II of 
their classes in sudi'C way as to improve genuinely the level 
of instruction and create a real interest among the students. 
First, we must decide what goals, or educational objectives, 
are served by the use of a computer demonstration. I have 
found that the computer can be a definite aid in both the 
deductive and inductive learing processes. After I have 
proved a theorem to my class (Hero's formula for the area of 
a triangle, for example), the computer can be used to give 
repeated exampl es to demonstrate that the theory is val i d. 
The theory is introduced, black-board examples are given, 
then several examples can be worked on the compul'er to be 
verified by the students. The homework assign~d, which is 
designed to practice and apply the theory, can be checked 
the next day on the computer. This is good deductive learn
ing, adding the incentive for the student to be able to IImatch 
the computer. II In addition, the program can be written to 
detect unreal isti c data entries (such as negative sides if Hero's 
formula were being programmed); and a diagnostic statement 
can be typed, making the student more aware of the dangers 
and excepti ons found ina theorem. 

With good students and advanced concepts, the computer 
can be a strong encouragement to inductive learing. Several 
well-planned computer examples enable many students to 
IIdiscover ll theorems for themselves. Using a Fortran program 
that computes binomial coefficients, I was able to show my 
statistics class {or they were able to show me} that 

( n)+( n )= (n+1) 
r r+1 r+l 

Thus, they were more wi II i ng to attempt a formal proof of 
Pascal's Rule after they had discovered it for themselves. 
After a few more examples, they were ready to prove that 
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n 

r.=o 

In any course that involves a great amount of theory, a com
puter demonstration can create the need for that theory -- a 
nice alternative to teacher-imposed needs. 

In the realm of high school mathematics there are many 
topics which lend themselves effectively to computer demon
strati ons. A teacher or group of teachers can go through a 
textbook and find many ideas that can be programmed for 
classroom use. At Deerfield we have written some seventy 
programs for use in our curriculum. They range from simple 
concepts such as IIprime factorization of an integerll to more 
advanced ideas like the lIupper triangulation of a 3x4 matrix. II 
Every course should offer at least five or six opportunities 
each semester to bring the computer into play. In an advanced 
algebra course, for example, the computer can be used to 
demonstrate such topics as: 

1. Quadratic Formula 
2. Distance Formula, Midpoint Formula 
3. Linear Equations 
4. Law of Si nes 
5. Law of Cosines 
6. Arithmetic Progressions 
7. Geometric Progressions 
S. Evaluation of Determinants 
9. Solution of System of Equations 

10. Parabola Discussion 
11. Circle, Ellipse, Hyperbola 
12. Conic Section Identifier 
13. Operations on Complex Numbers 
14. Factorials 
15. Permutations, Combinations 
16. Binomial Coefficients 
17. De Moivre's Theorem 
lS. Logarithms 

In addition, the calculator mode of PDP-SIS will demonstrate 
the following ideas met in advanced algebra: 

1. Order of Operati ons 
2. Group, Field Properties 
3. Roots and Powers 
4. Evaluation of Polynomials 
5. Trigonometric Identities 
6. Fraction-to-Decimal Conversion 

PROGRAMMING FOR CLASSROOM USE 

After having decided what topics are appropriate for 
computer demonstrations in a high school classroom, the 
actual programming of the concepts must be done. PDP-SIS 
offers two programming languages that are relatively simple 
and very well-suited to this purpose: a version of Fortran that 
is similar to those used with the large computers and a new 
language, FOCAL. These languages are easy to use, but 
they allow the solution of quite sophisticated problems. This 
past summer, several of our faculty members spent three weeks 
writing programs in Fortran. A source language print-out of 
each program, along with a few example problems, were 
compiled into a loose-leaf booklet. Copies were made and 
distributed to each member of our department faculty. As 
new programs are added and old programs are revised, each 
teacher is given a copy to place in his booklet. We are now 



in the process of rewriting these programs in the new FOCAL 
language. Each of these programs has five features that I 
believe are essential in a program that is to be used for 
classroom demonstrations. 

Clear request for data input. Each program begins with a 
very specific request for data. This allows the operator or 
teacher (who may not have written the program) to enter the 
correct data in the correct order. 

Well-formatted output. The results and answers are very 
clearly stated so that the teacher need do very little inter
pretation of the results for his class. 

Diagnostics and "IF" tests. All entries of data are carefully 
checked for appropriateness. If a number must be positive, 
an "IF" test should be applied to be sure that it is. If the 
data must meet other requirements, these too should be 
tested; and the program should be written to inform the 
operator of the error that he has made. These error dia
gnostics come into play when a sincere error is made (which 
can happen when the operator is unfami I iar with the I imita
tions of a concept) or may be called up intentionally by the 
teacher in his selection of data (to encourage the students 
to find out why the computer has rejected the data). The 
error di agnosti cs can be programmed ina I ight-hearted way 
to give the students a chance to see the computer with a 
more "human" personality. It is, however, important for 
the students to know that these "human II characteristi cs are 
the result of humans. The computer is quick, accurate, 
obedient, and dumb. It can often find answers when the 
data are completely unrealistic; it takes a human being to 
reason that the data are not ri ght • 

Programmed recycle. The first statement of a program should 
be numbered and the last statement should recycle the pro
gram to its start. In this way, many examples can be done 
without having to re-address to console. Using the computed 
GO TO function of Digital's Fortran, the same program can 
be used to perform several related tasks, such as computation 
of mean, third, or fourth proportionals or finding either the 
missing leg or hypotenuse of a right triangel. In this way, 
the time needed to read in a new program can be saved. 

Algorithmic solution and mnemonic variable names. When
ever possible the program should be written so that solutions 
are performed in the same manner in whi ch they would be 
performed by students. With due respect for the restri cti ons 
imposed by integer and floating-point considerations, the 
variables used in the program should be mnemonically close 
to the ideas they represent (e.g., DIST for "distance", 
SUMX for "sum of the X'S", etc.) By doing this, a program 
becomes a useful resource for a student who is trying to learn 
how to program a computer. 

The following excerpts from teletype input-output (from 
a program entitled "Parabola Discussion ") wi II serve to i lIus
trate the first two features mentioned above: 

Data Request: 

PLEASE TYPE IN A, B, AND C 
OF Y = AXX + BX + C 
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Input: 

1, -6, 9 

Output: 

P= + ~.25%~~E+~ 
H= +~.3~~~E+1 
K= +~.~~~~E+~ 

FOCUS IS (+~.3%%~~~E+ 1 ,+%.25¢%%%E+% 
DIRECTRIX IS Y = -%. 25%~~~E+~ 

Y -INTERCEPT IS (%, + %. 9%~%%fdE+1 

PARABOLA IS TANGENT TO THE X-AXIS 
AT (+~.3fd~~~~E+1 ,m 
TABLE OF COORDINATES 

-%. 2%%%%%E+ 1 
-~. 175%%%E+1 
-%. 15%%~E+1 
-%. 125fd~fdE+ 1 

+ ~.25~%%%E+2 
+ %. 225625E+2 
+ %. 2~25%~E+ 2 
+ ~. 18~625E+2 

(Computer will give 40 ordered pairs.) 

The following example illustrates an error diagnostic 
being called up: 

Data Request: 

PLEASE TYPE IN A, B, AN D C 
OF Y = AXX + BX + C 

Input: 

fd, 5, 8 

Output: 

SWEETHEART! IF A = %, 
THIS AIN'T NO PARABOLA 

This excerpt from the actual Fortran program shows the 
use of mnemonic variable names and the algorithmic approach: 

7~; P = 1./ (4. *A) 
VH = -2. *P*B 
VK = C - VH*VH/ (4. *P) 
FY = VK + P 
DIR = VK - P 
DISC = B*B - 4. *A *C 
IF(DISC) 71, 72, 73 

BRINGING THE COMPUTER INTO THE CLASSROOM 

The five features I have mentioned above wi II make a 
program for classroom use far more effective than a hasti Iy 
prepared program. It is important to acquaint each teacher 
in the department with the programs available for his use in 
the classroom so that he may be encouraged to make full 
use of the computer facility. Implicit in all of this discussion, 



however, is the need to bri ng the computer physi cally "i nto" 
the classroom. Several different techniques are avai lable 
for any school, and I believe that we have tried them all. 
We, of course, had to rule out having a PDP-8/S in each 
classroom, which would be the ideal situation but a little 
too expensive. When we had a very sma II com puter, we 
placed it on a cart enabling us to roll it into any classroom. 
This worked fairly well but caused considerable wear and 
tear on the computer as well as a few anxious moments when 
we "lost" it for a period of time. Next, we tried keeping 
the computer in one room and moving classes about in a 
"musical classrooms" situation. While all of these ideas 
have some merit, they involved difficulties which dis
courage computer use by teachers. For thi s reason, I see 
oilly two worthwhile alternatives. First, an input-output 
device may be placed in each classroom. However, not all 
teachers are able to effectively control the physi cal entry 
of programs and data; and if the output device is a teletype, 
only few members of the class can actually see the output. 
And having a teacher read numbers from a sheet of yellow 
paper does not provide a very dynamic classroom use of the 
computer. 

For the above reasons, we at Deerfield have settled upon 
a closed-circuit television system as the most effective means 
of bringing our computer into each classroom. Our system 
consists of five elements: 

1. Computer Laboratory 
2. Closed-Circuit Television 
3. Two-Way Communication 
4. Computer Laboratory Assistants 
5. Computer Laboratory Supervisor 

I must preface this discussion by noting that our school built 
a new wing last summer, enabling us to plan an effective 
computer installation with the architect and electrician. 
However, these ideas can be used in an existing structure 
without having to tear down walls or bui Id new ones. 

Our computer laboratory is centrally located among 
our ten mathematics classrooms. It is about half the size of 
a classroom and has one door opening directly into the cor
ridor and one to the adjacent mathematics department office. 
The lab contains our PDP-8/S, two teletypes (one on-line 
and one off-I ine), two television cameras (one for focusing 
directly on the teletype output and the other for use in black
board demonstrations), a vi deo tape recorder, an intercom 
panel (which offers two-way voice communication to any 
classroom), m i c rophones, headphones, and vari ous am pi i fi ers, 
transformers, and signal spl itters. This area also houses our 
mathemati cs I ibrary and si x study carrels. Students can use 
the lab area to work at the computer, to make up a test, or 
to prepare reports or projects using the available resources. 
Each classroom is equipped with a wall-mounted 23-inch 
television, a ceiling-mounted speaker-microphone, and a 
call-button which activates a light and buzzer in the com
puter lab. 

Each period of the school day, a team of two or three 
student lab assistants is assigned to the lab in lieu of a re
gular study hall assignment. These students were selected 
by the department after an initial petitioning meeting last 
fall. I had five times as may appl icants as there were open
ings for Computer Lab Assistants (CLA's). With the help of 
my fellow faculty members, I pi cked those students who 
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seemed most dependable and able to learn the necessary 
tasks. Training took place in six after-school sessions held 
over a period of three weeks. During this time, they were 
able to learn how to operate the television equipment, the 
intercom, the basic fundamentals of the teletype, and how 
to read a Fortran or FOCAL program into storage. It is not 
essential that these students know how to program, but I 
offered "voluntary" lessons in Fortran programming at which 
the attendance was quite good. When there is no other 
"business" in the lab, these CLA's use their assigned periods 
to increase their knowledge of computer operation and pro
gramming. Many of them have become quite ski lied and I 
feel have obtained a truly salable skill in the computer field. 
Our system depends upon their ability and willingness to help. 
They have petitioned the Student Counci i for recognition as 
a school organization, and with the possibility of carry-over 
members for next year, they should require less of my super
visory time. In return for my time as computer laboratory 
supervisor, I am released from an assignment in a study hall 
or lunchroom. 

A classroom computer demonstration is initiated by the 
teacher. He needs merely to press the call-button in his 
classroom, and a CLA will answer from the lab and find out 
what he would like to have done. The necessary program 
can be read into storage and the television cameras can be 
focused while the teacher turns on his TV, pulls the curtains, 
and dims the classroom lights. When the program is in stor
age, the CLA presses "start" and the data request is typed; 
the whole class can see this request. The teacher specifies 
the data to be entered, the assistant enters the data, and 
the output is typed. Again the whole class sees all of this 
and hears the sounds of the teletype as it goes through its 
paces. The students themselves can have a chance to specify 
the data and to have the computer at their command. Per
haps their choice of data will call up one of the programmed 
error diagnostics, and they will have the added advantage of 
trying to learn why the computer would not accept their data. 
The whole demonstration can be a very exciting learning pro
cess. 

With the extremely simple new FOCAL language, a 
ski lied teacher can actually do the programming for and 
with the class. In this way, the students can get a real 
feeling for the programming process and for the algorithm 
being performed. The simple "ASK", "SET", and "TYPE" 
commands give the students a sense of participation and in
volvement r which in my opinion cannot be paralleled in 
any other type of learning experience -- not to mention its 
positive effects on the enrollment for M-16 and M-22. 

As we become more experienced, we are finding more 
and more uses for the computer and the television equipment. 
Since this equipment involves a considerable expense, full 
usage is important to the department and essential to the 
school board. We have found the TV to be a very success
ful means of team teaching. On an experimental basis this 
year, two other teachers and I taught advanced algebra to 
juniors using a TV-Team approach. Two or three times per 
week a twenty-minute lecture was presented in the lab and 
shown to the three separate classes over the TV. The CLA's 
act as camera men and technical assistants. New material 
can be presented in this way, and questioning can be car
ried out through the use of the intercom. Although we are 
sti" in the process of anal yzi ng the data coli ected after the 
first semester, we expect to find that despite a few inherent 



IIhostilities ll on the part of the students, they were able to 
achieve at a level comparable to the non-team classes. 

Every mathemati cs facul ty has some members who are 
more skilled in certain areas than their colleagues. We 
have found that the TV and video tape recorder provide an 
excellent means of sharing this talent with the whole de
partment. One member of our staff who has had more back
ground in non-Euclidean geometry prepared a thirty-minute 
tape on this subject that was shown to all of our geometry 
classes over a two-day period. Simi lar tapes have been pre
pared on a variety of subjects that have enriched our curri
culum at all levels. If a teacher needs to be absent from a 
class, he can prepare a taped lecture to be shown to his 
class. Certainly these ideas can be extended to bring about 
more efficient use of the available staff. Teachers have 
also found the closed-circuit TV useful in showing graphs or 
charts to their classes right out of the answer book, thus 
saving the time and expense of recopying these visual aids 
on a transparency or ditto master. Incidental uses include 
instructional TV network programs and the showing of a movie 
to many classes when we have had access to the film only 
one day. All of these ideas support my belief that closed
circuit TV is by far the best method to bring the computer 
into the classroom as well as offering many ways to improve 
the effi ciency and effectiveness of instruction. 

SOME PROBLEMS 

Our first year with this system has not been without its 
problems. Generally these difficulties fall into one or two 
categories; problems of a technical nature with the equip
ment, and problems that involve personnel. At times, some 
of the technical bugs seemed overwhelming, but we have 
made progress in solving them. The IIJungle ll is what I refer 
to as the area of the lab containing the various amplifiers, 
signal splitters, and the intercom panel. Some sort of out
side, technical help is needed so that the necessary changes 
(ex: switching from live to tape TV, from the computer out
put camera to the long-range camera) can be reduced to a 
few toggle switches rather than the time consuming and con
fusing reshuffling of input and output wires, plugs, jacks, 
and terminals. A semester of experimentation is advisable 
in order to discover exactly what the needs will be, but 
after that time a professional electrician should be called 
upon to help simplify the lab operation. 

Another rather serious problem arises when the computer 
itself runs down (as all of them do from time to ti me, es
pecially if students are allowed to operate them). Our ex
perience with the Digital Equipment Corporation has been 
quite favorable thus far. To any school that is planning to 
buy a computer, I would recommend finding a company that 
has a branch office in your area and one that is anxious to 
increase its participation in the computer education field. 
Companies that sell or lease computers to educational ac
counts must not fail to realize that vast differences exist 
between educational and business concerns. 

Whi Ie schools have very defi nite costs, both fixed and 
variable, they have nothing tangible to claim as output or 
production and therefore no IIprofits" from which to finance 
costly repairs. High schools cannot employ computer ex
perts or technicians, and existing staffs need all the help 
they can get in keeping their equipment running and in 
receiving technical help and ideas. 
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We are far more able to solve problems that are con
cerned with personnel and students. Our greatest need is for 
in-service training for our teachers in the use of the computer. 
A summer workshop, conducted by a qualified faculty mem
ber, or after-school sessions can help out in this area, but 
school administrations must be willing to bear the necessary 
costs. A teacher needs to feel competent in the use of new 
equipment, or he wi II not use it. The demands on his time 
require that the equipment be as easy to use as possible. The 
use of a computer involves a fundamental change in teaching 
technique, which is difficult even for teachers of short tenure. 
But if we agree that computer education is a valuable and 
worthwhi Ie undertaking for today's high school, then it is up 
to us to begin discussing our goals and the means for imple
menting them. I hope this paper has helped. 

(I wish to gratefully acknowledge the help of Karl Wildermuth, 
Louis Crouch, and Michael Knight in preparing this paper.) 
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ABSTRACT 

The presentation will cover the present use of the PDP-Sis as 
a portable computer in several curricular areas in schools 
within the Computer Instruction NETWORK. The use of machine 
language will be discussed along with the use of CINIC as a 
"Load and Go" conversational compiler. CINIC "Computer 
Instruction NETWORK Instructional Compiler" was patterned 
after a subset of BASIC for the 4K core memory of the PDP-Sis. 
The authors will include a description of the instructions, 
examples of programs, and a candid explanation of advantages 
and limitations of this language. 

The Computer Instruction NETWORK is an ESEA Title 
III Federal Project, covering a four-county area in 
Oregon. Our purpose is to assist high school stu
dents in the learning of computer concepts. Com
puters as an area of study, is our main goal, rather 
than using computers to assist the student in prob
lem-solving in other phases of the curriculum. We 
feel that in order ~o fulfill our objectives, a 
student must have hands-on experience. Each pupil 
should be able to press the buttons in running his 
own program. Computers are supplied for each of the 
schools cooperating in the C. I. NETWORK. We have 
been using the least expensive general-purpose 
PDP-Bls and other similar machines. These are port
able enough to allow a sharing of machinery among 
several schools. 

We strive to make effective use of classroom time. 
In addition to the computer and the on-line tele
type, each classroom also has another teletype 
leased from the telephone company. Thus, one stu
dent can be pre-punching programs on tape, while 
another is running or debugging his program. 

Also, to conserve machine time during the class 
period, we use what we call load-and-go preparation 
programs. These allow the student to pre-punch an 
appropriate tape on the off-line teletype, and read 
it into the computer. As the tape is being read, 
the preparation program is translating the teletype 
codes into machine language instructions which are 
immediately stored in the computer's memory. Now 
as soon as the tape has been read, the program is 
ready to be run. There is no waiting for inter
mediate tapes to be punched or processed. Opera
tional at the present time are the Machine Language 
Loader (MALL) and C. I. NETWORK's Instructional 
Compiler (CINIC). Assembly Loader of C. I. NETWORK 
(ALCIN) is still in the developmental stage. 

The Machine Language Loader program allows the pro
grammer to type the first address of a block of 
computer storage, and then type the instructions or 
data to be deposited in that block. The MALL pro
gram translates the octal teletype codes into ma
chine binary configuration and deposits each word 
in successive storage locations. A new block may 
be started at any time, by typing the first address 
of that block. When using this procedure, the only 
storage locations not available to the programmer 
are the page and a half containing the RIM, BIN, 
and MALL loading programs. 
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As the student learns the language that the compurer 
uses, he can grasp a much clearer idea of the con
cepts involved in machine operation. One way of 
teaching about an instruction or programming con
cept is to allow the machine to be in Single In~ruc
tion mode. The students can observe the various 
registers and notice how the computer deals with 
the data and addresses during each instruction. 
Debugging can be done in a similar way. A student 
can try a program that does not run correctly, oper
ating one instruction after the other on his own. 
By observing the console lights, he can find the 
incorrect steps in his procedure. This, of course, 
is meaningful only to the programmer who is familiar 
with the octal representation of the instructions, 
data, and addresses. 

Since the C. I. NETWORK is, in most cases, teaching 
the most basic concepts of computer use to complet~ 
ly inexperienced people, we must start slowly and 
simply. The first programs are restricted to page 
zero. This eliminates much of the complicated 
explanation that would have to be covered for ad
dressing on the other pages. 

The first program introduced is extremely elementary. 
(See diagram one.) 
But many concepts are 
illustrated by this 
program. First, the 
students must realize 
that the computer 
stores each instruc
tion and piece of 
data in a memory 10-
cation. 

0020 
0021 
0022 
0023 
0024 

1023 
1024 
7402 
0005 
0006 

START, 

X, 
Y, 

TAD X 
TAD Y 
HLT 

Then starting the program at the first instruction 
allows the machine to process the instructions in 
sequential order until a Jump or Halt occurs. The 
use, operation, and procedure for writing memory 
reference instructions, must be introduced. The 
form and use of data in the machine is explained 
in terms of their previous knowledge of Binary and 
Octal arithmetic. All these fundamental concepts 
can be learned by working with straight-line pro
grams like this one. 

The idea of causing the computer to make a choice 
based upon the value of a datum can be presented 
along with an appropriate skip instruction or two. 
As more kinds of instructions are introduced, the 



concept of looping is needed. One of the simplest 
loops to explain is a multiplication by repeated 
addition. The use of a counter as an end of loop 
decision is given in this type of loop. Print-out 
loops give a variety to the loop concept. Teaching 
the needed lOT instructions, and showing the process 
of the modification of instructions, allows students 
to have the computer type messages. Another basic 
concept that is introduced at this time is the use 
of the comparison of teletype codes as an end-check 
on the loop. Additional concepts that we feel are 
basic are the initialization of variables and the 
use of subroutines. 

If time allows, other more sophisticated programming 
ideas can be presented to the class. But all addi-
... ~~_~1 __ ~~_~~~_~ ~~_~~_ ... ~ .~~ •• 1..:1 ~~~_1 .. h~ ~~~h~_ 
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nations of the above-mentioned basic concepts. Of 
course the hardware features of the particular ma
chine in use, such as the increment and skipmstruc
tion, indirect addressing, auto-indexing, interrupt, 
etc., can also be learned if the computer is to be 
available for an extended period of time. 

The third and final phase of our computer language 
requirements was that of a compiler language. We 
felt that this language should satisfy the follow
ing requirements: 

The language should give an understanding and re
flect recent developments in computers and com
pilers. 

It should be a language that would simplify the 
teaching of fundamental programming techniques 
with a minimum of extraneous and superfluous com
piler requirements. 

Third, it should be a language that would allow 
high school students to use the compiler as a 
tool in math, science, and social studies classes. 

There should be a minimum turnaround time and not 
use up valuable class time compiling the programs. 

And finally, we felt that hands-on experience is 
valuable and would prefer on-line debugging. 

The model we picked to pattern our language after 
was the compiler language "BASIC". This is a time
sharing language with a wide-spread and growing 
usage, and, as a result, would be a "living lan
guage" satisfying our requirements. 

Our language, "CINIC", Computer Instruction NET
WORK's Instructional Compiler, is a subset of BASIC. 
It is a "load and go" conversational compiler on a 
standard PDP-8/s with a 4K memory and a model 33 
A.S.R. teletype input and output. 

The following is a description of CINIC's instruc
tion and command repertory: 

Writing the Program 

Below is a sample program written in CINIC. The 
program computes the total amount paid back in a 
year for a given principal and rate of interest. 

10 PRINT "PLEASE TYPE THE PRINCIPAL AND INTEREST RA'IE" 
20 INPUT P, I 
30 LET A = P*I+P 
40 PRINT "AMOUNT IS" A 
50 GO TO 10 
60 END 
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Explanation of program: 

Statement 10: 
The computer will type on the Teletype: 

PLEASE TYPE THE PRINCIPAL AND INTEREST RATE 

Statement 20: 
The computer will type a "?" and wait while you 
type the principal and then the interest rate. 

Statement 30: 
(p times I) plus P will be computed. 

Statement 40: 
The computer will type out 

AMOUNT IS (and the value for the amount) 

Statement 50: 
The computer will then "loop" back to statement 
10 and repeat the above operations. 

Statement 60 indicates the last instruction. 

Statement Numbers 

Each statement must be preceded by a two-digit number 
(10 through 99). You may type statement numbers in 
any order. The program will run in numerical order. 

Instructions 

Following each statement number is an instruction. 
The instructions possible are: 

a. PRINT 
b. INPUT 
c. LET 
d. GO TO 
e. IF, THEN 
f. END 

a. PRINT 

The PRINT instruction commands the computer to type 
If PRINT is followed by a letter or series of let
ters, the values assigned to these variables will 
be typed. If a comma is used to separate the var
iables, five spaces will be output between the nu
merical values. If PRINT is followed by any series 
of characters enclosed within quotation marks, the 
enclosed characters will be reproduced exactly. 
Examples: 

27 PRINT A 
The Tty would print the value for A in expo
nential form. If A were equal to 25, then 
+0. 2500000E+02 would be typed. (See explana-

tion of exponential form.) 

35 PRINT "AMOUNT IS" 
The Tty would type 
AMOUNT IS 

41 PRINT 
The above statement is interpreted by the com
puter as a wish for a blank line. 

b. INPUT 

The input instruction should be followed by a let
ter or series of letters separated by commas. When 
the instruction is executed, the computer will type 
a "?", stop, and wait for you to type the values 



you wish assigned to each variable. 
Example: 

21 INPUT A, B 
On executing this instruction, the computer 
would give the following results if you typed 
a "5," and a "7," 
5, 

? 7, 

c. LET 

The LET instruction is used to define a value for 
a variable. This assigned value may be a single 
number or an algebraic expression involving some 
arithmetic operations. The arithmetic operations 
possible are: 

sign operation example 
+ 

-k: 

/ 
1" 

( ) 

add 
subtract 
multiplication 
divide 
exponentiation 
(exponents may be 
integer constants 
only) 

A + Z 
3 - 5.03 
B of, C 
12/3 
A'1" 2 (means A2) 

parentheses may be used in pairs to clarify 
any algebraic expression. 

Order of priority of operations: 

1. Values inside parentheses 
2. Powers or exponents 
3. Multiplication and division 
4. Addition and subtraction 
Operations are performed from left to right for 
all operations with equal priorities. In the 
absence of parentheses in a formula involving 
only multiplication and division, the opera
tions are performed from left to right. This 
means that A/B'~ gives a value for (A/B)'~. 

32 LET S = 5 
Defines the variable S as equal to 5. 

40 LET Y = 4*A*X~2+X 
Defines Y to equal 4AX2+X 

55 LET Y ~ 2*(2*A-B)/3 
Defines Y to equal 2(2A-B) 

3 

d. GO TO 

A GO TO instruction is always followed by a state
ment number, directing the computer to go to anoth
er statement. The computer will execute instruc
tions in numerical order unless re-directed by a 
GO TO statement or an IF, THEN statement. 

23 GO TO 14 
This statement redirects the computer to take 
statement 14 as its next instruction. 

e. IF, THEN 

This statement allows the computer to make a deci
sion. 

20 IF X = 0 THEN 85 
The computer will go to statement 85 if X = 0; 
otherwise, it will execute the next statement 
after 20. 
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34 IF X < N THEN 97 
If X is less than N, statement 97 will be exe
cuted. If not, the next statement after 34 will 
be executed. 

f. END 

The END statement must be the last statement in the 
program, and must contain the largest statement 
number used in the program. END signals the com
puter that the entire program has been loaded. 

Corrnnands 

When the computer types "READY", it is indicating 
that it is waiting for a corrnnand or instruction. It 
will type "READY" after: 

You type an END statement indicating the program is 
complete. 
It has executed the program. 
It receives a stop corrnnand, "S", from the keyboard. 

If at this time you type: 
NEW the computer clears the memory of an old pro

gram and waits for your new program. 

RUN the computer will execute your program. 

A statement number and statement the computer 
will add this new instruction to the existing 
program. 

S If, while the computer is running a program, 
you wish it to stop, type "S". It will stop 
and type READY. (This will not operate dur
ing an input statement.) 

STORED PROGRAM 

Computers are unable to solve a problem unless a 
"program", or list of instructions, has been stored 
in the computer memory. To solve a problem, then, 
the programmer must follow a sequence of three steps: 

1. Write the program. Using the CINIC language, 
write a list of instructions which will solve the 
given problem. 

2. Load the program. Load the list of instructions 
into the computer memory. This is usually done by 
simply typing the program on the Teletype keyboard. 

If someone else is using the computer, you may punch 
a program tape by typing your program on a separate, 
off-line Teletype with the tape punch ON. Then carry 
your program tape to the computer's Teletype and in
sert the tape in the tape reader. After the computer 
types READY, type "NEW", a Carriage Return, and place 
the tape reader switch in START position. The pro
gram will be quickly loaded into memory. After the 
tape has loaded, place the tape reader switch in STOP 
position. 

3. Run the program. Loading a program is like load
ing a gun: You are only prepared for action; nothing 
happens until you pull the trigger. After a program 
has been loaded, you execute or run the program by 
typing "RUN" and a Carriage Return on the Teletype. 

Numbers 

All numbers are limited to seven digits. Decimal 
points may be used if preceded by a number. If a 



number larger than seven digits is desired, exponen
tial form may be used. 

Exponential Form 

Numbers written in exponential form (or "scientific 
nation") consist of two parts separated by the let
ter "E": the significamt. digits of the mnnber, fol
lowed by a power of ten. To find the true number, 
multiply the indicated number by the indicated power 
of ten. For example: 

0.5120000E+03 

would be interpreted as 0.512 X 103 , or 512. (The 
"E" stands for "Exponent".) ~~milarly, 0.lOOOOOOE-09 
_____ ~.3 1... _ ~1... _ _ ___ _ _ f""I 1 v 1 f""I ~~ f""I (\(\(\(\(\(\(\(\(\1 
WUU.LU ut::::. L1lt::: ::ta.tlLt:::: a.::;, V.J.. .l\. LV 'J.L V.VVVVVVVVV.L. 

All numbers output from the computer will be normal
ized and printed in exponential form. Thus: 

0.83572l0E+03 

would be interpreted as 835.721 

Variables 

A variable may be defined as any single alphabetic 
character, A through Z. 

Legal Characters 

Any numeric or alphabetic character may be used in a 
program. All other characters and punctuation marks 
are illegal, with the following exceptions: 

1. Those operators defined in a LET statement. 
2. Anything inside quotation marks in a PRINT 
statement. 
3. Commas used outside quotation marks in a PRINT 
statement to generate five spaces or to separate 
variables in an INPUT statement. 
4. ,), < may be used in an IF, THEN statement. 
5. Decimal points may be used if preceded by a num
ber. (Example: 0.52) 
6. Spaces may be used anywhere, as needed. 
7. Carriage returns to indicate the completion of 
a statement or command. 
8. Line feeds when nec.essary after a carriage re
turn. 

Error Messages 

If a statement is incorrectly typed, an error mes
sage may be typed by the computer. All error mes
sages start with an "E" and are followed by an error 
code letter and a statement number. 

EA indicates a general format error. 
Correction: Check your statement with descrip

tion of correct format under Instructions. 
Check also forms for Numbers, Variables, and 

Legal Characters 

EB indicates a statement number error. 
Correction: See Statement Numbers 

EC indicates the length of statement exceeds 
acceptable limits for CINIC. (about 65 char

acters) 
Correction: Divide into two statements 

ED indicates the total length of the program ex
ceeds acceptable limits for CINIC. 
Correction recompile and: 
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1. Omit errors 
2. Omit any unnecessary groups of parentheses 

in LET statements 
3. Reduce size of and/or omit PRINT state

ments 

EE indicates the total number of constants exceeds 
the limits of CINIC (about 50) 
Correction: Recompile and limit the number of 

constants 

Example: 
you type 
Error message 

70 LET X-5 
EA 70 (Format error in statement 70) 

Making Corrections in a Program (On-Line) 

If an error is made while typing on-line (connected 
to the computer), simply type a semi-colon, carriage 
return, and re-type the statement. 

After a program has been executed, if you wish to 
insert or change a statement, just type the desired 
statement or statements. 

To delete an entire statement, type the same state
ment number followed by a carriage return. 

To replace a statement, type the same statement num
ber and the new statement. 

To insert a new statement between two other state
ments, choose any previously unused statement number 
that falls numerically between the two other state
ments. 

After all corrections are made, type "RUN" and a Car
riage Return to execute the corrected program. 

CINIC has some definite advantages in classroom in
struction. As can be seen from the preceding para
graphs, corrections may be made easily on-line. 
There is no classroom time lost in compiling the 
programs; spacing is completely optional, and turn
around time is an immediate response. The following 
example requires no format statement. 

60 PRINT "THE ANSWER IS" A 

There are no fixed or floating point requirements as 
this let statement demonstrates. 

35 LET A = 2l*(X*I)t3-(5.2l*6.23E-3) 

The concepts of looping can be taught readily as in 
t'he example below. Also, this gives a student the 
chance to study relationships between dependent var
iables. In this case, the radius is allowed to range 
and the area can be observed. 

20 PRINT "RADIUS AREA" 
30,LET R 1 
40 LET A - 3.l4l6*Rt2 
50 PRINT R, A 
60 LET R = R+l 
70 GO TO 40 

Give~ the mathematical background with only a fewmin
utes' instruction, students can write programs such 
as the one below. Then, by experimenting, will dis
cover more about programming and the mathematics in
volved as in this case we must consider those cases 
where "D" is zero. 



PJ!.. + BY C 
GX + HY I 

10 INPUT ABC G H I 
20 LET D A*H-G*B 
30 LET X = (C*H-I*B)/D 
40 LET Y = (A*I-G;~)/D 
50 PRINT "X="X, "Y="Y 

CINIC does have limitations. The first of these is 
the necessity to keep programs short. Programs 
should be kept to less than 20 to 30 statements de
pending on the type of statement. The output mode 
is limited to exponential form. There are no func
tions available and lastly the student cannot list 
his program. In order to overcome these limitations 
we have attempted to supplement study by using time
sharing with a larger computer for those problems 
that require a stronger language. 

With our multi-level language approach to computer 
science in the high school, we, of the C. I. NETWO~ 
feel that the students get a good, well-rounded 
exposure to computers and programming. Although we 
do not claim to train technologically-capable pro
grammers, a student, upon finishing our introductory 
course, can more easily decide whether a profession 
in computers would appeal to him or not. If the 
desire is present, he can go on for more training 
that will finish preparing him for a job in the vast 
computer field. Our plan is to continue this pro
cedure in the future, adding refinements as they are 
completed. 
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PROJECT ASC 

Research and Development in the 
~ppl i cation of ~mall .somputers 

Report of Progress and Findings 
Apri I 26, 1965 

Robert M. Metcalfe, Director 
Project ASC, Room 13-3013 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139 

ABSTRACT 

This, the first progress report of Pro ject ASC, wi II briefly describe the 
origin of Pro ject ASC, its goals, and opening hypotheses. Findings on 
the injection of a particular small computer (Digital Equipment Corpora
tion - PDP-SiS) into an atmosphere of education and research are dis
cussed and some conclusions are made. (The bulk of interesting data 
presented in the ASC progress report as found in its descriptive program 
listings, have been omitted from this report.) 

PRELIMINARY HYPOTHESIS AND GOAL 

The computer world is in the midst of a raging debate con
cern ing the relative advantages of big-time time-sharing and 
the dedicated small computer. This debate includes the 
time-sharing vs batch-processing disagreement. Project ASC 
was borne with the idea that the range of appl i cations for 
which computers are suited is such as to require more than 
just one computer or one computer mode. It has been felt 
that the large computer system is being over sold and the 
small computer given less attention than it deserves in this 
debate. Pro ject ASC began with the hypothesis that there 
are many applications suitable for the small computer and its 
goa I is to discover these appl i cations. 

THE COMPUTER FACILITY 

The point to be made is that the words II computer faci lity" as 
used here do not denote the traditional massive conglomera
tion of men, equipment, and paper but a small, compact, 
relaHvely inexpensive laboratory with a markedly unimpres
sive and yet work-oriented atmosphere. 

The Project ASC computer is a basic PDP-Sis digital compu
ter (costing under $10,000) with its standard paper tape
teletype input-output terminal. The computer shares a small 
room with a desk, standard electrical outlets, a bookcase, a 
mimeograph machine, an IBM time-sharing console, a handy 
shoebox for spurious paper tapes, a chalkboard, and a number 
of chairs varying from one to four. 

The most important contents of the room turn out to be, in a 
addition to the computer itself, the chalkboard and the shoe
box, and one chair {not to mention chalk}. 

OPERATIONS 

It is the general philosophy of the project that with a little 
help the computer is its own best salesman. The general 
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method for publicizing the availability of the computer to 
would-be users is word-of-mouth. 

Three main audiences are approached. The first of these is 
composed of members of the M. I. T. undergraduate student 
body who might find use for the computer in their schoolwork 
and in pursuing their own interests. The second audience 
consists of high school students enrolled in the computer pro
gramming courses offered by the M. J. T. High School Studies 
Program as sponsored by the Technology Community Associa
tion. The third audience is the M. J. T. facu Ity who might 
find use for the small computer in their research. 

The approach used in all three cases is to introduce the goals 
of the project, to enthusiastically offer technical assistance 
in writing programs, and to arrange for computer availabi I ity 
with the six keys to room 13-3013 a 1I0cated to the pro ject. 
The burden of generating ideas for using the small computer 
is left largely to the individual from whom initiative must 
come. 

A norm is established among those who express interest in 
using the computer which holds that time spent by people 
fami I iarizing others with the computer operation is to be 
matched, in turn, by those taught in teaching others. The 
establishment and maintenance of this norm is found to be 
surprisingly easy and amazingly successful in encouraging 
productive activity on the computer. 

RESEARCH PROJECTS 

There are generally three types of programming done on the 
Project ASC computer. There is programming to learn how 
to program the computer, termed II Experience" programm ing; 
there is programming directed toward the development of 
usefu I production-type programs, termed" Do" programming; 
and there is programming to aid the programmer in under
standing ideas, termed II Concept" programming. In all of 
these instances it has become clear that the development of 



the computer program is often equal to, if not greater than, 
in importance its actual production running. It should be 
understood that "small computer programming" is different in 
several qualitative ways from programming the big machines. 

COMMENTS ON THE PROGRAMMING LANGUAGE: 

FOCAL 

If the success of the project can be attributed to anyone 
thing, it would be FOCAL. The language fulfills the basic 
requirements of a good programming language. It is easy to 
learn, possesses powers which can be tapped conveniently at 
successively higher levels of sophistication and has been de
signed well for its intended purpose. 

The FOCAL programming language on the PDP-S gains much 
in the way of convenience and efficiency by its implemen
tation in an interpretive system. This allows for unreluctant 
test for speedy debugging. This debugging capability might 
be harnessed for broader appl ications if a FOCAL compi ler 
were written to allow the efficient running of debugged 
algorithms on the PDP-S or other machines. It is suggested 
strongly that there is sufficient evidence to prompt a large 
scale interpreter-compiler system experiment in various en
vironments (PDP-l0 say) to test its effectiveness in increasing 
programming efficiency. 

COMMENTS ON THE COMPUTER - THE PDP-S/S 

The PDP-S/S has proven itself to be an extremely useful and 
reliable small computer. Perhaps the only comment to be 
made which does not reflect the highest esteem for the S/S 
in its class is the often-heard complaint about the slow paper 
tape reader on the ASR-33. Enough said. 

CONCLUSION 

Above all else Project ASC has discovered to date that the small 
small computer has its greatest potential in the field of edu
cation. It has been observed that an unobtrusive device 
tucked crisply away in a small room has been able to attract 
the attentions (in varying degree) of well over thirty students 
~nd several facu Ity members without any offering of specifi c 
rewards such as salary or course credit. It has been observed 
that by some mechanism, which at this time escapes identi
fication, the availability of a small computer as briefly des
cribed here has led to unexpected excitement in the work of 
these students in their varying discipl ines. 

A scheme of computer usage which emerges from the experi
ence of this project so far would have small computers scat
tered about educational institutions as ready tools for people 
engaged in the process of learn ing - students and facu Ity 
alike. This scattering should very definitely involve the 
placement of small computers in living groups. The small 
computer offers low cost computation with low units of in
troduction, simplicity of operation, and reliability. 
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CLOSING THE EDUCATIONAL LOOP IN APPLIED MATHEMATICS 
(THE ON~LINE CLASSROOM) 

J. W. Elder 
Department of Applied Mathematics and Theoretical Physics 

Cambridge, England 

ABSTRACT 

Lectures supported by demonstration have an immediate impact 
on students impossible with chalk and blackboard alone. In 
essentially conceptual areas of knowledge, such as applied 
mathematics, demonstrations are often impossible and the 
cumbersome input/output procedure of note taking and under
standing after much midnight oil and personal supervision is 
inevitable. The educational loop can be closed right in the 
classroom in the following way. Tbe lecturer is provided with 
a control box on which are some knobs and switches connected 
to a computer (housed elsewhere) and a closed circuit TV 
monitor(s), the camera of which is watching the computer 
displ~ screen. Parameters are entered from the knobs and 
tasks initiated from the switches and the results are 
displ~ed in graphical form. The lecturer has continuous 
control over his problem parameters, and may choose settings 
arising from discussion in the class. TYpical problems 
involve systems of ordinary or partial differential equations. 
Separate "workshops" which simulate the equivalent of a 
physicists laboratory session reinforce the lecture material 
and provide the student with an opportunity to use his 
ini tia ti ve • 
An "experimental" hybrid computer system incorporating a PDP8, 
currently in use in the D.A.M.T.P., Cambridge, will be 
described and illustrated in a movie. A system using a PDP9 
is now being designed. 

POINT OF VIEW 

The idea of feedback control is an old one. Advance 
towards some desired state is achieved by repeatedly 
altering the course of action in a manner determined 
by the proximity of that state. In some situations, 
for example in process industries, such techniques 
are highly developed. Until recently however in the 
case of digital computers only the most primitive 
feedback was possible. Consider the user of a 
batch processing machine with the continual need to 
inspect acres of line printer output and repeatedly 
resubmit his job. Of late this situation has been 
partially alleviated by the use of on-line consoles 
in project Mac, the Universit.y of Cambridge Titan 
on-line system. and several others. A similar 
situation has existed in the laboratory, but this is 
rapidly changing, notably due to firms like DEC, 
towards the on-line experiment. Even so very few 
on-line experiments involve much feedback. 

Let me, briefly refer to a scheme which does. In 
this Department we have a small portable computer 
called HADES - Hybrid Analogue Digital Experimental 
system. It is designed to control, measure, 
analyse and display data from laboratory models of 
fluid ¢ynamical processes in the oceans (Elder 1967). 
The idea is to obtain a closed experimental 
environment, including the investigator, with a 
high degree of interaction and feedback. The hard
ware is in essence a PDPB, TAG)O analogue computer, 
an analogue/digital interface and a variety of 
experimental apparatuses and their associated 
servo-systems. The eAtire experiment is run from 
the teletype keyboard just as if one were at a 
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very sophisticated on-line console to a "computer". 
This machine gives one a completely different 
attitude to experimental work. Our experience, as 
yet in early days, has nevertheless been so 
favourable that we simply asked the question; "If 
we can have an on-line experiment why not an on
line classroom?". 

The control situation in the classroom is normally 
even more primitive than for many of the machines 
referred to above. We are all familiar with the 
large lecture room, the recitation of the lecturer, 
and no interaction at all. Admittedly this is an 
extreme case. Small· classes , tutorial sessions and 
seminars relieve this situation but are only part of 
the solution. The student must still spend an 
unnecessary amount of time finding out what its all 
about. In subjects, e.g. Physics, where lecture 
room demonstrations and laboratory classes are 
possible the opportunity for interaction between 
the subject material, the teacher and the student is 
high. This is not always the case in subjects, like 
applied mathematics, where a lot of the material is 
conceptual rather than concrete. It is here that 
the idea of the on-line classroom is so important. 
This is not to suggest that similar techniques are 
not of value in other subjects, they are (Thwaites 
1967), but since the material of applied mathematics 
is readily represented by means of a computer it is 
a good subject with which to explore the idea of 
the on-line classroom. 

The feature of a computer which opens up the new 
possibilities for using it as a teaching aid in 
applied mathematics is that a complex calculation 
can be carried out and the result displayed 



apparently instantaneously. Thus, once the 
computer programme for a certain type of problem has 
been prepared, both teacher and students can 
concentrate their minds on the mathematical 
structure and the physical significance of the 
results obtained in a continuing dialogue with the 
machine. Out of this opportunity of examining a 
problem directly the student should develop a feel
ing for what is likely to happen and for the intrin
sic mathematical and physical properties of the 
system represented by the problem. A computer 
provides the same kind of possibilities, in teaching 
a mathematically formulated problem, provided by 
demonstrations and laboratory work in science; 
teacher and students can participate directly in 
the investigation, and can learn by inference. 

There are two main ways in which a computer could 
help the teaching of applied mathematics. One is 
as an aid in the delivery of lectures, corresponding 
to a demonstration in in the course or a science 
lecture. The other is as a means of allowing 
'practical' work by a student, corresponding to 
the planned laboratory work of a science student. 

IN THE LECTURE THEATRE 

A lecture theatre is equipped with a display screen 
and a control box linked to a computer elsewhere in 
the building. The display screen is part of a 
closed-circuit television system, with the camera 
recording the output screen of the computer. The 
lecturer's control box contains a number of push
buttons, each of which can initiate a separate task, 
and knobs with variable settings, each one of which 
allows the lecturer to change the value of a para
meter involved i:'l the computational problem. For 
each task button on the lecturer's box there is a 
list of commands in an auxiliary digital controller. 
Real-time working by the lecturer is essential, and 
a hardware system which does this is described below. 

Snch a computer-display system can be called on by 
the lecturer at the appropriate points in his 
exposition. The image on the display screen is 
normally a curve traced out by a moving spot which 
corresponds to the evolving output from the 
computer. Tbe lecturer could of course come to the 
lecture with the same set of curves already drawn 
on a slide for prOjection. The chief advantages 
of the computer-display are first that it has more 
impact on the audience, through being a I new' 
investigation, the results of which unfold before 
the eyes of the students, second that a continuous 
range of variation of the relevant parameters is 
available to the lecturer, and third that the 
timing of the various stages of the computation is 
at the lecturer's choice, so that he can make a 
smooth integration of the demonstration and bis own 
exposition. 

Some idea of what can be done was shown in a film 
at the meeting for the following three mathematical 
problems drawn from different parts of applied 
mathematics: 

(1) The harmonic oscillator with a forCing term 

The behaviour of a simple damped oscillator is 
shown first. The dependence of the form of the 
oscillations on frequency and rate of damping is 
seen both in a graph of displacement against time 
and displacement a.ge.inst velocity. (AS an aside, 
the combination of two oscillators produces 
Lissajous figures and beats.) The output of one 
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oscillator is then allowed to feed the input of the 
other to represent 

Y + kY + a2y = A sin bt 

The output is seen to be in the form of beats, 
whose amplitude and length increase as resonance 
is approached. Change of the damping constant 
effects the peak amplitude of the OSCillations, 
the 'sharpness' of the resonance, and the form of 
the beats. 

(2) Van der Pol's eguation and limit cycles 

The computer integrates the equation 

for various initial conditions, and the result is 
displayed both as a graph of y against t and 
as a curve in the (y,y)- plane. This is the 
simplest model of self-excited non-linear 
oscillations, e.g. relaxation oscillations in a 
triode circuit. The parameter e , governing non
linear behaviour, is varied by turning a knob, and 
the effect on the development of steady non-linear 
oscillations is shown. The approach to a steady 
limit cycle is a striking feature of the display. 

(3) Linear oscillator in quantum mechanics 

This example is an attempt to convey the idea 
of quantisation, or the existence of eigenvalues 
and eigenfunctions. The Schrodinger equation in 
the form d2Y/dx2 = (x2 - a) is integrated, and 
the solutions for y are displayed. The energy 
parameter a is varied over a continuous range, 
to show changes in the general properties of y 
(e.g. y is oscillatory for -at < x < ai, has 
points of inflexion for x = + a2 and is of 
exponential type for x2 > a). The boundary 
conditions are that y be normalizable, which 
implies that, for x2 > a, y must be of 

. decreasing exponential behaviour as x increases. 
That this is possible only for certain discrete 
eigenvalues of a is demonstrated; and several of 
the eigenfunctions may be "tuned in" to show the 
relationship between the eigenvalue and the number 
of nodes in the eigenfunction. 

IN THE WORKSHOP 

The idea of students undertaking work on a 
computer either individually or in small groups is 
more familiar, and the desirability of such work as 
a complement to lectures on numerical analysis is 
widely recognised. The only novel feature of our 
scheme is that practical work with a computer, when 
co-ordinated with lecture courses, makes a 
contribution to the students' understanding of sub
jects other than numerical analysis itself. For 
applied mathematics the contribution is particular
ly important since that subject involves both 
advanced mathematical methods and end-products in 
numerical form. Work of this type has been familiar 
for many years to the engineer who uses analogue 
computers. 

Practical computer work in applied mathematics 
serves two purpose~ the stUdents learn the tech
niques of numerical work by practice, and they 
improve their understanding of the mathematical 
structure and physical significance of the problem. 
These twin purposes are analogous to those served 
by practical work in a laboratory by a science 



student; experimental techniques are acquired, and 
the topics on which they are employed are understood 
better. And just as laboratory practical work pro
vides scope for initiative and manual skill, so 
too does machine-aided practical work provide the 
student of applied mathematics with scope for the 
development of qualities not normally needed in 
study from books and analytical exercises. 

One of the most instructive ways of using the mach
ine is as a simulation of an experimental investiga
tion. For example, the quantum mechanical inter
action between two particles might be represented 
on the analogue computer by an interaction potential 
whose form is unknown to the student. The student 
performs "scattering experiments" on this simulation 
and collects data, on the basis of which he can try 
to develop simple models of the unknown potential 
function and test them by making predictions for 
comparison with "experiment". Exercises of this 
kind place the student in a conceptual environment 
difficult to achieve with conventional teaching 
aids. 

Three examples of typical practical exercises are 
given below: 

(1) Evaluation of a Simple Function 

Find the second zero of the Bessel function 
JO(x) to four-figure accuracy, using the routine 
for calculating Bessel functions provided. 

Instructions: (i) Write a program that evaluates, 
tabulates and plots the function ~(x) over the 
range xI < x < x2 (XI > 0) , dividing this range 
into N intervals. These processes can be done 
using routines described below, which are available 
in the system library; (ii) Use this program to 
obtain ~(x) for 0.< x < 10 with an appropriate 
choice for N. This gives a preliminary estimate 
of the zero; (iii) Now repeat this process in 
the neighbourhood of the zero to get an accurate 
result. 

Details of routines: (i) Bessel functions: routine 
calculating Bessel functions JO(X) for specified 
values of X and N to accuracy given by D; 
(ii) Tabulation: routine for tabulating values of 
the function Y(X) for If values of the argument 
x. 
(2) Numerical 80lution of Parabolic Partial 
Differential Equations 

Write a program for solving the heat flow equation 

with boundary conditions T = TI at x = 0, 
T = T2 at x = 1, and initial values T(x) = f(x) 
at t = o. Use a two-level explicit finite differ
ence scheme to solve the problem with your own 
choice of f(x) and investigate the stability of 
this scheme. 

Instructions: Choose units of time so that the 
equation can be rewri tten ~ = TXX and take 
fixed intervals At and Ax in t and x. Let 

T j = T ( j A~ ) n Llt) 

Then integrate the equation using the finite differ
ence scheme 

r~+1 = T~ t 
) ) 

( T ~t t T ~ - t T ")' ). At itttJ1. 
J I r' 

Choose Ax = 0.05 (which is sufficiently accurate) 
and take At = 0.001. Solve the problem until an 
effectively uniform temperature is attained (t = 1, 
S8\Y), and tabulate and plot T(x) at intervals of 
0.1 in t. Now investigate the effect of varying 
the value of s = At/ (Ax)2 by altering the time
step ~t. The difference scheme is stable for 
s < ~ (see Richtmyer and Morton: Difference methods 
for initial value problems). Show that the accuracy 
of the solution is not significantly affected if 
s < 0.48 and discuss the development of instability 
for s = 0.52,0.6,1.0. Are the growth-rates in 
accordance with theoretical predictions? 

() A Quantum Scattering Problem 

We wish to investigate the possibility that two 
particles (reduced mass m) interact through some 
unknown potential VCr) ,where r is their 
separation. We limi t ourselves to the case of 
states of zero relative orbital angular momentum, 
when the radial Schrodinger equation becomes 

[~;\ -u(r} + k1.] ':1 = 0 

with boundary condition Yeo) = 0, where 
u(r) = gm VCr) and k2 = ~ E, E being the 

",,1. ii'" 
kinetic energy of relative motion when the 
particles are too far apart to interact (we assume 
that u(r) = 0 for r > some ro). 

The analogue computer has been wired up to represent 
this system and you may 'experiment' with it in the 
following w8\Y: 

Knob 1 controls the value of k and you may assume 
~t full setting of this knob, ~k2 »u(r) , 
a:ny r • 

The Display shows (1) if switch 1 is up, a graph of 
y(r) against r for r > r l , where r , > ro but 
if otherwise unknown; (2) if switch 1 is down a 
graph of A sin kr against r , for the same 
values of r as in (1), A being an unspecified 
constant. 

~ controls the scale of the r axis. 

~ controls the scale of the y and a sin kr 
axes. 

Instructions: (a) Using knobs 1, 2, ) and switch 1 
carry out 'experiments' to determine the scattering 
phase shift for a range of different energies E and 
plot a graph of scattering cross section against 
energy; (b) Using the sub-routine for the integra~ 
tion of ordinary differential equations which you 
developed in an earlier class, programme the 
digital computer to investigate solutions for 
various functions u( r) of your own choice; the 
idea being to try to find a u(r) which will give 
a theory in good accord with your 'experimental' 
phase shifts. (e.g. you might first try a square 
well of adjustable depth d and range a, and 
find the 'best' d and a); ( c) When you have 
found a suitable u(r) , determine the number of 
bound states which it can support. 

HARDWARE 

The essence of the hardware problem is the need 
59 for real-time and reasonably fast working. Many 



parts of the student curriculum involve systems of 
ordinary differential equations, which presents a 
task ideally suited to an electronic analogue 
computer. Other parts involve algebraic problems, 
especially those arising from finite-difference 
representations of partial differential equations. 
This demands a digital computer of sufficient 
power to handle a partial differential equation 
in time and one space dimension with ease and 
some simple equations in two space dimensions 
perhaps with difficulty. The hybrid computer 
system meets this need, and also satisfies the 
real-time demand for most of the tasks at a cost 
very much smaller than would be possible with only 
a digital computer. A convenient aspect of the 
proposed system is that each of the three main 
components, digital computer, analogue computer 7 

and controller, can be used independently. A 
system adequate for this task is sketched in the 
diagram below. 

HADES already makes available the core of the system 
but it lacks the extra consoles and an adequate 
digi tal computer. Hence at the moment only one 
task or group can be handled at a time. In the 
machine envisaged, the controller, a PDP8/I with 8k 
of core, will spend its time handling the devices, 
editing text and data and doing only a small amount 
of "_arithmetic" - that required by the analogue 
simulation and short tests of Fortran routines. 
Problem solutions will be evaluated in the two 
main computers a TAG60 and a PDP9. 

It will make it easier for the reader unfamiliar 
with analogue computers to indicate how our machine 
works. The analogue computer used by Hades is a 
small desk top machine with 20+ amplifiers used as: 
10 integrator-summers, 6 multipliers, 5 inverter 
summers, and a number of special servo systems. 
The following controls are available all of which 
can be under PDP8 control in "slave" mode: pot set, 
reset, hold, compute, sample, and repetitive opera
tion. The control state can be determined from the 
PDP8 by reading the digital input buffer or controll
ed by setting the digital output buffer. In ''master'' 
mode the analogue computer runs independently of 
the PDP8. 

Analogue computer programmes are set up by point 
to point wiring on a removable patchboard. These 
matters are dealt with in detail in numerous books. 

SOPl'WARE 

Because of the small store of our PDP8 and the 
need for real time operation a command language 
based entirely on compiler techniques is not 
suitable. Hence for the moment ~e use a simple 
interpretive system similar to those in DEC 
programmes like DDT, Editor, Mllltianalyser, etc. 
The programme works in two modes. In "outer mode" 
commands are obeyed as soon as they are read from 
the teletype, either manually inserted or from 
a prepared tape. On returning to outer mode the 
bell is rung to signify that the programme is 
wai ting for a command. In "inner mode" commands 
can only be obeyed as part of a sequence (possibly 
containing only one member). Commands, messages 
and data are entered in outer mode in numbered 
text strings. These strings m8\Y be edited if 
required. Some of these strings may be arithmetic 
commands which can be compiled in outer mode or 
cumpiled and run in inner mode. The arithmetic 
system we have used so far is basically the DEC 
floating point package. An outline of the commands 
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available is shown in the table below. 

Let me illustrate the use of the commands. The 
demonstration shown in the film and described above 
used the command string: 

[HIC < 300, S1, AXKUAYK, T4, > D300, HQ2, (0)] 

Which in words is: inspect the remote switch 
register, initiate the data table, set the analogue 
computer to compute, displ8\Y and store on the fly 
300 pairs of points pausing for 4 clock pulses 
between each pair of readings, then reset the 
analogue computer and displ8\Y all the data points 
as a graph; after that inspect the remote switches 
which control pause, continue or restart, if 
continued display text, and then go and restart 
endlessly. In this case we had: 

(1) the analogue computer in slave mode 

(2) the ADC channels 1 and 2 connected via the 
ganglion to the analogue computer 

(3) the interval timer set to 0.01 sec 

(4) the three problems wired solely on the analogue 
patchboard 

(5) problems selected by direct switching and 
parameters entered directly from the patchboard. 

In calculations involving digital arithmetic the 
command T4, above might be replaced by (2) where 
string 2 is for example: 

*2, [S~, < 4, A Lit, 21, T-1,,>] 
which in words is: select channel 3, convert and use 
this as an input variable to arithmetic routine 4, 
with output sent to DAC1, pause for 1 clock pulse 
and do 4 times. Here (2) represents a function 
generator and 14, might be 

#/r, [F AS S E XJ 
~hich in words is: float the current ~ord (call it 
u) and evaluate the function y - exp (sin (u + b», 
fix it and place in the current word. In this case 
ADC input 3 and DAC output 1 would be ~ired on the 
patchboard as if they were the input and output of 
a variable function generator. 

The basic arrangement of labelled strings allows 
easy modification of individual strings and is 
particularly convenient when setting up a new task. 

THE FUTURE 

One does not need to be a Jules Verne, an H.G. Wells 
or a Malthus to make grandiose predictions about 
the future developments of on-l~computer/ displSl 
systems in education. But the essence of the si tua
tion is this. The computer can act as a store and 
processor of information - a knowledge machine. 
Access to such a machine is one w8\Y to give the 
student an opportunity to take part in the business 
of gathering, manipulating and processing knowledge 
at an early age and in an enjoyable wq. He can 
become a user and a creator rather than an un
interested spectator. 

This use of a computer-displq facility is too 
novel for reliable predictions of its scope and 
value. Some fields of mathematical physiCS, for 



example ones which involve ordinary differential 
equations, obviously allow wider use of a computer
display in lectures than others. But it is clear 
that many topics can be made more interesting and 
more readily understandable with the help of comput
ation carried out and displayed in the lecture 
theatre and that there is need for extensive use 
of this relatively new aid. 
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TABLE OF C01-lMANDS 

outer Mode 

Enter text string number h as Thext] 

List text string ., 

Edit text string " 

Compile text string" to Floating Point 
package interpretive code 

Enter text into master control string, 
equivalent to :/I 0 ~ 

Pass control to start of master control 
string 

Inner Hode 

A 

8 

Read ADC in to current word (a regis ter on 
page zero) 

Bring contents of current data table 
location into current word 

C Set analogue computer to compute 

Dl1, Display tJ pairs of points (the graph 
is normally drawn 1000 times) 

E "J Examine location n and put in current 
word 

Fn, Enter n into the current word 

c;. Ring gong 

I Initialize data table pointer 
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H Examine digital input buffer (reads e.g. 
remote switChes) 

k Keep the contents of the current word in 
the data table 

Ln, Load and run compiled arithmetic code 
string 

N Print CRLF 

On, Print text string h 

p Print the contents of the current word 

qn, Display text string n on the 
oscilloscope 

~ Reset analogue computer 

Sh, Select multiplexor channel 

Tn
J 

viai t n clock pulses 

U Increase the multiplexor channel by 

\I Lower pen on X-Y recorder 

Wn, Wri te contents of current word in 
location 

x 
y 

Load 34D display X buffer from current 
word 

Load 34D display Y buffer from current 
word 

~n Send the contents of the current word to 
, DAC number 

Cn) Do command string " 

<n,~t> Evaluate the text n times and continue. 
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A SYSTEM FOR PRESENTING PROGRAMMED INSTRUCTION 
TO THE DEAF AND HEARING IMPAIRED 

K. E. Rigg and James A. Boehm, III 
New Mexico State University, Department of Speech 

Las Cruces, New Mexico 

ABSTRACT 

A digital system for presenting programmed instruction of lan
guage concepts to hearing impaired and deaf children is dis
cussed. The system presents controlled visual and auditory 
stimuli to the learner, requiring either a matching-to-sample 
response with four solutions or the solution of a straight 
four choice task. The system reinforces correct responses 
with a variety of visual, auditory, and primary reinforcers 
including pulsed pure tones, colored lights, tokens and can
dies. This system is complete in that it includes the basic 
teaching unit, its own instrumentation, data reduction, and 
provisions for making programs. 

PROBLEM 

The major problems in education of the deaf and the 
hearing impaired are summarized by the single word 
"language." Deaf children entering a school for 
the deaf at the age of five have ha~ so few lan
guage experiences that their language behavior is 
idiosyncratic. Instructors of the deaf agree that 
it is generally a simple matter to teach the deaf 
child to name objects; but a very difficult matter 
to teach the spatial relationships of these objects. 
The concepts "over," "under," "by," and "on" often 
require four years of patient instruction. Since 
these concepts are vital to effective communication, 
we decided that they could be presented more effi
ciently through programmed instruction. 

A systems analysis demonstrated the cost effective
ness of straight-line intrinsic programming. The 
basic premise of this type of programmed instruc
tion is that the student is led to an operationally 
defined goal behavior through a series of small 
step approximations (frames) which are designed so 
that the student will make a minimum number of er
rors; further, the accuracy of the learner's perfor
mance is confirmed at every step and he can pace his 
learning rate. Programs of this type are designed 
for a specific population and are thoroughly tested 
to determine their efficiency. An instrumentation 
system was needed to facilitate the testing of a 
program to teach the concepts "over," "under," "by, II 
and "on" to deaf children. 

The expected parameters of this instructional sys
tem, as generalized from other types of programmed 
learning for normal children, were: 

1. That each set (daily unit) of the program would 
take no more than 15 minutes to complete. 

2. The error rate would be less than 10%. 

3. Latency would be a function of the amount of in
formation contained in each frame. 

4. No response strategy would be noted. 
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SYSTEM DESCRIPTION 

General 

The design criteria for the instrumentation system 
were determined by the predicted measurement param
eters. The instrumentation system is in two sepa
rate units: a teaching machine unit consisting of 
a control logic system, a stimulus presentation sys
tem, and a data instrumentation system; and a pro
gram preparation and analysis unit consisting of a 
code generator system and a data reduction system. 
This separation was necessitated by the fact that 
the deaf test population is located at Santa Fe, 
New Mexico, which is three hundred miles from New 
Mexico State University. 

The teaching machine is housed in a rectangular con
sole measuring 4'x2'x3' and is designed to present 
both auditory and visual stimuli. A tape recorder 
and master control panel are located on the back of 
the unit. An optics system and slide projector are 
located inside the console above the control logic 
and data instrumentation modules, all of which are 
accessible through a locking door on the rear of the 
unit. The student sits at a fold-down desk at the 
front of the unit facing an eye level rear projec
tion screen with the appropriate response hardware. 
Two screen/response units are easily fitted to the 
machine. The first consists of a 6 3/4"xlO" rear 
projection screen with four response push buttons 
directly under it, and an audio output jack in the 
lower right hand corner. This is designed for tasks 
requiring full screen presentation. The second 
screen/response unit is designed for a match-to
sample task and is built on the same frame design 
except that the response push buttons are incorpor
ated into the screen. This screen is divided hori
zontally into two equal areas. The top half is di
vided into three sections, with the center section 
having enough freedom of movement so that when any 
part of it is pushed, a micro-switch located behind 
it will close. This center section is the "sample" 
area. The bottom half of the screen is divided in
to four equal areas, designed to move independently 
of each other. These areas and their associated 
micro-switches constitute the response decision in
dicators. 



The teaching machine presents programmed instruc
tion in a corrective mode. This requires that the 
machine present information continuously until a 
response is made. If the response is correct, the 
machine immediately advances to the next frame; if 
incorrect, it re-presents the frame until a correct 
response is made. The accuracy of response to a 
visual stimulus is confirmed by flooding the screen 
with green light when the response is correct or by 
turning off the slide projector lamp when the re
sponse is incorrect. Auditory information is pre
sented repetitively at a rate variable between two 
and thirty seconds. The accuracy of response to an 
auditory stimulus is confirmed by a 0.3 second 125 
Hz tone and green light if the response is correct 
or by the absence of these stimuli if the response 
is incorrect. 

The teaching machine optics system is designed to 
operate in the high ambient light encountered in 
elementary classrooms, and the auditory system is 
designed to provide a calibrated binaural output 
with sufficient power for the hearing impaired 
child. The auditory system optimum output is 120 
db re .0002 dynes/cm2 complex noise with peak lim
iting at 130 db. Each channel of the auditory sys
tem is adjustable from the master control panel in 
calibrated 10 db steps from 80 db. 

The teaching machine data instrumentation system 
provides information about the student's perfor
mance. The information encoded in this data output 
consists of the following: 

1. The number of times the learner listened to an 
auditory stimulus before making a response. 

2. Response accuracy. 

3. Response definition, i.e., which button was 
pushed. 

4. Response latency. 

Response latency is defined in three ways, the se
lection of definition being dictated by the type of 
program administered. In a match-to-samp1e program, 
the student must confirm the sample by pushing the 
"sample" area at the top of the screen in order to 
see the possible choices; thus, in this mode, laten
cy is defined as the time elapsed between sample 
confirmation and decision response. In a program 
using the full screen presentation, latency is de
fined as the elapsed time between presentation of a 
new slide and decision response. In an auditory 
program, latency is defined as the time between the 
onset of the verbal stimulus and the decision re
sponse. The appropriate latency definition is se
lected by the operator from a three positon rotary 
switch located on the master control panel. 

The teaching machine tape recorder serves a dual 
purpose. It provides the recorded auditory stimuli 
for verbal programs, and also provides the coded in
formation serving as the input to the control logic. 
The control logic system performed its operations on 
an electronically defined "frame" as shown in Figure 
1. The code pulses, when read into the control log
ic, define the correct response for that frame, ad
vance the slide projector, and control the direction 
of tape travel. 
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Code Generator 

The first requirement in designing the overall sys
tem was a code generator to be used in recording 
code groups on magnetic tape. The design criteria 
for the code generator were: 

1. Frequency modulated output. 

2. Fifteen unique code words. 

3. Variable frame duration. 

4. Manual, manual-auto and automatic control of 
code generation. 

Previous work had shown that recording code groups 
in amplitude form, using inexpensive tape recorders, 
was unreliable due to the A-C coupled amplifiers re
moving the D-C component and causing distortion of 
the code pulses. Tape drop-outs of 20 db lasting 
200 ms are common with inexpensive tape recorders, 
further militating against AM recording. Because of 
its inherent insensitivity to these problems, fre
quency modulation was selected. 

The code generator output is a quiescent frequency 
of 3 KHz which is deviated to 6 KHz. These frequen
cies were selected because they lie within the re
sponse of the inexpensive tape system. The 3 KHz 
deviation means that a 2.5 ms pulse provides a mini
mum of 12 zero crossings for the frequency discrim
inator in the teaching machine to detect a pulse. 
The FM code word is derived by digital methods block 
diagrammed in Figure 2. The quiescent and deviation 
frequencies are derived from a crystal clock, insur
ing stability and uniform pulse width and improving 
reliability. 

The code generator word control is supplied by five 
gates, each of which can be set to generate words of 
one to fifteen pulses. Thus, distinct code groups 
can be generated for each response button and a 
special purpose code can be generated. The teaching 
machine is wired for the following correspondence: 

Button Number of Pulses 

1 1 
2 2 
3 4 
4 8 

Auto Clear 10 

The auto clear code allows the insertion of informa
tion frames in the body of a program which do not 
require responses from the student. 

The operator, having set up the word control gates 
for the number of pulses desired, can now control 
the generation of these pre-set codes in three 
modes: 

1. Manua1--The operator opens the appropriate word 
control gate at whatever interval he desires allow
ing completely variable frame duration. 

2. Manua1-Auto--The operator pre-selects frame 
length with the timing unit controls (Fig. 2), and 
initiates the timing cycle by opening the first word 
control gate. In this mode the frame time is pre
set and can be varied from two to thirty seconds. 



3. Automatic--The operator punches the appropriate 
code sequence on paper tape, pre-selects the frame 
length, and starts the timing cycle. The paper 
tape reader is advanced and the word control gate 
is read by the code generator control unit. 

The code generator fires a Iitalk l).ghtll 0.6 seconds 
after each code group so that the speaker can re
cord the appropriate auditory stimulus for each 
frame. 

Teaching Machine Control Logic 

The design criteria for the teaching machine con
trol logic were as follows: 

1. Present auditory, visual, and audio/visual 
frames in a corrective manner. 

2. Present visual information continuously and au~ 
ditory information repetitively until a response is 
made. 

3. Present visual information in either full 
screen-four choice response mode or match-to~sample 
mode. 

4. Allow only one response per presentation. 

5. Confirm responses with appropriate reinforcer. 

6. Reject incompatible codes generated by momen
tary power failures or other line voltage tran
sients. 

The control logic copsists of 34 DEC logic modules 
whose inputs are detived from the code channel of 
the tape recorder and the student response buttons; 
their outputs control the slide projector, tape re
corder, confirmation circuits, audio system, and 
data instrumentation. All power system controls 
are solid state, eliminating unreliability due to 
relay contact arcing and bounce and minimizing pow
er transients. 

The control logic system, as block diagrammed in 
Figure 3, functions as follows. At T1 (Fig. 1) the 
frequency modulated code pulses of frame one are in
troduced into the frequency modulation discrimina
tor. Here they are detected and made to conform to 
DEC logic level and rise time requirements. The 
code is then stored until a correct response is made 
by the student. At T2 the student hears the audi
tory stimulus if appropriate. Time T2-T1 allows the 
tape recorder to come up to full speed after a re
verse. If the student does not respond by T3, the 
first pulse read into the control logic from frame 
two code word will cause the tape recorder to re
verse direction. At this point the audio input is 
gated off since the tape recorder must playback in 
both directions. The code group at T1 will reverse 
tape direction and turn on the audio. This opera
tion continues until the student makes a response. 
The slide projector advances when new code words are 
read into storage; therefore, the visual presenta
tion remains the same during this operation. The 
student can respond at any time during this se~ 
quence. If his response is correct, appropriate 
reinforcers are fired and the stored code is 
cleared. The audio and the projector lamp are 
turned off until the code for frame two is read into 
storage, which turns them back on and advances the 
slide projector. If the student makes an incorrect 
response at any time during the control sequence, 
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the audio and slide projector lamp are turned off 
and the response buttons are locked out. When the 
frame one code at Tl next reverses the tape record
er the audio and slide projector are turned on and 
the student must respond again. 

In the match-to-samp1e mode the operation of the 
control logic is identical to the above with the 
added constraint that the student is required to 
confirm the sample before pressing any of the re
sponse decision buttons. This procedure must be 
followed for every new frame and after every error. 

The code ten detection circuit functions as a clear 
command, turns on the audio and slide projector 
lamp, and cycles the slide projector. 

Santa Fe, New Mexico (machine location) experiences 
frequent momentary power failures during late April 
and May which are caused by daily thunder showers 
lasting about an hour each afternoon. For this 
reason it was necessary to incorporate invalid code 
detection in the control logic. For example, a 
power line transient could cause a count of nine to 
be stored and without detection the student would 
never get out of that frame. Invalid code detec
tion operates as though a correct response had been 
made; the system advances to the next frame, caus
ing only a minimal loss of data. 

Teaching Machine Data Instrumentation 

The design requirements for the system were: 

1. The system should be reliable and noise insensi
tive. 

2. The system should measure latency of response 
with a repeatability of .:: 2 IDS, error~ 10 ms. 

3. The system should record which response button 
the student pushed. 

4. The system should record the accuracy of re
sponse. 

The operation of the data instrumentation system is 
diagrammed in Figure 4. The data output consists of 
two channels of FM information. The design consid
erations for these frequency modulated channels are 
the same as those for the code generator. These two 
channels of information are recorded on an inexpen
sive tape recorder for reduction at a later time. 
Channel A of the recorder records the start latency 
pulse which has a 20 ms width. The pulse generator 
which drives the channel B frequency modulator is 
wired for the following correspondence: 

Button Pushed Number of 2.5 ms Pulses 

1 1 
2 3 
3 5 
4 7 

The right/wrong detector adds one pulse when the re-
sponse is correct. 

Data Reduction System 

The design criteria for the data reduction system 
were to display the following information in print
out: 

1. Latency (1500 counts/second). 



2. Response accuracy. 

3. Number of times the student listened to an au
ditory stimulus before making a response. 

4. Latency error. 

The data reduction system incorporates 28 DEC logic 
modules, a Beckman 1453 printer and a Beckman 7360A 
counter, as diagrammed in Figure 5. Any start la
tency pulse on channel A of the data tape resets 
the Beckman counter and opens its input gate; it 
begins totalizing one half the counts of the chan
nel A quiescent frequency. When a response code 
word is detected on channel B of the data tape, the 
Beckman counter input is gated off. The response 
code word is counted by DEC logic and the response 
decision button number is gated out to the printer. 
An odd (wrong)/even (right) detector controls the 
printer ribbon so that right responses are printed 
in red and wrong responses are printed in black. 
DEC logic modules also count the number of start 
latency pulses without intervening responses and 
gate this information out to the printer, which dis
plays the number of times the student listened to 
an auditory stimulus before making a response. De
tection of a response code word on channel B of the 
data tape causes a print command to be issued to 
the printer. Because the DEC logic modules are so 
much faster than the printer, it is not necessary 
to delay the print command to insure that the data 
are stored in the printer. 

The Beckman counter-printer combination locks out 
all incoming data during a print sequence, necessi
tating provisions for detecting coincidence between 
print cycle and latency start. When coincidence is 
detected, a nine (9) is generated on the latency 
error line and a false start is generated by the DEC 
logic so the response will not be missed. The la
tency error print-out shows that a maximum error of 
400 ms has been introduced into that datum. In 
practice, the only time a latency error can be gen
erated is when the student is using the machine im
properly. That is, he can only generate a latency 
error by responding before he is presented with the 
information in the frame. If he does this the data 
print-out indicates it clearly. 

CONCLUSION 

The system functioned as expected in all respects. 
Its ruggedness was tested and found adequate in 
3,600 miles of demonstration traveling in a compact 
van which was several orders of magnitude less se
vere than the environmental test it received during 
its tenure at the School for the Deaf. It presented 
and instrumented over 15,000 frames without system 
failure, and mechanical wear is negligible. The 
teaching machine was operated by people unskilled in 
electronics who performed well under no supervision. 
Five teachers of the deaf and one undergraduate col
lege student majoring in teacher education were 
trained to operate the machine in two hours. In 
that time they were trained to operate the teaching 
machine and instrumentation recorder and to perform 
minor maintainance--replace projector lamp, clean 
heads, etc. 

Initially a small amount of data was lost due to op
erator error and defective instrumentation tape. 
This was quickly remedied without effecting the ex
periment. 
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The data format proved to be invaluable in analysis 
of the programmed instruction materials under test. 
The concept program met all of its expected objec
tives, in fact the error rate was so low that many 
of the fast latency frames will be deleted in the 
interest of economy. The measurement parameters 
proved to be more than adequate, and latency was 
demonstrated to be a good indicator of the difficul
ty of a frame. The greatest improvement indicated 
by our use of the system would be the addition of a 
small computer to take over the computational load. 
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A COMPUTER SYSTEM FOR ELECTRICAL ENGINEERS 
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ABSTRACT 

Educational computer applications usually center on 
the problem solving capabilities of general-purpose 
machines. The electrical engineer is peculiar in 
that he must become more deeply involved in the com
putational system than is suggested by this casual 
use. His concern arises by virtue of his responsi
bility for the conception and design of the computer 
itself and for its hardware adaptation to a variety 
of applications. 

A system has been evolved which is functionally di
rected at the problems generated by the realization 
of computers or computer-like systems. This system 
is described and a number of typical student problems 
discussed. The problem examples chosen illustrate 
the range of levels which may be encompassed using 
the system, the versatility of the system and prob
lems which may be of some general interest. 

INTRODUCTION 

The advent of modern electronic computers 
has expanded the scope of nearly all areas 
of scientific endeavor. The electrical 
engineer is perhaps most acutely affected 
by this expansion by virtue of his two-fold 
interest"in computer processes. He is, as 
are his colleagues of other scientific dis
ciplines, excited by the use aspects of the 
capabilities now at his disposal. He is, 
perhaps, even more deeply involved by vir
tue of his responsibilities for the congep
tion and design of the computer itself, and 
for its hardware adaptation to a variety of 
applications. 

It is to the second phase of the electrical 
engineers involvement with computers that 
our educational activities are directed, 
that is, to his involvement in the realiza
tion of computers or computer-like systems. 
Several courses have been instituted in 
this area and others have been modified or 
updated to bring about what we feel is a 
reasonable balance between the usual treat-

.ment of continuous or analog systems and 
the treatment of discontinuous or digital 
systems. Related laboratory studies have 
been enhanced by the purchase of a small 
digital computer (PDP-8) and the introduc
tion of this machine into a system which 
permits physical access to all of thees
sential computer functions. This system 
has been called a "generalized digital sys
tem" since it also incorporates facilities 
for patching connections to external digi
tal building blocks so that an extension of 
the computer or an interfacing system may 
be rapidly established. 

Several laboratory experiments and exer
cises have been developed about .this system 
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Some of these are extremely simple exercises 
which serve to establish familiarity with 
the machine, its coding, logic levels, etc. 
Some experiments are rather sophisticated 
real-time data processing adventures. These 
experiments were designed to support a num
ber of course activities at quite different 
levels. 

In this paper, this generalized digital sys
tem will be described and several example 
problems outlined. These examples are by no 
means exhaustive; they have been chosen to 
illustrate the range of levels which may be 
encompassed using the experimental system, 
the versatility of the system, and to have 
an example from several of the particular 
related course areas. 

THE GENERALIZED SYSTEM 

The generalized system is conceptually and 
practically simple. Central to the system 
is a Digital Equipment Corporation PDP-8 
Computer. A number of supporting digital 
building blocks are mounted in adjacent 
frames with a patch panel which permits the 
rapid establishment of interconnections be
tween these peripheral elements and the com
puter. All of the usual computer interfac
ing lines appear as terminated points on 
this patch panel. 

The majority of the logical building blocks 
are completely unspecified, that is, any 
logic module may be substituted in the 
patching arrangement. It has been found 
that a few specific functions are repeated 
in a great many interfacing problems, and 
these functions have therefore been prewired 
on the patch panel (two binary up-counters 
and one binary up-down counter). Seven de
vice selectors with precut codes are 



included in the interface. In addition, 
two 12 bit switch registers, two 12 bit 
light registers, some momentary contact 
switches and free indicator lights are 
available as a portion of the generalized 
interface. Trunk lines are available for 
two 12 bit registers (24 lines) which may 
be connected to divorced equipment such as 
analog tape transport, digital tapes, etc. 

An analog to digital converter is included 
in the system. Present planning includes 
the addition of a multiplexer and facili
ties for digital to analog conversion. The 
system is by no means static: we are pre
sently adding additional equipment racks 
for the inclusion of micrologic circuits. 
In this subsection of the system all com
puter interfacing lines are level converted 
to the appropriate voltages for connection 
to this logic line. 

EXAMPLE EXPERIMENTS 

As previously indicated, several example 
experiments are outlined in this section. 
When the system was first conceived, the 
faculty felt responsible for specification 
of a number of problems to be implemented 
on this system. We felt that we would be 
hard pressed to find a sufficient number of 
examples to insure full utilization of the 
system. However, the students have sug
gested problems which cover the gamut from 
time-sharing and multi-programming to auto
matic control of the coffee pot. Most of 
the following examples were chosen from 
student suggested projects. 

Experiment A 

The Electrical Engineering Department is 
responsible for the instruction of computer 
science majors of the College of Arts and 
Science in a course that is oriented to
wards the hardware and architecture of com
puting systems. For the most part these 
students will have had no experience with a 
digital computer, at a more intimate lang
uage level than Fortran. We find that a 
simple machine language program tracing ex
periment is extremely effective in estab
lishing the system remoteness of the For
tran language. A simple type-out routine 
is coded in Fortran; this program is com
piled and loaded along with the Fortran op
erating system. The routine is then exe
cuted in a single step machine language 
mode so that all of the required steps of 
masking, code conversion, communication 
with a peripheral device, etc. may be ex
amined. This experiment is, of course, ex
tremely simple; however, it does illustrate 
the fact that the generalized digital sys
tem finds considerable use even at early 
instructional levels. 

Experiment B 

The computer science students soon become 
moderately proficient assembly level lang
uage programmers on this machine. This is 
not a part of the course per se; but the 
relation between "hardware" and "software" 
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which is discussed, quite often naturally 
brings up coding problems. Near the end of 
the course they are capable of more ambi
tious experiments in which additional com
mands are added to the repertoire of the 
computer. An example of this is the addi
tion of a "hardware" inclusive OR command. 
In this experiment a program controlled in
put-output transfer is initiated to transfer 
the contents of two core memory locations to 
external registers. The peripheral portion 
of the system exclusive OR's these registers 
and transfers the data back into the accumu
lator of the computer. Now, of course, the 
computer can accomplish a similar end result 
with a subroutine of some 15 or so state
ments. The student is thus faced with a 
real example of what is often called the 
"hardware-software" trade off. 

Experiment C 

Certain electrical engineering courses place 
emphasis on the electronic circuitry in
volved in computers. A design problem in 
this area is assigned in which the students 
must do a rather complete "worst-case" de
sign of a discrete element NOR gate. This 
design requires that a certain fan-in, fan
out requirement be met with any transistor 
from a given distribution. The computer 
system is used in the evaluation of this de
sign, that is, in testing of the circuits. 
The students use the University Central Com
puting Center in the design computations. 
The generalized system is used in testing 
the physical circuit which they have design
ed and built. These circuits are plugged 
into the system interfaced and output loads 
are connected by the computer while the cir
cuit voltages are tested with the analog to 
digital converter. The computer gives the 
student a grade on the lab experiment which 
indicates how well he met the design objec
tives. 

Experiment D 

A course discipline area is developed in the 
theory of simple sequential systems. As an 
example problem, an asynchronous, sequentia~ 
single error correction, coder and decoder 
are realized using NAND gates. This sub
system is patched into the generalized sys
tem and the computer is used to generate 
code groups which are transmitted to and re
ceived from the transmission system. A ran
dom error generator (computer subroutine) 
creates errors in the transmission path. 
The computer further analyzes the transmis
sion and reports the performance statistics 
of the transmission system. 

Experiment E 

The s1ngle cycle and three cycle data-break 
transfers are difficult concepts for the 
students to assimilate. This is not because 
they are conceptually difficult but because 
of the large number of signals which must be 
recognized and carefully timed. A simple 
experiment serves to illustrate both of 
these data-break facilities. We call this 
experiment a hardware clear core. In this 



interface the single cycle data-break is 
first called to set 0 into core location 0 
and 1 into location 1. The three cycle 
data-break is then initiated with the word 
count register as location zero accompanied 
by presentation of all zeroes on the data 
lines. This has the net effect of clearing 
the remaining core locations. The single 
cycle data-break may again be called to 
clear location 0 and 1 if total core clear
ing is required. However, the application 
here is to illustrate the data-break facil
ities. 

Experiment F 

A number of student projects are being exe
cuted using this generalized system. In 
project courses of this nature, rather com
prehensive problem areas are suggested to 
the students. They may then pursue a solu
tion of the problem for either one or two 
terms of their senior year. One example 
of such a problem is a pulse height analy
zer. This problem will be described in a 
bit more detail than have the previous 
problems, since it serves to illustrate 
the students approach and the analyzer may 
be of some general interest. 

This pulse height analyzer is a bit unique 
in that the pulses are of only about 30 
nano-seconds duration and the counting in
terval must be short (about 50 micro-sec
onds) with no gaps between successive count 
intervals. Two senior students have solved 
this problem by building an asynchronous 
sequential circuit which transmits an out
put pulse whenever its input pulse meets 
the proper amplitude criterion. A descrip
tion of this system is shown in Figure 1. 
Two comparators (DEC-W520) are used as de
cision elements to determine if the input 
signal has passed either the low threshold 
voltage VL, the high threshold voltage VH, 
or both. The results of these deci
sions, that is, the output of the compara
tors, are described by Boolean variables H 
and L. A flow table which describes the 
required circuit action for a variety of 
input sequences is shown in Figure 1. 
(Note that flow tables of this type are 
described in Reference 1). 

This flow table may be successfully as
signed internal state variables fl and f2 
as shown. From the flow table, the 
excitation table of Figure 1 may be derived 
From these tables, the excitation functions 
(Fl and F2) and the output function (Z) may 
be derived. 

A logic diagram which will realize these 
excitation and output functions using NOR 
elements is shown in Figure 2. Figure 3 
indicates the performance of this pulse 
height detector in response to rather nar
row in time pulses. Notice that pulses 
less than the low threshold produce no out
put as is also true for pulses greater than 
the high threshold. Pulses with amplitudes 
between these thresholds produce standard 
100 nano-second output pulses. 

These output pulses are directed to one of 
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a pair of up-counting registers in a sequen
tial sub-system. These registers alternate
ly store the count for the appropriate 
counting interval and then dump the stored 
count directly into a core memory location 
using the computer three cycle data-break 
facility. The entire analyzer is patched 
on the generalized system. The computer 
controls the count interval and keeps track 
of the appropriate core locations. 

At the moment the two threshold voltages 
(VH and VL) are manually set. We have pro
posed to add digital to analog conversion 
facilities to the system so that the comput
er may be used to control the amplitude 
thresholds which establish the pulse height 
criterion. 

The support software for this problem has 
also been developed by the students. In 
this instance a rather short symbolic pro
gram suffices to accumulate the data and 
simply punch it out for later entry into a 
larger computer for analysis. In this 
sense, this system is functioning as an on
line data retrieval system for later off
line processing. 

Experiment G 

A final example problem is a shock measure
ment system. In this system two pressure 
transducers are mounted on a moving vehicle. 
A shock wave is transmitted past these two 
transducers. The relative time of arrival 
of the shock wave at each transducer and the 
length of shock duration at each transducer 
is measured by a system which is attached to 
the moving vehicle. This portion of the 
system further converts this information for 
transmission over a telemetry link to a re
ceiver. The typical input sequences shown 
in Figure 4 represents a possible received 
signal in this system. The time Toto Tl 
represents the shock duration time on one 
transducer while the time T2 to T3 repre
sents the shock duration time on the other 
transducer. The physical reasoning is not 
important to our discussion, but the times 
of interest are the time difference TO to Tl 
and TO to T2. In some instances, for exam
ple, the second typical input sequence, T2 
may precede TO. Notice that the two trans
ducers modulate the signal differently so 
that it is always possible to identify TO as 
an amplitude increase of two units while T2 
results in an amplitude increase of one 
unit. Typical order of magnitude times for 
these events are TO to Tl about 200 to 400 
~s and TO to T2 from about 800 ~s to -300 
~s. It is deduced from other engineering 
calculations that +1 micro-second would 
yield sufficient accuracy in the measurement 
of these time durations. 

The received signal is fed to three compara
tors with three threshold voltages estab
lished for these comparators. The compara
tors then .yield decisions about crossing 
threshold level VA as a Boolean variable A, 
Vb as variable Band Vc as variable C. 
These inputs are further decoded to produce 
the Boolean variables Xl,X2,X3 and X4 which 
indicate respectively the number of 



thresholds which have been crossed. These 
signals and their logical decoding are all 
shown in Figure 4. The information of in
terest could be recovered if these X vari
ables were fed to a subsystem which pro
duced 1 megocycle output pulses on 3 lines 
called Zl,Z2 and Z3. The Zl output should 
then drive an up-counter which records TO 
to Tl time differences. The Z2 output 
should drive the up count line while Z3 
drives the down count line of an up-down
counter which records TO to T2 time differ
ences. 

A natural solution to this problem then is 
suggested as a synchronous or clocked se
quential system. A flow table for such a 
system is shown in Figure 5. (Note that 
this flow table must be interpreted differ
ently from the previous flow table and is 
described in Reference 2). The clock is 
not shown in the flow table; it's operation 
being understood. A state assignment is 
executed and the excitation tables, also 
shown in Figure 4, are derived from this 
flow table. These excitation tables are of 
the type described by Marcus. 2 From these 
tables the excitation and output functions, 
shown in Figure 5 may be derived. If these 
functions are realized using the standard 
Digital Equipment Company's flip-flops and 
gates, a possible logic diagram is as shown 
in Figure 6. 

This subsystem does not complete the shock 
measuring system. These outputs Zl,Z2 and 
Z3 are fed to two counters or registers 
which, upon completion of an experiment, 
store the register contents in specified 
core locations by calling the three cycle 
data-break facility. The total experiment 
consists 0f observing several hundred of 
such shock waves which are generated in 
bursts at a possible rate of some 6000 
shocks per minute. 

The support programming for this system was 
also executed by the students. In this in
stance considerable calculation must be 
made with the data. It was felt that the 
Fortran language was a more efficient ve
hicle for such calculations. Hence, the 
programming problem became one of establis~ 
ing proper linkage to control the interface 
and data-break entry within the framework 
of Fortran. 
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CONCLUSIONS 

The present status of this system then is 
one in which a number of experiments have 
been developed in support of a rather large 
variety of course work. A tremendous pos
sibility exists for future developments of 
this sort. That is, the system configura
tion is sufficiently versatile so that only 
lack of the students imagination precludes 
his open-minded approach to a problem. It 
thus seems that this modest investment has 
sparked considerable interest and serious 
thoughts. 

There is a major drawback to our present 
system configuration. When the students 
actually become involved, the interest is 
dampened by a tedious wait for the machine. 
The student must suppress his desire to see 
his system work while he waits a consider
able time for the compiler or assembler or 
system to be loaded into the computer. We 
are anticipating remedying this situation by 
the addition of a high speed reader and 
punch and perhaps a disc pack in the very 
near future. Even with this present draw
back, we find this system is effective. It 
is used in regularly scheduled laboratories 
which support this effort; these are only 
really effective for some of the early very 
short experiments or for demonstrations. 
This system is at all times available to 
the students. It operates in open labora
tory environment. We have scheduled courses 
which would usually be involved in the use 
of this equipment in alternate semesters to 
help alleviate the timing problems. 
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ABSTRACT 

This paper presents some results of research in 
computer typesetting of mathematical text. In 
particular, attention is given to the representa
tion of complex symbolism using a conventional key
board. Emphasis is on how keying conventions can 
be established to provide an input system that is 
useable by the editorial staff of a publisher of 
mathematics articles. 

Experimental results are given based on a test 
sample using these keying conventions. The results 
show how the system can be utilized to computer type
set Mathematical Reviews. 

An extension of the symbol representation scheme is 
presented, whereby complex two-dimensional mathe
matical expressions may be conveniently expressed 
and proofread at the input keyboard. 

INTRODUCTION 

There are a number of levels of complexity 
in information processing in the enviD£n
ment of a scientific professional society. 
At one level is the roster of members; at 
another the processing of bibliographic 
headings and indexes in a review journal; 
and yet another in the processing of scien
tific journal information in general. It 
has been known for a long time how to main
tain a computer file with names, addresses, 
affiliations, etc. Mailing lists are 
usually printed using an upper case line 
printer. Many society membership lists are 
maintained and published in this manner. 
Comparatively recently there have been two 
(at least) new hardware developments that 
have influenced the storage of information 
within computer files: the upper and lower 
case line printer and the high speed photo
composition devices. Typical of this latter 
development are the inexpensive and rapid 
Photon Model 713 and the very high speed 
Photon 900, Merganthaler Linotron, RCA 
Videocomp, and Alphanumeric Photocomposi
tion System. In order to produce output 
worthy of these devices it is necessary to 
store two more items of information: case 
shifts and diacritical marks. At this 
point it is possible to represent all out
put codes on the input keyboard. Typical 
input devices are the Friden Flexowriter 
and the Dura Mach 10 tape punching type
writers. With this degree of sophistica
tion it is possible to produce good quality 
membership rosters. 

The next thing that may be automated is the 
production of bibliographic headings, such 
as would appear in Mathematical Reviews, or 
indexes. From now on we will be talking 
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photocomposition exclusively, and immedi
ately there is a new dimension, font shifts. 
The author's name and title of his work are 
typeset in bold face, while the source docu
ment is typeset in italic font. This font 
information is acquired by a typesetting 
program in two ways: explicitly and im 
plicitly. Most of the font information is 
acquired implicitly in the Inforonics' Text 
Processing System. The program "knows" 
when it is processing the title, for example. 
However, computer typesetting is a world of 
non-conformity, and there are times when 
the implicit method is not enough. The key
board operator must have the capability of 
explicitly specifying a font. This is done 
in a manner similar to the ASCII specifica
tions. (See reference l .) A special code 
is assigned the keyboard as an escape code. 
Thus the symbol following an escape code 
will specify a new font. If the escape code 
is the graphic symbol D , we may specify 
the italic font by ~. The escape code 
concept may be genera 1zed to 1nclude non
Roman alphabets such as Greek and mathemat
ics. In this way the input keyboard may be 
used to represent many, many symbols. An 
example of a mathematics keyboard is given 
in Figure 1. This, then, gives the capa
bility of composition of bibliographic head
ings and indexes. 

At this stage, we have been discussing as
pects of traditional text processing. 
Clearly if we are to compose general mathe
matical expressions, something more must be 
considered: two-dimensionality. There must 
be some way of expressing the relative posi
tion of one symbol to another. We have 
developed a language to deal with this 



problem called STIL, the Standard Typeset
ting Input Language. Since the problem of 
computer composition is open-ended, the 
language is also open-ended. It also fol
lows that any translator to process the 
language must be extendable (self-extending). 

An important constraint on any language of 
this type is that it must be easy to use 
for average editorial personnel; that is, 
non-programmers. This research was initia
ted with the hope of evolving the composi
tion programs into a production system. 
Time-motion studies were carried on at the 
American Mathematical Society to determine 
keyboard conventions. Several different 
keyboard languages were studied with the 
hope of optimizing, keying, proofreading, 
and error correction. 

THE MATHEMATICAL REVIEWS EXPERIMENTS 

In order to test our concepts, a sample of 
bibliographic headings were keyed at the 
Mathematical Reviews Office in Ann Arbor, 
Michigan. Some 2000 headings were keyed, 
using a Dura Mach 10 tape producing type
writer. The information was keyed in a 
format similar to the existing MR card 
files. Therefore, the information had to 
be analyzed implicitly. Thus, if the title 
had been identified, then the following pos
sibilities could occur: (1) two spaces would 
introduce the language and/or summary state
ment; (2) carriage return-tab would intro
duce the source document; and (3) carriage 
return n: - tab would introduce notes. The 
entire process can be described in a recog
nition diagram, as given in Figure 2. 

It turns out that as the recvgnition diagram 
gets more complicated, the chance of error 
increases. As long as it is simple it is 
an effective means of item recognition. 
However, in the test sample, it was found 
that there were some 300 headings that had 
at least one format error. Presumably the 
percentage would decrease with increasing 
experience of the keyboard operator, how
ever. 

A second method of item recognition is the 
explicit tag. In order to test this method, 
some 96 Mathematical Reviews headings were 
prepared in the American Mathematical Soci
ety Office in Providence, Rhode Island. 
Here we have a two column format where the 
left column contains the tag identifiers, 
and the right column'the information. Thus, 
the left column might contain the tag doc, 
which the right column J. London Math.~c. 
A sample of bibliograph1c head1ngs prepared 
in this way is given in Figure 3. 

Another purpose of the test information 
keyed at Providence was to investigate 
problems of keying mathematics text, as 
would appear in the text part of a mathe
matical review. In the test, the text 
information was keyed separately from the 
headings. The two were then merged togeth
er after they were identified. A sample of 
text, math review number, and subject clas
sification number is given in Figure 4. 
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The samples were selected from an actual is
sue of Mathematical Reviews (Vol. 33, No.6, 
June 1967) under the following constraints: 
(1) no multiple line mathematical expres
sions; (2) no symbols that were not on the 
existing AMS Photon 200 disc. 

In the sample in Figure 4, one sees the use 
of the font shift. For examplec=Ji F (x,l) 
c=Jn shifts into italic font and then back 
~ormal font (for that item). The informa
tion is then typeset to give an output as 
shown in Figure 5. 

In general, it was concluded that a great 
deal of mathematics text could be composed 
using a bibliographic typesetting programs 
but in general some means had to be devel
oped to handle multiple line mathematic ex
pressions before a product system to do any
thing beyond an index would be practical. 

GENERAL MA~HEMATICAL TYPESETTING SYSTEM 

It was clear from experiments with Mathemat
ical Reviews te~t that a new composition 
system had to be designed to handle mathe
matical text if any type of production sys
tem was to be realized. Indexes can be 
composed for a good percentage of the time, 
but occasionally titles contain complex 
mathematical expressions. 

The problem of creating a production system 
for mathematics text may be thought of in 
two parts: (1) design of a keyboard language; 
(2) design of computer programs to accom
modate an essentially open-ended computer 
language. A computer system to process 
mathematics text is given in Figure 6. It 
consists of three main parts: 

A. The Translator translates codes and 
symbols of the keyboard language into a 
Standard Typesetting Input Language, cal
led STIL. 

B. The Preprocessor, or Scanner, trans
lates mathematical text as expressed in 
STIL into printing codes, suitable to 
drive a photocomposition machine. It also 
transmits spatial information from the key
board language into the typesetter, as well 
as handling macros. 

C. The Typesetter, or Composer, composes 
the mathematical text into a format suit
able to drive a photocomposition machine. 

THE KEYBOARDING LANGUAGE 

The keyboard language has been designed in 
a two-column format. The right column al
ways contains straight text matter, while 
the left column contains symbols of various 
types. When the input information is being 
processed, the translator processes the 
information on a symbol-by-symbol basis. 
The following symbol types can exist: 

A. Mnemonics - Mnemonics are used to 
represent printing symbols'. When a 
mnemonic is seen it is translated into 
one of the standard fonts of STIL. 



B. Primatives - A primative is a parameter 
of the typesetter. For example, line 
measure, point size, page size, etc. 

C. Composition Operators - The composition 
operator is used to call procedures within 
the typesetter. For example, sub and sup 
invoke routines within the typesetter which 
compute the proper spatical orientation for 
subscripts and superscripts. 

D. Action Operators - The action operator, 
when seen invokes some procedure within the 
preprocessor. For example, new symbols may 
be defined with the define action operator, 
and jobs are terminated w1th the finis ac
tion operator. 

E. Hybrid Operators - The hybrid operator 
is a combination of the composition operator 
and the action operator. When it is encoun
tered, procedures are invoked in both the 
typesetter and the preprocessor. For ex
ample, the hybrid operators author, title, 
footnotes require processing in both----
programs. 

F. Macros - Macros may be used in the key
board language as a shorthand notation. 
Obviously, when there are repetitive group
ings of symbols they need not be keyed over 
and over again. A production system must 
contain macro capability. As the keyboard 
operator became more experienced, one would 
expect more use of macros. 

A representative list of these symbol types 
is given in Figure 7. A sample of input 
keying is given in Figure 8. 

THE STANDARD TYPESETTING INPUT LANGUAGE 
STIL 

In order to do research in keyboard lan
guages, it is necessary to have some in
variant language which most of the system 
can process. The concept is to have any 
keyboard language immediately translated 
into the standard language. The standa~d 
language STIL has been specified. It is a 
functional language, and operations are 
represented in functional notation for ease 
of processing. STIL is not intended to be 
especially easy to proofread. The language 
may be considered as two things: operators, 
or functions, and operands. The method of 
the ASCII escape codes was used to identify 
operators. If we denote the ESC code by 
the graphic c=J, then all operators are 
preceeded by a r-l. In addition to opera
tors following We D , there may be paren
theses 0 ( , D) and separators D, . 
Thus the-maThemat1cal expression: ----

a + b 
a-=b 

would be represented in STIL as: 

o div c:t:J a + b Q a - b 

(Here the c=J () and ~ are overprinted 
for readabTIITy~)-
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Characters are represented! font overlays 
in STIL. For example, the might be 
represented as c=J4c, where it would be in 
the c position ~e 4th font. There are 
2008-symbols per font. 

SYSTEM EXTENDABILITY 

The composition system has been designed to 
be easily extended. The mechanism for this 
has been the define action operator. A 
number of things can be defined: macros, 
composition operators, action operators, 
hybrid opera tors, character tables, and sym
bolic locations within the Preprocessor and 
Typesetter. With this capability new and 
more sophisticated definitions can be built 
up from previous definitions. 
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AMS KEYBOARD OVERLAYS 
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Om math 

MATHEMATICS FONT 

Figure 1. AMS Keyboard Overlays 
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ITEMS: 

l. Control No. 
2. Author's name 

(tab) 3. Standard form of author 
4. Key Index entry 

(cr) 
5. Name, not author, to 

be indexed 
6. Title and Cyrillic 

title 
7. Language and/or Summary 

k: (tab> 10. Notes. 
II. Source Doc. 

NOTE: 12. of source Vol. doc. 
k: (tab> 13. Year, issue, and 

<tab> 
(sp) means space ~ 

(tab) means tab ca m: source pages of doc. 
14. Secondary source. <cr) means carriage ~ 

~ 
ca 

~ 
~ .. 

ca t: 

~ A 
~ 

~ 0 v 
~ 

return 15. Vol. of sec. source. 
m: <tab> 16. Year, issue, and pages 

of sec. source. 
17. Reviewer's name. 2 (Sp> 
20. Reviewer's address 

(cr> n: <tab> 22. Subject number. 
23. Date sent to reviewer 
24. *if source doc. is a 

(cr) <tab) book. 

2 (SP) 
~ ________ @ 1 <sp.> 

C=exit ~(cr) 

Figure 2. 

cont 

aut 

title 

doc 

val 

yr 

iss 

rev 

reva 

2 <cr) r: (tab> 

Recognition Diagram for Mathematical Reviews 
Information Input 

32021 

Cossels, J. W. S. 

Diophantine equations with special reference 
to elleptic curves. 

J. London Mathematical Society 

41 

1966 

193-291 

Lewis, D. J. 

(Ann Arbor, Michigan) 

Figure 3. Input by Explicit Tagging 
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control 23014 add mrnum 33 #7305 
subj add 10 
text add In his work [Arch. Math. Phys.[JR17 CJ n 

(1851), 1-85] Arndt gave the theory of transformation and equivalence 
of binary cubic forms. Arnd"s basic idea is that equivalence of two 
given forms implies equivalence of their Hessians. The Hessian of a 
cubic form is a quadratic form, and the question of equivalence may 
be solved by Gauss" classical theory. DO 

text add Let [J iF (x, y)r1 n be a binary biquadratic 
form. The fundamental covariants of (J ~ [J n, the Jacobian and the 
Hessian are forms of degree 6 and 4, respectively. Thus Arndt"s ideas 
do not apply to solving the general problem of equivalence. However, 
in certain cases they may be extended to the present problem. In this 
paper the author extends ArndtTis idea to forms of degree 4 whose 
Galois group is the transitive group of order 8 or a sub-group of it. 
In this case, the Jacobian of the form has a factor of the second 
degree with rational coefficients. This factor is shown to play the 
same role for solving some questions in the theory of transformation 
and equivalence as does the Hessian in Arndt"s theory. Using the 
basic idea, the author solves the problem of equivalence of 2 forms 
by constructing a fundamental system of resolvents of the polynomial o iF (x, 1) 0 n and thus reducing the problem to solving the 
problem of equivalence of two quadratic forms. The author also gives 
some examples which illustrate his method of solution.C] CJ ' 

Figure 4. Text Input for Mathematical Reviews 

33 #7527 
Kuramochi, Zanjiro 

On the k.1ages of connected pieces of covering surfaces. I. 
Proc. Japan Acad. 39 (1963), 21-26. 

Let w = f( z) be analytic in 1 z 1 < 1. The author considers 
the distribution of the set {-I(C(p, wJ) in I z 1 < 1, where 
C(p, wJ = I w: 1 w - wo I < p}. Let R be a Riemann surface 
with positive boundary and let R. be an exhaustion with 
compact relative boundary oR •. Let G C G' be open sets in 
R. Let w.(z) be the least positive superharmonic function in 
G' such that w.(z) ~ 1 on G n (R - RJ. Set w(R n G, z, 
G') = lim w.(z) and call it H.M. of (G n R). Let G be a 
domain in : z 1 < 1. If there exists no bounded harmonic 
function in G vanishing on oG, i.e., w(G n R, z, G) = 0, we 
say that G is almost compact. Let C(p, wJ be a circle in the 
w-plane. Then f-1(C(p, wJ) is composed of at most enum
erably many components gh gz, .•.. If an open set G C 
U gj, then G is called a D.G. of f-1(C(p, wJ). 
One result is the following. Let 1 f(z) 1 ~ Mini z 1 < 1. (a) 

Let G be a D.G. of {-l(C(p, wJ) and let G' be a D.G. of 
{-l(C(p', wJ) containing G: p < p'. Then w(G n R, z) > 0 if 
and only if there exists at least one component g' of G' such 
that w(G n R, z, g') > 0 for any p' > p. (b) Let Gel z: 1 Z 1 

< 1} be open. If lim sup meas Iz E G: Izi = rl > 0, then 
w(G n B, z) > O. (c) Let G be a D.G. of f-1(C(p, wJ) such 
that every component of G is almost compact. Put G" = G 
n f-1(C(p", wJ), p" < p. Then lim sup measlz E G": Izi = 

r} = 0 for any p" < p. Results are obtained in two other 
MacLane, G.R. (Lafayette, Ind.) 

Figure 5. Typeset Review 
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Language 1 Translator 

ILangUage 2 HTranslator 1:::10------

Language n 

~~and-
Input 
Lan
guage 

~--~Translator n~------~ 

ypesetter ..... ----' ... 
~~proces-

~-tI~Typesetter 

THE MATHEMATICAL TYPESETTING SYSTEM 

Figure 6. The COMPOSE System 

Mnemonics Action Operators 

alpha define 

gera fix 

mdash finis 

less 

thin 

Composition Operations Hybrid Operators 

sub dpy 

sup dit 

int author 

div title 

Macros Primatives 

m(x,y,z) Is 10 

meas 260 

it 

Figure 7. COMPOSE System Symbol Types 
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VERBALIZATION 

Title L sup p 

Author 

footnote number ( 1 ) 

footnote 

return para 

obrak bo 4 return cbrak 

L sup 1 baseline 

L sup p baseline 

L sup p baseline 

obrak bo 3 return cbrak. 

lead six para sm 

ital 

f ( x ) = sum udr k = 0 

baseline ovr inf baseline a 

sub k baseline x sup k 

baseline, a sub k baseline 

gto 0 , 0 Ito x It 1. 

I Ito P Ito inf 

flush left ( 1 ) center 

Figure 8. 

behavior of power series with positive 

coefficients 

Richard Askey 

Supported in part by N. S. F. grant 

GP-3483. 

Heywood 

and others have considered integra

bility theorems for power series and 

Laplace transforms that are analogous 

to known results for Fourier series 

and transforms. These results are all 

weighted 

results. Here we obtain an 

theorem which is analogous to the well

known 

result of Hardy and Littlewood 

Theorem. 

Let 

Then for 

The Two Column Format 
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USE OF PDP-8 FOR DRIVING PHOTOCOMPOSITION MACHINES* 

Richard Fait 
Digital Equipment Corporation 

Maynard, Massachusetts 

Abstract 

A brief look at the use of our DECtape and DECtape Disk Systems 
to produce punched paper tape input to various photographic units 
will be given. 

*This paper was not received for publ ication. 
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PDP-9T TIMESHARING: PHASE I, MULTIPROGRAMMING 

D. M. Forsyth* 
Department of Psychology, Harvard University 

M. M. Taylor 
Defence Research Establishment Toronto 

S. Forshaw 
Defence Research Establishment Toronto 

ABSTRACT 

The PDP-9T is a PDP-9 with the addition of paging hard
ware, special traps, and modifications which translate lOT 
instructions into specific calls to the system monitor. 
Phase 1 of software development for the system permits sev
eral processes to occupy core simultaneously. All input/ 
output is handled by the system monitor. Real-time tasks 
have high priority and are generally interrupt driven, i.e., 
are activated as necessary to process data. Background 
tasks such as editing, assembling and debugging are allo
cated time by an algorithm which seeks to give all background 
tasks equal amounts of running time. A total of three to six 
users may be simultaneously active. 

1. HARDWARE SPECIFICATIONS 

The PDP-9T is a standard PDP-9 to which cer
tain modifications have been made. l These modifi
cations affect the way in which memory is addressed, 
the trapping of certain instructions, and the 
handling of the lOT instruction. 

Memory addressing has been modified by intro
duction of a paging system. Memory is organized in 
pages, each page 2048 words in length. The high
order four bits found in the Memory Address Register 
(MAR) on each memory fetch refer to a virtual page, 
and are used to specify one of 16 mapping registers. 
The contents of this register point to the real 
page of core in which the system has placed the vir
tual page specified by the users program. The low 
order 11 bits in the MAR specify a word within the 
page. The user's pages may be non-contiguous; the 
address transformation, or mapping, is automatic 
and invisible to the programmer. All users have a 
potential virtual memory of 16 pages (32K). Each 
mapping register consists of 9 bits. Bit 0 is used 
to specify Memory Out of Core (MO), indicating that 
the requested page exists but is not currently in 
core. Bit 1 is used to indicate Read Only (RO) 
pages, which may not be modified. These bits will 
be of particular use to the Phase II System which 
will swap pages between core and a one-million word 
disk. 

The PDP-9T will operate in one of two modes: 
User Mode or Monitor Mode. Two separate sets of 
mapping registers are provided, a User ~ and a 
Monitor!:!!2.. The map used on any memory fetch is 

*Work done at Harvard was supported by Grant l-ROl
GM-15258 from the National Institute of General 
Med ica 1 Sc iences • 
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a function of the mode currently in effect. A few 
instructions may not be executed in User Mode, and 
attempts to do so will cause an Error Trap. Two 
such instructions are HLT and OAS, which have no 
meaning in a time-sharing environment. The unique 
nature of the XCT command requires that XCT chains 
be aborted when ~ interrupt is pending; the se
quence will be trapped before granting the in
terrupt. Faults related to the memory mapping (MO, 
RO) will also result in Error Traps. 

No lOT commands are permitted in User Mode. 
The instruction class is preserved, however, and 
utilized to effect communication with the Monitor: 
when an lOT abbcc is encountered in user mode, the 
8-bit quantity abb is used as a pointer to one of 
256 entries in S-;onitor table. The table entry is 
executed, providing rapid-access to read-only sys
tem parameters (e.g., time of day) as well as low
overhead entry to system routines. This class of 
instructions is relabeled as XMR - execute monitor 
register. 

The software which is sketched in the follow
ing paragraphs is being implemented at Harvard and 
Toronto on 32K machines with EAE, API, 8 or more 
DECtapes (there are two Tape Control Units on the 
Harvard system), a Type 340 Display system with 
character and vector modes (on the Toronto system), 
4 teletypes, lineprinter, a 200 usec core clock 
(the Real-Time Clock), a 1.2 usec peripheral clock 
(the Quantum Timing Clock), and a variety of other 
peripherals. 

II. PRIORITY ALLOCATION 

The goal of all time-sharing systems is the 
proper allocation of resources (e.g. core, CPU time, 
I/O channels) among various users so as to optimize, 



according to some external criterion, the utiliza
tion of these resources. This requires assignment 
of priority; if two or more processes are ready to 
run in the same CPU at the same time, one must be 
given a higher priority than the other or neither 
will run. The PDP-9T is basically an interrupt
driven machine designed to act in response to sig
nals generated in the external world. An attempt 
is made to establish priorities of service based on 
the response latency requirements of each process. 
Some processes must respond to an external signal 
rapidly, but execute a small amount of code. Others 
may be able to defer their response, but will re
quire longer running times. 

The standard Automatic Priority Ir.terr~pt op
tion on the PDP-9 mediates this type of situation. 
Four hardware and four software levels of priority 
are provided, in addition to background (in the 
PDP-9T, the standard Priority Interrupt is dis
abled). Eight or more devices may be multiplexed 
to each hardware level, and any number of queues 
attached to each software level. Hardware inter
rupt levels intercept signals from the external 
world, strobing in data and releasing the signaling 
devices. Processing of incoming data will ordinar
ily be deferred to a lower priority routine. 

Software priorities in the PDP-9T do not 
closely parallel the hardware priority structure. 
Level 4, the highest software level, is reserved 
for the execution of certain system routines, e.g. 
those invoked by user's XMR instructions. These 
will always be short routines, running less than 2 
msec. They are placed at this level to avoid the 
problem of re-entrance. Hardware level codin~ is 
forbidden use of these routines. Levels 5, 6 and 7 
are used for various ~nitor functions such ~~ _ 
TCB queues, etc. The lowest level in the 
machine, baCkground, is the level at which all user 
code is executed. Users are explicitly denied the 
use of API channels, but may define sections of code 
which are to be run in response to hardware inter
rupts. The decision as to when to run a user must 
be made by the monitor in terms of algorithms which 
are not hardware implemented. 

The distribution of functions by priority in 
the Phase I System will be as follows: 

1-

2 

3 

4 

5,6 

7 

Background 

Function 

Error Trap handling routines, Disk, 
Power Failure 

DECtape, A/D conversion, Fast ex
perimental devices 

Data-phone, Light Pen, 340 Display, 
Line Printer, Paper Tape Reader/ 
Punch 

Teletype LT09A System (to 16 tele
types), 200 msec, Clock, 1.2 msec. 
Clock, slow experimental devices. 

Monitor code whose execution may be 
charged to the user, e.g. I/O setup, 
arithmetic routines. 

Monitor functions. 

Hierarchy of queues of user TCBs (see 
Section III). 

A 11 user code. 

N.B. All user code is executed at background 
level, all Monitor code at level 7 or higher. 
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III. PHASE I MONITOR MODULES 

Multiprogramming software is being produced for 
the PDP-9T as a temporary system. A more sophis
ticated time-sharing system using page swapping 
techniques and a back-up disk will be completed 
within 12-18 months. In the interim, however, a 
simple multiprogramming capacity will serve two 
major functions. It will permit three or four users 
to edit and debug programs while one or two real
time experiments are being run. It will also pro
vide a useful test bed in which to experiment with 
modules designed for the final system. However, it 
should be emphasized that it is not the first step 
in the evolution of a final system. While the 
Phase ! (~11tiprogramming only) and Phase II 
(swapping) Systems may have some common components, 
Phase II is regarded as a totally separate entity. 

Each active user in the multiprogramming en
vironment will be represented in the monitor by a 
User Control Block (UCB). The UCB contains book
keeping information such as the user's name, time 
of day when logged in, CPU time used, etc. The UCB 
also contains information concerning peripheral 
equipment which has been assig~d to the user, such 
as DECtape units, teletype, etc., and a number of 
pointers. Two of these are a pointer to a string of 
Virtual Memory Control Blocks (VMCBs), and a 
pointer to a string of Task Control Blocks (TCBs). 

The VMCB contains the memory map image of the 
user which must be loaded into the mapping regis
ters at run time. Information necessary to main
tenance of this image is also preserved in this 
area. In the Phase I System, a user will ordinar
ily have but one VMCB. In the Phase II System, any 
number are possible. 

The TCB contains all of the data relevant to a 
task (process). The task is the basic element of 
both the Phase I and Phase II Systems. A task is a 
logically autonomous sequence of code. Most pro
grams which h~ve been written for the PDP-4/7/9 
would be considered as single tasks in this sense; 
those which utilize interrupts, however, might be 
regarded as multiple-task systems, consisting of a 
background task and separate tasks which handle 
each interrupt. Thus, there may be more than one 
task in a single virtual memory. In the Phase I 
System, most users will operate a single task in a 
single virtual memory, although this will be largely 
a decision made by the programmer and not dictated 
by constraints in the system. 

The entries in the TCB are those needed to ac
tivate the task, such as the address of the VMCB 
used by the task, and the values of active registers 
such as the PC, AC, MQ, etc., which must be saved 
and restored when tasks are de-activated or acti
vated. Each TCB contains the value of the time 
quantum allocated to the task, a pointer to the UCB 
to which the task belongs, pointers to routines, 
which can activate or de-activate the task, and a 
number of other desiderata. 

The disposition of each page in core is re
corded in 16 Core Control Blocks (CCBs), and a num
ber of other control blocks are maintained by the 
Monitor for various purposes. The action of the 
system can be adequately described, however, in 
terms of UCBs, VMCBs, TCBs, and the scheduling al
gorithms which utilize them. 



IV. PHASE I TASK SCHEDULING 

Scheduling in a time-sharing system is the pro
cess by means of which the CPU is made available to 
tasks in an orderly manner. Each task is allowed to 
run for a duration determined by its time quantum, 
at the expiration of which the next task is run. 
Ordinarily, tasks are organized into running queues, 
sets of tasks strung together by pointers in the 
TCBs. A task which has just finished running might 
be placed at the end of the queue, while the new 
task at the head of the queue is fired up. Often, 
particularly in the PDP-9T systems, tasks will run 
to completion or reach a point at which I/O is re
quired before the time quantum expires. Such tasks 
are removed from the running queues, placed in a 
wait condition, and are said to be in a sleep state. 
When a signal arrives at the CPU for a task which 
is asleep (e.g. from an I/O completion, or an active 
experimental device), the task must be awakened and 
placed in the appropriate running queue. Any number 
of running queues may be hierarchically arranged to 
impose a priority structure, establishing a two-fold 
order in which tasks are to be run (e.g. all tasks 
in queue A before any in queue B). 

Scheduling may conveniently be regarded as a 
two-part process. First, decisions must be made as 
to the time quantum to be allocated to each task, 
when to place a task in a queue, when to remove it, 
etc. These decisions must then be implemented by a 
process which activates and de-activates tasks at 
the appropriate times. 

At any given point in time there are a large 
number of tasks in core, only one of which will ac
tually be running. If it is a user task, running 
at background level (with respect to the API), it 
may be temporarily suspended by a hardware inter
rupt. When the hardware interrupt is serviced, 
control may return to the interrupted task. Or, the 
hardware interrupt service may have invoked a soft
ware interrupt which will be granted before control 
returns to the interrupted user task. During execu
tion, the user may issue an XMR to perform some 
computation, which will be performed by the monitor 
at API level 4. 

Eventually, the user's time quantum will run 
out, or the user will request a lengthy I/O trans
fer. In the first case, the user will be placed at 
the bottom of the running queue. In the second, 
the user will be 'put to sleep', to be 'awakened' 
when the transfer is complete. In either event, 
the CPU will then be given to the task which is 
next in the priority structure. User's time quanta 
are metered by the 1.2 usec external clock, which 
is automatically gated by API activity: the clock 
runs free at background and at level 4, but does 
not tick when other API levels are active. Thus 
the user is charged only for CPU time expended 
directly in his behalf. 

The allocation problem, of course, is the 
heart of time sharing, and in the PDP-9T is accom
plished by a system program called the Operator. 
In the Phase I Monitor, the Operator performs 
rather simple chores.. Tasks will be given a time 
quantum (e.g. 20 msec.) , and placed on one of sev
eral queues. An attempt will be made to distribute 
CPU time to foreground users (real-time tasks) as 
needed, and to provide background users with equal 
amounts of time. It is inevitable, of course, that 
even with four or five users the system will spend 

89 

most of its time doing nothing, i.e. waiting for I/O 
transfers. The Phase I System will generally be 
core-bound, and active users will receive excellent 
service. 

The Operator will also be responsible for allo
cating peripheral devices to users, as requested by 
the user at run time via the teletype. The Operator 
allocates pages of core to users, runs the user's 
DECtapes, retrieving and writing user files, and 
loads system programs such as DDT into the user's 
virtual memory. 

V. THE USER MACHINE 

The preceding background is sufficient to per
mit a brief consideration of the kind of machine an 
ordinary user will be working with. The User 
Machine (as it might be specified in a PDP-9T Hand
book) has an order code which resembles that of the 
PDP-9, but is vastly superior. While HLT and OAS 
have disappeared, along with all lOTs, the XMR in
struction class has added such instructions as 
'LOGU~', 'DIVIDE', 'ARCTAN', etc. All I/O is 
handled by XMR instructions, such as TDN (type con
tents of AC as a decimal number), DTREAD (read a 
DECtape record), PUNCH (punch low order 8 bits of 
AC, if punch is available to this task). All I/O 
coding will reside in the monitor, and will be 
shared by all users. 

The fact that the machine is paged is of no in
terest to the programmer in the Phase I System, al
though it will become tactically useful in the 
Phase II System (e.g. fetching pages into core from 
the disk is time-consuming, and should be avoided 
even at the expense of duplicating constants in each 
page). 

The user will start a session by logging in, 
requesting DEC tape assignment and such other periph
eral devices as may be desired, load whatever pro
grams may be required from his DECtape, perhaps ask 
for DDT, and proceed as though on an ordinary PDP-9. 
When finished, he will log out to free the console 
and core for the next user. 

VI. AUXILLIARY SOFTWARE 

A number of software packages are being devel
oped for the Phase II System which will be available 
on the Phase I System (and on most PDP-4/7/9s as 
well). The necessity of incorporating many features 
relevant to the time-sharing monitor in the assem
bler package, as well as the very speCial require
ments on I/O handling, forced us to conclude that it 
would be more efficient to write our own software 
than to tailor the Advanced Software Package. Thus 
we are writing an assembler, linker, DDT, DECtape 
package, teletype package and disk package, to
gether with a number of other systems of some 
general utility. These packages will be described 
in future papers. 

1pDP-9T: Compatible Time-sharing for the Real-Time 
Laboratory, M. M. Taylor, D. M. Forsyth & L. Selig
man, DECUS Proceedings, Fall, 1967. 





* EXTENDED MEMORY FORTRAN WITH AN 8K PDP-7 

Philip R. Bevington 
Physics Department, Stanford University 

Stanford, California 

Abstract 

A hardware modification to the PDP-7 and a FORTRAN 
subroutine are described which permit the use of 
Extended Memory coding in FORTRAN II with an 8K 
memory PDP-7. Normally, this coding permits the 
storage of large data arrays outside the basic 8K 
of memory which contains the program and the 
Operating Time System. In the present system the 
extra memory is supplied by DECtape. A scratch 
pad conSisting of several pages of 128 words each 
is retained within the basic 8K memory so that 
access to the DECtapes is relegated to transfers 
of blocks. Interpretation of extended memory 
addresses is accomplished by trapping indirect 
addresses outside of basic memory and using soft
ware to modify these addresses. Such a system 
permits the use of larger arrays for data manipulation 
at the expense of time required for DECtape handling. 
In most cases, however, improved techniques of 
manipulation through the use of larger and more 
arrays than offsets this expenditure of time. The 
philosophy of design and the relative advantages 
and disadvantages of such a system are discussed. 

Introduction 

One of the most frustrating disadvan
tages of using FORTRAN on small scien
tific computers such as the PDP-7/9 is the 
inefficient use of computer memory. In 
FORTRAN II of the basic software for these 
computers, for example, the operating time 
system occupies 3klO locations in memory, 
and I/O and arithmetic subroutines can fill 
another 2klO locations. For a computer 
with an 8k memory this leaves only 3klO 
locations for programming and data storage. 

Similarly the version of FORTRAN IV 
supplied with the Advanced Software Package 
is so inefficient that even with 16k rea
sonably sophisticated programs are hard 
pressed for room for data storage. The 
obvious solution of increasing the core 
memory storage is not always economically 
feasible. 

In order to expand the capability of 
FORTRAN (and of Assembly language programs) 
we have developed for use with the SCANS 
(Stanford Computers for the Analysis of 
Nuclear Structure) system a method of 
storing and accessing large arrays of data 
outside of the core memory of a PDP-7. Two 
types of storage may be utilized by slightly 
different techniques. The more efficient, 
but more expensive, is another similar com
puter, complete with processor and memory. 
The more easily available type is a conven
tional bulk storage device, such as DECtape, 
disk, or drum. 
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The SCANS system has provision for 
both of these types of storage, using 
either an 8k PDP-9 or DECtapes, according 
to the demands of the particular situation. 
This report will describe the philosophy 
and techniques developed to implement 
Extended Memory FORTRAN II on an 8k PDP-7 
with these memory storage devices. 

Hardware 

In order to provide compatibility with 
existing software, the entry to bulk storage 
must simulate the normal use of Extended 
Memory. But since only data arrays are to 
be treated in this manner, most of the com
plexity of the paging hardware of the 
Extended Memory can be omitted. It is suf
ficient for most purposes that the inter
preting monitor respond to any indirect 
addressing outside of the conventional 8k 
of core memory. 

In FORTRAN II of the Basic Software 
System there is provision for storage of 
arrays of data in Extended Memory. The 
entire program, including the Operating 
Time System, must reside in the basic 8k 
core memory. The specification EXTEND MODE 
acts in the same way tnat COMMON does to 
identify arrays which are to be stored in 

* Supported in part by the National Science 
Foundation 



the Extended Memory. All references to 
elements of these arrays are by indirect 
address instructions. The address can be 
any location up to 32k, using bits 3 and 4 
to address locations outside of the basic 
Sk. 

Addresses cannot exceed 15 bits or 32k 
because the interrupt procedure and JMS 
instruction utilize bits 0, 1, and 2 to 
store the contents of the LINK, EM and TRAP. 
Indirect address instructions such as JMP 
I ¢ to return from an interrupt must not be 
interpreted as referring to Extended Memory. 

Figure 1 shows how the I/O Trap of the 
PDP-i was modified to provide a hardware 
interrupt under the proper conditions. The 
Trap flip-flop on the right is controlled 
by the Trap switch on the console. Actually 
this flip-flop could have been replaced 
completely by a single inverter, but since 
the Trap was already wired it was easier to 
leave it like this. 

If the Trap is enabled by the Trap 
switch, the Trap flag on the left is set 
(at time T4 of the cycle) whenever the 
processor is in the Defer mode (indicating 
indirect addressing) and either or both 
bits 3 or 4 of the Memory Buffer (which 
holds the indirect address) are non-zero. 
The Trap flag initiates a Program Interrupt 
with the PC forced to location 2. At time 
T4 of the Break cycle the Trap flag is reset. 
All other conventional use of the Trap has 
been removed. 

Figure 2 shows additional modifications 
to the Central Processor. All normal device 
flags are gated by the Program Interrupt 
Enable flag before requesting a Program 
Interrupt. The Trap flag is inserted in 
parallel so that it can interrupt even 
without the Program Interrupt being enabled. 
The software Trap-on and Trap-off instruc
tions were bypassed completely. 

This particular modification was 
installed because the original version of 
FORTRAN II was not compatible with use of 
the Program Interrupt. We have modified 
the I/O library subroutines to protect them 
from interrupts even while using wait loops 
for all I/O. This hardware modification 
will therefore be restored for compatibility 
with routines using the Program Interrupt. 
Since both the PI and the Trap make use of 
location ¢, they must be able to inhibit 
each other until the contents of location 
¢ can be saved. 

The most important modification to the 
Central Processor is that the Execute cycle 
is inhibited if a Trap-Interrupt occurs. 
Normally an Execute cycle will follow any 
Defer cycle. If, however, the Trap flag is 
on, the Execute cycle is inhibited and a 
Break cycle occurs instead. This allows 
the interpreting monitor to interrupt an 
Extended Memory instruction before execu
tion. 
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Software for Computer Storage 

The interpreting monitor for data 
storage in another computer is illustrated 
in Figure 3. XTENDi is a FORTRAN II 
subroutine written almost exclusively in 
Basic Assembler language which uses an 
Interprocessor Buffer to a PDP-9 for stor
age and access of data. The three lines 
of instruction preceding the location 
BEGIN perform initialization. Somewhere 
in the main program there must be a call 
to the subroutine. When the subroutine is 
called it deposits a JMP instruction in 
location 2 and issues a PBLF command (raise 
Parameter flag) to the Interprocessor 
Buffer to synchronize the corresponding 
interpreting monitor in the PDP-9. 

The program XTEND9 in the meantime is 
waiting idly in the associated PDP-9. When 
the PBLF command is issued by the PDP-I, an 
interrupt occurs in the PDP-9 which starts 
the program at the beginning, restarts the 
interrupt, and waits idly for the first 
data word. 

When a trap interrupt occurs in the 
PDP-i, the subroutine XTENDi is entered at 
BEGIN from location 2. The contents of the 
AC are transferred to the PDP-9 (sent by 
PBLT and received by RDLO) and stored in 
the variable AC. The next few lines 
retrace the path of the interrupt to 
retrieve the offending instruction and 
combine the instruction code with the 
indirect address to form a new instruction 
to be executed in the PDP-9. For example, 
the instruction LAC I (35000 would be 
interpreted as LAC 15000 (truncating the 
address modulo Sk). 

The new instruction is transferred to 
the PDP-9 and executed. If the PC is 
incremented or the LINK is set during exe
cution, this is noted, and the LINK and PC 
increment are returned to the PDP-i. The 
contents of the AC after execution are also 
returned to the PDP-i and the interpreting 
monitor returns to the main program. The 
PDP-9 remains in a state of waiting idly 
for the next such instruction. 

Philosophy of Bulk Storage 

The philosophy of approach for bulk 
storage is that since access to individual 
elements of bulk devices is intolerably 
slow, data must be transferred to and from 
the device in blocks and stored in the 
memory in pages. In principle Extended 
Memory need only be used for large arrays 
of data, and the data are generally 
referred to successively in blocks, as, for 
example, in DO loops of FORTRAN. 

The interpreting monitor thus has two 
parts. The main part interprets an indi
rect address instruction and modifies the 
address to refer to the appropriate loca
tion within a temporary scratch page in 
memory. This requires a comparison between 
the actual address and the range of 



addresses corresponding to each of the 
scratch pages. This part of the inter
preter is thus similar to that for computer 
storage and introduces a similar time 
delay. 

The second task of the interpreting 
monitor is to retrieve blocks of data from 
the bulk storage device whenever the appro
'priate data block is not already in core. 
This requires replacing one of the pages 
already in core back into the bulk storage 
before loading the desired block into the 
same page. 

For DECtape a convenient size of page 
is 256 words, corresponding to the maximum 
data storage per DECtape block. Where there 
is room in the program for more than lk 0 
words of scratch pages this may be a re~son
able size. But in general, for reasonably 
complex programs, lklO of memory is an upper 
limit to the space available for scratch 
pages. Experience has shown that for most 
programs it is desirable to have provision 
for 6-8 pages simultaneously, so that refer
ences to elements of several arrays can be 
made in the same set of calculations. 

It is important, of course, that the 
arrays stored for use in this manner should 
be referred to by the main program only in 
blocks, i.e., with iterative references to 
successive elements within a block. The 
size of the blocks referred to need not be 
the same sizes as the pages, but one must 
avoid referring to such data in a true ran
dom manner. 

Software for Bulk Storage 

For storage and access of data in bulk 
storage, therefore, the interpreting monitor 
must be slightly more sophisticated than 
that for computer sotrage, as shown in 
Figure 4. XTENDT is a FORTRAN II subroutine 
written almost wholly in Basic Assembly 
Language which utilizes a DECtape for 
Extended Memory. As before the subroutine 
inserts a JMP instruction into location 2 
when first called by the main program. It 
also rewinds DECtape unit ¢ (or 8). 

When a Trap Interrupt occurs, the con
tents of the AC are stored and the original 
instruction is retrieved to find the corre
sponding instruction code and desired 
address. The address is first compared with 
a table to see if the contents of that loca
tion are already stored on a scratch page in 
memory. If the most significant bits of 
the desired address agree with one of the 
table addresses, the routine jumps to the 
appropriate page handler. Otherwise a 
new page containing the new address must 
be retrieved from the DECtape. 

This subroutine uses up to 8 such 
scratch pages with each page containing 
128 locations. The actual number of pages 
desired is specified by the main program 
as NPMAX. The pages are stored at the top 
of COMMON from location 120008 down. 
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The transfer subroutine writes the 
oldest page in memory back onto DECtape 
and reads the appropriate block from DEC
tape back into that same page making it 
the youngest page. The variable NPAGE 
~ndicates the number of the youngest page, 
l.e., the one most recently retrieved from 
DECtape. The block number of the DECtape 
is taken as the appropriate high order 
bits 3-10 of the address, right justified, 
so that each block contains 128 locations. 
The first 100g blocks of the tape are not 
used because they correspond to the basic 
8k core memory. The next 300 blocks pro
vide the equivalent of an add~tional 24k 
of core. 

Figure 5 shows how the instruction is 
executed once the appropriate page is in 
core. Only the seven least significant 
bits 11-17 of the address are used and 
these are added to the starting address of 
the page to find the correct address. 
This is combined with the instruction code 
and deposited in the location XECUTE. The 
contents of the AC and LINK are restored 
and the instruction is executed with appro
priate incrementing of the PC before 
returning to the main program. 

Conclusions 

In the case of the computer to com
puter transfer, the routine occupies 
almost no memory and requires 52 cycles or 
91 ~sec to execute Extended Memory instruc
tions. For the bulk storage routine the 
memory requires about lkl (depending on 
the number of pages) and ~he time is 55-76 
cycles or about 100 ~sec per instruction 
if the address is already in core. For 
most FORTRAN programming, the LINK and PC 
servicing portions of the interpreting 
monitor can be omitted. For such a versio~ 
the corresponding times are 75 ~sec for 
computer-computer transfer and 90 ~sec for 
bulk storage. 

For data arrays in FORTRAN this extra 
time is not generally much of a disadvan
tage. In floating point manipulation, for 
example, the time required for an arith
metic or library subroutine operation is 
considerably larger. Even for displays the 
increment time is usually tolerable. The 
time added to a general computation is a 
small percentage of the total time. 

For DECtape storage, however, the time 
added per transfer is about 1 sec. Care 
must be taken, therefore, to optimize the 
program flow so that references to arrays 
occur mainly in blocks. For example 
iterations in a DO loop which treat ~any 
elements of a few arrays should complete 
all possible manipulations of each element 
or group of 128 elements before proceeding 
to the rest of those arrays. 

Experience with a typical data reduc
tion program (GRASP) has shown that if the 
rate of transfer is kept down to an average 
of less than 1 per 5 sec, the increase of 
time in calculations required for the trans-



fer is compensated for by the fact that the 
availability of more arrays simplifies the 
calculation. In normal GRASP, for example, 
a polynomial background curve must be com
puted from the polynomial coefficients at 
each step of the least-squares fitting pro
cedure. In GRASP with Extended Memory, the 
background curve is calculated once and 
stored in an array for subsequent use. 
Similarly, the display routine normalizes 
each data pOint on the fly before display 
to avoid storing a normalized spectrum. 
With Extended Memory the normalized spectrum 
can be stored so that the added time for 
retrieval is balanced by the 1088 of time 
needed for normalization. 

This system can, of course, be used 
equally well for programs written in 
Assembly language, such as data acquisition 
programs. In this case the Trap Interrupt 
and interpreting monitor are not necessary, 
but they provide an easy way of updating 8k 
programs to 16k memory with almost no change 
in the basic program. Data acquisition pro
grams cannot utilize the bulk storage tech
nique without considerable modification 
because of their random access nature. 

In conclUSion, the computer-computer 
transfer is a very viable technique, where 
facilities exist. The DECtape storage 
simulates Extended Memory at some notice
able disadvantage. A compromise utilizing 
a disk or drum should provide the optimum 
response. 
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XTEND TAPE SUBROUTINE 3/68 
SUBROUTINE XTEND TAPE <NPAGE~ NPMAX) 

C EXTENDED MEMORY FORTRAN SUBROUTINE USING DECTAPE 
C PHIL BEVINGTON, STANFORD UNIVERSITY 
C NPAGE = PRESENT PAGE NUMBER 
C NPMAX = NUMBER OF PAGES (MAXIMUM OF 6) 
SOCTAL LMQ=652000 LACQ=641002 
S LRS=640500 ALS=640700 DECIMAL 

DIMENSION MATRIX<8,128) 
COMMON MATRIX 
\I/RITE 3009 
NEXTB = 1 

SOCTAL 
S LAC (JMP .1 DAC 2 /ENTRANCE FROM TRAP 

RETURN 
s 
S .1 .. DAC #AC 
S.2, LAM-l ADD 0 
S LAC I TEMP AND (NOP 
S LAC I TEMP AND (17777 
S LAC I TEMP ADD <1 
S AND (77600 
S SAD ADDRI JMP PAGEl 
S SAD ADDR2 JMP PAGE2 
S SAD ADDR3 JMP PAGE3 
S SAD ADDR4 JMP PAGE4 
S SAD ADDRS JMP P,t\GE5 
S SAD ADOR6 JMP PAGE6 
S SAD ADDR1 JMP PAGE1 
S SAD ADOR8 JMP PAGE8 
S DAC #NADDR 
S JMS TRANSFER 

SPAGEl, LAC ADDR 
S ADD (11600 
S 
SPAGE2, LAC ADDR 
S ADD (11400 
S 
SPAGE3 .. LAC AODR 
S ADD ( 11200 
S 
SPAGE4, LAC ADDR 
S ADD (11000 
S 
SPA6E5, LAC ADDR 
S ADD ( 10600 
S 
SPAGE6, LAC ADOR 
S ADD ( 10400 
S 
SPAGE1, LAC ADDR 
S ADD (10200 
S 
SPAGE8, LAC ADDR 
S ADD (10000 
S 
SEXECUTE .. ADD INSTR 
S DAC XECUTE LAC AC 
SXECUTE .. XX SKP 
S JMP I 0 
S 
SADDRI .. 1600 
SADDR2, 7600 
SADDR3~ 7600 
SADDR4, 7600 
SADDR5~ 7600 
SADDR6~ 7600 
SADDR7, 7600 
SADDRS .. 7600 
SDECIMAL 

END 

DAC ffTEMP 
DAC HINSTR 
DAC TEMP 
DAC HADDR 

JMP .2 

AND <177 
JMP EXECUTE 

AND <177 
JMP EXECUTE 

AND (177 
JMP EXECUTE 

AND <177 
JMP EXECUTE 

AND (177 
JMP EXECUTE 

AND <177 
JMP EXECUTE 

AND (177 
JMP EXECUTE 

AND ( 177 
JMP EXECUTE 

ISZ 0 
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/SAVE AC 
/FETCH INSTRUCTION 

ICHECK IF PAGE IN MEMORY 

IPAGE NOT IN MEMORY 
/LOAD PAGE INTO MEMORY 

IADDRESS IN PAGE 1 

IADDRESS IN PAGE 2 

IADDRESS IN PAGE 3 

/ADDRESS IN PAGE 4 

IADDRESS IN PAGE 5 

/ADDRE~~ IN PAGE 6 

/ADDRESS IN PAGE 7 

IADDRESS IN PAGE 8 

IEXECUTE INSTRUCTION 



)< T E!\O 7 3/ 1/6 P' 
SUGROJIINE XIEND7 
CONTINUE 

SOCIAL 
~ P8lP=70222~ 

S TDlO=702225 
s 
s 
s 

~ 

lAC <..HYl,l BEG I N 
I'BlP 
i<ETUr:N 

SBEGIN, PHlT 
::; 

S 
S 
S 
S 
.s 
S 
.s 
<' ..J 

<: 

LAM-l 
LtlC I ADD ..... 
lAC I AODk 
LAC I ADDK 
fOlO 
I~DlO 

~Cr\ 

lAC 0 
KDLO 
JM? I 0 
END 

X TEN D 9 3/ I /68 

1/ 

PBPF=7022(31 
T Dl 0 = 702225 

ADD '" ANI) ( NOt' 
AND ( 17117 
AND ( 17777 
Jf'I.? • - I 
JMP · - ) 
SL.A 
SPA 
JMP · -) 

SKP PBPF 
CAF ION 

22/ 

CONTI NUE, 
ROlO 
kDlO 

CAF PBEiJ 

Cll 
JMP 
JMP 

lAC AC XiC: 

.-} 

• - I 

SKP ISL. PC 
lAC PC RAl 
TDlO JMP .-1 
lAC AC TOlO 
JMP CONTINUE 

S TAi<T BEG I N 

PBlT=70222il 
~Dla=702253 

DAC 2 

OAC IIA[)DK 

l)AC #INSlk 
DAC ADDi"\ 
ADD I ''-5 Tl-: 

I Sf. ~) 

Sll 

PBEP=70226L1 
i<!DlO=702253 

Jf":P BEGI N 
JMP I 0 

ION 

DiM #PC 
DAC fAC 
DAC .+2 

DAC AC 

JMi"' • - 1 
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/TRAP ENTRY 
/INITIAlILE PDP-9 

/SEND AC 
/LOCAIE INSTRUCTION 
/OKIGINAL INSTRUC1IUN 
/0kIGINAl AI)DKE~S 

/NEW IN~TRucrION 

/SEND IN~rRUCfION 
/READ LINK AND PC 
/~ET lINK AND PC 

/REPl..) AC 
/RE I URI\I 

/INITIALIZE LOOP FOR PDP 
/IGNORE PDP-9 INTERRUPTS 

/ENABlE INTEKkU~T 

/CLEAR lINK AND PC+l 
/READ AC 
/KEAD INSTR~CTI0N 

/EXECUTE INSTRuCTION 
/ I NCR~M ENT PC+ 1 
/SEND lINK AKD PC+l 

/ SEND AC 





IMPLEMENTATION OF AN ON-LINE REACTIVE (TYPEWRITER) LANGUAGE* 

David Z. Polack 
University Computing Company 

Dallas, Texas 75207 

Abstract 

The language processor to be discussed is designed for use via reactive 
typewriter. It accepts, names, stores and man ipu lates character strings 
which may be used as names, data and/or procedure. List processing 
techniques are uti I ized in the processor implementation. 

The presentation is in the form of a tutorial session, which first places 
the language processor within the framework of the University Computing 
Company's FASBAC System. Subsequent discussion wi II include: 

1. a brief description of the language for those unacquainted with it, 

2. discussion of memory allocation in terms of the necessary coding, 
strings, stacks, vectors, communication zones, etc., 

3. the methodology of handling various strings, 

4. dynamic II Garbage Collect", 

5. special handling of defined primitives, 

6. additional primitives not included in previous literature, 

7. discussion period. 

Reference may be made to: TRAC, A Procedure-Describing Language for 
the Reactive Typewriter; Calvin N. Mooers; Communications of the ACM, 
Volume 9/Number 3/March, 1966. 

*This paper was not received for publ ication. 

99 





DISC VERSION OF STRIP 

A DATA DISPLAY AND ANALYSIS PROGRAM 

FOR THE PDP-8, 8/1 

John Alderman 
Georgia Institute of Technology 

Nuclear Research Center 
900 Atlantic Drive 

Atlanta, Georgia 30318 

ABSTRACT 

A version of STRIP has been developed to take advan
tage of the storage capabilities of the DF32 Disc 
Storage Unit. Techniques of overlay generation and 
calling, data storage and retrieval, and programming 
philosophy for open-ended programs to be modified 
by unskilled users are described. 

INTRODUCTION 

This paper is primarily concerned with the difficul
ties of the programmer in using the new Disc System 
Monitor software, the subject of this morningts 
report by Mr. Conley. Examples of coding are taken 
from the presently on-going revision of STRIP*, 
which will make extensive use of the disc, for both 
program overlay and data storage. 

The new systems programming has the very limiting 
assumption that all disc software must be compat
able with DECTAPE hardware. Thus, even though the 
disc hardware is randomly addressable, with word 
transfers of up to 4096 words, the monitor soft
ware assumes all files are 128 words long, and that 
each block is to be addressed and transfered indi
vidually. 

I have some objections to this assumption: 

(1) Most peripherals on the PDP-8 are serial-by
character in nature, and are capable of handling 
variable length blocks of data. Examples are: 
Paper tape, IBM compatable magnetic tape, cards, 
display units, and communications lines. An ap
propriate name for these might be fTrecord oriented 
devices fT . The restriction to fixed block length 
requires a rather complicated file access system, 
in order to fill/empty only fixed length blocks 
from these record oriented devices. 

(2) If a record oriented disc storage system were 
employed it would be possible to make all I/O 
resemble (IBM compatable) tape records, including 
the disc (and DECTAPE too, since it would be a 
special case). One advantage to such a system is 
that a modular I/O system can be constructed for 
such a system, which will result in much simpler, 
highly recursive, programming for data handling 
between peripherals on the computer. This record 
oriented I/O system is used on many larger systems 
(CDc6600, Univac 1108, are examples) and the ef
ficiency of operation would also benefit the PDP-8, 
since some of the difficulties of beginner pro
grammer are involved with routine I/O programming. 

This is, of course, not to say that variable length 
storage systems do not have their pro~lems. The 
primary difficulty for a small system like the 
PDP-8, is that the Directory Name table would have 
to be larger, and that some sort of "automaticfT disc 
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reshuffling system would have to be employed to re
structure the disc when a file is deleted. My feel
ing is that the efficiency of storage utilization 
afforded by the variable length system, along with 
the considerable increase in access speed (the 33 
ms access time for the disc must be allotted for 
each fixed length block, but only one such wait is 
necessary for a variable length record) available 
by making use of the disc hardware, would more than 
offset the difficulties of a longer DN table, and 
the disc reshuffling at delete time. 

Regardless of the above considerations, the pre
sently implemented system is available, and it is 
possible to use it to do most of the program over
lay storage and data manipulation that a user de
sires. 

DATA STORAGE AND RETRIEVAL 

Since all storage on the disc is in SAM blocks of 
12810 words, I have written a subroutine to access 
the disc (see Figure 1). This subroutine has argu
ments specifying function, starting core location, 
and starting SAM block number, and is called IMPORT/ 
EXPORT (IE). The routine is self contained, calls 
the system I/O routine at 7642, and requires only 
2610 locations within the user's program. With it, 
any file on the disc can be accessed, if the start
ing SAM block number is known. The file will be 
placed in core with each page stored contiguously 
(note that it is not necessary to make the core 
starting address a page boundary if data is being 
transferred!). With a change of the FUNCTION argu
ment, it is possible to write on a previously saved 
file. The same routine can be used to handle the 
actual transfer of program overlays. 

As an example of the use of IMPORT/EXPORT, I have 
written a disc accessing version of STRIP*. This 
first version is very straight-forward, in that it 
uses the last few pages of the disc (ours is a two
disc system) as the data storage area for the Float
ing Point data buffer mentioned in the writeup. 
Since only one page at a time is accessed from the 
disc, the version of IE used does not have the test 
of IELNK. Notice that the scratch blocks are a~ 
dressed by an absolute SAM block number. Since 
the scratch file is not defined (by the "SAVEn oper
ation), the DN table has no entry for it, which 



means that that area of the disc is "blank" as far 
as subsequent "SAVE" operations is concerned. Of 
course it is incumbent upon the user to insure that 
nothing of interest is destroyed when using that 
scratch area. The feature of using a non-defined 
~ile as scratch is very useful, since otherwise the 
disc tends to get cluttered up with unused files. 

In the case of the user's program needing to access 
a defined file, however, it must obtain the start
ing SAM block number. Figure 2 is the listing of a 
program to obtain the starting SAM block number. 
The main routine interrogates the operator for the 
NAME of the file, and then call the subroutine 
DNSRCH (based upon coding supplied by Roger Pyle), 
which searcbes the DN table for the name, and then 
the SAM directory table for the starting block 
number, which is returned to the calling routine 
in the accumulator. The main program then types 
this out in octal. This program is both a useful 
operational program (especially when debugging 
disc routines) and an example of the use of the 
subroutineDNSRCH from within the user's program. 
With this subroutine (which can be on overlay), 
the user can find any file on the disc, and by 
using IE for actual transfers, can use that file 
from within his program. 

DISC STRIP - Features 

DISC STRIP will differ from the previous version, 
primarily in the internal working of the program. 
The calculations and usage of the program will be 
very similar. 

With the advent of the disc storage unit (DF32), 
it has become possible to take advantage of the 
larger storage area available for program overlays 
and data, as well as complete programs. DISC 
STRIP will make extensive use of the overlay fea
ture. The present rule is that all overlay pro
grams must not occupy more than two contiguous 
pages of core (if they are to access data also) 
and they will be loaded into the overlay area 
when the keyboard is struck. Since many programs 
will not occupy a whole page, and it is desireable 
to make maximum use of the available diSC, there 
will be a call to a keyboard interpreter at the 
beginning of each overlay section. This interpret
er will look up the character typed, in its field 
of keyboard functions available IN THE CURRENT OVER
LAY ONLY. If the function is not in the current 
overlay function table, the next overlay is called, 
and the process repeats until a legal function is 
found, or all the overlays have been called. 
In the later case, an error exit to the monitor 
is taken. 

This scheme of chaining overlays with a function 
table stored in each, lends itself to expansion by 
adding new overlays at the end of the chain, and 
adjusting the table of available overlays (each of 
which is referenced by its starting SAM block num
ber). The core resident package will also have pro
visions for accessing data files from the disc, 
and (as before) the user need not concern himself 
about the location of the data, but simply address
es it indirectly via a moving pointer in page zero. 
The limitation of the number of points displayed 
is arbitrarily set at 1024 by the 10 bit hardware 
of the type 34 display unit. 
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A new feature of DISC STRIP will be the full utili
zation of the TEKTRONIX type 601 (or 611) storage 
oscilloscope. Since each point on the display can 
be displayed permanently as it is computed, there 
is no requirement for a display buffer, which ma
terially improves the data storage problem. Also 
there is no requirement for a titles buffer, and 
the titles will actually be another keycalled func
tion. The storage scopes may be erased under pro
gram control, and there will be another keycalled 
function for doing so. 

As a result of the number of keycalled functions 
available, it becomes of interest to be able to 
quickly program a series of calls to these func
tions. A new feature of DISC STRIP will be an ele
mentary interpretive assembler, which will assemble 
calls to keyboard functions (including numerical 
arguments), and then allow the user to specify a 
key to call the new function ensemble. This will be 
a recursive process, and the main limitations will 
be the basic functions available, and the amount of 
disc storage room available for these routines, 
and the data. 

Availabili ty: 

I have a working version of STRIP, using the disc 
for data storage only. This version does work, but 
only as a patCh for the older version. The only 
advantage to using the patch, is that data fields 
of up to about 650 data points may be displayed. 
All of the commands for the patch version are ident
ical with the previous writeup, and the user can 
only tell the difference, by the inordinate length 
of time required to do his computations. 

DISC STRIP has been partially coded. Most of the 
computational subroutines are copied from the pre
vious version, so the only additional coding requir
ed is the overlay and data access control structures. 

The release date on DISC STRIP will probably be in 
early June. It will be submitted to the DECUS library 
at that time, but there is naturally some delay in 
the distribution of a new program through DECUS, 
since it must be reviewed. I will be glad to pro
vide "under-the-table" copies to prospective users, 
until it becomes a burden on my time. 

Conclusions 

The disc CAN be used for both data storage, and pro
gram overlay storage. The documentation available 
from DEC doesn't show the programmer how to do it, 
but the examples of this paper should be sufficient 
to get most programmers started. 

A new, somewhat fancy, DISC STRIP will be out short
ly, for users who might want it. 



/Page ¢¢¢1 

/IMPORT/EXPORT , A WHOLESALE DISC/CORE SWAPPING ROU-
/TIl't"'E 

~ 
ICAJ.;L BY JMS IE /ACC MUST BE ClEAR 
/ 3 OR 5 /3=REA.D, 5=WRITE ON DISC 
/ CORE / CORE STARTING ADDRESS 
I BLOCK IGIVEN BY DNSRCH&SMSRCH 
I ERROR RETURN / 
I NORMAL RETURN I ACC CLEAR 
IAVERAGE ACCESS TIME =25 MS 

IE, ¢ /ENTRY 
TAD I IE 
DCA IEFUNC 
ISZ IE 
TAD I IE 
DCA IECORE 
ISZ IE 
TAD I IE 
ISZ IE 

/GET FUNCTION 

/GET CORE SA 

/GET BLOCK NUMBER (OCTAL) 

IELOOP, DCA IEBIK 
JMS I SYSIO 
:3 IEFUNC, 

IEBIK, 
IE CORE , 
IELNK, 

~ 
¢ 

/ERROR EXIT 

IE2¢¢, 
SYSIO, 

0200 

0201 
0202 

0203 
0204 
0205 
0206 
0207 

P210 
0211 
0212 

0213 
0214 
0215 
0216 
0217 

0220 
0221 
0222 

0223 

0224 

JMP I IE 
TAD IECORE 
TAD IE2¢¢ 
DCA IECORE 
TAD IELNK 
SZA 
JMP IELOOP 
ISZ IE 
JMP I IE 
2¢¢ 
7642 

/NEXT PAGE 
/FURNISHED BY SYSIO 
lEND OF FILE? 
INO 
/YES 
/EXIT NORMAL 

/TEST ROUTINE FOR DNSRCH 
ITYPE IN YOU FILE NAME, AND IT 
IREPLIES WITH OCTAL 
ISTARTING SAM: BLOCK NUMBER 

6032 START, 6032 
/INITIALIZE THE FLAGS 

6046 6046 
4230 RO, JMS CRLF 

/NORMALIZE TELEPRINTER 
4244 JMS GET 
7106 RTL CLL 
7006 RTL 
7006 RTL 
3306 DCA WORD1 

/SAVE 1ST LEFT HALF 
4244 JMS GET 
1306 TAD WORD1 
3306 DCA WORD1 

/SAVE 1ST PACKED WORD 
4244 JMS GET 
7106 RTL CLL 
7106 RTL CLL 
7006 RTL 
3307 DCA WORD2 

/ SAVE 2!\'D LEFT HALF 
4244 JMS GET 
1307 TAD WORD2 
3307 DCA WORD2 

/SAVE 2ND PACKED WORD 
4244 JMS GET 

/LOOKING FOR REWRN 
1227 WHAT, TAD QUEST 

103 

/TOO MANY CHARACTERS 
0225 4236 JMS PRINT 
0226 5200 JMP START 
0227 0277 QUEST,277 

0230 0000 
0231 1276 
0232 4236 
0233 1277 
0234 4236 
0235 5630 
0236 0000 
0237 6041 
0240 5237 
0241 6046 
0242 7200 
0243 5636 
0244 0000 

0245 6031 
0246 5245 

0247 6036 

0250 6046 

0251 3270 

0252 1270 

0253 1271 

0254 7450 
0255 5303 

0256 1272 

0257 7450 
0260 5202 

0261 1273 

0262 7650 
0263 5702 

0264 1270 

0265 1274 
0266 0275 

0267 5644 
0270 0000 
0271 7563 
0272 7616 
0273 0174 
0274 0040 
0275 0077 
0276 0215 
0277 0212 
0300 0400 
0301 0240 
0302 7600 
0303 1277 
0304 4236 
0305 4700 
0306 0000 
0307 0000 
0310 5224 

0311 3333 

CRLF, 

PRINT, 

o 
TAD CR1 
JMS PRINT 
TAD LF 
JMS PRINT 
JMP I CRLF 
o 
6041 
JMP.-1 
6046 
CIA 
JMP I PRJNT 

GET, 0 
/GETS CHARAGTERS 

W31 
JMP .-1 

/NOT READY YET 
6036 

/OK, GET IT 
6046 

/ECHO IT 
DCA CHAR 

/SAVE 
TAD CHAR 

/ENTER TESTING ROUTJN.E 
TAD MCR 

/IS IT REWRN 
SNA 
JMP CR 

/YES 
TAD MRO 

/IS IT RUEOUT 
SNA 
JMP RO 

/YES 
TAD MCTRLC 

/IT IT CTRL C 
SNA CIA 
JMP I MONRET 

/YES, EXIT TO MONITOR 
TAD CHAR 

/GET THE CHARA.C'rER AGAJN 
TAD p40 
AND C77 

/STRIPPED ASCII+40 OUTPUTED 

CHAR, 
MCR, 
MRO, 
MCTRLC, 
p40, 
C77, 
CRl . , 
LF, 
SRCH, 
SP,240 

JMP I GET 
o 
-215 
215-377 
377-203 
40 
77 
215 
212 
DNSRCH 

MONRET, 7600 
CR,TAD LF 
JMS PRINT 

WORD 1 , 
WORD2, 

JMS I SRCH 
o 
o 
JMP WHAT 

/ERROR EXIT! 

/NOW WE HA. VE THE SAM BLOCK NUMBER 
lIN THE AC 

DCA PTEM 
/SAVE IT 



0312 1334 TAD M4 0441 1700 TAD I DNT3 
0313 3332 DCA DCN lYES, COMPARE THE NEXT 2 CHARS 

IINITIALIZE DIGIT COUNTER TO 4 0442 7041 CIA 
0314 1333 TAD PTEM 0443 1277 TAD DNT2 
0315 7004 RAL 0444 7640 SZA CIA 
0316 7004 PNU2, RAL I ARE THESE CHARS SAME? 
0317 7006 RTL 0445 5263 JMP DNNOTF INO 
0320 3333 DCA PTEM 0446 1220 TAD DNFUNC 
0321 1333 TAD PTEM lYES, INCREMENT POINTER TO 
0322 0335 AND PCON 17 0447 1300 TAD DNT3 
0323 1336 TAD PCON+l 1260 lLOOK AT FILE EXTENSION 
0324 4236 JMS PRINT 0450 3300 DCA DNT3 
0325 1333 TAD PTEM 0451 7332 CIA STL RTR 
0326 2332 ISZ DCN lIS THIS A BINARY PROGRAM? 
0327 5316 JMP PNU2 0452 0700 AND I DNT3 
0330 7200 CIA 0453 1302 TAD DN6000 
0331 5202 JMP RO 0454 7640 SZA CIA 
0332 0000 DCN, 0 0455 5264 JMP DNNOTF+l 
0333 0000 PTEM, 0 INO CONTINUE SEARCH 
0334 r{774 M4, -4 0456 1672 TAD I DNFSBN 
0335 0007 PCON, 7 lYES, GET 1ST SAM BLOCK NR 
0336 0260 260 0457 3313 DCA CDSAM 

'*400 ISETUP CALL TO SAM DIRECTORY 
/DIRECTORY SEARCH SUBROUTINE 0460 1274 TAD DNSAMC 
ICALLING SEQUENCE 0461 5304 JMP SMSRCH 
/ 0462 5600 BADRET, JMP I DNSRCH 
/JMS I (DNSRCH 0463 1220 DNNOTF, TAD DNl!UNC 
/CHARACTERS 1,2 ISEE NOTE BELOW IINCREMENT POINTER BY FOUR 
I CHARACTERS 3,4 0464 7001 IAC 
IERROR RETURN FOR NON-FOUND NAME 0465 1300 TAD DNT3 
lOR 1/0 ERROR 0466 3300 DCA DNT3 
/NORMAL RETURN (AC=START BWCK) 0467 2301 ISZ DNKTR 

/ 0470 5232 JMP DNTEST 
0471 5213 JMP DNREAD 

INOTE: EACH CHARACTER IS STRIPPED 0472 0602 DNFSBN, DNBUF+2 
/ASCII+40(8) 0473 0177 DNSTRT, 177 

READ==3 0474 0000 DNSAMC, 0 
0400 0000 DNSRCH 0 0475 7747 DNKT, -31 
0401 1600 TAD I DNSRCH 0476 0000 DNT1, 0 
0402 3276 DCA DNTl 0477 0000 DNT2, 0 
0403 3274 DCA DNSAMC 0500 0000 DNT3, 0 
0404 2200 ISZ DNSRCH 0501 7777 DNKTR, -1 
0405 1600 TAD I DNSRCH 0502 6000 DN6000, 6000 
0406 3277 DCA DNT2 DN77=C77 
0407 2200 ISZ DNSRCH DNBUF=DNSRCH+200 
0410 1273 TAD DNSTRT 0503 0077 CD77, 77 

I GEl' ADDR OF 1ST DN BLOCK 0504 7041 SMSRCH, CIA 
0411 3221 DCA DNBLOK 0505 3371 DCA CDSMVA 
0412 5217 JMP DNIO IMINUS SAM NR TO CDSMVA 
0413 1223 DNREAD, TAD DNLINK 0506 3364 DCA CDSMPT 

I GET NEXT BLOCK NR FROM LINK I SEl' BLOCK COUNTER TO ZERO 
0414 7450 CDD, SNA 0507 13r(1 CDSMRD, TAD CDSMVA 
0415 5262 JMP BADRET 0510 3366 DCA CDSMTl 
0416 3221 DCA DNBLOK 0511 4774 JMS I SYSIO 
0417 4774 DNIO, JMS· I SYSIO lREAD THE SAM BLOCK INTO BUFFER 
0420 0003 DNFUNC, READ 0512 0003 CDRD4, READ 
0421 0000 DNBLOK, 0 0513 0000 CDSAM, 0 
0422 0600 DNCOR, DNBUF 0514 0600 CDCORE, DNBUF 
0423 0000 DNLINK, 0 0515 0000 CDSMLK, 0 
0424 5262 JMP BADRET IERROR 0516 5262 JMP BADRET IERROR 
0425 1275 TAD DNKT 0517 1363 TAD CDM2 
0426 3301 DCA DNKTR 0520 3372 DCA CDSMSW 
0427 1220 TAD DNlruNC 0521 1303 TAD CD77 
0430 1222 TAD DNCOR ISET MASK FOR BLOCKS 0-177 

ISET POINTER TO 1ST DN ENTRY 0522 3367 DCA CDSMMT 
0431 3300 DCA DNT3 0523 1365 CDSML2, TAD CDM200 
0432 1700 DNTEST, TAD I DNT3 ISET COUNTER TO -200 

I COMPARE ENTRY WITH PROGRAM 0524 3370 DCA CDSMCT 
0433 2274 ISZ DNSAMC 0525 1314 TAD CDCORE 
0434 2300 ISZ DNT3 /SET BLOCK POINTER 
0435 7041 CIA 0526 3373 DCA CDCORX 
0436 1276 TAD DNT1 0527 1773 CDSMLP, TAD I CDCORX 
0437 7640 3ZA CIA 0530 0367 AND CDSMMT 

lIS THIS THE DESIRED NAME? 0531 1366 TAD CDSMT.l 
0440 5263 JMP DNNOTF INO 0532 7650 SNA. CIA 

104 lIS THIS THE DESIRED BLOCK? 



0533 5357 JMP CDSMFD 
lYES, EXIT SUBROUTJNE 

0534 2373 ISZ CDCORX 
INo, CONTINUE SEARCH 

0535 2364 ISZ CDSMPT 
0536 2370 ISZ CDSMCT 
0537 5327 JMP CDSMLP 
0540 1362 TAD CD7700 

0541 
lEND OF 1ST PASS, CHANGE MASK 

3367 DCA CDSMMT 
0542 1366 TAD CDSMTk 
0543 7106 CLL RTL 

I SET TEST WORD FOR BLOCKS 200 
0544 7006 RTL 
0545 7006 RTL 
0546 0367 AND CDSMMT 
0547 3366 DCA CDSMT1 
0550 2372 ISZ CDSMSW 
0551 5323 JMP CDSMI2 
0552 1315 TAD CDSMLK 
0553 7450 SNA 

lIS THIS THE LAST SAM BLOCK? 
0554 5262 JMP BADRET 

lYES, SAM NR NOT FOUND 
0555 3313 DCA CDSAM 

0556 
INo, CONTINUE SEARCH 

5307 JMP CDSMRD 
0557 2200 CDSMFD, ISZ DNSRCH 

I SAM NR WAS FOUND, LOA.D THE 
0560 1364 TAD CDSMPT 
0561 5600 JMP I DNSRCH 

lRETURN TO CALLER 
0562 7700 CD7700, 7700 
0563 7776 CDM2, -2 
0564 0000 CDSMPT, 0 
0565 7600 CDM200, -200 
0566 0000 CDSMT1, 0 
0567 0000 CDSMMT, 0 
0570 0000 CDSMCT, 0 
0571 0000 CDSMVA, 0 
0572 0000 CDSMSW, 0 
0573 0000 CDCORX, 0 

0574 7642 SYSIO, 7642 

BADRET 0462 
enCORE 0514 
CDCORX 0573 
CDD 0414 
CDM2 0563 
CDM200 0565 
CDRD4 0512 
CDSAM 0513 
CDSMCT 0570 
CDSMFD 0557 
CDSMLK 0515 
CDSMLP 0527 
CDSMI2 0523 
CDSMMT 0567 
CDSMPT 0564 
CDSMRD 0507 
CDSMSW 0572 
CDSMT1 0566 
CDSMVA 0571 
CD77 0503 
CD7700 0562 
CHAR 0270 
CR 0303 
CRLF 0230 
CR1 0276 
C77 0275 
DCN 0332 
DNBLOK 0421 
DNBUF 0600 
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DNCOR 0422 
DNFSBN 0472 
DNFUNC 0420 
DNIO 0417 
DNKT 0475 
DNKTR 0501 
DNLINK 0423 
DNNOTF 0463 
DNREAD 0413 
DNSAMC 0474 
DNSRCH 0400 
DNSTRT 0473 
DNTEST 0432 
DNT1 0476 
DNT2 0477 
DNT3 0500 
DN6000 0502 
DN77 0275 
GET 0244 
LF 0277 
MCR 0271 
MCTRLC 0273 
MONRET 0302 
MRO 0272 
M4 0334 
PCON 0335 
PNU2 0316 
PRINT 0236 
PTEM 0333 
p40 0274 
QUEST 0227 
READ 0003 
RO 0202 
SMSRCH 0504 
SP 
SRCH 
START 
SYSIO 
WHAT 
WORD1 
WORD2 

¢17¢ 
¢171 

¢642 

¢646 

¢653 

¢655 

¢667 

¢677 

¢735 

¢753 

¢762 

¢767 

1624 

0301 
0300 
0200 
0574 
0224 
0306 
0307 

/PAGE ¢¢¢¢ 
!DISC STRIP 
/PATCHES TO SETUP FOR DISC DATA BUFFER 
SETUP=JMS I DIPNTR 
INDEX::i:JMS I DAPNTR 
*17¢ 

4¢42 DAPNTR,DA 
4¢¢¢ DIPNTR,DI 

*642 
4571 SETUP 

*646 
457¢ INDEX 

*653 
4571 SETUP 

*655 
457¢ INDEX 

*667 
4571 SETUP 

*677 
457¢ INDEX 

*'735 
4571 SETUP 

*'753 
45'!¢ INDEX 

*'762 
4571 SETUP 

*'767 
457¢ INDEX 

*1624 
4571 SNlUP 

"'1631 



1631 457¢ llIDEX 4~41 ¢¢53 DIP42,52 
*164¢ /SUBROUTINE TO INCREMENT & TEST POINTERS 

164¢ 4571 SETUP lIT WILL CALL NEXT PAGE OF DATA AUTOMAT I 
*1676 4¢42 ¢¢~¢ DA, ¢ / ACCESS DISC SUBROUTINE / CALLY 

1676 457¢ llIDEX 4¢43 21 5 ISZ Il 
*1- 34 3 4¢44 21,05 ISZ Il 

4343 4571 SETUP 4¢45 21P5 ISZ Il/INDEX Il BY 3 
*1-352 4¢46 2274 ISZ DANUM/TEST COUNTER 

4352 457¢ llIDEX 4¢47 5264 JMP DATEST 
*1-413 4¢5¢ ~~~ FILE 

4413 4571 SETtJP 4P51 WRITE 
*1-425 

4425 457¢ llIDEX /PAGE ¢¢¢2 

¢42¢ ~~~~ 
*1-2¢ 

4¢52 NOP 2312 ISZ IEBLK 
~4~1 NOP 4~5~ 2276 ISZ DAEND/TOO MANY FILES? 
~422 7~~~ NOP If¢54 741¢ SKP 
¢423 i~~~ NOP 4¢55 5172 JMP QUEST-l/YES, ERROR EXIT 
¢424 NOP 4¢56 ~~~ FILE 

*1-34 t~~~ READ 

¢434 i~~~ NOP 1317 TAD IE34¢¢ 
¢435 NOP 4¢.61 31¢5 DCA Il 
¢436 7¢¢¢ NOP 4¢62 1275 TAD DAM43 

*1-45 4¢63 3274 DCA DANUM 
4¢64 21¢6 DATEST,ISZ 1¢6 
4¢65 21¢7 ISZ 107 
4¢66 2673 ISZ I CNTRPT 
4¢67 56¢¢ J.MP I DI 

/PAGE ¢¢¢1 4¢7¢ 00~~ FILE 
4¢71 \}'RITE 

/DATA ACCESS INITIALIZATION 4P72 5642 CM'P I DA 
4¢73 ¢446 CNTRPr,446 

Il=1¢5 4¢74 ¢¢¢¢ DANUM,¢ 
QUEST=173 4¢75 ~~~~ NOP 
lFl14 4¢76 DAEND,¢/-FlLE # FOR TESTING 
READ=3 4¢77 776¢ DIMFTL,776¢/-FlLE # STORED ***TEST*** 
WRlTE=5 41¢¢ ~~~~ IE, ¢ /ENTRY 
*1-¢¢¢ 41¢1 CLA. CLL 
DAM43=DIM42 41¢2 17¢¢ TAD I IE /GET FUNCTION 
DABU:FR=DI-2¢¢ 41¢3 3311 DCA IEFUNC 
FlLE=JMS IE 41¢4 23¢¢ ISZ IE 

4¢¢¢ ¢¢¢¢ DI,¢ 41¢5 1317 TAD IE34¢¢ 
4¢¢1 73¢¢ CU\. CLL 41¢6 3313 DCA IECORE 
4~2 3242 DCA DA/CLEAR BliICKCOUNTER (DA) 41¢7 3314 DCA IELNK 
4 ¢3 ill4 TAD L/ GET If)W LIMIT 4ll¢ 472¢ JMS I SYSIO 
4¢¢4 124¢ TAD DIM42/SUBTRACT BLOCKLENGTH 4 ill ¢¢¢3 IEFUNC, 3 
4¢¢5 2242 ISZ DA/STEP BIf)CK COUNTER 4112 ~~~~ IEBLK, ¢ 
4¢¢6 75¢¢ SMA/NEGATIVE ? 4113 IECORE, ¢ 
4¢¢7 52O¥ JMP .-3/NO 4114 ¢¢¢¢ IELNK, ¢ 
4¢1¢ 1241 TAD DIP42 4115 5172 JMP QUEST-l/ERROR EXIT 
4¢ll 3l¢5 DCA Il/I! IS TEMP STORAGE NOW 4116 ~~~ JMP I IE /EXIT NORMAL 
4¢12 11¢5 TAD Il 4117 IE 34¢¢ , DABUFR 
4¢13 1275 TAD DAM43 412¢ 7642 SYSIO,7642 
4¢14 3274 DCA DANUM/INITIALlZE COUNTER 4121 7775 M3,-3 
4¢15 11¢5 TAD Il/MULTIPLY BY 3 

4¢73 4¢16 71¢4 CLLRAL CNTRPT 
4¢17 11¢5 TAD Il DA 4¢42 
4¢2¢ 1321 TAD M3 DABUFR 3~¢ 
4¢21 1317 TAD IE34¢¢ DAEND 4 76 
4¢22 31¢5 DCA Il/I/NOW POINTS TO FIRST DATA POINT DAM43 4¢75 
4¢23 734¢ CU\. CLL GMA/AO::.:-l DANUM 4P74 
4¢24 1242 TAD DA/ GFr BIf)CK COUNTER DAPNTR ¢17¢ IEFUNC 4111 
4¢25 1237 TAD DIBLK/ GET 1ST FILE NUMBER DATEST 4¢64 IELNK 4114 
4¢26 3312 DCA IEBLK DI 4¢¢¢ IE34¢¢ 4117 
4¢27 724¢ CU\. GMA/AC=-l DIBLK 4¢37 llIDEX 457¢ 
4¢3¢ 1277 TAD DIMFIL/ GET -NUMBER OF FILES DIMFIL 4¢77 Il ¢1¢5 
4¢31 1242 TAD DA /ADD BIf)CK COUNTER DIM42 4¢4¢ L ¢114 
4¢32 3276 DCA DAEND DIPNTR ¢171 M3 4121 
4¢33 43¢¢ FILE DIP42 4¢41 QUEST ¢173 
4¢34 ¢¢¢3 READ FILE ti~~ READ ¢¢¢3 
4¢35 4511 JMS I 111 IE SETUP 4571 
4¢36 56¢¢ JMP I DI IEBLK 4112 SYSIO 412¢ 
4¢37 ¢6¢¢ DIBLK,6¢¢ IE CORE 4113 WRITE ¢¢¢5 
4¢40 7725 DIM42, -52 
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ABSTRACT 

A seneral.purpa~e pragram far a~eilla~eope gi~play af 
mathematieal Iunetiana will be described. Sinee the main 
pra~ram i~ written in FORTRAN the user need only in~ert the 
FORTRAN ~tatement of hia funetian in a standard laeatian. At 
abject time h@ ipeeifi@i the rlnge of the independent vari~ble. 
Fel1ewinl a ~ea1inl eomputatien~ the aealeg function is eoma 

puted and a table af valuei lenerated. These are displayed en 
an e~eillaieep@ by meani of a binary program whieh is laaded at 
FORTRAN ebjeet time. Interactive featurei allow the u~er ta 
reBipeeify-th@ ranse of the independent variable ta mere e1eie-
1y @~amine the varieus rangei af the funetian under study. 

The iy~tem deieribed uses a PDP·8 with 4X core, and a type 
34D aici1laseape display unit, 

O~eilla2eape display~ af sinlle-valued 
mathematical functiani af the ferm y • f(x) are 
readily aeeempli§hed uiin8 a '0'·8 with 4k memory, 
and a type l~D display. The system deieribed in 
thi~ paper u~es bath FORTRAN and PAL prosramming 
lan~ua~es. A itandard Tektranix type 561 or 564 
a§eillaieape, having an 8 x 10 em, display area is 
u§@~, Th@ diiplayed functian cans1its of over 200 
individual x~y eeardinat@ values, and some 50 scale 
m@rKi far a ealibrated display. 

Inter@ctiv@ prosrammins features allow the user 
te sp@eify a re-ealeulation of function values to 
display different ranles ef interest in either the 
independent or dependent variable by typing appro~ 
priat@ eammands durins the display. Scalins of the 
di§play is autamatiea~ly carried out during cqrnpu
tatian se the Uier need not anticipate or estimate 
maximu~ or minimum value, ot the function. By use 
ef the interaetive feature the user ean re-specify 
fynetian ranges until he obtains an appropriate 
di§pl@y far his needs. functions with variable 
parameter§ may be presrammed in such a way that 
the§@ parameter~ may alae b@ re-§peeitied to in
vesti~ate the effeets of sueh variatianl. 

Thi~ pralra~minl system combines thale features 
of FORTRAN and PAL best suited to the specific re~ 
quirements af each part of the program, The main 
prasram 11 written in FORTRAN, This allows the user 
te specify the function of intere.t in the form of 
a simple mathematical FORTRAN statement one or two 
lines lonl' To use the programming system for his 
Q~n epeeittc p~ob~em the user n,~d eh,ng' only this 
statement 10 that it rcprlsentl the function he 
wilhe. di.played, All calculatians are carried out 
i~ the FOR.TRAN pOftion af the system. Uae 11 mlde 
of .11 FORTRAN fe,ture" 8uch II comput.tion in 
floating·point mede, accessibility to the library of 
function., Ind ule of the input/output routine. of 
FOR.TRAN. 

For the display af the function eaeh function 
value ta be ~hawn mu~t be ~pecif1ed in terms gf its 
x,y eogrdin.te~. theMe values are eamputed J scaled, 
converted ta integer farm, translated sa thlt all 
values are appropriate positive values, and 
Btored in arrays, Upon completion of these calm 
culatians , program control transfers to the binary 
portion af this system, whese prinCipal function is 
to aeeeBS the data stared in arrays. Individual 
x,y coordinate paints are transferred from the array 
ta the x Ind y registers of the display control. 
The rate at which the di~play 1s processed by the 
binlry prasram is rapid enoush lo-that I stable, 
flicker-free, display is pre.ent on I conventional 
oscilloscope. 

FORTRAN PROGRAM DETAILS 

When the user initlally enters the program hd 
is asked to type in the range he desires- for the 
independent variable. Trial values af the function 
are computed to estimate maximum and minimum values 
af the dependent variable. The rana' of both vari
ables, and the Ic.lel of bath the x and y axes, in 
units per scale division, are then typed out so the 
user has a permanent record of this. Detailed cal
culation of array valuel then praceeds, and when 
completed, the funetian display is presented on the 
oscilloscope. 

Havins inspected the display the user can re
specify a new range for either v.riable by typing 
CTRL P on the teletype. He is then required to 
specify whether-he wishes to change the range on x 
or y. If he specifies a new range en x the scaling 
of y proeeed~ ss befo~e. How~ver he may re-specify 
the range on y, IS far example to get a convenient 
scale factor, and thus he re-speetfies the range of 
y for the previously establt.hed ranse of x. No 
attempt ia made when scaling y for a specified x to 
h,ve the y scale factor adjusted to standard values. 
Thus the uaer will usually need ta re-specify y 
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good scale factor for the y axis. 

In order that meaningful results be obtained 
from the display, scale markings are computed in the 
FORTRAN program using scaling data as derived from 
the program, and these marks are displayed along 
with the function itself. 

BINARY PROGRAM DETAILS 

The binary program, assembled using PAL, is 
loaded at object time by the FORTRAN object system 
loader. The FORTRAN object system will properly 
load this binary program, but will give a check sum 
error, since the check sum is calculated differently 
in FORTRAN than in PAL. The essential point is that 
the FORTRAN operating system loader will recognize 
the location counter setting feature of PAL (e.g. 
*7400), and load the binary program into the 
specified locations. 

When loading this system for use the binary 
program is loaded before the FORTRAN object program~ 
Execution of the FORTRAN program can then begin im
mediatetly upon loading of the FORTRAN object pro
gram. 

When first loaded the binary program occupies 
part of the FORTRAN working area, specifically the 
last page, locations 7400-7546. At the beginning 
of the FORTRAN program a short binary routine loaded 
into location 7367 is transferred to.· This routine 
relocates the main binary program to occupy lo
cations 7600-7764. Thus all of FORTRAN working area 
is available and used for data storage, and all 
FORTRAN features remain intact. 

Operation of this dual system of FORTRAN and 
binary programs is possible because of the "simple
minded" way in which the FORTRAN compiler assigns 
variable name locations. It starts from location 
7577 and works down in storage, allocating locations 
in the order in which variable names appear in the 
FORTRAN PROGRAM. By using a standard DIMENSION 
statement at the beginning of the FORTRAN program 
the programmer can be certain of the exact location 
of the data associated with each variable in the 
program, including the initial address of data 
arrays. This information is obtained from the 
Symbolprint program following FORTRAN compilation. 

The binary program uses the addresses of the 
FORTRAN arrays through indirect address link-ups. 
Once FORTRAN has computed and stored its data in 
arrays, the binary program is entered. The x and y 
toordin~·tes of each point are transferred to the x 
and y registers of the 34D display control" and dis
played on the oscilloscope. The address of the next 
pair of points is obtained by use of the ISZ 
instruction to increment the current addresses. A 
separate counter is used to note the end of the data 
array. Upon reaching the end of the array the 
statuscl the teletype is checked. If no message is 
waiting, the data array addresses are re-initialized, 
and th~ program lobps on the data again. Ifan 
appropriate message is in the teletype buffer con
trol is transferred back to the FORTRAN program 
where the user may re-specify variable ranges as 
described earlier. 

CONCLUSION 

By judicious programming using both FORTRAN 
and PAL displays of mathematical functions are 
readily accomplished. There is adequate data 
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storage to obtain displays with good detail. User
oriented features allow for readily programming 
functions of interest, and for specifying ranges of 
interest for the display. The display is scaled, 
and accurate values easily read off the display. 
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{lfii A @ Dfi ••• ) all6Ws ER@ Us@f Ee §@l@@tiv@iy tfav@fs@ a 
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BACKGROUND 

This research on a Display Programming Language 
(DPL) , is the outgrowth of two areas of interest 
of the author. The first stems from his work in 
developing a generalized data structure for graph
ics*. The basic structure developed assigns many 
attributes to each structure, only one of which is 
a display attribute. DPL is an extension of the 
set of primitives developed for the specification 
of the display attribute. 

The second area of interest was studying the ef
fective organization of 2 processors in a graph
ics problem-solving environment. One of the 
first problems encountered was the "division of 
labor" between the two types of processors avail
able, a large scale computer, and a small display 
computer. We represent pictorially these proces
sors as follows: 

Large 

Computer 
Display 
Computer 

8<~ 
Transmission 
from processor A 
to processor B 

MACHINE ORGANIZATION 

One possible organization of these processors 
would be to have a high speed link between the 
two machines. The large computer would process 
all requests for each service from the user (in
terrupts, etc.). Each time a change was to be 
made, a completely new display file would be sent 
over to the display computer. The display com
puter would send the large computer requests for 
processing, in the form of cues and nothing else. 

*A Generative Grammar and Data Structure for Com
puter Display of Chemical Graphs. August 1968. 
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Large 
Computer 

Display 
Computer 

There are two defects in.this type of organization. 
First, to ensure reasonable response time to the 
user of the graphics system, the channel connecting 
the two computers must be very fast. The usually 
available transmission lines of 2000-2400 bits per 
second would be much too slow for this type of 
operation. If one used a high capacity line, then 
the costs would be much greater. In addition, the 
number of possible users would also be much lower 
since each would need his own private line, as 
opposed to the 2000 bit/second lines which are 
dial-up, and generally available. 

Another defect in this design class, is that it re
quires a "relatively" dedicated computer. All 
service requests from the user require servicing by 
the large computer, and an environment would have 
to be established that allows fast access. For in
stance, no swapping of a graphics task would be 
possible in a multiple task system. 

We therefore come to the conclusion that the proces
sing task must be shared between the small and large 
computers, and that the small computer must be able 



to perform some of the processing functions that 
the user might want. To do this, the display com
puter must have some form of data base in it, 
representing the displayed structure. 

DATA BASES 

There are two possible organizations for data 
bases in this multi-processor environment. The 
first is to send to the small computer a chunk of 
the data base that exists in the large computer. 
In particular the chunk that represents the struc
ture to be displayed would be sent to the display 
computer. When the display computer makes changes 
in this data base, they must be sent to the large 
computer, to enable it to make the appropriate 
changes in its data base. What we have done is to 
reduce somewhat the need for channel communication 
and reduce greatly the demands placed on the large 
computer for processing service requests. 

Another possible organization is to have complete
ly different data bases in the display computer 
and in the large computer. To describe its data 
base to the display computer, the large computer 
encodes the data base up in an intermediate lan
guage, which is sent to the display computer. 
Likewise, the display computer sends records of 
changes to its data base by the user, in an inter
mediate language. It was this approach that was 
chosen, and DPL is a language to encode the large 
computers data base for transmission to the dis
play computer. 

LANGUAGE CRITERIA 

A set of criteria was established that the display 
language was to meet. Following is a list of 
these criteria: 

Console Operation 

The language was to be so constructed that the 
user could write programs in the language, at the 
console of the display computer, and each state
ment was to be meaningfqJ. In other words, ,the' 
interpreter for the display language would have 
to have an incremental mode of operation. 

Stored Program Control 

The language was to be ,such that sequences of in
structions in the language could be executed under 
some form of loop control. In addition to having 
immediately interpreted instructions (console 
operation) other instructions could be used in a 
stored program computer mode., 

Basis on DEC-338 

There was to be a certainamol,lnt of hardware de
pendence, but this was to be kept to a minimum. 
The basic assumption was that the dis1i1ay'screerf. 
had an (x,y) addressable, sc,ieen:. " 

338 Hardware Feature's Available 

Certain 338 hardware features were to be made 
available to the user in a generalizedform':i.f 
possible. These were to include at least, the 
ability to use the pushbrtttons, the blink feature 

'and the light pen of the 338 syste~~ 

Basic Primitives in Definitinal Mode 

There was to be a small set of basic primitive, 
with which the user was to be able to define basic 
elements. These were to include at least text, 
points, lines. 

Constructable Higher Level Structures 

Given any set of the basic primitives, one must be 
allowed to group these together under a common name. 
From then on, the name could be used instead of the 
list of primitives. At the user's option, the de
fined structure should be relocatable and hence, 
usable asa subroutine anywhere on the screen. This 
feature was to be available at any level of defini
tion. 

Computation 

There was to be some amount of computational ability 
available, at least at the level of definition (i.e. 
12 bit arithmetic). More powerful arithmetic was to 
be available from the higher level processor. 

Logical Operations 

There was to be a number of logical operations, 
transfer of control, etc., to allow non-sequential 
execution of stored progri:lms. The decisions were 
to be based on both user generated and computed 
conditions. 

Light Pen Sensitive Structures 

It should be possible to make structures light pen 
sensitive. The user should be able to specify 
where (what processor) to transfer to under the 
condition of a light pen "hit". 

Structure Manipulation 

For any structure that was defined, the user should 
have the ability to search down the structure. He 
should be able to look for a particular element and 
select it if he desires. He should be able to de
signate them as selected or distinguished elements 
and operate on them. 

Generated Symbols 

There should be a, process available to: allow the 
user to generate names~ of o,bjeccts and ;use tqe., 
genera ted names. The user s,hould have' acces s to 
the na~es ?s easily' as, .. g?mes ,generated explicitly 
by program statements.' 

Input Output 

There should be an input/output facility for the 
language to allow communication in the following 
directions: 

LARGg,COMl'V'mR ~" DISPLAY COMPUTER 

LARGE GoMPuTER'---?' n!SPLAY USER 

DISPJAY, COMPUTER .~' .. LARGE' COMPUTER 

OISPIAY COMPUTER ~'DISP'LAY USER 

DISPLAY USER 

DISPLAY USER 

-> DISPlAY, COMPUTER 

~ LARGE, COMPUTER 



SPECIFICATION OF THE LANGUAGE 

Modes of Operation 

In the current version of DPL, there are two modes 
of operation, reactive typewriter and stored pro
gram. 

Modes of Operation 

/ 
Reactive 

A: Point (0000, 0000) 
Stored Program 

·Instruction 
·/And, Instruction 

In the reactive typewriter mode, as each instruc
tion is read in from the teletypewriter, it is 
decoded and executed. If the instruction is 
preceded by 

(a) 

(b) • /NAME, 

then the instruction is stored away for later 
execution. If the instruction is preceded by 
(b) above, then NAME is the name of that instruc
tion. Transfer of control instructions (defined 
later) transfer to named statements. 

STATEMENT TYPES 

DEFINITIONAL 
primitive 
recursive 

LOGICAL 
transfer of control 
logical test 

GENERATED SYMBOLS 

ARITHMETIC 
Algebraic 
Logical 

COMMAND 

STRUCTURE SEARCH 

INPUT/OUTPUT 

There are seven basic statement types in DPL, and 
each is broken down into one or more sub classes. 
Each will be explained below. Most of the state
ments have the following form: 

NAME:OPERATION<MODIFIER>(OPERANDs) 

However, only certain statements have all of the 
above options. 

Varbles and Names 

In the definitions below, we will use the follow
ing terms: 

TERM 

NAME 1 POINTNAME 
DISPLAYGROUPNAME . 

VARBLE 

INTERPRETATION 

Any. str~ng, 1-5 characters 

A varble is an expression 
which evaluates to a octal 
value of x,suth that, 
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a :::; x :::; 7777 

There are a number of dif
ferent VARBLES, and they 
will be discussed below in 
VARBLES PART II and PART III. 
The first type of VARBLE is 
the constant. 

NNNN 

where 

Definitional Statements - Primitive 

POINTNAME:POINT(VARBLEl,VARBLE2) 

This defines a point on the screen with name 
POINTNAME at (x,y) coordinates (VARBLEl,VARBLE2) 

LlNENAME:LlNE(POINTNAMEl,P01NTNAME2) 

This defines a line between the points 
POINTNAMEI and POINTNAME2 and the name of the line 
is LINENAME. 

NAME:DISPLAYGROUP(LlNENAME,DISPLAYG~OUPNAME ••• ) 

This defines the set of objects in the operand 
field named NAME. Any number of items may appear 
in the operand field. 

TEXTNAME:TEXT( any ASCII text) 

This defines the text string in ~he operand field 
assigning the name TEXTNAME. 

CONSTANTNAME:CONSTANT(VARBLE) 

This defines the structure with name CONSTANTNAME, 
to have the value of VARBLE and class constant which 
can be used in arithmetic operations described be
low. 

Definitional Statements - Recursive 

NAMEA:DISPLAYGROUP(NAMEA, •••• ) 

This redefines displaygroup NAMEA so that the new 
elements specified in (NAMEA, •••• ) will be added to 
the elements in the displaygroup. The name of the 
displaygroup can appear anywhere in the operand list 
and as many times as desired. If the displaygroup 
was originally a relocatable subroutine, then 
multiple occurrences of that name may result in 
relocated pictures for each occurrence. 

LAB:LlNE <RELATIVE> (A,B) FIGURE DEFINED 

LBC:LlNE <RELATlv&~ (B,C) 

LCA:LlNE <RELATIVE> (G,A) 

LAC:LlNE <RELATIVE> (A,C) 

TRI:DISPLAYGROUP (LAB ,LAC ,LBC,LCA,LAC) L1 
TRI:DISPLAYGROUP(TRI,TRI) 

TRI:DISPLAYGROUP(TRI,LAC,TRI) M /1/1 
Modifiers to Definitional Statements 

A modifier to a definitional statement appears in 
the form: 



This will result 1n the defined strY~tute blinking 
at a rate gf 2 times a seeond, wben diepla¥ed. 

Thi~ will r~sYlt 1n the defined sttYttYfe appearing 
at ifitensity 0 whefi it is displayed. 

Th~ ~ynta~tiQ effeet gf ~h!e statement is ttl femtlve 
all beam poeltionifi~ information tr~ the operands 
itl detining the new stru~ttire. The semantit 
results are that the new sttuttufe eonslsts of 
displacement ve~tgrSj father than lines between 
fixed points, 

For example: 

B :POINr (0100,0100) 

LAB:LINE(A,B) 

LABR:LINE< RELATIVE> (A,B) 

FIGURE CONSTRUCTED 

LAB 

/ 
(0000,0000) 

LABR / 
DISPLAY OF LAB FOLLOWED 

/ 
(0000,0000) 

DISPLAY OF LAB FOLLOWED 

(0100,0100) 

(~X 100 

l::r.y 100) 

BY LAB 

(0100,0100) 

BY LABR 

LABR (0200,0200) 

/ 
LAB (0000,0000) 

ARITHMETIC STATEMENTS 

NAME:PLUS(VARBLEl,VARBLE2) 

This assigns to name NAME the class constant, and 
assigns to it the value VARBLEl+VARBLE2 

NAME:MINUS(A,B) 

This assigns to name NAME the class constant and 
assigns k to it the value VARBLEl-VARBLE2 

NAME :TIMES (A,B) 

This assigns to name NAME the class constant, and 
the value VARBLEl*VARBLE2 

NAME : DIVIDE (A, B) 
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ThiS aBBlf!jtHi to name N~fhE! ti laes tH3nStanf an~ 
assigns to it the value VAiltEl!VAlltE2 

NAMEIANDeVAIltEl,VARltE2) 

This aeei~ns to ftame NAME the slass esftstafiE afid 
ass1f!jft§ to H the value VARltE 1 "VARltE~ 

NAME:OR(VARBtEl,VARBtEa) 

This assigns to name NAME the Elass eOfistaftt and 
the value VARILE 1 V VARDt:ll! 2 

This insttuetion slears the screen of all previous 
contents, ~ener~t~s and exe@utes the display file 
asso~iated with the items in the ~petand field. 

:AP~ND <NAME J' i j> 

This operates like the EXECUTE G~and ~b~vej but 
does n~t cleat the s@re@n bef~re di§playin~ the 
speCified operands. This is used for ~ddin~ to 
the contefits of the screen. 

In both of these instructions, one may apply the 
modifiers as indicated in the section on modifiers 
applicable to definitional statements. For 
example: 

:EXECUTE< BLINK> (NAME, ••• ) 

Logical Statements 

(a) TRANSFER OF CONTROL STATEMENTS 

:GOTO(PROGRAMNAME) 

This transfer control unconditionally to program 
statement PROGRAMNAME. It does not save the 
current program location. 

: CALL (PROGRAMNAME) 

This transfers control to program statement 
PROGRAMNAME. It pushes down the current program 
location. 

: RETURN 

This pops up the address of the last call encoun~ 
tered and returns control to it, plus 1 statement. 
Upon executing a top level RETURN, control returns 
to the te Ie type. 

(b) LOGICAL TESTS 

:IF(VARBLEl.EQ.VARBLE2)Sl 

If the value of VARBLEI equals the value of 
VARBLE 2 , then statement Sl is executed, else 81 is 
skipped, 81 can be any legal DPL statement. 

:IF (VARBLE 1.LT.VARBLE2) 

If the value of VARBLEI is less than that of 
VARBLE2 then statement Sl is executed, else Sl is 
skipped. 

: IF (VARBLEI.GT.VARBLE2)Sl 



If the valUe ef VARBLEl i§ 8fea~er fRan €Hat af 
VARBtE~ tReft §€a~effi@ft~ 81 i§ @R@eytee, el§@ 91 is 
§ki~~eg, 

\iAAfiLs f3 }'af f li 

1ft a@@i~ieft te the erigifiaiiJ @@fifieg ~arEle, 
eetal eeft§€aft€§, we Ra~@ a@@i€iefial varBl@§ tRat 
eerre§~efi@ €6 tRe vafieu§ §J§~@ffi elemefit§: TR@se 
are giveft 13elewi 

~Xg~!P§iNfN~ TR@ K eeergifiate ef paifit 
P@iN'fNMm 

~Y~~iP@iNfN~ Th@ Y eaer@lfia€e af paint 
P@iNTNMm 

~FBifi> The eefi@i~ian sf pUsR=Bu€€erl n 

Example 

=1 if eft 

=@ if eff 

The following classes are 
already defined: 

1 = POINT 

2 = LINE 

3 = DISPLAYGROUP 

4 = STORED PROGRAM 

5 = GENERATED SYMBOL 

6 = GENERATED SYMBOL 

7 = CONSTANT 

10 = TEXT 

11 = PUSHDOWN 

400 = BLINKED STRUCTURE 

1000 = RELATIVE STRUCTURE 

2000 = UNINTENSIFIED STRUCTURE 

:IF( <PB:n >.EQ.OOOl) : GOTO (PROG) (executed if 
PBn is on) 

NAME:PLUS( <XCPT:A >, <YCPT:A » (sets NAME to 
be A + A ) 

x Y 

:IF( <CLCPT:A >.EQ.0002)Sl (executed if A is a 
line) 

Micro Definitional Instructions 

To correspond to the above variables, we have in
structions that allow one to selectively access 
the X and Y component of a point and the class 
component of a structure: 

NAME:XSET(VARBLE) 
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THe i eampafi@fit sf peint NAME i§ set €e tR@ valUe 
af VMBLE 

Th@ Y eeffipefiefi€ af ~eifit NAME is set €e the value 
ef VARB!JE: 

NAME:e§ET(vARBBE} 

THe eLA§§ eempen@fi~ af §trHEtufe NAME is §@t te tHe 
vallie af VARBLE: 

TRere is availaBle ~e the us@r ene Basi€ ~fimi€iv@ 
fef fraE~ing §uEH ~Raf tH@ u§@f ~ill fiaf flav@ 
ta ~rae@§§ tR@ ligfif ~@fi aetivi€y Riffi§@if: IRi§ 
preee§s i§ eall@@ 13y a §tatemefit ef tR@ fellewifig 
ferm! 

(b) The user can track the square with the 
light pen to the desired position. 

(c) Finally, when the user has finished track
ing, he touches the target (+) with the 
pen to end the tracking sequence. 

(d) The coordinates of the upper left corner 
of the box are assigned as the coordi
nates of point NAME. 

Alternative ly 

NAME : POINT ( <CTRAC » 

wi 11 operate as <TRACK >does except that the 
tracking square is not repositioned to the lower 
left hand corner before commencing tracking. This 
feature is useful for generating continuous figures. 

Generated Symbols 

A facility for generating names of symbols is avail
able to the user. It is called by the folloWing 
statement: 

NAME: SYMBOLGEN 

This assigns to NAME, the name of the generated 
symbol. All future uses of NAME are equivalent to 
using the generated symbol. One can have any 
number of names representing generated symbols, 
and the same symbols can be used over again to 
represent a new generated symbol. 

Example • IPI ,A: SYMBOLGEN 
.A:POINT( <TRACK» 
• B : SYMBOLGEN 
• B : POINT ( <.: CTRAC> 
• C : SYMBOLGE N 
.C:LINE(A,B) 
.D:DISPLAYGROUP(D,C) 



• :EXECUTE (D) 
• :GOTO(Pl) 

This program will read in two points, from the light 
pen and assign them to generated symbols A and B. 
Then it will define a line in terms of A and B 
called C, also a generated symbol. Finally it 
appends to the current definition of D, the new 
line C, and displays it. If we had not used gen
erated symbol features, we could only define one 
line, display it, and re-define it. 

Structure Search 

With the ease of generating symbols that is avail
able with the symbolgen feature, a handle is needed 
on all of the generated symbols. In addition to 
this, we also want a generalized process that will 
enable to search a structure selectively, for a 
particular. element. For this purpose, the follow
ing instructions have been defined: 

:PUSHDOWN(NAME, ••• ) 

This defines structure NAME to be of class pushdown. 
That is, when a definition is put into it, the 
previous definition is saved and the new one is 
added to the top. Redefinition of other structures 
in general, results in the loss of the previous 
definition. The above statement is used in con
junction with the following statement: 

:LET(NAME l)BE (NAME 2) 

This pushes down onto NAMEI the definition of 
NAME2. If NAMEI is empty, then this definition is 
the only definition ofNAME2. If NAMEI already 
stood for something then the previous definition is 
pushed down and the new one added to the top. 

:FOR(NAMEl)E (NAME2)DO(NAME3) 

This allows NAMEI to index over the elements of 
structure NAME2. The element that is used is 
changed (indexed further up in the structure) each 
time NAME3 is encountered until NAME2 is emptied. 

For example, we want to select out of structure Z, 
all the lines that it consists of and group them 
under displaygroup LINES. If there is a display
group in Z we want to further index down this 
displaygroup so that LINES will have in it all the 
lines that compose the structure. 

:PUSHDOWN (B) 
:LET (B)BE (Z) 
./Pl,:FOR(C) E (B)DO(P2) 
• :IF( <CLCPT:C >.EQ.002) :GOTO(lINE) 
• :LET (B)BE (C) 
• :GOTO(P2) 
./LlNE,LlNE:DISPLAYGROUP(LIN]S,C)
. /P2 ..• 

Text VarHl.bles 

It is desirab Ie to display as a-result of computa
tion some variab les such .as number, text strings, 
etc. To do this, the following variab les may 
appear in text strings only: 

<OCTAL: NAME> The ASCII equivalent of the 
variable NAME, converted into an 
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octal number. The value of X when 
the statement is defined is used. 

< TEXT: NAME > The ASCII string denoted by the 
structure NAME is inserted into 
the text string. 

<C/R> Returns the beam to the beginning 
of this line but displaced one line 
lower than the original line. 

Input Output Varbles Part III 

To allow the user to enter information from the 
teletype the following VARBLES are also available: 

<READ : TEXT> 

<READ:OCTAL> 
<READ : DECIMAL> 

A text string is read in from the 
teletypewriter assigned as the 
value of this VARBLE up to the 
input C/R. 

Reads in a 4 digit number and 
converts it into a 12 bit binary 
number according to the speci
fied conversion. 

Light Pen Sensitive Structures 

It is desirable to allow the user to denote cer
tain structures as being light pen sensitive and if 
the light pen ever touches them when displayed, to 
transfer to a special routine. This is done by the 
appropriate trap time program at the time the light 
pen hit occurs. 

:TRAP« LPHIT:NAMEl» (NAME2) 

This will trap to processor NAME2 if the light 
pen ever touches the structure NAME 1. NAMEI can be 
of class line, text, or displaygroup. 

: INHIBIT « LPHIT : NAME 1> ) 

This will inhibit interrupts on this structure so 
that it will become light pen insensitive. 

: ENABLE 

This will enable all traps that are currently defin
ed to be enabled again. When a light pen hit 
occurs, all traps will be disabled until this in
struction is executed, to prevent continuous trap~ 
ping on one condition. 

<LPEN> 

This is a VARBLE that will represent the name of 
the object that caused the light pen hit if a trap 
occurs because of light pert hits . 

NOTE: During the processing of these traps the old 
address of the program is saved and can be returned 
to by executing. the RETURN operation. 

EVALUATION AND' CONCLUSION 

DPL was originally designed to serve as a descrip
tion language for a higher level data structure. 
It was intended that the display attribute of the 
structures would be specified in a DPL like lan
guage. DPL was extended in a number ~f ways over 
and above this primitive definitional level. This 



was to give the user an effective way of using the 
display computer without necessarily having the 
support of a large scale computer system. 

It is easy to define structures that look like the 
above. However, the DPL data base would allow 
connectivity at only two points, the beginning 

Toward these aims DPL was a very successful effort. 
Because of the facilities of the language even 
relatively sophisticated prDblemsare easily 
handled in a small number of statements. One can 
easily, and in a few minutes, construct both use
ful programs and interesting graphical structures. 

and the end of the structure, and hence, this 
structure would not truly be represented.by the 
data base. It appears thataml,lch more compli
cated data base is really neede.d for,powerful 
graphics. We would for instance iike to say that 
this is a PNP transistor, of type... The base 
is connected to terminal Al or circuit K3, etc. 

On the other hand, experience with DPL has shown 
its inadequacies for forming the basis of a really 
power graphic system. Because of the lack of 
ability to establish relationships between data 
elements the structure constructed, 'while graphic
ally complex, have simple data bases. Hence the 
DPL data base does not really reflect the structure 
involved. 

DPL is a useful tool to those who are able to 
accept the limited data base upon which it builds 
its structures. It will allow its users from the 
teletype to define, display and redefine graphical 
structures. Towards this end DPL is a useful tool 
to the user of a display computer. 
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LOGICAL 

Transfer of Control 

:GOTO(NAMEl 
:CAL.L.(NAMEl 
:RETURN 

L.ooicai Test 

:IF(A.L.T.BlSI 

=IF(A.GT.BlSI 
:IF(A.EQ.BlSI 

NAME GENERATION 

A:SYMBOLGEN 

COMMAND 

:EXECUTE(NAME I,NAME2 ... l 
: APPEND( NAME, ... l 
:DEL.ETE 

Figure 2 

MICRO DEFINITIONAL 

A:XSET(Bl 
A:YSET(B) 
A:CSET( Bl 

Defined Classes 

1- POINT 

2- L.INE 
3- DISPL.AYGROUP 
4-PROGRAM 
5-GENERATED SYMBOL. 

S-GENERATED SYMBOL. 
7-CONSTANT 
10-TEXT 

II-PUSHDOWN 

400- BL.lNKED STRUCTURE 

1000- REL.ATlVE, STRUCTURE 

2000- UNINTENSIFIED STRUCTURE 
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SPECIAL VARIABLES 

SYMBOL 

<PB:N) 

<XCPT:A) 
<YCPT:A) 
<CL.CPT) 

<OCTAL:NAME) I 
<DECIMAL:NAME) 
<TEXT:NAME> 

<CR) 

<READ:TEXT) 1 
<READ: OCTAL.> 
<READ: DECIMAL.) 

VALUE 

{ -0 if push button N off 

1 • I if push button N on 

X,Y,and CL.ASS components of 
a structure. X and Yare defined 
for points only 

Used in TEXT instructions to 

encode computed variables into 
text strinos 

j In tut strino, positions beam to 
t beoinnino of new line 

Reads in from console Teletype, 
the appropriate value 

Figure 6 
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the PDP-8 computer via a dataset inter
face, Serial Line Multiplexor, and a 
Serial Line Interface. 

2. It performs message buffering and 10'· 
cal editing. 

3. It transmits messages to and receives 
messages from the PDP-9 via either an 
Interprocessor Buffer or a high-speed Data 
Communications Interface. 

4. It handles the remote (dial-up) termin
al line discipline, answering and hanging 
up the phone checking for disconnected 
lines, etc. 

5. It handles program and har~ware fault 
detection and recovery. 

The low-speed data line interface pro~ram 
may accommodate mixed speed lines with 
varied character lengths and start-stop 
configurations. Message buffering is 
handled on a "line" basis, where a line 
may consist of a fixed number of characters, 
or a v~riab1e number of characters, not ex
ceeding some arbitrary number, terminated 
by a carriage return or other meta char
acter. 

Local editing of the incoming text con
sists of handling character delete and 
line delete functions and trapping con·· 
tinuous BREAK characters. 

Remote terminal line discipline includes 
the detection of incoming calls) the as
signment of data channels to varied in
coming customers, the monitoring of the 
data line condition) and the orderly 
termination of calls and initialization 
of channels for reuse by the next cus·' 
tomer. 

Faalt detection and recovery procedures 
include examination of the data lines for 
faults and initiation of program reload 
in th~ case of catastrophic program 
failure. 

~~TA COMMUNICATIONS SYSTEM DESIGN 

CONSIDERATIONS 

Some of the considerations which affect 
the design of the DCS program include: 

1. A high instantaneous memory load, 
which may reach 97% of the available 
memory time for short periods. 

2. A high interrupt rate due to the de
sign of the serial line multiplex unit, 
with its attendant short interrupt cycle. 

3. A large number of incoming lines, 
requiring the service of several lines 
at each interrupt. 

4. A "hidden" asynchronous memory load 
applied by the Interprocessor Buffer, 
which operates on the 3-cycle data break. 

A simplified algorithm for calculating the 
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average memory load is shown as Figure 3. 
This algorithm calculates the memory load 
which must be sustained in order not to 
lose incoming data. It does not show the 
load necessary to do the local editing, 
line buffering, and other housekeeping 
tasks. 

680 DCS LIMITATIONS 

There are a number of fairly serious limi
tations inherent in the use of the 680 DCS 
as a line multiplexor. 
tations are: 

Some of these limi-

1. A limited addressing capability, in
cluding the lack of an index register. 

2. A small instruction repertoire. 

These limitations are inherent in computers 
with short word lengths, and the PDP-8 de
sign is perhaps the best possible compro
mise in the use of the available bits be
tween add~essing capability and instruction 
repertoire. 

SOFTWARE APPROACH (Fig. 4) 

The FASBAC 680 DCS program attempts to meet 
the functional requirement~ for a multi
line interface by a combination of hardware 
and software techniques. The 680 DCS pro
gram is organized on a multi-priority basis 
with six modules, each of which ig entered 
in order of its priority, and is not exited 
until it has nothing further to do. These 
six modules are programmed in two groups. 

The first group operates with the program 
interrupt system disabled in what we will 
call "Real Time", and is entered upon the 
occurrence of any hardware interrupt. 
There are two modules in this group, the 
Line Service module, and the Other Inter
rupt Service module. 

The Line Service module checks the flags 
set by the various clocks in the Serial 
Line Multiplex unit. If any of these flags 
are set, the appropriate lines are sampled 
for input data, complete input characters 
are collected and put in an input character 
queue, and waiting output data is trans
mitted. The exit from this module is back 
to the beginning of the module~ and this 
process is repaated until no further clock 
flags are found. 

The Other Interrupt Service module is then 
entered to test for the occurrence of in
terrupts from such devices as the Interpro
cessor Buffer, console teletype keyboard/ 
printer, etc. Any such interrupts are 
serviced by resetting the flag, saving any 
volatile data and making an entry in a 
table of subroutine calls (which is 
normally filled with NOP's). Exit from the 
Other Interrupt Service module is made to 
the location at which the original inter
rupt occurred. 

The second group of modules operates with 
the interrupt system enabled in what we 



will call "Spare Time". 

There are four such modules. The highest 
priority is given to the message buffering 
of incoming characters queued by the real 
time line service module) and to the 
furnishing of output characters to this 
module. Second priority goes to the exe
cution of tasks set up by the real time 
Other Interrupt Service module. Any such 
tasks, when they are entered, erase them
selves from the table of subroutine calls 
and, when they are completed, exit to the 
highest priority spare time module. 

After all spare time character input-output 
service and spare time interrupt service 
is completed, the third spare time module 
is entered. This module is a table of 
lower priority tasks set up by other, 
higher priority tasks. When completed, 
these tasks also exit to the spare time 
character I/O service module. If no spare 
time tasks are waiting, a diagnostic and 
fault locating procedure is initiated. 

This modular approach increases program 
running time and memory space requirements, 
because of the many necessary queues and 
pointers. However, it does accomplish 
the objective of avoiding instantaneous 
overloads in the memory load of the pro
cessor (load leveling). 

JHE HARDWARE APPROACH 

The standard D.E.C. furnished hardware 
configuration has been modified by us, 
or to our specification, in several re
spects to meet some of the special re
quirements of the FASBAC system. These 
modifications are in the areas of: 

1. automatic failure recovery 

2. dataset control 

3. additional machine status displays, 
and 

4. the addition of an index register. 

The program failure recovery subsystem 
senses program halts or their logical 
equivalent and automatically loads a wired 
bootstrap program into PDP-8 memory. This 
bootstrap program then reloads the main 
program and sets it running. 

The dataset control subsystem senses and 
controls the condition of Bell System 103 
Series datasets, or equivalent. It senses 
the Ring and Carrier Status leads from the 
dataset, and controls the Data Terminal 
Ready and Request to Send leads to the 
dataset. 

Indexing (Fig. 5) in the PDP-8 is accom
plished by cheating, since all of the 12 
bits in the PDP-8 word are already used. 
It is not possible to specify explicitly 
indexing on memory reference instructions. 
Our approach is to use implied indexing. 
The register used for the index is the 
line select register, which is part of 
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the 685 Serial Line Multiplexor. This 
7-bit register is inclusively-ORed with 
memory address bits 5-11 if certain other 
logical conditions are present. These 
conditions are that the index register is 
enabled, not inhibited, and that the DEFER 
cycle is in progress. The limitations of 
this techn~q~e are obvious, but it is 
quite adequate for the addressing of the 
many tables found in a communications 
multiplexor, and quite essential for the 
successful operation of this one. 

A gate to turn the register on and off is 
required, since not all indirect memory 
referenc~s need to be indexed, and the 
inhibit function is necessary in order to 
restore the state of the index register 
on/off switch when exiting the interrupt 
handler. Suitable instructions are pro
vided to operate these functions. 

The machine status display additions con
sist of bringing the 7 bits of the index 
register, the two bits of the 689 ADF 
group counter, the 689 ADF enable flip 
flop, and the index register on/off flip 
flop to the lamp positions normally used 
for the MQ display. 

SOME OBSERVATIONS 

It won't be possible to.make a detailed 
functional critique of the system in 
a few paragraphs, or even ina book. 
However, we would like to pass on some of 
our more important conclusions concerning 

.the use of this equipment and these pro
gramming techniques for the low speed 
line multiplexing functions. 

The first is that the development effort 
put into the improvement of the PDP-8 ad
dressing capabi1~ty, by the addition of 
the indexing facility, has been highly 
rewarded. The program is much shorter 
than it would be otherw~se, with a con
comitant reduction in the number of in
structions executed. 

The second conclusion is that, for a pro
gram as large as the FASBAC 680 DCS EXECU
TIVE, a PDP-8 Assembler running on a 
larger, faster machine is worth many times 
its cost, by reducing turnaround time and 
frustration. We developed such a PDP-8 
Assembler, running on the UNIVAC 1108, and 
we have found it extremely helpful. This 
assembler is available as a proprietary 
program from University Computing Company. 
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A REAL-TIME MULTIPLE TASK EXECUTIVE PROGRAM WITH A BUILT-IN 
CONSOLE UTILITY PACKAGE FOR PDP-8/s AND PDP-8 COMPUTERS1 

C. D. Martin, Jr. R. L. Simpson 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37830 

ABSTRACT 

An executive routine was developed for the PDP-8/S and PDP-8 
computers. This routine schedules process control tasks in 
real-time and establishes operating priorities. The program 
(including the utility package) occupies about one-third of 
a 4096-word memory block and accommodates eight major control 
tasks. The only hardware addition to the standard computer 
configuration required by the executive is a real-time interrupt. 

INTRODUCTION 

If a digital computer is to be used effectively for 
process control, a means must be provided for sched
uling various programs that the computer is to 
execute and for assigning an operational priority to 
each program. As an exam~le of the diversity of the 
programs, the program having the highest priority in 
a system might be one for scanning the analog inputs 
to the computer, digitizing them, checking them 
against prestored limits, initiating the printout of 
messages alerting operators that signals are out of 
limits, and storing the digitized values in locations 
accessible to other programs. The program having the 
next highest priority might be a control algorithm 
for examining the digitized analog signals, comparing 
them against desired values, and initiating a control 
output to minimize the difference. These might be 
followed by other programs such as one for printing 
periodic logs and one for writing the digitized data 
on magnetic tape for further processing by a larger 
computer. 

Scheduling the execution of the programs, maintain
ing priorities, and coordinating the use of input
output equipment by several programs are accom
plished by a program called a real-time executive. 
Various actions within the system are triggered by 
hardware interrupts from input-output equipment and 
from a real-time clock. A real-time clock gives the 
time of day while an internal computer clock syn
chronizes the computer operations. 

MEMORY REQ;uIREMENTS AliJD SYSTEM OVERHE:A.D 

The real-time executive was developed for the PDP-8 
and 8/s computers to schedule the execution of eight 
different computer programs, or tasks, at desired 
time intervals. Input-output functions are co
ordinated so as to eliminate conflicts between tasks. 
The system can be expanded to accommodate more tasks. 
An initial limit of eight tasks was selected, 
because the computer used for developing the system 
had a memory of only 4K words (see memory map, Fig. 
1). The executive system now requires about 57~0 
or 11008 words of memory, and the on-line--off-line 
utility package occupies about 64010 or 12008 words 
of memory, leaving the remainder of the memory for 
system tasks. 

1Research sponsored by the U.S. Atomic Energy 
Commission under contract with the Union Carbide 
Corporation. 
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The system operates in response to a 60-hertz inter
rupt in the PDP-8 computer and a 10-hertz interrupt 
in the PDP-8/s computer. System overhead for the 
PDP-8/S computer is about 8%, leaving 92% of the 
available time for task execution. The overhead for 
the PDP-8 computer is about 3%. 

REAL-TIME SCHEDULING 

Real time is maintained in the system in two memory 
words, the cycles counter and the minute counter. 
In response to a clock interrupt, the cycles counter, 
which is set initially with the negative number of 
cycles per minute, is incremented by one count. 
When the count becomes zero, the minute counter, 
which is set initially with the negative number of 
minutes in a day, is incremented. By use of these 
counters the time of day can be calculated for log 
purposes. Every minute, iv-hen the cycles counter be
comes zero, the counter is initialized with the 
negative number of cycles in a minute. At midnight, 
when the minute counter becomes zero, the minute 
counter is reset with the negative number of minutes 
in a day. 

Several tables are used for internal control and 
status indication of the system. In every table 
each entry corresponds to a given task. The tasks 
are numbered 0 to 7 in decreasing order of priority; 
that is, task number 0 has the highest priority, and 
task number 7 has the lowest priority. All tables 
are arranged in this manner to make it easier to 
index all tables with a single pointer, which is 
called the task count. The task count can be added 
to the starting address of any table to form the 
address of the table entry for the particular task. 
If no task is being executed the task count is 108 . 
The tables are as follows: 

1. The status table indicates the status of 
a task at a particular time. 

2. The location table contains the entry 
point of each task. 

3. The period table contains the negative 
number of minutes between consecutive 
executions of a task. 

4. The offset table controls executions of 
tasks to optimize scheduling. 



5. The cycles and minutes rundown tables 
are counters for the time between 
executions of tasks. 

6. The printer queue table contains the 
address of the first ASCII character 
to be printed for each task. 

7. The floating-paint-package queue table 
is used to store the return address to 
the task after the floating point pack
age has been used. 

STATUS TABLE 

The information bits in each word of the status 
table 

1. 

2. 

3· 

4. 

are as follows: 

If bit 0 is a 1, the task has been 
actuated for execution. 

If bit 1 is a 1, the task is waiting 
for the completion of an input-output 
function. 

If bit 2 is a 1, the task has been 
interrupted. 

If bit 3 is a 1, the task is waiting 
for the floating-point packa~e. 

5. If bits 4 through 11 are all a zero, 
the task is not scheduled to be actuated 
by the clock. 

If a task is to be scheduled by the clock, at least 
one of these bits must be set at a 1. 

A task can be actuated for immediate execution by 
setting bit 0 to a 1 by the keyboard utility pack
age or by another task~ The execution of a task 
is begun or the execution of a previously inter
rupted task is resumed as a result of a scan of the 
status table which is scanned after every clock, 
keyboard, and printer interrupt, and after com
pletion of a task. The scan is always started with 
the entry corresponding to the highest priority 
task (task 0). The first task found whose bit 0 is 
a 1 and whose bit 2 is a zero is executed from the 
address in the location table. Bit 2 will always 
be a 1 if either bit 1 or bit 3 is a 1, but not 
vice versa; that is, a task waiting for the com
pletion of an input-output function or the floating
point package must have been interrupted. If bit 2 
is a 1 and bit 3 is a zero, the registers are re
stored and execution is resumed from the interrupted 
address. If bit 3 is a 1 (waiting for the floating
point package), the floating-paint-package busy 
flag is checked; if the package is busy, the task 
count is incremented and the next task is checked. 
If not busy, the busy flag is set, the registers 
are restored, and execution is resumed from the 
interrupted address. 

OFFSET, MINUTES RUNDOWN, AND CYCLES RUNDOWN TABLES 

The offset table indicates the period in negative 
number of cycles for a task having a period less 
than 1 min. 

Every entry in the cycles rundown table is incre
mented every clock cycle to keep the next execution 
time current with the clock. When an entry in this 
table becomes zero, the corresponding entry for the 
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same task in the minutes rundown table is incremented. 
If the corresponding entry too becomes zero, the task 
is actuated (bit 0 in the status table is set), and 
the minutes rundown table is reset from the corres
ponding entry in the period table. The entry in the 
cycles rundown table is reset to the corresponding 
entry in the offset table if the period for that 
task is less than 1 min, otherwise the entry in the 
cycles rundown table is set to the negative number 
of cycles per minute. 

PRINTER CONTROL 

The printer queue table has an entry for each task. 
The pointer to the task that is using the printer is 
called the printer busy flag, and it is loaded with 
the task nlliliber. w~ilen a task calls for a printer 
output, the location of the first ASCII character to 
be printed is stored in the printer queue table 
entry for that task. Once the output for that task 
is started, the address is incremented every time a 
character is printed, and the contents of the incre
mented address are examined for a negative number. 
When a negative number is found, the entry in the 
table is zeroed, bit 1 in the status word for that 
task is cleared, and the table is scanned for a non
zero entry to start another output on the printer. 
If no requests are in the printer queue table, the 
printer busy flag equals 109 • 

INTERRUPT HANDLER 

The following list describes the interrupts that the 
real-time executive is set up to handle (Fig. 2): 

1. Low power--The response to this interrupt is 
to store the contents of the accumulator, 
of the link, and of the program counter 
(return address), to store a "jump to a 
restart routine" instruction in cell zero, 
and to halt to wait for the power to be 
restored. When power is restored, the 
computer is automatically started at cell 
zero. The "jump to a restart routine" in
struction is executed, and the restart 
routine restores the contents of the accu
mulator and the link, and jumps to the next 
instruction in the program that had been 
interrupted. 

2. Clock--The response to this interrupt updates 
the time-of-day clock (cycles and minutes 
counters), checks for zero in the minutes 
counter (indicates midnight), and increments 
the cycles rundown entry in each task. Since 
this incrementing could result in the actu
ation of a higher priority task (having a 
higher priority than the task interrupted by 
the clock), the contents of the registers for 
the interrupted task are saved and are re
stored before execution of the interrupted 
task is resumed. 

3. Keyboard--This interrupt occurs when there is 
a character in the teletype output buffer 
awaiting transfer to the accumulator. This 
character is checked to determine if it is an 
"Alt ModI! (alternate mode) character. If it 
is, the utility package is actuated for im
mediate execution. If it is not, the char
acter is stored, and the "input-output in 
progress" bit in the status word for the 
utility package is cleared so that execution 
Qf the task will be resumed after the status 



table has been scanned and no task is found 
for execution that has a higher priority. 

4. Printer--This interrupt occurs when the 
printer has typed a character and is ready to 
type another. The response procedure was ex
plained in the description of the printer 
queue table. 

5. Parity--Only the PDP-8/S computer is equipped 
with this interrupt as a standard hardware 
feature. Since the result of any parity error 
will soon become evident, the parity errors 
are counted by incrementing a parity counter 
and an attempt is made to resume execution of 
the interrupted task. 

The analog-to-digital converter (ADC) interrupt was 
removed from the interrupt buss on the PDP-8/S com
puter. All analog-to-digital conversion is done in 
a task, because a check for an ADC flag requires 38 
~sec, but conversion (using the AD8S) requires only 
20 ~sec. Also, since contents of the registers are 
saved after every interrupt, the PDP-8/S computer re
quires more than 1180 ~sec and the PDP-8 computer 
requires more than 75 ~sec to save registers. Thus 
the removal of the ADC interrupt results in a signi
ficant time saving. 

. REGISTER SAVE 

To maintain continuity during execution of a task, 
the contents of eight "registers" are saved when 
execution of a task is interrupted, because it might 
happen that a task with a higher priority than the 
one in execution will be actuated. When execution 
of the interrupted task is resumed, the task must 
first be restored to its previous state. The regis
ters saved are the AC, the link, the return address 
in the interrupted task, and core memory locations 
0016, 0017, 0020, 0021. 

GENERAL CONSIDERATIONS 

When a task is completed, the task return to the 
executive must be through a task ~omuletion routine 
which clears bits 0 through 3 in the status word for 
that task and then scans the status table for another 
task awaiting execution or waits for an interrupt. 

All input-output operations must be scheduled by the 
executive program. When scheduled, all messages are 
output intact; that is, once a character string is 
started, all of that string will be printed before 
another character string will be started. All key
board input is processed through the utility pack
age. 

The floating-point package was changed so that it 
could be used by a task through the real-time 
executive. 

CONSOLE UTILITY PACKAGE 

BY use of the console utility package the operator 
or programmer can communicate with the computer 
either on-line or off-line; that is, he can type a 
mnemonic code which will set up the following oper
ation: store into the memory from the keyboard, 
read and punch binary paper tape, obtain an octal 
dump, actuate a program to be executed only once 
("one shot"), clear defined parts of the memory, set 
defined parts of memory to a specific bit config
uration, and disable the keyboard. Before any 
instructions or information can be stored in the 
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memory from the keyboard or paper tape, the limits 
of the storage must have been specified. This pre
vents arbitrary storage and destruction of any 
program outside the "legal" limits. 

The utility program checks all characters typed from 
the keyboard to determine that the characters are 
the proper type (alphabetic or numeric) for their 
position in the instruction. If they are not, the 
teletype bell will ring, and the character will not 
be accepted. For example, letters are accepted only 
as the first two characters, then a comma, and then 
only octal numbers. Usually, the utility package is 
run as the task of highest priority, but it can also 
run at any other priority level. 

The console utility package functions with their 
mnemonic commands are given in the following list: 

AR ,:xxxx , IT'[':{ 

CL,XXXX,YYIY 

GO,XXXX 

MW ,:xxxx, YYYY , 
ZZZZ 

PT,:xxxx,YYYY 

RT,:XXXX 

TI,XXXX,YYYY 

TO,XXXX,YYYY 

FI 

Defines the first and last 
addresses of the legal core 
storage area. 

Clear to zero from XXXX to yyyy. 

Go to :xxxx and execute as lowest 
priority (one shot) task. 

Sets ZZZZ into the core from 
XXXX to YYIY . 

Punches binary tape of core from 
:xxxx to YYYY (inhibits all 
other teletype message outputs 
from tasks). 

Reads binary tape; location can 
be offset by XXXXs words 
(integer number of pages). 

Store into location XXXX the 
the contents yyyy. 

Type out the contents ofXXXX 
through yyyy. 

Disables the keyboard input to 
all characters except "ALT 
MOD" and makes all core 
locations illegal. 
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FOCAL* 

Rick Merrill 
Digital Equipment Corporation 

Maynard, Massachusetts 

Abstract 

A new small computer language called FOCAL has been designed and 
written at DEC to be used in Formu lating On-Line Ca leu lations in 
Algebraic Language. This paPer is a discussion of how size (3K), power 
04 functio~s), and flexibility (several options) were achieved in 
designing an easy-to-use language and in programming it for the PDP-8 
fam i Iy of computers. 

*This paper was not received for publication. 
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A PDP-6 LANGUAGE FOR SIMUIATING COMPLICATED BIOCHEMICAL SYSTEMS 

Johnson Research Foundation 
Department of Biophysics and Physical Biochemistry 

University of Pennsylvania 
Philadelphia, Pennsylvania 19104 

ABSTRACT 

A language for simulating biochemical systems composed of com
plex sets of chemical reactions is described. This is written 
in FORTRAN IV; a machine-independent version of it has been pre-

. pared, but is appreciably more powerful when set up for on-line 
interaction, which is presently done with a PDP 6 including card 
reader, printer, and scope display. The input is in the form of 
chemical reactions and associated numbers, on cards; output in 
tabular and graphical form. The principal mathematical operation 
is the solution of differential equations representing the time 
behavior of the chemical concentrations, but alternative mathe
matical treatments are being added. A number of applications of 
this language will be described. 

For about ten years the author and his associ
ates have been engaged in simulation of complex chem
ical systems. l ,2 The mathematical operation involved. 
is primarily the solution of differential equations 
by numerical methods, but the actual input language 
is that of chemistry. Digital computer programs have 
been developed to convert chemical reactions into 
differential equations, solve them by numerical 
methods, and edit the results into tabular or gra};hic 
form. 

This type of work is commonly done with analog 
computers, which are particularly well adapted to 
solve differential equations. Why then bother with 
a digital computer, in particular with a digital the 
size ofa PDP-6? There are two principal reasons 
for this: the number of differential equations to 
be considered, and their behavior. 

To represent a biochemical system of any com
plexity it is usually necessary to solve at least 
dozens of differential equations, and somet~mes even 
hundreds. Furthermore, these differential equations 
are often quite non-linear, and as a result are 
beyond the capabilities of any but the largest a~ 
computers. 

The coefficients which are required to make 
these differential equations represent biochemical 
reality, (especially if real enzymes are involved), 
are such as to make the equations very badly be
haved. Sometimes it is impossible to scale these 
numbers into an ordinary analog computer. When they 
are used in differential equations on a digital 
solved numerically computer it requires tens of 
thousands of integration steps to reproduce a smooth 
curve that superficially looks as if it might reason
ably require a few hundred. Hence the need for a 
large and fast digital computer. Specialized analog 
computers have been or are being built which may 
help with this problem, but they are not generally 
available. Hybrid computers might be useful here. 

A series of programs have been prepared, being 
revised from computer to computer, to meet this nee1 
These have accepted as input some form of chemical 
reaction accompanied by initial conditions, and have 
produced output in the form of graphs of the dif
ferential equation solutions against time, and/or 
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tabulations of results (usually of the state of the 
simulated system at any time). Such programs also 
have the capability of acting as differential eqIBtion 
compilers. They have sometimes been accompanied by 
auziliary routines, which have been able to do thi~ 
as complicated as conducting pattern recognition 
studies on the results of a systematic single enzyme 
simulation. The general format for all of these is 
that a generator program accepts the chemical 
equations and produces a routine to solve the cor
responding differential equations; this routine then 
starts from input initial conditions, and solves the 
equations to yield graphical and tabular output. 

The fundamental algorithm for converting chem
ical reactions to differential equations is as 
follows: Multiply together the concentrations of 
all the chemicals mentioned on the operative (usuaDW 
left) side of a reaction, times the appropriate rate 
constant; and for each substance appearing or dis
appearing in the reaction, these products (called 
fluxes) are summed, with proper Sign, to yield the 
time derivative of the concentration of that sub
stance For the reaction A + B = C + D (the equals 
sign indicates reverSibility) there are the fluxes: 

Kl (A )(B) = flux 1 

K2(C)(D) = flux 2, and 

dA = flux 2 _ flux 1. 
dt 

Two types of modification to this algorithm are 
provided. It is possible that in a reaction more 
than one molecule of a given substance may appear or 
be consumed. In this case it is necessary that the 
flux for that reaction be multiplied by an appropri
ate coefficient (called stoichiometry) when being 
summed into the differential equation. Sometimes it 
happens that a substance (such as a catalyst) can 
help control the rate of a chemical reaction without 
appearing or disappearing in it at all; here it is 
necessary to have the concentration of such a sub
stance multiplied into the flUX, which is not in
cluded in the sum for the derivative of that sub
stance. 



Once the differential equations (invariably 
with respect to time) have been compiled and are 
ready for solution, their initial conditions are 
inputted and the equations themselves are then eolved 
with the simplest possible method, the first-order 
Euler method. This choice of differential equation 
solving method may sound strange, as higher order 
methods usually work better. However, with the 
particular numbers to be found in realistic chemical 
or biochemical systems, first-order methods seem to 
perform better then higher-order methods. This is 
not dependent on things like roundoff error; indee~ 
it has been observed in calculations with desk cal
culators as well as with computers of widely differ
ing wqrd-length, used by a variety of people. 
Usually a great accuracy is not required of the dif
ferential equation solver; few biochemical systems 
can be measured with an accuracy or oe~~er then one 
per cent, and often the error is much greater. 

The newest version of this language has just 
been implemented on the PDP-6. Actually it is a 
specialized and more powerful version of a language 
which is as machine independent as possible and is 
described in detail elsewhere3 . This language is 
written in FORTRAN IV, and is as consistent as 
possible with the requirements of the FORTRAN IV 
compilers of most large computers. The only respaX 
in which it is not fully machine independent is that 
machines with short word lengths (32 bits) require 
the arithmetic to be done in double precision; the 
36-bit word of the PDP-6 appears to be long enough 
to permit single precision operation. 

In effect this constitutes a two-pass compiler: 
in the first pass chemical reactions are converted 
to differential equations, written in FORTRAN: in 
the second pass these are compiled by the FORTRAN 
compiler, along with some subroutines whose dimen
sioning is dependent on the size of the system 
being studied. These are then loaded together with 
a subroutine library to produce an operating progran, 
which is commonly used fairly often before requiring 
revision. This language is intended primarily for 
batch processing machines, and iE completely card 
and printer oriented. It is possible to add user 
supplied subroutines at a number of pOints to per
form services that the language in general is not 
explicitly intended for; thus far these appear to 
have been ,very much on an individual prob1em-de
pendeqt basis. This program set up for a simple 
test system occupies 17k of core on the PDP-6, 
requires one DEC tape for the program itself, and 
the equivalents of card reader input and printer 
output. 

Running simulation in a batch mode, however, is 
not the most efficient way of dOing simulation. 
In fact the principal reason why our facility has a 
PDP-6 is to permit easy interaction between a user 
and the machine. Accordingly a PDP-6 specific 
version of this computer-independent program has 
bp.en prepared, which permits much greater flexibil
ity in user interaction. It will accept the same 
input as the computer-independent version, and per
form the same calculations, but the user interac~ 
is quite different. This version, in addition to 
the usual teletype and DEC tape, requires 25k of 
core, the scope, and the equivalents of card reader 
and line printer. 

To make this PDP-6 version a variety of graphi
cal output and teletype subroutines have been added 
to the machine-independent language; more may be 
added later. It is expected that the primary in-
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put will still be on cards, but the user has the 
ability to change or add input from his teletype, 
when the machine is running in time-sharing mode, 
and to see the partial results as they are calcula~ 
either on teletype, on the printer, or on the scope 
display. The user may in particular start from a 
given situation and modify it as partial results are 
obtained. 

The principal graphic output (when graphic out
put is desired) with the PDP-6 is a graphical dis
play scope as exemplified in Figure 1. This is 
relatively expensive in terms of core storage (8K), 
but not in terms of computer time. Substantially 
the same display normally appears on the printer or 
a printer substitute (usually "fcrthe permanent re
cord"), and may also be put out on the plotter. 
While one can it necessary follow a simular picture 
on the printer as it is produced, this is definitely 
inferior, both because there is less resolution and 
because the most recent part of the picture is still 
hidden by the printer ribbon. The scope can show 
up to 8 curves of concentration against time simul
taneously, the curves being identified by their line 
quality (which does not show up well in the photo
graph, Figure 1) and specified by cards in the ini~ 
condition input. A mechanism is provided whereby 
the user may delete curves that are not currently 
useful to him, before or during a calculation. 
Graphical output may also be stored on a scratch 
tape for further processing. 

Availability of a teletype on-line, especially 
in conjunction with graphical output permits the 
user to do the following things: 

(1) Specify when he wants a printout of the 
state of the system being simulated (the current 
rate constants, fluxes, and concentrations and the 
derivatives and second derivatives of the latter). 
This is put out on the printer. 

(2) Specify when he wants a subset (designated 
by card input) of the above, which may go out either 
on the printer or the teletype. 

(3) Repeat this calculation, with initial 
condition changes specified by teletype. 

(4) Go on to the next calculation specified 
on cards, with or without initial condition changes 
from teletype before starting. 

(5) Make changes in the computation in pro
gress and then continue. This includes changing 
concentrations, rate constants, etc., and also 
changing the permissible length of the calculation, 
the maximum and minimum integration step Sizes, etc. 

(6) A ny reasonable combinat ion of the above, 
as well as stopping all computations. This com
bination of capabilities permits the user to specify 
a set of models on cards, work with each of these 
(modifying it) until he is satisfied with it, and 
then go on to the next. 

It is hoped to extend the convenience features 
so that this will be nearly as conven;,ent to use 
as an analog computer. As a possible alternative 
input arrangement, we have added a series of 
potentiometers to our scope display (Figure 2). 
When all the appropriate software is written, it 
will be possible to use these as inJut devices to 
this program, probably by having each potentiometer 
be a multiplying factor for some number initially 



specified to the routine with cards. 

In the simplest possible application this could 
replace a teletype input at the beginning of a cal
culation, (and probably does not offer much advan~ 
over it). However, it is sometimes necessary to 
continuously vary an input throughout a calculation. 
Thus far this has been done mostly to simulate the 
effect of some of a model's environment which can
not be readily modeled by the set of differential 
equations which the computer is working. An example 
is shown in Figure 3, which is part of an ongoing 
study on an oscillating glycolytic system. This 
shows an enzyme velocity prof~le as a function of 
time, which might be imputted in this way. Here 
the user can by suitably twiddling the potentiometem, 
evolve such a curve by setting the correct momentary 
value needed to make things come out right and 
having the computer keep track of what he has been 
inputting. If necessary one may go part-way back 
through the calculation (there is provision to save 
designated states of the system and start from th~) 
and repeat this input operation with slightly dif
ferent potentiometer settings to get a fit. This 
operation would seem to involve sufficient pattern 
recognition so that it is more easily done, at least 
in the early stages, by a man looking at a scope 
than by any automatic optimization routine. 

Some flexibility is specifically built into the 
program to compensate for the differences in behaVokr 
between the card reader and a DECtape assigned as a 
card reader. Mechanisms are provided to in effect 
tell the program about its environment, which the 
monitor will not do for it. The card reader par
ticularly differs from a DEC tape in the way it is 
buffered, and if one is to read part way through a 
deck of cards, do some computation and then read 
more, different arrangements are necessary in the 
two cases. 

It is possible that this language may be ex
tended in a higher-level direction, so as to make 
the individual calculations part of automatic 
optimization techniques, for example, or even to 
have processes that may be described as artificial 
intelligence. An example is in trying to fit a 
given experimental curve by a given simulated 
mechanism; the computer may find the best fit, de
cide that it is not adequate and that it deviates 
in a certain way (e.g., by having the computed 
curve be too low at the longer time intervals) and 
then revise the mechanism so as to adjust for this 
and go back and fit it over again. It is unlikely 
that this can be made completely independent of 
human intervention in the near future, but such a 
process probably will be more efficient if the com
puter and the human are cooperating than if either 
is doing it alone. 

The input fo~t and some of the aspects of 
machine independence are the result of the experUnce 
of a number of people, and the contribution of 
Dr. E. M. Chance II to both of these should be par
ticularly acknowledged. This work was supported by 
grant FR-15 from the National Institutes of Health. 
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Figure 1 Photograph taken from the 340 Scope Display showing concentrations 
as a function of time. The lines are distinguishable by their detailed 
fine structure, which is difficult to photograph. 
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Figure 2 Potentiometers mounted on the scope display unit. 
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Figure 3 A profile of enzymatic activity as a function of time (phosphofructokinase 
in an oscillating glycolytic system), as an example of a type of input 
which may be inserted with the scope potentiometers. 
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A GENERAL LANGUAGE FOR ON-LINE CONTROL OF PSYCHOLOGICAL EXPERIMENTATION 

J. R. Millenson 
Dept. of Psychology, University of Reading 

Reading, England 

.ABSTRACT 

A problem-oriented language is being developed for on-line process 
control of psychological experimentation. The language consists of 
nested blocks of simple English statements familiar to every exper
imental psychologist. The function of this language is to produce an 
Automated Contingency Translator (ACT) which samples and updates a num
b~r of independent time=shared experimental environments 60 times a sec. 
Experimental procedures are mapped by the ACT compiler from the English 
statements into a probabilistic finite state network in list structure 
format. An independent operating system (which in the PDP 8, 4K ver
sion overwrites the compiler) then executes the list structure automata: 
that is, runs the experiments, records and retreives data and admits 
low priority background programs in any available dead time. 

Psychologists have made extensive use of com
puters for data reduction and for simulation 
studies of behavioral processes. They have 
been, with some notable exceptionsl ,4,15,17 
somewhat more diffident in applying computers 
directly to a third major class of problems, 
namely the laboratory control of their exp
eriments. With the appearance of the small, 
fast, accessible, and relatively inexpensive 
general purpose machines this reluctance on 
the part of psychologists can no longer be 
principally ascribed either to economical or 
instrumentation difficulties. 

If we look closely at the situation we dis
cover that for problems such as statistical 
analysis and data reduction, flexible routines 
and sub-programs for building a variety of 
special programs have been standardized in 
the algebraic-like languages of FORTRAN and 
ALGOL. Similarly in the fields of artificial 
intelligence and simulation of human problem 
solving by heuristic methods, well established 
special purpose interpreters such as IPL-V, 
LISP, and COMIT provide the investigator with 
a convenient language to formulate and man
ipulate his problems. In the field of labor
atory control, however, the absence of any such 
general problem-oriented l anguages 5 is con
spicuous. Psychologists who wish to use the 
small computer to program experiments are gen
erally obliged to learn a complex and unfamiliar 
code to communicate with their machine. Many 
are deterred by this language barrier;even for 
those who surmount it, the low-level machine or 
assembly languages that they have had to learn 
prove a poor vehicle for easy expression and 
creative exploration of new procedures. There 
have been attempts4 to use existing problem
oriented languages to do the job. But these 
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problem oriented languages are oriented for the 
wrong problem, and thus whileFORTRAN, for in
stance, makes algebraic formula translation and 
manipulation a routine exercise, it provides far 
less obviously a natural language for the logical 
structure of process control applications. 

The key to a natural language for psychological 
procedures is an adequate theory of those procedures. 
While there have been a few attempts in the past to 
formulate the independent procedural variables of 
psychology into a unified framework8 ,9,14 these 
attempts have contained important restrictions and 
indeterminancies which limit their general app
lication to all procedures of the field. Recently, 
however, A. G. Snapper and his associates6,16 
employed the concepts of cybernetic machine theory2 
to demonstrate what amounts to a proof that all 
behavioral procedures can be formulated as finite 
state automata. They exploited this discovery to 
write a very general program for the PDP 8 computer 
to process control in real time a variety of animal 
conditioning procedures associated with schedules 
of reward and punishment. 

Neither Snapper's group, nor Marlowe7, who also 
seems to have seen the implications of finite state 
automata theory for a general problem-oriented 
psychological process-control language, went so 
far as to evolve a general language for framing the 
procedures of psychology. Marlowe explicitly noted 
the practical difficulties in developing such a 
language and speculated as to whether "the effort 
required ••• might offset a:n::r gain made by using such 
a programming language" (p. 10). There is reason to 
believe that this conclusion was overcautious. In 
what follows, the aims and lexical-grammatical prop
erties of a compiler written for the Digital Equip
ment Corporation PDP 8 family, purporting to estab
lish such a language, are described. 

General Aims 

From the outset it appeared that five major 



conditions would have to be satisfied by the lan
guage. Firstly, the language was to be a perfect
ly general problem-oriented one, oriented to the 
particular problems arising in on-line process 
control of behavioral experiments. It must be 
able, without any ad hoc additions to its basic 
form,to describe, and therefore given the support 
hardware, carry out the procedures of nearly all 
experiments ever done in experimental psychology. 
Only in that case could the kind of generality that 
would permit the investigator to use the language 
as a conceptual model or vehicle for creating 
his procedures of the future be assured. The util
ity of these new procedures, far more than its 
ability to simulate the procedures of the past is 
likely to constitute the ultimate justification 
of the language. It was thus apparent that the 
language should provide no special constraints for 
any one area of psychology, even though at present 
certain areas (for example, automation of condition
ing techniques, recording of neuro-electrical 
phenomena) might be more obviously computer oriented 
than others. 

A correlary to this first condition was that since 
the language was to provide a variety of inves
tigators with differing backgrounds and theor
etical dispositions with a general .tool, the lan
guage must not possess a bias towards anyone 
particular method of analysis within psychology. 
Thus it should be possible for any psychologist 
of whatever persuasion to be able to describe his 
procedures in this language. The general nature of 
Snapper et aI's contribution assured that since all 
psychological procedures could be reduced to a 
state diagram, in principle this would indeed be 
the case. But the actual language that was to 
map that state diagram to a computer data structure 
must still contain as few idiosyncratic theoretical 
connotations as possible. For instance, while the 
language would clearly evolve with the ubiqui tious 
terms of stimulus and response, it must in no way 
commit the investigator to a reflex psychology. 
Stimuli and responses, or if the investigator pre
fers, environmental ~ituations and behavioral ~ep
etoires, are simply a natural and operational way 
to talk about the changes in environments and 
behavior patterns of living organisms that make up 
psychological experiments. 

Secondly, parameter modification had to be inte
gral, simple, yet powerful. As 110 and others17 
have pointed out elsewhere the special promise of 
the high speed digital computer in controlling 
psychological procedures lies in its ability to 
adjust rapidly to very intimate behavioral proper
ties of the subject. That adjustment consists of 
modifications, depending on the moment to moment 
status of those behavioral properties, not only of 
quantitative parameters but possibly even the very 
structure of the procedure. 

Thirdly, the fundamental features of the program 
had to be viable with a minimum hardware config
uration:(e.g., a PDP 8/S with 4K of core and a 
single teletype) so as to make the computer a 
feasible economic proposition in even small lab-
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oratories. At the same time, the program should 
possess sufficient flexibility to expand easily its 
command features so as to exploit the additional 
hardware of fortunate users with extra core, back
up memory, auxilIary teletypewriters, display scopes, 
analogue converters, and so forth. 

Fourthly, however complex the hardware input/ 
output interface might in reality turn out to be 
at circuit level, it must appear to the psychologist
programmer wishing to control it as simple as poss-' 
ible:e.g., with PDP 8 machines, a simple 12-bit 
parallel word. Thus the program, unlike ALGOL, but 
like FORTRAN, would standardize its input/output 
instructions by assuming a standardized interface 
terminal. Thus, compleX microprogrammed machine 
input/output commands as such need never be seen 
directly by the programmer. 

Fifthly, finally, and perhaps most important of all, 
the vocabulary, syntax, and grammar of the command 
language must be as close as possible to a simple 
English of everyday usage not unlike that which the 
investigator might employ in describing the procedures 
of his experiment to a colleague. The ability to use 
the language should therefore require almost no 
learning, it should be as insensitive to syntactical 
formalities (e.g., critical spacing, correct spelling, 
etc.) as possible. 

Implementation in situ 

A typical multi-access environment in which the 
computer might be expected to act as a process 
controller and data recorder for psychological lab
oratories is shown in Fig. 1. A PDP 8/S central 
processor is shown there directing the procedures 
and recording the data from four experimental sta
tions. The system shown is slightly expanded from 
minimal configuration, containing an additional 
output teleprinter used exclusively for printing out 
critical results of the experiments, and a hi-speed 
paper tape punch for outputting selected aspects of 
the raw data. 

In psychological experiments in environments of the 
sort shown in Fig. 1, a key role of the computer is 
to provide automatic control of the relations or 
contingencies that the experimenter desires to hold 
between selected aspects of the behavior of the sub
jects, and subsequent presentation and maintenance 
of selected changes in the subject~' environments. 
The language that is to be described for this gen
eral task amounts to an Automated Contingency Trans-
lator, hence its mnemonic name, ACT. -

The associated r/o hardware for each of the sta
tions of Fig. 1 must eventually terminate in two 12-
bit words. One of these words registers the outputs 
(responses) from the subject and is read into the 
main arithmetic register of the computer, the acc
umulator. The other word consists of an input bit 
configuration and is strobed to the subject from the 
accumulator. A typical configuration for a rat 
subject in a conditioning experiment appears in Fig. 
2. Only a portion of the two distinct words are 
used, 8 bits for R outputs and 6 bits for stimulus 
inputs. Learning the octal number system to desig
nate the behavior and environment events that he 
wishes to control is very nearly the only specialized 
computer knowledge that the psychologist is obliged 
to acquire. The use of octal labels for stimulus and 
response events is an important way of simplifying 
the program to meet, in a small machine, all the aims 



described above. Thus, R115 set in Fig. 2 corres
ponds to the closing of a switch by the experimenter 
and a certain value (17) of a 5 bit analgoue vol
tage taken from electrodes attached to the skin of 
the subject. S5 corresponds to a compound stimulus: 
the presence of a 30 cps tone and the presence of a 
small "houselight" in the subject's chamber. In the 
protype installation for testing ACT these stimulus 
outputs represent -24 v to ground levels, and the 
inputs represent switch closures. Nevertheless the 
language of ACT itself is completely independent of 
how assertion voltages come to be on the R input 
lines, and what work one chooses to do with the 
assertion voltages the computer puts on the S out
put lines. 

Writing in the language of ACT is expedited by 
first drawing a modified state diagram of the des
ired procedures. The units of these state diagrams 
are the state, shown as a rectange or a rectangular 
solid in Fig. 3, labeled with the actual environ
mental conditions; and the transitions from one 
state to another shown as the vectored lines in 
Fig. 3 with actual time or response values as 
labels. states may be (1) nested, as shown by the 
representation of boxes within boxes; and (2) they 
may be organized into multiple sets, or planes, of 
states as shown by the independenceof the top por
tion of the figure from the bottom portion. Not 
shown in the pictures is the ability to mOdify at 
each occurrence of a unique state the value of 
variable parameters of the experiment, and the 
execution of a variety of data retreival routines 
such as PRINTING, TAPING, DISPLAYING and so forth. 
These additions to the purely procedural contingen
cies relate ACT to the automata oriented REACTION 
HANDLER of Newman12 , an intriguing correspondence 
since Newman's program was designed for an entirely 
different task environment, that of expediting 
communication between on-line users and graphical 
light-pen displays. 

To program his experiment the psychologist first 
works out a state diagram of it by listing the 
various sequential conditions and the temporal or 
behavioral events that will cause one condition 
to change to another. Then he connects up his 
structure with vectored lines corresponding to the 
contingency logic of the experiment. He then adds 
any special states he may need purely for recording 
purposes, or any states used for trapping the occ
urrence of rare or special experimental results. 
Then, referring to a representation of his input! 
output words (c.f., Fig. 2) he assigns numerical 
values to the states, the behavioral response events, 
and the times. 

What are his restrictions on such labeling? 
Firstly ACT is a completely synchronously driven 
system. An external clock which in the prototype 
operates at line frequency (60 hz) restricts res
olution of updating events to 60 times a second. 
Thus the shortest duration of a state is approx
imately 16.7 msec. (This is of course not a con
straint of the language per se, only of the par
ticular implementation of it. In the PDP 8 or 8/1 
a far faster clock would be practicable.) Secondly, 
the values of states must correspond to actual octal 
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equivalents of l2-bit numbers. State 9 is thus 
ambiguous; response 72413 is too large. 

Once in a state diagram, the procedure is ready 
to be mapped to the basic English of ACT. The 
vocabulary of ACT is shown in Fig. 4. It will be 

S1. 2 
R4 
U55 
I,J, ••• N 

SYMBOLS 

ENGLISH WORDS 

WREN, WHILE, GIVE 

IF 
AFTER 
FOLLOWING 

GO, THEN, GO TO 

PROBABILITY 

t 
4-

(tab) 
& 

Figure 4 Legal ACT I symbols and words. 

V(J) 

+ 

observed that the with exception of only a few 
special symbols, the vocabulary consists of simple 
English words, S, U, and V letter abbreviations for 
states, R abbreviations for responses, and the 
integers I through N for integer variables. In 
order to distinguish states that are associated 
with the same environmental conditions (e.g., the 
same octal output word) but which occur at diff
erent points in the procedure and are therefore 
associated with different experimental conditions, 
a "point" followed by a unique number, less than or 
equal to 778 is used as a way of distinguishing 
such states. The ordinal number to the right of 
the point has no significance except to provide a 
unique arbitrary label. 

STATEMENTS 

In ACT there are six different classes of legal 
statements utilizing this vocabulary. Examples 
of these classes are shown in Fig. 5. (1) Init
ialization of the integer variables by parameter 
assignment where the meaning should be self-evident. 
Such assignments are limited to the range -2048 < I < 
+2048. (2) Declarations of fixed or variable 
states in S, U, or V state sets. Thus, writing a 
declarative statement beginning with WREN, GIVE, 
or WHILE followed by a state identifier amounts 
pictatorially to drawing a box. (3) Transition 
statements, of which there are three types. 
Writing one of these transition statements is 
equivalent to drawing a line away from one state 
rectangle to another. The six examples of tran
sitions illustrate different features of the voc
abulary. Response transitions begin with IF and 
designate a fixed (R2), variable (R(K)), or anal
ogue (lO<.R<.L) behavioral output for initiating 
a change in state. Time transitions are straight
forward, with the upper limit being 72 hr, the lower 
limit being 1 unit (of time--determined by the clock) 
and variable times (being single precision integer) 



I = 4 
J = 7 
N = 7772 

INTEGER ASSIGNMENTS 

DECLARATIONS 

WHEN Sl 
GIVE U12.5 
WHILE V(J) 

TRANSITIONS 

IF R2 GO TO S44 
T"G'I 0() D(V\ ,.,,, m" ,n C. 0 
.J...L0 c....;; J.l\L'!t...) U"V .LV V.LU.U 

IF (10 <.R < L) GO TO S5 
AFTER 2 MIN GO WITH PROBABILITY = 3/32 TO S4 
AFTER K UNITS THEN U2 

FOLLOWING J S55.2 THEN GO TO Sl.¢ 

WHEN Sl 
WHEN Sl 

WHEN Sl 
WHEN Sl 

PARAMETER MODIFICATION 

CN = N + 41 
tJ = K & SWITCH REGISTER) 

DATA RETREIV AL 

(PRINT "EXPERIMENT FINISEED oja//3 
(PUNCH 2J 

RECORD DATA 

1 IN Sl: Rl LATENCY 
2 IN S3: Rl COUNT 
3 IN S5.1:R4 SUM 
4 IN -q-~K/: S2 COUNT 
5 IN V16.7:V16.7 TIME 

Figure 5 Six classes of legal ACT statements 

restricted to 16.7 msec. units specification. 

The first time transition (line 4 above under 
TRANSITIONS) illustrates an additional feature of 
ACT, namely its ability to describe probabil
istic procedures. Probabilities of the form A/B 
where A must be greater than or equal to B, and 
B must be a negative power of two, less than or 
equal to 2-7, may be specified for any transition. 
Probabilities so specified produce berno~uli dis
tributions of events. In the prototype they are 
hardware generated by the peaks of a noisy diode 
counting in a 7-bit shift register. 

The third class of transition, shown as the last 
line under TRANSITIONS in Fig. 5, is a second order 
transition in which an R or Time transition from 
any given state to another, at some point in the 
state diagram, can trigger yet another transition 
for a different state at a different level or in 
a different state plane. Second order transitions 
are essential for communication between state 
planes, and for making possible the changes in a 
procedure after a certain number of organism det
ermined events, such as numbers of stimulus pre
sentations of a given sort. 

(4) Parameter modification form a fourth group 
of legal statements. These consitute in ACT I 
simple three-operant ALGOL assignment statements 
written immediately after a state declaration 
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and enclosed within square brackets. In ACT I 
the operators are limited to addition and sub
traction (,,&" means to add the switch register) 
and only a single such statement may be written 
per state declaration. 

(5) Data retreival statements shown just lower 
in this figure are also written at state declar
ation time. They make it possible to type 
messages and to retreive various data stored by 
the five recording directives shown below them. 
The numerals after PRINT or PUNCH refer to the 
line numbers of (~) the record statements. 

The manner by which these statements are com
D~nea. ~nl:iO a program is straightforward. The 
statements are written one statement per tele
printer line, sequentially and in a block form 
suggestive of ALGOL. A given state is first 
declared, its integer parameter modifications or 
data retreival orders enclosed within square 
brackets, and on subsequent lines all the poss
ible transitions for that state are listed one 
by one. Another state is then declared and its 
transitions listed; and so on. State diagrams 
seem to most easily be constructed and read from 
left to right; so that the top of the page of ACT 
statements will generally correspond to the left 
side of a state diagram. For legibility the 
transitions of a state are indented one tab stop 
in from the declaration statement. Nesting of 
states within states is accomplished by maintain
ing a one-to-one relation between tabular inden
tation of the declared state to degree of nesting. 

An example of a simple complete program to 
control the scheduling of a 3-second food 
reward to a confined p.igeon subject for each 
key peck on a plastic disk only after a minute 
of non-reward has passed, appears in Fig. 6. 
The program is initiated by a special non-printing 
character (WRU). The compiler (in 4K versions 
loaded by the user, in 8K versions called down 
by monitor) then prints out an installation 
identification followed by a new line and the 
word EXPERIMENT. The user types in a comment 
identifying his experiment, followed by a carriage 
return character. The ACT compiler then asks for 
a number for the station where the experiment is 
to be carried out. (This number is none other 
than the Wl03 device code for the station.) Upon 
receipt of this number the compiler will respond 
BUSY if the station is already in use, or if not 
busy with the approximate number of lines available 
for program. The user then types any initialization 
lines, the first declaration (Sl), its transition, 
the next declaration (Sl.l), its transition, and 
the third declaration (S3) and its transition. 
AIry desired comments are preceded by the "/,, symbol. 
Finally a $$ terminates compilation. 

Not shown in Fig. 6 are occurrences of any one of 
45 compiler diagnostics. These advise the user of 
syntatical (mispellings, illegal combinations of 
symbols, spurious characters, and so forth) or 
semantic (attempts to direct transitions from one 
state plane to another, or from one level of 
nesting to another, exceeding the upper limit of 
probabilities, failing to declare a state that is 
referred to in a transition line and so forth)errors. 
Syntactical diagnostics occur immediately upon 
receipt of the illegal character. Semantic dia
gnostics occur only at the termination of the 



current line. 

The completion of the program leaves a data 
structure corresponding to the state diagram res
ident in core. The prototype system has 2K of 
core available to accomodate eight independent 
stations and at anyone time, all eight may be 
occupied with programs of moderate complexity. 

In practice a developed program would be stored 
on paper tape, and entered whenever it was desired 
to run. In the 4K version once all desired 
programs are resident, an operating system to 
execute the data structure is loaded overwriting 
the compiler, and thenceforth the teletypewriter 
serves only to print data messages; or if the 
data rates are low, to punch in coded form the 
significant events tagged with their relative times 
of occurrence. There is only one diagnostic at 
run time: "AVAILABLE UPDATE TIME EXCEEDED" followed 
by the station last completed in the queue. The 
example of Fig. 6 servies to illustrate the sim
plicity and naturalness of the language format 
for the problems for which it is directed. 

An important feature of the language is its 
ability to incorporate new increasingly sophis
ticated design features without affecting the 
format of previous programs. Thus, the obviously 
desirable ability to have compiler and executive 
in~ core together with a monitor to schedule their 
priorities along with other perhaps unrelated 
background programs is a feature being developed 
for SK systems. Users will type in new programs 
from one teletype while the central processor 
continues concurrent control of other experiments. 
Yet these and further refinements will affect only 
the power of the language system, not its format. 

Conclusiorn 

In summary, the language that has evolved permits 
multi-access control of up to eight independent 
laboratory environments. The language includes 
facilities for modification of experimental par
ameters which, while simple, are powerful enough 
to permit the experimenter to produce procedures 
whose quantitative properties and/or qualit~tive 
structures can adjust to subtle on-going char
acteristics of the input behavior of the subjects. 
The language provides primitive facilities for 
retreiving the raw data of the experiment as it 
is being generated in a form suitable for later 
input to a conventional off-line data analysis 
program. An important feature of the language 
is that its very nature is such as to preclude the 
possibility of any user overwriting any other user. 
Thus the language permits trouble-free time sharing 
of the central processor. Finally, as should be 
obvious, although ACT was written with the psychol
ogist principally in mind, the language is a very 
general one. Whenever some aspect of an environ
ment is to be controlled as a function of inputs 
from other aspects of that environment, as in 
chemical process control, machine tool control, 
biomedical monitoring, and other industrial and 
scientific applications13, ACT may provide a 
convenient method of implementing computer control 
by non-professional personel. 
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Figure 1 A typical multi-access psychological environment controlled 
by a rack-mounted PDP S/S central processor. Four experimental stations, 
one input teletype (left), an input/output teletypewriter (bottom), and a 
high speed punch are shown connected to the central processor. 
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A TAPE STORE FOR BIOCHEMICAL DATA 

Harold W. Shipton 
University of Iowa 

Iowa City, Iowa 

ABSTRACT 

A means for recording low data rate signals on an inexpensive tape 
recorder and a program to read these data is described. The tech
nique is especially suited to biochemical applications. 

Signals from many biophysical instruments (e.g., 
amino-acid analysis) are characterized by their low 
data rate and by the relatively long duration of an 
experimental run. Traditionally the output from 
such devices is displayed on a strip-chart recorder 
having a rebalance time of the order of one second. 
The data are inherently suited to analysis by 
digital computer and have been so treated by a num
ber of workers. Operations such as integration and 
base line drift correction are tedious to perform 
by hand but are easily implemented on a small scale 
laboratory computer; a machine such as a LINC can 
easily handle the output from many photometric de
vices. The major difficulty in use of computers for 
this type of application results from the difficulty 
of entering the data into the machine in an econo
mical and orderly fashion. The LINC, in common 
with some other machines, is designed for on-line 
real time operation and if it can be dedicated to 
data collection, no serious problems of interfacing 
arise. In most laboratories, however, the computer 
is in use for other projects and economy dictates 
some form of intermediate storage for the biochem
ical data. (In some circumstances the "interrupt" 
feature can be used. However, other programs run
ning on the machine are not always written in 
interruptable form; this applies especially to the 
assembly program used for software development.) 
Two systems of intermediate storage suggest them
selves: punched paper tape or an off-line incre
mental magnetic recorder. In practice if either of 
these solutions is used, a separate recorder is 
necessary for each instrument because there are 
formidable problems of data organization in any 
feasible time sharing system. 

This paper describes a technique for recording such 
slowly varying signals on inexpensive tape recor
ders of the type used as office dictating machines. 

There are many methods for transforming low fre
quency analog data so that it can be recorded as an 
audio frequency signal; in the most common the 
data signal modulates the frequency of an audio 
oscillator. On replay this signal is demodulated 
and filtered so that the original data are recover
ed. This method suffers from two major disadvan
tages. Firstly, if the DC component of the signal 
is to be recovered accurately, the tape speed must 
either be maintained within close limits or rela
tively complicated feedback techniques must be used 
to compensate for variations in it. Secondly, 
the ta~e motion is continuous during recording an 
extravagance which must be paid for not only in 
terms of tape consumed but also in terms of replay 
time. 

To overcome these limitations and to achieve a 
highly reliable but inexpensive store the scheme 
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outlined in Figure 1 has been used. A clock is 
used to produce pulses at rates compatible with 
the analog signal data rate (for example in 
amino-acid analysis this is approximately I pulse 
per 5 seconds). These are accumulated in a time 
register which can conveniently be a conventional 
binary counter. Provision is made for manually 
clearing the counter at the onset of each experi
mental run. 

The analog signal from the strip-chart recorder 
is converted to digital form by means of an 8 bit 
shaft encoder with which is associated a storage 
register (R). Initially, the signal value is 
loaded into R and at each clock pulse the contents 
of R are compared with the contents of the shaft 
encoder. If they match (i.e., there has been no 
change in the value of the input signal) no further 
action is taken, but if the contents have changed, 
the following sequence of events is initiated. The 
data register is updated to contain the new shaft 
encoder value. The tape recorder start switch is 
activated, and a preset delay circuit (one shot) is 
fired. This delay is long enough to allow tape 
motion to become well established. At the con
clusion of this delay period a scanning oscillator 
examines the contents of each section of the time 
and data registers so that a serial 20 bit word 
appears at the output of the gates. Signal and 
data bits account for 17 bits; the additional bits 
are used for control purposes and to separate the 
time and data portions of the word. During the 
entire scan period a level is present which serves 
to control the FSK oscillator (see below). Data 
are recorded on the tape by frequency shift keying 
(FSK) an audio generator. At the end of the data 
block tape motion is stopped and the system re
mains quiescent until a further change in signal 
level occurs. 

The frequency shift keye~ is of an unusual design 
(Figure 2) in that the audio oscillator runs at 
8fO where fO is the carrier frequency; this is then 
divided down by a 3 bit binary counter which can be 
reset to 0 at the count of 3, 4 or 6 according to 
which of three gates are enabled. The outputs are 
further divided by a binary counter so that fre
quencies of fO, _._4_, an~ are available. These 

3fO 3fO "" tone pulses are associated respectively with space, 
"binary 0," and "binary 1" of the data word. For 
most small tape recorders fO = 5khz is a conven
ient and easily recorded choice of carrier. 

Several variations on the above system have been 
tried in differing circumstances, but will not be 
described in detail since they are readily imple
mented by standard electronic techniques. They 
include a means for shortening the data word by 



omitting that portion which contains the signal 
magnitude and using a single bit to indicate the 
direction of change. The function is reconstructed 
in the decoding process by a method akin to Lebes
que integration. 

The electronic circuits have not been fully de
scribed since it is unlikely that others will wish 
to duplicate them exactly. The system is readily 
constructed from TTL logic and for those who 
require further information a set of prints can be 
obtained from the Bioengineering Resource Facility, 
University of Iowa, Iowa City, Iowa 52240. 

Playback is accomplished by running the tape con
tinuously and feeding the output signal into an 
analog channel of a LINC computer. This permits 
high reliability decoding and reconstruction of 
the original data. 

In essence the program which examines the signal 
measures the frequency of the carrier by counting 
zero crossings for unit time and from this computes 
the permissable limits of fl and fh' Thus the 
tape speed need only be constant for the time re
quired to transfer one data word (typically 150 
milliseconds) and even in recorders which have no 
capstan drive this is easily achieved. Since many 
cycles of audio signal are counted during each 
data bit an occasional drop out is tolerable. 
Several versions of the decode program are in use. 
A flow diagram (Figure 3) of the complete program 
and of the frequency measuring sub-routine (Figure 
4) are appended. 

Summary. The system has been found to be a useful 
substitute for incremental methods when the data 
rates are low and extensions of the method show 
promise in several biomedical applications. 

It is a pleasure to acknowledge the detail design 
work of Mr. John W. Emde of the Bioengineering 
Resource Facility of the University of Iowa. This 
work was supported by Grant #GM15907 from the 
National Institutes of Health. 
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AUTOMATIC SPECTROPHOTOMETRIC IDENTIFICATION 
OF BACTERIA 

Alan Ferry and Richard Martin 
QEI 

tVinchester. Massachusetts 

ABSTRACT 

Present research at the Office of Naval Research is reported on 
a project to automatically identify bacteria using only spectro
photometric information. The numbers to be extracted from the 
measurement are fluorescence to phosphorescence ratio, emission 
spectrum peak wavelengths, and parameters of phosphorescent 
decay. A procedure for resolving components of a multiple 
exponential function is discussed. 

This report describes some on-going research into 
the feasability of extracting enough numbers from 
luminosity measurements on bacteria to develop an 
identifying dictionary. In the functioning "auto
matic bacteria identifyer", a dictionary lookup 
would be, made by the same computer that processes 
the luminosity data (actually micro-spectrophoto
meter output), and the type or class of bacteria 
in the sample would be printed out. With the idea 
that it would be desirable to some day have a 
number of these devices available, minimum appa
ratus configuration has been made a design consider
ation. 

In cases when there is an outer non-membraneous 
layer to a bacterium, it is usually cellulose. 
Therefore, most re-emitted light arises from sur
face membrane lipo-proteins. Photon emission from 
amino acids, the structural units of proteins, is 
always from singlet or triplet decays; and, in 
these experiments, is always·f.romthe loWest energy 
level of an excited state to the ground state. The 
half-life of a singlet state is of the order of 
10-

15 seconds, and the light emf. tted by radiative 
decay from singlet to ground is referred to as 
fluorescence. Since the half-life of the triplet 
state is much longer (order of 10

3 to 101 seconds), 
the associated emission (phosphorescence) continues 
for a much longer time. 

A spectrum obtained under continuous illumination 
is the sum of fluorescence and phosphorescence. 
If the illuminating beam is ,chopped, the recorded 
light is largely phosphorescence. The ratio of the 
integral under the fluorescent spectrum to that 
under the phosphorescent spectrum can then be 
calculated and becomes one number for the bacterium 
signature. 

Peak positions in the spectrographs are the emission 
frequencies and will be a set of numbers contributed 
to the dictionary. We hope to handle the problem 
of resolving multiple peaks using a technique 
suggested by Dr. Ian Bush of the Medical College of 
Virginia. The leading edge of the last peak in a 
superimposed group would be functionally generated, 
point by point, from the decaying edge. When the 
entire peak has been resolved in this way. its 
position would be determit~ed and the peak would be 
subtracted from the composite. If the composite 
were a double peak, the remainder would be a single 
peak, the first one. If there were more than two, 
the procedure would be repeated until one peak 
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remained. 

To be able to measure the phosphorescent emission 
at all requires special apparatus consideration. 
Because of the long lifetime of the excited triplet 
state, non-radiative transition, especially thermal 
ones, compete so favorably with photon emission 
that virtually no light is given off at room temper
ature. Reduction of the thermal energy in the 
sample is brought about by making the measurements 
at low temperature with the culture maintained as 
a glass rather than as a suspension in liquid media. 
Liquid nitrogen temperature, 77°K. is being used as 
standard. 

The "glow" in response to a flash of light decays 
n 

as a multiple exponential of the form L AlE -CXjt 

j=l 

n < 10 , and if the decay parameters could be 
determined. another set of numbers would be avail
able. In keeping with plans for a "minimal con
figuration", we Originally began the project with 
PDP-8S's, It has become clear, however, these 
will not be adequate, and we plan to be using 81's 
with DECTape. Our procedure for examining the 
decay information begins with an interrupt trigger 
from the light source signaling the 8s to begin 
reading one datum through its AID converter every 
millisecond. To implement the data input a 1 kc 
real time clock was installed. It was desired to 
have available the inherent stability of a crystal 
clock. and, since the 8S is too slow to efficiently 
use the slowest crystal oscillators, it was neces
sary to include a down-counter network to obtain 
a 1 kc clock pulse rate. Advantage was taken of 
the R202 modules necessary for the down-counter to 
create the follOWing clock instructions: 

1. Skip on clock flag set. 
2. Clear clock flag and connect to interrupt. 
3. Clear clock flag and disconnect from interrupt. 

TWo alternative averaging techniques are employed 
for noise reduction. By one procedure, which is 
technically more difficult but gives better resu1t~ 
identical runs are repeated and the data points are 
averaged across runs. Another method smoothes a 
single run by sampling every millisecond and stor
ing the average of n (4 S n S32) data. That this 
arithmetic mean is inappr~priate for exponential 
functions is a valid objection, and a ~eometric 
mean calculation should be used. This improvement, 



however, will require the faster PDP-8! system. In 
any case. there are stored at this point a thousand 
numbers representing a multiple exponential function 
we wish to resolve into components. 

Au example of a double exponential of the form 

At-ext + BE- pt is shown in figure lAo 

This function was generated in place of the de
scribed data acquisition to eliminate the noisQ for 
demonstration. Operations described below for 
estimating the parameters of one exponential 
component then stripping it from the multiple are 
applied by the program as though the data had been 
sampled from the micro-spectrophotometer. In 
Figure 2 is shown. indicated by crosses, a semilog 
plot of the same double exponential function. The 
program operates on the log transformed data in 
groups of fifty beginning at the right and proceed
ing left ten at a time. For each fifty points the 
best straight line by least squares is calculated. 
When the last slope calculated differs from the 
first by a factor greater than m, the process halts 
and the average slope and intercept of all the 
calculations in the series are printed. The factor 
m is a specifiable operating parameter whose best 
value must be experimentally chosen with consider
ation for whether it is more desirable to chance 
missing a component or picking up an extra one. 
When the slowest decaying component has been esti
mated (in this example B exppt) , shown as a solid 
line in Figure 2, it is stripped from the composite 
leaving the other components as a residue as shown 
in lB. The least squares calculations are repeated 
on the log transform of the residue (dots in Figure 
2) and another component (broken line in Figure 2) 
is found. Since the exaup Ie was a double exp~ 
nential. the procedure ends. The slope of the 
semilog plot (log I (t) ) of a multiple exponential 
at any point can be expressed as 

IAi(-ai)E -ai t 

y ( t ) = .,.!::i=:..!...l --I(t'"'"") --

and this expression could be used to correct each 
estimated component after others have been found. 
We have not found yet, however, that such a refine
ment is necessary. 

We would like to mention two other approaches to the 
problem of resolving mUltiple exponentials. A 
least squares fit to the complete. untransformed, 

n 

function L: Ai E -exi t 
i=l 

could be made. but to 

apply this method conveniently. the number (n) of 
components should be known in advance. 

A different approach, which we have not tried, is 
based on the fact that the Fourier transform of an 
exponential function has peak heights that are 
measures of the exponents. 
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APPENDIX 1 

DECUS SPRING 1968 SYMPOSIUM PROGRAM 

Be Ilevue Stratford Hote I 
Philadelphia, Pennsylvania 

Apri I 26 and 27, 1968 

FRIDAY - APRIL 26 

General Session - Terrace Room (Morning) 

Chairman: Prof. Philip R. Bevington, Stanford University 

8:30-9:45 Registration, 18th floor lobby 

10:00 Opening - Prof. Philip R. Bevington 

Welcome - Prof. John W. Carr, III, Chairman 
of the Graduate Group Comm ittee for Computer 
and Information Sciences, Moore School of 
Electrical Engineering, University of 
Pennsylvania 

10:30 A STIMULUS-RESPONSE PROGRAM FOR 
HOTEL ROOM INVENTORIES 
David W. Roberts, London, England 

The policy aims fulfilled by the program are listed and an 
outl ine of the original booking system is given. The diffi
culties of this system are highlighted and the new system 
described. 

The action of a single function is detai led and the develop
ment of a single message is traced through seven phases in 
response to user requ irements. The details of a usefu I method 
of handling dated information are given. 

The system has been extended to two other hotels. 

11 :00 THE UCC FASBAC PROJECT 
Dan W. Scott, Un iversity Computing Company, 
Technical Services Division, Dallas, Texas 

Remote large-volume input and output facilities are available 
from the University Computing Company UNIVAC 1108 Com
puter Uti lity. The FASBAC text editing system now under 
deve lopment will be described. This new conversational 
system facilitates setting up runs for the UNIVAC 1108 via 
remote Teletypes in the customers' offices. 

12:0,0 Lunch - Rose Garden 

SESSION I (Afternoon) 

Chairman: Thomas Day, University of Maryland 

1: 15 ON-LINE ANALYSIS OF WIRE SPARK 
CHAMBER DATA 
Phylis F. Niccolai and Robert H. Bicker, 
Carnegie-Me lion University, Nuclear Research 
Center, Saxonburg, Pennsylvania 

A PDP-7 background/foreground mode of time sharing for 
on-line analysis of wire spark chamber data will be discussed. 
The background mode analyzes a representative sample of 
wire spark chamber data in the time avai lable between in
terrupts from the wire spark chamber logic, an interface be
tween the wire spark chambers and the PDP-7. The foreground 
mode logs data from the wire spark chamber logic onto mag
netic tape. The experimenter is given control of the cyclic 
operations via the Teletype keyboard and may interrupt the 
program at any time to retrieve the output from the back
ground mode. The particular analysis required from the 
background mode must be decided prior to load time and 
selected from the programs stored on DECtape. This program 
wi II be discussed as appl ied to pion absorption by I ight nuclei 
experiment at the Carnegie-Mellon University Nuclear 
Research Center. 
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1 :45 PDP-8 ON-LINE DATA ACQUISITION 
SYSTEM FOR HIGH ENERGY PHYSICS 
Pau I Shrager and Larry Taylor, Un iversity of 
Pennsylvania, Philadelphia, Pennsylvania 

This presentation will be a description of an on-line data 
acquisition system for magneto strictive spark chamber 
readouts in high energy physi cs. The system outputs to an 
incremental magtape unit and CRT display tube. The system 
includes a real-time clock, high speed paper tape reader, 
and 24-channel A-D converter for experimental parameter 
monitoring. 

In addition to data acquisition and output data verification, 
simple on-line analysis is performed, including histograms 
showing distribution of sparks in chambers. The, osci Iloscope 
display includes a reconstruction of the elementary particle 
event that occurred in the spark chamber. 



2:15 THE ON-LINE USE OF PDP-9 AND 360/65 
I N A PROTON-PROTON BREMSSTRAHLUNG 
EXPERIMENT USING WIRE CHAMBERS 
D. Reimer, J. V. Jovanovich, J. McKeown, 
D. Peterson, and J. C. Thompson, Institute 
for Computer Studies and Physics Department, 
University of Manitoba, Manitoba, Winnipeg, 
Canada 

The system a Ilowing conversation between two computers 
(PDP-9 and IBM 360/65) and an on-line analysis of a wire 
chamber experiment wi II be described. Wire chambers and 
scintillation counters are interfaced to the PDP-9 which is 
connected to the IBM 360/65 via a standard DEC high speed 
data link. The PDP-9 performs preliminary analyses and 
selection of detected events. A FORTRAN program residing 
in a small partition of 360/65 memory completes kinematic 
analyses of events accepted by the PDP-9, stores the resu Its 
on magnetic tape, and returns formed histograms to the PDP-9 
for visual display or graphical plotting. 

2:45 AUTOMATIC FILM MEASUREMENT WITH A 
PDP-9 
C. Drum, T. McGrath, and R. Van Berg, 
Department of Physi cs, Un iversity of 
Pennsylvania, Philadelphia, Pennsylvania 

The University of Pennsylvania's High Energy Physics Group 
employs a PDP-9 to control and record digitizings from a 
Hough-Powell flying spot digitizer. It is not possible with 
the small computer to perform anyon-line analysis or track 
reconstruction of non-predigitized bubble and spark chamber 
photographs. Therefore, the system re I ies on CRT displays 
and simple checking algorithms for monitoring the quality of 
the dig it i z in gs . 

This paper des~ribes the system in general and especially 
the non-standard software and peripherals. 

3:15 Coffee 

3:30 A COMPUTER-CONTROLLED SYSTEM FOR 
AUTOMATICALLY SCANNING AND 
INTERPRETING PHOTOGRAPHIC SPECTRA* 
C. A. Bailey, R. D. Carver, R. A. Thomas, 
and R. J. Dupzyk, Lawrence Radiation 
Laboratory, University of California, 
Livermore, California 

In analytical spectrography, the most time-consuming 
portion of an analysis is the scanning and interpreting of 
the photographi ca lIy recorded spectra. A system has been 
devised to shorten this time considerably by using a small 
digital computer to control the scanning densitometer and 
subsequently to calculate abundances from the photographic 
data. 

152 

The following description applies specifically to spark
source mass spectrography; however, adaptation to other 
systems wou Id be relatively straightforward. A typical 
photoplate from our spectrograph contains several thousand 
I ines from as many as twenty graded exposures and represents 
approximate Iy sixty-five elements. Starting with the most 
intense exposure, the optical transmission of each line is 
measured using a Grant microphotometer. These transmissions 
as we II as the position of each I ine are stored in a PDP-8 
computer. The computer initiates and completely controls 
the scanning and simultaneously converts each line position 
to an exact mass number from a calibration performed at the 
beginning of the scan. The computer is programmed to 
distinguish between lines and empty areas on the photoplate, 
and a!! the graded exposures of each I ine are recorded before 
the scanning continues to the next line. Backgrounds are 
continuously upgraded and recorded along with their adjacent 
I ine densities. After the desired area of the photoplate has 
been scanned, an emulsion cal ibration is calcu lated from 
the data stored in the computer. Then all line densities on 
the linear portion of the calibration curve are converted to 
ionic abundances. Total time involved in scanning twenty 
exposures on a fifteen inch photoplate is now approximately 
two hours. 

* This work was performed under the auspices of the U.S. 
Atomic Energy Commission 

4:00 A PDP-8 SYSTEM FOR BUBBLE CHAMBER 
MEASUREMENTS 
John Rayner, University of Maryland, 
College Park, Maryland 

This paper describes an on-line measuring system in which 
the PDP-8 is used both as an up-down scaler for an image 
plane digitizer and to supervise the measurer in an attempt 
to prevent the most common measuring errors. This error 
prevention is accomplished by having the program institute 
most of the necessary procedures through messages to the 
measurer on a Teletype and by elementary checking of the 
input data. Another aim of the system is to replace cards 
with IBM compatible magnetic tape as the output medium. 
To this purpose a Digi-Data Stepping Recorder has been 
interfaced to the PDP-8. It is planned to expand the system 
to four measuring stations in the future. 

4:30 STRIP, A DATA DISPLAY AND ANALYSIS 
PROGRAM FOR THE PDP-8, 8/1 
John Alderman, Georgia Institute of Technology, 
Atlanta, Georgia 

This program, using the PDP-8, high-speed paper tape 
reader, and Type 34 display, accepts paper tape data 
listings and displays the result on the display unit. Some 
elementary computations are made on the data and are 
also displayed. The program is deliberately designed to 
be open-ended, and most users wi II want to add features 
peculiar to their own problem. Almost all functions are 
carried out in subroutine form, and these subroutines can be 
called either from the keyboard or within another subroutine. 

6:30 Reception - North Cameo Room 

7:30 Dinner - Rose Garden 



SESSION II - EDUCATION, NORTH CAMEO ROOM (Afternoon) 

Chairman: Dr. Sylvia Charp, Phi ladelphia Board of Education 

1 :15 BRINGING THE COMPUTER INTO THE 
HIGH SCHOOL CLASSROOM 
Michael L. Doren and Karl P. Wildermuth, 
Deerfield High School, Deerfield, til inois 

This presentation is geared primarily for high school teachers. 
Our ideas on how the PDP-8/S, in combination with an in
expensive closed-circuit TV setup, can be used to enrich 
concepts taught in all levels of high school classes wi II be 
discussed. Emphasis and discussion will be on the following 
points: 

1. What concepts lend themse Ives to effective use of the 
computer. 

2. What criteria should be considered in writing a FORTRAN 
program for use in a classroom demonstration. 

3. How to effectively bring the computer physically into 
the classroom. 

a. Slides on our computer laboratory with its closed
circuit TV facilities and two-way intercom to each of 
our classrooms. 

b. Training of student lab assistants to help teachers 
make these demonstrations. 

4. Discussion of strengths and weaknesses observed. 

1 :40 PDP-8/S IN THE HIGH SCHOOL 
CLASSROOM 
Bud Pembroke and Dave Gilette, Computer 
Instruction NETWORK, Salem, Oregon 

The presentation will cover the present use of the PDP-8/S 
as a portable computer in several curricu lar areas in schools 
within the Computer Instruction NETWORK. The use of 
machine language will be discussed along with the use of 
CINIC as a II Load and Go" conversational compiler. CINIC 
II Computer Instruction NETWORK Instructional Compi ler" 
was patterned after a subset of BASIC for the 4K core memory 
of the PDP-8/S. The authors wi II include a description of 
the instructions, examples of programs, and a candid expla
nation of advantages and lim itations of this language. 
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2:15 PROJECT ASC - THE SMALL COMPUTER IN 
EDUCATION 
Ri chard R. Karash, Richard L. Mazer, 
RobertM. Metcalfe, and Clyde E. Rettig, Jr., 
MSC Associates, Boston, Massachusetts 

ASC is a research project conducting investigations into 
applications of the small computer made possible jointly by 
Digital Equ ipment Corporation and the Massachusetts Institute 
of Technology. The project ASC computer (PDP-8/S) has 
been made available along with complete technical assistance 
to a number of people at M .I.'T. involved in research, edu
cation, and administration. Some interesting results on the 
effect of this computer·s availability in an educational 
environment, suggestions on how to optimize the benefits of 
such computers· services, and a few hints to improving the 
computers themselves for future educational applications have 
been collected and will be presented. 

2:40 CLOSING THE EDUCATIONAL LOOP IN 
APPLIED MATHEMATICS 
Dr. John Elder, Department of Applied 
Mathematics and Theoretical Physics, 
University of Cambridge, Cambridge, England 

Lectures supported by demonstration have an immediate 
impact on students impossible with chalk and blackboard 
alone. In essentially conceptual areas of knowledge, such 
as appl ied mathematics, demonstrations are often impossible 
and the cumbersome input/output procedure of note taking 
and understanding after much midnight oil and personal 
supervision is inevitable. The educational loop can be 
closed right in the classroom in the following way. The 
lecturer is provided with a control box on which are some 
knobs and switches connected to a computer (housed elsewhere) 
and a closed circuit TV monitor{s)' the camera of which is 
watching the computer display screen. Parameters are entered 
from the knobs and tasks initiated from the switches and the 
results are displayed in graphical form. The lecturer had 
continuous control over his problem parameters, and may 
choose settings arising from discussion in the class. Typical 
problems involve systems of ordinary or partial differential 
equations. Separate "workshopsll which simu late the equ iva
lent of a physicists laboratory session reinforce the lecture 
materia I and provide the student with an opportun ity to use 
his initiative. 

An II experimental ll hybrid computer system incorporating a 
PDP-8, currently in use in the DAMTP, Cambridge, will be 
described and illustrated in a movie. A system using a PDP-9 
is now being designed. 

3:05 Coffee 



3:15 A SYSTEM FOR PRESENTING PROGRAMMED 
INSTRUCTION TO THE DEAF AND HEARING 
IMPAIRED 
K. E. Rigg and James A. Boehm, III, New 
Mexico State University, Department of Speech, 
Las Cruces, New Mexico 

A digital system for presenting programmed instruction of 
language concepts to hearing impaired and deaf children 
will be discussed. The system presents controlled visual and 
auditory stimuli to the learner, requiring either a matching
to-sample response with four solutions or the solution of a 
straight four choice task. The system reinforces correct 
responses with a variety of visual, auditory, and primary 
reinforcers including pulsed pure tones, colored lights, tokens 
and candies. 

This system is complete in that it includes the basic teaching 
unit, its own instrumentation, data reduction, and provisions 
for making programs. 

3:35 A COMPUTER SYSTEM FOR ELECTRICAL 
ENGINEERS 
Dr. David M. Robinson, Department of 
Electrical Engineering, University of 
Delaware, Newark, Delaware 

Educational computer applications usually center on the 
problem solving capabi lities of general-purpose machines. 
The electrical engineer is pecu liar in that he must become 
more deeply involved in the computational system than is 
suggested by this casual use. His concern arises by virtue 
of his responsibility for the conception and design of the 
computer itself and for its hardware adaptation to a variety 
of applications. 

A system has been evolved which is functionally directed at 
the problems generated by the realization of computers or 
computer-like systems. This system is described and a number 
of typical student problems discussed. The problem examples 
chosen illustrate the range of levels which may be encompassed 
us i ng the system, the versat iI i ty of the system and prob I ems 
which may be of some general interest. 

4:00 EDUCATION SUBGROUP WORKSHOP 
Chairman - Mrs. Judith B. Edwards, Director, 
Computer Instruction NETWORK, Salem, 
Oregon 

Welcome and Introduction of Participants 
Short (10 minute) Mini-Papers Presented by Education Users 

1. "The Computer and Pomfret" by Wi II iam Hrasky 
2. "The Computer and Teacher In-Service" by Bud Pembroke 
3. Plus additiona I papers (to be announced) 

Organizational Structure of the Education Subgroup 
Round Table Discussion: 

Topics: Curricular applications of small computers in 
education 
The computer in the junior high school 
What concepts shou Id be taught? 
Teacher training 
Language Levels for instruction 
Vocational training programs 

6:30 Reception - North Cameo Room 

7:30 Dinner - Rose Garden 

SESSION III - TYPESETTING AND MODULES WORKSHOP, NORTH LOUNGE (Afternoon) 

Chairman: Richard J. McQuillin, Inforonics, Inc. 

1: 15 COMPUTER TYPESETTING OF MATHE
MATICAL TEXT: THE INPUT LANGUAGE 
PROBLEM 
Richard J. McQuillin, Inforonics, Inc., 
Cambridge, Massachusetts 

This paper presents resu Its of some research in computer 
typesetting of mathematical text. In particular, attention 
is given to the representation of complex symbolism using 
a conventional keyboard. i Emphasis is on how keying con
ventions could be established to provide an input system that 
is usable by the editorial staff of a publisher of such articles. 

Experimental results are given based on a test sample using 
these conventions. The results show how the system can be 
uti I ized to computer typeset Mathematical Reviews. 

An extension of the symbol representation scheme is presented, 
whereby complex two-dimensional mathematical expressions 
may be expressed in functional notation. This wou Id lead to 
a typesetting language for handling complex typography at 
the input keyboard. 
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1:45 USE OF PDP-8 FOR DRIVI NG PHOTO
COMPOSITION MACHINES 
Richard Fait, Digital Equipment Corporation, 
Maynard, Massachusetts 

A brief look at the use of Digital's DECtape and DECtape 
Disc Systems to produce punched paper tape input to various 
photographic units. 

2:45 Discussion Period 

3:15 Coffee 

3:30 MODULES WORKSHOP 

Discussion on Computer Interfacing Techniques with 11M" and 
"K" Series Modules by a Representative of Digital Equipment 
Corporation. 

6:30 Reception - North Cameo Room 

7:30 Dinner - Rose Garden 



SATURDAY - APRIL 27 

SESSION I - PDP-9 SOFTWARE WORKSHOP, TERRACE ROOM (Morning) 

Chairman: Prof. Philip R. Bevington, Stanford University 

10:00 PDP-9T TIME SHARING SOFTWARE -
PHASE I: MULTIPROGRAMMING 
D. M. Forsyth, Psychology Department, 
Harvard University, Cambridge, Massachusetts, 
and M. M. Taylor and S. Forshow, Defence 
Research Estab I ishment Toronto , Toronto, 
Ontar io, Canada 

The PDP-9T is a PDP-9 with the addition of paging hardware, 
special traps, and modifications which translate lOT instruc
tions into specific calls to the system monitor. Phase lof 
software deve lopment for the system perm its several processes 
to occupy core simu Itaneously. All input/output is handled 
by the system monitor. Real-time tasks have high priority and 
are generally interrupt driven, e.g., are activated as nec
essary to process data. Background tasks such as editing, 
assembling and debugging are allocated time by an algorithm 
which seeks to keep constant the product of invocation rate 
and time quantum. The minimal system requires a PDP-9T 
with 16K of memory and 4 DECtapes. 

10:30 EXTENDED MEMORY FORTRAN WITH AN 
8K PDP-7* 
Phil ip R. Bevington, Department of Physics, 
Stanford University, Stanford, California 

A hardware modification to the PDP-7 and a FORTRAN sub
routine are described which permit the use of Extended 
Memory coding in FORTRAN II with an 8K memory PDP-7. 
Normally, this coding permits the storage of large data 
arrays outside the basic 8K of memory which contains the 
program and the Operating Time System. In the present 
system the extra memory is suppl ied by DECtape. A scratch 
pad consisting of several pages of 256 words each is retained 
within the basic 8K memory so that access to the DECtapes is 
relegated to transfers of blocks. Interpretation of extended 
memory addresses is accompl ished by trapping indirect ad
dresses outside of basic memory and using software to modify 
these addresses. Such a system perm its the use of larger 
arrays for data manipulation at the expense of time required 
for DECtape handl ing. In most cases, however, improved 
techniques of manipulation through the use of larger and more 

arrays more than offsets this expenditure of time. The phi
losophy of design and the relative advantages and disadvan
tages of such a system are discussed. 

*Supported by National Science Foundation 

11 :00 IMPLEMENTATION OF AN ON-LINE 
REACTIVE (TYPEWRITER) LANGUAGE 
David Z. Polack, University Computing 
Company, Dallas, Texas 

The language processor to be discussed is designed for use 
via reactive typewriter. It accepts, names, stores and 
manipulates character strings which may be used as names, 
data and/or procedure. List processing techniques are 
utilized in the processor implementation. 

The presentation is in the form of a tutorial session, which 
first places the language processor within the framework of 
the University Computing Company's FASBAC System. Sub
sequent discussion will inc lude: 

1. A brief description of the language for those unacquainted 
with it. 

2. Discussion of memory allocation in terms of the necessary 
coding, strings, stacks, vectors, communication zones, etc. 

3. The methodology of hand ling various strings. 

4. Dynamic II Garbage Collect ll
• 

5. Special handling of defined primitives. 

6. Additional primitives not included in previous literature. 

7. Discussion Period 

Reference may be made to: TRAC, A Procedure-Describing 
Language for the Reactive Typewriter; Calvin N. Mooers; 
Communications of the ACM, Volume 9/Number 3/March, 
1966. 

12:00 Lunch - Rose Garden 

SESS ION I (Afternoon) 

1: 15 PDP-9 MONITOR SYSTEM WORKSHOP 
David Leny and James Murphy, Digital 
Equipment Corporation, Maynard, Massachusetts 

This lecture, informal discussion period and demonstration is 
directed towards the design philosophy of the PDP-9 
ADVANCED Software Monitor System which centers on user 
convenience and optimum hardware utilization. 

The sub-topics will be: 

1. The comprehensive, device independent, input/output 
programming system which includes handlers for all the 
standard peripheral devices. 

2. The expa·nsion and specialization capabilities of the 
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system to utilize all central processor and standard or non
standard peripheral options. 

3. The keyboard control for automatic storage, retrieval, 
loading execution of all systems and user programs. 

4. Complete error analysis at monitor, input/output and 
system program leve Is. 

5. Background/Foreground (two user time sharing) Operating 
System. 

It is advised that the attendees prepare for this workshop by 
reading the Monitors Manual (DEC-9A-MAB,0-D) of the 
ADVANCED Software System. Copies may be obtained by 
contacting your local DEC Sales Office. 



3:30 A REAL-TIME, MULTIPLE TASK EXECUTIVE 
PROGRAM WITH A BUILT-IN CONSOLE 
UTILITY PACKAGE 
C. P. Martin, Jr., and R. L. Simpson, Oak 
Ridge National Laboratory, Oak Ridge, 
Tennessee 

An Executive Routine has been developed for the PDP-sis 
and PDP-S computers which schedu les process control tasks in 
real time and establishes operating priorities. The program 
including the utility package) occupies about one-third of a 
4096 word memory block and accommodates eight major control 
tasks. The only hardware addition of the standard computer 
configuration requ ired by the Executive is a real-time interrupt. 

3:45 FOCAL 
Rick Merrill, Digital Equipment Corporation, 
Maynard, Massachusetts 

A new small computer language called FOCAL has been de
signed and written at DEC to be used in Formu lating On- Line 
Calculations in Algebraic Language. This paper is adiscussion 
'Of how size (3K):" power (14 functions), and flexibility 
(several options) were achieved in designing an easy-to-use 
language and in programm ing it for the PDP-S fam i Iy of 
computers. 

SESSION II - PDP-S SOFTWARE WORKSHOP, NORTH CAMEO ROOM (Morning) 

Chairman: Michael S. Wolfberg, Moore School of Electrical 
Engineering, University of Pennsylvania 

10:00 PDP-S (DISK) OPERATING SYSTEM 
Char les Conley, Digital Equipment Corporation, 
Maynard, Massachusetts 

This lecture and discussion session is devoted to a presentation 
of the design philosophy of the PDP-S Disk software. The 
primary features exhibited are ease of use, increased thru-put 
and user I iberation from operator panel switch dependency. 

The following topics will be discussed: 

1. The philosophy behind the monitor development and the 
benefits to the user. 

2. The user monitor commands and internal structure of the 
monitor, including the core requirements, limitations, ex
tensions, and I/o device handling. 

3. The standard system programs attached to the Disk system, 
both for 4K memory and extended memory. A complete dis
cussion wi II be given describing the way programs are saved 
on the Disk, the general usage of the Disk as a program 
storage and data file storage device. 

It is advised that the attendees prepare for the workshop by 
reading the PDP-8 Disk Software (Basic) Manual (DEC-OS
SBAB-D). Copies may be obtained by contacting the local 
DEC Sales Office. 

12:00 Lunch - Rose Garden 

SESS ION II (Afternoon) 

1:15 DISC VERSION OF STRIP - A DATA 
DISPLAY AND ANALYSIS PROGRAM FOR 
THE PDP-S, S/I 
John Alderman, Georgia Institute of Tech
nology, Atlanta, Georgia 

A version of STRIP has been developed to take advantage of 
the storage capabil ities of the DF32 Disc Storage Un it. Tech
n iques of overl ay generat i on and ca II i ng, data storage and 
retrieval, and programming phi losophy for open-ended pro
grams to be modified by unski lied users are described. 

1 :45 PDP-S OSCILLOSCOPE DISPLAY OF 
MATHEMATICAL FUNCTIONS USING 
FORTRAN 
A. E. Sapega and S. G. Wellcome, 
Trinity College, Hartford, Connecticut 

A general-purpose program for oscilloscope display of 
mathematical functions wi II be described. Since the main 
program is written in FORTRAN the user need only insert the 
FORTRAN statement of h is function in a standard location. 
At object time he specifies the range of the independent 
variable. Following a scaling computation, the scaled 
function is computed and a table of values generated. These 
are displayed on an osci Iloscope by means of a binary program 
which is loaded at FORTRAN object time. Interactive features 
allow the user to re-specify the range of the independent 
variable to more closely examine the various ranges of the 
function under study. 
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The system described uses a PDP-S with 4K core and a type 
34D osci lIoscope display un it. 

2:15 A DISPLAY PROGRAMMING LANGUAGE 
(DPL) 
Jeffrey H. Kulick, Moore School of Electrical 
Engineering, University of Pennsylvania, 
Philadelphia, Pennsylvania 

This paper presents a description of a programming language 
for the PDP-S/33S known as Display Programming Language 
(DPL) and illustrates its use. This language has been imple
mented by the author. DPL allows the definition of simple 
data structures such as points and lines and the definition of 
arbitrari Iy complex structures called Displaygroups. A class 
of set operators (FOR A E B DO ... ) allows the user to 
selectively trave;seQ data structure. As part of the defini
tional language, a computational facility is available which 
allows the definition of structures algorithmically. 

DPL operates in two modes. The first, an interactive mode, 
allows the user to define, display, and modify structures from 
a Teletype console. The second mode, known as stored pro
gram, allows the user to define a sequence of DPL commands 
and then execute them as a program. Decision and recursive 
call statements are avai lable when operating in the stored 
program mode. 



2:45 THE FASBAC PROJECT-TIME DIVISION
MULTIPLEXING FOR THE PDP-S 
George E. Friend and Paul J. Bell, Technical 
Services Division, University Computing 
Company, Da II as, Texas 

Hardware modifications and software techniques for the 
efficient utilization of the 6S0 Data Communications System 
as a low-speed-line multiplexor for the University Computing 
Compan/s FASBAC Remote Access System are described. 

3:15 

3:30 

Coffee 

Discussion Session 

II Use of Large Computers for the Assembly of 
PDP-S Programs ll 

SESSION III - BIOMEDICAL, NORTH LOUNGE (Morning) 

Chairman: Prof. Belmont Farley, Johnson Foundation, 
University of Pennsylvania 

10:00 A PDP-6 LANGUAGE FOR SIMULATING 
COMPLICATED BIOCHEMICAL SYSTEMS 
David Garfinkel, Johnson Research Foundation, 
University of Pennsylvania, Philadelphia, 
Pennsylvan ia 

A language for simulating biochemical systems composed of 
complex sets of chemical reactions is described. This is 
written in FORTRAN IV; a machine-independent version of 
it has been prepared, but is appreciably more powerfu I when 
set up for on-line interaction, which is presently done with a 
PDP-6 including card reader, printer, and scope display. The 
input is in the form of chemical reactions and associated 
numbers, on cards; output in tabular and graphical form. The 
principal mathematical operation is the solution of differential 
equations representing the time behavior of the chemical 
concentrations, but alternative mathematical treatments are 
being added. A number of applications of this language will 
be described. 

10:30 A GENERAL LANGUAGE FOR ON-LINE 
CONTROL OF PSYCHOLOGICAL 
EXPERIMENTATION 
J. R. Millenson, Department of Psychology, 
University of Reading, Reading, England 

A problem-oriented language is being developed for on-line 
process control of psychological experimentation. The lan
guage consists of nested blocks of simple English statements 
fam i liar to every experimental psychologist. The function of 
this language is to produce an Automated Contingency Trans
lator (ACT) which samples and~pdates a ~mber of ind;pendent 
time-shared experimental environments 60 times a second. 
Experimental procedures are mapped by the ACT compiler from 
the English statements into a probabilistic finite state network 
in list stru cture format. An independent operat i ng system 
(which in the 4K version overwrites the compiler) then executes 
the list structure automata: i. e., runs the experiments, re
cords and retrieves data and admits low priority background 
programs in any available dead time. 

11 :00 TAPE STORE FOR BIOCHEMICAL DATA 
Harold W. Shipton, College of Medicine, 
University of Iowa, Iowa City, Iowa 

Signals from many biophysical instruments (e.g., gas chro
matographs) are characterized by their low data rate and by 
the long duration of an experimental run. Operations such 
as integration and base I ine drift correction are tedious to 
perform by hand but are easily implemented on a small scale 
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laboratory computer; a machine such as a LI NC can easi Iy 
hand I e the output from many photometr i c dev ices. The LI NC 
is designed for on-line real-time operation, and if it can be 
dedicated to data collection, no serious problems of inter
facing arise. In most laboratories, however, the computer is 
in use for other projects and economy dictates some form of 
intermediate storage such as punched paper tape-for the 
biochem ical data. 

In the system to be described an entertainment or office tape 
recorder is used. The analog signal (y) is continuously com
pared with its previous value and when a significant change 
is detected, tape motion begins and an arbitrary time code 
is written on the tape. From the time values and direction of 
change y = f{t) is reconstructed by a simple LI NC program 
when the tape is entered off I ine to the computer. The program 
is written to that variations in tape speed or recording level 
have a min imum chance of introducing errors. 

The system is simple, inexpensive and reliable enough to be 
used in routine laboratory appl ications. 

11 :30 BIOPHOSPHORESCENT ANALYSIS 
Alan Ferry and Richard Martin, Q. E.I., 
Computer and Information Systems, 
Winchester, Massachusetts 

If ultraviolet light is flashed on a bacterial plaque at 77° 
Kelvin, an optical triplet state of the ring membered ammino 
acids is induced and the organisms phosphoresce. Since the 
functional time decay of the phosphorescence is a sum of 
exponentials, bacterial samples may be characterized by 
parameters (coeffi cients and exponents) of the decay. Com
puter programs have been written to reduce noise in micro
spectrophotometer output sampled by the PDP-sis and to 
obtain the exponential parameters by successively stripping 
off each component. This research and development is being 
supported by the Office of Naval Research, BSD, Medicine 
and Dentistry Branch. 

12:00 Lunch - Rose Garden 



1: 15 

Topics: 

SESSION III (Afternoon) 

CLINICAL LABORATORY AUTOMATION 
PANEL DISCUSSION 

3. What are the capabilities of the ideal system for total 
automation in the clinical laboratory? 

4. How shou Id one implement such a system? 

1. The benefits to be derived from Clinical Chemistry 
Automation. 

Pane I Members: 

Dr. G. Phillip Hicks (Panel Leader) - University of Wisconsin 
a. With respect to improved chemistry and quality 
control. Dr. Ralph Thiers - Duke University 

b. With respect to decreasing laboratory costs, Dr. M. A. Evenson - University of Wisconsin 
tCllir'ninn+inn ,..I.::.ri,...nl {QIrt"'I"'\t"C:: nrl"'\"irlinl"'f f',.,C::+Qr cQr\/i,...,::. _ •••••••• _ ••• ,::;:1 -'-"--' _a._ ..... ' '-'_l"_"'~ ._ .... __ .... -11'._-' 
and better organ ization of the reported test resu Its. Prof. William Wattenburg - Berkeley Scientific Laboratories 

2. The dedicated laboratory computer versus the general 
purpose hospital data processing system for clinical laboratory 
automation. 

Dr. Hugo Pr ibor - Perth Amboy 

10:00 

12:00 

SESSION IV, PINK ROOM (Morning and Afternoon) 

Discussion on developments in multiprocessor 
PDP-1 O's. Hardware configurations and 
programming methods will be discussed and 
analyzed. 

Lunch - Rose Garden 

1 :15 PDP-6/10 SOFTWARE WORKSHOP 

Chairman: David R. Friesen, Digital Equipment Corporation 

Discussion of systems' software and new systems planned. A 
significant new PDP-10 product announcement wi II be made. 

DEMONSTRATIONS 

The following equipment wi II be available for demonstrations. 
Specific detai Is on time, etc. wi II be posted at the registration 
desk on Friday morning. 

1. PDP-8 and DEC-338 
Moore School of Electrical Engineering 

Use of the PDP-8 as a satellite to the IBM 7040. 
Appl i cations and systems programs for the DEC-338 Programmed 

Buffered Display. 
Various display demonstrations on the DEC-338. 

2. PDP-9 
Physics Department, David Rittenhouse Laboratory 

Control of Hough-Powell On-Line Flying Spot Digitizer 

3. PDP-6 
Johnson Foundation, Richards Bui Iding 

Time-Shared System, Biomedical Applications 
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