
Mlcro/RSX
1/0 Drivers Reference Manual
Order No. AA-Z507B-TC

Micro/RSX Version 3.0

digital equipment corporation · maynard, massachusetts

First Printing, December 1983
Revised, July 1985

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright 1983, 1985 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
EduSystem
lAS

DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DEC US
DECwriter

MASSBUS
MicroPDP-ll
Micro/RSTS
Micro/RSX
PDP

PDT
RSTS
RSX
UNIBUS
VAX
VMS
VT

~DmDD~D

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)*

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

"Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn: A&SG Business Manager

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
A&SG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

ZK2552

CONTENTS

Page

PREFACg ix

SUMMARY OF TECHNICAL CHANGES xi

CHAPTEI~ 1

1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.4
1.4.1
1.4.1.1

1.4.1.2
1.4.1.3
1.4.1.4
1.4.1.5
1.4.1.6
1.4.1.7
1.4.1.8
1.4.2
1.4.3
1.4.4
1.4.5
1.5
1.5.1
1.5.2
1.6
1.6.1
1.6.2

1.6.3
1.6.4
1.6.5
1.6.5.1
1.6.5.2
1.6.5.3
1.6.6
1.6.7
1.6.8
1.7
1.7.1
1.7.2
1.7.3
1.7.4
1.7.5
1.7.6
1.7.7
1.7.8
1.8
1.9
1.9.1
1.9.2
1.9.3

MICRO/RSX INPUT/OUTPUT

OVERVIEW OF MICRO/RSX I/O • • • • • 1-1
PHYS ICAL, LOG ICAL, AND VI RTUAL I/O • • • •• • 1-2
LOGICAL UNIT • • • • • • • • • • • •• 1-3

Logical Unit Number •••••••••••• 1-3
Logical Unit Table • • • • • • • 1-3
Changing LUN Assignment • • • 1-4

ISSUING AN I/O REQUEST • • • 1-4
QIO$ Macro Format • 1-6

Syntax Elements: Brackets [], Angle Brackets
<>, Braces {} ••• 1-6
FNC Parameter ••••• • • • • • 1-7
LUN Parameter •••• • • • • • •• 1-7
EFN Parameter • • • • •• 1-8
PRI Parameter •••• • • • • • • • ••• 1-8
ISB Parameter • • • • • • 1-8
AST Parameter • • • • ••• 1-9
P1,P2, ••• ,P6 Parameters •••• • 1-9

Significant Event • • • • • • • • ••• 1-9
Event Flag • • • • • • • • • • • 1-10
System Trap ••••••• 1-10
Asynchronous System Trap • • • • 1-11

DIRECTIVE PARAMETER BLOCK • • • • • 1-12
I/O Packet • • • • • • • • • • • 1-13
Significant Event Declaration • • • • 1-13

I/O RELATED MACRO • • • • • •• • • • • 1-13
The QIO$ Macro: Issuing an I/O Request. 1-15
The QIOW$ Macro: Issuing an I/O Request and
Waiting for an Event Flag •••••••• • •
The DIR$ Macro: Executing a Directive ••••
The .MCALL Directive: Retrieving System Macros
The ALUN$ Macro: Assigning a LUN

Physical Device Name • • • • • • • • • • • •
Nonphysical Device Name • • • • • • •
Pseudo-Device Name • • • • • • • • • • • • •

The GLUN$ Macro: Retrieving LUN Information
The ASTX$S Macro: Terminating AST Service
The WTSE$ Macro: Wait for Single Event Flag •

STANDARD I/O FUNCTION • • • • • •
I/O Subfunction Bit •••••••••••
QIO$C IO.ATT - Attaching to an I/O Device
QIO$C IO.DET - Detaching from an I/O Device
QIO$C IO.KIL - Canceling I/O Requests
QIO$C IO.RLB - Reading a Logical Block ••
QIO$C IO.RVB - Reading a Virtual Block •
QIO$C IO.WLB - Writing a Logical Block
QIO$C IO.WVB - Writing a virtual Block •

USER-MODE DIAGNOSTIC FUNCTIONS •
I/O COMPLETION • • • • • • • • • • •

Return Codes • • • • • •
QIO$ Macro Condi tions ••••
I/O Status Conditions

iii

1-15
1-15
1-16
1-17
1-18
1-18
1-19
1-19
1-22
1-22
1-24
1-24
1-25
1-26
1-26
1-27
1-28
1-29
1-30
1-31
1-33
1-34
1-35
1-36

1.10

1.11

CHAPTER 2

2.1
2.1.1

CONTENTS

POWER-FAIL RECOVERY PROCEDURES FOR DISKS AND
DECTAPE • • • • • • • • • •
MICRO/RSX DEVICES ••• • • •

FULL-DUPLEX TERMINAL DRIVER

INTRODUC~ION • • • •
The Full-Duplex Terminal Driver and Supported

1-40
1-40

• 2-1

Devices •• • • • • • • • • 2-1
2.2 GET LUN INFORMATION MACRO • • • • • • • • 2-2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.4.1
2.4.4.2
2.4.5
2.4.6

QIO$ MACRO • • • • • • • • • • • • • • • • • 2-3
Format of QIO$C for Standard Functions • • • • • 2-3
Format of QIO$C for Device-Specific Functions • 2-3
Parameters • • • • • • • • • • • • • • • • 2-6
Subfunction Bits • • • • • • • • • • • • • 2-7

DEVICE-SPECIFIC QIO FUNCTIONS •••••• 2-12
Functions and Allowed Subfunctions • • • 2-12
QIO$C IO.ATA - Attach a Terminal with ASTs •• 2-13
QIO$C IO.CCO - Cancel CTRL/O • • • • • • • 2-16
QIO$C IO.EIO - Extended I/O Functions 2-18

Item List 1 for IO.EIO!TF.RLB 2-23
Item List 2 for IO.EIO!TF.WLB •••• 2-25

QIO$C IO.GTS - Get Terminal Support 2-26
QIO$C IO.HNG - Disconnect a Terminal • • • 2-28

2.4.7 QIO$C IO.RAL - Read all Characters Without
Interpretation • • • • • • • • • • • • • • 2-29

2.4.8
2.4.9
2.4.10

QIO$C IO.RNE - Read Input Without Echoing 2-31
QIO$C IO.RPR - Send Prompt, Then Issue Read • 2-33
QIO$C IO.RST - Read Logical Block with Special
Terminators •••••••••••••• 2-37

2.4.11
2.4.12

QIO$ IO.RTT - Read with Terminator Table. •• 2-39
QIO$C IO.WAL - Write a Logical Block and Pass
all Bits • • • • • • • • • • • • • • •• 2-41

2.4.13

2.4.14
2.4.14.1
2.4.15
2.4.15.1

QIO$C IO.WBT - Break Through to Write a Logical
Block • •
QIO$C SF.GMC - Get Multiple Characteristics

Characteristic Bit Special Information •••
QIO$C SF.SMC - Set Multiple Characteristics

Characteristic Processing for TC.MHU, TC.SSC,
and TC.OOB • • • • • • • • • • • • • • •

2.4.15.2 Side Effects of Setting Characteristics
2.5 STATUS RETURNS ••••••••
2.6 CONTROL CHARACTERS AND SPECIAL KEYS
2.6.1 Control Characters. • • ••••
2.6.2 CTRL/C Processing ••• •• • •••
2.6.3 Special Keys •••••••••••••
2.7 ESCAPE SEQUENCES •••••••••••••
2.7.1 Definition of Escape Sequence Format
2.7.2 Prerequisites ••••••••••
2.7.3 Characteristics ••••••••
2.7.4 Escape Sequence Syntax Violations ••••
2.7.4.1 DELETE or RUBOUT (177) ••••••
2.7.4.2 Control Characters (0-037) ••••
2.7.4.3 Full Buffer •••••••••••
2.7.5 Exceptions to Escape Sequence Syntax.
2.8 VERTICAL FORMAT CONTROL •••••••
2.9 AUTOMATIC CARRIAGE RETURN ••••••
2.10 HARD RECEIVE ERROR DETECTION ••••••
2.11 TASK BUFFERING OF RECEIVED CHARACTERS
2.12 TYPE-AHEAD BUFFERING •••••••••
2.13 FULL-DUPLEX OPERATION •••••••••••••
2.14 PRIVATE BUFFER POOL ••••••••••••••
2.15 INTERMEDIATE INPUT AND OUTPUT BUFFERING
2.16 TERMINAL-INDEPENDENT CURSOR CONTROL ••••••
2.17 PROGRAMMING HINTS •••••••••••

iv

r

2-44
2-46
2-52
2-54

2-55
2-57
2-58
2-62
2-62
2-65
2-66
2-67
2-67
2-68
2-68
2-69
2-69
2-69
2-69
2-69
2-70
2-71
2-71
2-72
2-72
2-73
2-74
2-74
2-74
2-75

2.17.1
2.17.2

CHAPTER 3

3.1
3.1.1
3.1.1.1
3.1.1.2
3.1.2
3.1.3
3.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4

CHAPTER 4

4.1
4.2
4.3
4.4
4.5
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.7
4.7.0.1
4.S
4.9
4.10
4.10.1
4.10.2
4.10.3
4.10.4
4.10.5
4.10.6
4.11
4.12
4.12.1
4.12.2
4.12.3
4.12.3.1
4.12.3.2
4.12.3.3
4.12.3.4
4.12.4
4.13
4.13.1

CONTENTS

Modem Support • • • • • • • • • • • • •• 2-75
Checkpointing During Terminal Input 2-76

DISK DRIVERS

INTRODUCTION • • • • • • • • • • • • • • • •• 3-1
DUDRV.TSK • • • • • • • • • • • • • • • • • 3-1

RC25 Disk Hardware Description • • • • • 3-1
KDA50 Controller Hardware Description • 3-1

DLDRV.TSK • • • • ". • • • • • • • 3-2
DYDRV.TSK • • • • • • • • • • • • • • 3-2

GET LUN INFORMATION MACRO • • • • • • •• 3-2
QIO MACRO • • • • • • • • • • • • • 3-3

Standard QIO Functions • • • • 3-3
Device-Specific QIO Functions. • • • • • • 3-4
Device-Specific QIO Function for DU: Devices • • 3-5

STATUS RETURNS • • • • • • • • • 3-5
POWER-FAIL RECOVERY • • • • • • 3-S
PROGRAMMING HINTS ••• • • • • • • • • 3-S

RL02 Last Track Bad-Sector File •••••••• 3-S
RX02 Media Characteristics • • • • • • • • 3-9
Stall I/O for RC25 Disks • • • • • • • • • 3-9
Dismounting the RC25 • •• • • • • • • 3-10

TAPE DRIVERS

INTRODUCTION • • • • • • • • • •
MSDRV - TSV05/TK25 MAGNETIC TAPE

. 4-1

MUDRV - TK50 MAGNETIC TAPE • • • • • • •
GET LUN INFORMATION MACRO
STANDARD QIO$ FUNCTIONS • • • • • • • •
DEVICE-SPECIFIC QIO$ FUNCTIONS • • • • • •

IO.RLV • • • • • • • • •
10. RWD ••••••

• • • 4-1
• • 4-1

• 4-1
• • • 4-2

• 4-3
• • 4-3

• 4-3
IO.RWU • • • • 4-4
IO.ERS •••• • 4-4
IO.DSE • • • 4-5
IO.SEC • • 4-5
IO.SMO •• • 4-6

STATUS RETURNS • • • • 4-6
Select Recovery • • • • • • • • • 4-9

RETRY PROCEDURES FOR READS AND WRITES
POWER-FAIL RECOVERY FOR MSDRV/MUDRV TAPES
PROGRAMMING HINTS •••• • • • • • • • • •

Block Size • • • • • • • • • • • • • • • • • •
Importance of Resetting Tape Characteristics •

4-10
4-10
4-10
4-10
4-11
4-11 Aborting a Task ••••••• • • • •

End-of-Volume Status (Unlabeled Tape)
Resetting Tape Transport Status or VCK
Issuing QIOs • • • • • • • • • • •

• • •• 4-11
• • •• 4-12

4-12
BLOCK SIZE ON TAPES MOUNTED /NOLABEL • • •• 4-13
DDDRV - TU5S CARTRIDGE TAPE • • • •

Get LUN Information Macro • • • •
Standard QIO$ Functions • • • • • •
Device-Specific QIO$ Functions • • • • • •

IO.WLC ••• • • • • • • •

4-13
4-13
4-14
4-15
4-15

IO.RLC • • •
IO.BLS • • •

. 4-15

IO.DGN • • • • • • •
Status Returns •

PROGRAMMING HINTS •••• • • • • • •
Block Size on Tapes Mounted /NOLABEL •

v

4-16
4-16
4-16
4-17
4-17

CHAPTER 5

5.1
5.2
5.3
5.4
5.4.1
5.5
5.6
5.6.1
5.6.2
5.6.3

CHAPTER 6

6.1
6.2
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.1.4
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.4

CHAPTER 7

APPENDIX A

A.l
A.2
A.3
A.4
A.5
A.6

APPENDIX B

B.l
B.l.l
B.l.2
B.2
B.2.1
B.2.2
B.3
B.3.1
B.3.2

B.3.3

B.3.4

B.3.5

B.3.6

B.3.7

CONTENTS

LINE PRINTER DRIVER

INTRODUCTION • • • • • • • •
GET LUN INFORMATION MACRO
QIO MACRO
STATUS RETURNS • . • • •

Ready Recovery • • • • •
VERTICAL FORMAT CONTROL
PROGRAMMING HINTS

RUBOUT Character • • •
Print Line Truncation
Aborting a Task

VIRTUAL TERMINAL DRIVER

INTRODUCTION • •
GET LUN INFORMATION MACRO
QIO MACRO • • • • • •

Standard QIO Functions

• • 5-1
• • • • 5-1

• 5-2
• • • 5-3

• 5-4
• • • • 5-4

• • 5-5
• 5-5

• • 5-6
• 5-6

• • 6-1
• 6-1
• 6-2
• 6-4

IO.ATT • • ••• 6-4
IO.DET ••••• • 6-4
IO.KIL •••••• • • 6-4

6-4 IO.RLB, IO.RVB, IO.WLB, IO.WVB •
Device-Specific QIO Function (IO.STC) • • • • • 6-4
SF.GMC • • ••••
IO.GTS • • . •••••
IO.RPR •
SF.SMC

• • • 6-6
• 6-6

• • • • 6-6
• • 6-6

STATUS RETURNS • • • • • • • • • 6-7

NULL DEVICE DRIVER

SUMMARY OF I/O FUNCTIONS

TU58 DRIVER • • . • • •
DISK DRIVER • • • • • •
LINE PRINTER DRIVER • • • •
MAGNETIC TAPE DRIVER
TERMINAL DRIVER • • • •
VIRTUAL TERMINAL DRIVER

I/O FUNCTION AND STATUS CODES

• A-I
• A-I
• A-2
• A-2

• • • A-3
• A-4

• B-1 I/O STATUS CODES • • • • •
I/O Status Error Codes • •
I/O Status Success Codes •

DIRECTIVE CODES .•••••

• • • • • • • • • • • B-1
• • • • •• • B-5

• • • B-5
Directive Error Codes ••••••••
Directive Success Codes

I/O FUNCTION CODES • • • • •
Standard I/O Function Codes • • • • • •

B-5
B-7

• B-7
• • B-7

Specific A/D Converter I/O Function Codes -
RSX-IIM-PLUS Only • • • • • • • • • • • • • • • B-7
Specific Card Reader I/O Function Codes -
RSX-IIM-PLUS Only • • • • • • • • • • • • • • • B-7
Specific Cassette I/O Function Codes -
RSX-IIM-PLUS Only • • • • • • • • • • • • • • • B-7
Specific Communication (Message-Oriented) I/O
Function Codes - RSX-IIM-PLUS Only • • . · B-8
Specific DECtape I/O Function Codes -
RSX-IIM-PLUS Only • • • • • • •
Specific DECtape II I/O Function Codes .

• • • B-8
• B-8

vi

B.3.8
B.3.9

B.3.10

B.3.11

B.3.12

B.3.13
B.3.14

B.3.14.1
B.3.14.2
B.3.15
B.3.16

B.3.17

B.3.18

APPENDIX C

FIGURE:S

TABLES

C.l
C.l.l
C.l.2
C.l.2.1
C.l.2.2
C.l.2.3
C. 1.3
C.l.4
C.l.5
C.2
C.3
C.4
C.5
C.6
C.6.1
C.6.2
C.6.3
C.6.4
C.6.5
C.7

1-1
1-2
2-1
2-2
2-3
2-4
2-5
7-1
C-l

1-1
1-2
1-3
2-1

CONTENTS

Specific Disk I/O Function Codes • • • • • • •
Specific Graphics Display I/O Function Codes -
RSX-IIM-PLUS Only • • • • • • • • •
Specific ICS/ICR, DSS/DR I/O Function Codes -
RSX-IIM-PLUS Only • • • • • • • • • • • •
Specific LPAI1-K I/O Function Codes -
RSX-IIM-PLUS Only • • • • • • • • • •
Specific LPS I/O Function Codes - RSX-IIM-PLUS
Only • • • • • . • . • • • • • • • . • • •
Specific Magnetic Tape I/O Function Codes
Specific Parallel Communications Link I/O
Function Codes - RSX-IIM-PLUS Only •

Transmitter Driver Functions ••••••
Receiver Driver Functions •••••••

Specific Terminal I/O Function Codes • • • • •
Specific UDC I/O Function Codes - RSX-IIM-PLUS
On ly .
Specific UNIBUS Switch I/O Function Codes -
RSX-IIM-PLUS Only • • • • • • • • • • • • • •
Specific Virtual Terminal I/O Function Codes •

QIO$ INTERFACE TO THE ACPS

• B-9

• B-9

B-I0

B-ll

B-ll
B-12

B-12
B-12
B-13
B-13

B-14

B-15
B-15

QIO$ PARAMETER LIST FORMAT • • • • • • • • • C-l
File Identification Block •••••
The Attribute List • • • • • • •••

The Attribute Type ••••••••••
Attribute Size • • • • •• • •••
Attribute Buffer Address •

Size and Extend Control
Window Size and Access Control • • • • •
File Name Block Pointer •••••••••

PLACEMENT CONTROL • • • • •
BLOCK LOCKING •• • • • • • • • • • •
SUMMARY OF FIIACP FUNCTIONS • • • • • •
SUMMARY OF MTAACP FUNCTIONS •••••
HOW TO USE THE ACP QIO$ FUNCTIONS

Creating a File •••••••
Opening a File • • •••••

• C-2
• • • C-2

• • C-2
• C-4

• • C-5
• C-5
• C-5

• • • C-6
• C-7

• • C-7
C-8

• C-9
C-12
C-12

Closing a File • • • •• • •••
C-12
C-13
C-13 Extending a File ••••••

Deleting a File • • • • • ••••••
ERRORS RETURNED BY THE FILE PROCESSORS

Logical Unit Table .••••••••

C-13
C-13

• • 1-4
1-13
2-23
2-25
2-55
2-56
2-56

QIO$ Directive Parameter Block ••••
Structure of the Item List 1 Buffer
Structure of the Item List 2 Buffer
Buffer Required for TC.MHU ••••••
Buffer Required for TC.SSC ••••••••
Buffer Required for TC.OOB • • • ••
Indirect TKB Command File TESTBLD.CMD.
File Identification Block •• • •••••

• • • • 7-1

Get LUN Information
Macro Conditions ••••••••••
I/O Status Conditions ••••
Standard and Device-Specific QIO$ Functions for

• • C-2

1-20
1-35
1-37

Terminals • • • • • • • • • • • • • • • 2-4

vii

CONTENTS

2-2 Subfunction Bits - Summary. • • • • • • • • •• 2-12
2-3 Information Returned by Get Terminal Support

(IO.GTS) QIO$ • • • • • ••• • • • • • •• 2-27
2-4 Terminal Characteristics for SF.GMC and SF.SMC

Functions ••••••••••••••••••• 2-47
2-5 Bit TC.TTP (Terminal Type) Values Set by SF.SHC

and Returned by SF.GMC • • • • • • • • • • • 2-51
2-6 Terminal Status Returns • • • • 2-58
2-7 Terminal Control Characters • • • • • 2-62
2-8 Special Terminal Keys • • • 2-66
2-9 Vertical Format Control Characters • • • • • 2-70
3-1 Standard QIO Functions for Disks • • • • • • • • • 3-3
3-2 Device-Specific Functions for the RX02 and RL02

Disk Drives •••••••• • 3-4
3-3 Device-Specific QIO Function for the DUDRV Disk

Driver • 3-5
3-4 Disk Status Returns • • • • • • • • • • • • 3-5
4-1 Standard QIO$ Functions for TSV05/TK25/TK50 • 4-2
4-2 Device-Specific QIO$ Functions for Supported Tape

Devices ••• • • • • • • • • • • • • • •• • 4-4
4-3 MSDRV/MUDRV Tape Status Returns ••••••••• 4-6
4-4 Information Contained in the Second I/O Status

Word • • . • • • • • • • • • • • • • . • 4-9
4-5 Standard Q10$ Functions for the TU58 • • • • 4-14
4-6 Device-Specific QIO$ Functions for the TU58 4-15
4-7 TU58 Driver Status Returns • • • • • • • 4-16
5-1 Standard QIO Functions for Line Printers • 5-2
5-2 Line Printer Status Returns ••••••• • 5-3
5-3 Vertical Format Control Characters • • • 5-5
6-1 Standard and Device-Specific Q10 Functions for

virtual Terminals •••••••••••• • • 6-2
6-2 Virtual Terminal Chazacteristics • • • • • 6-7
6-3 Virtual Terminal Status Returns for Offspring Task

Requests • • • • • • • • • • • • • • • • • • 6-7
6-4 Virtual Terminal Status Returns for Parent Task

Requests • • • • • • • • • • • • • • • • • • • 6-8
C-l Maximum Size for Each File Attribute • C-4
C-2 File Processor Error Codes • • • • • • C-13

viii

PREP ACE

MANUAL OBJECTIVES

The purpose of this manual is to provide all the information needed to
use the I/O device drivers supplied as part of the Micro/RSX system.

INTENDBD AUDIENCE

This m,anual is for experienced Micro/RSX programmers who want to take
advantage of the time or space savings that result from direct use of
the I/O drivers. Readers should be familiar with the information
contained in the RSX-llM/M-PLUS and Micro/RSX Executive Reference
Manual, have some experience using--the Task Builder and either
MACRO-ll or FORTRAN languages, and be familiar with the manuals
describing their use.

STRUCTURE or THB MANUAL

Chapter 1 provides an overview of Micro/RSX input/output operations.
It introduces you to the use of logical unit numbers, directive
parameter blocks, event flags, macro calls, and so on; includes
discussions of the standard I/O functions common to a variety of
devices; and summarizes standard error and status conditions relating
to completion of I/O requests.

Chapters 2 through 7 describe the use of all device drivers supported
by Micro/RSX. Each of these chapters is structured in similar fashion
and focuses on the following basic elements:

• The device, including information on physical characteristics
such as speed, capacity, access, and usage

• The standard functions that the devices
descriptions of device-specific functions

support and

• The special characters, carriage control codes, and functional
characteristics, if relevant

• The error and status conditions that the driver returns on
acceptance or rejection of I/O requests

• Programming hints

Appendixes A through C provide quick reference material on I/O
functions and status codes.

ix

PREFACE

ASSOCIATED MANUALS

The following Micro/RSX manuals may be useful:

• RSX-IIM/M-PLUS and Micro/RSX Executive Reference Manual

• RSX-IIM/M-PLUS and Micro/RSX Task Builder Manual

• PDP-II MACRO-II Language Reference Manual

• Micro/RSX Release Notes

In addition, documentation for programming in any of the MicroPDP-11
languages may be helpful.

CONVENTIONS USED IN THIS MANUAL

The following conventions are observed in this manual.

Convention

, , ,

Meaning

Square brackets; enclose optional syntax

Braces; indicate that one of the enclosed items
must be selected.

Horizontal ellipsis; indicates that parameters
have been omitted. In QIO macro calls in this
manual, indicates that standard QIO parameters
have been omitted.

Consecutive commas; used in coding examples to
indicate null arguments. You may omit commas that
indicate null trailing optional arguments.

Furthermore, except in MACRO-II coding examples, all numbers are
assumed to be decimal unless otherwise specified. In MACRO-II coding
examples, the reverse is true: all numbers are considered to be octal
unless followed by a decimal point (which indicates a decimal number).

Finally, in FORTRAN subroutine models, parameters that begin with the
letters i through n prefixes, the i form indicates the name of an
array and the n form specifies the size of the array.

All integer arrays and variables are assumed to occupy one storage
word per variable (that is, INTEGER2) and all real arrays and
variables are assumed to occupy two storage words per variable (that
is, REAL4).

x

SUMMARY OF TECHNICAL CHANGES

This reV1Slon of the Micro/RSX I/O Drivers Reference Manual reflects
the following software technical changes and additions:

• A new I/O function, IO.EIO (Extended I/O), which contains new
subfunctions, has been added to the full-duplex terminal
driver.

• Support for the DZQll 4-line terminal
replacement, has been added to the
driver.

multiplexer,
full-duplex

a DZVll
terminal

• Support of the full-duplex terminal driver has been extended
to allow its use as a Network Command Terminal.

• Support for the RC25 and RD52 disks, the KDA50 controller, and
the RQDX2 controller (an MSCP RQDXl replacement controller)
has been added to the disk drivers.

• Support for the TK25 and TK50 magnetic tape drives has been
added to the tape drivers.

In addition to these changes, Chapters land 2 have been reorganized
to make the information more easily accessible to the reader.
Appendixes A and B have been updated to reflect the new I/O functions,
subfunctions, and error codes that have been included.

xi

CHAPTER 1

MICRO/RSX INPUT/OUTPUT

1.1 OVERVIEW OF MICRO/RSX I/O

This manual describes all of the Micro/RSX input/output (I/O) device
driver~; supported by the system. It gives driver characteristics,
functions, error conditions, and provides programming hints for each.
The drivers described in this manual are supplied by Digital Equipment
Corporation as part of the system software to support associated
devices. Devices not mentioned in this manual can be added to basic
system configurations, but users must develop and maintain their own
drivers for these devices. (See the RSX-llM-PLUS Guide to Writing an
I/O Driver.)

The following loadable drivers are always loaded in the Micro/RSX
system::

10 Terminal Driver (TTDRV.TSK)

2. Virtual Terminal Driver (VTDRV.TSK)

3. Winchester Fixed-Disk/ S.2S-inch Diskette Driver (DUDRV.TSK)

4. Reconfiguration Driver (RDDRV.TSK)

5. Null Device Driver (NLDRV.TSK)

The following loadable drivers are for the optional hardware devices
and a:re not pre-loaded into the Micro/RSX system. These dr i vers are
loaded automatically at system start-up, if the Autoconfigure task
finds the associated device connected to the system.

1. Removable Cartridge Disk Driver (DLDRV.TSK)

2. TUS8 Cartridge Tape Driver (DDDRV.TSK)

3. a-Inch Diskette Driver (DYDRV.TSK)

4. Line Printer Driver (LPDRV.TSK)

5. TK2S Cartridge Tape Driver (MSDRV.TSK)

6. TKSO Cartridge Tape Driver (MUDRV.TSK)

Device drivers are operating system programs that communicate directly
with the hardware devices connected to your microcomputer. A driver
is the dividing line between Micro/RSX Executive system software and
the hardware devices. Each driver recognizes specific types of
hardware devices. This means each driver knows how to interpret the
unique control signals sent by a particular hardware device and is
programmed to notify the Executive when the device is ready to send or

1-1

MICRO!RSX INPUT/OUTPUT

receive data. At the operating system end, the Executive receives I/O
requests from tasks and queues them as they are issued. These
requests are then issued to the driver according to the relative
priorities of the tasks that issued them. Tasks issue I/O requests in
the form of macros called Queue I/O (QIO$) system macros.

QIO$s are used for MACRO-II I/O programming at the driver level with
all I/O requests sent directly to the Executive QIO$ processor.
MACRO-II I/O programming can also be done at a higher level by using
either the File Control Services or Record Management Services. These
services provide a high-level MACRO-II I/O language user interface
that generates the appropriate QIOs for a requested I/O operation.

All of the I/O services described in this manual are requested by the
user in the form of QIO$ system macros. A function code included in
the QIO$ macro indicates the particular input or output operation to
be performed. I/O functions can be used to request such operations as
the following:

• Attaching or detaching a physical device unit for a task's
exclusive use

• Reading or writing a logical or virtual block of data

• Canceling a task's I/O requests

Although input/output operations under Micro/RSX are extremely
flexible and are as device- and function-independent as possible,
there are device-specific input/output operations, such as
disconnecting a terminal on a remote line and reading or writing a
physical block, that can also be specified with QIO$ macros.

Device independence is achieved by associating logical units with
physical units. Programs issue I/O requests to logical units that
have been previously associated with particular physical device units.
Each program or task is able to establish its own correspondence
between physical device units and logical unit numbers (LUNs).

1.2 PHYSICAL, LOGICAL, AND VIRTUAL I/O

There are three possible modes in which an I/O transfer can take
place: physical, logical, and virtual.

Physical I/O concerns reading and writing data in the actual physical
units accepted by the hardware (for example, sectors on a disk). For
most devices, physical I/O is identical to logical I/O in that a
256-word (512-byte) logical block exactly matches the size of a sector
on disk. In the case of the RX02 flexible disk recorded in double
density, the physical and logical blocks are different. Data for the
RX02 is recorded in physical sectors of 128 words each. Therefore,
logical blocks for the RX02 are made up of two physical sectors each.

Logical I/O concerns reading and writing data in blocks that are
convenient for the operating system. In most cases, logical blocks
map directly into physical blocks. For block-structured devices (for
example, disks), logical blocks are numbered beginning at O. For
non-black-structured devices (for example, terminals), logical blocks
are not addressable.

1-2

MICRO/RSX INPUT/OUTPUT

Virtual I/O concerns reading and writing data to open files. In this
case, the Executive maps virtual blocks into logical blocks. For
file-structured devices (disks or TUS8 Tape), virtual blocks are the
same size as logical blocks and are numbered starting from one (1);
they are relative to the file rather than to the device. For
non-file-structured devices, the mapping from virtual block to logical
block is direct.

1.3 LOGICAL UNIT

This section describes the construction of the logical unit table and
the use of logical unit numbers.

1.3.1 Logical Unit Number

A logical unit number (LUN), is a number associated with a physical
device unit during I/O operations. For example, LUN 1 might be
associated with one of the terminals in the system, LUNs 2, 3, 4, and
S with TUS8 tape drives, and LUNs 6, 7, and 8 with disk units. The
association is a dynamic one; each task running in the system can
establish its own correspondence between LUNs and physical device
units, and can change any LUN to physical device-unit association at
almost any time. The flexibility of this association contributes
heavily to system device independence.

A logical unit number is a short name that represents a logical-unit
to physical-device-unit association. Once the association has been
made, the LUN provides a direct and efficient mapping to the physical
device unit, and eliminates the necessity to search the device tables
whenevE~r the system encounters a reference to a physical device unit.

You should remember that, although a LUN to physical device-unit
association can be changed at any time, reassignment of a LUN at run
time causes pending I/O requests for the previous LUN assignment to be
canceled. It is your responsibility to verify that all outstanding
I/O requests for a LUN have been serviced before that LUN is
associated with another physical device unit.

1.3.2 Logical unit Table

There is one Logical Unit Table (LUT) for each task running in an
Micro/RSX operating system. The task header contains this table as a
variable-length block. Each LUT contains enough 2-word entries for
the number of logical units. You specify the number of logical units
in the Task Builder by the "UNITS=" option when you build your task.

The first word of each 2-word entry contains a pointer to the Unit
Control Block that represents the physical device unit currently
associated with that LUN. This linkage may be indirect; that is, you
may force redirection of references from one unit to another unit with
the DCL command ASSIGN/REDIRECT. The second word of each 2-word entry
is reserved for a pointer to the window block of the task that has a
file open and mounted. The window block contains pointers to areas on
the file that are accessed by the task.

1-3

MICRO/RSX INPUT/OUTPUT

Whenever your task issues an I/O request, the system matches the
appropriate physical device unit (by using the Unit and Device Control
Blocks and other structures) to the LUN that the call specifies. The
system does this by indexing into the LUT by the LUN number. Thus, if
the call specifies 6 as the LUN, the system accesses the sixth 2-word
entry in the LUT and associates the I/O request with the physical
device unit to which the entry points. The number of LUN assignments
valid for a task ranges from 0 to 255, but it cannot be greater than
the number of LUNs specified at task-build time.

Figure 1-1 illustrates a typical Logical Unit Table.

I Number of LUNs

Pointer to UCB of LUN 1
~ - - - - --

POinter to window block of LUN 1

Pointer to UCB of LUN 2
~ - - - - --

Pointer to window block of LUN 2

Pointer to UCB of LUN 3

- - - - - --
Pointer to window block of LUN 3

Pointer to UCB of LUN 4
- - - - - - -

Pointer to window block of LUN 4

ZK-4078-85

Figure 1-1 Logical Unit Table

1.3.3 Changing LUN Assignment

Logical unit numbers have no significance until you associate a LUN
with a physical device unit by using one of the following methods:

• At the time you build the task that is to do the I/O
operation, you can specify an ASG (Assign) keyword option to
the Task Builder. This option associates a physical device
unit with a logical unit number referenced by the task being
built.

• You or the system operator can issue a DCL DEASSIGN command
followed by a DCL ASSIGN/REDIRECT command. This command
reassigns a LUN to another physical device unit and thus
changes the correspondence between the LUN and the physical
device unit. Note that this reassignment has no effect on the
in-core image of a task.

• At run time, a task can dynamically change a LUN assignment by
issuing the Assign LUN Executive macro (ALUN$). This changes
the association of a LUN with a physical device unit during
task execution.

1.4 ISSUING AN I/O REQUEST

Your tasks perform I/O in the Micro/RSX system by submitting requests
for I/O service as Queue I/O (QIO$) or Queue I/O And Wait (QIOW$)
Executive macro. See the RSX-IIM/M-PLUS and Micro/RSX Executive
Reference Manual for a complete description o~ystem macros.

1-4

MICRO/RSX INPUT/OUTPUT

The Micro/RSX operating system has a set of system macros that make
issuing 010$ macros easier. You must make these macros available to
the source program by placing the MACRO-II Assembler macro • MCALL in
the source program. The macros reside in the System Macro Library
(LB: [l,l]RSXMAC.SML). Section 1.6.4 describes the function of .MCALL.

In Micro/RSX, "as in most multiprogramming systems, tasks do not
normally access physical device units directly. Instead, they use I/O
services that the Executive provides, because it can effectively
multiplex the use of physical device units over many tasks. The
Executive routes I/O requests to the appropriate device driver and
queues them by the priority of the requesting task. I/O operations
proceed concurrently with other activities in a Micro/RSX system.

Before the Executive queues a 010$ request to the driver, the 010$
must pass a series of tests executed by the Executive. If the request
fails, the Executive rejects it. The Executive signals this rejection
by setting the C-bit. As good programming practice, you should check
for macro rejection by following the 010$ macro with a MACRO-II BCS
instruction. (In a high-level language, the status is returned in a
single-word variable which is specified as part of the call.)

After the Executive queues an I/O request, the system does not wait
for the operation to complete. Perhaps the task that issued the 010$
request cannot proceed until the I/O operation completes. In this
case, the task should specify an event flag (see Sections 1.4.3,
1.5.2, and 1.6.2) in the 010$ request and should issue a Wait For
Single Event Flag (WTSE$) Executive macro specifying the same event
flag at the point where synchronization must occur. Your task then
waits for the I/O to complete by waiting for the Executive to set the
specified event flag.

The 010$ and Wait (OIOW$) macro is a more economical way to achieve
this synchronization. OIOW$ waits until the system completes the I/O
before returning control to the task. Thus, the additional WTSE$
macro is not necessary.

Each 010$ or OIOW$ macro must supply sufficient information to
identify and queue the I/O request. You may also want to include
locations in your task to receive error or status codes, and to
specify the address of an asynchronous system trap service routine.
Certain types of I/O operations require the specification of
device-dependent information as well. Typical 010$ parameters are the
following:

• I/O function to be performed

• Logical unit number associated with the physical device unit
to be accessed

• Optional event flag number for synchronizing I/O completion
processing (required for OIOW$)

•

•

Optional address of the I/O
Executive returns information
unsuccessful completion

status block
indicating

to which
successful

the
or

Optional
routine
request

address of an asynchronous system trap service
in your task to be entered upon completion of the I/O

• Optional device- and function-dependent parameters specifying
such items as the starting address of a data buffer, the size
of the buffer, and a block number

1-5

MICRO/RSX INPUT/OUTPUT

Several of the first six parameters in the QIO$ macro are optional,
but you must reserve space for these parameters. During expansion of
a QIO$ macro, the Executive defaults to a value of 0 for all null
(omitted) parameters. Inclusion of the device- and function-dependent
parameters depends on the physical device unit and function that you
specify. If you want to specify only an I/O function code, a LUN, and
an address for an asynchronous system trap service routine, issue the
following:

QIO$

where:

IO.ATT

6

, , , ,

ASTOX

IO.ATT,6""ASTOX

The I/O function code for attach.

The LUN.

Null arguments for the event flag number, the request
priority, and the address of the I/O status block.

The AST address.

The system requires no additional
parameters for an attach function.
legal forms of the macro.

device- or function-dependent
Section 1.6 describes the three

For convenience, you may omit any comma if no parameters appear to the
right of it. Therefore, you could issue the command above as follows,
if you did not want the asynchronous system tra~:

QIO$ IO.ATT,6

All extra commas have been dropped. However, if a parameter appears
to the right of any place-holding comma, that comma must be retained.

1.4.1 QIO$ Macro Format

The arguments for a specific QIO$ macro call may be different for each
I/O device your task accesses and for each I/O function it requests.
However, the general format of the call is common to all devices. It
appears as follows:

QIO$ fnc,lun, [efn], [pri], [isb], [ast], [<pl,p2, ••• ,p6>]

1.4.1.1 Syntax Elements: Brackets [], Angle Brackets <>, Braces {} -
The following describes the syntax elements used in this manual to
describe the QIO$ functions.

[] Brackets enclose optional parameters. You may use one or
more of the optional parameters.

< Angle brackets must enclose function-dependent parameters if
the QIO$ requires the <pl, ••• ,p6 parameters. The angle
brackets are part of the syntax and must be used. The
parameters mayor may not be present in a given QIO$ macro
and, if present, some may be optional.

{} Braces indicate that you must make a choice among the
arguments enclosed within the braces.

The following paragraphs summarize the use of each QIO$ parameter.
Section 1.6 explains different forms of the QIO$ macro itself.

1-6

MICRO/RSX INPUT/OUTPUT

1.4.1.2 FNC Parameter - The fnc parameter is the symbolic name of the
I/O function that you want to request. This name is usually of the
form

IO.xxx

where:

xxx Identifies the particular I/O operation.

For example, a QIO$ request to attach the physical device unit
associated with a LUN specifies. the function code 10.ATT with its
complete QIO$ form appearing as

QIO$ 10.ATT,lun

where:

lun The number assigned to the physical device unit.

A QIO$ request to cancel (or kill) all I/O requests for a LUN that you
specified begins like this:

QIO$ 10.KIL, •••

The system internally stores the fnc parameter, which you specify in
the QIO$ request, as a function code in the high-order byte and as
modifier bits in the low-order byte of a single word. The function
code is in the range 0 through 31. (decimal) and is a binary value
that the system supplies to match the symbolic name specified in the
QIO$ request.

The system object module library defines the correspondence between
global symbolic names and function codes. The Task Builder searches
the library. You can obtain local symbolic definitions by the FILIO$
and SPCIO$ macros, which reside in the System Macro Library and are
summarized in Appendix A.

Several similar functions may have identical function codes, and you
may distinguish them only by their modifier bits. For example, the
DECtape read logical forward and read logical reverse functions have
the same function code. Although the function codes are the same, the
system stores the modifier bits for these two operations.

1.4.1.3 LUN Parameter - The Iun parameter represents the logical unit
number (LUN) of the associated physical device unit that the I/O
request is to access. The association between the physical device
unit and the LUN is specific to the task that issues the I/O request,
and the LUN reference is usually device independent. You begin an
attach request to the physical device unit associated with LUN 14 like
this:

QIO$ 10.ATT,14., •••

Because each task has its own LUT in which the correspondence between
the LUN and the physical device unit is established, the legality of a
LUN parameter is specific to the task that includes this parameter in
a QIO$ request. In general, the LUN must be in the following range:

o <LUN <number of LUTs in table (if nonzero)/4
;Each LUT is 2 words (4 bytes)

The number of LUNs specified in the LUT of a particular task cannot
exceed 255.

1-7

MICRO/RSX INPUT/OUTPUT

1.4.1.4 EFN Parameter - The efn parameter is a number representing
the event flag to be associated with the I/O operation. It is an
optional parameter for inclusion in the QIO$ request. The specified
event flag is cleared when the I/O request is queued and is set when
the I/O operation has completed. If the task issued the QIOW$ macro,
the Executive suspends task execution until the I/O completes. If the
task issued the QIO$ macro (with no WTSE$ macro), task execution
proceeds in parallel with the I/O. When the task continues to
execute, it may test the event flag whenever it chooses by using the
Read All Event Flags (RDAF$) macro (if group-global event flags are
not being used), the Read Extended Flags (RDXF$) macro (for all event
flags, including group-global event flags), or the Read Single Event
Flag (RDEF$) macro.

If you specify an event flag number, it must be in the range 1 through
96. If you do not want to specify an event flag, you can omit efn or
supply it with a value of O. Event flags 1 through 32 are local
(specific to the issuing task); event flags 33 through 64 are global
(shared by all tasks in the system). Event flags 65 through 96 are
group-global event flags (shared by all tasks in the same user group).
Flags 25 through 32 and 57 through 64 are reserved for use by system
software. Within these bounds, you can specify event flags as desired
to synchronize I/O completion and task execution. Sections 1.4.2 and
1.4.3 provide a more detailed explanation of significant events and
event flags.

NOTE

If an event flag is not specified, the Executive
treats the macro as if it were a simple QIO$ request.

1.4.1.5 PRI Parameter - The optional pri parameter is supplied only
to ma~e Micro/RSX QIO$ requests compatible with RSX-llD. Thus, you
should use a value of 0 (or a null) for this parameter.

1.4.1.6 ISB Parameter - The optional isb parameter identifies the
address of the I/O status block associated with the I/O request. This
block is a 2-word array in which a code is returned that represents
the final status of the I/O request on completion of the operation.
This code is a binary value corresponding to a symbolic name of the
form IS.xxx (for successful returns) or IE.xxx (for error returns).
The binary error code is returned to the low-order byte of the first
word of the status block. It can be tested symbolically, by name.
For example, the symbolic status IE.BAD is returned if a bad parameter
is en~~ountered. The following illustrates the examination of the I/O
status block (IOSB, specified by lOST) to determine whether a bad
parameter has been detected:

QIO$
Bes
W'fSE$C

CMPB
BNE

IO.ATT,14.,2"IOST
DIRERR
2

iIS.SUC,IOST
ERROR

1-8

MICRO/RSX INPUT/OUTPUT

The system object module library defines the correspondence between
global symbolic names and I/O completion codes. The Task Builder
searchE~s this library. The IOERR$ macro, which resides in the System
Macro Library, obtains local symbolic definitions summarized in
Appendix B.

On completion of the I/O operation, the system returns certain
device-dependent information to the high-order byte of the first word
of I/O status block. If a read or write operation is successful, the
second word is also significant. For example, in the case of a read
function on a terminal, the system returns in the second word of isb
the number of bytes that you typed preceding a carriage return. If a
magnetic tape unit is the device and you specified a write function,
this number represents the number of bytes actually written. The
status block can be omitted from a QIO$ request if you do not intend
to test for successful completion of the request.

1.4.1.7 AST Parameter - The optional ast parameter specifies the
address of a service routine to be entered when an asynchronous system
trap occurs. If you want to interrupt your task to execute special
code on completion of an I/O request, you can specify an asynchronous
system trap routine in the QIO$ request. When the specified I/O
operation completes, control branches· to this routine at the software
priority of the requesting task. The system then executes the
asynchronous code beginning at address ast, much like the way the
system executes an interrupt service routine. If you do not want to
perfo~m asynchronous processing, you can omit the ast parameter or
specify a value of 0 in the QIO$ macro call.

Sections 1.4.4 and 1.4.5 discuss asynchronous system
RSX-IIM/M-PLUS and Micro/RSX Executive Reference
traps in detail.

traps, and the
Manual describes

1.4.1.8 Pl,P2, ••• ,P6
<pl,p2, ••• ,p6 depend
in the I/O request.
address, I/O buffer
and six parameters
Subsequent chapters
parameters and legal

Parameters - The additional QIO$ parameters
on the particular function and device specified
Typical parameters may include I/O buffer

length, and so on. You can include between zero
depending on the particular I/O function.

of this manual describe rules for including these
values.

1.4.2 Significant Event

A significant event is a change in system status that causes the
Executive to reevaluate the eligibility of all active tasks to run.
(For some significant events, specifically those in which the current
task becomes ineligible to run, only those tasks of lower priority are
examined.) A significant event is US111Y caused (either directly or
indirectly) by an Executive directi e issues as a macro from within a
task. This manual is concerned with the significant event caused by
an I/O completion. .

Significant events are normally set directly or indirectly by
Executive directives by completing a function that you specified. A
task uses event flags to recognize the occurrence of specific events.

1-9

MICRO/RSXINPUT/OUTPUT

1.4.3 Event Flag

Event flags are a means by which tasks
(Tasks also use Asynchronous System Traps
events.) In requesting a system operation
task may associate an event flag with the
When the event occurs, the Executive sets

recognize specific events.
(ASTS) to recognize specific
(such as an I/O transfer), a
completion of the operation.
the specified flag.

Ninety-six event flags are available to enable tasks to distinguish
one event from another. Each event flag has a corresponding unique
event flag number (efn). Numbers 1 through 32 form a group of flags
that are unique to each task and are set or cleared as a result of
that task's operation. Numbers 33 through 64 form a second group of
flags that are common to all tasks, hence their name "common flags."
Common flags may be set or cleared as a result of any task's
operation. The last eight flags in each group, local flags (25-32)
and common flags (57-64), are reserved for use by the system. Numbers
65 through 96 form the third group of flags, known as "group global
event flags." You can use these flags in any application where common
event flags can be used; however, only tasks running under UICs
containing the group code specifi~d when the group-global event flags
were created can use them. Eight Executive directives provide the
support for creating, setting, clearing, reading, and testing event
flags. See the RSX-lIM/M-PLUS and Micro/RSX Executive Reference
Manual for a description of these dIrectlves.

The following example illustrates the use of a common event flag to
synchronize task execution.

A task Issues a QIO$ macro with an efn parameter specified. A WTSE$
macro follows the QIO$ and specifies the same event flag number as an
argument. The Executive clears the event flag when the Executive
queues the I/O request. Then, the Executive blocks the task when the
Executive executes the WTSE$ directive. The task remains blocked
until a significant event is declared at the completion of the I/O
request and the significant event sets the event flag. The task
resumes when the appropriate event flag is set, and execution resumes
at the instruction following the WTSE$ macro. Using these macros and
an event flag in this way ensures that the task does not manipulate
the data until all the I/O has completed.

Specifying an event flag does not mean that a WTSE$ macro must be
issued. Event flag testing can be performed at any time. The purpose
of a WTSE$ macro is to block the task execution until an indicated
event occurs. Hence, it is not necessary to issue a WTSE$ macro
immediately following a QIO$ macro, but a task that depends on a
specific I/O operation to complete m~st issue it before continuing.

A task can issue a Stop For Single Event Flag (STSE$) macro instead of
a WTSE$ macro. When this is done, an event flag condition not
satisfied results in the task's being stopped instead of being blocked
until the event flag is set. A blocked task still competes for memory
resources at its running priority. A stopped task competes for memory
resources at priority o.

1.4.4 System Trap

System traps can interrupt task execution and cause a transfer of
control to another memory location for special processing. The
Executive handles system traps. The ,traps are relevant only to the
task in which they occur. To use a system trap, a task must contain a
trap service routine, which is automatically entered when the trap
occurs.

1-10

MICRO/RSX INPUT/OUTPUT

There are two types of system traps: synchronous and asynchronous.
You can use both to handle error or event conditions, but they differ
in their relation to the task that is running when the traps are
detected. The traps differ as follows:

• Synchronous system traps (SSTs) signal error conditions within
the executing task. If the same instruction sequence were
repeated, the same synchronous trap would occur at the same
place in the task. Synchronous traps are fully described in
the RSX-IIM/M-PLUS and Micro/RSX Executive Reference Manual.

• Asynchronous system traps (ASTS) signal the completion of an
external event such as an I/O operation. An asynchronous
system trap (AST) usually occurs as the result of initiating
or completing an external event rather than as a program
condition.

Although not able to distinguish execution of an SST routine from task
execution, the Executive is aware that a task is executing an AST
routine!. An AST routine can be interrupted by an SST routine, but not
by another AST routine.

1.4.5 Asynchronous System Trap

The primary purpose of an AST is to inform the task that a certain
event has occurred -- for example, the completion of an I/O operation.
As soon as the task has serviced the event, it can return to the
interrupted code.

Some macros can specify both an event flag and an ASTi with these
macros, you can use ASTs as an alternative to event flags or you can
use thE! two together. Therefor~, you can specify the same AST routine
for sE~veral macros, each with a different event flag. Thus, when the
Executive passes control to the AST routine, the event flag can
determine the action required. However, it is standard programming
practice to use the IOSB (specified by lOST) rather than the event
flags to determine which I/O operation is completed. Thus, when
control is passed to an AST from a QIO$, the IOSB (specified by lOST)
is on top of the stack. Use this IOSB to determine which I/O has
completed.

The Executive queues ASTs in a first-in-first-out queue for each task
and mc)nitors all asynchronous service routine operations. Because
asynchronous traps may be the end result of I/O-related activity, the
task cannot control the occurrence of the ASTs directly. An example
of an asynchronous trap condition is the completion of an I/O request.
The timing of such an operation clearly cannot be predicted by the
requesting task. If the task does not specify an AST service routine
in an I/O request, a trap does not occur and normal task execution
continues.

Howeve:r, the task may, under certain circumstances, block recognition
of ASTs to prevent simultaneous access to a critical data region.
When access to the critical data region has been completed, the queued
ASTs may again be honored. The Disable AST Recognition (DSAR$S) and
Enable AST Recognition (ENAR$S) macros provide the mechanism for doing
this.

1-11

MICRO/RSX INPUT/OUTPUT

Associating asynchronous system traps with I/O requests enables the
requesting task to be truly event driven. The system executes the AST
service routine contained in the initiating task as soon as possible,
consistent with the task's priority. Using the AST routine to service
I/O-related events provides a response time that is considerably
better than a polling mechanism, and provides for better overlap
processing than the simple 010$ and WTSE$ macros. Asynchronous system
traps also provide an ideal mechanism for use in multiple buffering of
I/O operations.

The Executive inserts all ASTs in a first-in-first-out queue on a per
task basis as they occur (that is, the event that they are to signal
has expired). The Executive executes them one at a time whenever the
task does not have ASTs disabled and is not already in the process of
executing an AST service routine. Executing the AST includes storing
certain information on the task's stack, including the task's WTSE$
mask word and address, the Directive Status Word (DSW), the program
status (PS), the program counter (PC), and any trap-dependent
parameters. The task's general-purpose registers RO-R5 are not saved,
and thus AST service routines must save and restore all registers
used. If the registers are not restored after an AST has occurred,
the task's subsequent execution may be unpredictable.

After an AST is processed, the trap-dependent parameters (if any) must
be removed from the task's stack and an AST Service Exit ASTX$S macro
executed. The ASTX$S macro described in Section 1.6.7 of this manual
issues the AST Service Exit macro. On AST service exit, control
returns to another queued AST, to the executing task, or to another
task waiting to run.

The RSX-IIM/M-PLUS and Micro/RSX Executive Reference Manual describes
in detail the purpose of AST service routines and all Executive
directives that handle them.

1.5 DIRECTIVE PARAMETER BLOCK

Directive Parameter Block (DPB) is a fixed-length area of contiguous
memory that contains the arguments that you specify in a macro call.
The DPB for a 010$ directive has a length of 12 words. The Executive
generates it as the result of expanding a 010$ macro call. The first
two bytes of the DPB contain the following:

• The first byte of the DPB contains the
identification code (DIC) -- always 1 for 010$.

• The second byte contains the size of the
words -- always 12 for Micro/RSX.

directive

DPB in

During the assembly of your task containing 010$ requests, the
MACRO-II Assembler generates a DPB for each I/O request specified in a
010$ macro call. At run time, the Executive uses the arguments stored
in each DPB to create, for each request, an I/O packet in system
dynamic storage. Figure 1-2 illustrates the layout of a sample DPB.

1-12

MICRO/RSX INPUT/OUTPUT

Word 0 size of DPB -- 12 1

FNC Modifiers

2 ~~r//////%
'l / ~~,).,~ / ~ LUN

3 Priority -- PRI EFN

4 ISB

5 AST

6

• Device-dependent
parameters

11

o
__ DIC for 010

directive
2
~ 1/0 function
4
~ Logical unit number

6

-- Event flag number
8

Address of 1/0 --10
status block

Address of
~

12
asynchronous trap
service routine

ZK-OOS-81

Figure 1-2 QIO$ Directive Parameter Block

1.5.1 I/O Packet

The Executive enters the I/O packet by priority into a queue of I/O
requests for the specified physical device unit. The Executive
creates and maintains this queue and orders it by the priority of the
tasks that issued the requests. The I/O drivers examine their
respective I/O packet queues for the I/O request with the highest
priority capable of being executed. The driver removes this packet
from the queue and performs the I/O operation. The process is then
repeated until the queue is empty of all requests.

1.5.2 Significant Event Declaration

After the I/O request has been completed, the Executive declares a
significant event and may do one or more of the following:

• Set an event flag.

• Cause a branch to an asynchronous system trap service routine.

• Return the I/O status.

Any of the above actions depend on the arguments specified in the
original QIO$ macro.

1.6 I/O RELATED MACRO

The Micro/RSX system supplies several system macros to issue and
return information about I/O requests. These macros reside in the
System Macro Library and must be made available during assembly by
including the MACRO-11 Assembler directive .MCALL in the task's code.

1-13

MICRO!RSX INPUT/OUTPUT

The Micro/RSX system also supplies FORTRAN-callable subroutines that
perforro the same functions as the system macros. See the
RSX-IIM/M-PLUS and Micro/RSX Executive Reference Manual for details.

Most of the macros described in this section have three distinct
forms. The following list summarizes the forms of QIO$, but the
characteristics of each form also apply to QIOW$, ALUN$, GLUN$, and
the other described macros.

• QIO$ (executed by using the DIR$ macro) generates a directive
parameter block for the I/O request at assembly time, but does
not provide the instructions necessary to execute the request.
The QIO$ form is useful under the following conditions:

The task uses the DPB in several different places in the
task.

The task modifies the DPB at run time.

The task references the DPB at run time.

• QIO$S generates a directive parameter block for the I/O
request on the stack, and also generates code to execute the
request. This is a useful form for reentrant, shareable code
because QIO$S generates the DPB dynamically at execution time.

• QIO$C generates a directive parameter block for the I/O
request at assembly time as well as generating code to execute
the request. QIO$C generates the DPB in a separate program
section called $DPB$$. QIO$C incurs little system overhead
and it is useful when the task executes an I/O request from
only one location. This manual uses the C form of the QIO$
macro in most of the examples in Chapter 1.

Parameters for both the QIO$ and QIO$C forms of the macro must be
valid expressions for the MACRO-II .WORD and .BYTE statements.
Parameters for the QIO$S form must be valid source operand address
expressions for Assembler instructions such as MOV and MOVB. The
following example references the same parameters in the three distinct
forms of the macro call.

QIO$

QI')$C

IO.RLB,6,2",ASTOI,(RDBUF,80.

IO.RLB,6,2",ASTOI,(RDBUF,80.

#IO.RLB,#6,#2",#ASTOl,(#RDBUF,#80.

Only the QIO$S form of the macro produces the DPB dynamically. The
other two forms generate the DPB at assembly time. The RSX-IIM/M-PLUS
and Micro/RSX Executive Reference Manual describes the characteristics
and use of these different forms.

The following section describes Executive directives issued as macros
from within the task and Assembler directives:

• QIO$, which requests an I/O operation and supplies parameters
for that request

• QIOW$, which is equivalent to QIO$ followed by WTSE$

• DIR$, which specifies the address of a
block as its argument, and generates
directive

directive parameter
code to execute the

• .MCALL, which makes all macros referenced during task assembly
available from the System Macro Library

1-14

MICRO/RSX INPUT/OUTPUT

• ALUN$, which associates a logical unit number with a physical
device unit at run time

• GLUN$, which requests that the information about a physical
device unit to LUN association be returned to a buffer that
you specify

• ASTX$S, which terminates execution of an asynchronous system
trap (AST) service routine

• WTSE$, which instructs the system to block execution of the
issuing task until a specified event flag is set

1.6.1 The QIO$ Macro: Issuing an I/O Request

As previously described, you may use three general forms of the QIO$
macro. They are reviewed as follows:

• QIO$ generates only the DPB for the I/O request. This form of
the macro call is used with DIR$ (see Section 1.6.3) to
execute an I/O request.

• QIO$S generates a DPB for the I/O request on the stack as well
as generating code to execute the request.

• QIO$C generates a DPB and code, but the DPB is generated in a
separate program section.

1.6.2 The QIOW$ Macro: Issuing an I/O Request and Waiting for an
Event Flag

The QIOW$ macro is equivalent to a QIO$ followed by a WTSE$. It is
more economical to issue a QIOW$ request than to use the two separate
macros. An event flag (efn parameter) must be specified with QIOW$.

NOTE

Please note that tasks or applications that execute
many I/O operations will run much more efficiently
using QIOW$ rather than QIO$ followed by a WTSE$. The
reason efficiency increases is that system overhead is
reduced.

The QIOW$ macro has the following syntax:

QIOW$ function,lun,efn,[pri] ,[isb],[ast], [<pl, ••• ,p6>]

See the RSX-llM/M-PLUS and Micro/RSX Executive Reference Manual for a
complebe description of the QIOW$ macro.

1.6.3 The DIR$ Macro: Executing a Directive

The DIR$ (execute directive) macro allows a task to reference a
previously defined DPB. Issue it in the form:

DIR$ [addr], [err]

1-15

MICRO/RSX INPUT/OUTPUT

Parameters:

The parameters have the following meanings:

Parameter Meaning

addr The address of a directive parameter block used in the
directive. If addr is not included, the DPB itself or the
address of the DPB is assumed to already be on the stack.
This parameter must be a valid source operand for a MOV
instruction generated by the DIR$ macro.

err An optional argument which specifies the address of an error
routine to which control branches if the macro is rejected.
The branch occurs by means of a JSR PC, err if the C-bit is
set, indicating rejection of the QIO$ macro.

In the following example, the DIR$ macro actually generates the code
to execute the QIO$ directive. It provides no QIO$ parameters of its
own, but references the QIO$ directive parameter block at address
QIOREF by supplying this label as an argument.

QIOREF: QIO$ IO.RLB,6,2",ASTOl,(BUFFER,80.)
; CREATE QIO$ DPB

READl: DIR$ #QIOREF ISSUE I/O REQUEST

READ2: DIR$ #QIOREF ISSUE I/O REQUEST

1.6.4 The .MCALL Directive: Retrieving System Macros

.MCALL is a MACRO-II Assembler directive that retrieves macros from
the System Macro Library (LB: [1,l]RSXMAC.SML) for use during assembly.
You must include it in every task that invokes system macros. .MCALL
is usually placed at the beginning of your task source module and
specifies, as arguments in the call, all system macros that must be
made available to your task from the library.

The following example illustrates the use of this directive:

.MCALL QIO$,QIO$S,DIR$,WTSE$S MAKE MACROS AVAILABLE

ATTACH: QIO$S #IO.ATT,#6", IOSB,#AST02 ATTACH DEVICE

QIOREF: QIO$ IO.RLB,6",IOSB,ASTOl, ••• CREATE ONLY QIO$ DPB

READl: DIR$ #QIOREF,DIRERR ISSUE I/O REQUEST

You can include as many macro references as can fit on a
single .MCALL directive. You can specify any number
directives.

line in a
of .MCALL

1-16

MICRO/RSX INPUT/OUTPUT

1.6.5 The ALUN$ Macro: Assigning a LUN

The Assign LUN macro associates a logical unit number with a physical
device unit at run time. All three forms of the macro call may be
used. Assign LUN does not request I/O for the physical device unit,
nor does it attach the unit for exclusive use by the issuing task. It
only establishes a LUN-physical device unit relationship, so that when
the task requests I/O for that particular LUN, the task can reference
the associated physical device unit. Issue the macro from a MACRO-II
program in the following way:

ALUN$ lun,dev,unt

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number to be associated with the specified
physical device unit. See Sections 1.3 and 1.4.1.3.

dey The device name of the physical device or a logical device
name assigned to a physical device (see the DCL ASSIGN
command) •

unt The unit number of that device specified above.

For example, to associate LUN 10. with terminal unit 2, a task could
issue the following macro call:

ALUN$C 10.,TT,2

A unit number of 0 represents unit 0 for multiunit devices such as
disks, DECtape II, or terminals; it indicates the single available
unit for devices without multiple units, such as card readers and line
printers.

See the RSX-llM/M-PLUS Command Language Manual or the Micro/RSX User's
Guide for a full description of the ASSIGN command.

The following example illustrates the use of the three forms of the
ALUN$ macro.

DATA DEFINITIONS

ASSIGN: ALUN$ 10.,TT,2

EXECUTABLE SECTION

DIR$ #ASSIGN

ALUN$C 10.,TT,2

ALUN$S #10.,#"TT,#2

1-17

GENERATE DPB

EXECUTE DIRECTIVE

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

GENERATE DPB ON STACK, THEN
EXECUTE DIRECTIVE

MICRO/RSX INPUT/OUTPUT

1.6.5.1 Physical Device Name - The following list
device names, listed alphabetically, that you
parameters:

contains physical
may include as dev

Name

DO

DL

DU

DY

LP

"1S

'1U

NL

TT

XE

JA-JZ

QA-QZ

ZA-ZZ

Device

TU58 DECtape II

RLV12/RLOl/RL02 Cartridge Disk

RC25 Disk Subsystem, RQDXl/RD51 Fixed-Media Disk, RD52
Fixed-Media D~sk, RUX50 UNIBUS interface, and RX50
Flexible Disk

RXV21/RX02 Flexible Disk

LPVll/LP25/LP26 Line Printers and LNOl/LN03 Laser
Printer

TSV05 Magnetic Tape, TK25 Cartridge Tape

TK50 Cartridge Tape

The Null Device

Terminals (regardless of interface)

RSX QIO DEUNA Driver

Reserved for customer use (not used by DIGITAL)

Reserved for customer use (not used by DIGITAL)

Reserved for customer use (not used by DIGITAL)

1.6.5.2 Nonphysical Device Name - The following list contains names,
listed alphabetically, that are not associated with a physical device
but with a driver that interfaces with data structures instead of a
real physical device (you may have heard these names referred to as
pseudo devices but a pseudo device has a specific meaning in Micro/RSX
- see Section 1.6.5.3):

Name

HT

NL

NS

NX

RD

RT

VT

Device

Network remote terminal

The Null Device

Network nonphysical device for NSP

Network nonphysical device for DLX

On-line reconfiguration pseudo-device

Network Command Terminal

Virtual terminal. Used by some offspring tasks as TI:
for command and data I/O

1-18

MICRO/RSX INPUT/OUTPUT

1.6.5.3: Pseudo-Device Name - A ·pseudo-device name is a logical device
name th.at must be directed to a physical device unit. A pseudo device
name can be redirected, by the operator, to another physical device at
any time wi thout requiring 'changes in programs that reference the
pseudo-·device name. (The DV.PSE bit in the LUN information buffer is
set to one if a pseudo device name is used to reference a physical
device.) Dynamic redirection of a physical device unit affects all
tasks in the system; reassignment by means of the DCL DEASSIGN command
affects only one task. The following pseudo-devices are supported, as
indicat:ed:

Code

Cr.

CO

LB

SP

Sy

TI

Device

Console listing, normally the line printer.

Console output, normally the main operator's console.

System library device, normally the device from which
the system was bootstrapped. For example, LB: is the
device that tasks such as TKB and MAC access for
default library files.

Spooling scratch disk device.

User default device. SY: is normally the default
login device.

Pseudo-input terminal; TIO: is the terminal from which
a task was requested.

The pseudo-device TI cannot be redirected, since such
redirection would have to be handled on a per-task
rather than a system-wide basis (that is, change the TI
device for one task without affecting the TI
assignments for other tasks).

1.6.6 The GLUN$ Macro: Retrieving LUN Information

The Get LUN Information macro requests the return of information about
association between a LUN and physical device unit in a 6-word buffer
specified by the issuing task. Upon successful completion of a QIO$
macro, the buffer contains the information listed in Table 1-1, as
appropz:iate for the specific device. All three forms of the macro
call may be used. It is issued from a MACRO-II program in the
following way:

GI~UN$ lun,buf

Parameters:

The parameters have the following meanings:

Paramet:er Meaning

lun The logical unit number associated with the physical device
unit for which information is requested. See Sections 1.3
and 1.4.1.3.

buf The 6-word buffer to which information is returned.

1-19

MICRO/RSX INPUT/OUTPUT

For example, to request information on the disk unit associated with
LUN 8, the following call is issued:

GLUN$C 8.,IOBUF

Numerical Offset
Word Byte Bit

o

1 o

1

2

o

1

2

3

4

5

6

7

8

Table 1-1
Get LUN Information

Symbolic Offset
Word Byte Bit Contents

G.LUNA

G.LUNU

G.LUFB

G.LUCW 1

(U.CW1) (DV. REC)

Name of device associated with
LUN (ASCII bytes)

Unit number
device

of associated

Driver flag value. Returned as
200 octal if the driver is
resident, or as 0 if a loadab1e
driver is not in the system

First device
word:

characteristics

Unit record-oriented
(for example, line
(1 = yes)

device
printer)

(DV.CCL) Carriage-control device (for
example, line printer,
terminal) (1 = yes)

(DV.TTY) Terminal device (1 = yes)

(DV.DIR) Directory device (for example,
disk) (1 = yes)

(DV.SDI) Single directory device (for
example, ANSI-standard magtape)
(1 = yes)

(DV .SQD) Sequential device (for example,

(DV.MSD)

ANSI-standard magtape)
(l = yes)

Mass storage
example, disks
(1 = yes)

device
and

(for
tapes)

(DV.UMD) User-mode diagnostics supported
(1 = yes)

(DV.EXT) 22-bit direct addressing
supported (1 = yes)

1. The following word and bit symbols shown in parentheses are
symbols used in defining and referencing corresponding items in
the device UCB.

(Continued on next page)

1-20

Numerical Offset
Word Byte Bit

9

10

11

12

13

14

15

3

4

5

MICRO/RSX INPUT/OUTPUT

Table 1-1 (Cont.)
Get LUN Information

Symbolic Offset

Word Byte Bit

(DV. SWL)

G.LUCW+02

(U.CW2) (U2.xxx)

G.LUCW+04

Contents

Unit software
(1 = yes)

write-locked

(DV.ISP) Input spooled device
(1 = yes)

(DV.OSP) Output spooled device
(1 = yes)

(DV.PSE)
(1 = yes)

Pseudo-device

(DV.COM) Device mountable as a
communications channel for
items in the device UCB
(1 = yes).

(DV.Fll) Device mountable as a
Files-ll device (for example
disk) (1 = yes)

(DV.MNT)
(logical
(1 = yes)

Device mountable
OR of bits 13 and 14)

Second device characteristics
word:

Device-specific information

Third device
word:

characteristics

(U.CW3) (U3.xxx) Device-specific information 2

G.LUCW+06

(U.CW4)

Fourth device characteristics
word:

Default buffer size (for
example, for disks, and line
length for terminals).

2. For mass storage devices, such as disks, and TU58 tape, this is
the number of blocks (maximum logical block number plus one). For
the proper use of the RXV21/RX02 flexible disk. it is important to
be able to test G.LUCW+4 to determine the media density.

The example following illustrates the use of the three forms of the
GLUN$ macro.

1-21

DATA DEFINITIONS

GETLUN: GLUN$ 6,DSKBUF

EXECUTABLE SECTION

DIR$ #GETLUN

GLUN$C 6,DSKBUF

MICRO/RSX INPUT/OUTPUT

GENERATE DPB

EXECUTE DIRECTIVE

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

GLUN$S #6,#DSKBUF GENERATE DPB ON STACK, THEN
EXECUTE DIRECTIVE

1.6.7 The ASTX$S Macro: Terminating AST Service

The ASTX$S macro terminates execution of an AST service routine. The
Executive provides all forms of the macro. However, the S-form
requires less space and executes at least as fast as the ASTX$ or
ASTX$C form of the macro. Issue it as follows:

ASTX$S [err]

Parameters:

The parameters have the following meanings:

Parameter Meaning

err An optional argument specifying the address of an error
routine to which control branches if the macro is rejected.

After the Executive completes the operation specified in this macro
call, the Executive executes the next AST immediately if another AST
is queued and asynchronous system traps have not been disabled.
Otherwise, the Executive restores the task's state existing before the
AST was entered. (The AST service routine must save and restore the
registers it use&.)

1.6.8 The WTSE$ Macro: wait for Single Event Flag

The WTSE$ macro suspends execution of the issuing task until the
Executive sets the event flag specified in the macro call. This macro
is extremely useful in synchronizing other activity with the
completion of I/O operations. You may use all three forms of the
macro call. Issue it as follows:

WTSE$ efn

1-22

MICRO/RSX INPUT/OUTPUT

Parameters:

The parameters have the following meanings:

Parameter Meaning

efn The event flag number.

WTSE$ blocks the task from execution until the specified event flag is
set. Frequently, you may include an efn parameter in a QIO$ macro
call, and the Executive sets the. event flag upon the completion of the
I/O operation specified in that call. The following example
illustrates task blocking until the specified event flag is set. This
example also shows using three forms of the macro call.

.MCALL

.MCALL
WTSE$, ALUN$S, QIOC, DIR
QIO$S, WTSE$S, WTSE$C,

DATA DEFINITIONS

WJUT:
IOSB:

WTSE$
.BLKW

5
2

GENERATE DPB
I/O STATUS BLOCK

EXECUTABLE SECTION

ALUN$S

QIO$C
DIR$

#14.,#"MM

IO.ATT,14.,5
#WAIT

ASSIGN LUN 14 TO MAGNETIC
TAPE UNIT ZERO
ATTACH DEVICE
EXECUTE WAIT FOR DIRECTIVE

QIO$S #IO.RLB,#14.,#2,,#IOSB,,<#BUF,#80.)
; READ RECORD, USE EFN2

WTSE$S #2 WAIT FOR READ TO COMPLETE

QIO$C IO.WLB,14.,3"IOSB,,<BUF,80.)
WRITE RECORD, USE EFN3

WTSE$C 3 WAIT FOR WRITE TO COMPLETE

QIO$C IO.DET,14. DETACH DEVICE

1-23

MICRO/RSX INPUT/OUTPUT

1.7 STANDARD I/O FUNCTION

You can specify a large number of input/output operations with the
QIO$ macro. You can request a particular operation by including the
appropriate function code as the first parameter of a QIO$ macro call.
Certain functions are standard. These functions are almost totally
device independent and thus you can request them for nearly every
device described in this manual. Other I/O functions are device
dependent and are specific to the operation of only one or two I/O
devices. This section summarizes the function codes and
characteristics of the following standard device-independent I/O
operations:

• Attaching to an I/O device

• Detaching from an I/O device

• Canceling I/O requests

• Reading a logical block

• Reading a virtual block

• Writing a logical block

• Writing a virtual block

For certain physical device units, a standard I/O function may be
described as being a NOP. This means that no operation occurs as a
result of specifying the function, and the Executive returns an I/O
status code of IS.SUC in the I/O status block specified in the QIO$
macro call.

1.7.1 I/O Subfunction Bit

Most terminal QIO$ functions can be modified by a Logical OR of the
symbolic name of a subfunction bit with the QIO$ function. The
symbolic names of subfunction bits take the form TF.xxx, where xxx is
the acronym of the subfunction to be performed. A standard QIO$
function called IO.ATT (attach a device) that is specified in a
Logical OR with the terminal-specific TF.ESQ subfunction (recognize
escape sequences) would look like the following:

QIO$C IO.ATT!TF.ESQ,lun, [efn],[pri],[isb],[ast]

A subfunction bit modifies and extends the operation indicated by the
terminal QIO$ function. Often, you may want to use more than one
subfunction bit. In this case, you may use several subfunction bits
together in a Logical OR. As an example, for the terminal driver, the
standard QIO$ IO.ATT function may be extended to both recognize escape
sequences and allow special processing in the task upon the occurrence
of asynchronous system traps. To do this requires that you OR two
subfunction bits with the IO.ATT function. If you do this~ the QIO$
IO.ATi macro would look like the following:

QIO$C IO.ATT!TF.ESQ!TF.AST,lun,[efn],[pri] ,[isb],[ast]

If your task invokes a subfunction bit that is not supported on the
system, the subfunction bit may be ignored or an error may occur.

The subfunction bits that apply to a specific QIO$ macro are described
with that QIO$ macro in Chapter 2.

1-24

MICRO/RSX INPUT/OUTPUT

1.7.2 QIO$C 10.ATT - Attaching to an I/O Device

Use the IO.ATT function code when your task requires exclusive use of
an I/O device. The QIO$C IO.ATT macro can have the following format:

QIO$C IO.ATT,lun, [efn] , [pri], [isb], [ast]

Successful completion of an IO.ATT request exclusively dedicates the
specified physical device unit to the task that issues the IO.ATT.
This enables the task to process input or output in an unbroken stream
and is especially useful on sequential, non-file-oriented devices such
as terminals, card readers, and line printers. An attached physical
device unit remains under control of the task until that task
explicitly detaches it. To detach the device, the task issues the
QIO$C IO.DET macro with the LUN previously assigned to the attached
device.

While a task attaches a physical device unit, the I/O driver for that
unit dequeues only I/O requests issued by the task that attaches the
unit. However, a privileged task can issue a write breakthrough
function (IO.WBT) to a terminal attached by another task. This is an
exception for terminals only. Thus, except for the case of IO.WBT,
the Executive does not process a request to attach a device unit
already attached by another task until the attachment by the first
task is broken and no higher-priority request exists for the attached
unit.

A LUN that is associated with an attached physical device unit may not
be reassigned by an Assign LUN (ALUN$) macro unless at least one LUN
is still assigned to the attached device. If the task that issued an
attach function exits or is aborted before it issues a corresponding
detach, the Executive detaches the physical device unit.

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes Micro/RSX QIO$ requests compatible with RSX-11D. A
value of 0 (or a nUll) should be used for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Section 1.4.1.6.

ast For IO.ATT, specifies the address of a service routine to be
entered when an asynchronous system trap occurs. If you
want to interrupt your task to execute special code upon
completion of this I/O request, you may specify ast. When
this I/O request completes, control branches to the address
specified by ast at the software priority of the requesting
task. Omit ast or specify 0 to omit AST processing. For
more information refer to Sections 1.4.4 and 1.4.5.

See the RSX-11M/M-PLUS and Micro/RSX Executive Reference
Manual for further detai~on ASTs.

1-25

MICRO/RSX INPUT/OUTPUT

1.7.3 QIO$C 10.DET - Detaching from an I/O Device

IO.DET detaches a
attached by an
follows:

physical device
IO.ATT request.

unit
Issue

that
the

QIO$C IO.DET,lun, [efn] , [pri] , [isb] , [ast]

has been previously
QIO$C IO.DET macro as

The LUN specifications of both IO.ATT and IO.DET must be the same, as
in the following example, which also illustrates using S-forms of
several macro calls.

LOOP:

Parameters:

.MCALL
ALUN$S

QIO$S

QIO$S

QIO$S

ALUNS,QIOS
#14.,#"LP

#IO.ATT,#14.

#IO.RLB,#14., •••

#IO.DET,#14.

ASSOCIATE LINE PRINTER WITH LUN 14

ATTACH LINE PRINTER

PRINT

DETACH LINE PRINTER

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes Micro/RSX QIO$ requests compatible with RSX-llD. A
value of 0 (or a null) should be used for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Section 1.4.1.6.

ast Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this I/O request, you may specify ast. When this I/O
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

1.7.4 QIO$C 10.KIL - Canceling I/O Requests

IO.KIL cancels the issuing task's I/O requests for a particular
physical device unit.

1-26

MICRO/RSX INPUT/OUTPUT

For I/O requests waiting for service (that is, in the I/O driver's
queue) the Executive returns a status code of IE.ABO in the I/O status
block. An event flag is set, if specified. But any AST service
routine that you may have specified is not executed.

For I/O requests being processed by any I/O driver, except the disk
drivers, the Executive returns the IE.ABO status code. The Executive
also returns other status information (byte count, and so on) in the
I/O status block. An AST, if specified, is executed.

For disk or TU5S tape I/O requests being processed when an IO.KIL is
issued, the IO.KIL acts as a NOP. The request is allowed to complete.
Because a disk operates quickly, IO.KIL causes the return of IS.SUC in
the I/O status block.

IO.KIL is useful in such special cases as canceling an I/O request on
a physical device unit from which a response is overdue.

The QIO$C IO.KIL macro has the following format:

QIO$C IO.KIL,lun, [efn], [pri], [isb], [ast]

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes Micro/RSX QIO$ requests compatible with RSX-1ID. A
value of 0 (or a null) should be used for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Section 1.4.1.6.

ast Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this I/O request, you may specify ast. When this I/O
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

1.7.5 QIO$C IO.RLB - Reading a Logical Block

Issue IO.RLB to read a block of data from the specified physical
device unit. The QIO$C IO.RLB macro has the following format:

QIO$C IO.RLB,lun, [ef~] ,<stadd,size,pn)
, prl
, ish
, ast

1-27

MICRO/RSX INPUT/OUTPUT

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes Micro/RSX QIO$ requests compatible with RSX-llD. A
value of 0 (or a null) should be used for this parameter.

isb

ast

stadd

size

The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Section 1.4.1.6.

Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this I/O request, you may specify ast. When this I/O
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

The starting address of the data buffer. The address must
be word aligned for certain drivers; stadd may be on a byte
boundary.

The size of the stadd buffer in bytes. The buffer must be
within the task's address space.

pn One to four optional parameters that specify such additional
information as block numbers for certain devices.

1.7.6 QIO$C IO.RVB - Reading a Virtual Block

IO.RVB reads a virtual block of data from the specified physical
device unit. A "virtual" block indicates a relative block position
within a file and is identical to a logical block for such sequential,
record-oriented devices as terminals and card readers. For these
sequential, record-oriented devices, the Executive converts IO.RVB to
IO.RLB before it issues them.

NOTE

Any subfunction bits specified in the IO.RVB request
are stripped off in this conversion.

All tasks should use virtual rather than logical reads unless the task
must issue subfunctions. However, if a task issues a virtual read for
a file-structured device (disk or DECtape II), you must ensure that a
file is open on the specified physical device unit. Issue IO.RVB as
follows

QIO$C IO.RVB,lun, [ef~J ,(stadd,size,pn)
, pr 1

, isb
, ast

1-28

MICRO/RSX INPUT/OUTPUT

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes Micro/RSX QIO$ requests compatible with RSX-IID. A
value of 0 (or a nUll) should be used for this parameter.

isb

ast

stadd

size

The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Section 1.4.1.6.

Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this I/O request, you may specify ast. When this I/O
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

The starting address of the data buffer. The address must
be word aligned for certain drivers; stadd may be on a byte
boundary.

The size of the stadd buffer in bytes. The buffer must be
within the task's address space.

pn One to four optional parameters that specify such additional
information as block numbers for certain devices.

1.7.7 QIO$C IO.WLB - Writing a Logical Block

IO.WLB l~rites a block of data to the specified physical device unit.

If an IO.WVB write function is issued to a terminal, the Executive
converts an IO.WVB to an IO.WLB request.

Note th~!t any subfunction bits specified in the IO.WVB reuest (for
example, TF.CCO, TF.WAL, or TF.WBT) are stripped when the IO.WVB is
converted to an IO.WLB.

The QIO$C IO.WLB macro has the following format:

QIO$C 10 .WLB, lun, [ef~J ,<stadd, size, pn
, prl
, isb
, ast

1-29

MICRO/RSX INPUT/OUTPUT

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes Micro/RSX QIO$ requests compatible with RSX-llD. A
value of 0 (or a null) should be used for this parameter.

isb

ast

stadd

size

The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Section 1.4.1.6.

Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this I/O request, you may specify ast. When this I/O
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

The starting address of the data buffer. The address must
be word aligned for certain drivers; stadd may be on a byte
boundary.

The size of the stadd buffer in bytes. The buffer must be
within the task's address space.

pn One to four optional parameters that specify such additional
information as block numbers or format control characters
for certain devices.

1.7.8 QIO$C IO.WVB - Writing a Virtual Block

IO.WVB writes a virtual block of data to a physical device unit. A
virtual block indicates a block position relative to the start of a
file. For sequential, record-oriented devices such as terminals and
line printers, the Executive converts IO.WVB to IO.WLB.

NOTE

Any subfunction bits specified in the IO.WVB request
(see Sections 2.3.1 and 3.3.1) are stripped off in
this conversion.

All tasks should use IO.WVB rather than IO.WLB to file-structured
devices. However, if you issue a virtual write for a file-structured
device (disk or DECtape II), you must ensure that a file is open on
the specified physical device unit. For record-oriented devices, you
should use IO.WLB.

1-30

MICRO/RSX INPUT/OUTPUT

Note that any subfunction bits specified in the IO.WVB request (for
example I' TF.CCO, TF.WAL, or TF.WBT) are stripped when the IO.WVB is
converted to an IO.WLB.

The QIOI;;C IO.WVB macro has the following format:

QIO$C IO.WVB,lun, [ef~J ,(stadd,size,pn>
, prl
, isb
,ast .

Parameters:

The parameters have the following meanings:

Parameb:!r Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Sections 1.3 and 1.4.1.3.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Section 1.4.1.4.

pri Makes Micro/RSX QIO$ requests compatible with RSX-IID. A
value of 0 (or a nUll) should be used for this parameter.

isb

ast

stadd

size

The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Section 1.4.1.6.

Specifies the address of a service routine to be entered
when an asynchronous system trap occurs. If you want to
interrupt your task to execute special code upon completion
of this I/O request, you may specify ast. When this I/O
request completes, control branches to the address specified
by ast at the software priority of the requesting task.
Omit ast or specify 0 to omit AST processing. For more
information refer to Sections 1.4.4 and 1.4.5.

The starting address of the data buffer. The address must
be word aligned for certain drivers; stadd may be on a byte
boundary.

The size of the stadd buffer in bytes. The buffer must be
within the task's address space.

pn One to four optional parameters, specifies such additional
information as block numbers or format control characters
for certain devices.

1.8 USER-MODE DIAGNOSTIC FUNCTIONS

The I/O function code subfunction bit, IQ.UMD, provides support for
user-mode diagnostics. To perform a diagnostic function, you must
specify in the QIO$ directive parameter block the logical OR of IQ.UMD
and the function you want to perform. For example, to perform a
diagnostic Read LogicaL Block operation, specify QIO$C IO.RLB!IQ.UMD
as the I/O function code parameter to the QIO$ macro. You can execute
standard I/O functions such as Read Logical Block, Write Logical
Block, Attach to Device, and Detach from Device in diagnostic mode.

1-31

MICRO/RSX INPUT/OUTPUT

Support for user-mode diagnostics is always present for Micro/RSX, but
not all drivers support user-mode diagnostic functions. Unpredictable
device and driver behavior results when you set the IQ.UMD subfunction
bit in QIO$s that are directed to the device if it does not support
user-mode diagnostics. You can avoid problems if you issue a Get LUN
(GLUN$) macro and check the user-mode diagnostics bit before emitting
the user-mode diagnostic QIO$.

To support user-mode diagnostics, the DV.UMD bit in the UCB must be
set. DV.UMD is at offset U.CWI in the UCB.

In addition to standard I/O functions, Micro/RSX provides the
following device-dependent, user-mode diagnostic functions:

1. TUS8 cartridge tape diagnostic functions

• IO.BLS Block seek (explicit seek)

2. Magtape diagnostic functions

• IO.LPC Read longitudinal parity character

• IO.ERS Erase tape

UMDIO$ is the macro that defines these functions.

To execute a user-mode diagnostic function, you must first attach the
device Eor diagnostics using I/O function code IO.ATT!IQ.UMD. Execute
the diagnostic functions and then detach.

The parameter list in words 1 thzough 6 of the DPB should contain the
following information:

• I/O buffer address

• I/O buffer size

• Double-precision logical block number

• User's register buffer address (the I/O driver copies its
hardware registers to this buffer in the user's program); see
a hardware reference manual for the length of the address

A typical DPB for a diagnostic function might look like the following:

$DSKPB: :

$IOBUF: :

$LBH: :
$LBL: :

• BYTE

.WORD

.WORD

.BYTE

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

3,12 •

IO.WDH! IQ. UMD
THELUN
THEEFN,O
$IOSTS
o
o
o
o
o
o
$RGBUF

Size of the DPB, QIOWAIT
directive code

I/O function code
Logical unit number
Event flag number
I/O status block address
AST address
Buffer address
Transfer size in bytes
Device dependent
High-order logical block number
Low-order logical block number
Register buffer address

The user-mode diagnostic functions return either Success (IS.SUC) or
Device Not Ready (IE.DNR). No other error codes are returned. All
error recovery is completely up to the user. Any errors that occur
will not be logged in the error log.

1-32

MICRO/RSX INPUT/OUTPUT

A typical program fragment, using the user-mode diagnostic functions,
might look like the following:

.MCALL UMDIO$,ALUN$S,QIO$S
UMDIO$
ALUN$S

; Define diagnostic functions
#14.,#"DL,#O ; Associate DLO with LUN 14

QIO$S #IO.ATT!IQ.UMD,#14. Attach DL for diagnostic I/O

QIO$S #IO.WLB!IQ.UMD,#14."",<#$IOBUF,#5l2.,,#LBH,#LBL,#$RGBUF>
; write logical block

QIO$S #IO.WCK!IQ.UMD,#14."",<#$IOBUF,#5l2.,,#LBH,#LBL,#$RGBUF>
; write check

QIO$S #IO.DET!IQ.UMD,#14. Detach DL

1.9 I/O COMPLETION

When the system completes an I/O request, either successfully or
unsuccessfully, the Executive selects return conditions depending upon
the parameters included in the QIO$ macro call. There are three major
returns:

• The Executive declares a significant event when an
operation completes execution. If you included an
parameter in the I/O request, the corresponding event flag
set.

I/O
efn
is

• If you included an isb parameter in the QIO$ macro call, the
Executive returns a code identifying the type of success or
failure. The code is in the low-order byte of the first word
of the I/O status block at the location represented by isb.

This status return code is of the form IS.xxx (success) or
IE.xxx (error). For example, if the device accessed by the
I/O request is not ready, a status code of IE.DNR is returned
in isb. The section named Return Codes summarizes ge~eral
codes returned by most of the drivers described in this
manual.

If the isb parameter was omitted, the requesting task cannot
determine whether the I/O request was successfully completed.
A carry clear return from the macro itself simply means that
the macro was accepted and the I/O request was queued, not
that the actual input/output operation was successfully
performed.

• If you specified an ast parameter in the QIO$ macro call,' a
branch to the AST service routine beginning at the location
identified by ast occurs when the I/O operation completes
execution. See Sections 1.4.5 and 1.6.7 for a description of
AST service routines.

1-33

MICRO/RSX INPUT/OUTPUT

1.9.1 Return Codes

The Executive recognizes and handles two kinds of status conditions
when they occur in I/O requests:

• Directive conditions, which indicate the
rejection of the QIO$ macro itself

acceptance or

• I/O status conditions, which indicate the success or failure
of the I/O operation

Directive conditions relevant to I/O operations may indicate any of
the following:

• Directive acceptance

• Invalid buffer specification

• Invalid efn parameter

• Invalid lun parameter

• Invalid DIe number or DPB size

• Unassigned LUN

• Insufficient memory

The Executive returns a code indicating the acceptance or rejection of
a directive to the Directive Status Word at symbolic location $DSW.
You ca~ test this location to determine the type of directive
condition.

I/O co~ditions indicate the success or failure of the I/O operation
that ~ou specified in the QIO$ macro. I/O driver errors include such
conditions as device not ready, privilege violation, file already
open, or write-locked device. If you include an isb parameter in the
QIO$ macro, identifying the address of a two-word I/O status block,
the E~ecutive returns an I/O status code in the low-order byte of the
first word of this block when an I/O operation completes execution.
This code is a binary value corresponding to a symbolic name of the
form IS.xxx or IE~xxx. You can test the low-order byte of the word
symbolically, by name, to determine the type of status return. The
system object module library defines the correspondence between global
symbolic names and directive and I/O completion status codes. You may
also obtain local symbolic definitions by the DRERR$ and IOERR$
macros, which reside in the System Macro Library and are summarized in
Appendix B.

Binary values of status codes always have the following meanings:

Code Meaning

Positive (greater than 0) Successful completion

o Operation still pending

Negative Unsuccessful completion

A pending operation means that the I/O request is still in the queue
of requests for the respective driver, or the driver has not yet
completely serviced the request.

1-34

MICRO/RSX INPUT/OUTPUT

1.9.2 QIO$ Macro Conditions

Table 1·-2 summarizes the macro conditions that your task may encounter
by issuing 010$ macros. The table lists acceptance condition first,
followed by error codes indicating various reasons for rejection.

Code

IS.SUC

IE.ADP

IE.IEF

IE.ILU

IE.SOP

IE.ULN

Table 1-2
Macro Conditions

Reason

Directive accepted

The first six parameters of the 010$ macro were
valid, and sufficient dynamic memory was available
to allocate an I/O packet.

Invalid address

The I/O status block or the 010$ DPB was outside of
the issuing task's address space or was not aligned
on a word boundary.

Invalid event flag number

The efn specification in a 010$ macro was less than
o or greater than 96.

Invalid logical unit number

The lun specification in a 010$ macro was invalid
for the issuing task. For example, there were only
5 logical unit numbers associated with the task,
and the value specified for lun was greater than 5.

Invalid DIC number or DPB size

The directive identification code (DIC) or the size
of the Directive Parameter Block (DPB) was
incorrect; the legal range for a DIC is from 1
through 127, and all DIC values must be odd. Each
individual directive requires a OPB of a certain
size. If the size is not correct for the
particular directive, this code is returned. The
size of the 010$ DPB is always 12 words.

Unassigned LUN

The logical unit number in the 010$ macro was not
associated with a physical device unit. Your task
may recover from this error by issuing a valid
Assign LUN (ALUN$) macro and then reissuing the
rejected macro.

Insufficient dynamic memory

There was not enough dynamic memory to allocate an
I/O packet for the I/O request. You can try again
later by blocking the task with a
Wait-For-Significant Event (WTSE$) macro. Note
that WTSE$ is the only effective way for the
issuing task to block its execution, because other
macros for this purpose require dynamic memory for
their execution (for example, Mark Time (MRKT$)).

1-35

MICRO/RSX INPUT/OUTPUT

1.9.3 I/O Status Conditions

The ccntents of the 2-word I/O status block is explained next:

• The low-order byte of the first word receives a status code of
the form IS.xxx or IE.xxx when an I/O operation completes
execution.

• The high-order byte of the first word is usually device
dependent

• The second word contains the number of bytes transferred or
processed if the operation is successful and involves reading
or writing.

If the isb parameter of the QIO$ macro is omitted, this information is
not returned.

The fcllowing illustrates an example 2-word I/O status block on
completion of a terminal read operation:

1 o Byte

Word 0 o I -10

1 Number of bytes read

where -10 is the status code for IE.EOF (end of file). If this code
is returned, it indicates that input was terminated by typing CTRL/Z,
which is the end-of-file termination sequence on a terminal.

To test for a particular error condition, your task generally should
compare the low-order byte of the first word of the I/O status block
with a symbolic value, as in the following:

CMPB #IE.DNR,IOSB

However, to test for certain types of successful completion of the I/O
operation, the entire word value must be compared. For example, if a
carriage return terminated a line of input from the terminal, a
successful completion code of IS.CR is returned in the I/O status
block. If an Escape (or Altmode) character was the terminator, a code
of IS.ESC is returned. To check for these codes, your task should
first test the low-order byte of the first word of the block for
IS.SUC and then test the full word for IS.CC, IS.CR, IS.ESC, or
IS.ESQ. (Other success codes that must be read in this manner are
listed in Appendix B, Section B.l.2.)

Note that both of the following comparisons test as equal because the
low-order byte in both cases is +1.

CMP #IS.CR,IOSB

CMPB #IS.SUC,IOSB

In the case of a successful completion where the carriage return is
the terminal indicator (IS.CR), the following illustrates the status
block:

1 o Byte

Word 0 15

1 Number of bytes read
(excluding the CR)

1-36

MICRO/RSX INPUT/OUTPUT

where 15 is the octal code for carriage return and +1 is the status
code for successful completion.

Table 1··3 summarizes status codes that may be returned in the I/O
status block specified in the 010$ macro on completion of the I/O
request.. The codes described in Table 1-3 are general status codes
that apply to the majority of devices presented in subsequent
chapters. Error codes specific to only one or two drivers are
described only in relation to the devices for which they are returned.
Table 1-3 describes successful and pending codes first, then error
codes.

Code

IS.SUC

IS.PHD

IE.ABO

IE.ALN

IE.BAID

IE.BBE

Table 1-3
I/O Status Conditions

Reason

Successful completion

The I/O operation specified in the 010$ macro was
completed successfully. The second word of the I/O
status block can be examined to determine the
number of bytes processed, if the operation
involved reading or writing.

I/O request pending

The I/O operation specified in the 010$ macro has
not yet been executed. The I/O status block is
filled with Os.

Operation aborted

The specified I/O operation was canceled with
IO.KIL while in progress or while still in the I/O
queue.

File already open

The task attempted to open a file on the physical
device unit associated with the specified LUN, but
a file has already been opened by the issuing task
on that LUN.

Bad parameter

An invalid specification was
more of the device-dependent
6 - 11). For example, a bad
code was specified in
converter I/O operation.

Bad block on device

supplied for one or
010$ parameters (words
channel number or gain

an analog-to-digital

The disk sector (block) being read was marked as a
bad block in the header word. Data cannot be
written on or read from bad blocks.

(Continued on next page)

1-37

Code

IE.BLK

IE.BYT

IE.DAA

IE. DNA

IE.DNR

IE.EOF

IE.FHE

MICRO/RSX INPUT/OUTPUT

Table 1-3 (Cont.)
I/O Status Conditions

Reason

Illegal block number

An invalid block number was specified for a
file-structured physical device unit.

Byte-aligned buffer specified

Byte alignment was specified for a buffer, but only
word (or double-word) alignment is legal for the
physical device unit. For example, a disk function
requiring word alignment was requested, but the
buffer was aligned on a byte boundary.
Alternatively, the length of a buffer was not an
appropriate multiple of bytes.

Device already attached

The physical device unit specified in an IO.ATT
function was already attached to the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

Device not attached

The physical device unit specified in an IO.DET
function was not attached to the issuing task.
This code has no bearing on the attachment status
of other tasks.

Device not ready

The physical device unit specified in the QIO$
macro was not ready to perform the desired I/O
operation. This code is often returned as the
result of an interrupt time-out; that is, a
reasonable amount of time has passed, and the
physical device unit has not responded.

End-of-file encountered

An end-of-file mark, record, or control character
was recognized on the input device.

Fatal hardware error

Controller is physically unable to reach the
location where input/output is to be performed on
the device. The operation cannot be completed.

(Continued on next page)

1-38

Code

IE.IFC

IE.NLN

IE.NOD

IE.OFL

IE.OVR

IE.PRI

IE.SPC

MICRO/RSX INPUT/OUTPUT

Table 1-3 (Cont.)
I/O Status Conditions

Reason

Illegal function

A function code that was invalid for the specified
physical device unit was specified in an I/O
request. This code is returned if the task
attempts to execute an invalid function or if, for
example, a read function is requested on an
output-only device, such as the line printer.

File not open

The task tried to close a file on the physical
device unit associated with the specified LUN, but
no file was currently open on that LUN.

Insufficient buffer space

Dynamic storage space has been depleted, and not
enough buffer space was available to allocate a
secondary control block. For example, if a task
attempts to open a file, buffer space for the
window and file control block must be supplied by
the Executive. This code is returned when there is
not enough space for such an operation.

Device off line

The physical device unit associated with the LUN
specified in the QIO$ macro was not on line. When
the system was. bootstrapped, a device check
indicated that this physical device unit was not in
the configuration.

Illegal read overlay request

A read overlay was requested and the physical
device unit specified in the QIO$ macro was not the
physical device unit from which the task was
installed. The read overlay function can be
executed only on the physical device unit from
which the task image containing the overlays was
installed.

Privilege violation

The task that issued a request was not privileged
to execute that request.

Illegal address space

The following conditions can cause this error:

• The buffer that your task requested for a read
or write operation was partially or totally
outside the address space of your task.

• You specified a byte count of O.

(Continued on next page)

1-39

COdE'

IE.VER

IE.WCK

IE.WLK

MICRO/RSX INPUT/OUTPUT

Table 1-3 (Cont.)
I/O Status Conditions

Reason

• You specified TF.XCC and AST2 in the same QIO$
request.

Unrecoverable error

After the system attempted its standard number of
retries after an error occurred, the operation
still could not be completed. This code is
returned in the case of parity, CRC, or similar
errors.

write check error

An error was detected during the check (read)
following a write operation.

write-locked device

The task attempted to write on a write-locked
physical device unit.

1.10 POWER-FAIL RECOVERY PROCEDURES FOR DISKS AND DECTAPE

Power-fail recovery recommendations for various devices are included
in thE! following chapters. For disks, power recovery ASTs should be
used. Prior to returning for normal I/O operations, the AST service
routinE~ should provide a sufficient time delay for the disk to attain
normal operating speed before actually attempting read and write
operations.

If QIO~iS are being used for disk I/O operations during power-fail
recovery, an IE.DNR error status may be returned if the device is not
up to operating speed when the request is issued. When this error is
returned, your task should wait for the device to attain operating
speed and attempt the I/O operation again prior to reporting an error.

1.11 MICRO/RSX DEVICES

The devices listed below are supported by Micro/RSX. Drivers are
suppliE~d for each of these devices, and I/O operations for them are
described in detail in subsequent chapters of this manual.

1. A variety of terminals, including the following:

• LA12 DECwriter

• LAlOO DECwriter

• LA120 DECwriter III

• LQP02 Letter-Quality Printer

• LASO Personal Printer

1-40

MICRO/RSX INPUT/OUTPUT

• VT100 Alphanumeric Display Terminal

• VTIOl Alphanumeric Display Terminal

• VTI02 Alphanumeric Display Terminal

• VTI05 Alphanumeric Display Terminal

• VT125 Alphanumeric Display Terminal

• VT131 Alphanumeric Display Terminal

• VT132 Alphanumeric Display Terminal

• VT200 Series Alphanumeric Display Terminal

These terminals are supported on the following asynchronous
line interfaces:

• DHVll Asynchronous Communications Line Interface
Multiplexer

• DZQll Asynchronous Communications Line Interface
Multiplexer

• DLVll Asynchronous Communications Line Interface
Multiplexer

• DZVll Asynchronous Communications Line Interface
Multiplexer

2. The following disks:

• RLV12/RLOl or RL02 Cartridge Disk

• RQDX1/RQDX2 Controllers

• RD51 Fixed-Media Disk and RX50 Flexible Disk

• RD52 Fixed-Media Disk

• RXV21/RX02 Flexible Disk

• KDA50 Controller

• RQC25/RC25 Disk System

• RAGO, RA80, and RA81 Disks

3. The following magnetic tapes:

• CPU Serial Line /TU58 DECtape II

• TSV05/TK25 Magnetic Tape Subsystem

• TQK50/TK50 Magnetic Tape Subsystem

1-41

MICRO/RSX INPUT/OUTPUT

4. The following line printers:

• LPVl1 Controller with LP25 or LP26 Line Printers

• LNOl/LN03 Laser Printers

5. The "Null Device," a software construct that facilitates
eliminating unwanted output

6. Virtual Terminals

1-42

CHAPTER 2

FULL-DUPLEX TERMINAL DRIVER

2.1 INTRODUCTION

This chapter describes the full-duplex terminal driver (TTDRV.TSK)
suppliE!d with the Micro/RSX System. It describes the QIO$s that you
can use to read from or write to the terminal in full-duplex mode. It
also describes the subfunction bits that you can combine in a Logical
OR with the QIO$ functions which modify and enhance the QIO$
functions.

The Micro/RSX full-duplex terminal driver has the following features:

• Full-duplex operation

• Type-ahead buffering

• Eight-bit characters

• Detection of hard receive errors

• Large byte transfer length (8128 bytes)

• Settable terminal characteristics

• Set table terminal types

• Optional time-out on solicited input

• Device-independent cursor control

• Redisplay of prompt buffer upon CTRL/R or CTRL/U

• Automatic XOFF character generation upon completion of a read
(except when in the full-duplex mode), if requested

• Autobaud speed detection

2.1.1 The Full-Duplex Terminal Driver and Supported Devices

The full duplex terminal driver supports the following terminal
devices:

• LA12 Portable Terminal

• LA100 DECprinter

• LA120 DECwriter

• LQP02 Letter-Quality Printer

2-1

FULL-DUPLEX TERMINAL DRIVER

• LA50 Personal Printer

• VT100 DECscope

• VTIOl DECscope

• VTI02 DECscope

• VTI05 DECscope

• VT200 Series

Terminal input lines can have a maximum length of 8128 (8K minus 64)
bytes. Extra characters of an input line that exceed the maximum line
length generally become an unsolicited input line if the terminal is
not attached.

The terminal devices listed above are connected to your microcomputer
through asynchronous serial line interfaces. The Micro/POP-II is
delivered with two DLVll-like asynchronous single line interfaces,
giving the capability for connecting two terminal devices, one of
which is the console terminal. In addition to these two interfaces,
there are asynchronous multiplexers that you can use for connecting
multiple terminals to the Micro/RSX System: the DZQII-CP multiplexer,
the DZVll multiplexer and additional DLVII multiplexers or the DHVII
multiplexer. The DZQII-CP Asynchronous Serial Line Multiplexer
interfaces up to four asynchronous serial lines to the Q-Bus providing
the capability of connecting four terminal devices to the system. It
supports programmable baud rates. However, transmit and receive baud
rates nust be the same. The DHVII interfaces eight asynchronous
lines, providing the capability for connecting eight terminal devices;
this multiplexer is for the full-duplex terminal driver only.

For additional information about
interf3ces see the MICRO/PDP-II
Communications Handbook.

2.2 GBT LUN INFORMATION MACRO

the terminal
Handbook and

devices and
the Terminals

line
and

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for terminals. A setting of 1 indicates that the
descri~ed characteristic is true for terminals.

Bit Setting Meaning

) 1 Record-oriented device

1 1 Carriage-control device

2 1 Terminal device

.3 o File structured device

o Single-directory device

o Sequential device

o Mass storage device

'7 o User-mode diagnostics supported

2-2

Bit

B

9

10

11

12

13

14

15

Words 3 and 4

FULL-DUPLEX· TERMINAL DRIVER

Setting

0

0

0

0

0

0

0

0

of the buffer

Meaning

Device supports 22-bit direct addressing

Unit software write-locked

Input spooled device

Output spooled device

Pseudo device

Device mountable as a communications
channel

Device mountable as a FILES-II volume

Device mountable

default buffer size (the
are undefined. Word 5 indicates the
width of the terminal carriage or display

screen) •

2.3 QIO$ MACRO

Standard QIO$ functions are general in use and may be used with any
device, while device-specific QIO$ functions apply to specific devices
or uses only.

2.3.1 Format of QIO$C for Standard Functions

The QIO$ macros for standard functions take the following forms:

QIO$C

{
IO.ATTJ
IO.DET
IO.KIL

, ... ,

QIO$C
{

IO.RLB}
IO.RVB

, ••• ,(stadd,size,,[tmo]>

QIO$C
{

IO.WLB}
IO.WVB

, ••• ,(stadd,size,vfc>

2.3.2 Format of QIO$C for Device-Specific Functions

The QIO$ macro for device specific functions take the following forms:

QIO$C IO.ATA, ••• ,(ast,[parameter2],[ast2]>

QIO$C IO.CCO, ••• ,(stadd,size,vfc>

QIO$C IO.EIO, ••• ,(stadd,size>

C!IO$C
{

SF.GMC} , ••• ,(stadd,size)
IO.GTS

2-3

FULL-DUPLEX TERMINAL DRIVER

QIO$C

QIO$C

IO.HNG, ••• ,

{
IO.RAL} , ••• ,(stadd,size,[tmo]>
IO.RNE

QIO$C IO.RPR, ••• ,(stadd,size,[tmo] ,pradd,prsize,vfc>

QIO$C IO.RST, ••• ,(stadd,size,[tmo]>

QIO$C IO.RTT, ••• ,(stadd,size,[tmo] ,table>

QIO$C SF.SMC, ••• ,(stadd,size>

QIO$C
{

IO.WAL} , ••• ,(stadd,size,vfc>
IO.WBT

Table 2-1 lists the standard and device-specific functions of the QIO$
macro that are valid for terminals. The standard functions are
described in Chapter 1. Two device-specific functions, SF.SMC and
SF.GMC, have nonstandard function names.

Table 2-1
Standard and Device-Specific QIO$ Functions for Terminals

Format

STANDARD FUNCTIONS:

RE1~D FUNCT IONS

QIO$C IO.RLB, ••• ,(stadd,size,[tmo]>

QIO$C IO.RVB, ••• ,(stadd,size, [tmo] >

WRITE FUNCTIONS

QIO$C IO.WLB, .•• ,(stadd,size,vfc>

QIO$C IO.WVB, ••• ,(stadd,size,vfc>

ATTA(~ DETACH, AND CANCEL FUNCTIONS

QIO$(10. ATT, •••

Q I 0 $C I 0 • DE T , • • •

Q I 0 $C 10. K I L, • • •

2-4

Function

READ logical block
(read typed input into
buffer) •

READ virtual block
(read typed input into
buffer).

WRITE logical block
(print buffer
contents) •

WRITE virtual block
(print buffer
contents) •

Attach device.

Detach device.

Cancel I/O requests.

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-1 (Cont.)
Standard QIO$ Functions for Terminals

Format

DEVICE-SPECIFIC FUNCTIONS:

READ FUNCTIONS

QIO$C IO.RAL, ••• ,(stadd,size,[tmo]>

QIO$C IO.RNE, ••• ,(stadd,size,[tmo]>

QIO$C IO.RPR, ••• ,(stadd,size,[tmo]
,pradd,prsize,vfc>

QIO$C IO.RST, ••• ,(stadd,sizer[tmo]>

QIO$C IO.RTT, ••• ,(stadd,size,[tmo]
,table>

WRIT:E FUNCTIONS

QIO$C IO.WAL, ••• ,(stadd,size,vfc>

QIO$C IO.WBT, ••• ,(stadd,size,vfc>

MISCELLANEOUS FUNCTIONS

QIO$C IO.ATA, ••• ,(ast,[parameter2]
,[ast2]>

QIO$C IO.CCO, ••• ,(stadd,size,vfc>

QIO$C IO.EIO {!TF.RLB\ , ••• ,(stadd,size>
! TF .WLB (

QIO$C SF.GMC, ••• ,(stadd,size>

QIO$C SF.SMC, ••• ,(stadd,size>

QIO$C IO.GTS, ••• ,(stadd,size>

QIO$C 10. HNG, •••

2-5

Function

READ logical block,
pass all characters.

READ logical block, do
not echo.

READ logical block
after prompt.

READ logical block
ended by special
terminators.

READ logical block
ended by specified
special terminators.

WRITE logical block,
pass all characters.

WRITE logical block,
break through any I/O
conditions at
terminal.

ATTACH device, specify
unsolicited-input
character AST.

CANCEL CTRL/O (if in
effect), then write
logical block.

Extended I/O

GET multiple
characteristics.

SET multiple
characteristics.

GET terminal support.

HANGUP remote line.

FULL-DUPLEX TERMINAL DRIVER

2.3.3 Parameters

The parameters for the various QIO$ macros have the following
meanings:

Parameter Meaning

ast The entry point for an unsolicited input-character AST.

parameter2 A number that you can specify in your task to identify
this terminal device as the input source upon entry to an
unsolicited character AST routine.

ast2 The entry point for a CTRL/C AST.

pradd

prsize

stadd

size

table

tmo

vfc

The starting address of the byte buffer where the prompt
is stored.

The size of the pradd prompt buffer in bytes. The
specified size must be greater than 0 and less than or
equal to 8128 bytes. The buffer must be within the task's
address space.

The starting address of the data buffer. The address must
be word aligned for IO.EIO, SF.GMC, IO.GTS, and SF.SMC;
otherwise, stadd may be on a byte boundary.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address
space. For IO.EIO, SF.GMC, 10.GTS, and SF.SMC functions,
size must be an even value.

The address of the l6-word user-defined terminator table.

An optional time-out count specified in 10-second
intervals. (For IO.EIO, the interval is specified in
seconds.) Time-out is the maximum time allowed between two
input characters before the read is aborted. The maximum
time-out value is 255(decimal) intervals.

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you
to enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255 (decimal) intervals (or
255(decimal) seconds for IO.EIO), issue an asynchronous
QIO$ request followed by a Mark Time directive (MRKT$) for
the required interval. Specify different event flags in
the two directives and, after issuing them, wait for the
Logical OR of the two event flags.

The terminal driver responds to task I/O requests for
cursor positioning without the task requiring information
about the type of terminal in use.

The vfc parameter specifies cursor position. The
parameter is interpreted as a vfc parameter if the high
byte of the pazameter is O. However, if the parameter
defines cursor position, the high byte must be nonzero,
the low byte is interpreted as column number
(x-coordinate), and the high byte is interpreted as line
number (y-coordinate).

2-6

Parameter

FULL-DUPLEX TERMINAL DRIVER

Heaning

Home position, the upper left corner of the display, is
defined as 1,1. The driver outputs cursor-positioning
commands appropriate for the terminal in use that move the
cursor to the specified position. If the most significant
bit of the line number is set, the driver clears the
display before positioning the cursor.

Table 2-9 is a summary of all characters that your task
can use for vertical format control on the terminal. Any
one of these characters can be specified as the value of
the vfc parameter.

2.3.4 Subfunction Bits

Most of the device-specific functions supported by terminal drivers
described in this section are selected by using subfunction bits. One
or more functions can be achieved by the Logical OR of the subfunction
with the function, as IO.RPR!TF.RNE (read logical block after prompt
with no echo). Specifying the function and subfunction in this way
combines as an OR their relative bits in a QIO$ function. Table 2-2
contains a listing of QIO$ functions and relative subfunction bits
that can be issued.

Each subfunction bit and subfunction selected when it is included in a
QIO$ function is listed with its symbolic name and meaning as follows:

Subfunction Heaning

TF.AST Unso1icited-Input-Character AST - For IO.ATT or
IO.ATTITF.ESC, ast specifies the address of an AST
service routine to be entered when an unsolicited input
character is entered. Control passes to ast whenever
an unsolicited character (other than CTRL/Q, CTRL/S,
CTRL/X, or CTRL/O) is entered at the terminal.

~fF.BIN Binary Prompt (Send Prompt As Pass All) - The prompt is
sent to the terminal without interpretation by the
driver. This is similar, for the prompt, to a
write-pass-a11.

TF.CCO Cancel CTRL/O - Allows writing a logical block of data
to the terminal regardless of a CTRL/O condition that
may be in effect. If CTRL/O is in effect, it is
canceled before the write occurs.

'fF.ESQ Recognize Escape Sequences - Escape sequences from the
terminal are returned to the task. Otherwise, ESC is a
line terminator. This subfunction is for use with
IO.ATA or IO.ATT.

TF.NOT Notification Of Unsolicited Input - Unsolicited input
causes an AST and entry into the AST service routine in
the task. When the terminal driver receives
unsolicited terminal input (except CTRL/C) and you used
the TF.NOT subfunction with IO.ATA, the resulting AST
serves only as notification of unsolicited terminal
input; the terminal driver does not pass the character
to the task. Upon entry to the AST service routine,
the high byte of the first word on the stack identifies
the terminal causing the AST (parameter2 in the IO.ATA
function) •

2-7

Subfunction

TF.RAL

TF.RCU

TF.RDI

TF.RES

TF.RLB

TF.RLU

TF.RNE

TF.RNF

FULL-DUPLEX TERMINAL DRIVER

Meaning

Using the TF.NOT subfunction allows a task to monitor
more than one terminal for unsolicited input without
the need to continuously read each terminal for
possible unsolicited input. Note that the TF.NOT
subfunction cannot be used with the CTRL/C AST (ast2 in
IO.ATA); an unsolicited CTRL/C character flushes the
type-ahead buffer.

Read All Characters (Pass All) - Allows the passage of
all characters to the requesting task. The driver does
not intercept control characters. The characteristic
TC.8BC, when set, allows the driver to pass 8 bits.
For example, CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z
are passed to the task and not interpreted by the
driver.

Restore Cursor Position - When defining cursor position
in a function, you can use the TF.RCU subfunction to
save the current cursor position. When included in
this manner, TF.RCU causes the driver to first save the
current cursor position, then position the cursor and
output the specLfied buffer, and, finally, restore the
cursor to the original (saved) position once the output
transfer has been completed.

Read With Default Input - The default input that you
specified in the extended I/O item list is displayed as
an input line at the start of the read on the terminal.
You may change this line or use it as input to the
system. This subfunction is for the extended I/O
function (IO.EIO) only.

Read With Escape Sequence Processing Enabled - This
subfunction enables escape sequence recognition for the
read operation in extended I/O; it is effective for
only one read.

Read Logical Block - This subfunction causes the driver
to read a logical block from the specified terminal; it
is for use with the extended I/O (IO.EIO) function
only.

Read With Lowercase to Uppercase Conversion - The task
that uses this subfunction gets input in the buffer in
upper case; it is for use with the extended I/O
(IO.EIO) function only.

Read With No Echo - Reads terminal input characters
without echoing the characters back to the terminal for
immediate display. You can use this feature when
typing sensitive information. CTRL/R is ignored while
Read With No Echo is in progress.

Read With No Filter - Read and pass through CTRL/U,
CTRL/R, and DELETE characters as normal characters.
This subfunction is for use with the extended I/O
(IO.EIO) function only..

2-8

FULL-DUPLEX TERMINAL DRIVER

Subfunction Meaning

TF.RPR Read After Prompt (For Extended I/O (IO.EIO) only)
The TF.RPR subfunction causes a prompt to be sent to
the terminal and immediately follows it with a read
function at the terminal. The TF.RPR functions as an
IO.WLB (to write a prompt to the terminal) followed by
IO.RLB. However, TF.RPR differs from the combination
of those two functions as follows:

'rF .RPT

'rF.RST

• System overhead is lower with the TF.RPR because
only one QIO$ is processed.

• When using the TF.RPR function, there is no "window"
during which a response to the prompt may be
ignored. Such a window occurs if the task uses
IO.WLB followed by an IO.RLB, because no read may be
posted at the time the response is received.

• If the issuing task is checkpointable, it can be
checkpointed during both the prompt and the read
requested by the TF.RPR.

• A CTRL/O that may be in effect prior to issuing the
TF.RPR is canceled before the prompt is written.

NOTE

If an TF.RPR function is in progress when the
driver receives a CTRL/R or CTRL/U, the prompt
is redisplayed.

Read In Pass-Through Mode - Passes all characters
except XON/XOFF. Allows the passage of all characters
to the requesting task. The characteristic TC.8BC,
when set, allows the driver to pass eight bits instead
of 7. The driver intercepts the control characters
CTRL/S and CTRL/Q. Other control characters, for
example, CTRL/C, CTRL/O, and CTRL/Z are passed to the
task and not interpreted by the driver. This
subfunction is for use with the extended I/O (IO.EIO)
function only.

Read With Special Terminators - Special characters
terminate the read. These characters are in the ranges
0-037 and 175-177. The driver does not interpret the
terminating character. For example, a DELETE or RUBOUT
(177) does not erase, and a CTRL/C does not produce a
CLI prompt, or, if CTRL/C abort is enabled, abort tasks
active at the terminal. Also CTRL/U and CTRL/R do not
perform their usual functions. All control characters
are terminators.

TF.RST sets TF.TNE by default, which means that
terminators are not echoed on the terminal screen.

If uppercase to lowercase conversion is disabled,
characters 175 and 176 do not act as terminators.
CTRL/O, CTRL/Q, and CTRL/S (017, 021, and 023,
respectively) are not special terminators. The driver
interprets them as output control characters in a
normal manner.

2-9

FULL-DUPLEX TERMINAL DRIVER

Subfunction Meaning

'rF.RTT Read With The Terminator Table That You Specify - Use
this subfunction with the IO.EIO extended I/O function
only. Control characters function normally with this
subfunction. Terminators echo by default. The
additional use of subfunction TF.TNE prevents the
echoing of terminators on the terminal screen. If you
want to use special control characters as terminators,
their normal function should be disabled with the
subfunctions TF.RNF or TF.RAL, or the characteristic
TC.PTH. The terminator table (a bit mask table) length
can be from 1 through 32(decimal) bytes where bit 0 is
a null character, bit 1 is a CTRL/A, and so forth. The
terminator table address is in the item list of the
IO.EIO function. To use ASCII characters 128 through
255 (decimal) , the characteristic TC.8BC must be set.

TF.TMO Read With Time-Out - This subfunction allows the use of
the tmo parameter to require input from the terminal
within a specified time.

TF.TNE

TF.WAL

TF.WBT

Specify the time-out count in 10-second intervals.
(For IO.EIO, the interval is specified in seconds.)
Time-out is the maximum time allowed between two input
characters before the read is aborted. The maximum
time-out value is 255 (decimal) intervals.

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer.
In other words, if you enter a 0, no time is allowed
for you to enter characters, and all characters are
read from the type-ahead buffer.

If you need more than 255 (decimal) intervals (or
255 (decimal) seconds for IO.EIO), issue an asynchronous
QIO$ request followed by a Ma~k Time directive (MRKT$)
for the required interval. Specify different event
flags in the two directives and, after issuing them,
wait for the Logical OR of the two event flags.

Read Terminators with No Echo - Allows reading
terminator characters from the terminal without their
being echoed on the terminal screen as they are
entered. Use this subfunction with the extended I/O
function IO.EIO.

Write All Characters - During a write-pass-all
operation (as in IO.WAL or IO.WLBITF.WAL), the terminal
driver outputs characters without interpretation. It
does not intercept control characters and it does not
keep track of cursor position. Long lines are not
wrapped around if input/output wrap around has been
selected.

Break-through Write - This subfunction instructs the
driver to write the buffer regardless of the I/O status
of the receiving terminal. If another write function
is currently in progress, it finishes the current
request and the break-through write is the next write
issued. Therefore, the TF.WBT subfunction cannot break

2-10

SubJ:unction

TF.WIR

TF.WLB

'J'F.XCC

TF.XOF

FULL-DUPLEX TERMINAL DRIVER

Meaning

through another break-through write that is in
progress. The effect of this is that a CTRL/S can stop
break-through write functions. Thus, it may be
desirable for tasks to time out on break-through
operations.

If a read is currently posted, the break-through write
proceeds, and an automatic CTRL/R is performed to
redisplay any input that was received before the
break-through write was effected (if the terminal is
not in the full-duplex mode) •

CTRL/O, if in effect, is canceled.

An escape sequence that was interrupted is rubbed out.

Break-through write may be issued by a privileged task
only. (The privileged MCR command BRO (broadcast) uses
IO.WBT.)

Write With Input Redisplayed - This subfunction
performs a write to the terminal. If a read is in
progress at the terminal and you have entered
characters in the input line, the prompt and the
characters are redisplayed at the end of the write.

Write Logical Block To The Specified Device
Unit - Write logical block to the specified terminal.
This subfunction is used with the extended I/O (IO.EIO)
function only.

Exclude CTRL/C or Abort Active Task -Use the TF.XCC
subfunction with the IO.ATA function. When TF.XCC is
included in the IO.ATA function, all characters (except
CTRL/C) are handled in the manner previously described.
CTRL/C marks the beginning of a command line
interpreter (CLI) line that is processed by a CLI task,
or, if CTRL/C abort is enabled, aborts tasks active at
the terminal. None of the characters, including the
CTRL/C, are sent to the task issuing the function.

Note that you can use either ast2 or TF.XCC, but not
both in the same QIO request. If both are specified in
the request, an IE.SPC error is returned.

Send XOFF - The driver sends an XOFF to the terminal
after its read. The XOFF (CTRL/S) may have the effect
of inhibiting input from the terminal, if the terminal
recognizes XOFF for this purpose. TF.XOF is ignored
when full-duplex I/O is in use.

Table 2-2 lists subfunction bits that can be executed in a Logical OR
with QIO functions.

The following example is a QIO request using more than one subfunction
bit: a nonechoed read (TF.RNE), terminated by a special terminator
character (TF.RST), and preceded by a prompt.

QIO$C IO.RPR!TF.RNE!TF.RST, ••• ,(stadd,size"pradd,prsize,vfc>

2-11

FULL-DUPLEX TERMINAL DRIVER

2.4 DEVICE-SPECIFIC QIO FUNCTIONS

The following sections describe the device-specific functions for the
full-duplex terminal driver.

2.4.1 Functions and Allowed Subfunctions

Any given function except SF.GMC, SF.SMC, IO.EIO, and IO.GTS can be
issued by using a Logical OR of a particular subfunction bit with
another QIO function. Table 2-2 lists the functions with their
allowed subfunctions. The subfunction bits are specified in the
following QIO$C function descriptions; subfunction bits are described
in general in Section 2.3.4.

Table 2-2
Subfunction Bits - Summary

Equivalent Allowed
Function Subfunctions Subfunctions

STANDARD FUNCTIONS

IO.ATT
IO.DET
IO.KIL
IO.RLB
IO.RVB l
IO.WLB
IO.WVB 1

TF.AST, TF.ESQ

TF.RAL, TF.RNE, TF.RST, TF.TMO, TF.XOF
TF.RAL, TF.RNE, TF.RST, TF.TMO, TF.XOF
TF.CCO, TF.RCU, TF.WBT, TF.WAL
TF.CCO, TF.RCU, TF.WAL, TF.WBT

DEVICE-SPECIFIC FUNCTIONS

IO.ATA
IO.CCO
IO.EI0 2
SF.GMC
IO.GTS
IO.RAL
IO.RNE
IO.RPR

IO.RST
IO.RTT
SF.SMC
IO.WAL
IO.WBT

IO.ATT!TF.AST TF.ESQ, TF.NOT, TF.XCC
IO.WLB!TF.CCO TF.WAL, TF.WBT

TF.RLB, TF.WLB

rO.RLB!TF.RAL TF.RNE, TF.RST, TF.TMO, TF.XOF
IO.RLB!TF.RNE TF.RAL, TF.RST, TF.TMO, TF.XOF

TF.BIN, TF.RAL, TF.RNE, TF.RST, TF.TMO,
Tf.XOF

IO.RLB!TF.RST TF.RAL, TF.RNE, TF.TMO, TF.XOF
TF.RAL, TF.RCU, TF.RNE, TF.TMO

IO.WLB!TF.WAL TF.CCO, TF.RCU, TF.WBT
IO.WLB!TF.WBT TF.CCO, TF.RCU, TF.WAL

1. Subfunctions are stripped off if they are specified with
IO.RVB or IO.WVB.

2. TF.RLB or TF.WLB but not both must be used with IO.EIO.

In addition to the device-specific QIO$ functions, the following
sections also describe the use of subfunction bits.

2-12

FULL-DUPLEX TERMINAL DRIVER

2.4.2 QIO$C IO.ATA - Attach a Terminal with ASTs

The QIO$ IO.ATA macro attaches the terminal and identifies ast and
ast2 as entry points for unsolicited input-character ASTs that
processes these characters. With ast and ast2, IO.ATA specifies
asynchronous system traps (ASTs) to process unsolicited input
characters (other than CTRL/Q, CTRL/S, CTRL/X, or CTRL/O). A minimum
of one AST parameter (ast or ast2) is required.

IO.ATA is equivalent to the IO.ATT attach function in a Logical OR
with the subfunction bit TF.AST.

The USE~ of IO.ATA is enhanced by the addition of TF.NOT and TF.XCC
subfunction bits, described later in this section. You may include
any or all of the subfunctions described in this section with the
IO.ATA function.

Unless the TF.XCC subfunction is specified, CTRL/C is trapped by the
task and does not reach the Command Line Interpreter. Thus, any task
that uses IO.ATA without the TF.XCC subfunction should recognize some
input sequence as a request to terminate; otherwise, the Command Line
Interpreter cannot be invoked to abort the task in case of difficulty.

The fOl:ma t of the QIO$C IO.ATA macro is as follows:

QIO$C IO.ATA[lTF.ESQ] ,lun, [ef~] ,<[ast], [parameter2], [ast2]>
ITF.NOT ,prl
ITF.XCC ,isb

Parameters:

The parameters have the following meanings:

Parameter

lun

efn

pri

isb

ast

Meaning

The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

The number of the event flag to be associated with the
QIO$ operation. For more information refer to Chapter 1.

Makes this QIO$ macro compatible with RSX-IID.
value of 0 or a null for this parameter.

Use a

The address of the I/O status block (I/O status
double-word) associated with the I/O request. For more
information refer to Chapter 1.

The entry point for an unsolicited input-character AST.

Either ast or ast2 is required.

Control passes to ast whenever an unsolicited character
(other than CTRL/Q, CTRL/S, CTRL/X, or CTRL/O) is entered
at the terminal. If ast2 is not specified, an unsolicited
CTRL/C results in entering the AST specified in the ast
parameter.

If TF.NOT has been specified, after the AST has been
effected, the AST becomes "disarmed" until a read request
is issued by the task. If multiple unsolicited input
cnaracters are received before the read request is issued,
they are stored in the type-ahead buffer of attached
terminals until they are read by the task. Once the read

2-13

Parameter

FULL-DUPLEX TERMINAL DRIVER

Meaning

request is received, the contents of the type-ahead
buffer, including the character causing the AST, is
returned to the task; the AST is then "armed" again for
new unsolicited input characters. The terminal driver
discards all unsolicited characters from an unattached,
slaved terminal. If TF.NOT is not specified, every
usolicited character causes an AST.

Upon entry to the AST routines, the unsolicited character
and parameter2 are in the top word on the stack, as shown
in ast2. That word must be removed from the stack before
exiting the AST.

parameter2 Parameter2 is located in the high byte of SP+OO. It is a
value that you can specify to identify individual
terminals in a multiterminal environment.

ast2 The entry point for an unsolicited CTRL/C AST.

If you specify the ast2 parameter, an unsolicited CTRL/C
character results in the task entering the AST specified
in that parameter. If ast2 is not specified, an
unsolicited CTRL/C results in the task entering the AST
specified in the ast parameter.

Upon entry to the AST routines, the unsolicited character
and parameter2 are in the top word on the stack. That
word must be removed from the stack before exiting the
AST. The stack contents is shown next:

SP+lO

SP+06

SP+04

SP+02

SP+OO

Event flag mask word

PS of task prior to AST

PC of task prior to AST

Task's directive status word

Unsolicited character in low byte;
parameter2, in the high byte, is a
user-specified value that can be used to
identify individual terminals in a
multi terminal environment

Either ast2 or TF.XCC can be used, but not both in the
same QIO$ request. If you specify both in the request, an
IE.SPC error is returned.

After the AST has been effected, the AST becomes
"disarmed" until a read request is issued by the task. If
multiple characters are received before the read request
is issued, they are stored in the type-ahead buffer. Once
the read request is received, the contents of the
type-ahead buffer, including the character causing the
AST, is returned to the task; the AST is then "armed"
again for new unsolicited input characters. Thus, using
the TF.NOT subfunction allows a task to monitor more than
one terminal for unsolicited input without the need to
continuously read each terminal for possible unsolicited
input. Note the the TF.NOT subfunction cannot be used
with the CTRL/C AST; an unsolicited CTRL/C character
flushes the type-ahead buffer.

See the RSX-llM/M-PLUS and Micro/RSX Executive Reference
Manual for further details on ASTs.

2-14

FULL-DUPLEX TERMINAL DRIVER

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.ESQ

TF.NOT

TF.XCC

Recognize Escape Sequences - This subfunction issued with
IO.ATT or IO.ATA attaches a terminal and notifies the driver
that it recognizes escape sequences entered at that
terminal. Escape sequences are recognized for solicited
input only (a read was issued to the terminal). (See
Section 2.7 for a discussion of escape sequences.)

If escape sequences are recognized, the sequence terminates
input and a status code IS. ESC is returned. In addition, if
uppercase to lowercase conversion is not enabled, the
character ALTmode (codes 175 or 176, octal) is also treated
as an escape character.

If the terminal has not been declared capable of generating
escape sequences, IO.ATA!TF.ESQ has no effect other than
attaching the terminal. No escape sequences are returned to
the task because any ESC sent by the terminal acts as a line
terminator. The QIO$C SF.SMC function or the DCL SET
/ESCAPE command declare the terminal capable of generating
escape sequences (see Table 2-4 in Section 2.4.14, and see
also Section 2.7).

Notification of Unsolicited Input - Unsolicited input causes
an AST and entry into the AST service routine in the task.
When the full-duplex terminal driver receives unsolicited
terminal input (except CTRL/C) and you used the TF.NOT
subfunction with IO.ATA, the resulting AST serves only as
notification of unsolicited terminal input; the terminal
driver does not pass the character to the task. Upon entry
to the AST service routine, the high byte of the first word
on the stack identifies the terminal causing the AST
(parameter2 in the IO.ATA function).

If TF.NOT is specified, after the AST has been affected, the
AST becomes "disarmed" until a read request is issued by the
task. If TF.NOT is not specified, every unsolicited
character causes an AST.

Using the TF.NOT subfunction allows a task to monitor more
than one terminal for unsolicited input without the need to
continuously read each terminal for possible unsolicited
input. Note that the TF.NOT subfunction cannot be used with
the CTRL/C AST (ast2 in IO.ATA); an unsolicited CTRL/C
character flushes the type-ahead buffer.

Exclude CTRL/C from AST Notification - You can use the
TF.XCC subfunction with the IO.ATA function. When TF.XCC is
included in the IO.ATA function, all characters (except
CTRL/C) are handled in the manner previously described.
CTRL/C marks the beginning of a command line interpreter
(CLI) line that is processed by a CLI task, or, if CTRL/C
abort is enabled, aborts tasks active at the terminal. None
of the characters of CLI input, including the CTRL/C, are
sent to the task issuing the function.

Note that you can use either ast2 or TF.XCC, but not both in
the same QIO request. If both are specified in the request,
an, IE.SPC error is returned.

2-15

FULL-DUPLEX TERMINAL DRIVER

2.4.3 QIO$C IO.CCO - Cancel CTRL/O

The QIO$ IO.CCO macro directs the driver to write a logical block of
data to the terminal regardless of a CTRL/O condition that may be in
effect. If CTRL/O is in effect, it is canceled before the write
occurs.

IO.CCO IS equivalent to 10.WLBITF.CCO.

The format of the QIO$ 10.CCO macro is as follows:

QIO$C 10.CCO [ITF.WALJ ,lun, [ef~] <stadd,size,vfc)
ITF.WBT , prl

, isb
, ast

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-IID. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast

stadd

size

vfc

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. Stadd may be on a
byte boundary.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The terminal driver responds to task I/O requests for cursor
positioning without the task requiring information about the
type of terminal in use.

The vfc parameter specifies cursor position. The parameter
is interpreted as a vfc parameter if the high byte of the
parameter is O. However, if the parameter defines cursor
position, the high byte must be nonzero, the low byte is
interpreted as column number (x-coordinate), and the high
byte is interpreted as line number (y-coordinate). Home
position, the upper left corner of the display, is defined

2-16

Parameter

FULL-DUPLEX TERMINAL DRIVER

Meaning

as 1,1. The driver outputs cursor-positioning commands
appropriate for the terminal in use that move the cursor to
the specified position. If the most significant bit of the
line number is set, the driver clears the display before
positioning the cursor_

Table 2-9 is a summary of all characters that your task can
use for vertical format control on the terminal. Anyone of
these characters can be specified as the value of the vfc
parameter.

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.WAL

TF.WBT

Write All Characters - During the write-pass-all operation
specified by this subfunction (as in IO.WAL or
IO.WLB!TF.WAL), the terminal driver outputs characters
without interpretation. It does not intercept control
characters and it does not keep track of cursor position.
Long lines are not wrapped around if input/output wraparound
has been selected.

write Breakthrough - Instructs the driver to write the
buffer regardless of the I/O status of the receivi~g
terminal. If another write function is currently 1n
progress, it finishes the current request and the write
breakthrough is the next write issued. Therefore, the
TF.WBT subfunction cannot break through another write
breakthrough that is in progress. The effect of this is
that a CTRL/S can stop write breakthrough functions. Thus,
it may be desirable for tasks to time out on breakthrough
operations.

If a read is
proceeds, and
any input that
was effected
mode) •

currently posted, the breakthrough write
an automatic CTRL/R is performed to redisplay
was received before the breakthrough write
(if the terminal is not in the full-duplex

CTRL/O, if in effect, is canceled.

An escape sequence that was interrupted is rubbed out.

Break-through write may be issued by a privileged task only.
(The DCL command BRO (broadcast) uses IO.WBT.)

2-17

FULL-DUPLEX TERMINAL DRIVER

2.4.4 QIO$C IO.EIO - Extended I/O Functions

The IO.EIO function allows the use of additional I/O subfunctions.
The QIO$ design as used with the other QIO$ functions allows a limited
number of I/O subfunctions to be implemented. With IO.EIO, the
address of an item list buffer (stadd) is contained in the macro
statement. The item list buffer contains IO.EIO modifiers
(recognizable as subfunctions) and it allows the use of a maximum of
two words of new I/O subfunction bits. Figure 2-1 shows the structure
of the Item List 1 buffer required for the subfunction TF.RLB. Also,
Figure 2-2 shows the structure of the Item List 2 buffer required for
the subfunction TF.WLB.

The QIO$C IO.EIO reads from or writes to a terminal. The modifiers in
the item list allow you to modify the nature or operation of that read
or write. A read (TF.RLB) subfunction or write (TF.WLB) subfunction
must be issued with the IO.EIO function. But both of these
subfunctions cannot be used in a Logical OR together.

NOTE

The IO.EIO function will not work if your terminal has
been set as a remote terminal (RT:) to another system.
That is, after entering

)SET HOST xxxxx

and logging into an RT:, the terminal driver will
reject a QIO issuing an extended I/O request from the
RT: •

The QIO$C IO.EIO macro has either one of the following formats:

QIO$C

QIO$C

IO.EIO!TF.RLB,lun, [ef~J ,<stadd,size)
, prl
, isb
, ast

IO.EIO!TF.WLB,lun, [ef~J ,<stadd,size>
, prl
, isb
, ast

The TF.WLB and TF.RLB
which are located
listed as follows:

subfunctions each allow specific modifiers,
in the i tern list, ·to be used wi th them. They are

Subfunction Modifiers

TF.RLB TF.BIN, TF.RAL, TF.RDI, TF.RES,
TF.RLU, TF.RNE, TF.RNF, TF.RPR,
TF.RPT, TF.RST, 1 TF.RTT, 1 TF.TMO,
TF.TNE, TF.XOF

TF.WLB TF.CCO, TF.RCU, TF.WAL, TF.WBT,
TF.WIR

1. If both the TF.RST and TF.RTT modifiers are included, TF.RST
supersedes the function of TF.RTT.

Parameters:

The parameters have the following meanings:

2-18

FULL-DUPLEX TERMINAL DRIVER

Parameter Meaning

Iun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast

stadd

size

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.

the
the
AST

The starting address of the item list of the length
specified in size. The address of the item list must be
word-aligned and in the task's address space.

The size of the item list in bytes. The specified size for
the IO.EIO!TF.RLB function must be 24 decimal bytes. The
specified size for the IO.EIO!TF.WLB function must be 10
decimal bytes. The item list must be within the task's
address space.

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.BIN

TF.CCO

TF.RAL

Binary Prompt (send prompt as pass all) - The prompt is sent
to the terminal without interpretation by the driver. This
is similar, for the prompt, to a write-pass-all.

Cancel CTRL/O - The driver writes a logical block of data to
the terminal of data to the terminal regardless of a CTRL/O
condition that may be in effect. The CTRL/O, if in effect,
is canceled before the write occurs.

Read All Characters (Pass All) - Allows the passage of all
characters to the requesting task. The driver does not
intercept control characters. The characteristic TC.8BC,
when set, allows the driver to pass 8 bits. For example,
CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are passed to the
task and not interpreted by the driver.

2-19

.r"ULL-UUPLEX TERMINAL DRIVER

Subfunction Meaning

TF.RCU

TF.RDI

TF.RES

TF.RLU

TF.RNE

TF.RNF

TF.RPR

Restore Cursor Position - When defining cursor position in a
function, you can use the TF.RCU subfunction to save the
current cursor position. When included in this manner,
TF.RCU causes the driver to first save the current cursor
position, then position the cursor and output the specified
buffer, and, finally, restore the cursor to the original
(saved) position once the output transfer has been
completed.

Read With Default Input - The default input that you
specified in the extended I/O item list is displayed at the
start of the read as an input line on the terminal. You may
change this line or use it as input to the system. This
subfunction is for the extended I/O function (IO.EIO) only.

Read With Escape Sequence Processing Enabled - This
subfunction enables escape sequence recognition for the read
operation in extended I/O and is effective for one read
only.

Read With Conversion From Lowercase to Uppercase - The task
that uses this subfunction gets input in the buffer in upper
case. This subfunction is used with the extended I/O
(IO.EIO) function only.

Read with No Echo - Reads terminal input characters without
echoing the characters back to the terminal for immediate
display. You can use this feature when typing sensitive
information. CTRL/R is ignored while Read with No Echo is
in progress.

Read with No Filter - Read and pass through CTRL/U, CTRL/R,
and DELETE characters as normal characters. This
subfunction is for use with the extended I/O (IO.EIO)
function only.

Read After Prompt (for extended I/O (IO.EIO) function
only) - The TF.RPR subfunction causes a prompt to be sent to
the terminal and immediately follows it with a read function
at the terminal. The TF.RPR functions as an IO.WLB (to
write a prompt to the terminal) followed by IO.RLB.
However, TF.RPR differs from the combination of those two
functions as follows:

• System overhead is lower with the TF.RPR because only one
Q10$ is processed.

• When using the TF.RPR function, there is no "window"
during which a response to the prompt may be ignored.
Such a window occurs if the task uses 10.WLB followed by
an IO.RLB, because no read may be posted at the time the
response is received.

• If the issuing task is checkpointable, it
checkpointed during both the prompt and
requested by the TF.RPR.

can be
the read

• A CTRL/O that may be in effect prior to issuing the
TF.RPR is canceled before the prompt is written.

2-20

TF.RPT

TF.RST

TF.RTT

TF.TMO

FULL-DUPLEX TERMINAL DRIVER

NOTE

If an TF.RPR function is in progress when the driver
receives a CTRL/R or CTRL/U, the prompt is
redisplayed.

Read In Pass-Through Mode - Passes all characters except
XON/XOFF. The characteristic TC.8BC, when set, allows the
driver to pass eight bits instead of 7. The driver
intercepts the control characters CTRL/S and CTRL/Q. Other
control characters, for example, CTRL/C, CTRL/O, and CTRL/Z,
are passed to the task and nqt interpreted by the driver.
This subfunction modifier is for use with the IO.EIO!IO.RLB
function only.

Read With Special Terminators - Certain special characters
terminate the read. These characters are in the ranges
0-037 and 175-177. The driver does not interpret the
terminating character. For example, a DELETE or RUBOUT
(177) does not erase, and a CTRL/C does not produce a CLI
prompt. Also CTRL/U and CTRL/R do not perform their usual
functions. All control characters are terminators.

TF.RST sets TF.TNE by default, which means that terminators
are not echoed on the terminal screen.

If uppercase to lowercase conversion is disabled, characters
175 and 176 do not act as terminators. CTRL/O, CTRL/Q, and
CTRL/S (017, 021, and 023, respectively) are not special
terminators. The driver interprets them as output control
characters in a normal manner.

Read With Specified Terminator Table - Use this subfunction
with the IO.EIO extended I/O function only. Control
characters function normally with this subfunction.
Terminators echo by default. The additional use of
subfunction TF.TNE prevents the echoing of terminators on
the terminal screen. If you want to use special control
characters as terminators, their normal function should be
disabled with the TF.RNF subfunction or the TC.PTH
characteristic. The terminator table (a bit mask table)
length can be from 1 through 32(decimal) bytes where bit 0
is a null character, bit 1 is a CTRL/A, and so forth. The
terminator table address is in the item list of the IO.EIO
function. To use ASCII characters 128 through 255 (decimal) ,
the charateristic TC.8BC must be set.

Read With Time-Out - This subfunction allows the use of the
tmo parameter to require input from the terminal within a
specified time.

Specify the time-out count in seconds. Time-out is the
maximum time allowed between two input characters before the
read is aborted. The maximum time-out value is 255 (decimal)
intervals.

2-21

FULL-DUPLEX TERMINAL DRIVER

Subfunction Meaning

TF.TMO
(Cont. j

TF.TNE

TF.WAL

TF.WBT

TF.WIR

TF.XOF

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255 (decimal) seconds for IO.EIO, issue
an asynchronous QIO$ request followed by a Mark Time
directive (MRKT$) for the required interval. Specify
different event flags in the two directives and, after
issuing them, wait for the Logical OR of the two event
flags.

Read Terminators With No Echo - Allows reading terminator
characters from the terminal without their being echoed on
the terminal screen as they are entered. Use this
subfunction with the extended I/O function IO.EIO.

Write All Characters - During the write-pass-all operation
specified by this subfunction (as in IO.WAL or
IO.WLB!TF.WAL), the terminal driver outputs characters
without interpretation. It does not intercept control
characters and it does not keep track of cursor position.
Long lines are not wrapped around if input/output wraparound
has been selected.

Write Breakthrough - Instructs the driver to write the
buffer regardless of the I/O status of the receivi~g
terminal. If another write function is currently In
progress, it finishes the current request and the write
breakthrough is the next write issued. Therefore, the
TF.WBT subfunction cannot break through another write
breakthrough that is in progress. The effect of this is
that a CTRL/S can stop write breakthrough functions. Thus,
it may be desirable for tasks to time out on breakthrough
operations.

If a read is
proceeds, and
any input that
was effected
mode) •

currently posted, the breakthrough write
an automatic CTRL/R is performed to redisplay
was received before the breakthrough write
(if the terminal is not in the full-duplex

CTRL/O, if in effect, is canceled.

An escape sequence that was interrupted is rubbed out.

Break-through write may be issued by a privileged task only.

Write With Input Redisplayed - Performs a write to the
terminal. If a read is in progress at the terminal and you
have entered characters in the input line, the prompt and
the characters are redisplayed at the end of the write.

Send XOFF -
its read.
inhibiting
recognizes
full-duplex

The driver sends an XOFF to the
The XOFF (CTRL/S) may have

input from the terminal, if
XOFF for this purpose. TF.XOF
I/O is in ,use.

2-22

terminal after
the effect of
the terminal

is ignored when

FULL-DUPLEX TERMINAL DRIVER

2.4.4.1 Item List 1 for IO.EIOITF.RLB - The structure of the Item
List 1 Buffer is shown in Figure 2-1. Modifier word 2 is currently
not used but must be zero. All the other fields in the item list must
be present, but need not contain any specific information except that
pertinent to the function being performed. Thus, if a read with
prompt (TF.RPR) is not being performed, words 10, 12 and 14 are not
used. Item List 1 has the following form:

Octal Decimal

o • Modifier word 1
3 2 • Modifier word 2
5 4 • Address of read data buffer
7 6 • Length of read data buffer

11 • Timeout value in seconds
8

13 10 • Address of prompt buffer
15 12 • Length of prompt buffer
17 14 • Prompt VFC
21 16 • Terminator table address
23 18 • Length of terminator table
25 20 • Default data buffer address
27 22 • Default data buffer length

ZK-4079-85

Figure 2-1 Structure of the Item List 1 Buffer

• Modifiers (subfunctions) of the group of
modifiers allowed for any I/O read function.

• Currently must be zero.

• The starting address of the read data buffer.
The read data buffer may be on a byte boundary.

• The size of the read data buffer in bytes. The
specified size must be greater than 0 and less
than or equal to 8128 bytes. The buffer must be
within the task's address space.

• For use with TF.TMO. TF.TMO must be in modifier
word 1.

e This field contains the starting address of the
prompt buffer. The prompt buffer may be on a
byte boundary. For use with TF.RPR, which must
be in modifier word 1.

• For use with TF.RPR. The size of the prompt
buffer in bytes. The buffer must be within the
task's address space. Th

r
specified size must be

greater than 0 and Ie s than or equal to 8128
bytes.

2-23

FULL-DUPLEX TERMINAL DRIVER

.. For use with TF.RPR. The vfc parameter specifies
cursor position. The parameter is interpreted as
a vfc parameter if the high byte of the parameter
is O. However, if the parameter defines cursor
position, the high byte must be nonzero, the low
byte is interpreted as column number
(x-coordinate), and the high byte is interpreted
as line number (y-coordinate). Home position,
the upper left corner of the display, is defined
as 1,1. The driver outputs cursor-positioning
commands appropriate for the terminal in use that
move the cursor to the specified position. If
the most significant bit of the line number is
set, the driver clears the display before
positioning the cursor.

Table 2-9 is a summary of all characters that
your task can use for vertical format control on
the terminal. Anyone of these characters can be
specified as the value of the vfc parameter.

4t For use with TF.RTT. TF.RTT must be in modifier
word 1. The table (1 to 32(decimal) bytes)
starts at the address specified by the table
address. The first word contains bits that
represent the first 16 ASCII character codes
(0-17); similarly, the second word contains bits
that represent the next 16 character codes
(20-37), and so forth, through the sixteenth
word, bit 15, which represents character code
377. For example, to specify the % symbol (code
045) as a read terminator character, set bit 05
in the third word, because the third word of the
table contains bits representing character codes
40-57.

The terminal must be set to read-pass-all
operation (TC.BIN=l), or read-pass 8-bits
(TC.8BC) if you want to use any of the following
characters as terminator characters:

• CTRL/S (023)

• CTRL/Q (021)

• Any characters whose codes are greater than
177

4t Length of the terminator table specified in I.

tt For use with TF.RDI. TF.RDI must be in modifier
word 1. This buffer contains the default input
that is to be displayed on the terminal •

.. For use with TF.RDI. This word contains the
length of the buffer at the address specified in
K.

2-24

I

FULL-DUPLEX TERMI1AL DRIVER

2.4.4.2 Item List 2 for IO.EIOITF.WLB - The structure of the Item
List 2 Buffer is shown in Figure 2-2. Modifier word 2 is currently
not used but must be O. All the other fields in the item list must be
present. Item list 2 is shown in Figure 2-2.

•

Octal Decimal

0 • Modifier word 1
3 2 • Modifier word 2

• 5 4
Address of output buffer

• 7 6
Length of output buffer

11 8 • VFC cursor position

ZK-4080-85

Figure 2-2 Structure of the Item List 2 Buffer

Modifiers
additional
functions.

(subfunctions) of the
modifiers allowed for

group of
I/O write

• Currently must be zero.

• The starting address of the write data buffer.
The address may be on a byte boundary.

• The size of the stadd buffer in bytes. The
specified size must be greater than 0 and less
than or equal to 8128 bytes. The buffer must be
within the task's address space.

• The vfc parameter specifies cursor position. The
parameter is interpreted as a vfc parameter if
the high byte of the parameter is O. However, if
the parameter defines cursor position, the high
byte must be nonzero, the low byte is interpreted
as column number (x-coordinate), and the high
byte is interpreted as line number
(y-coordinate) • Home position, the upper left
corner of the display, is defined as 1,1. The
driver outputs cursor-positioning commands
appropriate for the terminal in use that move the
cursor to the specified position. If the most
significant bit of the line number is set, the
driver clears the display before positioning the
cursor.

Table 2-9 is a summary of all characters that
your task can use for vertical format control on
the terminal. Anyone of these characters can be
specified as the value of the vfc parameter.

2-25

FULL-DUPLEX TERMINAL DRIVER

2.4.5 QIO$C IO.GTS - Get Terminal Support

This function is a get terminal support request that returns
inforrration to a 4-word buffer specifying which features are part of
the terminal driver. Only two of these words are currently defined.
Table 2-3 gives details for these words.

The format of the QIO$C IO.GTS macro is as follows:

QIO$C IO.GTS,lun,[efn),[pri),[isb),[ast),<stadd,size)

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast

stadd

size

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. The addzess must
be word aligned.

The size of the stadd data buffer in bytes. The specified
size must be four bytes. The buffer must be within the
task's address space. The size must be an even value.

The various symbols used by the IO.GTS, SF.GMC, and SF.SMC functions
are defined in a system module, TTSYM. These symbols include Fl.xxx
and F2.xxx (Table 2-3); TC.xxx (Table 2-4); T.xxxx (Table 2-5); and
the SE.xxx status returns described in Table 2-6, Section 2.5. These
symbols may be defined locally within a code module by using:

.J'1CALL TTSYM$

T'rSYM$

Symbol:3 that are not defined locally are automatically defined by the
Task B..1ilder.

Octal values shown for the symbols are subject to change.
it is recommended that only the symbolic names be used.

2-26

Therefore,

Bit

Word

0
1
2
3
4
5

6
7
8
9

10
11
12
13
14

15

Word

0
1
2
3
4
5
6
7
8
9

FULL-DUPLEX TERMINAL DRIVER

Table 2-3
Information Returned by Get Terminal Support (IO.GTS) QIO$

Octal
Value Mnemonic

o of Buffer:

1 Fl.ACR
2 Fl.BTW
4 Fl.BUF

10 Fl.UIA
20 Fl.CCO
40 Fl.ESQ

100 Fl.HLD
200 Fl. LWC
400 Fl. RNE

1000 Fl.RPR
2000 Fl. RST
4000 Fl. RUB

10000 Fl.SYN
20000 Fl. TRW
40000 Fl.UTB

100000 Fl. VBF

1 of Buffer:

1 F2.SCH
2 F2.GCH
4 F2. DCH

10 F2.DKL
20 F2.ALT
40 F2.SFF

100 F2.CUP
200 F2.FDX
400 F2.EIO

1000 F2.NCT

Meaning When Set to 1

Automatic CR/LF on long lines
Breakthrough write
Checkpointing during terminal input
Unsolicited-input-character AST
Cancel CTRL/O before writing
Recognize escape sequences in solicited
input
Hold-screen mode
Lowercase to uppercase conversion
Read with no echo
Read after prompting
Read with special terminators
CRT rubout
CTRL/R terminal synchronization
Read all and write all
Input characters buffered in task's address
space
Variable-length terminal buffers

Set characteristics QIO$ (SF.SMC)
Get characteristics QIO$ (SF.GMC)
Dump/restore characteristics
Historical lID/lAS IO.KIL
ALTmode is echoed
Formfeed can be simulated
Cursor positioning
Full-duplex terminal driver
Extended I/O
Network command terminal support

2-27

FULL-DUPLEX TERMINAL DRIVER

2.4.6 QIO$C IO.HNG - Disconnect a Terminal

The QIO$C IO.HNG macro disconnects a terminal that is on a remote line
or on a DECNET link. This function has no parameters.

A nonpl~ivileged task can issue an IO.HNG request for its own terminal
(TI:) only. A privileged task can issue IO.HNG to any terminal.

The format of the QIO$C IO.HNG macro is as follows:

QIO$C IO.HNG,lun,efn,pri,isb,ast

Parameters:

The parameters have the following meaning:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-IID. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

2-28

code
ast.
the
the
AST

FULL-DUPLEX TERMINAL DRIVER

2.4.7 QIO$C IO.RAL - Read all Characters without Interpretation

The QIO$C IO.RAL macro causes the driver to pass all characters that
were read to the requesting task. The driver does not intercept
control characters. For example, CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and
CTRL/Z are passed to the program and are not interpreted by the
driver ..

NOTE

IO.RAL echoes the characters that are read. To read
all characters without ~choing, use IO.RAL!TF.RNE.

IO.RAL is equivalent to IO.RLB in a Logical OR with the subfunction
bit TF .. RAL. The 10.RAL function can be terminated by a full character
count only (input buffer full).

The format of QIO$C IO.RAL is as follows:

QIO$C 10. RAL [! TF. RNE] !TF.RST
!TF.TMO
!TF.XOF

,lun, [ef~J ,<stadd,size, [tmo] >
, prl
, isb
, ast

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast

stadd

size

tmo

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. Stadd may be on a
byte boundary.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The optional time-out count for use with the
subfunction.

2-29

TF.TMO

FULL-DUPLEX TERMINAL DRIVER

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.RNE

TF.RST

TF.TMO

TF.XOF

Read With No Echo - Reads terminal input characters without
echoing the characters back to the terminal for immediate
display. You can use this feature when typing sensitive
information. CTRL/R is ignored while Read With No Echo is
in progress.

Read With Special Terminators - Certain special characters
terminate the read. These characters are in the ranges
0-037 and 175-177. The driver does not interpret the
terminating character. For example, a DELETE or RUBOUT
(177) does not erase, and a CTRL/C does not produce a CLI
prompt, or, if CTRL/C abort is enabled, abort tasks active
at the terminal. Also CTRL/U and CTRL/R do not perform
their usual functions. All control characters are
terminators.

TF.RST sets TF.TNE by default, which means that terminators
are not echoed on the terminal screen.

If uppercase to lowercase conversion is disabled, characters
175 and 176 do not act as terminators. CTRL/O, CTRL/Q, and
CTRL/S (017, 021, and 023, respectively) are not special
terminators. The driver interprets them as output control
characters in a normal manner.

Exercise great care when using IO.RAL and TF.RST together.
Obscure problems can result if you use them in this way.

Read With Time-Out - This subfunction allows the use of the
tmo parameter to require input from the terminal within a
specified time.

Specify the time-out count in 10-second intervals. Time-out
is the maximum time allowed between two input characters
before the read is aborted. The maximum time-out value is
255 (decimal) intervals.

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255 (decimal) intervals, issue an
asynchronous QIO$ request followed by a Mark Time directive
(MRKT$) for the required interval. Specify different event
flags in the two directives and, after issuing them, wait
for the Logical OR of the two event flags.

Send XOFF -
its read.
inhibiting
recognizes
full-duplex

The driver sends an XOFF to the
The XOFF (CTRL/S) may have

input from the terminal, if
XOFF for this purpose. TF.XOF
I/O is in use.

2-30

terminal after
the effect of

the terminal
is ignored when

FULL-DUPLEX TERMINAL DRIVER

2.4.8 QIO$C IO.RNE - Read Input Without Echoing

The IO.RNE function reads terminal input characters without echoing
the characters back to the terminal for immediate display. You can
use this feature when typing sensitive information (for example, a
password or combination).

(Note that the no-echo mode can also be selected with the SF.SMC
function; see Table 2-4, bit TC.NEC.)

CTRL/R is ignored while an IO.RNE is in progress.

The IO.RNE function is equivalent to IO.RLB in a Logical OR with the
subfunction bit TF.RNE.

The format of the QIO$C IO.RNE macro is as follows:

QIO$C IO.RNE [!TF.RALJ
!TF.RST
!TF.TMO
!TF.XOF

,lun, [ef~J ,<stadd,size,,[tmo]>
, prl
, isb
, ast

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast

stadd

size

tmo

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. Stadd may be on a
byte boundary.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The optional time-out count for use with the
subfunction.

TF.TMO

FULL-DUPLEX TERMINAL DRIVER

Subfunction Bits:

The subEunctions have the following meanings:

Subfunction Meaning

TF.RAL

TF.RST

TF.TMO

TF.XOF

Read All Characters (Pass All) - The driver passes all
characters to the requesting task. The characteristic
TC.8BC, when set, allows the driver to pass eight bits. For
example, CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are
passed to the task and not interpreted by the driver.

Exercise great care when using TF.RAL (read all) and TF.RST
(read with special terminators) together. Obscure problems
can result if you use them in this way.

Read With Special Terminators - Certain special characters
terminate the read. These characters are in the ranges
0-037 and 175-177. The driver does not interpret the
terminating character. For example, a DELETE or RUBOUT
(177) does not erase, and a CTRL/C does not produce a CLI
prompt, or, if CTRL/C abort is enabled, abort tasks active
at the terminal. Also CTRL/U and CTRL/R do not perform
their usual functions. All control characters are
terminators.

TF.RST sets TF.TNE by default, which means that terminators
are not echoed on the terminal screen.

If uppercase to lowercase conversion is disabled, characters
175 and 176 do not act as terminators. CTRL/O, CTRL/Q, and
CTRL/S (017, 021, and 023, respectively) are not special
terminators. The driver interprets them as output control
characters in a normal manner.

Exercise great care when using TF.RAL (read all) and TF.RST
(read with special terminators) together. Obscure problems
can result if you use them in this way.

Read with Time-Out - This subfunction allows the use of the
tmo parameter to require input from the terminal within a
specified time.

Specify the time-out count in 10-second intervals. Time-out
is the maximum time allowed between two input characters
before the read is aborted. The maximum time-out value is
255 (decimal) intervals.

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255 (decimal) intervals, issue an
asynchronous QIO$ request followed by a Mark Time directive
(MRKT$) for the required interval. Specify different event
flags in the two directives and, after issuing them, wait
for the Logical OR of the two event flags.

Send XOFF -
its read.
inhibiting
recognizes
full-duplex

The driver sends an XOFF to the
The XOFF (CTRL/S) may have

input from the terminal, if
XOFF for this purpose. TF.XOF
I/O is in use.

2-32

terminal after
the effect of

the terminal
is ignored when

FULL-DUPLEX TERMINAL DRIVER

2.4.9 'QIO$C IO.RPR - Send Prompt, Then Issue Read

The QIO$C IO.RPR (Read After Prompt) macro sends a prompt to the
terminal and immediately follows it with a read function at the
terminal. The IO.RPR functions as an IO.WLB (to write a prompt to the
terminal) followed by IO.RLB. However, IO.RPR differs from the
combination of those two functions as follows:

• System overhead is lower with the IO.RPR because only one QIO$
is processed.

• When using the IO.RPR function, there is no "window" during
which a response to the prompt may be ignored. Such a window
occurs if the task uses IO.WAL/IO.RLB, because no read may be
posted at the time the response is received.

• If the issuing task is checkpointable, it can be checkpointed
during both the prompt and the read requested by the IO.RPR.

• A CTRL/O that may be in effect prior to issuing the IO.RPR is
canceled before the prompt is written.

Subfunction bits may be used in a Logical OR with IO.RPR to write the
prompt as a write All (TF.BIN) and to send XOFF after the read
(TF.XOF'). In addition, your task can use read subfunction bits
TF.RAL, TF.RNE, TF.TMO, and TF.RST with IO.RPR.

NOTE

If an IO.RPR function is in progress when
receives a CTRL/R or CTRL/U, the
redisplayed.

The format of the QIO$C IO.RPR macro is as follows:

the driver
prompt is

QIO$C IO.RPR !TF.BIN
!TF.RAL
!TF.RNE
ITF.RST
!TF.TMO
!TF.XOF

,lun, ref?] ,<stadd,size, [tmo] ,pradd,prsize,vfc)
, prl
, isb
, ast

Parameters:

The parameters have the following meanings:

Parameter Meaning

Iun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-IID. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

2-33

Parameter

ast

stadd

size

tmo

pradd

prsize

vfc

FULL-DUPLEX TERMINAL DRIVER

Meaning

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. Stadd may be on a
byte boundary.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The optional time-out count for use with the
subfunction.

TF.TMO

The starting address of the byte buffer where the prompt is
stored.

The size of the pradd prompt buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The terminal driver responds to task I/O requests for cursor
positioning without the task requiring information about the
type of terminal in use.

The vfc parameter specifies cursor position. The parameter
is interpreted as a vfc parameter if the high byte of the
parameter is O. However, if the parameter defines cursor
position, the high byte must be nonzero, the low byte is
interpreted as column number (x-coordinate), and the high
byte is interpreted as line number (y-coordinate). Home
position, the upper left corner of the display, is defined
as 1,1. The driver outputs cursor-positioning commands
appropriate for the terminal in use that move the cursor to
the specified position. If the most significant bit of the
line number is set, the driver clears the display before
positioning the cursor.

Table 2-9 is a summary of all characters that your task can
use for vertical format control on the terminal. Anyone of
these characters can be specified as the value of the vfc
parameter.

2-34

FULL-DUPLEX TERMINAL DRIVER

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.BIN

TF.RAL

TF.RNE

TF.RST

Binary Prompt (send prompt as pass all) - As used in IO.RPR,
results in a "binary" prompt; that is, a prompt is sent to
the terminal by the driver with no character interpretation
(as if it were issued as an IO.WAL). The read follows the
binary prompt.

Read All Characters (Pass All) - The driver passes all
characters to the requesting task. The characteristic
TC.8BC, when set, allows the driver to pass eight bits. For
example, CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are
passed to the task and not interpreted by the driver.

Exercise great care when using TF.RAL (read all) and TF.RST
(read with special terminators) together. Obscure problems
can result if you use them in this way.

Read With No Echo- -Reads terminal input characters without
echoing the characters back to the terminal for immediate
display. You can use this feature when typing sensitive
information. CTRL/R is ignored while Read with No Echo is
in progress.

Read With Special Terminators - Certain special characters
terminate the read. These characters are in the ranges
0-037 and 175-177. The driver does not interpret the
terminating character. For example, a DELETE or RUBOUT
(177) does not erase, and a CTRL/C does not produce a CLI
prompt, or, if CTRL/C is enabled, abort tasks active at the
terminal. Also CTRL/U and CTRL/R do not perform their usual
functions. All control characters are terminators.

TF.RST sets TF.TNE by default, which means that terminators
are not echoed on the terminal screen.

If uppercase to lowercase conversion is disabled, characters
175 and 176 do not act as terminators. CTRL/O, CTRL/Q, and
CTRL/S (017, 021, and 023, respectively) are not special
terminators. The driver interprets them as output control
characters in a normal manner.

Exercise great care when using Real All and Read With
Special Terminators together. Obscure problems can result
if you use them in this way.

2-35

FULL-DUPLEX TERMINAL DRIVER

Subfunetion Meaning

TF.TMO

TF.XOF

Read With Time-Out - This subfunction allows the use of the
tmo parameter to require input from the terminal within a
specified time.

Specify the time-out count in la-second intervals. Time-out
is the maximum time allowed between two input characters
before the read is aborted. The maximum time-out value is
255(decimal) intervals.

If a is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255 (decimal) intervals, issue an
asynchronous QIO$ request followed by a Mark Time directive
(MRKT$) for the required interval. Specify different event
flags in the two directives and, after issuing them, wait
for the Logical OR of the two event flags.

Send XOFF - The driver sends an XOFF to the terminal after
its prompt-and-read. The XOFF (CTRL/S) may have the effect
of inhibiting input from the terminal, if the terminal
recognizes XOFF for this purpose. TF.XOF is ignored when
full-duplex I/O is in use.

2-36

FULL-DUPLEX TERMINAL DRIVER

2.4.10 QIO$C IO.RST - Read Logical Block with Special Terminators

Issue IO.RST to read a block of data from the specified physical
device unit. This function is equivalent to an IO.RLB!TF.RST.
Certain special characters in the ranges 0-037 and 175-177 terminate
the read. The driver does not interpret the terminating character.
For example, a DELETE or RUBOUT (177) does not erase, and a CTRL/C
does not produce a CLI prompt, or, if CTRL/C is enabled, abort tasks
active at the terminal. Also CTRL/U and CTRL/R do not perform their
usual functions. All control characters are terminators.

TF.RST sets TF.TNE by default, which means that terminators are not
echoed on the terminal screen.

If uppercase to lowercase conversion is disabled, characters 175 and
176 do not act as terminators. CTRL/O, CTRL/Q, and CTRL/S (017, 021,
and 023, respectively) are not special terminators. The driver
interprE~ts them as output control characters in a normal manner.

Upon successful completion of an IO.RST request that was not
terminated by filling the input buffer, the first word of the I/O
status block contains the terminating character in the high byte and
the IS.SUC status code in the low byte. The second word contains the
number of bytes contained in a buffer. The terminating character is
not put in the buffer.

The format of QIO$C IO.RST is as follows:

QIO$C
IO.RST [!TF .• RALJ ,lun, [efn] !TF.RNE ,pri

!TF.TMO ,isb
!TF.XOF ,ast

,<stadd,size, [tmo] >

Parameters:

The parameters have the following meanings:

ParametE!r Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

2-37

code
ast.
the
the
AST

Parameter

stadd

size

tmo

FULL-DUPLEX TERMINAL DRIVER

Meaning

The starting address of the data buffer. Stadd may be on a
byte boundary.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The optional time-out count for use with the
subfunction.

TF.TMO

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.RAL

TF.RNE

TF.TMO

TF.XOF

Read All Characters (Pass All) - The driver passes all
characters to the requesting task. The characteristic
TC.8BC, when set, allows the driver to pass eight bits. For
example, CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are
passed to the task and not interpreted by the driver.

,
Exercise great care when using TF.RAL (read all) and TF.RST
(read with special terminators) together. Obscure p~oblems
can result if you use them in this way.

Read With No Echo - Reads terminal input characters without
echoing the characters back to the terminal for immediate
display. You can use this feature when typing sensitive
information. CTRL/R is ignored while Read With No Echo is
in progress.

Read With Time-Out - This subfunction allows the use of the
tmo parameter to require input from the terminal within a
specified time.

Specify the time-out count in 10-second intervals. Time-out
is the maximum time allowed between two input characters
before the read is aborted. The maximum time-out value is
255(decimal) intervals.

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255(decimal) intervals, issue an
asynchronous QIO$ request followed by a Mark Time directive
(MRKT$) for the required interval. Specify different event
flags in the two directives and, after issuing them, wait
for the Logical OR of the two event flags.

Send XOFF -
its read.
inhibiting
recognizes
full-duplex

The driver sends an XOFF to the
The XOFF (CTRL/S) may have

input from the terminal, if
XOFF for this purpose. TF.XOF
I/O is in use.

2-38

terminal after
the effect of

the terminal
is ignored when

FULL-DUPLEX TERMINAL DRIVER

2.4.11 QIO$ IO.RTT - Read with Terminator Table

The IO.RTT function reads characters in a manner like the IO.RLB
function, except that a character that you have specified previously
terminates the read operation. The specified character's code can
range from 0 through 377 (octal). You can specify it by setting a bit
in a l6-word table that corresponds to the desired character.
Multiple characters can be specified by setting their corresponding
value.

The l6-word table starts at the address specified by the table
parameter. The first word contains bits that represent the first 16
ASCII character codes (0-17); similarly, the second word contains bits
that represent the next 16 character codes (20-37), and so forth,
through the sixteenth word, bit 15, which represents character code
377. For example, to specify the % symbol (code 045) as a read
terminator character, set bit 05 in the third word, because the third
word of the table contains bits representing character codes 40-57.

If you use the IO.EIO!TF.RLB function, the modifier TF.RTT allows you
to specify the length of the table from 1 to 32(decimal) bytes.

If you want to use the CTRL/S (023), CTRL/Q (021), or any characters
greater than 177 as the terminator characters, the terminal must be
set to allow a read-pass-all operation (TC.BIN=l), or read-pass eight
bits (TC.8BC), as listed in Table 2-4.

The optional timeout count parameter may be included as desired.

The format of QIO$C IO.RTT is as follows:

QIO$C IO.RTT [!TF.RAL]
!TF.RCU
!TF.RNE
!TF.TMO

,lun, [ef~] , prl
, isb
, ast

,<stadd,s~ze,[tmo] ,table)

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast If you want to interrupt your task to execute special code
upon completion of this I/O request, you may specify ast.

When this I/O request completes, control branches to the
address specified by ast at the software priority of the
requesting task. Omit ast or specify 0 to omit AST
processing.

2-39

Parameter

stadd

size

tmo

table

FULL-DUPLEX TERMINAL DRIVER

Meaning

The starting address of the data buffer. Stadd may be on a
byte boundary.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

The optional time-out count for use with the
subfunction.

TF.TMO

The address of the 16-word special terminator table that you
create in your task.

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.RAL

TF.RCU

TF.RNE

TF.TMO

Read All Characters (Pass All) - The driver passes all
characters to the requesting task. The characteristic
TC.8BC, when set, allows the driver to pass eight bits. For
example, CTRL/C, CTRL/Q, CTRL/S, CTRL/O, and CTRL/Z are
passed to the task and not interpreted by the driver.

Exercise great care when using TF.RAL (read all) and TF.RST
(read with special terminators) together. Obscure problems
can result if you use them in this way.

Restore Cursor Position - When defining cursor position in a
function, you can use the TF.RCU subfunction to save the
current cursor position. When included in this manner,
TF.RCU causes the driver to first save the current cursor
position, then position the cursor and output the specified
buffer, and, finally, restore the cursor to the original
(saved) position once the output transfer has been
completed.

Read With No Echo - Reads terminal input characters without
echoing the characters back to the terminal for immediate
display. You can use this feature when typing sensitive
information. CTRL/R is ignored while Read With No Echo is
in progress.

Read With Time-Out - This subfunction allows the use of the
tmo parameter to require input from the terminal within a
specified time.

Specify the time-out count in 10-second intervals. Time-out
is the maximum time allowed between two input characters
before the read is aborted. The maximum time-out value is
255 (decimal) intervals.

If 0 is specified, the read times out immediately after
reading any data that may be in the type-ahead buffer. In
other words, if you enter a 0, no time is allowed for you to
enter characters, and all characters are read from the
type-ahead buffer.

If you need more than 255 (decimal) intervals, issue an
asynchronous QIO$ request followed by a Mark Time directive
(MRKT$) for the required interval. Specify different event
flags in the two directives and, after issuing them, wait
for the Logical OR of the two event flags.

2-40

FULL-DUPLEX TERMINAL DRIVER

2.4.12 QIO$C IO.WAL - write a Logical Block and Pass all Bits

The QIO$C IO.WAL macro causes the driver to pass all output from the
buffer without interpretation. It does not intercept control
characters. Long lines are not wrapped around if input/output
wraparound has been selected.

IO.WAL is equivalent to the IO.WLB!TF.WAL function.

The format of the QIO$C IO.WAL macro is as follows:

QIO$C IO.WAL [!TF.CCOJ ,lun, [ef~] ,(stadd,size,vfc>
!TF.RCU , prl
!TF.WBT , isb

, ast

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physic device unit
to be accessed by the I/O request. For more information
refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast

stadd

size

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. Stadd may be on a
byte boundary.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

2-41

FULL-DUPLEX TERMINAL DRIVER

Parameter Meaning

vfc The terminal driver responds to task I/O requests for cursor
positioning without the task requiring information about the
type of terminal in use.

The vfc parameter specifies cursor position. The parameter
is interpreted as a vfc parameter if the high byte of the
parameter is O. However, if the parameter defines cursor
position, the high byte must be nonzero, the low byte is
interpreted as column number (x-coordinate), and the high
byte is interpreted a~ line number (y-coordinate). Home
position, the upper left corner of the display, is defined
as 1,1. The driver outputs cursor-positioning commands
appropriate for the terminal in use that move the cursor to
the specified position. If the most significant bit of the
line number is set, the driver clears the display before
positioning the cursor.

Table 2-9 is a summary of all characters that your task can
use for vertical format control on the terminal. Anyone of
these characters can be specified as the value of the vfc
parameter.

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.CCO

TF.RCU

Cancel CTRL/O - Writes a logical block of data to the
terminal regardless of a CTRL/O condition that may be in
effect. The CTRL/O, if in effect, is canceled before the
write occurs.

During a write-pass-all operation, the terminal driver
outputs characters without interpretation; it does not keep
track of cursor position.

Restore Cursor position - When defining cursor position in a
function, you can use the TF.RCU subfunction to save the
current cursor position. When included in this manner,
TF.RCU causes the driver to first save the current cursor
position, then position the cursor and output the specified
buffer, and, finally, restore the cursor to the original
(saved) position once the output transfer has been
completed.

During a write-pass-all operation (IO.WAL or IO.WLBITF.WAL),
the terminal driver outputs characters without
interpretation; it does not keep track of cursor position.

2-42

FULL-DUPLEX TERMINAL DRIVER

Subfunction Meaning

TF.WBT Write Breakthrough - Instructs the driver to write the
buffer regardless of the I/O status of the receiving
terminal. If another write function is currently in
progress, it finishes the current request and the write
breakthrough is the next write issued. Therefore, the
TF.WBT subfunction cannot break through another write
breakthrough that is in progress. The effect of this is
that a CTRL/S can stop write breakthrough functions. Thus,
it may be desirable for tasks to time out on breakthrough
write operations.

If a read is
proceeds, and
any input that
was effected
mode) •

currently posted, the write breakthrough
an automatic CTRL/R is performed to redisplay
was received before the breakthrough write
(if the terminal is not in the full-duplex

CTRL/O, if in effect, is canceled.

An escape sequence that was interrupted is rubbed out.

Break-through write m~y be issued by a privileged task only.
(The DCL command BRO (broadcast) uses IO.WBT.)

During a write-pass-all operation, (IO.WAL or IO.WLB!TF.WAL)
the terminal driver outputs characters without
interpretation; it does not keep track of cursor position.

2-43

FULL-DUPLEX TERMINAL DRIVER

2.4.13 QIO$C IO.WBT - Break Through to Write a Logical Block

The QIO$C IO.WBT macro instructs the driver to write the buffer
regardless of the I/O status of the receiving terminal. If an IO.WBT
function is issued on a system that does not support IO.WBT, it is
treated as an IO.WLB function.

• If another write function is currently
finishes the current request and the IO.WBT
issued. The effect of this is that a CTRL/S
functions. Therefore, it may be desirable
out on IO.WBT operations.

in progress, it
is the next write
can stop IO.WBT
for tasks to time

• If a read is currently posted, the IO.WBT proceeds, and an
automatic CTRL/R is performed to redisplay any input that was
received before the breakthrough write was effected (if the
terminal is not in the full-duplex mode) •

• If CTRL/O is in effect, it is canceled.

• An escape sequence that was interrupted is rubbed out.

An IO.WBT function cannot break through another IO.WBT that is in
progress.

Breakthrough write may be issued by a privileged task only.

The format of the QIO$C IO.WBT macro is as follows:

QIO$C

Parameters:

IO.WBT [!TF.CCOJ ,lun, [ef~l
ITF.RCU , prl
ITF.WAL , isb

, ast

,(stadd,size,vfc)

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1.

ast

stadd

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.
the
the
AST

The starting address of the data buffer. Stadd may be on a
byte boundary.

2-44

FULL-DUPLEX TERMINAL DRIVER

Parameter Meaning

size The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.

vfc The terminal driver responds to task I/O requests for cursor
positioning without the task requiring information about the
type of terminal in use.

The vfc parameter specifies cursor position. The parameter
is interpreted as a vfc parameter if the high byte of the
parameter is O. However, if the parameter defines cursor
position, the high byte must be nonzero, the low byte is
interpreted as column number (x-coordinate), and the high
byte is interpreted as line number (y-coordinate). Home
position, the upper left corner of the display, is defined
as 1,1. The driver outputs cursor-positioning commands
appropriate for the terminal in use that move the cursor to
the specified position. If the most significant bit of the
line number is set, the driver clears the display before
positioning the cursor.

Table 2-9 is a summary of all characters that your task can
use for vertical format control on the terminal. Anyone of
these characters can be specified as the value of the vfc
parameter.

Subfunction Bits:

The subfunctions have the following meanings:

Subfunction Meaning

TF.CCO

TF.RCU

TF.WAL

Cancel CTRL/O - The driver writes a logical block of data to
the terminal regardless of a CTRL/O condition that may be in
effect. The CTRL/O, if in effect, is canceled before the
write occurs. The IO.WBT function implies the subfunction
TF.CCO, therefore using IO.WBT!TF.CCO is redundant.

Restore Cursor position - When defining cursor position in a
function, you can use the TF.RCU subfunction to save the
current cursor position. When included in this manner,
TF.RCU causes the driver to first save the current cursor
position, then position the cursor and output the specified
buffer, and, finally, restore the cursor to the origin~l
(saved) position once the output transfer has been
completed.

Write All Bits - During a write-pass-all
or IO.WLB!TF.WAL), the terminal driver
without interpretation -- it does not
characters and it does not keep track
Long lines are not wrapped around
wrap-around has been selected.

2-45

operation (IO.WAL
outputs characters
intercept control

of cursor position.
if input/output

FULL-DUPLEX TERMINAL DRIVER

2.4.14 QIO$C SF.GMC - Get Multiple Characteristics

The SF.GMC QIO$ macro returns terminal characteristics information
into a specified buffer. Table 2-4 in this section shows the terminal
characteristics that can be obtained with this QIO$ macro.

The format of the QIO$C SF.GMC macro is as follows:

Q [0 $C SF. GM C , 1 un, [e f n] , [p r i] , [i s b] , [a s t] ,< s tad d , s i z e >

Parameters:

The parameters have the following meanings:

Parame~er Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

pri Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

isb The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1, but consider the following exception.

ast

stadd

size

For SF.GMC, the contents of the I/O Status Block (ISB) is
different from that described in Chapter 1. The first word
of the status block is the same as that in Chapter 1.
However, the second word is not the same. For SF.GMC or
SF.SMC the second word contains the number of bytes in the
specified user buffer that were sucessfully processed. For
example, if you have a characteristic in the buffer that
caused an error, ISB+2 (the second word) will contain the
offset to the characteristic.

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

code
ast.

the
the
AST

The starting address of a data buffer of length "size"
bytes. Each word in the buffer has the form

.BYTE characteristic-name

.BYTE 0

characteristic-name

One of the bit names given in Table 2-5. The value
returned in the high byte of each byte-pair is 1 if the
characteristic is true for the terminal and 0 if it is
not true.

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.
For SF.GMC, size must be an even value.

2-46

FULL-DUPLEX TERMINAL DRIVEK

For the TC.TTP characteristic (terminal type), one of the values shown
in Table 2-5 is returned in the high byte.

Bit
Name

TC.ABD

TC.j~CD

TC.,~CR

TC.ANI

TC •. A.SP

TC •. AVO

TC.BIN

TC.BLK

TC.CTS

TC.DEC

TC.DLU 1

TC.EDT

Table 2-4
Terminal Characteristics

for SF.GMC and SF.SMC Functions

Octal Corresponding
Value Meaning (if asserted)

77 Auto-baud detection

24

122

76

123

65

42

72

124

41

125

Ancillary control driver.
Value determined by system
manager.

Wrap-around mode

ANSI CRT terminal

Remote line answer speed.
Initial speed over
dial-up line.

VT100-family terminal
display

Binary input mode
(read-pass-all). No
characters are interpreted
as control characters.

Terminal is capable of
block mode transfers

Suspend output to terminal.
Task can cancel an input
AS or get the current
state of the terminal
with regard to AS or
A Q•
o = resume
1 = suspend

Digital CRT terminal

Dial-up line

Terminal performs editing
functions

DCL Command

SET TERM/AUTOBAUD

SET TERM/WRAP

SET TERM/ANSI CRT

SET TERM/REMOTE/SPEED:brate

SET TERM/ADVANCED_VIDEO

SET TERM/PASSALL

SET TERM/BLOCK_MODE

SET TERM/DEC_CRT

SET TERM/REMOTE

SET TERM/EDIT_MODE

1. A program can enable the auto-call feature of the DF03 modem
by setting TC.DLU to a value of two. Auto-call allows you to use
the terminal to dial out of the computer. (This is in addition
to receiving incoming calls.) While in this mode, read and write
requests are serviced even when a line is not in use.
Consequently, I/O requests do not fail when the line is hung-up,
which is the case for remote lines (TC.DLU=l).

(continued on next page)

2-47

Bit
Name

TC.EPA

TC.ESQ

TC.PDX

TC.!iFF

TC.HFL

TC.HHT

TC.HLD

TC.HSY

TC. lCS

TC.ISL

Table 2-4 (Cont.)
Terminal Characteristics

for SF.GMC and SF.SMC Functions

Octal Corresponding
Value Meaning (if asserted) DCL Command

40 When TC.PAR is enabled: SET TERM/PARITY:value
o = odd parity
1 = even parity

35 Input escape sequence SET TERM/ESCAPE
recognition

64 Full-duplex mode SET TERM/FULL_DUPLEX

17 Hardware form-feed SET TERM/FORM_FEED
capability (If 0,
form-feeds are simulated
us i ng TC. LPP.)

13 Number of fill characters SET TERM/CRFILL
to insert after a carriage
return (0-7=x) (Use a value
of 7 for the LA30-S.)

21 Horizontal tab capability SET TERM/TAB
(if 0, horizontal tabs are
simulated using spaces.)

44 Hold screen mode. SET TERM/HOLD_SCREEN
Terminal has ability
to hold screen. Not
supported over net (NCT).

137 Host to terminal SET TERM/HOST_SYNC
synchronization. XOFF

141

6

sent when resources are
low. XON sent when
resources are high. XOFF
prevents terminal character
input.
o No flow control
1 = Flow control exerted

Notify of change in
type-ahead buffer
(input count state)

Get MUX subline (=0-15)
on interface to which user is
connected (SF.GMC only).

2-48

(continued on next page)

Bit
Name

TC.LPP

TC.MHU

TC.NBR

TC.NEC

TC.OOB

TC.PAR

TC .. PPT

TC .. PRI

TC .. PTH

TC .. RAT

TC .. RGS

TC .. RSP

TC .SCP

TC.SFC

TC.SLV

1!"ULL-UUJ:'LISA ",l"1S1<1''Ul'4AL UlU V!:il'(

Table 2-4 (Cont.)
Terminal Characteristics

for SF.GMC and SF.SMC Functions

Octal Corresponding
Value Meaning (if asserted) DCL Command

2 Page length (1-255.=x) SET TERM/PAGE_LENGTH:n

145

102

47

140

37

147

51

146

7

126

3

12

131

50

Declare modem hangup AST.
Specify add~ess of AST
activated by lost carrier.

Broadcast disabled

Echo suppressed

Specify out-of-band
characters, whether
they are included in the
type-ahead buffer, and
if they are to clear the
type-ahead buffer.

Generate and check parity

Terminal has printer port

Terminal is privileged
(SF. GMC only)

Pass through enable
Only CTRL/S and CTRL/Q are
honored.
1 pass through
o = default; no pass

through

SET TERM/NOBROADCAST

SET TERM/NOECHO

SET TERM/PARITY:value

SET TERM/PRINTER_PORT

SET TERM/PRIVILEGED

SET TERM/PASSTHRU

Type-ahead buffer: SET /TYPEAHEAD=TTnn:
o = I-character type-ahead
1 = 36-character type-ahead
(RSX-llM only)

Terminal supports REGIS SET TERM/REGIS
instructions

Receiver speed SET TERM/SPEED=: (xmit,rcv)
(bits-per-second)

Terminal is a scope (CRT) SET TERM/SCOPE

Terminal supports soft SET TERM/SOFT_CHARACTERS
character set

No unsolicited input SET TERM/SLAVE
is accepted

(continued on next page)

2-49

B:.t
Name

TC.SMR

TC.SSC

TC.TBF

TC.TBM

TC.TBS

TC.TLC

TC.TMM

TC.TSY

TC. rTP

TC. VFL

Octal
Value

25

142

71

101

100

130

143

144

10

14

FULL-DUPLEX TERMINAL DRIVER

Table 2-4 (Cont.)
Terminal Characteristics

for SF.GMC and SF.SMC Functions

Corresponding
Meaning (if asserted)

Upper-case conversion
disabled

Specify terminal management
switch characters. These
cause a switch from normal
mode to terminal management
mode.

Type-ahead buffer count
obtained by SF.GMC.
Cleared by SF.SMC.

Type-ahead buffer mode
O=task type-ahead
l=CLI type-ahead

Type-ahead buffer size
(0-255=x) (RSX-IIM-PLUS
I/O systems only)

DCL Command

SET TERM/UPPERCASE

SET TERM/SERIAL

SET TERM/TYPEAHEAD:n

CLI gets CTRL/C notification SET TERM/CONTROL=

In terminal management mode.
Set when switch characters
have been detected and
terminal management mode is
active. Cleared by QIO$
SF.SMC.
1 In terminal management

mode
o Exit terminal management

mode

Output flow control SET TERM/TTSYNC
Allows input XON or XOFF
to function. XOFF prevents
output from the terminal.
o XON/XOFF ignored
1 = default; process

XON/XOFF

Terminal type (=0-255.=x) SET TERM/type

Send four fill characters SET TERM/LFILL=TTnn:
after line feed for vetical
forms control.

(continued on next page)

2-50

Bit Octal
Nam.e Value

TC .WID 2 1
TC.XSP 4

TC. a:BC 67

FULL-DUPLEX TERMINAL DRIVER

Table 2-4 (Cont.)
Terminal Characteristics

for SF.GMC and SF.SMC Functions

Corresponding
Meaning (if asserted) DCL Command

Page width (=1-255.=x)
Transmitter speed
(bits-per-second)

SET TERM/WIDTH:n

Pass eight bits On input,
even if not binary input
mode (TC.BIN).

SET TERM/SPEED: (xmit,rcv)

SET TERM/EIGHTBIT

2. Unsolicited input that fills the buffer before a terminator
is received is possibly invalid. When this happens, the driver
discards the input by simulating a CTRL/U and echoing AU.

In Table 2-5, the octal values 0-177 are ,reserved by DIGITAL. Values
200-377 are available for customer use to define non-DIGITAL
terminals. The implicit characteristics shown are set by the driver.
Values not shown are not automatically set by the driver. An
"unknown" terminal type has no implicit characteristics.

Octal
Value Symbol

0 ~r. UNKO
15 ~~. V100
16 ~r.L120
20 ~r. LA12
21 ~r.L100

22 ~r. LA34
23 'r. LA38
24 ~r. VlO 1
25 ~r.V102
26 ~r. VlO 5
27 'r. V125
30 ~r. V131
31 'r.V132
32 'r.LA50
34 'r. LQP2
35 'r. V2XX
37 'r. LN03
40 'r.DTCl

Table 2-5
Bit TC.TTP (Terminal Type) Values

Set by SF.SMC and Returned by SF.GMC

Implicit Characteristics
Terminal

Type TC.LPP TC.WID TC.HFF TC.HHT TC.HFL TC.VFL TC.SCP

Unknown
VT100 24
LA120 66
LA12 66
LA100 66
LA34 66
LA38 66
VT101 24
VTl02 24
VT105 24
VT125 24
VT131 24
VT132 24
LA50 66
LQP02 66
VT2XX 24
LN03 66
DTC01 66

80
132
132
132
132
132
80
80
80
80
80
80
80
132
80
132
132

2-51

1
1
1

1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1 1

1
1
1
1
1
1

FULL-DUPLEX TERMINAL DRIVER

2.4.14.1 Characteristic Bit Special Information - The following bits
have special, additional information:

• TC.RSP, TC.XSP, TC.ASP The DCL SET TERM/SPEED command
requires parameters for both receiver (rcv) and transmitter
(xmit) baud rates. (The valid combinations for each are in
the RSX-llM/M-PLUS Command Language Manual.) The DCL SET
TERM/SPEED command format is as follows:

SET TERM/SPEED: (xmit,rcv)

The list of baud rates in bps and valid DCL SET TERM/SPEED or
SET TERM/REMOTE values that may be set is as follows:

TC.ASP
TC.RSP or
TC.XSP
Value

S.O
S.50

S.75
S.110
S.134
S.150
S.200
S.300
S.600
S.1200
S.1800
S.2000
S.2400
S.3600

S.4800
S.7200

S.9600
S.19.2
DZQll

Baud Rate (in bps) And Valid DCL SET Values

(disabled)
50 (Baudot codes are not

supported)
75

110
134
150
200
300
600

1200
1800
2000
2400
3600 (Not available on DHVll

multiplexer.)
4800
7200 (Not available on DHVll

multiplexer.)
9600
19200 (Not available on DZVll or

multiplexer.)

DZVll and DZQll transmitter and receiver speeds must be equal
(no split baud rates permitted). Only one value may be
specified for the remote answer speed. This value applies to
both the transmitter and receiver.

• TC.TTP - When the terminal driver reads this bit, the driver
sets implicit values for terminal characteristics TC.LPP,
TC.WID, TC.HFF, TC.HHT, TC.VFL, and TC.SCP as shown in Table
2-4. You can change (override) these values by subsequent Set
Multiple Characteristics requests. In addition, the terminal
driver uses TC.TTP to determine cursor positioning commands,
as appropriate.

2-52

• TC.CTS
(CTRL/Q) ,
function.

Value
Returned

o
1
2
3

FULL-DUPLEX TERMINAL DRIVER

Returns the current suspend (CTRL/S), resume
or suppress (CTRL/O) state set via the SF.SHC
Values returned are as follows:

State

Resume (CTRL/Q)
Suspend (CTRL/S)
Suppress (CTRL/O)
Both suppress and suspend

When a value of 0 is
suspend state is
state.

used with the SF.SHC function, the
cleared; a value of 1 selects the suspend

• TC.TBF - Returns the number of unprocessed characters in the
type-ahead buffer for the specified terminal. This allows
tasks to determine if any characters were typed that did not
require AST processing. In addition, you can use the value
returned to read the exact number of characters typed, rather
than a typical value of 80. or 132. characters for the
terminal. Please note the following three items when
attempting to use the number returned by TC.TBF:

1. The task must attach (QIO$ IO.ATT) the terminal to receive
characters from the type-ahead buffer.

2. The maximum capacity of the
255 (decimal) characters.

type-ahead buffer is

3. Using TC.TBF in an SF.SHC function flushes the type-ahead
buffer.

2-53

FULL-DUPLEX TERMINAL DRIVER

2.4.15 QIO$C SF.SMC - Set Multiple Characteristics

The Q10$C SF.SMC macro enables a task
characteristics of a terminal. SF.SMC
SF.GMC (Get Multiple Characteristics).

to set and reset the
is the inverse function of

Table :~-4 notes the restrictions that apply to these characteristics.

If the characteristic-name is TC.TTP (terminal type), value can have
any of the values listed in Table 2-5.

A nonprivileged task can issue an SF.SMC request for its own terminal
(TI:) only. A privileged task can issue SF.SMC to any terminal.

Terminal output can be suspended or resumed (simulated CTRL/S and
CTRL/Q, respectively) by specifying an appropriate value for TC.CTS.
A value of 0 resumes output and a value of 1 suspends output.
Specifying any value for TC.TBF flushes (clears) the type-ahead buffer
(forces the type-ahead buffer count to 0).

Before a remote line is answered the driver clears certain terminal
characteristics that may have been set by an SF.SMC function.

For SF.SMC, the contents of the I/O Status Block (ISB) is different
from that described in Chapter 1. The first word of the status block
is the same as that in Chapter 1. However, the second word is not the
same. For SF.GMC or SF.SMC the second word contains the number of
bytes in the specified user buffer that were successfully processed.
For example, if you have a characteristic in the buffer that caused an
error, ISB+2 (the second word) will contain the offset to the
characteristic.

The format of QIO$C SF.SMC is as follows:

QIO$C SF.SMC,lun, [efn], [pri], [isb], [ast] ,<stadd,size>

Parameters:

The parameters have the following meanings:

Parameter Meaning

lun The logical unit number of the associated physical device
unit to be accessed by the I/O request. For more
information refer to Chapter 1.

efn

pri

isb

ast

The number of the event flag to be associated with the QIO$
operation. For more information refer to Chapter 1.

Makes this QIO$ macro compatible with RSX-llD. Use a value
of 0 or a null for this parameter.

The address of the I/O status block (I/O status double-word)
associated with the I/O request. For more information refer
to Chapter 1; however, the I/O status block used for SF.SMC
is different than that described in Chapter 1.

If you want to interrupt your task to execute special
upon completion of this I/O request, you may specify
When this I/O request completes, control branches to
address specified by ast at the software priority of
requesting task. Omit ast or specify 0 to omit
processing.

2-54

code
ast.
the
the
AST

FULL-DUPLEX TERMINAL DRIVER

Parameter Meaning

stadd The starting address of a buffer of length "size" bytes.

size

The address must be word aligned for SF.SMC. Except for the
characteristics TC.MHU, TC.SSC, and TC.OOB, each word in the
buffer has the form

.BYTE characteristic-name

.BYTE value

characteristic-name

One of the symbolic bit names given in Table 2-4.

value

Either 0 (to clear a given characteristic) or 1 (to set
a characteristic).

The size of the stadd data buffer in bytes. The specified
size must be greater than 0 and less than or equal to 8128
bytes. The buffer must be within the task's address space.
For SF.SMC, size must be an even value.

2.4.15.1 Characteristic Processing for TC.MHU, TC.SSC, and TC.OOB
Three characteristics require special processing and buffers. These
characteristics are TC.MHU, TC.SSC, and TC.OOB. The buffers have the
form

.BYTE characteristic name

.BYTE reserved

.WORD

The processing for the four characteristics is described following:

Characteristic Processing

TC.MHU This characteristic declares a modem hangup AST. The buffer
required for TC.MHU is shown in Figure 2-3. The buffer must
contain the address of an AST that is activated when the
terminal driver detects that the carrier has been lost. A
zero in word 2 (AST address) clears this characteristic.

The buffer has the following form:

3

o
1 TC.MHU

~----~~----~2
o reserved

AST address or 0

ZK-4081-85

Figure 2-3 Buffer Required for TC.MHU

2-55

FULL-DUPLEX TERMINAL DRIVER

Characteristic Processing

TC.SSC

TC.OOB

The characteristic TC.SSC defines and redefines terminal
switch characters. The buffer required for TC.SSC is shown
in Figure 2-4. Switch characters can be disabled while the
terminal is in terminal management mode. The terminal must
be attached (IO.ATT) before you set this characteristic.
However, the terminal must not be attached for notification
of unsolicited input ASTs (IO.ATA).

The buffer has the following format:

0
o reserved I TC.SCC

3 2
AST address or 0

5 4
Switch characters

ZK-4082-85

Figure 2-4 Buffer Required for TC.SSC

When the AST address is zero, the switch characters are
disabled.

If the terminal is in terminal management mode, both CTRL/C
and switch characters are treated as normal data. If the
terminal is not currently in terminal management mode and
switch characters have been enabled, the terminal driver
compares the input characters against the specified switch
characters. If there is a match, it cancels any pending
read with a status of IS.TMM, flushes the type-ahead buffer,
executes the specified AST, and sets the terminal in
terminal management mode.

The characteristic TC.OOB defines the out-of-band (OOB)
character set for the particular terminal. The buffer
required for TC.OOB is shown in Figure 2-5. The terminal
must be attached (IO.ATT) before you set this
characteristic. However, the terminal must not be attached
for notification of unsolicited input ASTs (IO.ATA).

The buffer has the following format:

Octal Decimal

3
o reserved I TC.OOB

o

2
OOB AST address or 0

5 4
OOB Bit Mask 1

7 6
OOB Bit Mask 2

11 8
HELLO/CLEAR Bit Mask 1

13 10
HELLO/CLEAR Bit Mask 2

15 12
INCLUDE Bit Mask 1

17 14

INCLUDE Bit Mask 2

ZK-4084-85

Figure 2-5 Buffer Required for TC.OOB

2-56

FULL-DUPLEX TERMINAL DRIVER

Because all OOBs are either HELLO or CLEAR, one set of
bit masks may be used for both. A zero bit mask is a
CLEAR. A one bit mask is a HELLO.

Characters that are CLEAR OOB cannot also be used for
INCLUDE OOB.

To add a character to the OOB set, all the characters
must be defined not only the one.

2.4.15.2 Side Effects of Setting Characteristics - Certain terminal
characteristics that a task may set or that an operator may set using
DCL commands may have undesirable side effects. In particular, these
characteristics include the hold-screen mode and the lowercase to
uppercase conversion disable mode. Their effects are described
fOllowing:

TC.HLD

TC.SMR

TC.SSC

Unexpected behavior can result from a terminal in the
hold-screen mode if its reception rate is much greater than
its transmission rate. "(The DHV1l supports split baud
rates.) When in the hold-screen mode, the terminal
automatically sends a CTRL/S during reception of an output
stream when the screen is nearly full. Output is
resumed -- another screenfull -- when you type SHIFT/SCROLL
(the terminal generates CTRL/Q). Thus, no output is lost as
a result of scrolling off the screen before you can read it.
However, if the terminal's transmission rate is far below
its reception rate, some unread output may scroll out of
sight before the CTRL/S can be transmitted.

Note that some terminals and interfaces are hardware
buffered. This can cause obscure timing problems for tasks
that attempt to invoke the hold-screen mode.

If this characteristic is asserted (lowercase to uppercase
conversion is disabled), octal characters 175 and 176 are
interpreted as "right brace (})" and "tilde (-) ,"
respectively. If TC.SMR is not asserted, these characters
are interpreted as an ALTrnode (that is, they function as
line terminators that do not advance the cursor to a new
1 i ne) •

Setting switch characters disables the normal function of
CTRL/C in that it becomes a normal data character. After
typing switch characters and entering terminal management
mode, switch characters are normal data characters until the
terminal driver exits terminal management mode.

After you have entered the first character, terminal driver
must wait for the second one before entering terminal
management mode. If the second character is not the second
switch character, the terminal driver treats both entered
characters as normal data characters. Any character or
combination of characters entered after the two switch
characters are considered data characters.

It is advisable to specify nonordinary characters as switch
characters, for example, non-system-specific CTRL-key
combinations.

2-57

FULL-DUPLEX TERMINAL DRIVER

2.5 STATUS RETURNS

Table 2-6 lists error and status conditions that are returned by the
terminal driver to the I/O status block.

Most Micro/RSX error and status codes returned are byte values in the
status word. For example, the value for IS.SUC (success) is 1 and is
placed in the low byte of the first status word. However, IS.CC,
IS.CR, IS.ESC, and IS.ESQ are word values in the first word of the
status block. They show what type of completion occurred.

To test for one of these word-value return codes, first test the low
byte of the first word of the I/O status block for the value IS.SUC.
Then, test the full word for IS.CC, IS.CR, IS.ESC, or IS. ESQ. (If the
full word tests equal to IS.SUC, then its high byte is 0, indicating
byte-count termination of the read.)

The "error" return IE.EOF may be considered a successful read because
characters returned to the task's buffer can be terminated by a CTRL/Z
character.

The SE.xxx codes are returned by the SF.GMC and SF.SMC functions that
are described in Sections 2.4.14 and 2.4.15. When any of these codes
are returned, the low byte in the first word in the I/O status block
contai~s IE.ABO. The second IOSB word contains an offset (starting
from 0) to the byte in error in the QIO$'s stadd buffer.

Code

IE.ABO

IE.BAD

IE.BCC

IE.DAA

Table 2-6
Terminal Status Returns

Reason

Operation aborted

The specified I/O operation was canceled by IO.KIL
while in progress or while in the I/O queue. The
second word of the I/O status block indicates the
number of bytes that were put in the buffer before
the kill was effected.

Bad parameter

The si~e of the buffer exceeds 8128 bytes.

Framing error

A framing error was hardware-detected and returned by
the controller. All characters up to (but not
including) the erroneous character are in the buffer.
This condition can result by pressing the BREAK key
on some terminals, or by hardware problems.

Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has already
attached the desired physical device unit, not that
the unit was attached by another task. If the attach
specified TF.AST or TF.ESQ, these subfunction bits
have no effect.

(continued on next page)

2-58

Code

IE.DAO

IE.DNA

IE.DNR

IE.EOF

IE.IES

IE.IFC

IE. NOD

FULL-DUPLEX TERMINAL DRIVER

Table 2-6 (Cont.)
Terminal Status Returns

Reason

Data overrun error

A data overrun error' was hardware-detected and
returned by the controller. All characters up to
(but not including) the erroneous character are in
the buffer. This error occurs when a hardware
failure or incompatibility causes characters to be
received by the controller faster than they can be
processed (that is, an incorrect serial I/O baud rate
or format exists).

Device not attached

The physical device unit specified in an 10.DET
function was not attached by the issuing task. This
code has no bearing on the attachment status of other
tasks.

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/O
operation. This code is returned to indicate one of
the following conditions:

• A time-out occurred on the physical device unit
(that is an interrupt was lost).

• An attempt was made to perform a
remote DHVII or DZVII line
present.

function on a
without carrier

Successful completion on a read with end-of-file

The line of input read from the terminal was
terminated with the end-of-file character CTRL/Z.
The second word of the I/O status block contains the
number of bytes read before CTRL/Z was seen. The
input buffer contains those bytes.

Invalid escape sequence

An escape sequence was started but escape-sequence
syntax was violated before the sequence was
completed. (See Section 2.7) The character causing
the violation is the last character in the buffer.

Illegal function

A function code specified in an I/O request was
invalid for terminals; or, the function code
specified was a system generation option not selected
for this system.

Buffer allocation failure

System dynamic storage has been depleted resulting in
insufficient space available to allocate an
intermediate buffer for an input request or an AST
block for an attach request.

(continued on next page)

2-59

Coce

IE.OF'L

IE. PES

IE.PRI

IE.SPC

IE.VER

IS.CC

IS.CR

FULL-DUPLEX TERMINAL DRIVER

Table 2-6 (Cont.)
Terminal Status Returns

Reason

Device off line

The physical device unit associated with the
specified in the QIO directive was not on line.
the system was booted, a device check indicated
this physical device unit was not in
configuration. The physical device unit could
been configured off line.

Partial escape sequence

LUN
When
that

the
have

An escape sequence was started, but read-buffer space
was exhausted before the sequence was completed. See
Section 2.7.

Privilege violation

A nonprivileged task issued an IO.WBT, directed an
SF.SMC to a terminal other than TI:, or it attempted
to set its privilege bit.

Illegal address space

This error can indicate one or more of the following
errors:

• The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task

• You specified a byte count of 0

• You specified an odd or 0 AST address

• You specified a TF.XCC and AST2 in the same QIO$
request.

Character parity error

A parity error was hardware-detected and returned by
the controller. All characters up to (but not
including) the erroneous character are in the buffer.

Successful completion on a read

The line of
terminated by
the bytes read.

input read
a CTRL/C.

from the terminal was
The input buffer contains

Successful completion on a read

The line of input read from the terminal was
terminated by a carriage return. The input buffer
contains the bytes read.

(continued on next page)

2-60

Code

IS. ESC

IS.ESQ

IS.PND

IS.SUC

IS. THO

SE.ATA

SE.BIN

SE.FIX

SE.IAA

SE.NAT

SE.NIH

FULL-DUPLEX TERMINAL DRIVER

Table 2-6 (Cont.)
Terminal Status Returns

Reason

Successful completion on a read

The line of input read from the terminal was
terminated by an ALTmode character. The input buffer
contains the bytes read.

Successful completion on a read

The line of input read from the terminal was
terminated by an escape sequence. The input buffer
contains the bytes read and the escape sequence.

I/O request pending

The operation specified in the QIO$ directive has not
yet been executed. The I/O status block is filled
with Os.

Successful completion

The operation specified in the QIO directive was
completed successfully. If the operation involved
reading or writing, you can examine the second word
of the I/O status block to determine the number of
bytes processed. The input buffer contains those
bytes.

Successful completion on a read

The line of input read from the terminal was
terminated by a time-out (TF.TMO was set and the
specified time interval was exceeded). The input
buffer contains the bytes read.

The terminal is attached with AST
enabled.

notification

An invalid value for a binary characteristic was used
in SF.SMC.

An attempt was made to change a fixed characteristic
in a SF.SMC subfunction request (for example, an
attempt was made to change the unit number).

An invalid AST address was specified.

The terminal is not attached.

A terminal characteristic other than those in Table
2-4 was named in an SF.GMC or SF.SMC request, or a
task attempted to assert TC.PRI.

(continued on next page)

2-61

Code

SE.NSC

SE.SPD

SE.UPN

SE.VAL

FULL-DUPLEX TERMINAL DRIVER

Table 2-6 (Cont.)
Terminal Status Returns

Reason

An attempt was made to change a nonsettable
characteristic. This error can occur when an attempt
is made to make a local-only line a remote line when
the controller does not support remote lines.

The new speed specified in an SF.SMC subfunction
request was not valid for the controller associated
with the specified terminal.

There was not enough room in pool for the terminal
driver to allocate buffer space.

The new value specified in an SF.SMC request for the
TC.TTP terminal characteristic was not one of those
listed in Table 2-5.

2.6 CONTROL CHARACTERS AND SPECIAL KEYS

This section describes the meanings of special terminal control
characters and keys for Micro/RSX. Note that the driver does not
recognize control characters and special keys during a Read All
request (IO.RAL), or a Read with Special Terminators (IO.RST).

2.6.1 Control Characters

A control character is input from a terminal by holding the control
key (CTRL) down while typing one other key. Three of the control
characters described in Table 2-7, CTRL/R, CTRL/U, and CTRL/Z, are
echoed ~n the terminal as AR, AU, and AZ, respectively.

Character

CTRL/C

CTRL/I

Table 2-7
Terminal Control Characters

Meaning

If the command line interpreter (CLI) is DCL, which
is the CLI for Micro/RSX, CTRL/C either aborts all
currently active tasks invoked from the terminal or
gives a DCL> prompt. To setup CTRL/C to abort, the
terminal characteristics bit (TC.TLC) must be set.
For more information refer to Section 2.6.2.

CTRL/I or TAB characters initiate a horizontal tab,
and the terminal spaces to the next tab stop. Tabs
at every eighth character position are simulated by
the terminal driver. This character has no special
function if IO.RAL, IO.RST, TF.RAL, TF.RST or TF.RPT
are invoked, and it is treated as a normal character.

(continued on next page)

2-62

Character

CTRL/J

CTRL/K

CTRL/L

CTRL/M

CTRL/O

FULL-DUPLEX TERMINAL DRIVER

Table 2-7 (Cont.)
Terminal Control Characters

Meaning

CTRL/J is equivalent to a LINE FEED character. This
character has no special function if IO.RAL, IO.RST,
TF.RAL, TF.RST or TF.RPT are invoked, and it is
treated as a normal character.

CTRL/K initiates a vertical tab, and the terminal
tabs to the next vertical tab stop. For a CRT
terminal, four LINE FEEDs are output. This character
has no special function if IO.RAL, IO.RST, TF.RAL,
TF.RST or TF.RPT are invoked, and it is treated as a
normal character.

CTRL/L initiates a formfeed. If the terminal has
hardware formfeed support, the driver echos CTRL/L.
Otherwise, the driver simulates the formfeed by
outputting enough LINE FEED characters to advance the
next character position to the top of the next page.
If a CRT terminal is in use, four LINE FEEDs are
output. This character has no special function if
IO.RAL, IO.RST, TF.RAL, TF.RST or TF.RPT are invoked,
and it is treated as a normal character.

CTRL/M is equivalent to a RETURN character (see
Section 2.6.3). This character has no special
function if IO.RAL, IO.RST, TF.RAL, TF.RST or TF.RPT
are invoked, and it is treated as a normal character.

If the passthrough terminal characteristic has been
set (TC.PTH), or if IO.RAL or TF.RAL is enabled
CTRL/O is treated as a normal character. Otherwise,
CTRL/O suppresses terminal output. In addition, for
attached terminals, CTRL/O remains in effect (output
is suppressed) until one of the following occurs:

• The terminal is detached.

• Another CTRL/O character is typed.

• An IO.CCO or IO.WBT function is issued.

• Input is entered.

• IO.RPR is issued at the terminal.

For unattached terminals, CTRL/O suppresses output
for only the current output buffer (typically one
line) •

(continued on next page)

2-63

Character

CTRL/O

CTRL/S

CTRL/R

CTRL/U

CTRL/X

CTRL/Z

FULL-DUPLEX TERMINAL DRIVER

Table 2-7 (Cont.)
Terminal Control Characters

Meaning

If IO.RAL or TF.RAL is enabled, CTRL/Q is treated as
a normal character. Otherwise, CTRL/Q resumes
terminal output previously suspended by means of
CTRL/S only if the terminal characteristic TC.TSY has
been enabled.

CTRL/S suspends terminal output except if IO.RAL or
TF.RAL is enabled. (Output can be resumed by typing
CTRL/Q or CTRL/C.) This applies only to terminals for
which TTSYNC is enabled. You can enable TTSYNC by
setting the TC.TSY terminal characteristic bit.

If TF.RNF, IO.RAL, TF.RAL, IO.RST, TF.RST, or TF.RPT
are enabled, CTRL/R is treated as a normal character.
Otherwise, typing CTRL/R results in a carriage return
and line feed being echoed, followed by the
incomplete (unprocessed) input line. Any tabs that
were input are expanded and the effect of any rubouts
is shown. On hardcopy terminals, CTRL/R allows
verifying the effect of a tab or a rubout, or both,
in an input line. CTRL/R allows verifying the
effects of tabs or rubouts in an input line. For
example, after rubbing out the left-most character on
the second displayed line of a wrapped input line,
the cursor does not move to the right of the first
displayed line. In this case, CTRL/R brings the
input line and the cursor back together again.

If TF.RNF, IO.RAL, TF.RAL, IO.RST, TF.RST, or TF.RPT
are enabled, CTRL/U is treated as a normal character.
Otherwise, typing CTRL/U before typing a line
terminator deletes previously typed characters back
to the beginning of the line. The system echoes this
character as AU followed by a carriage return and a
line feed.

If IO.RAL, TF.RAL, IO.RST, TF.RST, or TF.RPT are
enabled, CTRL/X is treated as a normal character.
Otherwise, CTRL/X clears the type-ahead buffer.

If IO.RAL, TF.RAL, IO.RST, TF.RST, or TF.RPT are
enabled, CTRL/Z is treated as a normal character.
Otherwise, CTRL/Z indicates an end-of-file for the
current terminal input. It signals MAC, TKB, and
other system tasks that terminal input is complete,
allowing the task to exit. The system echoes this
character as AZ, followed by a carriage return and a
line feed.

2-64

FULL-DUPLEX TERMINAL DRIVER

2.6.2 CTRL/C Processing

The teI'minal driver can pass CTRL/C characters directly to the
terminal's CLI for processing instead of doing the processing itself.
Under these conditions, it is the CLI that is programmed to respond to
a CTRI./C typed at a terminal. For instance, the DCL cOmmand line
interpreter responds by aborting all currently active tasks invoked
from the terminal. For the t~rminal driver to behave this way, both
the CLI and the terminal must be set to handle CTRL/C characters. The
terminal driver passes CTRL/C processing to a CLI only when the CLI is
initialized to process CTRL/C notification packets and the terminal is
set to trap CTRL/C characters.

To setup CLI CTRL/C processing, use the CTRLC switch in the CLI
command as follows:

CI~I /NAME=cl iname/CTRLC

(This command sets CP.CTC in the CLI's CPS. Micro/RSX DCL is already
initialized this way.)

To set a terminal to trap CTRL/C characters you must set the TC.TLC
terminal characteristics bit. This done by a SET command as follows:

SET TERM/CONTROL=C

At the QIO level a SF.SMC QIO is used to set the TC.TLC bit.

If the CLI and the terminal are initialized to handle CTRL/C
characters, the terminal driver flushes the buffer, checks for ASTs,
and creates a CLI notification packet that is passed to the CLI on
behalf of the terminal. (A CLI notification packet is not created if
a CTRL/C AST occurs from a task attached to a terminal.) The terminal
driver takes no other action. At this point the CTRL/C notification
packet is available to the CLI like a regular command line. The CLI
can identify and process it however it wants to.

If the CLI and terminal are not initialized to process CTRL/C
characters, typing CTRL/C causes unsolicited input on that terminal to
be directed to a control line interpreter task, such as DCL, if the
terminal is not attached. (Command line interpreters are invoked and
display a prompt in a manner similar to that of DCLi therefore, for
the purppses of this discussion, it is assumed that DCL is the command
line interpreter in use, although the terminal driver will respond to
other command line interpreters in a similar manner.) The DCL) prompt
is echoed when the terminal driver is ready to accept an unsolicited
DCL command line for input. When the unsolicited input is terminated,
the command line is passed to DCL.

If the last character typed on the terminal was a CTRL/S (suspend
output), CTRL/C restarts suspended output and directs subsequent input
to DCL.

CTRL/C characters can also be directed to a task if the task has
attached a terminal and has specified an unsolicited-input-character
AST (see Section 2.4.2). CTRL/C characters are also passed to a task
if an IO.RAL or IO.RST function is effected.

If the terminal driver receives a CTRL/C character during a read
operation (except during a Read-Pass-AII operation or a Read With
Special Terminators operation), the read operation is terminated, the
type-ahead buffer is cleared, and an IS.CC status code is returned to
the talsk.

2-65

FULL-DUPLEX TERMINAL DRIVER

2.6.3 Special Keys

The ESCape, carriage RETURN (or RUBOUT) keys have special significance
for terminal input, as described in Table 2-8. A line can be
terminated by an ESCape (or ALTmode), carriage RETURN, or CTRL/Z
characters, or by completely filling the input buffer (that is, by
exhausting the byte count before a line terminator is typed). The
standard buffer size for a terminal can be determined for a task by
issuing a Get LUN Information system directive and examining Word 5 of
the buffer. An operator can obtain the same information with the DCL
SHOW TERM/width command.

Key

ESCap.~

RETURN

RUBOUT

Table 2-8
Special Terminal Keys

Meaning

If IO.RAL, TF.RAL, or TF.RPT are enabled, ESCape is
treated as a normal character. Otherwise, if escape
sequences are not recognized, typing ESCape or
ALTmode signals the terminal driver that there is no
further input on the current line. This line
terminator allows further input on the same line,
because the carriage or cursor is not returned to the
first column position.

If escape sequences are recognized, ESCape signals
the beginning of an escape sequence. (See Section
2.7.)

If IO.RAL, TF.RAL, or TF.RPT are enabled, RETURN is
treated as a normal character. Otherwise, typing
RETURN terminates the current line and causes the
carriage or cursor to return to the first column on
the line.

If TF.RNF (read no filter) is enabled, RUBOUT is
treated as a normal character. Otherwise, typing
DELETE or RUBOUT deletes the last character typed on
an input line. Only characters typed since the last
line terminator may be deleted. Several characters
can be deleted in sequence by typing successive
DELETEs or RUBOUTs.

For example, on a printing terminal, the first DELETE
or RUBOUT echoes a backslash (\) followed by the
character that has been deleted, even if the terminal
is in the no-echo mode. Subsequent DELETEs or
RUBOUTs cause only the deleted character to be
echoed. The next character typed that is not a
DELETE or RUBOUT causes another backs lash to be
printed, followed by the new character. The
non-RUBOUT character is not echoed if the terminal is
in the no-echo mode; however, a backslash is echoed
in response to the first non-RUBOUT character. The
following example illustrates rubbing out ABC and
then typing CBA:

ABC\CBA\CBA

(continued on next page)

2-66

Key

FULL-DUPLEX TERMINAL DRIVER

Table 2-8 (Cont.)
Special Ter~in~l Keys

Meaning

The second backslash is not displayed if a line
terminator is typed after rubbing out the characters
on a line, as in the following example:

ABC\CBA

If the CRT rubout feature was selected, DELETE or
RUBOUT causes the last typed character (if any) to be
removed from the incomplete input line, and a
backspace-space-backspace sequence of characters for
that terminal is echoed. If the last typed character
was a tab, enough backspaces are issued to move the
cursor to the character position before the tab was
typed. If a long input line was split, or ~wrapped,"
by the automatic-carriage-return option, and a RUBOUT
erases the last character of a previous line, the
cursor is not moved to the previous line. Your task
must use CTRL/R to resynchronize the current display
with the contents of the incomplete input line.

2.7 ESCAPE SEQUENCES

Escape sequences are strings of two or more characters beginning with
an ESC (033) character. Some terminals generate an escape sequence
when a special key is pressed. On any terminal, an escape sequence
may be generated manually by typing ESCape followed by the appropriate
characters.

Escape sequences provide a way to pass input to a task without
interpretation by the operating system. This could be done with a
number of Read All functions, but escape sequences allow input to be
read with IO.RLB requests.

2.7.1 Definition of Escape Sequence Format

The forlmat of an escape sequence defined by American National Standard
X 3.41-- 1974 and used in the VT100 is:

ESC F

where:

ESC The introduced control character (33 octal) that is named
escape.

F

The intermediate bit combinations that mayor may not be
present. These characters are bit combination 40(octal) to
57 (octal) inclusive in both 7- and 8-bit environments.

The final character. F characters are bit combinations 60
(octal) to 176 (octal) inclusive in escape sequences in both
7- and 8-bit environments.

2-67

FULL-DUPLEX TERMINAL DRIVER

The occurrence of characters in the inclusive ranges O(octal) to
37(octal) is technically an error condition. The recovery from this
error occurs upon immediate execution of the function specified by the
character and the continuation of the escape sequence execution. The
exceptions are: if the character ESC occurs, the current escape
sequen~e is aborted, and a new one commences, beginning with the ESC
just received; if the character CAN 30 (octal) or the character SUB 32
(octal) occurs, the current escape sequence is aborted, as is the case
with a~y control character.

There ,lre five exceptions to this general definition; these exceptions
are di3cussed in Section 2.7.5.

2.7.2 Prerequisites

There are prerequisites that must be satisfied before escape sequences
can be received by a task. First, the terminal must be declared
capablH of generating escape sequences. This may be done with the DCL
SET command:

SgT TERM/ESCAPE

After this prerequisite is satisfied,
prerequisites must be met:

one of the following

1. You must attach the terminal with IO.ATT!TF.ESQ.

2. You must use the TF.RES modifier with the IO.EIO!TF.RLB
function.

NOTE

The second method enables escape recognition
for only the duration of the read function.

If these prerequisites are not satisfied, the ESC character is treated
as a line terminator. If these prerequisites are satisfied, your task
may USE' CTRL/SHIFT/O (017 octal) as an ALTmode character. However,
this character does not act as an ALTmode from a terminal that cannot
generate escape sequences.

An ALTmode is a
advancE to a
sequences, the
also function
lowercase (DCL

line terminator that does not cause the cursor to
new line. On terminals that cannot generate escape

ESC key acts as an ALTmode. Characters 175 and 176
as ALTmodes if the terminal has not been declared

command SET TERM/LOWERCASE).

2.7.3 Characteristics

Escape sequences always act as line terminators. That is, an input
buffer may contain other characters that are not part of an escape
sequence, but an escape sequence always comprises the last characters
in the buffer.

Escape sequences are not echoed. However, if a non-CRT rubout
sequence is in progress, it is closed with a backslash when an escape
sequence is begun.

Escape sequences are not recognized in unsolicited input streams.
Neither are they recognized in a Read All (subfunction bit TF.RAL).

2-68

FULL-DUPLEX TERMINAL DRIVER

2.7.4 Escape Sequence Syntax Violations

A violation of the syntax defined in Section 2.7.1 causes the driver
to abandon the escape sequence and to return an error (IE.IES).

2.7.4.1 DELETE or RUBOUT (177) - The character DELETE or RUB OUT is
not legal within an escape sequence. Typing it at any point within an
escape sequence causes the entire sequence to be abandoned and deleted
from the input buffer. Thus, use DELETE or RUBOUT to abandon an
escape sequence, if desired, once you have begun it.

2.7.4.2 Control Characters (0-037) - The reception of any except four
characters in the range 0 to 037. is a syntax violation that
terminates the read with an error (IE.IES).

The four control characters that are allowed are: CTRL/Q, CTRL/S,
CTRL/X, and CTRL/O. These characters are handled normally by the
operating system even when an escape sequence is in progress. For
example, entering:

ESC CTRL/S A

gives:

IOSB IS.ESQ

2

with the~ additional effect of turning off the output stream.

2.7.4.3 Full Buffer - A syntax error results when an escape sequence
is terrriinated by running out of read-buffer space, rather than by
receipt of a final characte~. The error IE. PES is returned. For
example, after a task issues an IO.RLB with a buffer length of 2, and
you type!:

ESC 1 A

the buffer contains "ESC 1", and the I/O status block contains:

IOSB IE.PES

2

The "A" is treated as unsolicited input.

2.7.5 Exceptions to Escape Sequence Syntax

Five "final characters" that normally terminate an escape sequence are
treated as special cases by the terminal driver for use with certain
terminals:

ESC ? •••
ESC o ...
ESC P •••
ESC Y •••
ESC [...

2-69

FULL-DUPLEX TERMINAL DRIVER

Refer to documentation supplied with the specific terminal(s)
for correct use of escape sequences.

in use

2.8 VERTICAL FORMAT CONTROL

Table 2-9 is a summary of all characters that your task can use for
vertical format control on the terminal. Anyone of these characters
can be specified as the value of the vfc parameter in IO.WLB, IO.WVB,
IO.WBT, IO.CCO, or IO.RPR functions.

Octal
Value

040

060

061

053

044

000

Table 2-9
Vertical Format Control Characters

Character Meaning

blank SINGLE SPACE - The driver outputs one line feed,
prints the contents of the buffer, and outputs a
carriage return. Normally, printing immediately
follows the previously printed line.

o DOUBLE SPACE - The driver outputs two line
feeds, prints the contents of the buffer, and
outputs a carriage return. Normally, the buffer
contents are printed two lines below the
previously printed line.

1 PAGE EJECT - If the terminal supports FORM
FEEDs, the driver outputs a form feed, prints
the contents of the buffer, and outputs a
carriage return. If the terminal does not
support FORM FEEDs, the driver simulates the
FORM FEED character by either outputting four
line feeds to a crt terminal, or by outputting
enough line feeds to advance the paper to the
top of the next page on a printing terminal.

+ OVERPRINT - The driver prints the contents of
the buffer and outputs a carriage return,
normally overprinting the previous line.

$ PROMPTING OUTPUT The driver outputs one
line feed and prints the contents of the buffer.
This mode of output is for use with a terminal
on which a prompting message is output, and
input is then read on the same line.

null INTERNAL VERTICAL FORMAT - The driver prints the
buffer contents without addition of vertical
format control characters. In this mode, more
than one line of guaranteed contiguous output
can be printed for each I/O request.

All other vertical format control characters are interpreted as blanks
(040) •

2-70

FULL-DUPLEX TERMINAL DRIVER

2.9 AUTOMATIC CARRIAGE RETURN

Individual terminals can be set for wrap-around, as desired, using the
DCL SET command

$SET TERM/WRAP

Once wrap-around has been selected, the column at which wrap-around
occurs can be selected using the DCL command

$SET TERM/WIDTH
$

The SHOW TERM/WIDTH command can display the current buffer width for a
terminal:

$SHOW TERM/WIDTH
BUF=TI:00072.
$

A task can determine the buffer width by issuing a Get LUN Information
directive and examining word 5 returned in the buffer.

After the SET has been done, typing beyond the buffer width results in
a carriage return and line feed being output before the next character
is echoed. Although only one line was input, it is displayed on two
terminal lines.

It is possible to lose track of where you are in the input buffer if
wrap-around is enabled for your terminal. For example, while deleting
text on a wrapped line, the cursor does not back up to the previous
line. To resynchronize the cursor with the contents of the incomplete
input buffer, type CTRL/R.

2.10 HARD RECEIVE ERROR DETECTION

All terminal interfaces supported by the full-duplex terminal
are capable of detecting and flagging hard receive errors.
receive errors include framing errors, enable character parity
and data overrun error.

The driver handles hard receive errors as follows:

driver
Hard

error,

1. If a read request is being processed and the character can be
processed immediately, the read request is terminated with
one of the following error codes returned in the status
block:

Error
Code

IE.BCC
IE.DAO
IE.VER

Hard Receive Error

Framing error
Data overrun
Character parity error

2. If a command line is being input for a command line
interpreter task and the character can be processed
immediately, a CTRL/U is simulated, AU is echoed, and the
input is terminated. No command line is sent to the task.

3. If the character would normally cause an AST if no error was
detected, the character is ignored and no AST occurs.

2-71

FULL-DUPLEX TERMINAL DRIVER

4. If the character cannot be processed immediately, it is
stored in the type-ahead buffer. A flag is set for the line,
indicating that the last character in the type-ahead buffer
has an error, disabling further storage in the type-ahead
buffer. When the character is retrieved from the buffer, the
appropriate action previously described is taken and the flag
is cleared. Any characters received in the meantime are
discarded, with a bell echoed for each character.

2.11 TASK BUFFERING OF RECEIVED CHARACTERS

When task-buffering received characters, characters read from the
terminal are sent directly to the task's buffer. Thus, there is no
need to allocate a terminal driver buffer.

Task buffering of received characters does not necessarily reduce
system overhead. For example, each character must be mapped to the
task's buffer. However, if terminal driver buffering was used, the
system does the mapping only once for all characters to be
transferred.

With the full-duplex terminal driver, output buffering is always
performed.

Task buffering is overridden during checkpointing. If a task is
checkpointable, a driver buffer is allocated and the task is made
eligible for checkpointing by any task, regardless of priority, while
the read operation is in progress. (Checkpointing occurs in this
situation only when there is another task that can be made active.)
Because checkpointability is controlled by the task, you retain
control over this operation.

2.12 TYPE-AHEAD BUFFERING

Characters received by the terminal driver are either processed
immediately or stored in the type-ahead buffer. The type-ahead buffer
allows characters to be temporarily stored and retrieved FIFO. The
terminal driver uses the type-ahead buffer as follows:

1. Store in buffer:

An input character is stored in the type-ahead buffer if one
or more of the following conditions are true:

• The driver is not ready to accept the character
process pending or in progress).

• There is at least one character presently
type-ahead buffer.

in

(fork

the

• The character input requires echo and the output line to
the terminal is presently busy outputting a character.

• No read request is in progress, no unsolicited input AST
is specified, and the terminal is attached or slaved and
attached.

2-72

FULL-DUPLEX TERMINAL DRIVER

NOTE

Depending on the terminal mode and the presence of
a read function, read subfunctions and an
unsolicited input AST, the CTRL/C, CTRL/O, CTRL/Q,
CTRL/S, and CTRL/X characters may be processed
immediately and not stored in the type-ahead
buffer.

A character is not echoed when it is stored in the buffer.
Echoing a character is deferred until it is retrieved from
the buffer, because the read mode (for example,
read-without-echo) is not known by the driver until then.

2. Retrieve from buffer:

When the driver becomes ready to process input, or when a
task issues a read request, an attempt is made to retrieve a
character from the buffer. If this attempt is successful,
the character is processed and echoed, if required. The
driver then loops, retrieving and processing characters until
either the buffer is empty, the driver becomes unable to
process another character, or a read request is finished with
the terminal attached.

3. Flush the buffer:

The buffer is flushed (cleared) when:

• CTRL/C is received.

• CTRL/X is received.

• A clear out-of-band character is entered.

• Switch characters are detected.

• The terminal becomes detached.

Exceptions: CTRL/C and CTRL/X do not flush the buffer if
read-pass-all or read-with-special-terminators is in effect.

If the buffer becomes full, each character that cannot be entered
causes a BELL character to be echoed to the terminal.

If a character is input and echo is required, but the transmitter
section is busy with an output request, the input character is held in
the typE~-ahead buffer until output (transmitter) completion occurs.

2.13 FULL-DUPLEX OPERATION

When a terminal line is in the full-duplex mode, the full-duplex
driver attempts to simultaneously service one read request and one
write request. The Attach, Detach and Set Multiple Characteristics
functions are performed with the line in an idle state only (not
executing a read or a write request).

2-73

FULL-DUPLEX TERMINAL DRIVER

2.14 PRIVATE BUFFER POOL

The drIver has a private buffer pool for intermediate input and output
buffers. Whenever the driver needs dynamic memory, it first attempts
to allocate a buffer in the private pool. If this fails, a second
attempt is made in the system pool. If the allocation in the system
pool fails during command line input, a CTRL/U is simulated and
echoed.

Command line interpreter task buffers are handled in a special way.
When unsolicited input begins, a buffer is allocated, as previously
described, for the command line (a string of characters, fOllowed by
an appropriate terminator character). When the input is completed,
secondary pool is allocated, the command line is copied into it, and
it is queued to the CLI for processing.

2.15 INTERMEDIATE INPUT AND OUTPUT BUFFERING

Input buffering for checkpointable tasks with checkpointing enabled is
provided in the private pool. As each buffer becomes full, a new
buffer is automatically allocated and linked to the previous buffer.
The Executive then transfers characters from these buffers to the task
buffer and the terminal driver deal locates the buffers once the
transfer has been completed.

If the driver fails to allocate the first input buffer, the characters
are transferred directly into the task buffer. If the first buffer is
successfully allocated, but a subsequent buffer allocation fails, the
input request terminates with the error code IE.NOD. In this case,
the I/O status block contains the number of characters actually
transf{~rred to the task buffer. The task may then update the buffer
pointer and byte count and reissue a read request to receive the rest
of the data. The type-ahead buffer ensures that no input data is
lost.

All terminal output is buffered. As many buffers as required are
allocated by the terminal driver and linked to a list. If not enough
buffers can be obtained for all output data, the transfer is done as a
number of partial transfers, using available buffers for each partial
transfer. This is transparent to the requesting task. If no buffers
can be allocated, the request terminates with the error code IE.NOD.

The unconditional output buffering serves three purposes:

1. It reduces time spent at interrupt level.

2. It enables long DMA transfers for DHVII controllers.

3. It enables task checkpointing during the transfer to the
terminal (if all output fits in one buffer list).

2.16 TERMINAL-INDEPENDENT CURSOR CONTROL

The terminal driver responds to task I/O requests for cursor
positioning without the task requiring information about the type of
terminal in use. I/O functions associated with cursor positioning are
described as follows.

2-74

FULL-DUPLEX TERMINAL DRIVER

Cursor position is specified in the vfc parameter of the IO.WLB or
IO.RPR function. The parameter is interpreted simply as a vfc
parameter if the high byte of the parameter is O. However, if the
parameter defines cursor position, the high byte must be nonzero, the
low byte is interpreted as column number (x-coordinate), and the high
byte is interpreted as line number (y-coordinate). Home position, the
upper left corner of the display, is defined as 1,1. Depending upon
terminal type, the driver outputs appropriate cursor-positioning
commands appropriate for the terminal in use that move the cursor to
the specified position. If the most significant bit of the line
number is set, the driver clears the display before positioning the
cursor.

When defining cursor position in an IO.WLB function, you can use the
TF.RCU subfunction to save the current cursor position. When included
in this manner, TF.RCU causes the driver to first save the current
cursor position, then position the cursor and output the specified
buffer, and, finally, restore the cursor to the original (saved)
position once the output transfer has been completed.

2.17 PROGRAMMING HINTS

2.17.1 Modem Support

The ter:minal driver supports the following modem control operations:

• Local or remote operation

• Answer speed

• Auto-baud speed detection

The characteristics bit that controls local or remote operation is
TC.DLU. This bit can be set with the DCL command SET TERMINAL REMOTE
(or SET TERMINAL LOCAL).

When there is an incoming calIon a remote line, the TC.ASP
characteristic determines the baud rate for the answering modem.

Split baud rates (different transmit and receive speeds) are not
supported for answer speed.

The answer speed can be set on line using the
SET/TERM/REMOTE/SPEED:brate.

DCL command

The terminal driver can determine the speed of the incoming call by
sampling the first input character after dial-up for the following
speeds:

110
150
300
600
1200

1800
2400
4800
9600

This is called auto-baud speed detection. This option can be selected
for each line using the SET TERM/AUTOBAUD command. This command sets
the TC.ABD terminal characteristic. When auto-baud speed detection is
set for a given line, the terminal driver attempts to sense the baud
speed of the caller when that line is set to remote and a call has
been received. For auto-baud speed detection to work correctly, the
user should input carriage returns when first establishing the remote
connection until the CLI prompt is displayed on the screen.

2-75

FULL-DUPLEX TERMINAL DRIVER

2.17.2 Checkpointing During Terminal Input

If checkpointing during terminal input was selected as a system
generation option, a checkpointable task is stopped (and therefore
eligible to be checkpointed) when trying to read. Therefore, a
stratagem such as issuing a read fOllowed by a mark-time does not
work. The intent might be to time out the read if input is not
received in a reasonable length of time. But the mark-time is not
issued llntil the read completes.

You can circumvent this behavior by disabling checkpointing for the
read. This is not a desirable solution because it forces a task to
remain in memory during the entire read. This defeats the purpose of
selecting the checkpoint-during-terminal-input option.

2-76

CHAPTER 3

DISK DRIVERS

3.1 INTRODUCTION

The Micro/RSX System has the following loadable disk drivers:

3.1.1 DUDRV.TSK

The DUDRV driver processes I/O requests for the RQDXl/RQDX2
controller. The RQDXl/RQDX2 controller is for the RD51-A and the
RD52. The RD51 is a 10-megabyte fixed Winchester disk and the
RX50-AA, a dual 400 kilobyte 5.25-inch diskette drive, both of which
are included with a delivered Micro/RSX System. The RD52 is a
30.97-megabyte fixed Winchester disk.

The DUDRV driver also processes I/O requests for
fixed/removable disk system and the KDA50 controller.

the RC25

3.1.1.1. RC25 Disk Hardware Description - The RC25 disk subsystem
consists of a fixed-media drive and a removable-media drive, both of
which revolve on the same spindle and share the same head mechanics.
Each drive is a logical unit, so each RC25 disk subsystem consists of
two logical units.

RC25 subsystems are available in two types: a master drive that
contains its own controller, and a slave drive, which must be
connected to an RC25 master drive. Each RC25 master drive can support
one RC~!5 slave drive. A master-slave configuration would contain four
logical units.

3.1.1.2 KDASO Controller Hardware Description - The KDA controller is
an intelligent disk controller that contains a high-speed
micropI:ogrammed processor capable of performing all disk functions,
including data handling, error detection and correction, and
optimization of disk drive activity and data transfers. The
controller optimizes disk activity by reordering QIOs. Therefore,
QIO$ macros may not complete in the order in which they were issued.
Also, the KDA can carry out an extensive self-test on power-up or
initialization. The types of drives that can be connected to the
KDA50 controller are the RAGO disk drive, which has a removable pack,
and thE~ RA80 and RA81, both of which are fixed media drives.

3-1

DISK DRIVERS

3.1.2 DLDRV.TSK

The DLDRV driver processes I/O requests for the RLV12 controller.
This controller can handle from one to four 10-megabyte RL02 disk
drives. These drives take top-loading removable disk cartridges.

3.1.3 DYDRV.TSK

The DYDRV driver processes I/O requests for the RXV21 controller.
This controller controls a tabletop diskette drive subsystem that has
two RX02 disk drives. Each drive takes an 8-inch flexible diskette
that has 512 kilobytes of storage.

3.2 GET LUN INFORMATION MACRO

Word 2
first
disks.
is true

Bit

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

of the buffer filled by the Get LUN Information macro (the
characteristics word) contains the following information for

A bit setting of 1 indicates that the described characteristic
for disks.

Setting

o

o

o

1

o

o

1

x

x

o

o

o

o

o

1

1

Meaning

Record-oriented device

Carriage-control device

Terminal device

File-structured device

Single-directory device

Sequential device

Mass storage device

User-mode diagnostics supported (device
dependent)

22-bit direct addressing supported

Unit software write-locked

Input spooled device

Output spooled device

Pseudo-device

Device mountable as a communications
channel

Device mountable as a Files-II volume

Device mountable

Words J and 4 of the buffer contain the maximum logical block number.
Note that the high byte of U.CW2 is undefined. You should clear the
high byte in the buffer before using the block number. For DUDRV type
disks, these two words are undefined until the device has been mounted
at least once. Word 5 indicates the default buffer size, which is 512
bytes for all disks.

3-2

DISK DRIVERS

3.3 010 MACRO

This section summarizes the standard and the device-specific 010
functions for disk drivers.

3.3.1 Standard 010 Functions

Table 3-1 lists the standard functions of the 010 macro that are valid
for disks.

Table 3-1
Standard 010 Functions for Disks

Q 10 $C 10 • AT T , •••

QIO$C 10. DET, •••

Q 10 $C I 0 • K I L, •••

Format

QIO$C IO.RLB, ••• ,(stadd,size"blkh,blkl>

QIO$C IO.RVB, ••• ,(stadd,size"blkh,blkl>

QIO$C IO.WLB, ••• ,(stadd,size"blkh,blkl>

QIO$C IO.WLC, ••• ,(stadd,size"blkh,blkl>

OIO$C IO.WVB, ••• ,(stadd,size"blkh,blkl>

Function

h d . 1
Attac eVlce

Detach device

Kill 1/0
2

Read logical block

Read virtual block

Write logical block

Write logical block
followed by write
check 3

Write virtual block

1., Only volumes mounted foreign may be attached. Any other
attempt to attach a mounted volume will result in an
IE.PRI status being returned in the I/O status doubleword.

2.. In-progress disk operations are allowed to complete when
IO.KIL is received, because they take such a short time.
I/O requests that are queued when IO.KIL is received are
killed immediately. An IE.ABO status is returned in the
I/O status doubleword.

3.. Not supported on RX02 flexible disks.

stadd

size

The starting address of the data buffer (must be on a word
boundary) •

The data buffer size in bytes.

blkh/blkl

Block high and block low, combining to form a double-precision
number that indicates the actual logical/virtual block address on
the disk where the transfer starts: blkh represents the high 8
bits of the address, and blkl the low 16 bits.

3-3

DISK DRIVERS

IO.RVB and IO.WVB are associated with file operations (see the
RSX-llM/M-PLUS and Micro/RSX I/O Operations Reference Manual). For
these functions to be executed, a-file must be open on the specified
LUN if the volume associated with the LUN is mounted. Otherwise, the
virtual I/O request is converted to a logical I/O request using the
specified block numbers.

NOTE

When writing a new file using QIOs, the task must
explicitly issue .EXTND File Control System library
routine calls as necessary to ieserve enough blocks
for the file, or the file must be initially created
with enough blocks allocated for the file. In
addition, the task must put an appropriate value in
the FOB for the end-of-file block number (F.EFBK)
before closing the file. (Refer to the .EXTND routine
description in the RSX-llM/M-PLUS and Micro/RSX I/O
Operations Reference Manual.)

Each disk driver supports the subfunction bit IQ.X: inhibit retry
attempts for error recovery. You invoke this subfunction bit by using
it in d Logical OR with the desired QIO; for example:

Q[O$C IO.WLB!IQ.X, ••• ,(stadd,size"blkh,blkl>

The IQ.X subfunction permits user-specified retry algorithms for
applications in which data reliability must be high.

The overlapped seek drivers for Micro/RSX support subfunction bit
IQ.Q, which queues the request immediately without doing a seek (that
is, uses implied seeks).

3.3.2 Device-Specific QIO Functions

The device-specific functions shown in Table 3-2 are valid only for
the RX02 and the RL02 disk drives.

Table 3-2
Device-Specific Functions for the

RX02 and RL02 Disk Drives

Format Function

QIO$C IO.RPB, ••• ,(stadd,size",pbn> Read physical block

QIO$C IO.SEC, •••

QIO$C IO.SMD, ••• ,(density,,>

Sense diskette characteristics
(RX02 only)

Set media density (RX02 only)

QIO$C 10.WDD, ••• ,(stadd~size",pbn> Write physical block (with
deleted data mark) (RX02 only)

QIO$C 10.WPR, ••• ,(stadd,size",pbn> Write physical block

3-4

stadd

size

DISK DRIVERS

The starting address of the data buffer (must be on a word
boundary) •

The data buffer size in bytes must be even and greater
than O.

pbn The physical block number where the transfer starts (no
validation will occur).

The media density as follows:

o single density
2 = double density

3.3.3 Device-Specific QIO Function for DU: Devices

The DUDRV driver supports the device-specific QIO function shown in
Table 3-3.

Table 3-3
Device-Specific QIO Function for the DUDRV Disk Driver

Format Function

QIO$C IO.RLC, ••• ,<stadd,size"blkh,blkl> Read Logical with Read Check
modifier

The IO.RLC function is a read logical block followed by a read
check. The disk is read twice.

3.4 STATUS RETURNS

The error and status conditions listed in Table 3-4 are returned by
the disk drivers described in this chapter.

Code

IS.SUC

Table 3-4
Disk Status Returns

Reason

Successful completion

The operation specified in the
completed successfully. The second
status block can be examined to
number of bytes processed, if
involved reading or writing.

QIO macro was
word of the I/O
determine the
the operation

(Continued on next page)

3-5

Code

IS.PND

IS.ROD

IE. ABO

IE.ALN

IE.BLK

IE.BBE

IE.BYT

IE.DNR

IE.IFC

DISK DRIVERS

Table 3-4 (Cont.)
Disk Status Returns

Reason

I/O request pending

The operation specified in the QIO macro has not
yet been executed. The I/O status block is filled
with Os.

Deleted data mark read

A deleted record was encountered during execution
of an IO.RPB function. The second word of the I/O
status block can be examined to determine the
number of bytes processed (RX02 only).

Request aborted

An I/O request was queued (not yet acted upon by
the driver) when an IO.KIL was issued.

File already open

The task attempted to open a file on the physical
device unit associated with specified LUN, but a
file has already been opened by the issuing task on
that LUN.

Illegal block number

An invalid logical block number was specified.
IE.BLK would be returned if an attempt was made to
write on the last track of an RL02 disk.

Bad block error

The disk sector (block) being read was marked as a
bad block in the header word.

Byte-aligned buffer specified

Byte alignment was specified for a buffer, but only
word alignment is legal for disk. Alternatively,
the length of a buffer is not an appropriate number
of bytes.

Device not ready

The physical device unit specified in the QIO macro
was not ready to perfozm the desired I/O operation.

Illegal function

A function code was specified in an I/O request
that is invalid for disks.

(Continued on next page)

3-6

Code

IE.NLN

IE.NOD

IE.OFL

IE.OVR

IE.PRI

IE.SPC

IE.VER

DISK DRIVERS

Table 3-4 (Cont.)
Disk Status Returns

Reason

File not open

The task attempted to close a file on the physical
device unit associated with the specified LUN, but
no file was currently open on that LUN.

Insufficient buffer space

Dynamic storage space has been depleted, and there
was insufficient buffer space available to allocate
a secondary control block. For example, if a task
attempts to open a file, buffer space for the
window and file control block must be supplied by
the Executive. This code is returned when there is
not enough space for this operation.

Device off line

The physical device unit associated with the LUN
specified in the QIO macro was not on line. When
the system was booted, a device check indicated
that this physical device unit was not in the
configuration.

Illegal read overlay request

A read overlay was requested, and the physical
device unit specified in the QIO macro was not the
physical device unit from which the task was
installed. The read overlay function can only be
executed on the physical device unit from which the
task image containing the overlays was installed.

Privilege violation

The task that issued the request was not privileged
to execute that request. For disk, this code is
returned if a nonprivileged task attempts to read
or write a mounted volume directly (that is, using
IO.RLB or IO.WLB). Also, this code is returned if
any task attempts to attach a mounted volume.

Illegal address space

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. Alternatively, a byte count
of 0 was specified.

Unrecoverable error

After the system's standard number of retries has
been attempted upon encountering an error, the
operation still could not be completed. For disk,
unrecoverable errors are usually parity errors.

(Continued on next page)

3-7

Coc.e

IE.WCK

DISK DRIVERS

Table 3-4 (Cont.)
Disk Status Returns

Reason

Write check error

An error was detected during the write check
portion of an operation.

IE.WLK Write-locked device

The task attempted to write on a disk that was
write-locked.

When a disk I/O error condition is detected, an error is usually not
returned immediately. Instead, Micro/RSX attempts to recover from
most errors by retrying the function as many as eight times.
Unreccverable errors are generally parity, timing, or other errors
caused by a hardware malfunction.

3.5 POWER-FAIL RECOVERY

For DUDRV devices, the power-fail recovery is handled by the driver.

For DLDRV and DYDRV devices, a disk driver is called at its power-fail
recovery entry point when a power-fail occurs. This recovery routine
gives a disk sufficient time to spin back up and be ready to accept
I/O requests.

There are three possible recovery procedures:

1. If a device is busy prior to the power-fail and the requested
I/O has not completed, the routine times out and checks the
device status until the device is ready for I/O operations to
resume.

2. If a device is not busy prior to the power-fail and receives
an I/O request after the power-fail, the routine times out
and checks the device status until the device is ready for
I/O operations to resume.

3. If a device is not busy prior to the power-fail and there are
no pending I/O requests, operations resume with no special
handling by the recovery routine.

Note in the first two cases that, if the maximum time-out count is
reached before the disk spins back up and is ready, an unsuccessful
I/O completion code is returned.

3.6 PROGRAMMING HINTS

3.6.1 RL02 Last Track Bad-Sector File

The driver write-protects the last track of an RL02 cartridge.
track contains the factory-recorded bad-sector file.

3-8

This

DISK DRIVERS

3.6.2 RX02 Media Characteristics

the system data
in the RX02 drive.

a QIO Sense
device's media

The RX02 device driver (DYDRV) dynamically updates
base to reflect the characteristics of the media
Recommended Action: User tasks should issue
Characteristics function before requesting the
characteristics with the GLUN$ macro.

3.6.3 Stall I/O for RC25 Disks

Because two RC25 disk units revolve on the same spindle and share the
same head mechanics, you must spin down both units of a subsystem in
order to spin down one unit. You cannot access either unit until the
subsystem is spun up again. Because you must spin down the drive any
time you want to insert or remove a disk from the removable-media
unit, the device driver (DUDRV) allows you to spin down the subsystem
and still retain context on the fixed-media unit, provided it is
mounted as a Files-II or foreign volume. It does this by postponing
input and output to the fixed-media unit until the subsystem is spun
up again and the heads are reloaded. This is called stalled I/O.

When the driver receives an I/O request that it cannot process because
the drive is spun down, it issues the following message to the
console:

<ddnn:> - I/O stalled

When the drive is spun up again and I/O to the device is resumed, the
driver issues the following message to the console:

<ddnn:> - I/O resumed

Note that because the only reason you would want to spin down the disk
on a running system would be to replace the removable disk, and you
would never specifically need to spin down the fixed-media unit, I/O
is never stalled to the removable-media unit. The removable-media
unit behaves like any other disk on an RSX system: if you spin it
down, context is lost.

Stalling I/O to an RC25 subsystem affects the system's performance.
If you initiate an operation requiring I/O to a stalled unit, you will
not receive a timely response to the request. Although the I/O
request is queued to the device driver, the driver ignores the request
until the drive is loaded and the unit is ready. The driver then
resumes processing requests. Note, however, that an operation can
continue as long as it does not require access to the unit whose I/O
is stalled.

Sometimes an operation that does not involve stalled-I/O units is
delayed as well. For example, assume that your system disk is in the
fixed-media unit and that you spin down a subsystem in order to change
the disk pack in the removable-media unit. If a user then initiates
an operation requiring a task to be loaded from the fixed unit, the
loader issues a queued I/O request to the fixed unit. However, the
device driver does not respond to this request immediately, since the
subsystem is spun down. Also, because the loader cannot service
additional tasks until it loads the current task from the disk, load
operations to other disks on the system remain in the loader's work
queue until the current load operation completes.

3-9

DISK DRIVERS

NOTE

Like the loader, the Files-II Ancillary Control
Processor (Files-II ACP or FIIACP) is another
single-threaded task that may delay response time when
I/O is stalled to the RC25. To avoid this delay, you
should always install a unique ACP for the RC25
fixed-media units (see the MOUNT command in the
RSX-IIM-PLUS Command Language Manual).

System users may find it difficult to distinguish between system
crashes and system delays due to stalled I/O. Therefore, it is
recomm(~nded that, before you spin down an RC25 subsystem, you inform
all system users of your intentions.

3.6.4 Dismounting the RC25

You dismount a unit on the RC25 in the same way as for other disk
device~3, by using the DISMOUNT command. However, there are
restrictions on using the /UNLOAD qualifier to spin down the disk.
Since context may be lost on the removable disk if the subsystem is
spun down, all spin down requests are ignored for the fixed unit of
the RC25. For the removable disk unit, you must be privileged in
order to spin down the device while dismounting it. The privileged
status of DISMOUNT/UNLOAD is a safety measure to control who is able
to spin down the system disk.

If you are a privileged user, DISMOUNT/UNLOAD issues the following
messag(~ when the command execu tes proper ly:

Warning -- All units of multiunit drive will spin down <ddnn:>

If you are a nonprivileged user, DISMOUNT/UNLOAD refuses your request
to spin down a unit and issues the following message:

Warning -- Volume will not spin down <ddnn:>

3-10

CHAPTER 4

TAPE DRIVERS

4.1 INTRODUCTION

The Micro/RSX system has three tape drivers: the DDDRV.TSK for the
TU58 tape subsystem, the MSDRV.TSK for the TSV05 and TK25 tape
subsystems, and the MUDRV.TSK for the TK50 tape subsystem.

4.2 MSDRV - TSVOS/TK2S MAGNETIC TAPE

The MSDRV driver processes I/O requests for the TSV05/TK25 tape
subsystem.

The TSV05 is a Q-bus device that reads and writes at 1600 bpi on a
1/2-inch 9-track tape at 25 inches/second in TS11 compatibility mode.
It is an integrated subsystem with a drive, a controller, and a
formatter. The hardware is microprocessor controlled for all
operations, including I/O transfers, tape motion, and has
comprehensive (internal) diagnostic test execution. Recording is 1600
bpi phase-encoded (PE).

The TK25 consists of a TKQ25 controller for the Q-bus and a TK25
streaming tape drive. The TK25 reads and writes data on a DC600A
1/4-inch tape cartridge that is recorded at 8K bpi on 10 serial data
tracks in a serial serpentine recording method. The TK25 has a
storage capacity of 60 Mbytes for 8 Kbyte data records, and it has a
maximum data transfer rate of 55 Kbytes per second.

4.3 MUDRV - TKSO MAGNETIC TAPE

The TK50 is an integrated subsystem that consists of a controller for
the Q-bus and a TK50 streaming tape drive. The controller handles all
error recovery and correction, and it holds multiple outstanding
commands in internal buffers. The tape drive reads and writes data on
a 1/2-inch tape cartridge that is recorded at 6667 bpi on serial data
tracks in a serial serpentine recording (Modified Frequency
Modulation) method. The tape speed is 75 inches per second and the
storage capacity is approximately 100 Mbytes.

4.4 GE'T LON INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information macro (the
first characteristics word) contains the following information for
TSV05/TK25 tape. A bit setting of 1 indicates that the described
characteristic is true for magnetic tapes.

4-1

TAPE DRIVERS

Bit Setting Meaning

0 0 or 1 Record-oriented device (0 if the tape is
mounted, 1 if it is not)

1 0 Carriage-control device

2 0 Terminal device

3 0 File-structured device

4 0 or 1 Single-directory device (0 if the tape is not
mounted, . 1 if it is)

5 1 Sequential device

6 1 Mass storage device

7 0 or 1 User-mode diagnostics supported

8 1 22-bit direct addressing supported

9 0 Unit software write-locked

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo-device

13 0 Device mountable as a communications
channel

14 0 or 1 Device mountable as a Files-II volume

15 0 or 1 Device mountable

Words 3 and 4 of the buffer are undefined; word 5 indicates the
default buffer size, for magnetic tapes 512 bytes.

4.5 STANDARD 010$ FUNCTIONS

Table 4-1 lists the standard functions of the QIO$ macro that are
valid for supported magnetic tape devices.

Table 4-1
Standard 010$ Functions for TSV05/TK25/TK50

Format

QIO$C IO.ATT, •••

OIO$C IO.DET, •••

QIO$C IO.KIL, •••

QIO$C IO.RLB, ••• ,(stadd,size)

4-2

Function

Attach device

Detach device

Cancel I/O requests

Read logical block
(read tape into buffer)

(Continued on next page)

TAPE DRIVERS

Table 4-1 (Cont.)
Standard QIO$ Functions for TSVOS/TK2S/TKSO

Format Function

QIO$C IO.RVB, ••. ,(stadd,size) Read virtual block
(read tape into buffer)

QIO$C IO.WLB, ••• ,(stadd,size) Write logical block
(write buffer contents to tape)

QIO$C IO.WVB, ••• ,(stadd,size) Write virtual block

stadd

size

(write buffer contents to tape)

The starting address of the data buffer. It must be on a
word boundary for MUDRV devices, and it may be on a byte
boundary for MSDRV devices.

The data buffer size in bytes. Size must be greater than 0,
and, for a write, must be at least 14 bytes. For the
TSVOS/TK2S or TKSO, data transfers may be odd or even.

IO.KIL terminates an I/O request that is in progress if any of the
following occur:

• A select error (not applicable to TKSO)

• Error recovery

• Interrupt servicing

• Device timeout servicing

4.6 DEVICE-SPECIFIC QIO$ FUNCTIONS

Table 4-2 lists the device-specific functions of the QIO$ macro that
are valid for the supported magnetic tape devices. Additional details
on certain functions appear as follows.

4.6.1 10.RLV

The data appears in the specified buffer in a fashion identical with
IO.RLB or IO.RVB, as long as the data block has the same length as the
buffer.

4.6.2 10.RWD

IO.RWD completion for MUDRV devices means that the rewind has been
initiated. For MSDRV devices, IO.RWD completion means that rewind to
BOT has been completed. Additional operations on that controller may
then be queued by the driver until load point (BOT) is reached.

4-3

TAPE DRIVERS

4.6.3 IO.RWU

IO.RWU is normally used when operator intervention is required (for
example, to load a new tape). The operator must turn the unit back on
line manually before subsequent operations can proceed.

cb

Table 4-2
)evice-Specific QIO$ Functions for Supported Tape Devices

Format

QIO$C IO.DSE, •••

QIO$C IO.EOF, •••

QIO$C IO.ERS, •••

QIO$C IO.RLV, ••• ,(stadd,size)

QIO$C 10. RWD, •••

QIO$C IO.RWU, •••

QIO$C IO.SEC, •••

QIO$C IO.SMO, ••• ,(cb)

QIO$C IO.SPB, ••• ,(nbs)

QIO$e IO.SPF, ••• ,(nes)

QIO$C IO.STC, ••• ,(cb)

Function

Data Security Erase (TK50 only)

write end-of-file mark (tape mark)

Erase

Read logical block reverse

Rewind unit

Rewind and turn unit off line

Sense tape characteristics

Mount tape and set tape
characteristics (unit must be
ready, tape at load point.)

Space blocks

Space files

Set tape characteristics

The characteristic bits to set.

nbs The number of blocks to space past (positive if forward,
negative if reverse).

nes The number of EOF marks to space past (positive if
forward, negative if reverse).

size The size of the stadd data buffer in bytes. Size must be
greater than zero, and, for a write, must be at least 14
bytes. For MSDRV or MUDRV devices, data transfers may be
odd or even.

stadd The starting address of the data buffer. It must be on a
word boundary for MUDRV devices, and it may be on a byte
boundary for MSDRV devices.

4.6.4 IO.ERS

Erases tape to provide an extended inter record gap.

4-4

TAPE DRIVERS

4.6.5 10.DSE

Causes the TK50 to erase from the curr~nt position to end-of-tape and
then rewind the tape to beginning-of-tape.

4.6.6 10.SEC

This function returns the tape characteristics in the second I/O
status word. The tape characteristic bits are defined as follows:

Bit Meaning when Set

o Reserved.

1 Swap byte mode (read/write).
For TSV05/TK25

2 Reserved

3 Even parity (default is odd).
(Not selectable for the TSV05, TK25,
TK50.)

4 Tape is past EOT.

5 Last tape command encountered
EOF (unless last command was
backspace) •

6

7

Writing is prohibited.

Writing with extended inter
record gap is prohibited
(that is, no recovery is attempted
after write error) •

8 Select error on unit (not applicable
to the TK50).

9 Unit is rewinding.

10 Tape is physically write-locked.

Can Be Set by
10.SMO and 10.STe

x

x

x

x

11 1600 bpi density (for TSV05/TK25, bit 11=1)
IO.SMO or IO.STC cannot modify bit 11.

12 Reserved.

13 Tape is at load point (BOT).

14 Tape is at end-of-volume (EOV).

15 Tape is past EOV (reserved for dri
ver; always 0 when read by user).

4-5

TAPE DRIVERS

4.6.7 10.SMO

This function can be used as a combination of the sense (IO.SEC) and
set (IO.STC) tape characteristics functions. Unlike IO.STC, however,
the IO.SMO function requires that the unit be READY and the tape be at
load point (BOT). If either of these conditions is not met, the
functicn returns an error status code of IE.FHE (refer to Table 4-3).

The IO.SMO function should be used to set the characteristics of a
newly loaded tape. If the IE.FHE error code is returned, the tape
drive is not on line and is not at BOT.

4.7 STATUS RETURNS

The error and status conditions listed in Table 4-3 are returned by
the MSDRV and MUDRV driver.

Codp

Is.sue

IS.PND

IE.ABO

IE.BYT

IE.DAA

Table 4-3
MSDRV/MUDRV Tape Status Returns

Reason

Successful completion

The operation specified in the QIO$ macro was
completed successfully. The second word of the I/O
status block can be examined to determine the
number of bytes processed, if the operation
involved reading or writing. This code is also
returned if nbs equals 0 in an IO.SPB function or
if nes equals 0 in an IO.SPF function.

I/O request pending

The operation specified in the QIO$ macro has not
yet been completed. The I/O status block is fiLled
wi th Os.

Operation aborted

The specified I/O operation was canceled by IO.KIL
while in progress or while still in the I/O queue.

Byte-aligned buffer specified

Byte alignment was specified for a buffer, while
only word alignment is legal for the QIO.
Alternatively, the length of a buffer is not an
even number of bytes.

Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

(Continued on next page)

4-6

Code

IE.DAO

IE. DNA

IE.DNR

IE.EOF

IE.EOT

TAPE DRIVERS

Table 4-3 (Cont.)
MSDRV/MUDRV Tape Status Returns

Reason

Data overrun

On a read, a record exceeded the stated buffer
size. The final portion of the buffer is checked
for parity, but is not transfered to memory.

Device not attached

The physical device unit specified in an IO.DET
function was not attached by the issuing task.
This code has no bearing on the attachment status
of other tasks.

Device not ready

The physical device unit specified in the QIO$
macro was not ready to perform the desired I/O
operation. This code is returned to indicate one
of the following conditions:

• A time-out occurred on the physical device unit
(that is, an interrupt was lost).

• The physical drive was not on-line.

End-of-file was encountered.

End-of-tape encountered.

The end-of-tape (physical end of tape (EOT) marker)
was encountered while the tape was moving in the
forward direction for a write or write tape mark
operation. The IE.EOT code is returned continually
in the I/O status block until the EOT marker is
passed in the reverse direction. IE.EOT is not
returned on a read operation.

A length of tape is provided past EOT to be used
for writing data and markers, such as volume
trailer labels. For MUDRV devices, this length of
tape must not be less than the length required to
store the aggregate of the following records:

• Two device dependent "maximum recommended record
length" records

• Three aO-byte records

• Three tape marks

The IE.EOT code is returned continually in the I/O
status block until the EOT marker is passed in the
reverse direction. IE.EOT is not returned on a
read operation.

(Continued on next page)

4-7

Code

IE.EOV

IE.FHE

IE.IFC

IE.OFL

IE.SPC

IE.VER

IE.WLK

TAPE DRIVERS

Table 4-3 (Cont.)
MSDRV/MUDRV Tape Status Returns

Reason

End-of-volume encountered (unlabeled tape)

On a forward space function, the logical
end-of-volume was encountered. An end-of-volume is
two consecutive end-of-file marks (EOF), or a
beginning-of-tape mark (BOT) followed by an EOF.
The tape is normally left positioned between the
two marks.

Fatal hardware error

Nonrecoverable hardware error: for example,
magnetic tape unit not ready and/or tape not at
load point when IO.SMO is issued.

Illegal function

An invalid function (or subfunction bit) was
specified in a magnetic tape I/O request. Refer
also to Section 4.2.4.3.

Device off line

The physical device unit associated with the LUN
specified in the QIO$ macro was not on line. When
the system was booted, a device check indicated
that this physical device unit was not in the
configuration.

Illegal address space

The buffer specified for a read or write request
was partially or totally outside the address space
of the issuing task. For magnetic tape, this code
is also returned if a byte count of 0 was specified
or if the user attempted to write a block that was
less than 14 bytes long.

Unrecoverable error

The operation could not be completed due to a data
transfer error and unsuccessful error recovery
attempts.

write-locked device

The task attempted to write on a tape unit that was
physically write-locked. Alternatively, tape
characteristic bit 6 was set by the software to
write-lock the unit logically.

After processing a QIO$ request, the magnetic tape driver returns two
status words. The first word contains one of the I/O status codes
listed in Table 4-3.

4-8

TAPE DRIVERS

For successful QIO$ execution (IS.SUC) or read requests (IE.DAO), the
second I/O status word may contain further information. The
operations for which this is true, and the information returned, are
shown in Table 4-4. For all other cases the contents of this word is
undefined.

Table 4-4
Information Contained in the Second I/O Status Word

I/O Function
Code

IO.RLB

IO.RLV

IO.RVB

IO.SEC

IO.SPB

IO.SPF

IO.WLB

IO.WVB

Information Returned
IS.SUC IE.DAO

Number of bytes
transferred

Number of bytes
transferred

Number of bytes
transferred

Tape charac
teristics word

Number of records
spaced over

Number of files
spaced over

Number of bytes
transferred

Number of bytes
transferred

Number of bytes
in tape record

Number of bytes
in tape record

Number of bytes
in tape record

4.7.0.1 Select Recovery - If a request fails because the desired unit
is off line, no drive has the desired unit number, or the drive has
its pClwer off, the following message is output on the operator's
console:

*** MSn: -- SELECT ERROR

n

The unit number of the specified drive.

The dl~iver checks the unit for readiness and repeats the message every
15 seconds until the requesting task is aborted or the unit is made
available. In the latter case, the driver then proceeds with the
request.

MUDRV devices (TK50) do not issue select errors.
taken offline, the drive positions the tape at BOT.
treated as tape position lost or powerfail.

4-9

If the drive is
This condition is

TAPE DRIVERS

4.8 RETRY PROCEDURES FOR READS AND WRITES

For MUDRV devices (TK50), the controller handles all error correction
and recovery.

For MSDRV devices, if a write operation fails, the driver attempts the
following error recovery procedure a predetermined number of times:

1. Repositions the tape

2. Erases the tape to create an extended interrecord gap

3. Retries the write operation

The requesting task can use
extended interrecord gap.
the write is retried.

IO.STC to prohibit writing with an
In this case, the tape is backspaced and

For MSDRV devices, if a read operation fails, the driver rereads the
block in error a predetermined number of times.

4.9 POWER-FAIL RECOVERY FOR MSDRV/MUDRV TAPES

If a power failure or loss of physical control of the tape occurs,
tape position is lost. (Note that an initial system boot simulates a
recovery from a power failure.) Additionally, on auto-load drives, the
tape will be positioned at BOT when the unit is turned on line.

To prevent accidental destruction of data currently on tape, the
driver maintains a power-fail status indicator. When this indicator
is set, the driver disallows any data transfer or tape motion commands
until 3 successful rewind (IO.RWD), rewind unload (IO.RWU), or mount
and set characteristics (IO.SMO) function is issued. The successful
completion of these functions clears the power-fail indicator and all
tape motion functions are allowed to proceed. It is also possible to
issue the set and sense characteristics functions (IO.STC and IO.SEC)
while the power-fail indicator is set. These functions, however, will
not clear the bit.

All functions other than those just described are considered invalid
and cause the return of the IE.IFC (invalid function) error code to
the requesting task. In situations where a tape is currently a
mounted volume, the tape should be dismounted and then remounted
before use. In doing this, the rewind command will be issued, thereby
clearing the power-fail indicator.

4.10 PROGRAMMING HINTS

This section contains
considerations relevant to
described in this chapter.

4.10.1 Block Size

information
users of

on
the

important
MSDRV or

programming
MUDRV driver

Each block must contain at least 14 bytes for a write and may contain
a maximum of 65,534 bytes. However, tape usage is more efficient with
a large]: bu f fer.

4-10

TAPE DRIVERS

4.10.2 Importance of Resetting Tape Characteristics

A task that uses tape should always set the tape characteristics to
the proper value before beginning I/O operations. The task cannot be
certain in what state a previous task left these characteristics. It
is also possible that an operator might have changed the magnetic tape
unit selection. If the selection switch is changed, the new physical
device unit may not correspond to the characteristics of the unit
described by the respective unit control block.

4.10.3 Aborting a Task

If a task is aborted while waiting for a tape unit to be selected, the
MSDRV driver recognizes this fact within one second.

If you abort a task while it waits for a tape unit to complete a space
operation, the MSDRV driver may allow spacing to the next tape mark.

For MUDRV devices (TK50), if you abort a task while it waits for a
magnetic tape unit to complete a space operation, the driver may have
spaced some or all of the requested spacing operation.

The MUDRV terminates the spacing function immediately, which leaves
the tape at an indeterminate position. A rewind should be performed
immediately with another spacing function to get to a known position
on the tape.

4.10.4 End-of-Volume Status (Unlabeled Tape)

The MSDRV/MUDRV driver detects end-of-volume when it spaces over the
second of two consecutive tape marks. The tape is left positioned
between the two tape marks.

The tape driver returns the IE.EOV status code only on space
operations. IE.EOV is never returned by read operations.

For thE~ purpose of checking for end-of-volume, the driver treats
beginning of tape (BOT) as a tape mark. Therefore, any forward space
operation from BOT that immediately encounters a tape mark will return
IE.EOV.

If a space operation stops between two tape marks but does
over the second one, the driver will return end-of-file
end-of-volume. Any subsequent space operation from this
immediately spaces over the second tape mark
end-of·-volume.

not space
rather than
point that

will return

During IO.SPF operations, the driver considers all tape marks to be
files except for BOT and for the second tape mark spaced over at the
end of volume.

Note that both IO.SPF and IO.SPB operations leave the tape positioned
after the tape mark in the direction of travel.

If you want to treat two consecutive tape marks as end-of-volume on
read operations, your application must keep track of the tape marks.
The magnetic tape driver does not support two consecutive tape marks
as end-of-volume on read operations.

4-11

TAPE DRIVERS

4.10.5 Resetting Tape Transport Status or VCK

When the tape transport status changes (goes on line or off line),
further I/O operations are inhibited. A deliberate I/O sequencing
must o~cur to allow physical I/O to proceed. This sequencing is done
by issuing a 10.RWD or 10.SMO QIO$ or including /RW or /REW switches
to command requests (such as DMP).

4.10.6 Issuing QIOs

Users issuing QIOs directly to MSDRV/MUDRV must be aware of the
following:

• Completion of an 10.RWD request occurs when the MS:
reaches BOT.

• Completion of an 10.RWD request occurs when the MU:
starts the rewind.

device

device

• When the MS: or MU: device changes status from off-line to
on-line or vice versa, the MS: or MU: device inhibits
further physical I/O operations. After such a change, the
user must issue 10.RWD or 10.SMO requests that succeed before
I/O can proceed.

• For the MS: or MU: device, read/write data transfer features
are:

The data buffer starting address must be on a word
boundary.

The data transfer size may be an odd or even byte count.
The minimum must be 14 bytes for a write operation.

For the MSDRV, you can swap odd and even data bytes by
using the tape characteristic bit 1 of 10.SMO or 10.STC
requests. When bit 1 is set to 0, no byte swap occurs;
when it is set to 1, byte swap does occur. If you use byte
swapping, it is recommended that the data buffer size be an
even byte count.

• For MU: devices, issuing an 10.KIL terminates the in-progress
I/O operations in reverse order.

• CAUTION The MU: device handles QIO$ requests in a
different manner than other devices do. Multiple requests are
queued in the controller itself and, therefore, the physical
end-of-tape may be reached before all requests are processed.
Thus, with multiple QIOs it is possible to pull tape off the
supply reel.

It is recommended that QIOW$ be used, or that the total size
of queued records to be written is not longer than the ANSI
standard for the tape trailer size.

The physical end-of-tape for MUDRV (MU:) devices is defined as
the end of usable recorded area, which is located in the tape
trailer area. This area begins at the EOT marker and extends

4-12

TAPE DRIVERS

through a length that depends on the tape format. This length
must be long enough to store the aggregate of the following
records:

Two device dependent "maximum recommended record length"
records

Three 80-byte records

Three tape marks

4.11 BLOCK SIZE ON TAPES MOUNTED /NOLABEL

Under certain conditions, if a file is written to a tape, its block
size will be even and one more than the value specified in the MOUNT
command. These conditions where this occurs are as follows:

• The tape is mounted /NOLABEL

• The MOUNT command specifies an odd record size

• The MOUNT command specifies an odd block size

FCS adds the padding character, an octal 136 (A) circumflex, to
odd-siz:ed blocks due to a hardware restriction; some tape drives will
not allow an odd number of bytes to be transferred to or from tape.
Therefore, blocks of data are padded with the circumflex character so
that blocks of data can be written to tape on any tape drive.

4.12 DDDRV - TUS8 CARTRIDGE TAPE

The DDDRV driver processes I/O requests for the TUS8 tape subsystem.
The TUS8 is a tabletop dual tape drive that takes 2S6 kilobyte
cartridge tapes. This tape drive is connected to the Micro/RSX System
through one of the asynchronous serial lines.

All I/O transfers (commands and data) occur by means of the serial
line interface at serial transmission rates of 9600 bps. All read and
write check operations are performed by the controller hardware using
a l6-bit checksum. The controller performs up to eight attempts to
read a block, as necessary, before aborting the read operation and
returning a hard error; however, whenever more than one read attempt
is required for a successful read, the driver is notified in order to
,report a soft error message to the error logger.

4.12.1 Get LUN Information Macro

Word 2 of the buffer filled by the Get LUN Information macro (the
first characteristics word) contains the following information for the
TUS8. A bit setting of 1 indicates that the described characteristic
is true for this device.

Bit

o

1

"" ,j,.

Setting

o

o

o

Meaning

Record-oriented device

Carriage-control device

Terminal device

4-13

TAPE DRIVERS

Bit Setting Meaning

] 1 File-structured device

4 0 Single-directory device

r-
,) 0 Sequential device

6 1 Mass storage device

"1 1 User-mode diagnostics supported

B 0 22-bit direct addressing supported

9 0 Unit software write-locked

J.O 0 Input spooled device

J_l 0 Output spooled device

12 0 Pseudo-device

13 0 Device mountable as a communications channel

14 1 Device mountable as a Files-ll volume

15 1 Device mountable

Words J and 4 of the buffer are a double-precision number specifying
the total number of blocks on the device; this value is 512 (decimal)
blocks. Word 5 indicates the default buffer size, which is
512 (decimal) bytes.

4.12.2 Standard 010$ Functions

Table 4.-5 lists the standard QIO$ macro functions of the QIO$ macro
that aTe valid for the TU58.

Table 4-5
Standard QIO$ Functions for the TU58

Format Function

QI0$C IO.ATT, ••• Attach device

Q]O$C IO.DET, ••• Detach device

Q]O$C IO.KIL, ••• Cancel I/O
requests l

Q]O$C IO.RLB, ••• ,<stadd,size",lbn> Read logical block

QIO$C IO.WLB, ••• ,<stadd,size",lbn> Write logical block

1. In-progress operations are allowed to complete when IO~KIL is
received. I/O requests that are queued when IO.KIL is
received are killed.

4-14

stadd

size

TAPE DRIVERS

The starting address of the data buffer (must be on a word
boundary).

The data buffer size in bytes (must be even and greater than
0). For a write, the size must be at least 14 bytes.

Ibn The logical block number on the cartridge tape where the
data transfer starts (must be in the range of 0-777).

4.12.3 Device-Specific QIO$ Functions

The device-specific QIO$ macro functions that are valid for the TU58
are shown in Table 4-6.

Table 4-6
Device-Specific QIO$ Functions for the TU58

Format Function

QIO$C 10.WLC, ••• ,(stadd,size""lbn) Write logical block with
check

QIO$C 10.RLC, ••• ,(stadd,size""lbn) Read logical block with
check

QIO$C 10.BLS!IQ.UMD, ••• ,<lbn) position tape

QIO$C 10.DGNIIQ.UMD, ••• Run internal diagnostics

stadd

size

Ibn

The starting address of the data buffer (must be on a word
boundary).

The data buffer size in bytes (must be even and greater than 0).

The logical block number on the cartridge tape where the data
transfer starts (must be in the range of 0-777).

Additional details for device-specific QIO$ functions are provided in
the following paragraphs.

4.12.3.1 IO.WLC - The 10.WLC function writes the specified data onto
the tape cartridge. A checksum verification is then performed by
reading the data just written; data is not returned to the task
issuing the function. An appropriate status, based on the checksum
verification, is returned to the issuing task.

4.12.3.2 IO.RLC - The 10.RLC function reads the tape with an
increased threshold in the TU58's data recovery circuit. This is done
as a check to insure data read reliability.

4-15

TAPE DRIVERS

4.12.3.3 IO.BLS - The IO.BLS function is used for diagnostic purposes
to position the tape to the specified logical block number. If you
specify IO.BLS, you must use the IQ.UMD subfunction (see Chapter 1).

4.12.3.4 IO.DGN - The IO.DGN function is used for diagnostic purposes
to execute the TUS8's internal (firmware) diagnostics. Appropriate
status information is returned to the issuing task by the I/O status
block. If you specify IO.DGN, you must use the IQ.UMD subfunction
(see Chapter 1).

4.12.4 Status Returns

Table 4-7 lists the error and status conditions that are returned by
the DDDRV driver for the TUS8.

Code

IS.SUC

IE.DNR

IE.IFC

IE.FHE

IE. THO

IE.VER

IE.WLK

Table 4-7
TUS8 Driver Status Returns

Reason

Successful completion

The operation specified in the QIO$ macro was completed
successfully. The second word of the I/O status block
can be examined to determine the number of bytes
processed, if the operation involved reading or writing.

Device not ready

The physical device unit specified in the QIO$ macro was
not ready to perform the desired I/O operation.

Illegal function

A function code was specified in an I/O request that is
invalid for the TUS8.

Fatal hardware error

Time-out error

The TUS8 failed to respond to a function within the
normal time specified by the driver.

Unrecoverable error

After the system's standard number of retries (eight)
had been attempted upon encountering an error, the
operation still could not be successfully completed.

Cartridge write-locked

The task attempted to write on a tape cartridge that is
physically write-locked.

4-16

TAPE DRIVERS

4.13 PROGRAMMING HINTS

4.13.1 Block Size on Tapes Mounted /NOLABEL

Under certain conditions, if a file is written to a tape, its block
size will be even and one more than the value specified in the MOUNT
command. This occurs under the following conditions:

• The tape is mounted /NOLABEL

• The mount command specifies an odd record size

• The mount command specifies an odd block size

Fes adds the padding character, an octal 136 (A) circumflex,
odd-si2:ed blocks due to a hardware restriction; some tape drives
will not allow an odd number of bytes to be transferred to or from
tape. Therefore, blocks of data are padded with the circumflex
character so that blocks of data can be written to tape on any tape
drive.

4-17

CHAPTER 5

LINE PRINTER DRIVER

5.1 INTRODUCTION

The Micro/RSX system line printer driver is LPDRV.TSK.
supports the following line printers:

LPDRV.TSK

• LP25 Line Printer

The LP25 is a band printer that has a 285 line per minute
capacity. The LP25 has a standard 64-character set and a
132-column format.

• LP26 Line Printer

The LP26 is a band printer capable of 600 lines per minute.
The LP26 has a standard 64-character set and a 132-column
format.

• LNOl Laser Printer

The LNOl is a non-impact page printer that uses laser imaging
combined with xerographic printing. This technology provides
letter quality printing at line printer speeds with no noise.
Printing is done on standard 8 1/2 inch by 11 inch paper at 12
pages per minute, which equates to 600 lines per minute.
Contributing to the high print quality is a printer resolution
of 300 by 300 dots per inch. Th~ LNOl offers the speed of a
line printer with the advantages of a phototypeset device.

5.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information macro (the
first characteristics word) contains the following information for
line printers. A bit setting of 1 indicates that the described
characteristic is true for line printers.

Bit Setting Meaning

0 1 Record-oriented device

1 1 Carriage-control device

2 0 Terminal device

3 0 File-structured device

4 0 Single-directory device

5 0 Sequential device

5-1

Bit

6

7

8

9

10

11

12

13

14

15

Setting

o

o

o

o

o

o

o

o

o

o

LINE PRINTER DRIVER

Meaning

Mass-storage device

User-mode diagnostics supported

22-bit direct addressing supported

Unit software write-locked

Input spooled device

Output spooled device

Pseudo device

Device mountable as a communications
channel

Device mountable as a Files-II volume

Device mountable

Words 3 and 4 of the buffer are undefined; word 5 indicates the
default size for the device, for line printers the width of the
printer carriage (that is, 80 or 132).

5.3 QIO MACRO

Table 5-1 lists the standard functions of the QIO macro that are valid
for line printers.

Table 5-1
Standard QIO Functions for Line Printers

Format

QIO$C IO.ATT, •••

QIO~3C 10. DET, •••

QIOSC IO.KIL, •••

QIOSC IO.WLB, ••• ,<stadd,size,vfc>

QIO~;C IO.WVB, ••• ,<stadd,size,vfc>

Function

Attach device

Detach device

Cancel I/O requests

Write logical block
(print buffer
contents)

Write virtual block
(print buffer
contents)

stadd The starting address of the data buffer (may be on a byte
boundary) •

size The data buffer size in bytes (must be greater than 0).

5-2

LINE PRINTER DRIVER

vfc A vertical format control character from Table 5-3.

IO.KIL does not cancel an in-progress request unless the line printer
is in an off-line condition because of a power failure or a paper jam,
or because it is out of paper.

The line printer driver supports no device-specific functions.

5.4 STATUS RETURNS

Table 5-2 lists the error and status conditions that are returned by
the line printer driver described in this chapter.

Code

IS.SUC

IS.PND

IE.ABO

IE.DAA

IE.DNA

IE.IFC

Table 5-2
Line Printer Status Returns

Reason

Successful completion

The operation specified in the QIO macro was
completed successfully. The second word of the
I/O status block can be examined to determine the
number of bytes processed, if the operation
involved writing.

I/O request pending

The operation specified in the QIO macro has not
yet been executed. The I/O status block is filled
with Os.

Operation aborted The specified I/O operation was
canceled while in progress or while in the I/O
queue.

Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

Device not attached

The physical device unit specified that an IO.DET
function was not attached by the issuing task.
This code has no bearing on the attachment status
of other tasks.

Illegal function

An I/O request specified a function code that is
illegal for line printers.

(Continued on next page)

5-3

Code

IE.OFL

IE.SPC

LINE PRINTER DRIVER

Table 5-2 (Cont.)
Line Printer Status Returns

Reason

Device off line

The physical device unit associated with the LUN
specified in the QIO macro was not on line. When
the system was booted, a device check indicated
that this physical device unit was not in the
configuration.

Illegal address space

The buffer specified for a write request was
partially or totally outside the address space of
the issuing task. Alternatively, a byte count of
o was specified.

5.4.1 Ready Recovery

If any of the following conditions occur:

• Paper jam

• Printer out of paper

• Printer turned off line

• Power failure

the driver determines that the line printer is off line, and the
following message is output on the operator's console:

*~*LPn: -- NOT READY

where:

n The unit number of the line printer that is not ready.

The driver retries the function that encountered the error condition
from the beginning, once every second. It displays the message every
15 seconds until the line printer is readied. If a power failure
occurs while printing a line, the entire line is reprinted from the
beginning when power is restored.

5.5 VERTICAL FORMAT CONTROL

Table 5-3 summarizes the meaning of all characters used for vertical
format control on the line printer. Anyone of these characters can
be specified as the vfc parameter in an IO.WLB or IO.WVB function.

5-4

LINE PRINTER DRIVER

Table 5-3
vertical Format Control Characters

Octal
Value

040

060

061

053

044

000

Character

Blank

Zero

One

Plus

Dollar
sign

Null

Meaning

SINGLE SPACE: Output a line feed, print the
contents of the buffer, and output a carriage
return. Normally, printing immediately
follows the previously printed line.

DOUBLE SPACE: Output two line feeds, print
the contents of the buffer, and output a
carriage return. Normally, the buffer
contents are printed two lines below the
previously printed line.

PAGE EJECT: Output a form feed, prin~ the
contents of the buffer, and output a carriage
return. Normally, the contents of the buffer
are printed on the first line of the next
page.

OVERPRINT: Print the contents of the buffer
and perform a carriage return, normally
overprinting the previous line.

PROMPTING OUTPUT: Output a line feed and
then print the contents of the buffer.

INTERNAL VERTICAL FORMAT: The buffer
contents are printed without addition of
vertical format control characters. In this
mode, more than one line of guaranteed
contiguous output can be printed per I/O
request.

All other vertical format control characters are interpreted as blanks
(040 (octal» •

5.6 PROGRAMMING HINTS

This section contains information on important programming
considE~rations relevant to users of the line printer driver described
in this chapter.

5.6.1 RUBOUT Character

The line printer driver discards the ASCII character code 177 during
output.

5-5

LINE PRINTER DRIVER

5.6.2 Print Line Truncation

If the number of characters to be printed exceeds the width of the
print carriage, the driver discards excess characters until it
receives one that instructs it to empty the buffer and return to
horizontal position 1. The user can determine that truncation will
occur by issuing a Get LUN Information macro and examining word 5 of
the jnformation buffer. This word contains the width of the print
carriage in bytes.

5.6.3 Aborting a Task

If a task is aborted while waiting for the line printer to be readied,
the line printer driver recognizes this fact within one second.

5-6

CHAPTER 6

VIRTUAL TERMINAL DRIVER

6.1 INTRODUCTION

The virtual terminal driver supports offspring task use of virtual
terminals in Micro/RSX systems. Virtual terminals are not physical
hardware devices; they are actually implemented in software through
the use of data structures created by the Micro/RSX Executive.
Virtual terminals are created by the Executive when requested by
parent tasks with the Create Virtual Terminal macro. Virtual
terminals are useful in batch processing and other processing
environments in providing noninteractive terminal I/O support for
offspring tasks, eliminating the need for operator intervention.

Offspring task(s) "spawned" by or "connected" to the parent task that
created the virtual terminal can perform terminal I/O operations with
the virtual terminal in the same manner as with physical terminals.
Virtual terminals differ from physical terminals in that they receive
input from or output to a program (the parent task), rather than from
a keyboard or to a display (or printer), respectively.

6.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information macro (the
first characteristics word) contains the following information for
virtual terminals. A setting of 1 indicates that the described
characteristic is true for virtual terminals.

Bit Setting Meaning

0 1 Record-oriented device

1 1 Carriage-control device

2 1 Terminal device

3 0 File-structured device

4 0 Single-directory device

5 0 Sequential device

6 0 Reserved

7 0 User-mode diagnostics supported

8 0 Massbus device

9 0 Unit software write-locked

6-1

VIRTUAL TERMINAL DRIVER

Bit Setting Meaning

10 0 Input spooled device

11 0 Output spooled device

12 0 Pseudo device

13 0 Device mountable as a communications channel

14 0 Device mountable as a FILES-II volume

15 0 Device mountable

Words 3 and 4 are undefined. Word 5 specifies the maximum byte count
(that is, maximum buffer size) to which offspring requests will be
truncated; this value is specified by the parent task in the Create
Virtual Terminal system directive, as described in the RSX-llM/M-PLUS
and Micro/RSX Executive Reference Manual.

6.3 QIO MACRO

Table 6-1 lists the standard and device-specific functions of the QIO
macro that are valid for virtual terminals.

·Table 6-1
Standard and Device-Specific QIO Functions for Virtual Terminals

Format

STANDARD FUNCTIONS:

QIO$C IO.ATT, •••

QIO$C 10. DET, •••

QIO$C IO.KIL, •••

QIO$C IO.RLB, ••• ,<stadd,size)

QIO$C IO.RVB, ••• ,<stadd,size)

QIO$C IO.WLB, ••• ,<stadd,size,stat)

QIO$C IO.WVB, ••• ,<stadd,size,stat)

DEVICE-SPECIFIC FUNCTIONS:

QIO$C IO.STC, ••• ,<cb,sw2,swl)

QIO$C SF.GMC, ••• ,<stadd,size)

6-2

Function

Attach device

Detach device

Cancel I/O request

Read logical block

Read virtual block
(effects IO.RLB)

Write logical block

Write virtual block
(effects IO.WLB)

Set terminal characteristics
(enable/disable intermediate
I/O buffering, or return I/O
completion status to
offspring task)

Get multiple characteristics

(Continued on next page)

VIRTUAL TERMINAL DRIVER

Table 6-1 (Cont.)
Standard and Device-Specific QIO Functions for virtual Terminals

Format Function

QIO$C IO.GTS, ••• ,(stadd,size) Get terminal support

QIO$C IO.RPR, ••• ,(stadd,size,[tmo],
pradd,prsize,vfc)

Read logical block
after prompt

QIO$C SF.SMC, ••• ,(stadd,size) Set multiple characteristics

size

stadd

stat

cb

The size of the data buffer in bytes (must be greater than
0) • The buffer must be located within the addressing space
of the parent or offspring task issuing the I/O request.

The starting address of the data buffer. The address must
be word aligned for SF.GMC, IO.GTS, and SF.SMC; otherwise,
it may be aligned on a byte boundary.

The I/O completion status code, specified by the parent
task, that is issued by the virtual terminal driver in
response to an offspring task's read request upon successful
completion.

Characteristic bits to become set, selecting the following
virtual terminal functions:

cb Value Bits Set

o none

1 o

2 1

3 o and 1

Function

Enable intermediate
buffering in the Executive
pool

Return the specified
virtual terminal I/O
completion status to the
requesting offspring task

Disable
buffering

intermediate

Return status for
offspring write request

swl The I/O completion code for I/O completion status.

tmo

vfc

pradd

prsize

NOTE

The sw2 and swl parameters are valid in the IO.STC
function only when cb=l or cb=3.

An optional time-out count (see following).

A character for vertical format control.

The starting address of the prompt buffer.

The size of the prompt buffer in bytes.
located within the address space of
issuing the I/O request.

6-3

The buffer must be
the offspring task

VIRTUAL TERMINAL DRIVER

6.3.1 Standard QIO Functions

6.3.1.1 IO.ATT - This I/O function can be issued by offspring tasks
to attach the virtual terminal. (It is illegal for parent tasks to
issue IO.ATT). Attaching a virtual terminal prevents other offspring
tasks from executing I/O operations with the virtual terminal.
However, parent task I/O requests are always serviced when issued.

6.3.1.2 IO.DET - This I/O function can be issued by offspring tasks
to detach the virtual terminal, making it available for use by other
offspring tasks connected to the same parent task. (It is illegal for
parent tasks to issue 10.DET.)

6.3.1.3 IO.KIL - Parent and offspring tasks can issue 10.KIL to
cancel I/O requests. An offspring task issuing 10.KIL can result in
IE.ABO being returned to the parent task.

6.3.1.4 IO.RLB, IO.RVB, IO.WLB, IO.WVB - These read and write
functions execute requested I/O operations with virtual terminals in
the sarre manner as with terminals described in Chapter 2, except as
follows:

1. The virtual terminal driver returns the tmo parameter of an
offspring task's 10.RLB or 10.RVB request, or the vfc
parameter of an offspring task's 10.WLB or IO.WVB request as
a stack parameter on entry to the appropriate AST for the
parent task.

2. The virtual terminal driver returns I/O completion status to
the offspring task in response to successful completion of
the offspring task's 10.RLB or 10.RVB request; however, the
actual I/O completion status values returned are specified
for data transfers in the third parameter word of the parent
task's 10.WLB or 10.WVB response, or in the second and third
parameters of the parent task's IO.STC function response when
no data transfer is desired.

6.3.2 Device-Specific QIO Function (IO.STC)

The 10.STC function can be issued by parent tasks to enable/disable
offspring task I/O buffering in secondary pool, or to force an
appropriate I/O completion status for an offspring task read I/O
request when no data transfer is desired. Both of these applications
for the 10.STC function are described as follows.

Parent tasks can use IO.STC to enable (or disable) intermediate
buffering in secondary pool. Intermediate buffering, when enabled, is
performed on offspring task virtual terminal read and write requests
when the offspring task is checkpointable.

Thus, offspring tasks can be stopped for virtual terminal I/O and
checkpointed in a manner similar to that when physical terminals are
used. Whenever the virtual terminal driver determines that
intermediate buffering should not be used, offspring tasks that issue
terminal requests become locked in memory until I/O completion;
transfers occur directly between parent task and offspring task
buffers without intermediate buffering in secondary pool.

6-4

VIRTUAL TERMINAL DRIVER

In addition to the conditions that permit intermediate buffering (when
specified), one condition can automatically disable intermediate
buffering of the parent task. If the buffer size specified in the
Create Virtual Terminal directive exceeds the maximum size specified
at' system generation time (512 (decimal) maximum), intermediate
buffering is disabled.

The second application for IO.STC is to allow the virtual terminal
driver to return an appropriate I/O completion status in response to
an offspring task read request. I/O status returned in this manner
allows successful completion of the offspring task's request when the
parent task determines that no data transfer is desired; this
condition can occur, for example, when no data is available for input
to the offspring task by the virtual terminal driver. When used in
this manner, the IO.STC function must include three parameters,
<cb,sw2,swl>, as follows:

Parameter Meaning

cb A value of 1 is specified to indicate that the I/O
completion status return to the offspring task is desired.

NOTE

If the virtual terminal is operating in full
mode, a cb value of 1 returns status
offspring read request, and a cb value of 3
status for an offspring write request.

duplex
for an
returns

sw2 This parameter is the second word returned in the I/O
completion status indicating the number of bytes read upon
successful completion of an offspring task's read request.
However, since no'data transfer actually occurs, the value
specified is 0; the byte count of 0 specified in this
function is legal (and desired), whereas a byte count of 0
in write operations is illegal (and will result in an error
being returned to the parent task).

swl This parameter specifies the status code to be returned to
the offspring task by the virtual terminal driver in the
first word of the I/O completion status. This value is
returned in the high byte and a value of +1 is returned in
the low byte of the status word. Typical values and the
status that each represent are listed as follows:

Code Value Completion Status Indicated

IS.SUC + 1 Successful completion

IS.CR 15 Read terminated by carriage
return

IS. ESC 33 Read terminated by an Altmode

IS.ESQ 233 Read terminated by an escape
sequence

6-5

VIRTUAL TERMINAL DRIVER

6.3.3 SF.GMC

The Get Multiple Characteristics function returns information on
terminal characteristics. This function can be issued by both the
parent and the offspring tasks. The virtual terminal driver returns
the characteristics that were set by the previous corresponding SF.SMe
request. However, only the full duplex mode (TC.FOX) characteristic
affects the operation of the virtual terminal driver. The SF.GMC
function is provided only to maintain transparency to the offspring
task.

Valid virtual terminal characteristics are listed in Table 6-2.

6.3.4 IO.GTS

The Get Terminal Support function returns a 4-word buffer of
information specifying which features are a part of the virtual
terminal driver. The virtual terminal driver provides the IO.GTS
function only to maintain transparency to the offspring task. Table
2-5 lists the options returned by the full duplex terminal driver. Of
those listed, the virtual terminal. driver returns the following:

Word I Fl.BUF, Fl.RPR, FI.UTB, and FI.VBF

Word 2 F2.SCH and F2.GCH

6.3.5 IO.RPR

The Read After Prompt (IO.RPR) function can be issued only by the
offspring task. When the offspring task issues this function, the
function appears to the parent task as a separate write request
followed by a read request.

6.3.6 SF.SMC

The SF.SMC function allows a task to set and reset the characteristics
of a terminal. Both the parent and the offspring tasks may issue this
function. The parent task may set virtual terminals to full duplex
operation by using the SF.SMC function with the characteristics bit
TC.FOX. When in full duplex mode, the virtual terminal driver
attempts to process the offspring task's read and write requests
simultaneously. In order to insure that these operations are
overlapped, the parent task should minimize the amount of time it
spends in AST state.

The virtual terminal driver defaults to half duplex mode.

Table 6-2 lists the characteristics that either the parent or the
offspring task may set.

6-6

Bit Name

TC.FDX

TC.SCP

TC.SMR

TC.TTP

VIRTUAL TERMINAL DRIVER

Table 6-2
Virtual Terminal Characteristics

Octal
Value

64

12

25

10

Meaning (If Asserted)

Full duplex mode

Terminal is a scope

Uppercase conversion
disabled

Terminal type

Default Value

o

o

o

o

6.4 STATUS RETURNS

The error and status conditions listed in Tables 6-3 and 6-4 are
returned by the virtual terminal driver described in this chapter.
The SE.NIH error is returned by the SF.GMC and SF.SMC functions. For
this error, the low byte of the first word in the I/O status block
contains IE.ABO. The second word in the I/O status block contains an
offset (starting at 0) pointing to the erroneous byte in the stadd
buffer.

yable 6-3
Virtual Terminal Status Returns for Offspring Task Requests

Code

IS.SUC

IE.IPC

IE.ABO

Reason

Successful completion of an offspring task read
request results in an I/O completion status specified
in a parent task QIO parameter being returned.
Typically, the status information returned simulates
a subset of I/O returns normally produced by the
terminal drivers described in Chapter 2.

Successful completion

The operation specified in the QIO macro was
completed successfully. The second word of the I/O
status block indicates the number of bytes
transferred on a write operation.

Invalid function code

The offspring task attempted a read or a write
function and the parent task did not specify an AST
address in its response to the requested I/O
function, or the offspring task issued an IO.STC or
other invalid function.

Request terminated

The offspring task issued IO.KIL or the parent task
eliminated the virtual terminal unit.

(Continued on next page)

6-7

VIRTUAL TERMINAL,DRIVER

Table 6-3 (Cont.)
Virtual Terminal Status Returns for Offspring Task Requests

IE.SPC

IE.UPN

SE.NIH

Reason

Illegal address space

Part or all of the buffer specified for a read or
write request was outside of the task's address
space, or a byte count of 0 was specified.

Insufficient dynamic storage

The driver could not allocate an AST block to notify
the parent task of an offspring task request, or the
driver could not allocate an intermediate buffer in
the Executive pool.

A terminal characteristic other than those in Table
6-2 was specified, or an offspring task attempted to
assert TC.FDX.

Table 6-4
Virtual Terminal Status Returns for Parent Task Requests

Code

IS.SUC

IE.EOF

IE.BAD

IE. DUN

Reason

Successful completion

The operation specified in the QIO macro was
completed successfully. The second word of the I/O
status block indicates the number of bytes
transferred on a read or write operation.

End of file encountered

The IO.STC function was completed successfully.

Bad parameters

The parent task specified a buffer size that exceeded
the system maximum specified at system generation
time.

Device not attachable

An IO.ATT or IO.DET function was issued by the parent
task.

(Continued on next page)

6-8

VIRTUAL TERMINAL DRIVER

Table 6-4 (Cont.)
Virtual Terminal Status Returns for Parent Task Requests

Code

IE.IFC

SE.NIH

Reason

Invalid function code

A read, write, or IO.STC function was issued without
a pending offspring task request. This status can
occur if the offspring task cancels a pending read or
write request. This function code is also returned
when IO.STC is issued to enable intermediate
buffering on a virtual terminal unit whose buffer
size, specified in the Create Virtual Terminal
directive, exceeds the system maximum specified at
system generation time.

A terminal characteristic other than those in Table
6-2 was specified in an SF.GMC or SF.SMC request.

6-9

CHAPTER 7

NULL DEVICE DRIVER

Micro/RSX provides a driver for a software construct called the "null
device.~ The mnemonic for the null device is NL:, and its
characteristics are as follows:

• A read from NL: returns an end-of-file error (IE.EOF).

• A write to NL: immediately returns success (IS.SUC).

The null device functions as a "wastebasket" to which you can direct
output, and from which it will never return. It is particularly
useful 'flhen used in conjunction with an indirect command file and MCR
ASN commands, as in the example following.

Figure 7-1 shows the contents of a Task Builder command file called
TESTBLD.CMD. Symbolic device na~es are used for the output file, map
file, and input file. These names may be reassigned at task-build
time. In particular, in the example following, the map file is
assigned to the null device and thus is thrown away.

)ASN SY:=OU:

)ASN NL: =MP:

)ASN DK1:=IN:

)TKB @TESTBLD

OU:TEST,MP:TEST =IN:[200,220]TEST
/
ASG=TI:2
II

ZK-4085-85

Figure 7-1 Indirect TKB Command File TESTBLD.CMD.

7-1

APPENDIX A

SUMMARY OF I/O FUNCTIONS

This appendix summarizes valid I/O functions for all device drivers
described in this manual. Both devices and functions are listed
alphabetically. The meanings of the five parameters represented by
the ellipsis (•••) are described in Section 1.5.1. The meanings of
the function-specific parameters shown below are discussed in the
appropl:iate driver chapters. The user may reference these functions
symboli.cally by invoking the system macros FILIO$ (standard I/O
functions) and SPCIO$ (special I/O functions), or by allowing them to
be defined at task-build time from the system object library.

A.l TUSS DRIVER

IO.ATT •••

IO.DET, •••

IO.KIL, •••

IO.RLB, ••• ,(stadd,size",lbn>

IO.WLB, ••• ,(stadd,size",lbn>

IO.WLC, ••• ,(stadd,size",lbn>

IO.RLC, ••• ,(stadd,size",lbn>

IO.BLS, ••• ,(lbn>

IO.DGN, •••

A.2 DISK DRIVER

Attach device

Detach device

Cancel I/O requests

Read logical block

Write logical block

Write logical block with check

Read logical block with check

position tape

Run internal diagnostics

IO.RLB, ••• ,(stadd,size"blkh,blkl> Read logical block

Read physical block IO.RPB, ••• ,(stadd,size",pbn>

IO.RVB, ••• ,(stadd,size"blkh,blkl>

IO.SEC, ••• ,(stadd,size,pbn>

IO.SMD, ••• ,(density,,>

IO.WDD, ••• ,(stadd,size",pbn>

A-I

Read virtual block

Sense characteristics (RX02) only

Set media density (RX02 only)

Write physical block (with
deleted data mark - RX02 only)

SUMMARY OF I/O FUNCTIONS

IO.WLB, ••• ,<stadd,size"blkh,blkl> Write logical block

IO.WLC, ••• ,<stadd,size"blkh,blkl> Write logical block followed
by write check

IO.WPB, ••• ,<stadd,size",pbn> Write physical block

IO.WVB, ••• ,<stadd,size"blkh,blkl> Write virtual block

A.3 LINE PRINTER DRIVER

IO.ATT, ••• Attach device

IO.DET, ••• Detach device

IO.KIL, ••• Cancel I/O requests

IO.WLB, ••• ,<stadd,size,vfc> Write logical block

IO.WVB, ••• ,<stadd,size,vfc> Write virtual block

A.4 MAGNETIC TAPE DRIVER

IO.ATT, ••• Attach device

10. DET" ••• Detach device

IO.DSE/, ••• Data security erase (TK50 only)

IO.EOF, ••• Write end-of-file (tape mark)

IO.KILI' ••• Cancel I/O requests

IO.RLB, ••• ,<stadd,size> Read logical block

IO.RLV, ••• ,<stadd,size> Read logical block reverse

IO.RVB, ••• ,<stadd,size> Read virtual block

IO.RWD" ••• Rewind tape

IO.RWU, ••• Rewind and turn unit off line

IO.SEC, ••• Read tape characteristics

IO.SMO, ••• ,<cb> Mount tape and set tape chazacteristics

IO.SPB ,' ••• , <nbs> Space blocks

IO.SPF, ••• ,<nes> Space files

IO.STC~ ••• ,<cb> Set tape characteristics

IO.WLB, ••• ,<stadd,size> Write logical block

IO.WVB, ••• ,<stadd,size> Write virtual block

A-2

SUMMARY OF I/O FUNCTIONS

A.5 TERMINAL DRIVER

IO.ATA, ••• ,(ast,[parameter2]
,[ast2]>

ATTACH device, specify unsolicited
character ASTI

IO.ATT" ••• Attach device

IO.CCO, ••• ,(stadd,size,vfc> write logical block, cancel CTRL/O

IO.DET, ••• Detach device

IO.EIOftTF.RLB, ••• ,(stadd,size> Extended I/O Read Functions 2

IO.EIO!TF.WLB, ••• ,(stadd,size> Extended I/O Write Functions2

IO.GTS, ••• ,(stadd,size> Get terminal support

10. HNG I' ••• Hangup remote line

10. KILl' ••• Cancel I/O requests

IO.RAL I, ••• ,(stadd,size, [tmo] > Read logical
characters l

block

IO.RLB, ••• ,(stadd,size,[tmo]> Read logical block l

and pass

IO.RNE" ••• ,(stadd,size, [tmo] > Read logical block and do not echo l

10. RPR ,I ••• , (stadd, size, [tmo], Read after prompt 1
pradd,prsize,vfc>

IO.RST, ••• ,(stadd,size,[tmo]> Read with special terminators

IO.RTT, ••• ,(stadd,size,[tmo], Read logical block ended by specified
table> special terminator 2

IO.RVB, ••• ,(stadd,size,[tmo]> Read virtual blockl

IO.WAL, ••• ,(stadd,size,vfc> Write logical block
characters

and pass

all

all

IO.WBT, ••• ,(stadd,size,vfc> write logical block and break through
any ongoing I/O

IO.WLB, ••• ,(stadd,size,vfc> Write logical block

IO.WVB, ••• ,(stadd,size,vfc> Write virtual block

SF.GMC, ••• ,(stadd,size> Get multiple characteristics

SF.SMC, ••• ,(stadd,size> Set multiple characteristics

Subfunction bits for terminal-driver functions:

TF.AST

TF.BIN

TF.CCO

TF.ESQ

TF.NOT

Unsolicited-input-character AST

Binary prompt

Cancel CTRL/O

Recognize escape sequences

Unsolicited input AST notification l

A-3

TF.RAL

TF.RCU

TF.RDI

TF.RES

TF.RLB

TF.RLU

TF.RNE

TF.RNF

TF.RPR

TF.RPT

TF.RST

TF.RTT

TF.TMO

TF.WAL

TF.WBT

TF.WIR

TF.XCC

TF.XOF

SUMMARY OF I/O FUNCTIONS

Read, pass all characters

Restore cursor position l

Read with default input (IO.EIO function only)2

Read with escape sequence processsing enabled (IO.EIO
function only)2

Read logical block (IO.EIO function only)2

Read and convert from lower- to upper-case (IO.EIO
function only)2

Read with no echo

Read with no filter (IO.EIO function only)2

Read after prompt (IO.EIO function only)2

Read in pass-through mode (IO.EIO function only)2

Read with special terminators

Read with specified special terminator table (IO.EIO
function only)2

Read with time-out l

Write, pass all bits

Break-through write

Write with input redisplayed

CTRL/C starts a command line interpreter l

Send XOFF

1. "ast2", "parameter2", and "tmo" parameters are available for
full-duplex driver functions only.

2. Full-duplex driver only.

A.6 VIRTUAL TERMINAL DRIVER

IO.ATT,... Attach device

IO.DET,... Detach device

IO.KIL,... Cancel I/O request

IO.RLB, ••• ,(stadd,size> Read logical block

IO.RVB, ••• ,(stadd,size> Read virtual block

IO.WLB, ••• ,(stadd,size,stat> write logical block

IO.WVB, ••• ,(stadd,size,stat> Write virtual block

IO.STC, ••• ,<cb,sw2~swl> Set terminal characteristics (enable/
disable intermediate buffering, or
return I/O completion status)

A-4

APPENDIX B

I/O FUNCTION AND STATUS CODES

This appendix lists the numeric codes for all I/O functions, directive
status returns, and I/O completion status returns. Lists are
organized in the following sequence:

• I/O completion status codes

• Directive status codes

• Device-independent I/O function codes

• Device-dependent I/O function codes

Device-dependent function codes are listed by device.
and codes are organized in alphabetical order.

Both devices

For each code, the symbolic name is listed in form IO.xxx, IE.xxx, or
IS.xxx. A brief description of the error or function is also
included. Both decimal and octal values are provided for all codes.

B.l I/O STATUS CODES

This section lists error and success codes which can be returned in
the I/O status block on completion of an I/O function. The codes
below may be referenced symbolically by invoking the system macro
IOERR~) •

B.l.l I/O Status Error Codes

Name Decimal Octal Meaning

IE.2DV -48 177720 Rename--two different devices

IE.ABO -15 177761 Operation aborted

IE.ALe -84 177654 Allocation failure

IE.ALN -34 177736 File already open

IE.BAD -01 177777 Bad parameter

IE.BBg -56 177710 Bad block on device

IE.BCC -66 177676 Block check error or framing error

B-1

Name Decimal

IE.BDI -52

IE.BDR -50

IE.BDV -55

IE BHD -64

IE.BLB -70

IE.BLK -20

IE.BNM -54

IE.BTF -76

IE.BTP -43

IE.BVR -63

IE.BYT -19

IE.CKS -30

IE.CLO -38

IE.CNR -96

IE.CON -22

IE.DAA -08

IE.DAO -13

IE.DFU -24

IE.DIS -69

IE.DNA -07

IE.DNR -03

IE.DSQ -90

IE. DUN -09

IE.DUP -57

IE.EOF -10

IE.EOT -62

IE.EOV -11

IE.EXP -75

IE.FEX -49

I/O FUNCTION AND STATUS CODES

Octal

177714

177716

177711

177700

177672

177754

177712

177664

177725

177701

177755

177742

177732

177640

177752

177770

177763

177750

177673

177771

177775

177646

177767

177707

177766

177702

177765

177665

177717

Meaning

Bad directory syntax

Bad directory file

Bad device name

Bad file header

Bad logical buffer

Invalid block number
Logical block number too large

Bad file name

Bad tape format

Bad record type

Bad version number

Odd byte count (or virtual address)
Byte-aligned buffer specified

File header checksum failure

File was not properly closed

Connection rejected

UDC connect error

Device already attached

Data overrun

Device full

Path lost to partner

Device not attached

Device not ready

Disk quota exceeded

Device not attachable

Enter--dup1icate entry in
directory

End-of-fi1e encountered

End-of-tape encountered

End-af-vo1ume encountered

File expiration date not reached

Rename--a new file name already
in use

B-2

Name Decimal

IE.FHE -59

IE.FLG -89

IE.FLN -81

IE.FOP -53

IE.HFU -28

IE. ICE -47

IE.IES -82

IE.IFC -02

IE.IFU -25

IE. ILL -42

IE.IQU -91

IE.ISQ -61

IE.LCK -27

IE.MII -99

IE.MOD -21

IE.NBF -39

IE.NBK -41

IE.NDA -78

IE. NOB: -72

IE.NFl -60

IE.NFW -69

IE.NLK -79

IE.NLN -37

IE. NNe -77

IE.NNN -68

IE. NN~~ -94

IE.NOD -23

IE. NS]~ -26

IE.NST -80

I/O FUNCTION AND STATUS CODES

Octal

177705

177647

177657

177713

177728

177721

177656

177776

177747

177726

177645

177703

177745

177635

177753

177731

177727

177662

177670

177704

177673

177661

177733

177663

177674

177642

177751

177746

177660

Meaning

Fatal hardware error

Event flag already specified

Device already offline

File already open

File header full

Internal consistency error

Invalid escape sequence

Invalid function code

Index file full

Invalid operation on file
descriptor block

Inconsistent qualifier usage

Invalid sequential operation

Locked from read/write access

Media inserted incorrectly

Invalid UDC or ICS/ICR module

No buffer space available for file

File exceeds space allocated,
no blocks

No data available

No dynamic space available

File 10 was not specified

Pdth lost to partner

Task not linked to specified
ICS/ICR interrupts

No file accessed on LUN

Not ANSI "0" format byte count

No such node

Not a network task

Caller's nodes exhausted
No dynamic memory available

No such file

Specified task not installed

B-3

Name Decimal

IE.NRJ -74

IE.NTR -87

IE.OFL -65

IE.ONL -67

IE.ONP -05

IE.OVR -18

IE.PES -83

IE.PRI -16

IE.RAC -44

IE.RAT -45

IE.RBG -40

IE.RCN -46

IE.REJ -88

IE.RER -32

IE.RES -92

IE.RNM -51

IE.RSU -17

IE.SNC -35

IE.SPC -06

IE.SPI -100

IE.SQC -36

IE.SRE -14

IE.STK -58

IE.SZE -98

IE.TML -93

IE.TMO -95

IE.UKN -97

IE.ULK -85

IE.URJ -73

IE.VER -04

IE.WAC -29

I/O FUNCTION AND STATUS CODES

Octal

177666

177651

177677

177675

177773

177756

177655

177760

177724

177723

177730

177722

177650

177740

177644

177715

177757

177735

177772

177634

177734

177762

177706

177636

177643

077641

177637

177653

177667

177774

177743

Meaning

Network connection reject

Task not triggered

Device off line

Device on line

Hardware option not present

Invalid read overlay request

Partial escape sequence

Privilege violation

Invalid record access bits set

Invalid record attribute bits set

Invalid record size

Invalid record number--too large

Transfer rejected by receiving CPU

File processor device read error

Circuit reset during operation

Cannot rename old file system

Sharable resource in use

File 10, file number check

Invalid user buffer

Spindown ignored

File 10, sequence number check

Send/receive failure

Not enough stack space
(FCS or FCP)

Unable to size device

Too many links to task

Time-out on request

Unknown name

Unlock error

Connection rejected by user

Parity error on device

Accessed for write

B-4

I/O FUNCTION AND STATUS CODES

Name Decimal Octal Meaning

IE.WAT -31 177741 Atribute control list format
error

IE.WCK -86 177652 Write check error

IE.WER -33 177737 File processor device write error

IE.WLK -12 177764 Write-locked device

B.l.2 I/O Status Success Codes

Decimal Octal
Name Bytes Word Meaning

IS.CR Byte 0: 1 006401 Successful completion with
Byte 1: 15 carriage return

IS.CC Byte 0: 1 001401 Successful completion on
Byte 1: 3 read terminated by CTRL/C

IS.ESC Byte 0: 1 015401 Successful completion
Byte 1: 33 with ESCape

IS.ESQ Byte 0: 1 115401 Successful completion with
Byte 1: 233 an escape sequence

IS.PNO +00 000000 I/O request pending

IS.ROO +02 000002 Deleted data mark read

IS.SUC +01 000001 Successful completion

IS.TMO +02 000002 Successful completion on
read terminated by time-out

IS.TNC +02 000002 Successful transfer but
message truncated (receiver
buffer too small)

B.2 DIRECTIVE CODES

This section lists error and success codes that can be returned in the
directive status word at symbolic location $DSW when a QIO directive
is issued.

B.2.l Directive Error Codes

Name Decimal Octal Meaning

IE.ACT -07 177771 Task not active

IE.ADP -98 177636 Invalid address

IE.ALG -84 177654 Alignment error

IE.AST -80 177660 Directive issued/not issued
from AST

B-5

Name Decimal

IE.CKP -10

IE.FIX -09

IE. HWF~ -06

IE.IBS -89

IE.IDlf -92

IE.IEF -97

IE.ILt -96

IE.ILV -19

IE. INS -02

IE. lOP -83

IE.IPR -95

IE.ITI -93

IE.ITP -88

IE. ITS -08

IE.IUI -91

IE.LNL -90

IE.MAP -81

IE.NSW -18

IE.NVR -86

IE.NVW -87

IE.PNS -94

IE.PTS -03

IE.PRI -16

IE.RBS -15

IE.RSU -17

IE.SDP -99

IE.TCH -11

IE.ULN -05

IE.UNS -04

IE.UPN -01

IE.WOV -85

I/O FUNCTION AND ~TATUS CODES

Octal

177766

177767

177772

177647

177644

177637

177640

177755

177776

177655

177641

177643

177650

177770

177645

177646

177657

177756

177652

177651

177642

177775

177760

177761

177757

177635

177765

177773

177774

177777

177653

B-6

Meaning

Issuing task not checkpointable

Task already fixed/unfixed

Device handler not resident

Invalid send
(• GT. 255.)

buffer

Invalid device or unit

size

Invalid event flag (.GT. 64.)

Invalid logical unit number

Invaild vector specified

Specified task not installed

Window has I/O in progress

Invalid priority (.GT. 250.)

Invalid time parameters

Invalid TI parameter

Directive inconsistent
task state

Invalid UIC

LUN locked in use

Invalid mapping specified

No swap space available

Invalid region 10

Invalid address window 10

with

Partition/region not in system

Partition too small for task

Privileged violation

Receive buffer is too small

Resource in use

Invalid DIC number or DPB size

Task is checkpointable

unassigned LUN

Insufficient dynamic
for send

storage

Insufficient dynamic stozage

Address
overflow

window allocation

I/O FUNCTION AND STATUS CODES

B.2.2 Directive Success Codes

Name Decimal Octal Meaning

IS.SUC +01 000001 Directive accepted

B.3 I/O FUNCTION CODES

This section lists octal codes for all standard and device-dependent
I/O functions.

B.3.1 Standard I/O Function Codes

Symbo1i,c Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.ATT 001400 3 0 Attach device

IO.DET 002000 4 0 Detach device

IO.KIL 000012 0 12 Cancel I/O requests

IO.RLB 001000 2 0 Read logical block

IO.RVB 010400 21 0 Read virtual block

IO.WLB 000400 1 0 Write logical block

IO.WVB 011000 22 0 Write virtual block

B.3.2 Specific A/D Converter I/O Function Codes - RSX-I1M-PLUS Only

Symbolic
Name

IO.RBC

Code Subcode
Word Equivalent (High Byte) (Low Byte)

003000 6 o

Meaning

Initiate an A/D
conversion

B.3.3 Specific Card Reader I/O Function Codes - RSX-11M-PLUS Only

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte)

IO.RDB 001200 2 200

Meaning

Read logical block
(binary)

B.3.4 Specific Cassette I/O Function Codes - RSX-11M-PLUS Only

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.EOF 003000 6 0 Write end-of-fi1e
gap

IO.RWD 002400 5 0 Rewind tape

B-7

I/O FUNCTION AND STATUS CODES

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.SPS 002420 5 20 Space blocks

IO.SFF 002440 5 40 Space files

B.3.5 Specific Communication (Message-Oriented) I/O Function Codes
RSX-11M-PLUS Only

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte)

IO.FDX 003020 6 20

IO.HDX 003010 6 10

IO.INL 002400 5 o

IO.RNS 001020 2 20

IO.SYN 003040 6 40

IO.TRM 002410 5 10

IO.WNS 000420 1 20

Meaning

Set device to
full-duplex mode

Set device to
half-duplex mode

Initialize device
and set device
characteristics

Read logical block,
transparent mode

Specify sync
character

Terminate
communication,
disconnecting from
physical channel

Write logical block
with no sync leader

B.3.6 Specific DECtape I/O Function Codes - RSX-IIM-PLUS Only

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte)

IO.RLV 001100 2 100

IO.WLV 000500 1 100

B.3.7 Specific DEC tape II I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte)

IO.WLC 000420 1 20

IO.RLC 001020 2 20

B-8

Meaning

Read logical block
(reverse)

Write logical block
(reverse)

Meaning

Write logical block
with check

Read logical block
with check

I/O FUNCTION AND STATUS CODES

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.BLS 004010 10 10 position tape

IO.DGN 004150 10 150 Run internal
diagnostics

B.3.8 Specific Disk I/O Function Codes

Symbolic: Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.RPB 001040 2 40 Read physical block
(RX01, RL01, RL02
only)

IO.SEC Sense
characteristics
(RX02 only)

000000 0 0 Single Density

040000 100 0 Double Density

IO.SMD 002510 5 110 Set media density
(RX02 only)

IO.WDD 001140 1 140 write physical block
with deleted data
mark (RX02 only)

IO.WLC 001020 1 20 write logical block
followed by write
check (all except
RX01, RX02)

IO.WPB 000440 1 40 write physical block
(RX01, RX02, RL01,
RL02 only)

B.3.9 Specific Graphics Display I/O Function Codes RSX-11M-PLUS
Only

Symbolic:: Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.CON 015400 33 00 Connect to graphics
device

IO.CNT 017000 36 00 Continue DPU

IO.DIS 016000 34 00 Disconnect from
graphics device

IO.STP 016400 35 00 Stop DPU

B-9

I/O FUNCTION AND STATUS CODES

B.3.l0 Specific ICS/ICR , DSS/DR I/O Function Codes
Only

RSX-IIM-PLUS

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte)

IO.CCl

IO.CTl

IO.CTY

IO.DCI

IO.DTI

IO.DTY

IO.FLN

IO.ITI

IO.LDI

IO.LKE

IO.LTI

IO.LTY

IO.MLO

IO.MSO

IO.NLK

IO.ONL

IO.RAD

IO.RBC

014000

015400

003400

014400

016000

006400

012400

017000

007000

012000

007400

010000

006000

005000

011400

017400

010400

003000

30

33

7

31

34

15

25

36

16

24

17

20

14

12

23

37

21

6

B-IO

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Meaning

Connect a buffer to
digital interrupt
input

Connect a counter

Connect a remote
terminal

Disconnect a buffer
from digital
interrupt input

Disconnect a buffer
from counter input

Disconnect a buffer
from terminal input

Place selected unit
off line

Initialize a counter

Link a task to
digital interrupts

Link a task to error
interrupts

Link a task to
counter interrupts

Link a task to
terminal interrupts

Open or close
bistable digital
output points

Pulse single-shot
digital output
points

Unlink a task from
all unsolicited
interrupts

Place selected unit
on line

Read task activation
data

Initiate multiple
A/D conversions

I/O FUNCTION AND STATUS CODES

Symbolic:: Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.SAO 004000 10 0 Perform analog
output to specified
channel

10.UDI 011410 23 10 Unlink a task from
digital interrupts

10.UER 011440 23 40 Unlink a task from
error interrupts

IO.UTI 011420 23 20 Unlink a task from
counter interrupts

IO.UTY 011430 23 30 Unlink a task from
terminal interrupts

IO.WLB 000400 1 0 Output to remote
terminal

B.3.11 Specific LPAll-K I/O Function Codes - RSX-llM-PLUS Only

Symbolic: Coae Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

10.CLK 015000 32 0 Start clock

10.INI 014400 31 0 Initialize LPA11-K

IO.LOD 014000 30 0 Load microcode

IO.STA 015400 33 1 Start transfer

IO.STP 016400 35 0 Stop request

B.3.12 Specific LPS I/O Function Codes - RSX-llM-PLUS Only

Symbolic: Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.ADS 014000 30 0 Initialize A/D
sampling

IO.HIS 015000 32 0 Initialize histogram
sampling

IO.LED 012000 24 0 Display number in
LED lights

IO.MDA 016000 34 0 Initialize D/A
output

IO.MDI 014400 31 0 Initialize digital
input sampling

IO.MDO 015400 33 0 Initialize digital
output

B-ll

I/O FUNCTION AND STATUS CODES

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.REL 013400 27 0 Latch output relay

10.SOI 013000 26 0 Read digital input
register

IO.SOO 012400 25 0 Write digital output
register

IO.STP 016400 35 0 Stop in-progress
request

B.3.l3 Specific Magnetic Tape I/O Function Codes

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.OSE 003040 6 40 Oata security erase
(TK50 only)

IO.EOF 003000 6 0 Write end-of-file
gap

IO.RLV 001100 2 100 Read logical block
(reverse)

IO.RWO 002400 5 0 Rewind tape

IO.RWU 002540 5 140 Rewind and unload

IO.SEC 002520 5 120 Sense
characteristics

IO.SMO 002560 5 160 Mount and set
characteristics

10. SPB 002420 5 20 Space blocks

IO.SPF 002440 5 40 Space files

IO.STC 002500 5 100 Set characteristics

B.3.14 Specific Parallel Communications Link I/O Function Codes
RSX-llM-PLUS Only

B.3.l4.1 Transmitter Driver Functions -

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.ATX 000400 1 0 Attempt message
transmission

IO.STC 002500 5 100 Set master section
characteristics

IO.SEC 002520 5 120 Sense master section
status

B-12

I/O FUNCTION AND STATUS CODES

B.3.l4.2 Receiver Driver Functions

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte)

10.CRX

10.ATF

10.RTF

10.DRX

B.3.l5

Symbolic
Name

10.ATA

10.CCO

10.EIO

10.GTS

10.HNG

IO.RAL

IO.RNE

IO.RPR

IO.RST

IO.RTT

IO.WAL

IO.WBT

SF.GMC

SF.SMC

014400

001000

015400

001500

Specific Terminal

Word Equivalent

001410

000440

017400

002400

003000

001010

001020

004400

001001

005001

000410

000500

002560

002440

31

2

33

32

o

o

o

o

I/O Function Codes

Code Subcode
(High Byte) (Low Byte)

3 10

1 40

37 0

5 00

6 0

2 10

2 20

11 00

2 1

12 1

1 10

1 100

5 160

5 40

B-13

Meaning

Connect for
reception

Accept transfer

Reject transfer

Disconnect from
reception

Meaning

Attach device,
specify
unsolicited-input-
character AST

Write logical block
and cancel CTRL/O

Extended I/O

Get terminal support

HANGUP remote line

Read logical block
and pass all bits

Read with no echo

Read after prompt

Read with special
terminators

Read logical block
ended by specified
special terminator
(Full-duplex driver
only)

Write logical block
and pass all bits

Write logical block
and break through
on-going I/O

Get multiple
characteristics

Set multiple
characteristics

I/O FUNCTION AND STATUS CODES

Subfunction Bits:

With 10.RLB, IO.RPR:

TF.RST
TF.BIN
TF.RAL
TF.RNE
TF.XOF
TF.TMO

With IO.WLB:

TF.RCU
TF.WAL
TF.CCO
TF.WBT
TF.WIR

With IO.ATT:

TF.XCC
TF.NOT
TF.AST
TF.ESQ

With IO.EIO:

1.

2.

TF.WLB
TF.RCU 1

TF.CC0 1

TF.WAL 1

TF .WBT 1
TF.WIR 1

Modifiers
specified

Modifiers
specified

000001
000001
000040
000010
000100
000200

of the
by you

of the
by you

000001
000002
000010
000020
000100
000200

000001
000010
000040
000100
000200

000001
000002
000010
000020

TF.RLB
TF.RLU2
TF.RTT2
TF.RST 2

2 TF.BIN
2 TF.RAL
2 TF.RNE
2 TF.XOF
2 TF. TM0
2 TF.RES
2 TF.RPR

TF.RPT~
TF .RNF 2
TF.TNE

2 TF.RDI

000002
000010
000400
000001
000002
000010
000020
000100
000200
010000
002000
004000
020000
040000
100000

IO.EIO!TF.WLB subfunction.
in the item-list buffer.

IO.EIO!TF.RLB subfunction.
in the item-list buffer.

These are

These are

B.3.16 Specific UDC I/O Function Codes - RSX-11M-PLUS Only

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte)

IO.CCI 014000

IO.CTI 015400

IO.DCI 014400

30

33

31

o

o

o

B-14

Meaning

Connect a buffer to
contact interrupt
digital input

Connect a timer

Disconnect a buffer
from contact
interrupt digital
input

I/O FUNCTION AND STATUS CODES

Symbolic:: Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.OTI 016000 34 0 Disconnect a timer

IO.ITI 017000 36 0 Initialize a timer

IO.MLO 006000 14 0 Open or close
latching digital
output points

IO.RBC 003000 6 0 Initiate multiple
A/D conversions

B.3.17 Specific UNIBUS Switch I/O Function Codes - RSX-llM-PLUS Only

Symbolic Code Subcode
Name Word Equivalent (High Byte) (Low Byte) Meaning

IO.CON 15400 33 0 Connect UNIBUS
switch

IO.OIS 16000 34 0 Disconnect UNIBUS
switch

IO.OPT 16010 34 10 Disconnect UNIBUS
switch and connect
to specified CPU
port

IO.SWI 16400 35 0 Switch UNIBUS from
current CPU to
specified CPU

IO.CSR 15000 32 0 Read UNIBUS switch
CSR

8.3.18 Specific Virtual Terminal I/O Function Codes

Symbolic
Name

IO.STC

Code Subcode
Word Equivalent (High Byte) (Low Byte)

002500 5 100

8-15

Meaning

Set terminal
characteristics

APPENDIX C

010$ INTERFACE TO THE ACPS

This appendix describes the 010$ level interface to the file
processors (ACPs). These include FIIACP for Files-II disks and MTAACP
for ANSI magnetic tape.

FIIACP supports the following functions:

IO.CRE
IO.DEL
IO.ACR
IO.ACW
IO.ACE
IO.DAC
10. EXT
IO.RAT
IO.WAT
IO.FNA
IO.RNA
IO.ENA
IO.ULK

Create file
Delete file
Access file for read only
Access file for read/write
Access file for read/write/extend
Deaccess file
Extend file
Read file attributes
Write file attributes
Find file name in directory
Remove file name from directory
Enter file name in directory
Unlock block

MTAACP supports the following functions:

IO.FNA
IO.ENA
IO.ACR
IO.ACW
IO.ACE
IO.DAC
IO.RVB
IO.WVB
IO.EXT
IO.CRE
IO.RAT
IO.APC
IO.APV

Find file by name
Enter name in directory (a no-op)
Access for read only
Access for read/write
Access for read/write/extend
Deaccess file
Read virtual block
write virtual block
Extend file
Create file
Read attributes
ACP control
Privileged ACP control

C.l QIO$ PARAMETER LIST FORMAT

The device-independent part of a file processing 010$ parameter list
is identical to all other 010$ parameter lists. The general 010
parameter list is described in detail in Section 1.6 of this manual.
The file processor QIO$s require the following six additional words in
the parameter lists:

Parameter Word 1

Parameter Word 2

Address of a 3-word block containing the
file identifier

Address of the attribute list

C-l

QIO$ INTERFACE TO THE ACPS

Parameter Words 3 & 4 Size and extend control information

Parameter Word 5

Parameter word 6

Window size information
control

and

Address of the file name block

NOTE

The Micro/RSX Executive treats File Identifier Blocks,
filename blocks, and attribute list entries as
read/write data. For this reason, they may not be
used in read-only code segments or libraries.

C.I.I File Identification Block

The File Identification Block is a 3-word block
number and the file sequence number. The
Identification Block is shown in Figure C-I.

File number

File sequence number

Reserved

ZK-4095-85

containing
format of

Figure C-l File Identification Block

the
the

access

file
File

FIIACP uses the file number as an index to the file header in the
index file. Each time a header block is used for a new file, the file
sequence number is incremented. This insures that the file header is
always unique. The third word is not currently used but is reserved
for the future.

C.I.2 The Attribute List

The file attribute list controls FIIACP reads or writes. File
attributes are fields in the file header. These fields are described
in detail in the RSX-IlM/M-PLUS and Micro/RSX I/O Operations Reference
Manual. ---

The attribute list contains a variable number of entries terminated b~
an all-O byte. The maximum number of entries in the attribute list is
six.

An entry in the attribute list has the following format:

.BYTE <Attribute type>, Attribute size

.WORD Pointer to the attribute buffer

C.I.2.1 The Attribute Type - This field identifies the individual
attribute to be read or written. The sign of the attribute type code
determines whether the transfer is a read or write operation. If the
type code is negative, the ACP reads the attribute into the buffer.

C-2

QIO$ INTERFACE TO THE ACPS

If the type code is positive, the ACP writes the attribute to the file
header. Note that the slgn of the type code must agree with the
direction implied by the operation. For example, if the type code is
positive, the operation must be an IO.WAT or 10.DAC.

The attribute type is one of the following:

• File owner (H.FOWN)

The file owner UIC is a binary word. The low byte is the
owner number and the high byte is the group number.

• File protection (H.FPRO)

The file protection word is a bit mask with the following
format:

Each of the fields contains four bits, as follows:

Bit I
Bit 2
Bit 3
Bit 4

Read Access
Write Access
Extend Access
Delete Access

• File characteristics (H.UCHA)

The following user characteristics are currently contained in
the I-byte H.UCHA field:

UC.CON 200
UC.DLK = 100

Logically contiguous file
File improperly closed

• Record I/O Area (U.UFAT)

This field contains a copy of the first seven words of the
file descriptor block. (RMS uses 32 bytes. The first seven
are compatible with FCS for sequential files.) See the
RSX-IIM/M-PLUS and Micro/RSX I/O Operations Reference Manual
for a description of the FOB.

• File name (I.FNAM)

The file name is stored as nine Radix-50 characters. The
fourth word of this block contains the file type and the fifth
word contains the version number.

• File type (I.FTYP)

The file type is stored as three Radix-50 characters.

• Version number (I.FVER)

The version number is stored as a binary number.

• Expiration date (I.EXDT)

Creation date (I.CRDT)
Revision date (I.RVDT)

The expiration date is currently unused. When
created, the ACP initializes the creation date
date and time. It initializes the expiration
dates to O. The ACP sets the revision date
date and time each time the file is deaccessed.

C-3

the file is
to the current
and revision

to the current

QIO$ INTERFACE TO THE ACPS

• Statistics block

This block is described in the RSX-llM/M-PLUS and Micro/RSX
I/O Operations Reference Manual.

• Read entire file header

This buffer is assumed to be 1000 blocks long.
write this attribute.

You cannot

• Revision number (I.RVNO)

The ACP sets the revision number to 0, and increments it every
time the file is deaccessed.

• Placement Control

C.l.2.2 Attribute Size - This byte specifies the number of bytes of
the attribute to be transferred. Legal values are from 1 to the
maximum size of the particular attribute. Table C-l shows the maximum
size for each attribute type.

Attribute
Type Code

1

2

3

4

5

6

7

10

11

12

13

15

16

Table C-l
Maximum Size foz Each File Attribute

Attribute
Type

File owner

Protection

File characteristics

Record I/O area

File name,type,version number

File type

Version number

Expiration date

Statistics block

Entire file header

Block size (magtape only)

Revision number and
creation/revision/expiration dates

Placement control

C-4

Maximum
Attribute Size
in Octal Bytes

6

4

2

40

12

4

2

7

12

a

43

16

QIO$ INTERFACE TO THE ACPS

C.l.2.3 Attribute Buffer Address - The attribute buffer address field
contains the address of the buffer in the user's task space to or from
which the attribute is to be transferred.

C.l.3 Size and Extend Control

These two parameters specify how many blocks the
allocates to a new file or adds to an existing file.
also control the type of block allocation.

The format is as follows:

.BYTE

.WORD
<High 8 bits of size>, <extend control>
<Low 16 bits of size>

file processor
These parameters

The size field specifies the number of blocks to be allocated to a
file on IO.CRE and IO.EXT operations, and the final file size on
IO.DEL operations.

The extend control field
operation is to be done.

controls the manner in which
The following bits are defined:

an extend

EX.ACl=l

EX.AC2=2

EX.FCO=4

EX.ADF=lO

EX.ALL=20

EX.ENA=200

The extend size is to be added as a contiguous
block.

Extend by the largest available contiguous piece up
to the specified size.

The file must end up contiguous.

Use the default rather than the specified size. The
default extend size is the size that was specified
when the volume was mounted.

Placement control (see Section C.2).

Enable extend.

C.l.4 Window Size and Access Control

This parameter specifies the window size
information in the following format:

.BYTE <window size>, <access control>

and access control

This word is only processed if the high bit of the access control byte
(AC.ENB) is set.

window size is the number of mapping entries. Specifying a negative
window size mlnlmizes window turns. If this byte is zero, the file
processor uses the volume default. The size of the window allocated
in the dynamic storage region is 6 times the number of mapping entries
(each mapping entry is 3 words), plus 10 bytes for the window control
block.

On Mic:ro/RSX systems with secondary pool support, the mapping entries
are allocated in secondary pool. The window control block and a
pointer to secondary pool are located in primary pool.

C-s

QIO$ INTERFACE TO THE ACPS

The following access control bits are defined:

AC.LCK=1

AC .,. DLK=2

AC.LKL=4

AC.EXL=IO

AC.ENB=200

AC.RWD=IO

AC.UPD=IOO

AC.POS=20

AC.WCK=40

Lock out further accesses for write or Extend

Enable deaccess lock

The deaccess lock sets the lock bit in the file header
if the file is deaccessed as the result of a task
exit without explicitly deaccessing the file. The
lock bit is set by the executive. The lock bit is not
set when the system crashes.

Enable block locking

Enable explicit block unlocking

Enable access

Rewind the volume (labeled and unlabeled magtape only)

Update mode (labeled magtape only)

Do not position to end-of-volume (labeled magtape
only)

Initiate driver write-checking

NOTE

Both AC.LKL and AC.EXL must be set if you want
block locking. If you do not want block
locking, both bits must be clear. Any other
combination is an error.

C.I.S File Name Block Pointer

This word contains the address of a IS-word block in the
task's space. This block is called the file name block.
name clock is described in detail in the RSX-IIM/M-PLUS and
I/O Qf'erations Reference Manual.

issuing
The file

Micro/RSX

The fields of the file name block that are particularly important in
file-processing operations are:

• Directory identification (N.DID)

This field is required for all disk operations.
the directory to which the operation applies.
not used for tape operations.

• File identification (N.FID)

It specifies
This field is

This field is required as input for enter operations. This
field is returned as output by find and remove operations.

• File name (N.FNAM), type (N.FTYP), and version number (N.FVER)

These fields are required as input to enter, find, and remove
operations. For find and remove operations, the file
processor locates the appropriate entry by matching the
information in these fields with the directory entries.

C-6

QIO$ INTERFACE TO THE ACPS

• Status word (N.STAT)

• Wildcard context (N.NEXT)

This field is required as input for wildcard operations. It
specifies the point at which to resume processing. It is
updated for the next operation. It must initially be set to
o.

C.2 PLACEMENT CONTROL

The placement control attribute list entry controls the placement of a
file in a particular place on the disk. You can specify either exact
or approximate placement on IO.CRE and IO.EXT operations.

The placement control entry must be the first entry in the attribute
list.

The format of the
follows:

.BYTE

.WORD

.WORK

.BLKW 4

The following bits

AL.VBN=l

AL.APX=2

AL.LBN=4

C.3 BLOCK LOCKING

placement control attribute list entry is as

Placement control,O
High-order bi"ts of VBN or LBN
Low-order bits of VBN or LBN
Buffer to receive starting and ending LBN if

; AL.LBN is set.

are defined for the placement control field:

Set if block specified is a VBN; otherwise, the
block is the LBN

Set if you want approximate placement;
otherwise, placement is exact

Set if you want starting and ending LBN information

Block locking only occurs when the user accesses a file with AC.LKL
and AC.EXL set in the access control byte of the parameter list. Any
read or write operation causes a check to see if the block is locked.

A write access locks a block for exclusive access. A write operation
can only access a block that is not locked by any accessor. The only
exception to this is an exact match with a previous lock owned by the
same accessor.

A read access locks a block for shared access. A read operation can
access any block locked for shared access.

The user must unlock a block with an explicit unlock request, IO.ULK.
IO.ULK may be used to unlock one or all blocks.

If all accessors to a file have not requested block locking, the ACP
returns an error (see Table C-2).

When the file is deaccessed, all locks owned by the accessor are
releasE~d •

Each active lock requires eight bytes from the dynamic storage region.
This storage is deallocated when the file is deaccessed.

C-7

QIO$ INTERFACE TO THE ACPS

C.4 SUMMARY OF FIIACP FUNCTIONS

The following is a summary of the functions implemented in FIIACP. A
list of accepted parameters follows each function. All parameters are
required unless specified as optional. Parameters other than those
listed are illegal for that function and must be O.

IO.CRE

IO.DEL

IO.ACR

IO.ACW

IO.ACE:

IO.DAC

IO.EXT

Create file

#1

#2

#3 & #4

#5

The file identifier block is filled in
with the file identifier and sequence
number of the created file.

Write attribute list and placement
control list or both (optional)

Extend control (optional)

The amount allocated
returned in the high
plus IOST(2).

to the file is
byte of lOST (1)

May be nonzero but must be disabled

Delete or truncate file

#1

#3 & #4

Optional if the file is accessed

Size to truncate the file to. If not
enabled, the file is deleted. If
enabled, the remaining 31 bits specify
the size the file is to be after
truncation. The change in file
allocation is returned in the high byte
of IOST(l) plus IOST(2). This amount
will be zero or negative.

Access file for read only

Access file for read/write

Access file for read/write/extend

#1

#2

#5

Deaccess file

#1

#2

#5

Extend file

#1

#2

File identifier pointer

Read attributes control (optional)

Access control must be enabled

File identifier pointer (optional)

Write attributes control list

May be nonzero but must be disabled

Optional if file is accessed

Placement control
(optional)

C-8

attribute list

IO.RAT

IO.FNA

IO.RNA

IO.ENA

IO.ULK

IO.RVB

IO.WVB

QIO$ INTERFACE TO THE ACPS

#3 & #4

Read attributes

#1

#2

Extend control

The amount allocated
returned in the high
plus IOST(2).

to the file is
byte of IOST(l)

Optional if file is accessed

Read attributes control list

Find name in directory

Remove name from directory

Enter name in directory

#5

#6

Unlock block

#2

#4 & #5

May be nonzero but must be disabled

File name block pointer

o or count of blocks to unlock

Starting VBN to unlock or 0 to unlock
all blocks.

Read virtual block

Write virtual block

#1

#2

#4 & #5

User buffer

Buffer length

VBN

C.5 SUMMARY OF MTAACP FUNCTIONS

The following is a summary of the functions implemented in MTAACP. A
list of accepted parameters follows each function. All parameters are
required unless specified as optional. Parameters other than those
listed are illegal for that function and must be o.
IO.FNA Find file by name

#5

#6

AC.RWD set in the access control byte
indicates that the volume is to be
rewound prior to the search.

Pointer to file name block.
The following fields are used as input:

N.FNAM
N.FTYP
N.FVER
N.STAT

C-9

IO.ENA

IO.ACR

IO.ACW

IO.ACE

IO.DAC

IO.RVB

QIO$ INTERFACE TO THE ACPS

The following fields are returned by
MTAACP:

N.FID
N.FNAM
N.FTYP
N.FVER
N.STAT

Enter name in directory

A no-op for magnetic tape

Access for read only

#1

#2

#5

File identifier pointer. Used
position a tape by file identifier.

Read attribute list (optional)

Ignored

to

Access for read/write

This function will be rejected with the error code
IE.PRI. (Extend access is required.)

Access for read/write/extend

#1

#2

#5

Deaccess file

#1

#5

File identifier pointer. Used to
position tape by file identifier.

Read attribute list (optional)

AC.UPD (update mode). If AC.UPD is set,
the tape will be positioned to overwrite
the file and all files beyond the
current file will be lost. If AC.UPD is
not set, the tape will be positioned for
append. If the file is not the last
file, MTAACP returns the error code
IE.ISQ.

File identifier pointer is ignored.

AC.RWD set indicates that the volume is
to be rewound after the file is closed.

Read virtual block

#1

#2

#4

#5

Buffer address

Buffer size. The buffer size must be
gzeater than 18 bytes and less than the
declared block length for the entire
file.

High VBN

Low VBN

The virtual block number must be either zero or exactly
one greater than the previous block number.

C-lO

IO.CRE

IO.RAT

QIO$ INTERFACE TO THE ACPS

Create File

#1

#2

#5

#6

Read Attributes

#1

#2

File identifier pointer. The file
sequence and section number will be
returned to the user's file identifier
block.

Attribute list pointer. Used to write
the attributes for the newly created
file. Attribute type code must be
positive.

If AC.RWD is set, the volume will be
positioned at the beginning and will
overwrite the first file. This
effectively reinitializes the volume.

If AC.RWD is not set and AC.POS is set,
the volume set will be positioned to the
next file position beyond the current
file and will overwrite that file. All
files beyond that on the volume will be
destroyed.

If neither AC.RWD nor AC.POS is set, the
volume set will be positioned at its end
and the new file will be appended to the
set.

For unlabeled tapes, MTAACP only checks
AC.RWD.

Filename block pointer.

File identifier pointer.
tape by

Used to
the file position the

identifier.

Attribute list pointer (see
C.l.2)

Section

The following attribute list entries are
meaningful for magnetic tape:

1,2
1,4
1,5

2,2
2.3
3,1
4,32
5,6
5,8
5,10
6,2
6,4
7,2
8,7
-9,10
-10,0
11,2

UIC
UIC and protection
UIC, protection, and
characteristics
Protection
Protection and characteristics
Characteristics
User file attributes
File name
File name and type
File name and type
File type
File type and version number
Version number
Expiration date
Statistics block (read only)
Entire header (read only)
Block size

C-ll

IO.APC

IO.APV

010$ INTERFACE TO THE ACPS

ACP Control

#3 One of the following
function codes:

1 Rewind volume set.

user control

2 position to end of volume set.
3 Close current volume and

continue processing the next
section of the same file on the
next volume of the volume set.

4 Space physical records in
currently accessed file.

S Get ACP characteristics.
6 Rewind current file.

Privileged ACP Control

This function is used only by the MOUNT and DISMOUNT
commands. This interface is subject to change and,
therefore, will 'not be documented until a future
release.

C.6 HOW TO USE THE ACP 010$ FUNCTIONS

Although the operations described in this appendix are normally
perfor~ed by the file-access methods (RMS and FCS), your application
may issue t~e ACP OIO$s. The required parameters for each 010$ are
described In the preceding section. The necessary steps for common
operations are described in the following section:

NOTE

The file identifier is the only way to refer to a
file.

C.6.l Creating a File

To create a file:

• Use IO.CRE to create it.

• Enter it in the Master File Directory (MFD) or a user
directory with IO.ENA.

C.6.2 Opening a File

To open a file:

• Use IO.FNA to find the File Identifier of the directory in the
MFD.

• Use IO.FNA to find the File Identifier of the file in the
directory.

• Access the file with IO.ACR, IO.ACW, or IO.ACE.

C-l2

QIO$ INTERFACE TO THE ACPS

C.6.3 Closing a File

To close a file:

• Deaccess the file with IO.DAC.

C.6.4 Extending a File

To extend a file:

• Use IO.FNA to find the file identifier if the file is not
accessed.

• Use IO.EXT to extend the file.

C.6.S Deleting a File

To dele~te a file:

• Use IO.FNA to find the file identifier.

• Use IO.RNA to remove the directory name.

• Use IO.DEL to delete the file.

C.7 ERRORS RETURNED BY THE FILE PROCESSORS

The error codes returned by FllACP and MTAACP are shown in Table C-2.

Table C-2
File Processor Error Codes

Error
CodE~ Operations

IE.ABO IO.RVB/IO.WVB

IE.ALC Extend or create

IE.ALN Access a file

IE. BAD Any function

Explanation

Indicates that not all requested
data was transferred by the
device.

Indicates that the operation
failed to allocate the file
because of placement control or
because of other related
problems.

Indicates that a file is already
accessed on that LUN.

Indicates that a required
parameter is missing, that a
parameter that should not be
present is present, that a
parameter that must be disabled
is enabled, or that a parameter
value is invalid.

(Continued on next page)

C-13.

QIO$ INTERFACE TO THE ACPS

Table C-2 (Cont.)
File Processor Error Codes

Error
Code Operations

IE.BDR Directory

IE.BHD Any

IE.BVR Directory

IE.BYT Any function

Explanation

Indicates that you attempted a
directory operation on a file
that is not a directory, or that
the specified directory is
corrupted. This is usually
caused by a 0 version number
field.

Indicates that a corrupt file
header was encountered, or that
the operation required a feature
not supported by the FCP (such as
multiheader support or support
for unimplemented features).

Indicates that you attempted to
enter a name in a directory with
a negative or 0 version number.

This error is returned if the
buffer specified is on an odd
byte boundary or is not a
multiple of four bytes.

IE.B'I1P Create unlabeled Magtape An attempt was made to create an
unlabeled tape file with a record
type other than fixed.

IE.CKS Any

IE.CLO File access

IE.DFU Allocation request

IE.DUP Enter name

IE.EOF IO.RVB/IO.WVB/IO.DEL

Indicates that the checksum of a
file header is incorrect.

Indicates that the file was
locked against access by the
"deaccess lock bit."

Indicates that there is
insufficient free disk space for
the requested allocation.

Indicates that the name and
version already exist.

On read operations, this
indicates an attempt to read
beyond end of file. On truncate
operations, it indicates an
attempt to truncate a file to a
length longer than that allocated
or that the file was already at
EOF.

(Continued on next page)

C-l4

QIO$ INTERFACE TO THE ACPS

Table C-2 (Cont.)
File Processor Error Codes

Error
Code Operations

IE.HFU Extended

IE.IFC Executive

IE.IFU Create or extend

IE.LCK File access,
directory, and
truncate

IE.LUN Any requiring
file 10

IE.NOO All requiring OSR

IE. NSF All file

IE.OFL Executive

IE.PRI Any

Explanation

Indicates that the file header is
full and cannot contain any more
retrieval pointers and that
adding an extension header is not
allowed. When this error code is
returned on a create operation,
it indicates that the index file
could not be extended to allow a
file header to be allocated.

Illegal function code.

Indicates that there are no file
headers available based on the
parameters specified when the
volume was initialized.

Indicates that the file
is already accessed by a
writer and that shared write has
not been requested or is not
allowed.

Indicates that file 10
has not been supplied and that
the file is not accessed on the
LUN.

Indicates that an I/O request
failed because of IE.UPN, and
that the FCP was unable to
allocate required space from OSR
or from secondary pool for data
structures.

Indicates that the specified
directory entry does not exist,
that a file corresponding to the
file 10 does not exist, or that
the file is marked for delete.

The device is off line.

Indicates that the user does not
have the required privilege for
the requested operation, or that
the user has not requested the

·proper access to the file if the

(Continued on next page)

C-lS

QIO$ INTERFACE TO THE ACPS

Table C-2 (Cont.)
File Processor Error Codes

Error
Code

IE.RER Any

IE.SNC Any

Operations

IE.SPC Executive

IE.SQC Any

IE. WAC File access

IE.WAT write attributes
and deaccess

IE.WER Any

IE.WLK Any requiring
write access

Explanation

file is already accessed (for
example, in an attempt to write
to a file that is accessed for
read). This error code also
indicates an attempt to do file
I/O to a device that is not
mounted.

Indicates that the FCP
encountered a fatal device read
error during an operation~ the
operation has been aborted.

Indicates that the file number
and the value contained in the
header do not agree. This
generally means that the header
has gone bad because of a crash
or a hardware error.

Indicates an illegal buffer.

Indicates that the file sequence
number does not agree with the
file header~ usually indicates
that the file has been deleted
and the header has been reused.

Indicates that the file is
already write accessed and lock
against writers is requested.

Indicates that the FCP
encountered an invalid attribute.

Indicates that the FCP
encountered a fatal device
error during an operation.
operation has been aborted,
the disk structure may have
corrupted.

Indicates that the volume
is software write-locked.

C-l6

write
The
but
been

Abort
activ,e task, 2-11
CTRL/C, 2-9
task (tape driver), 4-11

Abort operation
tape driver, 4-6

AC.DLK (F11ACP), C-6
AC.ENB (F11ACP), C-6
AC.EXL (F11ACP) , C-6, C-7
AC.LCK (F11ACP) , C-6
AC.LKL (F11ACP) , C-6, C-7
AC.POS (F11ACP) , C-6
AC.POS (MTAACP) , C-11
AC.RWD (F11ACP) , C-6
AC.RWD (MTAACP) , C-10,
AC.UPD (F11ACP) , C-6
AC.UPD (MTAACP) , C-10
AC.WCK (F11ACP) , C-6
Access

control
enabling, C-8

control (F11ACP), C-5
enabling, C-6
file

C-11

read/write, C-8
read/write/extend, C-8

lock out, C-6
read, C-10
read/write, C-10
read/write/extend, C-10

ACP
control

IO.APC, C-12
privileged, C-12

creating a file, C-12
File Identification Block, C-2
get characteristic, C-12
opening a file, C-12
QIO$

parameter list, C-1
QIO$ function use, C-12
QIO$ interface, C-1
unique (RC25), 3-10

Address
illegal (tape driver), 4-8
illegal space (VTDRV), 6-8
logical (disk driver), 3-3
virtual (disk driver), 3-3

Address space
invalid (VTDRV), 6-8

AL.APX (F11ACP), C-7
AL.LBN (F11ACP), C-7
AL.VBN (F11ACP), C-7
ALUN$ macro, 1-4, 1-15, 1-17

dev, 1-17
example, 1-17
1un, 1-17
unt, 1-17

Ancillary Control Processor
See j~CP

INDEX

ASSIGN, as Task Builder option,
1-4

AST, 1-5, 1-9, 1-10, 1-11
address as QIO$ parameter, 1-5
armed (TTDRV), 2-14
attach terminal (TTDRV), 2-13
blocking, 1-11
Directive Status Word, 1-12
disarmed (TTDRV), 2-14
event flag, 1-11
multiple buffering, 1-12
Program Counter, 1-12
purpose, 1-11
queuing, 1-11, 1-12
routine

entering (TTDRV), 2-7
interrupting, 1-11

service routine, 1-11, 1-12
service termination, 1-22
specifying in macro, 1-11
unsolicited input character

(TTDRV), 2-7
Ast parameter, 1-9

I/O completion, 1-33
introduction (TTDRV), 2-6
IO.ATT function (TTDRV), 2-13
IO.CCO function (TTDRV), 2-16
IO.EIO function (TTDRV), 2-19
IO.GTS function (TTDRV), 2-26
IO.HNG function (TTDRV), 2-28
IO.RAL function (TTDRV), 2-29
IO.RNE function (TTDRV), 2-31
IO.RPR function (TTDRV), 2-34
IO.RST function (TTDRV), 2-37
IO.RTT function (TTDRV), 2-39
IO.WAL function (TTDRV), 2-41
IO.WBT function (TTDRV), 2-44
SF.GMC function (TTDRV), 2-46
SF.SMC function (TTDRV), 2-54

Ast2 parameter
introduction (TTDRV), 2-6
IO.ATT function (TTDRV), 2-14

ASTX$ macro, 1-15
err, 1-22
syntax, 1-22

ASTX$S macro, 1-12, 1-22
Asynchronous line interface, 2-2
Asynchronous System Trap

See AST
Attach

device, 1-25
device (tape driver), 4-6
device LUN, 1-25
terminal (TTDRV), 2-13
terminal AST (TTDRV), 2-13

Attach (VTDRV), 6-4
Attribute

buffer address, C-5
control list

read, C-9

Index-1

INDEX

Attribute
control list (Cont.)

wl~ite, C-8
control read, C-8
1 ist:

entry (FIIACP), C-7
entry (MTAACP), C-ll
FllACP, C-2
placement control, C-8
pointer, C-ll
write, C-8

read, C-9
size, C-4

table, C-4
type (FIIACP), C-2, C-3

Auto-call modem (TC.DLU), 2-47

Backslash echo (DELETE), 2-66
Bad parameter (VTDRV), 6-8
Beginning of tape

See BOT
Blkh/blkl parameter (disk driver),

3-3
Block

size
NOLABEL (TU58), 4-17

size (tape driver), 4-10
BOT space operation (tape driver),

4-11
Breakthrough write, 2-10

IO.CCO function (TTDRV), 2-17
IO.EIO function (TTDRV), 2-22
IO.WAL function (TTDRV), 2-43
IO.WBT function (TTDRV), 2-44

Buffer
address (disk driver), 3-5
allocating, 2-74
byte-aligned (tape driver), 4-6
character, 2-72
data (tape driver), 4-12
enable

IO.STC function (VTDRV), 6-4
flush, 2-8, 2-73

CTRL/C, 2-73
CTRL/X, 2-73
detached terminal, 2-73

flush exception
CTRL/C, 2-73
CTRL/X, 2-73

full
escape sequence processing,

2-69
unsolicited input, 2-51

hardware timing, 2-57
input, 2-74
offspring task (VTDRV), 6-4
output, 2-72, 2-74
private pool, 2-74
prompt (VTDRV), 6-3
retrieving character, 2-73
size (disk driver), 3-5
task, 2-72
type-ahead, 2-72

character echo, 2-73

Buffer
type-ahead (Cont.)

character storing, 2-72
CTRL/C, 2-73
CTRL/O, 2-73
CTRL/Q, 2-73
CTRL/S, 2-73
CTRL/X, 2-73
unprocessed character, 2-53

Cancel CTRL/O, 2-7, 2-42
IO.EIO function (TTDRV), 2-19
IO.WBT function (TTDRV), 2-45

Carriage return, automatic, 2-71
Case conversion, 2-9, 2-30, 2-57

disabling, 2-57
IO.RPR function (TTDRV), 2-35
IO.RST function (TTDRV), 2-37

Cb parameter
device-specific function

(VTDRV), 6-3
IO.STC function (tape driver),

4-4
IO.STC function (VTDRV), 6-5

Characteristic
error (VTDRV), 6-8, 6-9
resetting (tape driver), 4-11
return (tape driver), 4-5
setting

effect, 2-57
TC.HLD, 2-57
TC.SMR, 2-57
TC.SSC, 2-57

tape driver, 4-1
terminal (VTDRV), 6-7

Characteristic bit
special information (TTDRV),

2-52
VTDRV, 6-3

Checkpoint
offspring task (VTDRV), 6-4
task, 2-9

buffering, 2-74
terminal input, 2-76

CLI
CTRL/C, 2-11
CTRL/C processing, 2-65

setup, 2-65
.input, 2-11
operation (TTDRV), 2-65
prompt, 2-9

Close file, C-13
Code

directive status, B-1
error

testing for, 2-58
I/O completion, B-1
I/O status, B-1

success, B-5
return

testing for, 2-58
status, 2-58

Command Line Interpreter
See CLI

Index-2

INDEX

CP.CTC
in CPB of CLI, 2-65

Create file, C-8, C-ll
ACP, C-12

CTRL/C, 2-32, 2-62
abort, 2-9, 2-11, 2-30, 2-32

IO.RPR function (TTDRV), 2-35
IO.RST function (TTDRV), 2-37

CLI processing, 2-65
CLI setup (TC.TLC), 2-65
disable, 2-57
driver interpretation, 2-32
during read, 2-65
exclude (IO.ATA), 2-15
flush buffer, 2-73

exception, 2-73
IO.RAL function (TTDRV), 2-29,

2-65
IO.RST function (TTDRV), 2-37,

2-38, 2-65
IO.RTT function (TTDRV), 2-40
pass through as normal

character, 2-9
prompt, 2-9

IO.RPR function (TTDRV), 2-35
restarting suspended output

after CTRL/S in CLI, 2-65
TF.RAL, 2-35
TF.RST, 2-30
type-ahead buffer, 2-73
unsolicited input, 2-65

CTRL/I, 2-62
CTRL/J, 2-63
CTRL/K, 2-63
CTRL/L, 2-63
CTRL/M, 2-63
CTRL/O, 2-32, 2-63

cancel, 2-16
IO.EIO function (TTDRV), 2-19
IO.WAL function (TTDRV), 2-42
IO.WBT function (TTDRV), 2-45

driver interpretation, 2-32
IO.RAL function (TTDRV), 2-29
IO.RPR function (TTDRV), 2-35
IO.RST function (TTDRV), 2-37
IO.RTT function (TTDRV), 2-40
pass through as normal

character, 2-9
TC.PTH, 2-63
terminator, 2-9
TF.RAL, 2-35
TF.RST, 2-30
type-ahead buffer, 2-73
write breakthrough, 2-43, 2-44

CTRL/Q, 2-32, 2-64
driver interpretation, 2-32
intercept, 2-9
IO.RAL function (TTDRV), 2-29
IO.RPR function (TTDRV), 2-35
IO.RST function (TTDRV), 2-37,

2-38
IO.RTT function (TTDRV), 2-39,

2-40
TC.TSY, 2-64

CTRL/Q (Cont.)
terminator, 2-9
TF.RAL, 2-35
TF.RST, 2-30
type-ahead buffer, 2-73

CTRL/R, 2-32, 2-64
ignored, 2-8
IO.RAL function (TTDRV), 2-64
IO.RNE function (TTDRV), 2-31
IO.RPR function (TTDRV), 2-33,

2-35
IO.RST function (TTDRV), 2-37,

2-38, 2-64
pass through

as normal character, 2-8
read no echo, 2-30
resynchronize display, 2-67
TF.RAL, 2-64
TF.RNF, 2-64
TF.RNO, 2-40
TF.RST, 2-30, 2-64
write breakthrough, 2-43

CTRL/S, 2-32, 2-64
driver interpretation, 2-32
in CLI

CTRL/C restarts output, 2-65
intercept, 2-9
IO.RAL function (TTDRV), 2-29,

2-64
IO.RPR function (TTDRV), 2-35
IO.RST function (TTDRV), 2-37
IO.RTT function (TTDRV), 2-39,

2-40
stopping write breakthrough,

2-11
TC.TSY, 2-64
terminator, 2-9
TF.RAL, 2-35, 2-64
TF.RST, 2-30
TF. XOF, 2-22
TTSYNC, 2-64
type-ahead buffer, 2-73
write breakthrough, 2-43

CTRL/U, 2-32, 2-64
IO.RAL function (TTDRV), 2-64
IO.RPR function (TTDRV), 2-33,

2-35
IO.RST function (TTDRV), 2-37,

2-64
pass through

as normal character, 2-8
TF.RAL, 2-64
TF. RNF, 2-64
TF.RPT, 2-64
TF.RST, 2-30, 2-64

CTRL/X, 2-64
flush buffer, 2-73

exception, 2-73
IO.RAL function (TTDRV), 2-64
IO.RST function (TTDRV), 2-38,

2-64
TF.RAL, 2-64
TF. RPT, 2-64
TF.RST, 2-64

Index-3

INDEX

CTRL/X (Cont.)
type-ahead buffer, 2-73

CTRL/x character, 2-62
CTRL/Z, 2-64, 2-66

driver interpretation, 2-32
IO.RAL function (TTDRV), 2-29,

2-64
IO.RST function (TTDRV), 2-38,

2-64
IO.RTT function (TTDRV), 2-40
pass through as normal

character, 2-9
TF.RAL, 2-35, 2-64
TF.RPT, 2-64
TF.RST, 2-64

Cursor
control, 2-74

IO.WLB function (TTDRV), 2-75
TF.RCU, 2-75

position ignored,
write-pass-a11,

position restore,
IO.EIO function
IO.RTT function
IO.WAL function
IO.WBT function
TF.RCU, 2-42

positioning

2-10
2-42
2-8
(TTDRV) ,
(TTDRV) ,
(TTDRV) ,
(TTDRV) ,

2-20
2-40
2-42
2-45

IO.WAL function (TTDRV), 2-42

Data
even byte (tape driver), 4-12
odd byte (tape driver), 4-12

Data buffer
address (disk driver), 3-3
size (disk driver), 3-3

Data overrun (tape driver), 4-7
Data transfer (tape driver), 4-12
DDDRV, 4-1, 4-13
Deaccess

file, C-8, C-10, C-13
lock enable, C-6

DEASSIGN command, 1-4, 1-19
DELETE character

erase, 2-9, 2-32
in escape sequence, 2-69
IO.RPR function (TTDRV), 2-35
IO.RST function (TTDRV), 2-37
pass through, 2-8
TF.RST, 2-30

DELETE key, 2-66
backs1ash echo, 2-66

Density
disk driver, 3-5
parameter (disk driver), 3-5

Device
accessing, 1-5
attaching, 1-25
detach (VTDRV), 6-4
detaching, 1-26
independence, 1-2
Micro/RSX, 1-40
name

nonphysical, 1-18

Device
name (Cont.)

physical, 1-18
pseudo, 1-19

not attachable (VTDRV), 6-8
not ready (tape driver), 4-7
off line (tape driver), 4-8
redirection, 1-19

dynamic, 1-19
unattached (tape driver), 4-7
write lock (tape driver), 4-8

DHV11 device, 2-2
Diagnose (TU58), 4-16
Diagnostic

function, 1-31
macro definition, 1-32
support warning, 1-32

DIR$ macro, 1-14
example, 1-16
parameter, 1-16
syntax, 1-15

Directive
error code, B-5
status code, B-5
status return, B-1
success code, B-7

Directive Parameter Block
See DPB

Directory
identification (F1lACP), C-6
name remove (IO.RNA), C-13

Disk
address

logical, 3-3
virtual, 3-3

characteristic, 3-2
driver

I/O function summary, A-I
Dismount RC25, 3-10
DLDRV, 3-2
DLV11 device, 2-2
DPB, 1-12

content, 1-12
diagnostic function, 1-32
dynamic creation, 1-14
generation, 1-12
layout, 1-13
length, 1-12
run time, 1-12
use, 1-14

Driver
defined, 1-1
loadab1e, 1-1
pre1oaded, 1-1
write-check

initiate, C-6
DSAR$ macro, 1-11
DUDRV, 3-1
DV.PSE bit, 1-19
DV.UMD bit, 1-32
DYDRV, 3-2
Dynamic storage

insuffficient (VTDRV), 6-8
DZQ11 speed, 2-52

Index-4

DZOll-CP device, 2-2
DZVll

speed, 2-52
DZVll device, 2-2

Efn parameter, 1-8
example, 1-10
10.ATT function (TTDRV), 2-13
lo.ceo function (TTDRV), 2-16
10.Ero function (TTDRV), 2-19
10.GTS function (TTDRV), 2-26
10.HNG function (TTDRV), 2-28
10.RAL function (TTDRV), 2-29
10.RNE function (TTDRV), 2-31
10.RPR function (TTDRV), 2-33
10.RST function (TTDRV), 2-37
10.RTT function (TTDRV), 2-39
10.WAL function (TTDRV), 2-41
10.WBT function (TTDRV), 2-44
SF.GMC function (TTDRV), 2-46
SF.SMC function (TTDRV), 2-54

ENAR$ macro, 1-11
End-of-· file

encountered (VTDRV), 6-8
tape driver, 4-7

End-of-·tape
See gOT

End-of-·vol ume
no position, C-6
position, C-12
tape driver, 4-8, 4-11

EOT, 4-·7, 4-12
marke!r, 4-12

Erase TF.RST subfunction, 2-9
Error

detection, 2-71
FllACP, C-13
fatal (tape driver), 4-8
hard receive, 2-71
hardware fatal (TU58), 4-16
I/O, 2-58
MTAACP, C-13
retry

MSDRV, 4-10
MUDRV, 4-10

return, 2-58
status, 2-58
time-out (TU58), 4-16
unrecoverable (tape driver) ,

~~-8

unrecoverable (TU58), 4-16
Error code

directive, B-5
testing for, 2-58

Error :return
disk driver, 3-5
file processor, C-13
printer driver, 5-3
tape driver, 4-6
TU58,. 4-16
VTDRV, 6-7

ESC key, 2-66
Escape sequence, 2-67

characteristic, 2-68

INDEX

Escape sequence (Cont.)
format, 2-67
processing, 2-8

buffer full, 2-69
recognition, 2-7

10.ATA function, 2-15
prerequisite, 2-68

rub out, 2-11
syntax exception, 2-69
syntax violation, 2-69
write breakthrough, 2-44

Even data byte (tape driver),
4-12

Event flag, 1-10
AST, 1-11
common, 1-10
Executive directive support,

1-10
group global, 1-10
I/O completion, 1-5
number, 1-10
system, 1-10
task, 1-10

Event flag number, as 010$
parameter, 1-5

Event, significant, 1-33
EX.ACI (FllACP), C-5
EX.AC2 (FllACP), C-5
EX.ADF (FllACP), C-5
EX. ALL (FllACP), C-5
EX.ENA (FllACP), C-5
EX.FCO (FllACP), C-5
Extend

control, C-5, C-8, C-9
file, C-8, C-13

.EXTND routine, new file (disk
dr i ver), 3-4

Fl.xxx bit
get terminal support, 2-27

Fl.xxx local definition (TTDRV),
2-26

FllACP
attribute list, C-2
attribute type, C-2, C-3
error, C-13
file number, C-2
I/O function summary, C-l
010$ function, C-8

F2.xxx bit
get terminal support, 2-27

F2.xxx local definition (TTDRV),
2-26

File

Index-5

block locking, C-7
enable, C-6
read access, C-7
storage requirement, C-7
write access, C-7

block locking check, C-7
block unlocking, C-9

enable specific, C-6
request, C-7

characteristic, C-3

INDEX

File (Cont.)
clos:..ng, C-13
create, C-ll
creating, C-8
creation date, C-3
deaccessing, C-8, C-IO

IO.DAC, C-13
deleting, C-8, C-13

IO .. DEL, C-13
extend, C-8, C-13

IO .. EXT, C-13
• EXT t JD r 0 uti n e (dis k d rive r) ,

3-4
findlng by name, C-9
headf~r, C-4
identification (FllACP), C-6
identifier, C-12

block, C-8
IO.FNA, C-12, C-13
po:nter, C-8, C-ll

number (FllACP), C-2
operation

IO.RVB function (disk driver),
3-4

IO.WVB function, 3-4
owner UIC, C-3
processor error code, C-13
protection word, C-3
read access, C-8
revision date, C-3
rewinding, C-12
truncating, C-8
virtual block number, C-7

File access
read/write, C-8
read/write/extend, C-8

File Descriptor Block, C-3
File Identification Block

(F LIACP), c-2
File name, C-3

block pointer, C-6, C-9, C-ll
entering in directory, C-9,

C-lO
FllACP, C-6
finding in directory, C-9
removing from directory, C-9

File type, C-3
FllACP, C-6

File version number, C-3
FILIO$ macro, 1-7
Fnc parameter, 1-7
Full-duplex (VTDRV), 6-5

Get LUN macro
firs~ buffer word contents, 2-2

Get LUN macro (TTDRV), 2-2
Get muLtiple characteristic, 2-46

VTDRV, 6-2, 6-6
Get te~minal support, 2-26

bit information returned, 2-27
Fl.xxx bit meaning, 2-27
F2.x~x bit meaning, 2-27
VTDRV, 6-3, 6-6

GLUN$ macro, 1-15, 1-19
buf, 1-19
buffer content, 1-20
disk driver, 3-2
example, 1-20, 1-21
lun, 1-19
printer driver, 5-1
tape driver, 4-1
TU58, 4-13
VTDRV, 6-1

Hold-screen mode
effect, 2-57
send CTRL/S, 2-57

I/O, 1-1
area record, C-3
cancelling, 1-26
completion, 1-5, 1-11, 1-33

AST, 1-9
ast parameter, 1-33
isb parameter, 1-33
QIOW$ macro, 1-5
testing, 1-9

completion status (VTDRV), 6-4
delay

stall (RC25), 3-10
diagnostic, 1-31
error (disk driver), 3-8
extended, 2-18
in progress

I/O kill (disk driver), 3-3
kill (tape driver), 4-12

issuing QIO$, 1-4
logical, 1-2
outstanding, 1-3
overdue response, 1-27
packet, 1-13
packet queue, 1-13
physical, 1-2
programming in MACRO-II, 1-2
related macro, 1-13
request dequeue, 1-25
request pending (tape driver) ,

4-6
stall (RC25), 3-9
subfunction bit, 1-24
successful status

testing, 1-36
virtual, 1-3

I/O function
FllACP, C-l, C-8
introduction, 1-2
MTAACP, C-l
summary, A-I

disk driver, A-I
line printer driver, A-2
tape driver, A-2
terminal driver, A-3
TU58, A-I
virtual terminal driver, A-4

I/O function code
A/D converter, B-7
card reader, B-7

Index-6

INDEX

I/O function code (Cont.)
cass1ette, B-7
communication, B-8
DECT,1-\PE, B-8
DECT,1-\PE I I, B-8
disk, B-9
DSS/DR, B-IO
graphic display, B-9
ICS/ICR, B-IO
LPAll-K, B-ll
LPS, B-ll
magnetic tape, B-12
numeric, B-7
parallel communication link,

:8-12
standard, B-7
terminal, B-13
terminal subfunction bit, B-14
UDC, B-14
UNIBUS switch, B-15
virtual terminal, B-15

I/O status, 1-36
code, 1-37

success, B-5
testing, 1-36

I/O Status Block, 1-8, 1-9, 1-11,
1-36

address, as QIO$ parameter, 1-5
example, 1-36
SF.GMC function (TTDRV), 2-46

contents, 2-46
SF.SMC function (TTDRV), 2-54

I/O subfunction summary
terminal driver, A-3

IE.ABO error return, 1-27, 1-37
disk driver, 3-3, 3-6
file processor, C-13
printer driver, 5-3
tape driver, 4-6
TTDRV, 2-58
VTDRV, 6-7

IE.ADP error return, 1-35
IE.ALC error return

file processor, C-13
IE.ALN error return, 1-37

disk driver, 3-6
file processor, C-13

IE.BAD error return, 1-8, 1-37
file processor, C-13
TTDRV, 2-58
VTDRV, 6-8

IE.BBE error return, 1-37
disk driver, 3-6

IE.BCC error return
TTDRV, 2-58

IE.BDR error return
file processor, C-14

IE.BHD error return
file processor, C-14

IE.BLK error return, 1-38
disk driver, 3-6

IE.BTP error return
file processor, C-14

IE.BVR error return
file processor, C-14

IE.BYT error return, 1-38
disk driver, 3-6
file processor, C-14
tape driver, 4-6

IE.CKS error return
file processor, C-14

IE.CLO error return
file processor, C-14

IE.DAA error return, 1-38
printer driver, 5-3
tape driver, 4-6
TTDRV, 2-58

IE. DAD error return
tape driver, 4-7, 4-9
TTDRV, 2-59

IE.DFU error return
file processor, C-14

IE. DNA error return, 1-38
printer driver, 5-3
tape driver, 4-7
TTDRV, 2-59

IE.DNR error return, 1-32, 1-33,
1-38

disk driver, 3-6
tape driver, 4-7, 4-16
TTDRV, 2-59

IE. DUN error return
VTDRV, 6-8

IE.DUP error return
file processor, C-14

IE.EOF error return, 1-38
file processor, C-14
NLDRV, 7-1
tape driver, 4-7
TTDRV, 2-58, 2-59
VTDRV, 6-8

IE.EOT error return
tape driver, 4-7

IE.EOV error return
tape driver, 4-8, 4-11

IE.FHC error return
tape driver, 4-16

IE.FHE error return, 1-38
tape driver, 4-8

IE.HFU error return
file processor, C-15

IE.IEF error return, 1-35
IE.IES error return

TTDRV, 2-59
IE.IFC error return, 1-39

disk driver, 3-6
file processor, C-15
printer driver, 5-3
tape driver, 4-8, 4-10, 4-16
TTDRV, 2-59
VTDRV, 6-7, 6-9

IE.IFU error return
file processor, C-15

IE.ILU error return, 1-35
IE.LCK error return

file processor, C-15

Index-7

IE.LUN error return
file processor, C-15

IE.NLN error return, 1-39
disk driver, 3-7

IE.NOD error return, 1-39
disk driver, 3-7
file processor, C-15
TTDRV, 2-59

IE.NSF error return
file processor, C-15

IE.OFL error return, 1-39
disk driver, 3-7
file processor, C-15
printer driver, 5-4
tape driver, 4-8
TTDRV, 2-60

IE.OVR error return, 1-39
disk driver, 3-7

IE. PES error return
TTDRV, 2-60

IE.PRI error return, 1-39
disk driver, 3-3, 3-7
file processor, C-15
TTDRV, 2-60

IE.RER error return
file processor, C-16

IE.SDP error return, 1-35
IE.SNC error return

file processor, C-16
IE.SPC error return, 1-39

disk driver, 3-7
file processor, C-16
printer driver, 5-4
tape driver, 4-8
TTDRV, 2-60
VTDRV, 6-8

IE.SQC error return
file processor, C-16

IE.TMO error return
tape driver, 4-16

IE.ULN error return, 1-35
IE.UPN error return, 1-35

VTDRV, 6-8
IE.VER error return, 1-40

disk driver, 3-7
tape driver, 4-8, 4-16
TTDRV, 2-60

IE.WAC error return
file processor, C-16

IE.WAT error return
file processor, C-16

IE.WCK error return, 1-40
disk driver, 3-8

IE.WER error return
file processor, C-16

IE.WLK error return, 1-40
disk driver, 3-8
file processor, C-16
tape driver, 4-8, 4-16

Input
default, 2-8
no echo read (IO.RNE), 2-31
notification, 2-7
redisplayed, 2-11

INDEX

Input
redisplayed (Cont.)

write (IO.EIO), 2-22
unsolicited, 2-2

slaved terminal, 2-14
IO.ACE function

access file, C-12
FIIACP, C-8
MTAACP, C-IO

IO.ACP function (MTAACP), C-12
IO.ACR function

access file, C-12
FIIACP, C-8
MTAACP, C-IO

IO.ACW function
access file, C-12
FIIACP, C-8
MTAACP, C-IO

IO.APV function (MTAACP), C-12
IO.ATA function

TTDRV, 2-13
IO.ATT function, 1-25

TTDRV, 2-56, 2-73
VTDRV, 6-4, 6-8

IO.BLS function, 1-32
TU58, 4-15, 4-16

IO.CCO function (TTDRV), 2-16
IO.CRE function

ACP, C-12
FIIACP, C-5, C-7, C-8
MTAACP, C-ll

IO.DAC function
FIIACP, C-8
MTAACP, C-IO

IO.DEL function
delete file, C-13
FIIACP, C-5, C-8

IO.DET function, 1-26
TTDRV, 2-73
VTDRV, 6-4, 6-8

IO.DGN function (TU58), 4-15,
4-16

IO.DSE function (tape driver),
4-4, 4-5

IO.EIO function (TTDRV), 2-18,
2-23, 2-25

IO.ENA function
FIIACP, C-9
MTAACP, C-IO

IO.EOF function (tape driver) ,
4-4

IO.ERS function, 1-32
tape driver, 4-4

IO.EXT function
FIIACP, C-5, C-7, C-8
file extend, C-13

IO.FNA function
FIIACP, C-9
file identifier, C-12, C-13
MTAACP, C-9

IO.GTS function
TTDRV, 2-26, 2-27
VTDRV, 6-3, 6-6

IO.HNG function (TTDRV), 2-28

Index-8

IO.KIL function, 1-26, 1-27
disk driver, 3-3
printer driver, 5-3
tape driver, 4-3
VTDRV, 6-4

IO.LPC function, 1-32
IO.RAL function (TTDRV), 2-29,

2-62, 2-64, 2-65, 2-66
IO.RAT function (MTAACP), C-11
IO.RLB function, 1-27

VTDRV, 6-4
IO.RLC function

disk driver, 3-5
TU5S, 4-15

IO.RLV function (tape driver) ,
4-3, 4-4

IO.RNA function
F11ACP, C-9
remove directory name, C-13

IO.RNE function (TTDRV), 2-31
IO.RPR function

TTDRV, 2-33, 2-75
VTDRV, 6-3, 6-6

IO.RST function (TTDRV), 2-37,
2-62, 2-64, 2-65

IO.RTT function (TTDRV), 2-39
IO.RVB function, 1-28

F11ACP, C-9
MTAACP, C-10
VTDRV, 6-4

IO.RWD function (tape driver) ,
4-3, 4-4, 4-10, 4-12

IO.RWU function (tape driver) ,
4-4, 4-10

IO.SEC function (tape driver),
4-4, 4-5

IO.SMO function (tape driver),
4-4, 4-6, 4-10, 4-12

IO.SPB function (tape driver) ,
4-4, 4-11

IO.SPF function (tape driver),
4-4, 4-11

IO.STC function
tape driver, 4-4, 4-10, 4-12
VTDRV, 6-2, 6-4, 6-5, 6-9

IO.ULK function (F11ACP), C-7,
C-,9

IO.WAL function (TTDRV), 2-41
IO.WBT' function (TTDRV), 2-44
IO.WLB function, 1-29

TTD~:V, 2-75
VTDRV, 6-4

IO.WLC function (TU58), 4-15
IO.WVB function, 1-30

F11ACP, C-9
VTDRV, 6-4

IOERR$ macro, 1-9
lOST, 1-8, 1-11

F11ACP, C-8, C-9
IQ.UMD subfunction bit, 1-31
IQ.X subfunction (disk driver) ,

3--4
IS.CC success return, 1-36

TTDRV, 2-60

INDEX

IS.CR success return, 1-36
TTDRV, 2-60

IS.ESC success return, 1-36
TTDRV, 2-61

IS.ESQ success return, 1-36
TTDRV, 2-61

IS.PND status return, 1-37
disk driver, 3-6
printer driver, 5-3
tape driver, 4-6
TTDRV, 2-61

IS.RDD status return (disk
driver), 3-6

IS.SUC success return, 1-35, 1-37
disk driver, 3-5
NLDRV, 7-1
printer driver, 5-3
tape driver, 4-6, 4-9
TTDRV, 2-61
TU58, 4-16
VTDRV, 6-7, 6-8

IS.TMO status return (TTDRV),
2-61

Isb parameter, 1-8
I/O completion, 1-33
IO.ATT function (TTDRV), 2-13
IO.CCO function (TTDRV), 2-16
IO.EIO function (TTDRV), 2-19
IO.GTS function (TTDRV), 2-26
IO.HNG function (TTDRV), 2-28
IO.RAL function (TTDRV), 2-29
IO.RNE function (TTDRV), 2-31
IO.RPR function (TTDRV), 2-33
IO.RST function (TTDRV), 2-37
IO.RTT function (TTDRV), 2-39
IO.WAL function (TTDRV), 2-41
IO.WBT function (TTDRV), 2-44
SF.GMC function (TTDRV), 2-46
SF.SMC function (TTDRV), 2-54

Item list 1, 2-23
Item list 2, 2-25

KDA50 Controller, 3-1
Kill I/O (VTDRV), 6-4

LBN, C-7
Library

RSXMAC.SML, 1-5
system macro, 1-5

Line
printer driver

I/O function summary, A-2
wrapping, 2-10

LN01, 5-1
Lock enable deaccess, C-6
Lock out access, C-6
Logical address (disk driver),

3-3
Logical block

read, 2-8, 2-37

Index-9

read (VTDRV), 6-3, 6-4
write, 2-7, 2-11, 2-16, 2-19,

2-41, 2-42, 2-44, 2-45
write (VTDRV), 6-4

Logical I/O, 1-2
Logical OR

event flags, 2-6, 2-10, 2-22,
2-30, 2-32, 2-36, 2-38,
2-40

subfunction, 2-1, 2-7, 2-11,
2-12, 2-13, 2-18, 2-29,
2-33

Logical unit, 1-3
Logical unit number

See LUN
Logical Unit Table

See LUT
Logical/physical device

association, 1-3
LP25, 5-1
LP26, 5-1
LUN, 1-2, 1-3

Assign LUN macro, 1-4
assigning physical device, 1-4
assignment, 1-17
attached device, 1-25
changing assignment, 1-4
DEASSIGN command, 1-4
Device Control Block, 1-4
get information

disk driver, 3-2
printer driver, 5-1
tape driver, 4-1
TU58, 4-13
VTDRV, 6-1

IO.ATT and IO.DET
with, 1-26

number in task, 1-4
physical to logical, 1-3
QIO$?arameter, 1-5
reassignment, 1-3
REDIRBCT command, 1-4
redir-=cting, 1-3
speci Eying, 1-3
Unit Control Block, 1-4

Lun parameter, 1-7
IO.ATT function (TTDRV), 2-13
IO.CCO function (TTDRV), 2-16
IO.EIO function (TTDRV), 2-19
IO.GTS function (TTDRV), 2-26
IO.HNG function (TTDRV), 2-28
IO.RAL function (TTDRV), 2-29
IO.RNE function (TTDRV), 2-31
IO.RPR function (TTDRV), 2-33
IO.RST function (TTDRV), 2-37
IO.RTT function (TTDRV), 2-39
IO.WAL function (TTDRV), 2-41
IO.WB'r function (TTDRV), 2-44
SF.GMC function (TTDRV), 2-46
SF.SMC function (TTDRV), 2-54

LUT, 1-3, 1-4, 1-7

Macro
issuing QIO$

condition, 1-35
status, 1-35

.MCALL

INDEX

.MCALL (Cont.)
with TTSYM$, 2-26

Modem support, 2-75
TC • AB D , 2 - 7 5
TC.ASP, 2-75
TC.DLU, 2-75

Mount
NOLABEL (tape driver), 4-13

MSDRV, 4-1
MTAACP

error, C-13
function summary, C-9
I/O function summary, C-l

MUDRV, 4-1
Multiterminal environment, 2-14

monitoring, 2-8
monitoring with TF.NOT, 2-14

N.DID (F11ACP), C-6
N.FID (FIIACP), C-6
N.FID (MTAACP), C-I0
N.FNAM (FI1ACP), C-6
N.FNAM (MTAACP), C-9, C-10
N.FTYP (F11ACP), C-6
N.FTYP (MTAACP), C-9, C-I0
N.FVER (FI1ACP), C-6
N.FVER (MTAACP), C-9, C-I0
N.NEXT (F11ACP), C-7
N.STAT (FI1ACP), C-7
N.STAT (MTAACP), C-9, C-10
Nbs parameter

10. STC ,funct i on (tape dr i ver) ,
4-4

Nes parameter
IO.STC function (tape driver),

4-4
NLDRV, 7-1

example, 7-1
output, 7-1

NOLABEL
block size (TU58), 4-17
tape (tape driver), 4-13

Not ready
tape driver, 4-7
TU58, 4-16

Null device driver
See NLDRV, 7-1

Odd data byte (tape driver), 4-12
Off line (tape driver), 4-8
Offspring task (VTDRV), 6-1

buffering, 6-4
checkpoint, 6-4
stop, 6-4

OOB
character, 2-56
CLEAR, 2-57
HELLO, 2-57
INCLUDE, 2-57

Open a file (ACP) , C-12
Operation aborted (tape driver),

4-6

assembler directive, 1-14, 1-16
Out-of-band character

See OOB

Index-l0

Overhead, system, 2-9
Overlap seek (disk driver), 3-4

Padding character
tape driver, 4-13
TU58, 4-17

Parameter
device-dependent, 1-5, 1-9
function-dependent, 1-5, 1-9
list

ACP, C-l
QIO$ (TTDRV), 2-6

Parameter2 parameter
IO.ATT function (TTDRV), 2-14
TTDRV, 2-6

Parent task
buffering (VTDRV), 6-4

Pass all (IO.RTT), 2-40
Pass-through mode, 2-9
Pbn parameter (disk driver), 3-5
Performance

RC25 stall I/O, 3-9
Physical

device name, 1-18
I/O, 1-2
logical unit

association, 1-2
Physical block number (disk

driver), 3-5
Placem4:mt

approximate, C-7
cont:rol, C-4
control (FIIACP), C-7
control attribute list, C-8
control field bit, C-7
control list format, C-7

position tape (TU58), 4-16
Power-fail

disk driver, 3-8
tape driver, 4-10

Power-fail recovery, 1-40
disk driver, 3-8

Pradd parameter
device-specific function

(VTDRV), 6-3
IO.RPR function (TTDRV), 2-34
TTDRV, 2-6

Pri parameter, 1-8
IO.ATT function (TTDRV), 2-13
IO.CCO function (TTDRV), 2-16
IO.EIO function (TTDRV), 2-19
IO.GTS function (TTDRV), 2-26
IO.HNG function (TTDRV), 2-28
IO.RAL function (TTDRV), 2-29
IO.RNE function (TTDRV), 2-31
IO.RPR function (TTDRV), 2-33
IO.RST function (TTDRV), 2-37
IO.RTT function (TTDRV), 2-39
IO.WAL function (TTDRV), 2-41
Io.wrBT function (TTDRV), 2-44
SF.GMC function (TTDRV), 2-46
SF.SMC function (TTDRV), 2-54

Print line truncation, 5-6

INDEX

Programming hint
disk driver, 3-8
printer driver, 5-5
tape driver, 4-10
TU58, 4-17

Prompt
binary

IO.EIO (TTDRV), 2-19
TF.BIN (TTDRV), 2-7, 2-35

read after
TF.RPR (TTDRV), 2-9

redisplay
IO.RPR (TTDRV), 2-33
TF.RPR (TTDRV), 2-9

then read
IO.RPR (TTDRV), 2-33

Protection word
file, C-3

Prsize parameter
device-specific function

(VTDRV), 6-3
IO.RPR function (TTDRV), 2-34
TTDRV, 2-6

Pseudo-device, 1-18
name, 1-19

QIO$, 1-2
ACP interface, C-l
angle bracket, 1-6
ast parameter, 1-9
basic operation, 1-2
brace, 1-6
bracket, 1-6
brief specific (TTDRV), 2-3
device-specific (TTDRV), 2-12
efn parameter, 1-8
fnc parameter, 1-7
function

ACP use, C-12
allowed subfunction, 2-12
device-specific

disk driver, 3-5
tape driver, 4-4
VTDRV, 6-2

standard, 1-24
function summary

FIIACP, C-8
MTAACP, C-9

isb parameter, 1-8
issuing, 1-4
issuing (tape driver), 4-12
lun parameter, 1-7
macro, 1-14, 1-15

TTDRV specific, 2-4
macro condition, 1-35
macro format, 1-6
parameter list

ACP, C-l
pri parameter, 1-8
purpose, 1-2
queuing, 1-5
sequence (tape driver), 4-12
standard

brief (TTDRV), 2-3

Index-II

INDEX

QIO$ (Cont.)
standard function

disk driver, 3-3
NOP, as, 1-24
TTDRV, 2-12
VTDRV, 6-2

status condition, 1-35
subfunction bits (TTDRV), 2-7
syntax element, 1-6

QIO$ macro
device-specific function

disk driver, 3-4
tape driver, 4-3
TU58, 4-15
VTDRV, 6-4

disk driver, 3-3
printer driver, 5-2
standard function

pri1ter driver, 5-2
tapt~ dr i ver, 4-2
TU53, 4-14
VTDRV, 6-4

VTDRV, 6-2
QIO$ parameter, 1-14

trap-dependent, 1-12
TTDRV" 2-6
typical, 1-5

QIO$C
D PB g (~n era t ion, 1-15
macro form, 1-14

QIO$C parameter, 1-14
QIO$S

DPB g(~ner a t i on, 1-15
macro form, 1-14

QIOW$ macro, 1-14, 1-15

RC25, 3--1
dismounting, 3-10
I/O delay, 3-10
performance in stall I/O, 3-9
spin-down, 3-9
unique ACP, 3-10

RDAF$ Executive macro, 1-8
RDXF$ E~ecutive macro, 1-8
Read

access, C-IO
filE', C-8

after prompt, 2-9
IO.EIO function (TTDRV), 2-20
IO.RPR (IO.RPR), 2-33

after prompt (VTDRV), 6-6
all characters, 2-8, 2-29

IO.EIO function (TTDRV), 2-19
IO.RNE function (TTDRV), 2-32
IO.RPR function (TTDRV), 2-35
IO.RST function (TTDRV), 2-38
IO.RTT function (TTDRV), 2-40

attribute, C-9, C-ll
control, C-8
control list, C-9

case conversion, 2-8
IO.EIO function (TTDRV), 2-20

CTRL/C, 2-65
default input, 2-8

Read
default input (Cont.)

IO.EIO function (TTDRV), 2-20
escape sequence processing, 2-8

IO.EIO function (TTDRV), 2-20
logical, 1-27

check (disk driver), 3-5
logical block, 2-8, 2-37

special terminator, 2-37
logical block (VTDRV), 6-3, 6-4
no echo, 2-8

IO.EIO function
IO.RAL function
IO.RNE function
IO.RPR function
IO.RST function
IO.RTT function

no filter, 2-8

(TTDRV) ,
(TTDRV) ,
(TTDRV) ,
(TTDRV) ,
(TTDRV) ,
(TTDRV) ,

2-20
2-30
2-31
2-35
2-38
2-40

IO.EIO function (TTDRV), 2-20
operation

MSDRV, 4-10
pass-through (IO.EIO), 2-21
pass-through mode, 2-9
special characters (IO.EIO),

2-21
special terminator, 2-9

IO.RAL function, 2-30
IO.RNE function, 2-32
IO.RPR function, 2-35

terminator
no echo, 2-10
no echo (IO.EIO), 2-22
table, 2-10
table (IO.EIO), 2-21
table (IO.RTT), 2-39

time-out, 2-10
IO.EIO function, 2-21
IO.RAL function, 2-30
IO.RNE function, 2-32
IO.RPR function, 2-36
IO.RST function, 2-38
IO.RTT function, 2-40

virtual, 1-28
virtual block, C-9, C-IO
virtual block (VTDRV), 6-4
write breakthrough, 2-44

Read (TU58), 4-15
Read/write access, C-IO

file, C-8
Read/write/extend access, C-IO
Ready

printer driver, 5-4
tape driver, 4-7

Record
I/O area, C-3
space, C-12

REDIRECT command, 1-4
Remote terminal

IO.EIO function (TTDRV), 2-18
Request terminated (VTDRV), 6-7
Retry

MSDRV, 4-10
MUDRV, 4-10

RETURN character, 2-66

Index-l2

INDEX

Return code, 1-34
directive condition, 1-34
I/O status condition, 1-34
testing for, 2-58

RETURN key, 2-66
Revision number, C-4
Rewind

completion (tape driver), 4-12
file, C-12
volume, C-6, C-10, C-12

RL02, last-track (disk driver),
3-8

RSXMAC.SML, 1-16
library, 1-5

RUB OUT (printer driver), 5-5
RUBOUT character

erase, 2-9, 2-32
in escape sequence, 2-69
IO.RPR function (TTDRV), 2-35
IO.RST function (TTDRV), 2-37
TF. RS'I', 2-30

RUBOUT key, 2-66
backs lash echo, 2-66

RX02 media, 3-9

SE.ATA error return, 2-61
SE.BIN error return, 2-61
SE.FIX status return, 2-61
SE.IAA error return, 2-61
SE.NAT error return, 2-61
SE.NIH error return, 2-61

VTDRV,. 6-8, 6-9
SE.NSC error return, 2-62
SE.SPD error return, 2-62
SE.UPN error return, 2-62
SE. VAL E~rror return, 2-62
SE.xxx local definition (TTDRV),

2-26
Secondary pool (FllACP), C-5
Seek overlap (disk driver), 3-4
Select E~rror

tape driver, 4-9
TK50, 4-9

Select recovery (tape driver),
4-9

Send XO]~F

IO.EIO function (TTDRV), 2-22
IO.RAL function (TTDRV), 2-30
IO.RNE function (TTDRV), 2-32
IO.RPR function (TTDRV), 2-36
IO.RST function (TTDRV), 2-38

Set
multiple characteristic

SF.SMC, 2-54
multiple characteristic (VTDRV),

6,-3
terminal characteristic (VTDRV),

6-2
SET TERI~/AUTOBAUD command, 2-75
SF.GMC function

I/O status block (TTDRV), 2-46
TTDRV, 2-46
VTDRV, 6-2, 6-6

SF.SMC function
full-duplex operation, 2-73
I/O status block (TTDRV), 2-54
TTDRV, 2-54
VTDRV, 6-3

Significant event, 1-9, 1-13,
1-33

AST, 1-13
event flag, 1-9, 1-13
I/O status, 1-13

Size control, C-5
Size parameter

device-specific function
(VTDRV), 6-3

disk driver, 3-3, 3-5
IO.CCO function (TTDRV), 2-16
IO.EIO function (TTDRV), 2-19
IO.GTS function (TTDRV), 2-26
IO.RAL function (TTDRV), 2-29
IO.RNE function (TTDRV), 2-31
IO.RPR function (TTDRV), 2-34
IO.RST function (TTDRV), 2-38
IO.RTT function (TTDRV), 2-40
IO.STC function (tape driver),

4-4
IO.WAL function (TTDRV), 2-41
IO.WBT function (TTDRV), 2-45
SF.GMC function (TTDRV), 2-46
SF.SMC function (TTDRV), 2-55
standard function (printer

driver), 5-2
standard function (tape driver),

4-3
TTDRV, 2-6

Space operation (disk driver),
4-11

Spacing record, C-12
SPCIO$ macro, 1-7
Stadd parameter

device-specific function
(VTDRV), 6-3

disk driver, 3-3, 3-5
IO.CCO function (TTDRV), 2-16
IO.EIO function (TTDRV), 2-19
IO.GTS function (TTDRV), 2-26
IO.RAL function (TTDRV), 2-29
IO.RNE function (TTDRV), 2-31
IO.RPR function (TTDRV), 2-34
IO.RST function (TTDRV), 2-38
IO.RTT function (TTDRV), 2-40
IO.STC function (tape driver),

4-4
IO.WAL function (TTDRV), 2-41
IO.WBT function (TTDRV), 2-44
SF.GMC function (TTDRV), 2-46
SF.SMC function (TTDRV), 2-55
standard function (printer

driver), 5-2
standard function (tape driver),

4-3
TTDRV, 2-6

Stall I/O
RC25, 3-9

delay, 3-10

Index-13

Stall I/O
RC25 (Cont.)

performance, 3-9
Stat plrameter
devi~e-specific function

(VTDRV), 6-3
Statistics block, C-4
Status

off-Line (tape driver), 4-12
on-line (tape driver), 4-12
second word (tape driver), 4-9
second word, information, 4-9
tape transport (tape driver),

·t-12
word (Fl1ACP), C-7
word (tape driver), 4-8

Status code
directive, B-5
I/O, B-1
numel:ic, B-1
sw1 parameter

IO.STC function (VTDRV), 6-5
TTDRV, 2-58

Status return, 2-58
disk driver, 3-5
IO.STC function (VTDRV), 6-5
printer driver, 5-3
tape driver, 4-6
TU58, 4-16
VTDRV, 6-7

Storage, insufficient (VTDRV),
6-H

STSE$ macro, 1-10
Subfunction

alLowed (TTDRV), 2-12
Logical OR, 2-7, 2-11

Subfunction bits (TTDRV), 2-7
Success code

directive, B-7
Successful completion

TU58, 4-16
VTDRV, 6-8

Sw1 parameter
device-specific function

(VTDRV), 6-3
IO.STC function (VTDRV), 6-5

Sw 2 par"ameter
IO.STC function (VTDRV), 6-5

Switch character, 2-57
entering, 2-57
specifying, 2-57

Symbol
local definition (TTDRV), 2-26

Synchrcnous System Trap
See SST

System library device, 1-19
System Macro Library, 1-5, 1-9,

1-13, 1-16
System overhead (TF.RPR), 2-9
System trap, 1-10

T.UNKO, 2-51
T.xxxx

local definition (TTDRV), 2-26

INDEX

T.xxxx (Cont.)
terminal type values (VTDRV),

2-51
Table parameter

IO.RTT function (TTDRV), 2-40
Table parameter (TTDRV), 2-6
Tape mark (tape driver), 4-11
Task

abort (printer driver), 5-6
aborting (tape driver), 4-11
blocked, 1-10
buffering, 2-74
checkpointable

buffering, 2-74
checkpointing, 2-9
event driven, 1-12
execution interrupting, 1-10
execution suspending, 1-22
offspring

completion status (VTDRV),
6-4

request cancel (VTDRV), 6-9
tmo parameter (VTDRV), 6-4
vfc parameter (VTDRV), 6-4

offspring (VTDRV), 6-1
register, restoring, 1-12
register, saving, 1-12

TC.8BC
IO.RST function (TTDRV), 2-38
IO.RTT function (TTDRV), 2-39,

2-40
pass 8 bits, 2-32, 2-35
SF.GMC function (TTDRV), 2-51

TC.ABD
modem support, 2-75
SF.GMC function (TTDRV), 2-47

TC.ACD, SF.GMC function (TTDRV),
2-47

TC.ACR, SF.GMC function (TTDRV),
2-47

TC.ANI, SF.GMC function (TTDRV),
2-47

TC.ASP
modem support, 2-75
SF.GMC function (TTDRV), 2-47
terminal speed, 2-52

TC.AVO, SF.GMC function (TTDRV),
2-47

TC.BIN
IO.RTT function (TTDRV), 2-39
SF.GMC function (TTDRV), 2-47

TC.BLK, SF.GMC function (TTDRV),
2-47

TC.CTS
resume output

SF.SMC function (TTDRV), 2-54
return suppress state (TTDRV),

2-53
return suspend state (TTDRV),

2-53
SF.GMC function (TTDRV), 2-47
suspend output

SF.SMC function (TTDRV), 2-54

Index-14

TC.DEC, SF.GMC function (TTDRV),
2-47

TC.DLU
modern support, 2-75
SF.GMC function, 2-47

TC.EDT, SF.GMC function (TTDRV),
2-47

TC.EPA, SF.GMC function (TTDRV),
2-48

TC.ESQ, SF.GMC function (TTDRV),
2-48

TC.FDX
characteristic (VTDRV), 6-6,

6-·7
SF.GMC function, 2-48

TC.HFF, SF.GMC function (TTDRV),
2-48

TC.HFL, SF.GMC function (TTDRV),
2-48

TC.HHT, SF.GMC function (TTDRV),
2-48

TC.HLD
setting effect, 2-57
SF.GMC characteristic, 2-48

TC.HSY, SF.GMC function (TTDRV),
2-48

TC.ICS, SF.GMC function (TTDRV),
2-48

TC.ISL, SF.GMC function (TTDRV),
2-48

TC.LPP, SF.GMC function (TTDRV),
2-49

TC.MHU
buffer, 2-55
SF.GMC characteristic, 2-49
special processing, 2-55

TC.NBR, SF.GMC function (TTDRV),
2-49

TC.NEC, SF.GMC function (TTDRV),
2-49

TC.OOB
buffer, 2-56
SF.GMC characteristic, 2-49
special processing, 2-56

TC.PAR, SF.GMC function (TTDRV),
2-49

TC.PPT, SF.GMC function (TTDRV),
2-49

TC.PRI, SF.GMC function (TTDRV),
2-49

TC.PTH
disable control characters,

2--21
pass CTRL/O as normal, 2-63
SF.GMC function, 2-49

TC.RAT, SF.GMC function (TTDRV),
2-49

TC.RGS, SF.GMC function (TTDRV),
2-49

TC.RSP
SF.GMC characteristic, 2-49
terminal speed, 2-52

TC.SCP
characteristic (VTDRV), 6-7

INDEX

TC. SCP (Cont.)
SF.GMC function, 2-49

TC.SFC, SF.GMC function (TTDRV),
2-49

TC.SLV, SF.GMC function (TTDRV),
2-49

TC.SMR
characteristic (VTDRV), 6-7
setting effect, 2-57

- SG. GMC function (TTDRV), 2-50
TC.SSC

buffer, 2-56
setting effect, 2-57
SF.GMC function (TTDRV), 2-50
special processing, 2-56

TC.TBF
flush with TC.TBF, 2-54
SF.GMC function (TTDRV), 2-50
unprocessed characters, 2-53

TC.TBM, SF.GMC function (TTDRV),
2-50

TC.TBS, SF.GMC function (TTDRV),
2-50

TC.TLC
CLI setup, 2-65
SF.GMC function (TTDRV), 2-50

TC.TMM, SF.GMC function (TTDRV),
2-50

~C.TPP, terminal type values,
2-51

TC.TSY
CTRL/Q, 2-64
CTRL/S, 2-64
SF.GMC function (TTDRV), 2-50

TC.TTP
characteristic (VTDRV), 6-7
SF.GMC function (TTDRV), 2-47,

2-50
TTDRV action, 2-52

TC.VFL, SF.GMC function (TTDRV),
2-50

TC.WID, SF.GMC function (TTDRV),
2-51

TC. XSP
SF.GMC function (TTDRV), 2-51
terminal speed, 2-52

TC.xxx local definition (TTDRV),
2-26

Terminal
attaching (TTDRV), 2-13

AST, 2-13
characteristic

get multiple, 2-46
set multiple, 2-54

characteristic (VTDRV), 6-7
characteristic error (VTDRV),

6-8
control character, 2-62
detached

buffer flush, 2-73
disconnecting, 2-28
input

checkpointing, 2-76
line length, 2-2

Index-IS

Termin31 (Cont.)
multiple monitoring, 2-8
pseujo-input, 1-19
slav,=d

unsolicited input, 2-14
supp'Jrt

get, 2-26
IO.GTS information, 2-27

type values (TC.TTP), 2-51
unre.ld ou tpu t

reception rate, 2-57
tr.lnsmission rate, 2-57

widt1, 2-71
Termin . .3.1 driver

See 'rTDRV
Termindtor

read
no echo, 2-10
sp!?cial, 2-9

speclal, 2-9
table, 2-10

contents, 2-39
read, 2-39
s i ;~e, 2-39

TF.AST subfunction, 2-7
TF.BIN subfunction, 2-7

with IO.EIO function, 2-19
with IO.RPR function, 2-33,

2-35
TF.CCO subfunction, 2-7

with IO.EIO function, 2-19
with IO.WAL function, 2-42
with IO.WBT function, 2-45

TF.ESQ subfunction, 2-7
with IO.ATA function, 2-15

TF.NOT subfunction, 2-7
with IO.ATA function, 2-15
with IO.ATT function, 2-13

TF.RAL subfunction, 2-8
with CTRL/Q, 2-64
with CTRL/R, 2-64
with CTRL/S, 2-64
with CTRL/U, 2-64
with CTRL/X, 2-64
with CTRL/Z, 2-64
with ESC key, 2-66
with IO.EIO function, 2-19
with IO.RNE function, 2-32
with IO.RPR function, 2-35
with IO.RST function, 2-38
with IO.RTT function, 2-40
with RETURN key, 2-66

TF.RCU subfunction, 2-8
with cursor control, 2-75
with IO.EIO function, 2-20
with IO.RTT function, 2-40
with IO.WAL function, 2-42
with IO.WBT function, 2-45

TF.RDI subfunction, 2-8
item 1 is t 1, 2 - 2 4
with IO.EIO function, 2-20

TF.RES subfunction, 2-8
with IO.EIO function, 2-20

INDEX

TF.RLB subfunction, 2-8
item list 1, 2-23
with IO.EIO function, 2-18

TF.RLU subfunction, 2-8
with IO.EIO function, 2-20

TF.RNE subfunction, 2-8
with IO.EIO subfunction, 2-20
with IO.RAL function, 2-30
with IO.RPR function TTDRV,

2-35
with IO.RST function, 2-38

TF.RNF subfunction, 2-8
with CTRL/R, 2-64
with DELETE, 2-66
with RUBOUT, 2-66

TF.RNO subfunction
with IO.RTT function, 2-40

TF.RPR subfunction, 2-9
item list 1, 2-23, 2-24
system overhead, 2-9
with IO.EIO function, 2-20

TF.RPT subfunction, 2-9
with CTRL/U, 2-64
with CTRL/X, 2-64
with CTRL/Z, 2-64
with ESC key, 2-66
with IO.EIO function, 2-21
with RETURN key, 2-66

TF.RST subfunction, 2-9
set TF.TNE for no echo (TTDRV),

2-9
with CTRL/R, 2-64
with CTRL/U, 2-64
with CTRL/X, 2-64
with CTRL/Z, 2-64
with IO.EIO function, 2-21
with IO.RAL function, 2-30
with IO.RNE function, 2-32
with IO.RPR function, 2-35

TF.RTT subfunction, 2-10
item list 1, 2-24
with IO.EIO function, 2-21
with IO.EIO!TF.RLB function,

2-39
TF.TMO subfunction, 2-10

item list 1, 2-23
with IO.EIO function, 2-21
with IO.RAL function, 2-30
with IO.RNE function, 2-32
with IO.RPR function, 2-36
with IO.RST function, 2-38

TF.TNE subfunction, 2-10
with IO.EIO function, 2-22

TF.WAL subfunction, 2-10
with IO.CCO function, 2-17
with IO.EIO function, 2-22
with IO.WBT function, 2-45

TF.WBT subfunction, 2-10
with IO.CCO function, 2-17
with IO.EIO function, 2-22
with IO.WAL function, 2-43

TF.WIR subfunction, 2-11
with IO.EIO function, 2-22

Index-16

TF.WLB subfunction, 2-11
item list 2, 2-25
with IO.EIO function, 2-18

TF.XCC subfunction, 2-11
with IO.ATA function, 2-15
with IO.ATT function, 2-13

TF.XOF subfunction, 2-11, 2-30
ignored, 2-22
with IO.EIO function,
with IO.RAL function,
with IO.RNE function,
with IO.RPR function,

2-·36

2-22
2-30
2-32
2-33,

with IO.RST function, 2-38
Time out, 2-10

error (TU58), 4-16
interval, 2-10
IO.EIO function
IO.RAL function
IO.RNE function
10. RPR: function
IO.RST function
10. RTT' function

TK25 device, 4-1
TK50 device, 4-1
Troo parameter

(TTDRV) ,
(TTDRV) ,
(TTDRV) ,
(TTDRV) ,
(TTDRV) ,
(TTDRV) ,

device-specific function
(VTDRV), 6-3

IO.RAt function (TTDRV),
IO.RNE function (TTDRV),
IO.RPR function (TTDRV),
IO.RST function (TTDRV),
IO.RTT function (TTDRV),
TTDRV, 2-6, 2-10

Trap, 1-11
asynchronous, 1-11

See also AST
synchronous, 1-11

2-21
2-30
2-32
2-36
2-38
2-40

2-29
2-31
2-34
2-38
2-40

See also SST
Trap-dependent parameter, 1-12
Truncate

file, C-8
size, C-8

Truncation
print line, 5-6

TSV05 device, 4-1
TTDRV

allowed subfunction, 2-12
CLI operation, 2-65
device support, 2-1
device-specific function, 2-12
device-specific 010$, 2-12
features, 2-1
I/O function summary, A-3
I/O subfunction summary, A-3
introduction, 2-1
specific 010$

brief, 2-3, 2-4
standard function, 2-12
standard 010

brief, 2-3, 2-4
TTSYM$

using .MCAL,L with, 2-26

INDEX

TTSYNC
CTRL/S, 2-64

TU58 device, 4-13
TU58 driver

I/O function summary, A-I
Type-ahead buffer, 2-72

character echo, 2-73
character unprocessed, 2-53
CTRL/C, 2-73
CTRL/O, 2-73
CTRL/O, 2-73
CTRL/S, 2-73
CTRL/X, 2-73
flush, 2-8
flush with TC.TBF, 2-54
storing character, 2-72

UIC
file owner, C-3

UMDIO$ macro diagnostic, 1-32
Unattached device (tape driver),

4-7
Undate mode, C-6
Unlabeled tape, C-ll
Unlock block, C-9
Unsolicited input, 2-2

buffer full, 2-51
character AST, 2-7
CTRL/C, 2-65
notification

IO.ATA function, 2-15
notifying, 2-7
slaved terminal, 2-14

Update mode, C-lO

VBN
high, C-lO
low, C-lO

VCK reset
I/O sequence (tape driver) ,

4-12
VCK status (tape driver), 4-12
Version number (FllACP), C-6
Vertical format control

See VFC
See Vfc parameter

VFC
$, 2-70
+, 2-70
0, 2-70
1, 2-70
blank, 2-70
character, 2-70
character (printer driver), 5-4,

5-5
double space (printer driver),

5-5
internal vertical format

(printer driver), 5-5
IO.CCO function (TTDRV), 2-70
IO.RPR function (TTDRV), 2-70
IO.WBT function (TTDRV), 2-70
IO.WLB function (TTDRV), 2-70
IO.WVB function (TTDRV), 2-70

Index-17

INDEX

VFC (Cont.)
null, 2-70
overprint (printer driver), 5-5
page eject (printer driver),

5-5
prompting output (printer

driver), 5-5
single space (printer driver) ,

5-5
Vfc parameter

device-specific function
(VTDRV), 6-3

IO.CCO function (TTDRV), 2-16
IO.RPR function (TTDRV), 2-34
IO.WAL function (TTDRV), 2-42
IO.WBT function (TTDRV), 2-45
item list 2, 2-25
standard function (printer

driver), 5-3
TTDRV, 2-6

Virtual address (disk driver),
3-3

Virtual block
read, C-9, C-IO
read (VTDRV), 6-4
write, C-9
write (VTDRV), 6-4

Virtual I/O, 1-3
virtual terminal driver

See VTDRV
Volume

closing, C-12
foreign mounted (disk driver),

3-3
position, C-ll
position at beginning, C-ll
reinitializing, C-ll
rewinding, C-6, C-IO

Volume check
See VCK

VTDRV, 6-1
I/O function summary, A-4

Wildcard context (FIIACP), C-7
Window

size, C-5
size (FIIACP), C-5
turn, C-5

Wraparound, 2-71
IO.WAL function (TTDRV), 2-41

Write
attribute control list, C-8
attribute list, C-8

Write (Cont.)
logical, 1-29
TU58, 4-15
virtual, 1-30

Write all bits
IO.CCO function (TTDRV), 2-17
IO.EIO function (TTDRV), 2-22
IO.WBT function (TTDRV), 2-45

Write all characters
IO.WBT function (TTDRV), 2-45
TTDRV, 2-10

Write breakthrough
IO.CCO function (TTDRV), 2-17
IO.EIO function (TTDRV), 2-22
IO.WAL function (TTDRV), 2-43
IO.WBT function (TTDRV), 2-44
TTDRV, 2-10, 2-44
with write breakthrough (TTDRV),

2-44
Write input redisp1ayed

IO.EIO function (TTDRV), 2-22
TTDRV, 2-11

Write logical block
pass all (TTDRV), 2-41
TTDRV, 2-7, 2-11, 2-16, 2-19,

2-41, 2-42, 2-44, 2-45
VTDRV, 6-4

Write pass all (TTDRV), 2-7
Write pass all bits

IO.WAL function (TTDRV), 2-41
Write virtual block, C-9

VTDRV, 6-4
Write-check

driver initiate, C-6
Write-lock

tape driver, 4-8
TU58, 4-16

WTSE$ macro, 1-15, 1-22
efn, 1-23
example, 1-10
purpose, 1-10
syntax, 1-22

XOFF, 2-9, 2-11
IO.EIO function (TTDRV), 2-21
send, 2-11

IO.EIO function
IO.RAL function
IO.RNE function
IO.RPR function
IO.RST function

XON, 2-9

(TTDRV) ,
(TTDRV) ,
(TTDRV) ,
(TTDRV) ,
(TTDRV) ,

2-22
2-30
2-32
2-36
2-38

IO.EIO function (TTDRV), 2-21

Index-18

READER'S COMMENTS

MicrolRSX I/O Drivers
Reference Manual

AA-Z507B-TC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company"s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Oth.~r (please specify)

Name __ Date ____________________________ __

Organization

Street

City ___________________________ _ State ______ Zip Code _____ _

or Country

- - DoNotTear-FoldHereandTape - - - - - - - - - -

~DmDDmD IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

No Postage
Necessary

if Mailed in the
United States

, - - - DoNotTear-FoldHere -

