
-
-

EY -0060E-SG-020 1

Programming
RSX-llM in MACRO

A Self-Paced Course

Volume II

EY-0060E-SG-020 1

Programming
R5X- 11 M in MACRO

A Self-Paced Course

Student Workbook
Volume II

Prepared by Educational Services
of

Digital Equipment Corporation

Copyright © 1982, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS lAS

9/82/14

CONTENTS
VOLUME I

SG STUDENT GUIDE

INTRODUCTION ••••••••••• • 3
PREREQUISITES. • . • • • • • • • ••
COURSE GOALS AND NONGOALS ••••••

• • • • • • • • 4
• • • • 4

COURSE ORGANIZATION •••••
COURSE MAP DESCRIPTION • • • • . •
COURSE MAP • • • . • • • • • • •
COURSE RESOURCES • • •• •• •

Required References.
Optional References.

HOW TO TAKE THE COURSE • • •
PERSONAL PROGRESS PLOTTER. •

1 USING SYSTEM SERVICES

• • • • 5
• . . . • • . • • • . 5

• • • • 6
• • • • • • • 7

· • . • 7
. . . . • 7

• • • • • • • •• 8
.13

INTRODUCTION. • • • • • • •• • •••• 17
OBJECTIVES. • • • • • • • • • • •• • ••••••• 17
RESOURCES •••..••••••••••.••.••••• 17
WHAT IS A SYSTEM SERVICE? • • . •..•••.• 19
WHY SHOULD YOU USE SYSTEM SERVICES? •••.•••••• 19

To Extend the Features of Your Programming
Language. • • • • • • • • • • • • •• • •••• 19
To Ease Programming and Maintenance ••••••••• 19
To Increase Performance. •• • ••••••••• 20

WHAT SERVICES ARE PROVIDED? •••••••••••••• 20
System and Task Information. • • •• . ••••• 20
Task Control •••••••••••••••••••• 21
Task Communication and Coordination.. • •••• 21
I/O Peripheral Devices. • • • • • •• • •••• 21
File and Record Access. • • • • • •• • •••• 21
File and Record Access Systems ••••••••••• 22
Memory Use. • • • • • • • ••••••••• 22

OTHER SERVICES AVAILABLE. • •• •••••• • .23
HOW SERVICES ARE PROVIDED. • • • • • • ••••• 25

Executive Directives. • • • • • • • • • •••• 25
Code Inserted into Your Task Image ••••••••• 28

SYSTEM LIBRARIES •••••••••••••••••••• 30

2 DIRECTIVES

INTRODUCTION •••• • • •• • ••••••• 35
OBJECTIVES. • • • • • • • • • • • • • • • • •••• 35
RESOURCES. • • • • • • • • • • • • • • •• • •••• 35
INVOKING EXECUTIVE DIRECTIVES FROM A USER TASK. • .37

Directive Processing •••••••••••••••• 37

iii

Functions Available Through Executive
Directives ••••••••••••••••••••• 39
The Directive Parameter Block (DPB). • • •• • .41
The Directive Status Word (DSW) ••••••••••• 42
Sample Program ••••••••••••• • .43

DIFFERENT FORMS OF THE DIRECTIVE CALLS • . ••• 46
The $ Form. • • • • •••• • • . ••• 46
The $C Form.. • •••••••••••••••• 49
The $S Form.. • • • • • • • • • • • •• • .51
Repeated Use of a Directive with Different
Arguments ••••••••••••••••

ADDITIONAL DIRECTIVE CONSIDERATIONS •••••••
An Alternative Method for Error Checking ••
Run Time Conversion Routines ••••••
Notifying a Task When an Event Occurs ••

Event Flags •••••••••••••••
Using Event Flags for Synchronization ••
Asynchronous System Traps (ASTs) • • • •

Synchronous System Traps (SSTs) •••••••

3 USING THE QIO DIRECTIVE

• .58
• .62
• .62
• .68
• .69
• .69
• .70
• .75
• .82

INTRODUCTION • • •• • • • • • • • • •••• 91
OBJECTIVES • • • • • • • • • •• • • • • • .91
RESOURCES. • • • •• ••••••• • •••• 91
OVERVIEW OF QIO DIRECTIVES • • •• • •••••••• 93
PERFORMING I/O . • • • • • • • • . • •••••• 93
I/O FUNCTIONS. • • • • • • • • •••••••••• ~94

Logical Unit Numbers (LUN) • • • • • •••• 95
Synchronous and Asynchronous I/O • • • • • .95

MAKING THE I/O REQUEST • • • • • • • • • • • • 101
Error Checking and the I/O Status Block. • • • • • 103

THE QIO DIRECTIVES • • • • • • • • ••• • 105
Synchronous I/O. • • • • • • • • • • • • • 105
Asynchronous I/O • •• •••••••••••• III
Synchronization With Asynchronous I/O ••••••• 112

TERMINAL I/O • 120
Device Specific Functions ••••••••••••• 120
I/O Status Block and Terminating Characters •••• 120
Read After Prompt.. ••• • • • • • • • • 123
Read No Echo • • • • • • • • • • • • • • • • • • • 126
Read with Timeout. • • • • • •• •• • • • 128
Terminal-Independent Cursor Control •••••••• 131
Formatting Output Data • • • • • • • • • • •• 135
Formatting ASCII Data ••••••••••••••• 145

iv

4 USING DIRECTIVES FOR INTERT ASK COMMUNICATION

INTRODUCTION • 151
OBJECTIVES • 151
RESOURCE • 151
USING TASK CONTROL DIRECTIVES AND EVENT FLAGS ••••• 153

Directives • • • • • • • • • • 154
SEND/RECEIVE DIRECTIVES. • • • • • • • • • •• 163

General Concepts • • • • • • • • • • • • • • • • • 163
Directives • • • • • • • • • • • • •• 163
Synchronizing Send Requests With
Receive Requests • • • • •••
Using Send/Receive Directives

• 164

for Synchronization •••••••••••••••• 181
Slaving the Receiving Task •••••••••••• 181

PARENT/OFFSPRING TASKING • • • • • • • • • • • • • • • 182
Directives Issued by a Parent Task • • • • •• 184
Directives Issued by an Offspring Task • • •••• 194
Chaining of Parent/Offspring Relationships • • 195
Other Parent/Offspring Considerations ••••••• 201
Task Abort Status ••••••••••••••••• 206
Summary of Various Methods of Data Transfer
Between Tasks •••••••••••••• • • • 208
Other Methods of Transferring or Sharing Data
Between Tasks ••••••••••••••••••• 209

5 MEMORY MANAGEMENT CONCEPTS

INTRODUCTION •••• • • • • • • • • • • • • • 213
OBJECTIVES • 213
RESOURCES. • • • • • • • • • • • • • •• • •••• 213
GOALS OF MEMORY MANAGEMENT • • • • • • • • • • • • • • 215
HARDWARE CONCEPTS. • • • • • • • • • ••••••• 215

Mapped Versus Unmapped Systems • •• ••••• 215
Virtual and Physical Addresses • • •• •• 220
The KT-l1 Memory Management Unit ••••••••• 223

Mode Bits. • • • • • • • •• • •••••• 223
Active Page Registers (APRs) ••• 223

Converting Virtual Addresses to Physical
Addresses ••••••••••••

SOFTWARE CONCEPTS. • • • • • •
Virtual Address Windows ••
Regions ••••••••••

v

• • • • • 226
• • • • • 228
• • • • • 228
• • • • • 229

6 OVERLAYS

INTRODUCTION • • • • • • • • ••••• • • • • • • 235
OBJECTIVES • • • • • • • • • • • • -'235
RESOURCE • • •••• • • • • • • • • • • • 235
CONCEPTS • • • • • • • • • • • • • 237
OVERLAY STRUCTURE.. • • • • • • ••••••• 238
STEPS IN PROGRAM DEVELOPMENT USING OVERLAYS •••••• 241
THE OVERLAY DESCRIPTOR LANGUAGE (ODL). • • • • •• 241

ODL Command Line Format. •• • • • • • • • • • 241
TYPES OF OVERLAYS. • • • • • • • ••••••• 245

Disk-Resident. • • • ••••••• 245
Memory-Resident.. • ••••••••••••• 247

LOADING METHODS. • • • • • • •• • • • • • • • 251
Autoload • • • • • • • • • • • • • • • 251
Manual Load. • • • • • • ••••• 253
Comparison of a Task With No Overlays,
to One With Disk-Resident Overlays, and
One With Memory-Resident Overlays. • • •• 253
Overlaying Techniques. • • •• •• • • • • • • 254

LIBRARIES. • 262
GLOBAL SYMBOLS IN OVERLAID TASKS • • • • • • • • • 268

Resolution of Global Symbols • • • • • • • 268
Subroutine Calls • • • • • • • • • • • • • • • 271
Data References. • • •• • •••••••••• 271
Placing Data in the Root and Referencing It. • • • 272

CO-TREES • • • ••• • • • • • • • • • • • • • 282

VOLUME II
7 ST A TIC REGIONS

INTRODUCTION • • • • •• ••• • • • • • • 289
OBJECTIVES • • • • • • • • • •••• • • • • • • • 289
RESOURCE • • • • • • • • • ••••••• • • • • • 289
TYPES OF STATIC REGIONS. • • • • • • • • • • • • • • • 291
MEMORY ALLOCATION. • • • • • • • • • • • • • • 293
MAPPING. • • • • • • • • • • • •• •••• 293
REFERENCES TO A SHARED REGION. • • • • • • 299

Techniques of Referencing. • ••••••• 301
Using Overlaid Psects (Data Only) ••••••••• 301
Using Global Symbols (Data or Subroutines) • • • • 302
Using Virtual Addresses (Data Only).. • ••• 303

PROCEDURE FOR CREATING SHARED REGIONS
AND REFERENCING TASKS. • • • • • • • • •• •••• 307

Creating a Resident Common or Resident Library • • 307
Creating a Referencing Task •••••••••••• 315

DEVICE COMMONS • 326

vi

8 DYNAMIC REGIONS

INTRODUCTION • • • • • • • • • • • • • • • • • 337
OBJECTIVES • • • • • • • • • • • • • • 337
RESOURCE • • • • • • • • • • • • • • • • • • •• • 337
SYSTEM FACILITIES. • • • • • • • • •••• • • 339
REQUIRED DATA STRUCTURES • • • • • • • • • • • • • 341

Region Definition Block (RDB). • ••••••• 341
Creating an RDB in MACRO-II. •• • •••••• 345
Window Definition Block (WDB). • ••••••• 347
Creating a WDS in MACRO-II • • • • • • • • • • 349

CREATING AND ACCESSING A REGION. • •• •• • • 351
Creating a Region. • • • • • • • • • • • • • • 352
Attaching to a Region. •• • ••••••••• 355
Creating a virtual Address Window. • • • • • • 356
Mapping to a Region. • • • • ••••• 356

SEND- AND RECEIVE-BY-REFERENCE • • • • • • • • 365
The Mapped Array Area. • • • • • • •• 373

9 FILE 1/0

INTRODUCTION • • • • • • • • • • • • • • • • • 383
OBJECTIVES • • • • • • • • •••••••• 383
RESOURCES. • • • • • • • • • ••••• 383
OVERVIEW • • • • •• • • • • • • • • • • • • • • • 385
TYPES OF DEVICES • • • • • • • • • • • • • • •• • 385

Record-Oriented Devices. • • • • • • • • • • • 385
File-Structured Devices. • • • • • •• •• •• 385

Types of File-Structured Devices • • • • • 386
COMMON CONCEPTS OF FILE I/O. • • • • • • • • • • • • • 388

Common Operations ••••••••••••••••• 388
Steps of File I/O.. •• • • • • • • • • • • • 388

FILES-II • 389
FILES-II Structure • •• • • • •• • ••• 389
Directories. • • • • • • • • ••••• 394
Five Basic System Files. • • • • • • • • •• • 397
Functions of the ACP • • • 398

OVERVIEW AND COMPARISON OF FCS AND RMS •••••• 401
Common Functions • • • • • • • • • • • • • 401

FCS FEATURES • • • • • • • • • • • • •• • 403
File Organizations ..• • • ••••• 403
Supported Record Types • • • • • • •••••• 403
Record Access Modes. • •••••••••••• 407
File Sharing • • • • • • • • • • • •••••• 409

RMS FEATURES • • • • • •• • • • • • • • • • • • • 410
File Organizations • •• • • • • • • • • • • • 410
Record Formats • • • •• • •• •••••• 412
Record Access Modes. • • • • • • • •• • ••• 412
File Sharing Features. • ••••••• 414
Summary. • • • • • •• • • • • • • • • • • • • 415

vi i

10 FILE CONTROL SERVICES

AP

INTRODUCTION • • • • • • • • • • • • • 419
OBJECTIVES • • • • • • • • • • • • • • 419
RESOURCE • • • • • • • • • • • • •••• • • • • • 419
REVIEW OF FILE I/O • • • • • • • • • • • • • • • • • • 421
INTRODUCTORY EXAMPLE • • • • • • ••• • ••• 422
USING FCS • ~ • • • • • • • • • • • • • • • • 427

Preparing to Open a File • • • • • • • • • • • • • 427
Initialization of the FSR. • • • • • • • •• ~ 429
The File Descriptor Block (FDB). • • • • • 431

Functions of the FDB • • • • • • • • • • • • • 431
Allocating Space for FDBs. •• • ••••• 432
Initializing an FDB •••••••••••••• 432

Specifying New File Characteristics. • • • 433
Selecting Data Access Methods. • • •• • ••• 435
Specifying Data Access Methods • • • • • • • • 437
Additional Initialization of the FDB
for Record I/O • • • • • • • • • • • • • • • • • • 438
Additional Initialization for Block I/O •••••• 439
Initializing the File-Open Section of FDB. • • 440

Setting Up a File Specification in the FDB • • 440
Setting Up the Dataset Descriptor. •• • ••• 441
Setting Up the Default Filename Block. • ••• 442
Initializing the File-Open Section
Prior to Opening the File. • • 443
Opening a File • • • • • • • • • • • • • • • • • • 450

ERROR CHECKING • • • • • • • • • • • • • • • • • • 453
PERFORMING RECORD I/O. • • • • • • • • • • • • • • 456

Different Forms of PUTS and GET$ • • • • •• • 456
Sequential Access. • ••••••••••• 457
Random Access. • • • • • • •••••• 459
Closing the File • • • . • • • • • •• 460

PERFORMING BLOCK I/O • • • • • • • • • • • • • 477
READ$ and WRITE$ Calls • • • • • • • • 477
Synchronization and Error Checking • • • • • • 478

ADDITIONAL TOPICS. • • •• ••• • •••••• 487
Deleting a File •••••••••••••••••• 487
File Control Routines. • • • • • • • • • • •• 487
Command Line Processing. • •••••••••• 488

APPENDICES

APPENDIX A SUPPLIED MACROS. . · · · · · · · · · · 491
APPENDIX B CONVERSION TABLES. · · · · · · · · · · 513
APPENDIX C FORTRAN/MACRO-II INTERFACE · · · · . . . · 515
APPENDIX D PRIVILEGED TASKS . · · · · · · · · · · 517
APPENDIX E TASK BUILDER USE OF PSECT ATTRIBUTES . · · 519

viii

APPENDIX F
APPENDIX G
APPENDIX H

ADDITIONAL SHARED REGION TOPICS ••
ADDITIONAL EXAMPLES ••••••••
LEARNING ACTIVITY ANSWER SHEET • •

• • • • • • 523
• • • • 537

• • • • • • 541

GL GLOSSARY

FIGURES

1-1 Using Executive Di~ectives to Service a Task. •• .26
1-2 Using Executive Directives to Receive Services

from Other Tasks. • • • • • • • • •• • •••••• 27
1-3 Code Inserted into Your Task Image. • ••• • .29

2-1 Directive Implementation. • • • • • • ••••••• 39
2-2 The Directive Parameter Block. • •• • •••••• 41
2-3 The $ Form. • • • • •• •• • ••••• • .47
2-4 The $C Form ••••••• •••••••••••••• • 50
2-5 The $S Form. ••• • .52
2-6 AST Mechanics ••••••••••••••••••••• 76
2-7 Stack as Set Up by the Executive for ASTs • • ••• 78
2-8 SST Sequence. • • • • • • • • • • • • • • • • • • .84
3-1 Execution of a Synchronous I/O Request. • • • •• .97
3-2 Events in Synchronous I/O ••••••••••••••• 97
3-3 Execution of an Asynchronous I/O Request. • • 100
3-4 Event~ in Asynchronous I/O. • • • • • • • • • • • • • 100

4-1 Parent/Offspring Communication Facilities •••••• 183
4-2 Spawning Versus Chaining (Request and Pass

Offspring Information). • • • • • • • • • • • • • • • 195
5-1 Physical Address Space in an Unmapped System. • • • • 217
5-2 Physical Address Space in an l8-Bit Mapped System •• 218
5-3 Physical Address Space in a 22-Bit Mapped System. 219
5-4 Virtual Addresses Versus Physical Addresses

on an Unmapped System • • • • • • • • • • •• •• 221
5-5 Virtual Addresses Versus Physical Addresses

on a Mapped System. • • • • • • • • • • • •• •• 222
5-6 Page Address Registers Used in Mapping a Task •••• 225
5-7 A Task with Three Windows to Three Regions •••••• 231
5-8 Task in Figure 5-7 After Attaching to and Mapping

to a Fourth Region. • • • •• ••• • •••• 232

6-1 A Memory Allocation Diagram • • • 240
6-2 An Overlay Tree • • • • • •• •••••••••• 240
6-3 An Example of Disk-Resident Overlays.. ••• 246
6-4 An Example of Memory-Resident Overlays •••••••• 249
6-5 Task With Two Overlay Segments. • • •• • •••• 263
6-6 Resolution of Global Symbols ••••••••••••• 270

ix

6-7
6-8

Use of Co-Trees • • • •
Task With Co-Trees •••

. • 283
• • • 284

7-1 Tasks Using a Position Independent Shared Region ••• 295
7-2 Tasks Using an Absolute Shared Region • • • ••• 297
7-3 Program Development for Shared Regions •••••••• 300
8-1 The Region Definition Block. • • ••• • • • 342
8-2 The Window Definition Block ••••••••••••• 348
8-3 The Mapped Array Area •••••• -. • •••• 375

9-1 Example of Virtual Block to Logical Block,
to Physical Location Mapping ••••••••••••• 391

9-2 How the Operating System Converts Between
virtual, Logical, and Physical Blocks •••••••• 392

9-3 FILES-II Structures Used to Support Virtual-to-Logical
Block Mapping • 393

9-4 Directory and File Organization on a Volume • • • 395
9-5 Locating a File on a FILES-ll Volume. •• • • 396
9-6 Flow of Control During the Processing

of an I/O Request • • • • • • • • • • •• • • • • 400
9-7 Move Mode and Locate Mode • • • • • • • • 402
9-8 Sequential Files ••••••••••••••••••• 403
9-9 RMS File Organizations. • • • •• • ••••• 411

10-1
10-2
10-3
10-4

F-l
F-2
F-3
F-4

F-5
F-6

F-7

SG-l

1-1
1-2
1-3

2-1
2-2

The File Storage Region •• •••••••• • 426
Move Mode Versus Locate Mode for Record I/O •••• • 428
Block I/O Operations. • • • • • • • • • • •
The File Descriptor Block • • • • • •• • •

A Shared Region With Memory-Resident Overlays.
Referencing Two Resident Libraries.. • ••
Referencing Combined Libraries •••••••••
Building One Library, Then Building
a Referencing Library • • • • • • •• •••
Revectoring • • • • • • • • • • • • • • • • • •
Using Revectoring When Referencing Library
Has Overlays •••••• ~ • • • • • ••••
Cluster Libraries • • • • • • • • • • • • • • •

Typical Course Schedules •••••

Examples of Use of Other Services • • • • • • •
Standard Libraries •••••••••••••••
Resident Libraries. • •••••••••••

• 429
• 431

• 524
• 526
• 528

• 530
• 531

• 533
· . • 535

TABLES

· . .
.12

.24

.30

.32

Types of Directives ••••••••40
• 61 Summary of Directive Forms. • ••••

x

3-1 Common (Standard) I/O Function Codes •••••••••• 94
3-2 I/O Parameter List for Standard I/O Functions • • •• 102
3-3 Some Special Terminal Function Codes ••••••••• 122
3-4 Sample Editing Directives for $EDMSG ••••••••• 137

4-1 Task Control Directives and Their Use
for Synchronizing Tasks ••••••••••••••• 155

4-2 Stopping Compared to Suspending or Waiting •••••• 156
4-3 Event Flag Directives and Their Use

for Synchronizing Tasks ••••••••••••••• 156
4-4 The Send/Receive Data Directive • • • • • • • • • • • 164
4-5 Methods of Synchronizing a Receiving Task (RECEIV)

with a Sending Task (SEND) •••••••••••••• 165
4-6 Standard Exit Status Codes •••••••••••••• 184
4-7 Comparison of Parent Directives • • • • • • • • • •• 185
4-8 Directives Used by a Task to Establish

a Parent/Offspring Relationship • • • • • • • • • •• 186
4-9 Directives Which Return Status to a Parent Task • 194
4-10 Directives Which Pass Parent/Offspring Connections

to Other Tasks. • • • • • • • • • • • •• • ••• 196
4-11 Task Abort Status Codes • • • • • • • • • •••• 207
4-12 Comparison of Methods of Data Transfer

5-1
5-2

6-1
6-2

7-1
7-2
7-3

7-4

8-1
8-2
8-3

Between Tasks • 208

Mapped Versus Unmapped Systems ••••••
APR and Virtual Address Correspondence ••

Comparison of Overlaying Methods ••
How Global Symbols Are Resolved ••

. . .
• • 216

• • • • 224

• • • 260
• • • 269

Types of Static Regions Available on RSX-11M ••••• 292
Techniques of Referencing a Shared Region •••••• 305
Effect of /CODE:PIC, /SHAREABLE:COMMON, and
/SHAREABLE:LIBRARY on a Shared Region's STB ••••• 306
Required Switches and Options for Building
a Shared Region • • • • • •• ••

Memory Management Directives.
Region Status Word ••••••
Window Status Word ••••••

• • 309

• •• • 340
• • • • 344

• • 349

9-1 Comparison of Physical, Logical and Virtual Blocks •• 390
9-2 Examples of Use of F11ACP Functions • • • • • • • • • 399
9-3 Comparison of FCS Record Types •••••••••••• 406
9-4 Comparison of Sequential Access I/O and

Random Access I/O • • • • • • • •• •• • • • • • 408
9-5 File Organization, Record Formats, and Access Modes. 413
9-6 Comparison of FCS and RMS •••••••••••••• 415

xi

10-1
10-2

8-1
8-2

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10

3-1
3-2

3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10

4-1
4-2
4-3
4-4

4-5
4-6
4-7
4-8

4-9

6-1
6-2
6-3

When the User Record Buffer Is Needed • • •
Types of Access • • • • • • • • • • • •

Decimal/Octal, Word/Byte/Block Conversions ••
APR/Virtual Addresses/Words Conversions • • •

436
• • 445

513
• 513

EXAMPLES

Requesting a Task • • • • • • • • •
Using thec $ Form of the Directives •
Using the $C Form of the Directives •

.Using the $S Form of the Directives •
Using Several Directives •••••••
Waiting for an Event Flag •••••
Setting an Event Flag in a Task • • •

• • • .45
• • •• .54

.56

.57
• • • • • • .66

• • • .72

Using a Requested Exit AST. • • • • • • • ••
.74
.79
• 81
.86

Using an AST in the Mark Time Directive •••••••
Using SSTs. • • • • • • •• • ••••••••

Synchronous I/O • • • • • • • • • • • • • • • • • 109
Asynchronous I/O Using Event Flags
for Synchronization • • • • • • •• ••• 114
Asynchronous I/O Using an AST for Synchronization • • 118
Prompting for Input • •• •••• •••••• 124
Read No Echo. • • • • • • • • • • • •• • •••• 127
Read With Timeout. • • • • • • • • • • • •• 129
Terminal Independent Cursor Control • • • • • • • • • 133
Formatting Numeric Data • • • • • • • • • • • • • • • 140
Formatting Directive and I/O Error Messages • •• 143
Formatting ASCII Data • • • • •• • • • • 146

Synchronizing Tasks Using Suspend and Resume ••••• 158
. Synchronizing Tasks Using Event Flags • • • • • • • • 161

Synchronizing a Receiving Task Using Event Flags ••• 168
A Receiving Task Which Can be Run Before or After
the Sender ••••••••••••••••••••
Synchronizing a Receiving Task Using RCDS$ ••
A Task Which Spawns PIP • • • • • • • • • •

• • 173
• • 178

c 188
• 191 A Generalized Spawning Task ••••••••••••

An Offspring Task Which Chains its Parent/Offspring
Connection to PIP • • • • • • • • • • • • • • • • • • 198
A Spawned Task Which Retrieves a Command Line • • • • 203

Description of An Overlaid Task ••••••••••• 239
Map File of Example 6-1 Without Overlays ••••••• 255
Map File of Example 6-1 With Disk-Resident
Overlays. • • • • • • • • • • • • • • • • • • 257

xii

6-4

6-5
6-6

7-1
7-2
7-3
7-4

8-1
8-2
8-3

8-4
8-5
8-6

10-1
10-2

10-3

10-4
10-5
10-6
10-7

G-1
G-2

Map File of Example 6-1 With Memory-Resident
Overlays.. • •••••••••••••••••• 259
A Task With Two Overlay Segments. • • • • • •• • 266
Complex Example Using Overlays. • • • • • • •• • 276

Resident Common Referenced With Overlaid Psects ••• 313
Resident Common Referenced with Global Symbols •••• 320
Shared Library. • • • • • • • • •• • 324
Creating and Using a Device Common. • • • •••• 331

Creating a Named Region ••••••••••••••• 354
Creating a Region and Placing Data in It ••••••• 359
Attaching to an Existing Region and Reading Data
From It • • • • • • • • • • • • • • • • • 363
Send-by-Reference • • • • • •
Receive-by-Reference •••••
Use of the Mapped Array Area.

. • • . 368
. . • • • . . • 371

• • • • • • 378

Creating a File in MACRO-ll • •••••••••• 424
Creating a File of Fixed Length Records, Initializing
FDB at Assembly Time ••••••••••••••••• 463
Creating a File of Fixed Length Records, Initializing
FDB at Run Time ••••••••••••••••• 467
Accessing a File in Locate Mode • • • • • • • • • • • 470
Accessing a File in Random Mode • •••••••• 474
Creating a File With Block I/O •••••••••••• 480
Reading a File With Block I/O • • •••••• 484

Reading the Event Flags (for Exercise 1-1) •••••• 537
Using the Routines GCML and CSI (for Exercise 10-6) • 538

xiii

STATIC REGIONS

STATIC REGIONS

INTRODUCTION

Logical address space in a task is composed of regions.
There are three basic types of regions, task regions, static
regions, and dynamic regions. Task regions, into which tasks are
loaded, are created using information set up by the Task Builder.
Static and dynamic regions are generally used to share code or
data among several tasks. Static regions are created using the
Task Builder; dynamic regions are created during task execution,
using executive directives.

This module discusses static regions.
static regions to:

Yo u can use these

• Create memory areas containing code which is shared among
tasks

• Create memory-resident data areas which can be used for
communication between tasks or successive invocations of
the same task

• Communicate directly with a peripheral device through the
I/O page.

OBJECTIVES
1. To create and use a resident common region

2. To create and use a resident library

3. To determine ¥hether a position independent or an absolute
shared region should be used in a given situation

4. To create and use a device common.

RESOURCE
• RSX-IlM/M-PLUS Task Builder Manual, Chapter 5

289

STATIC REGIONS

TYPES OF STATIC REGIONS

Static regions, also called shared regions, are areas of
memory which are shared among tasks. They allow tasks to share
data or code with very little overhead. Unlike send and receive
directives, no executive directives are needed, and the area's
size is limited only by virtual address and possibly physical
memory limitations. The virtual addressing limit must be met for
both the region itself and any tasks which use the region. For a
task which uses the region, the total applies to all regions used
plus the task's code.

Static regions offer very quick access, since the area is
loaded before the tasks which use it are run. Once loaded, it is
available directly in memory. Therefore, it offers much faster
access than disk-resident data.

Table 7-1 summarizes the types of shared regions available on
an RSX-IIM system. A resident common contains data. The data can
be accessed by several different tasks, each with read only access
or with read/write access.

A resident library contains reentrant subroutines, which can
be called by several different tasks. A single copy of each
subroutine can be shared, thus reducing the total memory
requirements of the tasks. The term resident is used because the
shared region is task~built, installed, and loaded into memory
separately from the tasks which access it.

A third type of shared region is a device common, a special
type of resident common. It occupies physical addresses on the
I/O page, which correspond to I/O device registers instead of
physical memory. Therefore, this kind of common allows a task to
reference an I/O device directly. Unlike other resident commons,
a device common has no true contents because it has no physical
memory associated with it.

291

STATIC REGIONS

Table 7-1 Types of Static Regions Available on RSX-IIM

292

STATIC REGIONS

MEMORY ALLOCATION

Memory is allocated independently to the shared region and to
the individual tasks which use it. We will call the tasks which
use the region referencing tasks. On an RSX-IIM system, the
shared region must reside in a dedicated common type partition.
The name of the partition must be the same as the name of the
region. The partition can be created at SYSGEN time or later by
the system manager or a privileged user. Once the region is
installed and loaded into the partition, it cannot be
checkpointed.

MAPPING

Shared regions can be written and task-built as either
position independent regions or as absolute regions. On a mapped
system, position independent regions can be placed anywhere in a
referencing task's virtual address space. This means that the
virtual addresses used to map to the region can correspond to any
available APR.

Figure 7-1 shows a position independent region, POSIND, and
three referencing tasks. - The reg ion is loaded into memory into
the partition POSIND; the partition name must be the same as the
name of the region. Recall that a virtual address window for
mapping must begin with a base address for an APR on a 4K word
boundary. Because the region is 5K words in length and each APR
can only map at most 4K words, two APRs are needed to map the
reg ion.

Task A maps the shared region using APRs 6 and 7, starting at
virtual address 140000(8). It could in fact use APRs 5 and 6,
beginning at virtual address 120000(8) or APRS 4 and 5, beginning
at virtual address 100000(8).

Task B maps the shared region at the first available APR
above the task code, using APRs 2 and 3, beginning at virtual
address 40000(8). It could use APRs 3 and 4,4 and 5,5 and 6, or
6 and 7 as well.

293

STATIC REGIONS

Task C maps the shared region using APRs 6 and 7, starting
with virtual address 140000(8). There is no other possible way
for Task C to map the shared region because APR 6 is the first
available APR.

When you task-build a referencing task, you can specify which
APR to use in mapping the region. If you do not specify an APR,
the Task Builder selects the highest set of available APRs. When
task A and task C were built, the user either did not specify an
APR, or specified APR 6. When task B was built, the user
specified APR 2.

294

160000 APR7

140000 APR6

120000 APR5

100000 APR4

60000 APR3

40000 APR2

20000 APR1

o APRO

160000 APR7

140000 APR6

120000 APR5

100000 APR4

60000 APR3

40000 APR2

20000 APR1

o APRO

160000 APR7

140000 APR6

120000 APR5

100000 APR4

60000 APR3

40000 APR2

20000 APR1

o APRO

STATIC REGIONS

VIRTUAL
MEMORY

TASK
WINDOW

(16K WORDS)

TASK
WINDOW

(24K WORDS)

PHYSICAL
MEMORY

TASK
REGION
(TASK A)

TASK
REGION
(TASK C)

TK·7774

Figure 7-1 Tasks Using a Position Independent Shared Region

295

STATIC REGIONS

An absolute shared region has its virtual addresses fixed
when it is task-built. All tasks which reference it must use
those virtual addresses, and the corresponding APRs, to map to the
region. Figure 7-2 shows another region ABSOLU and· three
referencing tasks, A, Band C. The shared region ABSOLU was built
to use virtual addresses 120008(8)-147777(8) (6K words) with APRs
5 and 6. All referencing tasks must map to the region using these
APRs. Therefore, task A and task B can both map to the region,
since APRs 5 and 6 are available. Task C, on the other hand,
cannot reference ABSOLU, since APR 5 is already used by its task
code.

You may think that there is no reason to ever limit yourself
by making a region absolute. However, there are code restrictions
for position independent regions due to the fact that a shared
region is task-built separately from any of its referencing tasks.

When the region is task-built, all code within it is set.
The code has to be written using special position independent
coding techniques to allow it to be placed at possibly different
virtual addresses in the various referencing tasks. This is only
a problem for data if the data is not position independent; for
example, a jump table.

The starting virtual address of each routine, defined by its
label, is assigned when the referencing task is task-built. This
address may vary depending on which base APR is used to map the
region. The address of a given routine may vary from one
referencing task to another. But the address placed in the table
itself was already fixed when the region was task-built, and does
not change for each referencing task. Further, that address may
not match any of the addresses assigned in referencing tasks. For
example, consider the following jump table and routines W, X, and
Y:

JMPTAB: .WORD W
.WORD X
.WORD Y

W:

X:

Y:

296

160000 APR7
140000 APR6
120000 APR5
100000 APR4
60000 APR3

40000 APR2

20000 APR1
0 APRO

160000 APR7

140000 APR6
120000 APR5

100000 APR4

60000 APR3

40000 APR2
20000 APR1

o APRO

160000 APR7
140000 APR6

120000 APR5
100000 APR4

60000 APR3
40000 APR2

20000 APR1

o APRO

STATIC REGIONS

VIRTUAL
MEMORY

TASK A

TASK
WINDOW

(16K WORDS)

TASK B

TASK
WINDOW ----

(8K WORDS) _-----
'---------~-

TASK C

-

-
- TASK

WINDOW CAN'T - (24K WORDS) REFERENCE - ABSOLU
~

/

./

........

.-

PHYSICAL
MEMORY

ABSOLU
(ABSOLUTE REGION)

TASK
REGION

(TASK A)

TASK
REGION
(TASK B)

TK-7769

Figure 7-2 Tasks Using an Absolute Shared Region

297

STATIC REGIONS

The addresses resulting from the .WORD directives are fixed
wh e n th e reg ion is ta s k - b u i It; e • g ., at W = 15 0 0 (8), X = 15 4 0 (B) ,
and y = 1626(8). If the referencing task places the actual
addresses W, X and Y at those virtual addresses, everything will
work fine. But if it starts mapping at APR 4 (virtual address
120000) , the labels themselves will be assigned addresses
120000 (8) + 1500 (8) = 121500 (8), 120000 (8) + 1540 (8) = 121540 (8) ,
and 120000(8) + 1626(8) = 121626(8).

However, the values in the table are already set at 1500(8),
1540 (8), and 1626 (8), and they no longer address the correct
locations. A jump or call by way of the table to routine W will
result in a transfer to location 1500(8) in the referencing task,
and definitely not to routine W. To avoid this problem, jump
tables should be included in the referencing task code instead of
in the shared region.

Instructions in shared regions are even trickier to program.
All references which are relative to the current PC, for example,
eight bytes from here, work fine. But a reference to an actual
virtual address, for example, virtual address 4260(8) or @#A, only
works if 4260(8) or A remains set at that virtual address. For a
discussion of position independent code and how to write it, see
Appendix H of the IAS/RSX-ll MACRO-II Reference Manual.

All of this means that in general, the decision about whether
to create a position independent or an absolute shared region is
based on the code restrictions, rather than the flexibility. In
general, resident commons, containing data, are created position
independent; and resident libraries, containing code, are created
absol ute.

Figure 7-3 shows the program development process for creating
a shared region and a referencing task. specific steps for each
process are discussed later in this module. Assemble and
task-build the shared region separate from the referencing task,
and before task-building the referencing task.

Since it is not an executable task, certain task-build
switches are used to create a task image with no header and no
stack. An additional file, called a symbol definition file, is
also created at task-build time. This file contains information
about the symbols defined in the region, which the Task Builder
will use when it builds the referencing task to set up linkage to
the reg ion.

298

STATIC REGIONS

After task-building the shared region, task-build the
referencing ~ask. It can be written and assembled earlier, if
desired. The name of the region is specified to the Task Builder
so that it can access the symbol definition file and set up the
linkage to the shared region. The shared region must be installed
(causing it to be loaded into memory as well) before any
referencing task is run.

REFERENCES TO A SHARED REGION

The following kinds of references are made to a shared region
by a referencing task:

• The task retrieves data from, or stores data in, a
resident common.

• The task calls or jumps to a routine in a resident
library.

299

LIBRARY
FI LE(S)

STATIC REGIONS

SHARED
REGION

CREATE
SOURCE CODE

ASSEMBLE
OR COMPILE

TASK
BUILD

INSTALL
SHARED
REGION

SYMBOL
DEF'N
FILE

TASK REFERENCING
SHARED REGION

CREATE
SOURCE CODE

ASSEMBLE
OR COMPILE

TASK
BUILD

RUN
TASK

TK-7770

Figure 7-3 Program Development for Shared Regions

300

STATIC REGIONS

Techniques of Referencing

When you write the code for the shared region and the
referencing task, you must pick a technique to resolve the
references to the shared region. Some of the techniques are the
same as the ones we used in Chapter 6 for referencing data in the

\ root from an overlay segment.

Using Overlaid Psects (Data Only)

This technique is similar to the one for overlays. An
example appears below. This time the Overlaid (OVR) psect is
defined in the shared region, then the same psect is sp~cified in
the referencing tasks. The Task Builder, as usual, combines the
different occurrences of each psect. Because the shared region is
built first, the psect MYDATA is placed there. Later, when the
referencing task is built, the new occurrence of MYDATA is
combined with the one in the shared region. The OVR attribute
tells the Task Builder to start the allocation at the same
location as the allocation already there, causing the addresses to
be overlaid. This, in effect, just sets up the addressing so that
M references the first word of the region, the 3.

M=.

Shared region:

• PSECT
.WORD
• END

MYDATA D,GBL,OVR
3. ,4. ,5 •

Defaults: REL,RW

Referencing task:

• PSECT

• PSECT

MYDATA D,GBL,OVR ; PSECT in shared
reg ion

Addr of start of region
Back to blank psect

START: CMP M,#5
FIFTY

Check value
Branch if greater BGT

301

STATIC REGIONS

Using Global Symbols (Data or Subroutines)

This technique is also the same as the one used in overlays.
An example for data and for a subroutine appear below. In both
cases, the label or labels are defined as global symbols. The
referencing task uses the same global symbols to ~ccess the data
or to call the subroutine. The possibly needed Psect name will be
discussed later in the module.

For Da ta

Shared reg ion:

; Po ss ibl y needed psec t name
.PSECT ZZZ
M· • • WORD 3 • ,4. Define data and symbols
N: : • WORD 5 •

• END

Referencing task:

CMP
BGT

M,#5
FIFTY

For Subroutine Names

Shared reg ion:

Subro utine
AADD: :

RETURN

Referencing task:

Set up arg umen ts

CALL AADD

Check val ue
Branch if greater

Return

Call subro utine

302

STATIC REGIONS

Using Virtual Addresses (Data Only)

This technique is not available with overlays. If the shared
region is built absolute, the starting virtual address of the
region is fixed when the region is task-built. In the example
below, it is assumed that the region is task-built absolute to
begin at virtual address 160000(8). The referencing task can
access the data by using the actual virtual address where the data
is mapped.

If the region is built position independent, it can be mapped
at a specific base virtual address (or base APR) by specifying a
base APR in the task-build command for the referencing task. In
this example, specifying APR 7 would set the base virtual address
for the region at 160000(8).

Sha r ed reg ion:

; possibly needed psect name
.PSECT ZZZ
.WORD 3.,4.,5 •
• END

Referencing task:

; Shared region must be task-built either:

absolute starting at V.A. 160000

position independent and referencing task is
task-built to force region to start at
V.A. 160000

M = 160000
CMP
BGT

M, #5
FIFTY

Addr of start of region
Chec k val ue
Branch if greater

303

STATIC REGIONS

Table 7-2 summarizes the techniques for referencing a shared
region. When you task-build the shared region, you can specify
whether or not you want the psect names placed in the symbol
defini tion file (.STB file). They must be there if you use the
technique of overlaid Psects to reference the region. Use the
/SHAREABLE:COMMON qualifier (/CO in MCR) to include the psect
names.

If global symbols or virtual addresses are used, it is best
to exclude the Psect names in the .STB file. Use the
/SHAREABLE:LIBRARY qualifier (/LI in MCR) to exclude psect names.
This avoids possible task-build errors due to psect conflicts.

If psect names are kept in the .STB file, each psect defined
in the region, including the default blank (. BLK.) psect is
there. The Task Builder tries to collect allocations together if
a matching psect name appears in the referencing task. However,
it can't add to the allocation in the region, since the region is
already built. Therefore, if the psect results in additional
allocation to the psect (always true if the psect has the
concatenate (CON) attribute), then a task-build error .. LOAD
ADDRESS OUT OF BOUNDS" results. This is because the new
allocation can't be added to the already built shared region.

Therefore, if psect names are placed in the .STB file, the
psect names in the referencing task must not match any in the
shared reg ion, incl ud ing the defaul t blank psect. Avojd ing this
is especially difficult if the shared region is a system resident
library like FCSRES or FORRES, which was written by DIGITAL. In
this case, you may not know what psect names were used in the
original source code.

As a general rule, place psect names in the .STB file only if
you use overlaid Psects to reference the region. Table 7-3 shows
the interaction of three task-builder switches or qualifiers.
They are: /CODE:PIC, for position independent or not;
/SHAREABLE:COMMON, for placing Psect names in the .STB file; and
/SHAREABLE:LIBRARY, for not placing psect names in the .STB file.

The name COMMON is used for keeping psect names because
overlaid Psects can only be used for data references, therefore
they are generally used in resident commons. The name LIBRARY is
used for not keeping psect names because global symbols are
generally used to reference subroutines in a resident library. In
fact, if a resident common is referenced using global symbols or
virtual addresses, it is also built /SHAREABLE:LIBRARY to avoid
Psect conflicts.

304

STATIC REGIONS

Table 7-2 Techniques of Referencing a Shared Region

305

STATIC REGIONS

Table 7-3 Effect of /CODE:PIC, /SHAREABLE:COMMON, and
/SHAREABLE:LIBRARY on a Shared Region's STB

306

STATIC REGIONS

PROCEDURE FOR CREATING SHARED REGIONS AND REFERENCING TASKS

Creating a Resident Common or Resident Library

1. Code yo ur sha red reg ion.

• Set up for an appropriate referencing technique.

Choose either overlaid psects, global symbols, or
virtual addresses for a resident common.

Use global symbols for a resident library.

• Choose position independent or absolute.

The decision is based mainly on the
techniques used.

coding

If the
po si tion
common) •

code is position independent, build
independent (typical for resident

If the code is not position independent, build
absolute (typical for resident library).

• Resident common reserve space, plus you may
initialize locations.

• Resident library - code must be reentrant. See the
section on Reentrancy in Chapter 5 of the PDP-II
Processor Handbook for more information about
reentrant code.

2. Assemble the shared region.

3. If not already done, create the common type partition.

• Name must be the same as the name of the region.

• Best done when the system is SYSGENed.

• Use the SET PARTITION (SET/MAIN in MCR) command to
create a partition.

• Use the SET NOPARTITION (SET/NOMAIN in MCR) command to
eliminate a partition.

307

STATIC REGIONS

• Examples:

>SET PARTITION:MYCOM/BASE:7114/SIZE:200-
->/COMMON

Creates the common type partition MYCOM with base
physical address 711400(8) and size 20000(8) bytes.
No other partition may use this space at the same
time.

>SET NOPARTITION:MYCOM

Eliminates the partition MYCOM.

NOTE
Before you create or eliminate any
partitions on your system, check with
your system manager to find out what
area of memory you may use.

4. Task-build the shared reg ion.

• Symbol definition file (.STB) required.

• Build position independent or absolute (see Table
7-3) •

• Keep or do not keep psect names (see Table 7-3).

• Use required switches and options (see Table 7-4) •

5. Install the shared region in the common type partition
before running any referencing task.

• Not required before task-building the referencing
tasks.

• Use the INSTALL (INS in MCR) command to install the
region.

This command also loads the region into memory.
This is unlike an executable task, which is
usually loaded into memory only when it is
activated.

308

STATIC REGIONS

• There is no command to remove a region. It is removed
by either installing another region or eliminating the
partition.

The required switches and options in Table 7-4 are needed for
different reasons. No header or stack is needed because this is
not an executable task. The referencing tasks each have their own
header and stack. The symbol table definition file is needed to
allow the Task Builder to link referencing tasks to the region.
The partition name specifies the partition into which the region
will be loaded.

For an absolute region you must specify a base address. If
you specify a nonzero length, the specified value is used as a
maximum length. A task-builder error results if the length of the
region is longer than the length specified. If you specify a
length of zero, the region is set up with the size needed for the
cod~, as long as it doesn't exceed the 32K word virtual addressing
limit.

Table 7-4 Required Switches and Options for Building
a Shared Region

309

STATIC REGIONS

Example 7-1 has the source code for a resident common COMWP
and a referencing task COMGP. Overlaid psects are used for
referencing the region. The following procedure is used to create
the resident common.

1. Code the shared region.

See COMWP.MAC in Example 7-1.
keyed to the example.

The following notes are

o
o

The code is placed in an OVR psect named MYDATA. This
same psect is used in the referencing task.

This series of assembler directives is equivalent to
128(10) .WORD 3 assembler directives. It initializes
the first 128(10) words in the region to 3.

This series of assembler directives initializes the
next 128(10) words in the region to 6.

2. Assemble the shared region.

>MACRO/LIST COMWP

3. If necessary, create the common type partition.

We will make a partition COMWP, eight blocks = 1000(8)
bytes long. If the partition TSTPAR already exists on
your system, you may be able to eliminate it and then set
up your partition. Be sure to check with your system
manager before doing this and also be sure to put TSTPAR
back when you are finished.

Check current partitions on the system
>SHOW PARTITIONS

Record base address and length of TSTPAR and the type
of partition. Convert the values to blocks by
dropping the last two zeroes. (For example,
base address 123400(8) = 1234 blocks,
length = 20000(8) bytes = 200(8) blocks)

Eliminate the partition TSTPAR
>SET NOPARTITION:TSTPAR

Create the partition COMWP
>SET PARTITION:COMWP/BASE:1234/SIZE:10/COMMON
! Check to see if this worked correctly
>SHOW PARTITIONS

310

STATIC REGIONS

Later, to eliminate the partition and to replace TSTPAR,
use the commands:

)SET NOPARTITION:COMWP
)SET PARTITION:TSTPAR/BASE:1234/SIZE:200/TASK

4. Task-build the shared region.

To build position independent:

)LINK/OPTIONS/MAP/SHAREABLE:COMMON/NOHEADER -
-)/SYMBOL TABLE/CODE:PIC COMWP
option? STACK=0
Option? PAR=COMWP
option? <RET)

The /OPTIONS switch allows you to enter options. /MAP
indicates that you want a map file. /SHAREABLE:COMMON
indicates that Psect names are to be placed in the .STB
file (required to reference the shared region using
overlaid psects). /NOHEADER means do not include a task
header in the task image because this is not an executable
task. /SYMBOL TABLE means make a .STB file (COMWP.STB).
/CODE:PIC means position independent code for a position
independent region. STACK = 0 means no stack space is
needed because this is not an executable task. PAR =
COMWP means the partition is COMWP. The Task Builder gets
the length (for a maximum check) from the partition on the
system.

To build absolute:

)LINK/OPTIONS/MAP/SHAREABLE:COMMON/NOHEADER -
-)/SYMBOL TABLE COMWP
Option? STACK=0
Option? PAR=COMWP:160000:20000
Option? <RET)

Only changes:

1. Omit /CODE:PIC.

2. Specify a base virtual address and a maximum
length. The base virtual address must correspond
to a base virtual address for an APR (e.g., 2,
20000(8), 40000(8), 60000(8), 100000(8),
120000(8), 140000(8), or 160000(8». The APRs
used must be available in all referencing tasks.

311

STATIC REGIONS

5. Install the reg ion.

)INSTALL COMWP

Installs the region and also loads it into memory.
Note that this is different from an executable task,
which usually isn't loaded until it is requested.

312

1
2
3
4
5
6

;+

STATIC REGIONS

.TITLE COMWF'

.IDENT lOll

.ENABL LC

File COMWF'.MAC

Enable lower case

7 Pro~ram which creates and initializes a common re~ion

8 which will be referenced usin. overlaid Psects.
9

10 Task-build instructions: Must include ISHAREABLE:COMMON
11 and INOHEADER switches; STACK=O and PAR=COMWP options.
12 Must create .STB file. Ma~ be ICODE:PIC Dr absolute
13 (default).
14
15 The code is placed in a Psect named MYDATA

O
1t>
17 _[:LB

V 19
20 _[21

V 22
23
24

1
2
3
4
5
6

;-

;+

.PSECT

.REPT
• WORD
.ENDR
.REPT
• WORD
• ENDR
.END

128.
3.

128.
6 •

.TITLE COMGF'

.IDENT lOll

.ENABL LC

FILE COMGF'.MAC

Rf~F'eat count
Word vallJ(~ of 3 •
End reF'eat rar.:;.!e
Repeat count
Word value of t> •
End reF'eat ran~e

Enable lower case

7 This task ~ets the values from the static common
B re~ion COMWP. It uses the techniGue of overlaid Psects
9 to reference the re~ion.

10
11 Task-build instructions:

;-

>LINK/MAP/OPTION COMGP
Option1 RESCOM=COMWP/RO
Option1 <RET>

12
13
14
15
16
:1.7 .MCALL QIOWSS,EXITSS ~ S~stem macros

0[18
:1.9
20 o 2:1.
22
23
24

A[;~
V 27

2B
29
30
31

M=.

IOSB:
ARG:

BUFF:
FMT:

FERRi:

FERR2:

.PSECT MYDATA D,GBL,OVR ~ Psect used in COMWP
1 c:)(~a 1. s~:lmbol ft11' staT't
of resion

.PSECT Back to blank Psect

.BLKW 2 liD status block

.BLKW 1 Ar~ument block for
; error code

• BLKB :1.00 • Output buffe T'
.ASCIZ 1%8DI Format stT'in:;j fOT'

output of data
• ASC.IZ IDIR ERROR ON cno. DSW .- %DI ; Di T'ective

; errt")r mes~;a~e
• ASCIZ ! liD ERROR ON aIO • CODE .- %D! ; 110 c-:~rror

messa.e

Example 7-1 Resident Common Referenced \ATith OVerlaid Psects
(Sheet 1 of 3)

313

STATIC REGIONS

32
33 N=32 .. Lao? cOI.Jnt .- :~2 .. lines~

34 8 :JJ:s }""er 1 inE~
35 .EVEN

e 36 ;
37 START: MOV tM,R2 Startirls addT' of data
~58 in the resion
39 MOV :fI:N,R5 Le)o? cOI.Jnt
40 LOOP: MDV :fI:BUFF,RO Out?IJt buffer
41 MOV tFMT" r';:1 Format stT'irls
42 CALL $EDMSG ; Edit meSSC:~f..jf~

0 43 QIOW$S :JJ:IO .. WVB,#5":fI:l,~:JJ:IOSB,,,,<#BUFF,Rl,:JJ:40>
44 BCS ERROR Chf.~ck fe)r i.:f:i. r err'or
45 TSTB IOSB Check foy' I/O EH'ror
46 BLT ERF~OR1 Branch on I/O er'ror'
47 Sta~ here for sood write
48 SOB R5,LOOP Decremerlt cOI.JnteT' , loo?
49 back if not ~Iet done
50 EXIT$S E~·dt

51 ; Error code
52 ERROR: MOV $DSW,ARG Move DSW to c~rS block
53 MOV :JI:FERR1, R:I. Acldr of format strin!~

54 BR SETUP Branch to $EDMSG code
55 ERROR1: MOVB 10SB,RO E~·,tend sisn em lID
56 MDV RO,ARG status cmd F,lace in
57 ars block
58 MOV tFERR2"F~1 Addr of format stT'ins
59 SETUP: MOV :fI:BUFF,RO Addr of OIJt?I.Jt buffer
60 MOV tARG,R2 Addr of arslJlTtent block
61 CALL $EDMSG ; Edit ITlessaSe
62 QIOW$S iIO .. WVB"#5~.1,,,,<:JJ:BUFF,Rl,t40> ; Wr j, tf?
63 ; Jrlf?~5SaSe

64 EXIT$S ; EHit
65 .. END START

Example 7-1 Resident Common Referenced With Overlaid Psects
(Sheet 2 of 3)

314

STATIC REGIONS

I~tln Session

>INS COMWP
>r~UN COMGF'
~~
:·5

3
3

3
6
6

6

3
3

3
6
6

6

3
3

3
6
6

6

3
3

3
6
6

6

3
3

3
6
6

6

3
3

3
6
6

6

3
3

3
6
6

/.)

Example 7 -1 Resident Common Re fe renced Wi th Overl a id Psects
(Sheet 3 of 3)

Creating a Referencing Task

1. Code the task, using the
technique.

corresponding referencing

• If psect names are kept in the .STB file of the
referencing task, avoid psect conflicts.

2. Assemble the task.

3. Task-build the task.

• Specify shared regions using one of the following
options:

COMMON=common name for a system resident common
(.STB and .TSK files must be in LB: [1,1]).

LIBR=common name for a system resident library
(.STB and .TSK files must be in LB: [1,1]).

315

STATIC REGIONS

RESCOM=common name for
(.STB and .TSK files
using normal defaul ts) •

a user resident common
in any device and any UFD

RESLIB=common name for a user resident library
(any device and any UFD using normal defaults) •

• Append :RO if read-only access is desired.
:RW if read-write access is desired.

Use "I" instead of ":" for RESCOM and RESLIB.

• Only if the shared region is position independent, can
you specify the base APR to be used to map the region.
If not specified, the highest available APR or set of
APRs is used, as needed.

4. After installing the shared region, install and/or run the
task.

If the shared region is to be a system shared region, the
.STB file and the .TSK file should be placed in LB:[l,l].
otherwise, they can reside on any device under any UFD, as long as
both files are in the same UFD on the same device.

Read-only or read/write access affects the way the access
bits in the page descriptor reg isters (PDRs) in the APRs are set
up. A memory protect violation occurs if a task attempts to write
to a region when it has read-only access.

316

STATIC REGIONS

COMGP.MAC in Example 7-1 contains the source code for a task
to reference the shared reg ion COMWP. Use the, following procedure
to create the task.

1. Code the task.

See COMGP.MAC in Example 7-1.
keyed to the example.

The following notes are

o

o
e
o

The same Psect, MYDATA, is used here as in COMWP.MAC
to set up referenc ing • M mar ks the beg inn ing 0 f the
region. No initialization of the Psect can be
performed in the referencing task.

The main code is in the blank (. BLK.) psect.

Move the starting address of the region to R2.

We use $EDMSG to set up each line of the display. We
loop through once for each line, editing and
displaying the values.

o The format string for $EDMSG. %8D means convert eight
words to signed decimal, with a tab between values.

2. Assemble the' task.

3. Task-bui ld the ta sk.

>LINK/OPTION/MAP COMGP
option? RESCOM = COMWP/RO
option? <RET>

Link task to resident common COMWP. COMWP.TSK and
CONWP.STB are in the current UFD on SY:. Set up
read-only access. Use the highest available APR, APR
7, i~ the region was built position independent.

4. After installing the shared region, install and/or run the
task.

To do a temporary install, run, remove:

>RUN COMGP

To install and then run:

>INSTALL COMGP
>RUN COMGP

317

STATIC REGIONS

Deciding whether read-only or read/write access to a region
is required is usually straightforward. If a task moves data into
the region or changes a value in the region, read-write access is
required. If a task mqves data out of the region or just reads
values in the region, just read-only access is required.

However, when QIOs are issued and the buffer is in the shared
region, things get a little tricky. Obviously, to do a read
(e.g., from a terminal) into a buffer in the shared region
requires write access. A write (e.g., to a terminal) from a
buffer in the region should only require read access. However,
because the Executive is designed for very fast, real-time
applications, it does not check the function code for a QIO
directive to see whether it is a read or a write. Instead it
assumes the worst case - that all QIOs involving a buffer in a
shared region are reads (from a peripheral device) into a buffer
in the region, and that therefore, all QIOs requlre read/write
access. This condition causes an I/O error (IE.SPR) for illegal
user buffer. This condition does not affect Example 7-1 because
$EDMSG creates the output string in a buffer within the
referencing task area, and the QIOs do the writes from the
referencing task area.

In an example in a later module, you will see this problem
come up. One solution is to get read/write access to the shared
region. Another solution is to move the data from the shared
region to a buffer in the referencing task area, and then use that
buffer for the QIOS. A third solution is to build the task as a
privileged task.

privileged tasks, similar to privileged terminals, are
granted certain extra access to the system which nonprivileged
tasks don't have. Some privileged tasks just gain these extra
access rights, others map to the Executive as well. Normally, the
Task Builder builds a task as a nonprivileged task. For a
discussion of privileged tasks and how to task-build them, see
Appendix D.

318

STATIC REGIONS

Example 7-2 shows a shared region (COMNP.MAC) and a
referencing task (COMGGS.MAC) using global symbols to reference
the shared region. Other than the difference in referencing
technique, Example 7-2 is the same as Example 7-1. The following
notes are keyed to the example.

C» Because the region is built with the /SHAREABLE:LIBRARY
switch, any Psect names used in the file are not placed in
the .STB file. Therefore, the code for the---referencing
task can be placed in the default blank (. BLK.) Psect or
any other Psect. If the library were instead built
/SHAREABLE:COMMON, the Psect names used in the shared
region would all be placed in the .STB file. In that
case, using any Psect in the referencing task which is
also used in the shared region would cause a Psect
conflict, causing a LOAD ADDRESS OUT OF BOUNDS
task-builder error.

«» The global symbol K marks the beginning of the shared
region.

t) The rest of the code is the same as COMWP.MAC in Example
7-1.

C» Just use the global symbol K to reference the start of the
shared region. The Task Builder sets up the linkage to K,
as it is defined in the shared region COMNP. The rest of
the code is the same as that in COMGP.MAC in Example 7-1.

The tape supplied with this course also contains an example
using virtual addresses as a referencing technique. The shared
region is still COMNP, the same one as in Example 7-2. The
referencing task code is in the file COMGVA.MAC. It should be in
UFD [202,3] on your system. Check with your course administrator
if you need help locating this example.

319

1
2
3
4 ;+
5
6
7
8
9

10
11
12
13
14
:1.5

STATIC REGIONS

.TITLE COMNP

.IDENT 1011

.ENABL LC

File COMNP.MAC

Enable lower case

Prosram which creates and initializes a common resion
which will be referenced usins slobal swmbols or
actual virtual addresses.

Task-build instuctions: Must include ISHAREABLE:LIBRARY
and INOHEADER switches, STACK=O and PAR=COMNP options.
Must create a .STB file. Maw be ICODE:PIC or absolute
(the default).

This proSram places the code in the default blank
'L7 [16 o is

(. BLK.) Psect. It could be in anw Psect. Psect
conflicts are avoided bw usins the ISHAREABLE:LIBRARY
switch on the task builder.

0

e

19
20
21
22
23
24
25
26
27
28

1
2
3
4

;-
; Define K, a Slobal symbol
K: : • REPT 1 :~8.

• WDRD 3.
.ENDR
.REPT 128.
• WORD 6.
.ENDR
.END

.TITLE COMGGS

.IDENT /0:1./

.ENABl. LC

5 FILE COMGGS.MAC
6

Repeat cOIJnt
Word val'Je of 3 •
End repeat T'an~H?
ReF,eat cO'.Jnt
Word value 0·(·' 6 •
End reF,eat rfJn~te

Enable lower case

7 This task sets the values from the static common
S reSion COMNP. It uses a slobal swmbol to reference
9 the resion.

:1.0
11 Task-build notes:
12
:1.3
14
15
16
17

;-

LINK/MAP/OPTION COMGGS
Option? RESCOM=COMNP/RO
Option? <RET>

.MCALL QIOW$S,EXIT$S External swstem macros

Example 7-2 Resident Common Referenced With Global Symbols
(Sheet 1 of 3)

320

:L8
19
20
21
22
23
24

26
27
28
29
3()
3l. o 32
33
34
35
36
37
:-ss
39
4()
41
42
43
44
45
46
47
48
49
~5()

51
52
53
54
55
56
57
58
59
60

;
10SB:
ARG:

BUFF:
FMT:

FERR1:

FERR2:

START:

lOOP:

.BlKW

.BLKW

.BlKB

.ASCIZ

.ASCIZ

.ASCIZ

N=32.

.EVEN
MOV

MOV
MOV
MOV
CAll
aIOW$S
BCS
TSTB
BlT

STATIC REGIONS

2
1

I/O status block
Ar~ument block for
err'or code

100. Output buffer
/X8D/ Format strins for

output of da-ta
/DIR ERROR ON aro. DSW - XD/ ; Directive

error messaSe
!I/O ERROR ON aro. CODE = XD! ; I/O

e l' 1'0 l' messa9E~

loop count - 32. lines,
8 :fI:s per line

Startins addrress of
data in the resion

tN,R5 Loop count
:fI:BUFF,RO Output buffer
:fI:FMT,R:L Format strinS
$EDMSG Edit messase
:fI:IO.WVB,:fI:5,:fI:l,,:fI:IOSB,,(tBUFF,Rl,:fI:40>
ERROR Check for dir error
IOSB Check for I/O error
ERRORl Branch on I/O error

Sta~ here for good write
SOB R5,lOOP Decrement counter, loop

back if not wet done
E~·dt EXIT$S

; Error code
ERROR: MOV

MOV
BR

ERROr~ 1: MOVB
MOV

MOV
SETUP: MOV

MOV
CAll
aIOW$S

EXIT$S

$DSW,Ar~G

tFERR1,Rl.
SETUP
IOSB,RO
RO,ARG

Move DSW to arg block
Addr of format strins
Branch to $EDMSG code
Extend sign on I/O
status and place in
arg block

tFERR2,Rl Addr of format string
tBUFF,RO Addr of output buffer
:fI:ARG,R2 Addr of argument block
$EDMSG Edit message
tIO.WVB,t5,tl",,(tBUFF,Rl,t40> ; Write

error message

.END START

Example 7-2 Resident Common Referenced With Global Symbols
(Sheet' 2 of 3)

321

J~lJn

>INS
>RUN
~~

~3

Sessicm

COMNF'
COMGGS

~~

3

3
6
6

6

3
3

3
6
6

6

STATIC REGIONS

3
3

3
6
6

6

3
3

3
6
6

6

3
3

3
6
6

6

3
3

3
6
6

6

3
3

3
6
6

6

Example 7-2 Resident Common Referenced With Global Symbols
(Sheet 3 of 3)

Example 7-3 contains a shared library, LIB.MAC, and a
referencing task, USELIB.MAC. The shared library contains four
simple arithmetic routines to add, subtract, multiply, and divide
two numbers. They are all written to be reentrant, plus they can
be called from a FORTRAN program with a standard FORTRAN
subroutine call. Basically, this means that on entry the
arguments are assumed to be set up as follows:

R5 --. I count=3

address of OPI

address of OP2

address of answer

322

STATIC REGIONS

For additional information on the FORTRAN/MACRO-II interface,
see Appendix C. Each subroutine saves and restores all of the
registers, using the system library routine $SAVAL. The
referencing task, USELIB, calls each of the subroutines once,
using the operands 8(10) and 2(10), and displays just the answers
for the fo ur operations. The following notes are keyed to Example
7-3.

o Each subroutine entry point is defined wi th a global
symbol.

o

o

o

G
o
o

Each subroutine is in a psect of the same name as the
subroutine. In fact, the psects are optional since the
library is built /SHAREABLE:LIBRARY. The specified Psect
names are not placed in the .8TB file.

For AADD and SUBB, move the first operand to R0, perform
the operation in R0, then move the answer to the third
operand for return to the caller.

For MULL, use Rl instead of R0, so that the product is
limited to just Rl (16 bits). If R0 were used instead, a
32-bit product is returned (low-order 16 bits in Rl,
high-order 16 bits in R0).

For DIVV, a 32-bit dividend is assumed in Rn and Rn+l, so
here it is R2 and R3 (low-order 16 bits in R3, high-order
16 bits in R2). Therefore, the 16-bit operand is placed
in R3 and the high-order word is cleared. The 16-bit
quotient, returned in R2, is then moved into the third
operand for return to the caller.

The two operands.

Space allocated for return of the 'result.

FORTRAN type argument block is
reverse order, so that SP
block.

buil t
points

on the stack, in
to the start of the

C) The address in SP is moved to R5, so R5 points to the
start of the argument block.

Call each of the routines.
disturbed between calls,
used for all four calls.

Since R5 and the stack are not
the same argument block can be

~ Call the subroutine PRINT to edit the output message and
display it for all operations.

323

1
2
~:s
4
5
6
7
8
9

10
11
12
:I. ~:s
:L4
15
:L6
17
:1.8

0 .. :1.9
.. 20

[

'")1
A ~'") V,.· .. ,:..

23
24
25

°026
27

e [~~
30
~51

3" o 3;
0 34

O [~~ ~57
38
39
40 o 41

042

o [!~
46
47
48

;+

; _.

.TITLE

.IDENT

.ENABL

File LIB.MAC

STATIC REGIONS

LIB
lOll
LC Enable lower case

This file contains the FORTRAN callable subroutines
AADD, SUBB, MULL, and DIVV, which perform the
appropriate inte~er operation.

Callin~ convention: CALL sub (op1,op2,ans)

Task-build instructions: Must include ISHAREABLE:LIBRARY
and INOHEADER switches; STACK=O and PAR=LIB options.
Must create .STB file. Maw be ICODE:PIC or absolute
(default). Usin~ ISHAREABLE:LIBRARY avoids Psect
conflicts.

AADD,RO,I,GBL,REL,CON
AADD: :

.F'SECT
CALL
MOV
ADD
MOV
t~ETURN

SSAVAL Save all re~isters

SUBB: :

MULL: :

DIVV: :

.PSECT
CALL
MOV
SUB
MOV
RETURN

.PSECT
CALL
MOV
MUL

MOV
RETURN

.PSECT
CALL
MOV
CLR
DIV
MOV
RETURN
.END

@2(RS),RO Move 1st operand
@4(R5),RO Add 2nd operand
RO,@6(R5) Store result

Restore reSs and return

SUBB,RO,I,GBL,REL,CON
SSAVAL Save all re~isters
@2(RS),RO Move 1st operand
@4(RS),RO Subtract 2nd operand
RO,@6(RS) Store result

Restore reSs and return

MULL,RO,I,GBL,REL,CON
SSAVAL Save all re~isters
@2(RS),R1 Move 1st operand
@4(R5),R1 Multiplw (answer in

Just Rl)
R1,@6(RS) Store result

Restore reSs and return

DIVV,RO,I,GBL,REL,CON
SSAVAL Save all re~isters
@2(RS),R3 Move 1st operand
R2 Clear hiSh order 16 bits
@4(RS),R2 Divide
R2,@6(RS) Store result

Restore re~s and return

Example 7-3 Shared Library (Sheet 1 of 2)

324

1
2
3
4
5
6

;+

.TITLE

.IDENT

.ENABL

STATIC REGIONS

USELIB
lOll
LC

File USELIB.MAC

Enable lower case

7 MACRO-11 task to use the resident librar~ LIB
8
9 Task-build instructions:

10
11 >LINK/MAP/OPTION USELIB
12 Option? RESLIB=LIB/RO
13 Option? <RET>
14 ;-
15
1.6

.MCALL arOWSS,EXITSS S~:~stem macros

O[i~ o 19
20
21

OP1:
OP2:

.WORD

.WORD

.BLKW

8.
2

y Or-'e T'and 1
Operand 2
Result

22
23
24

ANS:

OUT: • BLKW
FORMAT: • ASCI Z

.EVEN

l

100. ; Output buffer
ITHE ANSWER = %D.I ; Format strin~

; Build ar~ument block for

[

"5 o 26
START: MOV tANS,-(SP)

MOV tOP2,-(SP)
MOV tOP1,-(SP)

subroutine on the stack
For result
Operand 2
Or-'e r"and 1

0 CD
e-
0-
0--

27
28
29
30
31
32
:{3
34
35
:36
37
38
:39

MOV t3,-(SP)
MOV SP,R5
CALL AADD
CALL. PRINT
CALL SUBB
CALL PRINT
CALL MULL
CALL pr~INT

CALL DrVV
CALL PRINT
EXITSS

Number of arsuments
R5=> arS block
Add operands
Prirlt resul ts
Subtract operands
Print results
Multipl~ operands
Print results
Divide operands
Print results
E~·dt

40 Prints the results of the operation ;** PRINT -
PRINT: MOV

MOV
MOV
CALL
CHOWSS

41 tOUT,RO Set UP for $EDMSG
42 iFORMAT,Rl
43 tANS,R2
44 $EDMSG ; Edit messaSe
45 trO.WVB,#5,tl",,<iOUT,R1,i40>
46 ; messaSe
47 RETURN ; Return
48 .END START

I;:un Sess i on

>INS LIB
>RUN USEL.IB
THE ANSWER IS 10.
THE ANSWER IS 6.
THE ANSWER IS 16.
THE ANSWER IS 4.

Example 7-3 Shared Library (Sheet 2 of 2)

325

Wr'i te

STATIC REGIONS

DEVICE COMMONS

A device common is a special type of common that occupies
physical addresses on the I/O page. Instead of physical memory,
the I/O page contains peripheral device registers. Therefore, a
device common does not contain data the way a regular resident
common does.

A device common is really just a way of setting up addressing
to allow a task to manipulate the device registers directly. This
might be useful in checking out the proper commands needed to
control a device or to check what control status registers (CSRs)
are in use on your system (Example 7-4). Obviously, extreme care
must be used if you manipulate a device which is also referenced
by any system routines (e.g., a system device driver).

privileged tasks which map to the Executive can also
automatically map the I/O page. However, privileged tasks must be
written very carefully to avoid causing additional problems for
the running system. Device commons allow nonprivileged tasks to
manipulate device registers.

Use the procedure outlined below to create a device common
and a referencing task. The outline includes the specific steps
for Example 7-4. It has a device common, DEVICE.MAC, which covers
the entire I/O page. The referencing task, CSR.MAC, checks each
address on the I/O page to find out which CSRs are in use. If a
nonexistent CSR is found, a nonexistent memory error synchronous
system trap (SST) results. Use the following steps to create the
device common.

1. Create a device common partition which includes the
desired device register addresses.

• Identify the addresses of the needed device registers,
using the PDP-II peripherals Handbook or information
available from your hardware installation.

• Determine the base address of the partition at a
100(8) boundary below the first identified address.

Mapping always begins at a 32-word block boundary.

Example 7-4 covers all of the I/O page. On a PDP-ll/70 or
other PDP-II with 22-bit addressing, it starts at physical
address 17760000(8). On a system with 18-bit addressing,
it starts at 760000(8). On a system with 16-bit
addressing, it starts at 160000 (8) •

326

STATIC REGIONS

For a 22-bit system the command is:

SET PARTITION:DEVICE/BASE:177600/SIZE:200/DEVICE

For a 16-bit or IS-bit system, use the appropriate base
address in 32-word blocks.

Note that you don't need to eliminate an existing
partition the way you did for resident commons and
resident libraries. This is because there isn't any real
partition already on the system, because the I/O page does
not correspond to physical memory.

You also don't need to create the partition until after
you create the shared region. However, you do have to
know its base address before you write the code for the
device common, so that you can set up the offsets to the
locations you plan to reference.

2. Code the shared region.

• Do not initialize any locations, since there is no
physical memory.

• Set up for an appropriate referencing technique to
address the desired registers.

Use .=.+n or .BLKB n to get to the first address.

Use .BLKB or .BLKW statements to reserve the
needed space (or addresses) •

The following note is keyed to DEVICE.MAC in Example 7-4.

ct Because you access the entire I/O page, mark the start
of the region with the global symbol FCSR. The .BLKW
4096. directive reserves a full 4K words of addresses
for the entire I/O page.

3. Assemble the device common.

)MACRO/LIST DEVICE

327

STATIC REGIONS

4. Task-build the device common.

)LINK/OPTION/MAP/NOHEADER/SHAREABLE:LIBRARY
-)SYMBOL TABLE DEVICE
option? -STACK=0
option? PAR=DEVICE:160000:20000
option? <RET)

This command task-builds the region absolute.
also task-build it position independent.

Yo u can

5. Install the device common before you run the referencing
task. Unlike a resident common, a device common is not
loaded into memory because it has no real contents.

328

STATIC REGIONS

Use the following steps to create the referencing task.

1. Code the referencing
referencing technique.
the example below.

task using the corresponding
See the notes which are keyed to

2. Assemble the task.

)MACRO/LIST CSR

3. Task-build the task to reference the device common.

)LINK/MAP/OPTION CSR
)option? RESCOM=CSR/RO
)option? <RET)

4. After installing the device common, install and/or run the
referencing task.

The following notes are keyed to CSR.MAC in Example 7-4.

ct Use the global symbol FCSR to reference the start of the
device common.

~ SST vector table with one entry for nonexistent memory.

e

NONE is the address of the SST routine. (See Example 2
for an SST example.)

Two words for a range of good CSR addresses. The
addresses are offsets into the I/O page (0 (8) to
17777(8)) • FIRST is set initially with 0; LAST is
updated on each read of a CSR. If you ever trap due to
nonexistent memory, print the range of addresses, set
FIRST for the first add ress in the next range, and
continue.

C» Set up for SST, using just one table entry.

C) Count of good addresses in a range. This is used to avoid
printing a message if a number of consecutive addresses
are not in use.

329

STATIC REGIONS

C» Set first range to start with offset 0 into I/O page.

~ Test (or read) the word and increment R4. Control passes
to the next instruction if the CSR is in use; an SST
results if it is not in use.

C» Increment count of good addresses.

o Check to see if you are at the end of the I/O page.
Branch back if not.

CD When at the end of the I/O page, display the last range
and ex it.

CD SST routine, entered fo r nonex istent memory trap on the
TST(R4)+ instruction. Check for some good addresses in
this range. If none, do not print a message.

Calculate offset to the last good CSR. The last one
tested was bad, plus autoincrement incremented R4 by two.
Therefore, the current contents of R4 are four bytes
higher than the last good CSR. Also, convert the virtual
address to an offset from the beginning of the I/O page.
Move the last good CSR address to LAST.

Edit the range message, and convert the
last good addresses to unsigned octal.
message.

first good and
Then display the

CD Set up for the next range and return from the trap. The
return picks up at line 49 (INC R5). We want R5 to be
zero after it is incremented, so place a -1 in R5. Set up
the first good CSR address in FIRST as the offset into the
I/O page corresponding to the current address in R4. R4
has already been incremented past the CSR which is not in
use. Return from trap at line 49, and continue check of
CSRs, unless you have already reached the end of the I/O
page.

CD On the Run Session - This command has probably been issued
already to create the device partition. It is included
here for documentation purposes, and in case it has not
been issued previously.

330

:I.
2
3
4
5
6
7
8
9

10
11
12
13
14
1~)

16
17
18
:L 9
20

0'21
22

1
2

;

.TITL..E
~IDENT

.ENABL.

STATIC REGIONS

DEVICE
/011
I...C

File IIEVICE.MAC

Enable lower case

This proSram sets UP a device common for the liD paSe

Task-build instructions: Must include ISHAREABLE:lIBRARY
and INOHEADER switches, STACK=O, PAR=DEVICE options.
Must create .STB file. Ma~ be ICODE:PIC or absolute
(the default).

Install and run instructions: DEVICE must be installed
before runninS an~ referencins task.

The code is placed in the default blank Psect. Psect
conflicts are avoided b~ usins the ISHAREABlE:lIBRARY
task-builder switch.

FCSR: : • r~u\w
.END

4096. Set UP area 4K words IonS

.TITlE CSR

.IDENT /011
3 9+
4 File CSR.MAC
5
6 This task displa~s the CSR addresses that are in use
7 on ~our s~stem. The addresses are listed as offsets
8 into the 1/0 paSe
9

10 Task-build instructions:
11
12 lINK/MAP/OPTION CSR
13 Option? RESCOM=DEVICE/RO
14 Option? <RET>
15
16 Install and run instructions: The d~vice common DEVICE
17 must be installed before runnins CSR.
:1.8 ;-
19 .MCAll QIOWSS,EXITSS,SVTKSC ; S~stem macros
20 .NlIST BEX Do not list binar~
21 extensions

; SST vector table
VEe: • WORD NONE Nonexistent memor~

Example 7-4 Creating and Using a Device Common (Sheet 1 of 3)

331

24

e[;~
27
28
29
30
3:L
32
3~5

34
35
36
37 o :~B
39
40
41 o 42
4~5

Q 44
0 45

46
47

fa 48

~
. 49

c-O o ~1
52

e[~~
57
58
59
60
C):L
62
63

CD[:;
66

CD[~i
70

CD 71

FIF~ST:

LAST:

HDR:

MES:

BUFF:

.BLI(W
• £H .. I(W

.ASCII

.ASCII

.ASCII
LHDR
.ASCIZ

STATIC REGIONS

1 ; First ~ood CSR address
1 • Last CSR address

; before trappinS
I **CSR'S IN USE ON SYSTEM:**1(15)
(12)' (ADDRS ARE OFFSETS INTO liD PAGE)'
<15><12><12> Header text
=.-HDR Len~th of header text
ICSR'S %P THROUGH %P ARE IN USEI ; Text

.BLKB 100.

.EVEN

for each ~ood CSR ranSe
Output messa~e buffer

.ENABL L.SB

START: SVTK$C VEC,l • Set UP SST vector to
; handle trap

QIOW$S tIO.WVB,i5,#:L",,<tHDR,#LHDR,t40>
Displaw header text

MOV

CLR
CLF~

tFCSR,R4

R5
FIRST

Set base address in
liD pa~e
Count of addrs found
Offset to first CSR

; addr in use
; Test address, causins trap if not in use
IS: TST (R4)+ ; Is this a sood addr1

INC R5 ; Yes, increment count
CMP t<FCSR+17776),R4 ; At end of liD paSe1
BHIS 1$; Branch back if not ~et

DisF/la~ last
MOV
MOV
MOV
MOV
CALL
CHOW$S

EXITSS

Sood ran~e and exit
t17776,LAST Put last CSR in LAST
tBUFF,RO Set UP for $EDMSG
tMES,Rl
tFIRST"R2
SEDMSG ; Edit ran~e messa~e
tIO.WVB,t5,tl",,<tBUFF,R1,t40)

; Displaw ran~e messaSe

; SST routine for non-existent memorw (or CSR not in use)

NONE: TST r~~j An~1 !=Jood addresses in
this ran~f~1

BEQ OUT None, nothins t(J print
MOV R4,R3 Calculate offset to

last ~O(Jd CSR
SUB t<FCSR+4>,R3
MOV R3,LAST P'Jt last CSR in LAST
MOV tBUFF,RO Set '.JP for $EDMSG

Example 7-4 Creating and Using a Device Common (Sheet 2 of 3)

332

[~~ CD ~;

MOV
MOV
CALL
cnowls

STATIC REGIONS

:fI:MES,R1
tFIRST,R2
SEDMSG ; Edit ran~e messa~e
:fI:IO.WVB9:f1:5,:fI:1",,<$BUFF,R1,:fI:40>

; Displaw range message
; Set addresses and counters for continued search

76
77
78
79
80

OUT: MOV :f/:-1,R5 Initialize count to -1
since RTT returns to
INC R5 instruction

CD 81
82
83
84
85

MOV
SUB
MOV
RTT
.END

R4,R3
tFCSR"R3
R3,FIRST

START

Set UP first ~ood CSR
in FIRST

Retu. rn from trap

CD >SET PARTITION:DEVICE/BASE:177600/SIZE:200/DEVICE
>INS DEVICE
>RUN CSF:

CSR'S IN USE ON SYSTEM:
(ADDRS ARE OFFSETS INTO I/O PAGE)

CSR'S 000020 THROUGH 000106 ARE IN USE
CSR'S 004200 THROUGH 004236 ARE IN IJSE
CSR'S ·005000 THROUGH 005776 ARE IN LISE
CSR'S 010200 THROUGH 010376 ARE IN USE
CSR'S 010500 THROUGH 010526 ARE IN USE
CSR'S 012200 THROUGH 012376 ARE IN USE:
CSR'S 012440 THROUGH 012476 ARE IN USE
CSR'S 012516 THROUGH 012516 ARE IN IJSE
CSR'S 013000 THROUGH 013776 ARE IN USE
CSR'S 016300 THROUGH 016352 ARE IN USE
CSR'S 016400 THROLIGH 016452 ARE IN USE
CSR'S 016500 THROUGH 016506 (IRE IN USE
CSR'S 016700 THROUGH 016752 ARE IN USE
CSR'S 017170 THROUGH 017176 ARE IN USE:
CSR'S 017340 THROUGH 017356 ARE IN USE
CSR'S 017400 THROUGH 0171416 ARE IN USE
CSR'S 017440 THROUGH 017476 ARE IN USE
CSR'S 017514 THROUGH 017526 ARE IN IJSE
CSR'S 017546 THROUGH 017546 ARE IN LISE
CSR'S 017560 THROUGH 017676 ARE IN USE:
CSR'S 017740 THROUGH 017752 ARE IN USE
CSR'S 017760 THROUGH 01?776 ARE IN USE
:>

Example 7-4 Creating and Using a Device Common (Sheet 3 of 3)

333

STATIC REGIONS

Appendix F contains information about several more advanced
shared region topics. It includes a discussion of:

• OVerlaid shared regions

• Referencing several shared regions from one referencing
task

• Handling interlibrary calls

• Cluster libraries

Most of the techniques discussed are more appropriate for the
advanced MACRO-II programmer who is running into virtual address
limitation problems. Cluster libraries are designed to save
virtual address space in tasks which use DIGITAL layered products,
such as FORTRAN, Forms Management Services (FMS), and File Control
Services (FeS). If you write FORTRAN programs which use these
products, you may find it useful to read just the last few pages.
These cover the procedure for task-building a task which
references two or more DIGITAL supplied resident libraries as a
set of cluster libraries.

Now do the tests/exercises for this module in the
Tests/Exercises book. They are all lab problems. Check your
answers against the solutions provided, either the on-line files
(should be under UFD [202,2]) or the printed copies in the
TestS/Exercises book.

If you think that you have mastered the material, ask your
course administrator to record your progress on your personal
progress Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material,
return to this module for further study.

334

DYNAMIC REGIONS

DYNAMIC REGIONS

INTRODUCTION
The last module discussed how to use the Task Builder to

create and access static regions. It is also possible to create
and access regions while a task is executing. Such regions are
called dynamic regions. The memory management directives allow a
task to create and access dynamic regions and to access existing
static or dynamic regions. In addition, they offer a facility for
creating private regions and for allowing other tasks to access
these regions.

OBJECTIVES

1. To write tasks which create a dynamic region and access
dynamic and/or static regions

2 • To wr i t e ta s k s wh i c h d yn am i calI y co n t r 0 1 th e irma p pin g

3. To write tasks which create a private dynamic region and
allow one or more other tasks to access the region.

RESOURCE
• RSX-IIM/M-PLUS Executive Reference Manual, Chapter 3 plus

specific directives in Chapter 5

337

DYNAMIC REGIONS

SYSTEM FACILITIES

Sometimes a task's needs for memory and for shared regions
aren't known until run time, or the needs may change at run time.
Ex am pIe s are:

1. A task (e.g., an editor) needs a temporary work buffer for
only part of the time the task is active.

2. A task needs a shared region or work buffer, but its size
depends on the needs of the user running the task (e.g.,
the si ze of an input file).

3. A task creates a shared region and wants to control access
to it by other tasks.

4. A task wants to create a shared region in a system
controlled partition (e.g., GEN) instead of in a dedicated
common type partition. Then when the shared region isn't
needed, the space is automatically available for other
system needs (tasks, etc.).

5. A task needs to map to two different shared regions at
different times, but has only one 4K word virtual address
window available.

Special directives, called memory management directives, are
available on mapped systems to allow tasks to perform the
following functions.

• Create regions in system controlled partitions

• Attach/detach from a region

• Create/eliminate virtual address windows

• Map/unmap a virtual address window to an attached region

• Obtain information about its mapping from the system.

The memory management directives are a SYSGEN option.
Therefore, if users on a system plan to use them, they must be
included in the Executive at SYSGEN time. Check with your system
manager to find out if they have been included on your system.

339

DYNAMIC REGIONS

Table 8-1 lists the memory management directives which are
available on an RSX-IIM system.

Table 8-1 Memory Management Directives

340

DYNAMIC REGIONS

REQUIRED DATA STRUCTURES

Each memory management directive requires that you set up one
of two data structures within your task - a region definition
block (RDB) or a window definition block (WDB). The RDB and the
WDB are the interface between the user task and the Executive.
Their contents change dynamically as regions are created and
accessed. In general, once the WDB and/or the RDB are set up, the
actual memory management directive macro calls are completely
straightforward. Their format is either:

xxxx$x wdb

or

xxxx$x rdb

where

wdb - the label
rdb - the label

Examples:

CRAW$C
CRRG$S

WDB
#RDBI

or address of the WDB
or address of the RDB

As with other executive directives, the $, $C! or $8 form of each
directive may be used.

Region Definition Block (ROB)

An RDB contains information needed to create a region
to attach to a region in a system controlled partition.
is used by the following directives.

1. Attach Region (ATRG$)

2. Create Region (CRRG$)

3. Detach Reg ion (DTRG$)

341

and/or
The RDB

ARRAY
ELEMENT

irdb (1)

irdb (2)

irdb (3)

irdb (4)

irdb (5)

irdb (6)

irdb (7)

irdb (8)

DYNAMIC REGIONS

RDBBK$ SYMBOLIC
ARGUMENT OFFSET BLOCK FORMAT

R.GID REGION ID

siz R.GSIZ SIZE OF REGION (32W BLOCKS)

nam R.GNAM NAME OF REGION (RAD50) -

par R.GPAR REGION'S MAIN PARTITION NAME (RAD50)-

sts R.GSTS REGION STATUS WORD

pro R.GPRO REGION PROTECTION WORD

Figure 8-1 The Region Definition Block

342

BYTE
OFFSET

o

2

4

6

10

12

14

16

TK-7733

DYNAMIC REGIONS

Figure 8-1 shows the layout of the RDB along with the
symbolic offsets. Use the RDBBK$ macro to create and initialize
an RDB. Figure 8-1 also shows the RDBBK$ arguments for the
various RDB elements. The meaning of the elements is as follows.

• Region ID - a unique number assigned to a region when your
task attaches to a region. The number associates the task
with the region and is returned by the Executive after
your task attaches to a region.

• Size of Region - the size ofa region to be created, in
32-word blocks. It is also returned by the Executive when
attaching to an existing region.

• Name of Region - up to six characters. It is assigned
when a region is created and used when attaching to a
region.

• Region's Main Partition Name - the name of the system
controlled partition.

• Region Status Word used by the user task to send
information to the Executive when creating or attaching to
a region. Also used by the Executive to return status to
the task after a memory management directive is executed.
See Table 8-2 for a list of the various bits and their
meanings.

• Region Protection Word - analogous to the file protection
word, ,controlling access to regions. As shown below, it
is set up with the same format (RWED for read, write,
extend, delete) within each category; or: system, owner,
group, and world.

World
DEWR

1110

Group
DEWR

1110

Owner
DEWR

0000

System
DEWR

0000 = 167000(8)

A 'I' means access is denied, a '0' means access is
permitted. So the example means that world and group have
just read access, and owner and system have all accesses.

343

DYNAMIC REGIONS

Table 8-2 Region Status Word

344

DYNAMIC REGIONS

Creating an ROB in MACRO-11

The format for the RDBBK$ macro call is:

RDBBK$ siz,nam,par,sts,pro

No argument is provided for the region ID because
always returned by the Executive and is never specified
user. See Table 8-2 for a list of the region status word
including their symbols and meanings. We will discuss
further when we discuss the individual directives.
information not filled in at assembly time using the RDBBK$
can be filled in using direct MOVS at run time.

Examples:

To create an RDB for use in creating a region with:

Size in 32(10) word blocks = 2
Region name = MYREG
Partition name = GEN
Region to be attached on create
Region to be marked for delete on last detach
Write access desired on attach
Owner to have all privileges and group to have read
pr i v i leg e s •

RDBBK$ 2,MYREG,GEN,<RS.ATT!RS.MDL!RS.WRT),177017

Expansion:

.WORD 0 ; Reg ion ID

.WORD 2 Reg ion si ze
• RAD50 /MYREG/ ; Reg ion name
.RAD50 /GEN / ; partition name

it is
by the
bits,
these

Any
macro

.WORD <RS.ATT!RS.MDL!RS.WRT) ; 000242 (8) Region status
; word

.WORD 177017 ; Reg ion protection word

345

DYNAMIC REGIONS

The example below shows the use of a MOV instruction to set
the region size at run time.

To create an RDB for use in creating a region with:

Size in 32(10) word blocks = 1000(8)
Region name = XXXX
partition name = same as task is installed in
Region status = do not delete, desired access to be filled in
before attaching
World to have no privileges, all others to have all privileges

RDBBK$ 0,XXXX"RS.NDL,170000

Expansion:

.WORD

.WORD

.RADS0

.WORD

.WORD

.WORD

MOV

o
o
/XXXX /
0,0
RS.NDL
170000

#1000,RDB+R.GSIZ

Reg ion ID
Reg ion si ze

; Reg ion name
parti tion name
100(8), Region status word

; Region protection word

Set region size at run time

346

DYNAMIC REGIONS

Window Definition Block (WDB)

A WDB contains information needed to create a virtual address
region and to map a virtual address window to an attached region.
The WDB is required for the following directives.

1. Create Address Window (CRAW$)

2. Eliminate Address Window (ELAW$)

3. Map Address Window (MAP$)

4. Unmap Address Window (UMAP$)

5. Send by Reference (SREF$)

6. Receive by Reference (RREF$).

Figure 8-2 shows the layout of the WDB along with the
symbolic offsets. Use the WDBBK$ macro to create and initialize a
WDB. Figure 8-2 also shows the WDBBK$ arguments. The meaning of
the elements is as follows.

• Window ID - A number which identifies the window block in
the task header which describes the window. Window 0 is
used for the task window. Windows 1-7 are used for
additional windows set up by the Task Builder, for
overlays and static regions, and for windows created
dynamically. The window ID is returned by the Executive
after a Create Address Window directive.

• Base APR - The base APR to be used in mapping the window,
which sets the base virtual address.

• Base Virtual Address - The base virtual address in octal;
returned by the Executive after a Create Address Window
directive.

• Region ID - The region ID, used to identify the region
when mapping a virtual address window to a region. It is
returned by the Executive in the RDB after an Attach
Region directive. You 'must move the value returned from
the RDB to the WDS before mapping to the region.

NOTE
The Task Builder option WNDWS=n must be used
to specify the additional number of window
blocks needed for dynamic windows.

347

DYNAMIC REGIONS

ARRAY WDBBK$ SYMBOLIC
ELEMENT ARGUMENT OFFSET BLOCK FORMAT

W.NID
iwdb (1)

apr W.NAPR
BASE APR I WINDOW ID

iwdb (2) W.NBAS VI RTUAL BASE ADDRESS (BYTES)

iwdb (3) siz W.NSIZ WINDOW SIZE (32W BLOCKS)

iwdb (4) rid W.NRID REGION ID

iwdb (5) off W.NOFF OFFSET IN REGION (32W BLOCKS)

iwdb (6) len W.NLEN LENGTH TO MAP (32W BLOCKS)

iwdb (7) sts W.NSTS WINDOW STATUS WORD

iwdb (8) srb W.NSRB SEND/RECEIVE BUFFER ADDRESS

Figure 8 -2 The Window De fin i t ion Block

BYTE
OFFSET

o

2

4

6

10

12

14

16

TK-7736

• Offset in Region (32-word blocks) - The offset within the
region at which mapping is to begin. It allows a task to
map to different portions of a region.

• Length to Map (32-word block) The length within the
region to be mapped. It defaults to the shorter of the
space remaining in the region and the size of the window.

• Window Status Word Used by the user task to send
information to the Executive when creating and mapping
windows. It is also used by the Executive to return
status to the user task after a directive is executed.
Table 8-3 lists the various bits and their meanings.

• Send/Receive Buffer Address - The address of an 8-word
buffer for sending or receiving data as part of the Send
by Reference and Receive by Reference directives.

348

DYNAMIC REGIONS

Creating a WOB in MACRO-11

The format of the WDBBK$ macro is:

WDBBK$ apr,siz,rid,off,len,sts,srb

Note that no argument is provided for either the window ID or
the base virtual address, because these elements are always
returned by the Executive. Table 8-3 shows a list of the window
status word bits, including their symbols and meanings. We will
discuss these further when we discuss the individual directives.

Table 8-3 Window status Word

349

DYNAMIC REGIONS

Examples:

To create a WDB to describe a window with the following:

APR = 7
Size in 32(10) word blocks = 100(10)
Region is to be mapped in a CRAWS or RREF$ directive
Map with read access.

WDBBK$

Expansion:

.BYTE

.WORD

.WORD

.WORD

.WORD
• WORD
.WORD
.WORD

7,100.,0,0,100.,<WS.MAP!WS.RED)

0,7
o
100.
o
o
100 •
WS. MAP! WS. RED
o

Window ID, APR
Base virtual address
Leng th
Reg ion ID
Offset in region
Leng th in reg ion
000201(8), window status word

; Send/Receive buffer address

To create a WDB to describe a window with the following
characteristics:

APR = 5
Size in 32(10) word blocks = 200(8)
Map starting at offset of 5 blocks in region and map
10 (10) blocks
Send with delete and write access.

WDBBK$

Expansion:

.BYTE

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

5,200,0,5,10.,<WS.64B!WS.WRT!WS.DEL)

0,5 Window ID, APR
o Base virtual address
200 ; Window length
o ; Region ID
5 Offset in region
10. ; Length in region
WS.64B!WS.WRT!WS.DEL ; 000412(8), Window status

; word
o ; Send/Receive buffer address

350

DYNAMIC REGIONS

CREATING AND ACCESSING A REGION

Use the following procedure to create and access a region.

1. Create the region (Create Region directive) •

2. Attach to the region (Attach Region directive).

3. Move the region ID from the RDB to the WDB.

4. Create a virtual address window (Create Address Window
directive) •

5. Map the virtual address window to the region (Map Address
Window directive) •

6. Use the reg ion.

7. Detach from the region (Detach Region directive or task
ex it) •

Steps 1 and 2, and also steps 4 and 5 can each be combined in
a single directive call. Step 4 can be performed earlier, if
desired. To access an existing region, begin with step 2.

If you don't remember what windows and regions are, or what
attaching and mapping mean, look over the sections on Windows and
Regions in the last few pages of Module 5 on Memory Management.

The use of each directive in the procedure above is detailed
on the following pages. The discussion includes the purpose of
the directive, important input and output parameters, and notes
about its use. For a complete discussion of each directive, see
Chapter 5 of the RSX-I1M/M-PLUS Executive Reference Manual. For
additional information on the memory management directives, see
Chapter 3 of the same manual.

351

DYNAMIC REGIONS

Creating a Region

When you create a region, the Executive allocates space for
it in a system controlled partition. Use the Create Region
directive (CRRG$) with the following RDB input parameters.

• Size of region (in 32(10) word blocks)

• Name of region (becomes a private reg ion if no name)

• Name of partition (defaults to partition of task)

• Reg ion status word - mark for delete or do not delete
(default is mark for delete)

• Region protection word - determines permissible access to
region.

The only RDB output parameter is the RS.CRR bit in the region
status word. It is set if the region is successfully created, and
cleared if not. Normal Executive directive status is returned as
well (carry set for error, clear for success; DSW contains
direct i ve sta tus wo rd). If th e reg ion al read y ex i sts , success
status is returned. Therefore, RS.CRR can be used to tell whether
the region was in fact created, or whether it already existed.

Any task which passes the protection test can attach to a
named region. For unnamed (private) regions, only tasks which are
specifically attached by the creator of the region may attach to
it. Therefore, for a private region, the creator completely
controls which tasks attach to it and their access rights as well.

By default, or if RS.MDL is set in the region status word,
the region is deleted when the last attached task detaches from
the region. Named regions are left in existence after the last
detach if RS.NDL is set in the region status word when the region
is created. Unnamed (private) reg ions are always marked for
delete (deleted on last detach). There is no explicit Delete
Region directive.

If the RS.ATT bit is set in the region status word, the
Executive also attempts to attach the task to the region. In this
case, additional RDB input parameters are required, and additional
output parameters are returned. Attaching to a region is
discussed after Example 8-1.

352

DYNAMIC REGIONS

Example 8-1 shows how to create a named region which is left
in existence on last detach. The following notes are keyed to the
example.

ct set up the RDB. RS.NDL set specifies that the region is
to be left in existence.

o

e
o

World Group Owner System
DEWR DEWR DEWR DEWR

Region protection word = 1111 0000 0000 0000 (2)

1 7 o o o o (8)

- Bit set means access is to be denied.

Issue the directive to create the region, specifying the
RDB address as the only argument. Here we use the $C form
of the directive. Any form is allowed.

Check for a directive error.

Display message and exit.

353

1
2
3
4
~5
6
:7
8
9

:to
11
12
:L3
14

0 1,5
16
17
18
19
20
21
22
23
24
'")C"

fa ;~
827

[?8 o 29
30
31
:32
3:~
34
35
36
37
~58
39

DYNAMIC REGIONS

;+

;

.TITL£

.IDENT

.ENABL

File CRERG.MAC

CRERG
lOll
LC Enable lower case

; CRERG creates a named re~ion, and exits,
; leavin~ the re.ion in existence.
;-

RDB:

.MCALL

.MCALL
RDBBI(S

EXITSS,RDBBKS,CRRGSC
QIOW$C, (~IOW$S

S~~; tem ITIc~C 1"'('lS

Define re~ion with:

;
SMES:
L.SMES
BUFF:
EFMT:

;
START:

.ASCII
::::. ""SMES
• BL./(B
.ASCIZ
.EVEN

CRRGSC
BCS
QIOWSC

EXITSS
; Error code
ERR: MOV

MOV
MOV
CALL.
QIOWSS

EXITSS

Sizf~
Name
Parti t:ion
Protection

- 100 (32. word blocks)
MYREG

"" GEN
- WO:None,SY:RWED

OW: RWED" Gf~: F~WED
Do not mark for delete on last detach
ICRERG SUCCESSFUL.LY CREATED MYREGI

80. ; SEDMSG buffer
IERROR IN CREATING REGION. DSW :::: %D.I

RDB ; Create re~ion
ERR ; Branch on dir error
IO.WVB,5,1",,(SMES,L.SMES,40) ; Write

:JI:EFMT,R:L
:/I:SDSW,R2
:ft:BUFF,RO

success mef:)S(:1g€~

E}"dt

Set UP for SEDMSG

SEDMSG ; Edit error messa~e
tIO.WVB,:JI:5,:lf:l",,(:JI:BUFF,Rl,t40) ; Write

; message
; ENit

.END START

>f~UN CF:EI:::O
CRERG SUCCESSFULLY CREATED MYREG

Example 8-1 Creating a Named Region

354

DYNAMIC REGIONS

Attaching to a Region

When you attach your task to a region, the Executive creates
a logical connection between the two. The region can be either a
dynamic region or a static region. Use the Attach Region
directive (ATRG$) with the following RDB input parameters:

• Reg ion name
• Region status word (indicating R,W,E,D access)

The following RDB output parameters are returned:

• Reg ion ID
• Reg ion si ze

The region ID is needed later in order to map a virtual
address window to the region. The region size is of interest when
attaching to an already existing region whose size may not be
known.

Attaching can also be done as part of the Create Region
directive (CRRG$), if the RS.ATT bit in the region status word is
set when the Create Region directive is issued. In fact, for an
unnamed region, attaching must be done as part of the Create
Region directive, since there is no region name to be used in a
separate Attach Region directive.

A task can detach from a region by using an explicit Detach
Region directive (DTRG$) or by exiting (the Executive detaches the
task). If a task is chang ing a reg ion from do not delete to mark
for delete, an explicit detach is required with RS.MDL set in the
region status word. If the task exits without issuing an explicit
detach, the Executive detaches the task but does not mark the
region for delete. Once a region is marked for delete, it is
deleted when the last attached task detaches from it. Once it is
marked for delete, it cannot be changed to "do not delete." If a
fixed task exits without issuing an explicit detach, no detach is
performed by the Executive.

355

DYNAMIC REGIONS

Creating a Virtual Address Window

When you create a virtual address window for a task, the
Executive initializes a window block in the task header. It also
checks to ensure that this is the only window that uses the
specified range of virtual addresses, unmapping and eliminating
any window that overlaps that range. Use the Create Address
Window directive (CRAW$) with the following WDB input parameters.

• Base APR number
• Window size (in 32(10) word blocks}

The following WDB output parameters are returned:

• Window ID assigned by the system (1-7)
• Base virtual address

The space for the additional window blocks in the task header
must be reserved at task-build time using the WNDWS=n option. N
is the number of additional windows needed for windows created at
run time. If extra space is not allocated, an address window
allocation overflow error (IE.WOV = -85.) results.

The window is also mapped to a region if bit WS.MAP is set in
the window status word when the Create Address Window directive is
issued. In that case, addition input parameters are needed. See
Mapping to a Region in the following section.

The Eliminate Address Window (ELAW$) directive can be used to
explicitly eliminate a virtual address window. In general, it is
not used, because creating a new window automatically eliminates
any overlapping window.

Mapping to a Region

When you map a virtual address window to a region, the
Executive creates a logical connection between the virtual address
window and the region. Any attached region can be mapped. In the
process, the memory management registers are loaded so that
references to virtual addresses in the window access the region.
This is assuming, of course, that the task keeps control of the
CPU. The APRs are reloaded every time a new task takes control of
the CPU.

356

DYNAMIC REGIONS

Use the Map Address Window directive (MAP$) to map a window
to a region, with the following WDB input parameters.

• Region ID - Returned to RDB by Attach (move from RDB to
WDB) •

• Offset into Region - in 32-word blocks, used to start
mapping at an offset from the start of the region. This
must be a multiple of 8(10), unless WS.64B is set in the
win dow s tat us wo rd. If WS. 64 B iss e t, an 'y wh ole n urn be r
may be specified.

• Length to Map - If specified, must be less than, or equal
to, either the length of the window or the length
remaining in the region, whichever is shorter. If
defaulted, it is set to the shorter of the two.

• Window status word - actual access desired (read-only, or
read/write). Read-only is always requested by default.

The only WDB output parameter generally used is the length
actually mapped. If the window is already mapped, it is first
unmapped by the Executive. You can also use the Unmap Address
Window directive to explicitly unmap a window. Mapping can also
be done as part of the Create Address Window directive (CRAW$).

The type of access desired is used here in addition to when
you attach to the region, because several different windows in the
task may map the same region. Some of the windows may need
read-only access, others may need read/write access. In that
case, you must attach with read/write access, and then you may map
each window with either read-only or read/write access.

357

DYNAMIC REGIONS

Example 8-2 shows how to create a region and place data into
it, leaving it in existence upon exit. Example 8-3 shows how to
attach to that region, read and display the data, and then detach
and mark it for delete. One run session covers both examples.
The following notes are keyed to Example 8-2.

o

o
e

o

o

o
o

o

Task-build with the WNDWS=l option, allocates space in the
task header for one additional window block.

We use the $ form of the memory management directives.

RDB for region. RS.ATT set means Create Region directive
will both create the region and attach to it.

WDB for virtual address window. The third
the region ID, which will be filled in at
the task attaches to the region. In the
word, WS.MAP means that the Create
directive will both create the window and
region. WS.RED is automatic, even though

argument is for
r un tim e, aft e r
window status

Address Window
map it to the
not specified.

Create region and attach. Use DIR$ since you are using
the $ form of the directive.

Move region ID, returned in RDB after attach, into WDB for
mapping.

Create a virtual address window and map it to the region.

The virtual address window begins with APR 7; therefore,
the base address in the window is 160000(8), corresponding
to the base address in the region.

place a byte count, 400(10), in the first word in the
reg ion. This is just one way to communicate this
information to other tasks which access the region. The
length of the region is returned when a task attaches to
the region. You could use this as an alternate way to
pass information-about the amount of data.

Move 100(10) words of ASCII
ASCII "12" into the region.
or 400(10) bytes of data.

"AB" and 100(10) words of
This gives you 200(10) words

ct Display a successful creation and initialization message
at the terminal.

CD Detach from the reg ion and then ex it, leaving the reg ion
in existence.

358

2
3
4

.TITl!::

.IDENT

.ENABL.

DYNAMIC REGIONS

CREURG
lOll
lC Enable lower case

5 File CREURG.MAC
6
7
8
9

:LO
11
12
13
:1.4 o 15
16
17
18
19
20 o 2:1.

23
24
25

A 21.>
V 27

28
29
30
31
~52 o :~:3
34
35
36 o 37
38
39
40
41 o 42
43
44
45
46
47
48
4'"1
50
~5 :L
!52
!53
54
55

ProSram to create a named resion (attached on creation),
create a virtual address window (mapped on creation),
place ASCII data in to the re~ion, detach from the
reSion and exit, leavins the resion in existence.

Task-build instructions:

REG:

WSW
RDB:
;
WIN:

WDB:
;
DET:

IOSB:
DNMES:

LDNMES
; Error
FeRRER:
FCRWEI:;::
FCHODE:
FCHOIE:
FDETER:

BUFF:

>LINK/OPTION/MAP CREURG
Option? WNDWS=l
OPTION? <RET>

• MCALL. EXITSS,RDBBKS,WDBBKS,CRRGS,CRAWS
.MCAlL DTRGS,DIRS,QIOWSS,QIOWSC

CI=<RG$ RIIB ;DPB for create reSion
Define reSion with:

Si~::e

Name
Partition
Protection

= 100 (32. word blocks)
MYREG

- GEN
= WO:None,SY:RWED,

OW:RWED"GR:RWED
Do not mark for delete on last detach
Attach with read, write and delete access

- <RS.NDL!RS.DEl!RS.RED!RS.WRT!RS.ATT>
RDBBK$ 100,MYREG"GEN,WSW,170000

CRAWS WDB ; I1PB for create address window
Define window with:

APR 7
Size - 100 (32. word blocks)
Offset in reSion ::: 0 (32. word blocks)
lensth in reSion = 100 (32. word blocks)
Map on create with readlwrite access

WDBBKS 7,100,,0,0,,100,<WS.MAP!WS.WRT>

DTRG$ RDB DPB for detachins
from reSion

.BLKW 2 1/0 status block

.ASCII ICREURG HAS CREATED AND INITIALIZED THEI

.ASCII I REGIONI
::::. -DNMES
fOT'mat
.ASCIZ
.ASCIZ
.ASCIZ
.ASCIZ
.ASCIZ

strinss

.BLKB

IERROR CREATING REGION. DSW = %D.I
IERROR CREATING WINDOW. DSW = %D.I
IDIRECTIVE ERROR ON QIO. DSW ::: %D.I
!I/O ERROR ON QIO. CODE = %D.!
IERROR DETACHING FROM REGION. DSW =

80. Output btlffer

%D.I

Example 8-2 Creating a Region and Placing
Data in It (Sheet 1 of 2)

359

DYNAMIC REGIONS

56 .EVEN
0 57 START: DIR$ tREG ; Create region and attach

58 BCS ERR1 ; Check f()r error
0 59 MOV RDB+R.GID,WDB+W.NRID ; Move region III

60 into WDB
0 61 DIR$ tWIN Create window and lTIa?

62 BCS ERR2 Check fOT' error o 63 MOV t160000,R5 Set base addr in region
0 64

CD

CD

CD

MOV t400.,(R5)+ Move b~te count to 1st
65 word in regiorl
66 MOV t100.,RO t of words of 'AB' data
67 LOOf': MOV t·AB,(RS)+ Move chars to region
68 SOB RO,LOOF' Decrement counter and
69 loop until done
70 MOV t100.lIRO t of words of '12' data
71 LOOf'B: MOV t·12,(RS)+ Move chars "to region
72 SOB RO,LOOF'B Loo? 1 .. lrIt i 1. done
73 (HOW$C IO.WVB,S,1"IOSB,,(DNMES,LDNMES,40>
74 BCS ERR3D Branch on dir error
75 TSTB IOSB Check for I/O error
76 BLT ERI~31 Branch on I/O error
77 DIR$ tDET Detach from region
78 BCS ERR4 Check for error
79 EXIT$S
80 ; Error code
8l ERR1: MOV tFCRRER,R1 Create region error
8:~ message
83 BR SHOERR Brarlch to common code
84 ERR2: MOV tFCRWER,R1 Create window message
85 BR SHOERR Branch to common code
86 ERR3D: MOV tFCHODE,Rl aIO directive message
87 BR SHOERR Branch to common code
88 ERR3I: MOV IOSB,RO EHtend sign on statlJs
89 MOV RO,$DSW and move t,o arg block
9() MOV tFaIOIE,Rl aIO I/O error
91 BR SHOERR Branch to COlTIlllOn code
92 ERR4: MOV :J:FDETEI~, R 1 Detach resi(:m message
93 SHOERI~ : MOV tBUFF,RO Set U? for $EDMSG
94 MOV t$DSW,R2
95 CALL $EDMSG ; Edit message
96 aIOW$S tIO.WVB,t5,t1",,(tBUFF,R1,i40>
97 ; Dis?la~ message
98 EXIT$S ; EHit
99 .END START

HIJn Session

>RUN CREURG
CREURG HAS CREATED AND INITIALIZED THE REGION

>RUN ATTURG
AB
AB
AB
ABABABAB12
12
12
:1.212121212121212

Example 8-2 Creating a Region and Placing
Data in It (Sheet 2 of 2)

360

DYNAMIC REGIONS

Example 8-3 attaches to the region created by Example 8-2,
reads and displays the data, and then detaches from the region and
marks it for delete. The following notes are keyed to Example
8-3.

o Again, task-build wi th the WNDWS=l option so that the Task
Builder allocates space for the window block in the task
header.

o

o

This example uses all three forms of the directives, for
illustration purposes.

The RDB for attaching to the region. In fact, the only
required information is the region name and the region
status word. The parti tion name and si ze, al tho ugh
included here, are not needed. RS.MDL set marks the
region for delete when we do an explicit detach. You need
delete access to mark the region for delete (RS.DEL).
Also, attach with read (RS.RED) and write (RS.WRT) access
so tha t yo u can map wi th read/wr i te access.

The WDB for the virtual address window. We map the entire
region (length = 100(8) 32-word blocks), starting from the
beginning (offset = 0). WS.MAP means create the address
window and map. Map with read (WS.RED) and write (WS.WRT)
access.

o Attach to the reg ion.

ct Move the region ID to the WDB; create the virtual address
window and map it to the region.

tt set base address in region - again 160000(8), because the
base APR is APR 7.

ct The first word in the region contains a character or byte
count.

C) Number of characters to print on each line, except the
last line (if it has less than 64 (10) characters).

361

DYNAMIC REGIONS

CD Loop through region, printing 64(10) characters per line.
This technique is used to demonstrate how to control the
width of the output and make the run session fit on an
8-1/2" by 11" page with margins. If the full terminal
buffer width (typically 80(10) or 132(10)) is accept~ble,
one QIO directive, with the total character count
specified for number of characters, would be enough to
write the entire region. In that case, the terminal
driver will automatically wrap to the next line after a
full line is displayed.

ct Detach from the region. An explicit detach is required to
mark the region for delete.

NOTE
In Chapter 7, we discussed the fact that a
task needs read/write access to a region to
issue QIOs to write directly from a region.
This also applies to dynamic regions. ATTURG
issues QIOs directly from MYREG. Therefore,
although it appears that ATTURG only needs
read access, it actually needs read/write
access. See the discussion following Example
7-1 in Chapter 7 for additonal information.

362

1
2
3
4
5
6
7
B
9

10
11
1'"> .:..

:L3
14
15
lc.t,
17

0 1B
19
20

0[21
2~!

23

A[~~ V 27
28
29
30
31
32
33
34
35

O 36
37
3B
39
40
4:1. o 42
4:~

0[:;
46

;+

.TITLE

.IDENT

.ENABL

DYNAMIC REGIONS

ATTURG
/011
L..C Enable lower case

File ATTURG.MAC

Prosram to attach to an existinS resion, create a
virtual address window (mapped on creation)y read
ASCII data from the resion, detach from the reSion
and exit. The reSion will be deleted on last detach.
The first word in the reSion contains a count of how
manw b~tes of data are in the re~ion

Assemble and task-build instructions:

>MACRO/L..IST LB:[lylJPROGMACS/LIBRARY,dev:[ufdJATTURG
>LINK/MAP/OPTION ATTURGyLB:[lylJPROGSUBS/LIBRARY
}Option1 WNDWS=l
}Option1 <RET)

EXIT$S,RDBBK$,WDBBK$,ATRG$C ; Swstem
CRAWS,DTRG$S,DIRS,QIOWSS macros
DIRERR,IOERR ; SUPplied macros

RDB:

.MCALL

.MCALL

.MCALL
RDBBK$ 100,MYREG,GENy<RS.MDL!RS.DEL!RS.RED!RS.WRT>

; .

;
WIN:
WDB:

;
IOSB:
START:

Define reSion with:
Si::~e

Name
Partition

- 100 (32. word blocks)
"" MYREG
"" GEN

Mark for delete on last detach
Attach with read, write and delete access

CRAWS WDB ;DPB for create address window
WDBBK$ 7,100,OyOyl00,<WS.MAP!WS.RED!WS.WRT>
Define window with:

.BLKW
ATRGSC
BCS
MOV

DIRS

APR - 7
Size - 100 (32. word blocks)
Offset in resion = 0 (32. word blocks)
Lensth in reSion - :1.00 (32. word blocks)
Map on create with read and write access

2 IIO status block
RDB Attach to reSion
ERRl Check for error
RDB+R.GID,WDB+W.NRID ; Move resion ID

; i rd:,<'1 WDB
tWIN ; Create window

Example 8-3 Attaching to an Existing Region
and Reading Data From It (Sheet 1 of 2)

363

47 o 48
0 49 o 50

51
52
S:-S
54
5~:;

56

CD 57
~j8

59
60
61
62
6:~

64
CD 65

66
67
1.)8
69
70
71
72
73
74

DYNAMIC REGIONS

BCS ERR2 Check. for e r r() r
MOV t160000,R5 Set base addT' in re~H (")n
MOV (RS)+,R4 Get character count
MOV :8:64. ,1:;:3 ; Chars per 1 irH?

lOOP: QIOW$S tIO.WVB,t5,ll"tIOSB,,(R5,R3,140>
Write datc~

BCS ERR3D Check for dir error'
TSTB IOSB Check for liD €~ Y' ro Y'

BLT ERR31 Branch on error
SUB R3,R4 COITIPIJte chars left
BLE DONE Branch if done
ADD R3,R5 Point to neNt char
CMF' f"~3, R4 Check for .::: 64. chaT's

left to print
BlE LOOP). or ::::, print ne~·~t line
MOV R4,R3 <, print onl~ that lTIan~

chars
BR LOOP Print the line

DONE: DTRG$S tRDB Detach from reg i or.
BCS E/:;;R4 Check for e T' r(") T'
EXIT$S

; Error handling code
ERFU: DIRER/:;; <E/:;;ROF< ATTACHING TO REGION>
ERR2: DI/~ER/:;; <ER/:;:OR CREATING WINDOW AND MAPPING)
ERR3D: DIRERR <ERROR W/:;:ITING DATA>
ERR~5 I: IOERR tIOSB,(ERROR WRITING DATA>
ERR4: DIRERI:': <ERROR DETACHING Ff"~OM REGION>

.END START

Example 8-3 Attaching to an Existing Region
and Reading Data From It (Sheet 2 of 2)

364

DYNAMIC REGIONS

SEND- AND RECEIVE-BY-REFERENCE

If you create a private (unnamed) region, you have complete
control over whether other tasks can have access to it. You
specifically attach other tasks to the region by sending a packet
containing a reference to the region. When you do that, you can
also specify what access they have to the region. At the time,
you must be attached with at least that much access yourself.
Named regions, on the other hand, can be attached by any task that
knows the name and has the access privileges needed to pass the
protection check.

Use the Send-by-Reference directive (SREF$) to send a region
by reference, with the following input parameters.

Receiver task name
WDB - Reg ion ID

offset into region - sent unchecked to receiver
length to map - sent unchecked to receiver
window status word - determines how receiving task is
attached
address of buffer - 8 (10) word buffer which is sent to
the receiver

Event flag if specified, set when the reference is
received, not when it is queued up (in the receive
by-reference queue).

The receiver task is attached to the region when the
reference is queued up. This avoids the problem of the region
being deleted if the sender exits before th~ receiver receives the
region. Remember that private regions are always marked for
delete on last detach.

If you are using the event flag for synchronization, note
that the flag should be used to notify the sender as to when the
receiver receives the region by reference. It is not the same as
Send and Receive Data directives, where the flag is set when the
reference is queued. That flag should be used to notify the
receiver.

365

DYNAMIC REGIONS

The receiver follows a somewhat modified procedure to access
the region, as follows.

1. Crea te wi ndow.

2. After reference is queued, receive by reference (fills in
region ID in WDB)

3. Map to reg ion.

4. Use region.

5. Detach from region.

Use the Receive-bY-Reference directive (RREF$) to receive a
reference to a region, with the following WDB input parameters.

Window Status Word - WS.MAP for receive and map; WS.RCX for
receive data or exit.

Buffer Address - 10(10) word buffer for sender task name (in
Radix-50 format) and data.

The following WDB output parameters are returned, all as set
by the sende r :

Reg ion ID
Offset into region
Leng th to map
Window status word - describes how attached

If the WS.MAP bit is set, the Executive maps the window to
the reg ion, us i ng the 0 ff set, length, and window sta tus word
access as sent. If a separate Map directive is used, the receiver
can first check and/or modify those parameters before mapping to
the region. WS.RCX set tells the Executive to exit the task if
there are no packets in the receive-by-reference queue.

Although there are 'some similarities, Send Data and Receive
Data are completely independent from Send-by-Reference and
Receive-bY-Reference. The receive (data) queue is separ~te from
the receive-by-reference queue.

If you want to use' ASTs for synchronization, use the Specify
Receive-by-Reference AST directive (SRRA$). This causes the
Executive to transfer control to the specified AST routine when a
packet is placed in the receive-by-reference queue. Generally,
issue this directive when the task starts up.

366

DYNAMIC REGIONS

Examples 8-4 and 8-5 show how to create a pair of tasks, a
sender task and a receiver task. The sender, Example 8-4, creates
a private region, initializes it, and sends a reference to it to
the receiver. The receiver, Example 8-5, in turn receives the
reference, displays the data, and then exits. One run session is
included for both examples. The following notes are keyed to
Example 8-4.

ct This program uses the supplied macro DIRERR to generate
directive error messages. Therefore, PROGMACS.MLB must be
specified when assembling, and PROGSUBS.OLB when
task-building.

__ The RDB for the region. The name is defaulted to create a
private region.

o

o

o
o

o

The WDB for the virtual address window. The length
actually mapped will be returned after mapping. Read
access is automatic for map, so WS.WRT gets read/write
access.

Create and attach to region, create virtual address window
and,map it to the region.

Use the base virtual address in the window (returned in
the WDB) to set the base address of the region. Since APR
7 is the base APR, this address is 160000(8).

Fill the region with ASCII Ms.

Send-by-reference to RCVREF (Example 8-4). Event
will be set when RCVREF actually
receive-by-reference.

flag
does

I
a

Display message that a region was created and sent.
wait for event flag I to be set.

Then

Display message saying RCVREF received region, and then
exit.

Exit. The Executive will detach you from the region.
Note that even if SNDREF exits before REVREF receives the
region by reference, the region will not be deleted
because RCVREF is attached when the reference is queued.
The region is deleted only after both SNDREF and RCVREF
detach.

367

1.
2
3
4
5
6
7
B
('I

10
1.1
1 ") ."-

1. :~
14
:1.5
16

.p~
19
20
21.
22
23
24
:~5
26
27
2B
29
30
31
:32
33
34

0 31::" ,.:}

36
37
38
~59

40
41.
42
43
44
45
46

e 47
4B
49
50
51
52
53

;+

j-

DYNAMIC REGIONS

.TITLE

.InENT

.ENABL

SNDREF
lOll
LC

File SNnREF.MAC

Enable lower case

SNDREF creates a 64-word (2 block) unnamed re~ion and
fills it with ASCII characters. It then sends the
resion to RCVREF, and then waits for RCVREF to receive
the ~esion. (This is sisnalled b~ event flas tl.) It
then prints a messaSe and exits. Since the area is
unnamed, it is automatica1l~ deleted when the last
attached task exits.

Assemble and task-build instructions:

>MACRO/LIST LB!Cl,lJPROGMACS/LIBRARY,dev:CufdJSNDREF
>LINK/MAP/OPTION SNDREF,LB:[1,1.JPROGSUBS/LIBRARY
Or--t:i.on? WNDWS==l.

Install and run instructions: RCVREF must be installed.
Run SNDREF first, then run RCVREF.

.MCALL

.MCALL

.MCALL
• MCALL..
.NLIST

QIOWSC,QIOWSS,RQSTSC ; S~stem macros
WTSESC,EXITSS,RDBBKS,WDBBKS
CRRGSS,CRAWSS,SREFSC
DIRERR ; Supr--lied macro
BEX ; SUPPRESS DATA

Define re~ion with:
Size
Name
Partition
Protection

Attach on create

== 2
.- nc)ne
.- GEN

32-WORD BLOCKS

= WO:none,GR:RWED
OW:RWED,SV:none

RPRO
RSTAT

Read and write access desired on attach
•• M 1. 70017
== RS.ATTJRS.RED!RS.WRT

Define window with:

;
WSTAT

APR - 7
Size == 2 32-word blocks
Offset in re~ion == 0 32-word blocks
Lensth to map - 0 32-word blocks (defaults

to smaller of re~ion
size and window len~th)

Map on create with read and write access
:: WS. MAP! WS. WRT

Example 8-4 Send-by-Reference (Sheet 1 of 2)

368

54
5~)

56
~57
~i8
59
60
61
62
63
64

[
:~

O 67
68
69
70
71

o[;~
74 o 75
76
77
78 o 79
80
81

o 83 [

8')

84
8~)

86
87

e[:~
90

CD 91.
92
93
94
95
96
97
98
99

;
MES1:

L.MES j.

DYNAMIC REGIONS

.ASCII I SNDREF HAS CREATED THE REGION AND HASI

.ASCII I SENT IT TO RCVREF.I
:::. --MESl

MES2: .ASCII I RCVREF HAS RECEIYED IT. SNDREF IS NOWI
.ASCII I EXITING.I

LMES2 ::: • - MES~~~

.LIST BEX Show binar~ extensions

.EVEN

.ENABL LSB Enable local s~mbol
blocks

START: CRRG$S tRDB Create and attach to
re~ion

BCS
MOV

1$ Branch on dir error
RDBtR.GID,WDBtW.NRID ; COpy re~ion ID

CRAW$S tWDB
BCS 2$
MOV WDBtW.NBAS,RO

; Fill re~ion with all M'S
MOV :l:64.,R3
MOV .KMM,(RO)+

; into WDB
Create and map window
Branch on dir error
base V.A. of re~ion

count of words to move
Move in an ASCII M

SOB R3,20$ Loop throu~h re~ion
Send the re~ion to RCVREF. EF 1 will be set when
RCVREF recieves it

SREFSC RCVREF,WDB,l Send b~ reference to
RCVV<EF

BCS 3$; Branch on dir error
OIOW$C IO.WVB,5,2",,(MES1,LMES1,40>; Displaw

BCS 4$
; messa~e

; Branch on dir error
WTSE$C 1 ; Wait for RCVREF to ~et

; the re~ion
BCS 5$; Branch on dir error
OIOW$C IO.WVB,5,2",,(MES2,LMES2,40>; Displaw

BCS 6$
; messa~e

; Branch on dir error
; E~·d t EXIT$S

; Error code
1 $: DIREr';:R
2$: DIRERR
3$: DIRERR
4$: DIRERR
5$: DIF~ERR

6>$: Dn~ERR

.END

(ERROR ON CREATE OR ATTACH REGION>
(ERROR ON CREATE OR MAP WINDOW>
(ERROR ON SEND BY REFERENCE>
(ERROR ON 1ST WRITE>
(ERROR ON WAIT FOR>
(ERROR ON 2ND WRITE>
START

F~l.Jn Session

>INS RCVREF
>SET TERMINAL/WIDTH:64.
>RUN SNDF:EF

SNDREF HAS CREATED THE REGION AND HAS SENT IT TO RCVREF.
I~UN RCVREF

RCVREF HAS RECEIVED IT. SNDREF IS NOW EXITING.
MM
MM
>SET TERMINAL/WIDTH:80.

Example 8-4 Send-by-Reference (Sheet 2 of 2)

369

DYNAMIC REGIONS

The receiver, Example 8-5, receives a reference, displays the
data, then exits. The following notes are keyed to the example.

o This program uses the supplied macros DIRERR and IOERR to
display directive and I/O error messages.

«t WDB for virtual address window. The size is 200(8)
32-word blocks, a full 4K words. The offset into the
region, the length to map, and the access will be filled
in on receive. Since the length to map sent by SNDREF is
two blocks, '2' will be used in mapping. Note that the
window can be more than two blocks long. WS.MAP must be
left clear until after the window is created. Otherwise,
the Executive will try to map the window to the region,

e
o

e
o
o

causing an error. See the discussion which follows.

Create the virtual address window.

Set WS.MAP so that the task will map as part of the
receive-by-reference.

Receive-by-reference and map.

Set base address in region, using base virtual address for
APR 7 (160000 (8» •

Get length actually mapped (two blocks, the same as length
of region) and convert from blocks to bytes. Just display
that many characters.

Display all characters with one QIO directive. Note on
the run session that we set the terminal buffer to 64(10)
to allow for margins on an 8-1/2" by 11" page.

Exit. The Executive will detach the task from the region.
When both tasks have detached, the region will be deleted.

The receiver may map after the receive-by-reference or as
part of the receive-by-reference. If the receive-by-reference and
the map are combined in one directive, issue the
Receive-bY-Reference directive with the WS.MAP bit set. In that
case, the WS.MAP bit must be clear when the window is created,
since you can't map until you receive. This is necessary because
even though the receiver is attached to the region when the
reference is queued up, the region ID isn't filled in the WDB
until the receiver executes the Receive-by-Reference directive.
Therefore, if you receive and map in one call, issue the Create
Address Window directive with the WS.MAP bit clear; then set it
before issuing the Receive-by-Reference directive. If you use a
separate Map directive, the WS.MAP bit can be left clear.

370

1-
2
3
4
!5
6
7
8
9

to
11
12
t :5

[14 o 15
16
1'7
18
19
20
21
22
'")-v
A·_':)

24
2!5
26
2'7
:~8
29

0
30
31
32
~5~5

~54

3!:i
31.>
3'7
:38
39
40

e 4:1
4'"> .:..

4~3

44

0 45
46

;+

.TITLE

.IDENT

.ENABL

DYNAMIC REGIONS

RCVREF
lOll
I ... C Enable lower case

Filf.~ RCVREF.MAC

Prosram to receive-bY-reference a region from SNDREF,
map to the re~ion, read ASCII data from the reSion,
detach from the region and exit. The region will be
deleted on last detach.

Assemble and task-build instructions:

MACRO/LIST LB:C1,lJPROGMACS/LIBRARY,dev:[ufdJRCVREF
LINK/MAP/OPTIONS RCVREF,LB:[l,lJPROGSUBS/LIBRARY
Opt :i. on? WNDWS:::::I.
Opticm'P <RET>

Install and run instructions: RCVREF must be installed
Run SNDREF first and then run RCVREF

.MCALL

.MCALL

.MCALL.

EXITSS,WDBBKS,RREFS ; External system
QIOWSS,CRAWS,DIR$; macros
DIRERR,IOERR External supplied

macros
Define window with:

API:~ 7
- 200 (32. word blDcks)

Allow for full APR
These are filled in on receive, as set by sender:

Offset in reSion - 0 (32. word blocks)
Len~th in reSion - 0 (32. word blocks)

reset when mapped
Access - 0

; Note: Must map after receivins (or as part of receive)
WDB: WDBBK$ '7,200
¥
REC: RF~EFS

WIN: CRAWS
IOSB: .BLKW

START: DIRS

WDB
WDB
2

:JI:WIN

Set UP DPB for RREF$
; Set UP DPB for CRAWS

I/O ~;tc~tu~; block

Create virtual address
window

BCS ERR1 ; Branch on error
BIS :JI:WS.MAP,WDB+W.NSTS ; Set WDB to map on

; T'eceive

Example 8-5 Receive-by-Reference (Sheet 1 of 2)

371

e 47
48

0
49
~5()

~5:L

0[52
5~5 o ~54
55
56
57
~58

59

0 60
61 ; Err'oT'
b2 EHH1:
63 EF~I~2 :
64 EF~I~3 :
65 ERR4:
66

DIH$

BCS
MOV

MDV
MUL
CnOW$S

BCS

TST8
BLT
EXIT$S
code
DI REF~F.~
DIRERR
DIREF~H

I ()EI~F~
.END

DYNAMIC REGIONS

tREC

ERR2
t160000,R5

Receive bw reference
and lTIa?

Branch on error
Set base address in

T'e~~ii on
WDB+W.NLEN,R3 Size of re~ion to R3
t64.,R3 ; Convert blocks to bwtes
tIO.WVB,t5vil"tIOSB,,(R5,R3,t40) ; Write

; data
ERR3 Branch on directive

IOSB
ERR4

e r rC)f'
Check for 1/0 error
Branch on errc)r

(ERROR CREATING VIRTUAL ADDRESS WINDOW)
<ERROR ON RECEIVE AND MAP)
<ERROH ON WRITE aIO)
iIOSB,<ERROR ON WRITE aID)
START

Example 8-5 Receive-by-Reference (Sheet 2 of 2)

372

DYNAMIC REGIONS

The Mapped Array Area

If you want to automatically set up a. large core resident
data area, without using a create region directive, you may use
special techniques to set up an area called a mapped array area.
Figure 8-3 shows a task using a mapped array area. The Task
Builder sets things.up so that when the task is initially loaded,
the task region is larger than normal, with the mapped array area
set aside in memory immediately below the task header.

The task is automatically attached to the region, since it is
part of the task region. Therefore, all you have to do is to
create a virtual address window and map it to the region. The
area may be any size, as long as the task image and the mapped
array area fit into the partition. This means that it may be
larger than 32K words.

Typically, the virtual address window maps only a portion of
the region at a time. In Figure 8-3, the virtual address window
maps 4K words at a time.

This technique is used to implement virtual arrays in
FORTRAN. Since the area isn't set aside until the task is loaded
into memory, any initialization of the area must be performed at
run time.

Use the following procedure to create a task which uses the
mapped array area.

1. Set up a separate Psect in the source code and reserve
space for the virtual address window (using .BLKB or .BLKW
statements). Also set up symbols for reference, if
des ire d • Do no tin i t i ali ze any 10 cat ion s •

2. In the code, create a virtual address window.

3. Map the window to a portion of the region.

4. Later, map to other portions of the region by
the offset within the region and reissuing
directive.

373

modifying
the map

DYNAMIC REGIONS

5. Task-build with the WNDWS and the VSECT options.

WNDWS=n allocates space in the task header for the
extra window block

VSECT=psect-name:base:window-length:physical- length

where

psect-name = the name of the psect to be used for
the virtual address window

base = the base virtual address for the window

window-length = the length of the window in bytes

physical-length = the length of the mapped array
area in 32-word blocks.

This option sets up virtual addressing for the region
and specifies the amount of space to be set aside for
the mapped array area.

374

APR 3 -

APR 2 -

APR 1 -

DYNAMIC REGIONS

\\
'\\
\ \

\\
HEADER & STACK \ APR 0 ~ ______ I ______ ---\-",--

\ \

CD INITIAL LOAD AND MAP

(3) TOTAL SPACE INITIALLY
ALLOCATED. 4K WORD
AREAS MAPPED AS
NEEDED.

\ \
\ \

\ \
\ \

\

PHYSICAL
MEMORY

TASK
IMAGE

HEADER & STACK

MAPPED
ARRAY
AREA

(32K WORDS)

TK-7739

Figure 8-3 The Mapped Array Area

375

DYNAMIC REGIONS

Example 8-6 shows how to create and use a mapped array area.
The following notes are, keyed to the example.

o This program uses the supplied macro DIRERR.

o WNDWS = 1 is needed to reserve space for the extra window
block. The VSECT option sets up addressing for psect VV,
beginning at virtual address 160000(8), for a length of
20000(8) bytes or 4K words. The last argument sets up a

e
o

e

mapped array area 2000 32-word blocks = 200000(8) bytes
long = 32K words.

Set up psect VV, which is used for mapping the mapped
array area. Symbol A marks the beginning of the window at
virtual address 160000(8). The number of bytes reserved
must be at least as long as the window si ze (4K words) •

Data to be placed in the mapped array area.

WDS for the window. The reg ion ID is left '0' because the
region is the task region, which always has region ID 0.

Create the virtual address window and map starting at
offset 0, to the first 4K word area.

o Move "AIG7" into the first two words of the area.

tt Modify the offset in the region in the WDS (at offset
W .. NOFF) to 200'(8) blocks, so that mapping will begin at
that offset within the region.

t» Map to the second 4K word area.

e Move "B2G7" into the first two words of the second 4K word
area.

Similarly, map and move "C3G7" to the third 4K word area,
and "D4G7" to the fourth 4K word area.

CD Map back to the fi rst4K word area.

CD Di spla y the fi r st fo ur bytes.

Map to the second 4K word area and display the first four
bytes.

376

DYNAMIC REGIONS

CD Map to the fourth 4K word area and display the first four
bytes.

CD Map to the third 4K word area and display the first four
bytes.

The mapping order for displaying the data is different just
to show that the order need not match the original order for
placing the data into the region.

Now do the Tests/Exercises for this module in the
Tests/Exercises book. They are all lab problems. Check your
answers against the solutions provided, either the on-line files
(which should be under UFD [202,2]) or the printed copies in the
Tests/Exercises book.

If you think that you have mastered the material, ask your
course administrator to record your progress on your personal
progress plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material,
return to this module for further study.

377

1.

3
4
c·
... J

6
7
8
9

1.0 11
0[12

13

[
14 o :Lt")
16
1 ·..,

.1

18
:1.9 o 2()

[

"'L
A 22
V 23

24
25

[
:;~

e 2~~
29
30
31 o T')

033
34
3:5
36

O[~~
39

O[:~ o 42
43
44

e[:~

DYNAMIC REGIONS

(.TITLE VH3
.IDENT /Oll
+ ENABL I ... C ; Enable lower case

This proSram uses the mapped arra~ area. It places
data in the first 2 words of each of the first four
4K word blocks. It then retrieves the data and prints
it at the terminal.

Assemble and task-build instructions:

;

A:

DATA:
DATB:
DATC:
DATD:
DATG:

MACRO/LIST LB:[1,1]PROGMACS/LIBRARY~dev:[ufdJVS3
LINK/MAP/OPTIONS VS3~PROGSUBS/LIBRARY
Opt:icm? WNDWS::::1.
Option? VSECT=VV:160000:20000:2000
Opt i on'~ <F~ET>

.MCALL QIOW$S~EXIT$SvWDBBKS,CRAWSS~MAPSS

• MCALI...
.PSECT

• BU(B

.PSECT

.ASCII

.ASCII

.ASCII

.ASCII

.ASCII

D I I~EF;~F~
VV CONvGBI...

200(}O

/Al/
/82/
/C~3/

/D4/
/G7/

S~~~> t€·~m /TI(:~C po~;

SI.JPP I :i. f.~\d ll'Ia(:~ T'()

Psect for mapped arra~
is r€~a

Used to reference the
vi rttlisl (:1r~:~(:~

Back to blank Psect

; Define window definition block.
WDB: WDBBKS 7,200vOvOv200,<WS.MAP!WS.WRT>,0
START: CRAWSS tWDB ; Create window and /TIap

Ai:

BCC
DIRERR
MOV
MOV
MOV
MOV
MOV
MAPSS
BCC
D I F~EJ:~F~
MOV
MOV

; to 1st 4KW block
Ai ; Branch on dir ok
<ERROR CREATING WINDOW OR ON FIRST MAP)
DATA,A Move data to 1st word
:fJ:2,R5
DATGlIA(f~~)

4~WDB, RO
:fJ:200,W.NOFF(RO)
:fI:WDB

Move data to 2nd word

Set UP next 4KW block
Map 2nd 4KW block

A4 Branch on dir ok
<ERROR ON lST MAP TO 2ND 4KW BLOCK)
DATB"A
DATG,A(I:;::5)

Example 8-6 Use of the Mapped Array Area (Sheet 1 of 2)

378

47
48
49
50
51 A7:

0 52
53
54
5~:;

~:;6

~57 A8:
!58

8[59 60
61

e 62
63 All:

.[:~
67
68 (.1:1. 0 :

[69 70
CD 71

72
73 A:J.l:

.[~~
77
78 A:l.2:
79
80

Hun Session

>RUN VS3
A:J.G7
:82G7
D4G7
C:5G?

MOV
MAP$S
BCC
D IF~ERI:::
MOV
MOV
MOV
MAP$S
Bce
DII:::ERI:::
MOV
MOV
MOV
MAP~;S

BCe
DIF~ERR
QIOW$S
MOV
MAF'$S
Bee
DIF~EF~R
QIOW$~)

MOV
MAP$S
Bee
DIRERR
QIOW$S
MOV
MAP$S
Bee
DIRERI:::
QIOW$S
EXIT$S
.END

DYNAMIC REGIONS

:fI:400 ~ W. NOFF (F~O) 1I Sf.~t !..IF' 3rr..f 4K block
:JI:WDB
A7
<ERI:~(}I:~ ON :J.ST MAP TO 31:~D 4KW BLOCK>
J)ATC~A

DATG~A(R~5)

·:B=600~W+N()FF(H(» ; Set Ufo" 4th 4K bl(Jcl.:.
:B=WDB
A8
<Ef~I~OF~ ON :LST MAP TO 4TH 4Kl4 BLOCK>
DATDlIA
DATGlIA(~(~)

:lJ:O"W.NOFF(I:::O) Go back tC) :J.f.;t 4K bl(Jcl.:.
:lJ:WDB
A9 Branch on cf:i. T' ('1k

<EFa~OF~ ON 2ND MAP TO :J.ST 41,W BI ... OCI(>
:lJ:IO.WVB":fI:5,:fI:1,, " " ,,<:lJ:A,,:lJ:411:IJ:40>
:1J:2() 0 "W + NOFF (F~O) GC) to 2nd 41(block
:lJ:WDB
A:J.O v Branch orl d:i.r c)k
<EI:n(OF~ ON 2ND Mr.1P TO 2ND 4KW BLOCI,>
:fI:IO+WVB,:fI:5,,:fI::J.~"1I,,<:fI:A,,:fI:411:IJ:4(»

:JJ:600" W • NOFF (1:::0) v Go to 4th 41"< blocl.-:.
~I:WDB

A:J.:J. v Branch on ci:i. r ok
<ERROR ON 2ND MAP TO 4TH 4KW BLOCK>
:lJ:IO.WVB":fI:5":fI::J.,,,,,,<:fI:A,,:fI:4,,:fI:40>
:lJ:400, W. NOFF (1:::0) ; Go to 3rd 41-(bl(Jck
:lJ:WDB
At:? v Brcmch on d:i.l"' ok
<ERI~Cm ON 2ND MI~P TO :~FUI 4KW BLOCK>
:fI:IO.WVB,:JI:5,,:fI::J.,,~,~<:fI:A,,:fI:4,,:JI:40>

v I::.~·{l. t
STAr~T

Example 8-6 Use of the Mapped Array Area (Sheet 2 of 2)

379

· FILE 1/0

II

FILE I/O

INTRODUCTION
The RSX-IIM file system is composed of three parts.

• File structures - the organization and data structures
maintained on the mass storage volumes themselves

• Ancillary Control Processors (ACPS) - tasks which maintain
the file structures and provide access to them

• File access routines - provide user-written tasks with an
interface to ACPs, which provide and maintain organization
within files.

This module reviews some basic information about file
storage, and provides general information about the RSX-IIM
primary file structure called FILES-II, and its ACP. This module
also presents an overview and comparison of the two supplied file
access subsystems, File Control Services (FCS) and Record
Management Services (RMS). The following module provides details
on programming using FCS, which is the more widely used subsystem.

OBJECTIVES
1. To describe the steps involved in file I/O

2. To describe the FILES-II structure and how the FIIACP
maintains that structure during file I/O

3. To identify the advantages of using either FCS or RMS for
file access.

RESOURCES
1. IAS/RSX-ll I/O operations Reference Manual, Chapters 1 and

5

2. RMS-ll user's Guide

383

FILE I/O

OVERVIEW

Quite often in an application you need to store data on a
peripheral device (disk, magtape, etc.) for later retrieval. To
write such an application, you must know something about the
different devices which are on your system. In addition, you must
understand the file structure and its support systems. Once you
know that, you can learn the procedure for actually performing I/O
operations.

TYPES OF DEVICES

Record-Oriented Devices

Record-oriented devices have the following characteristics.

• Data is handled a record at a time.
• There is no file structure.

Terminals, line printers, and card readers are all
record-oriented devices. They are not designed for storage and
fast retrieval of data, but are designed instead to support
interactive sessions or provide hard copies of reports and other
data.

File-Structured Devices

File-structured devices have the
characteristics. The data they contain:

following general

• Can be handled in files

• Can be stored and retrieved quickly

• Is typically stored on a storage medium which can be moved
from one device to another.

. Ha r d dis ks , flo PP Y
file-structured devices.
helpful in our discussion.

qisks, and magtape are examples of
The following definitions should prove

a file - a collection of related data;
logical unit of mass storage.

therefore, a

385

FILE I/O

volume - a physical unit of mass storage consisting of a
recording medium and its packaging. Examples are a disk
pack, a reel of tape, a diskette, and a DECtape II
cartridge.

Types of File-structured Devices There are two
file-structures devices, sequential and random-access.
is determined by the kind of access to data on it.

types of
The type

Sequential devices have the following characteristics.

• Data is retrieved in the same order as written

• New data is always appended at the logical end of the
tape, after the last data written

• data cannot be written in the middle of the volume without
losing the data past that point.

Magtape and cassettes are examples of se~uential devices. In
essence, data is stored in order as written. To access any data,
all data before it on the tape must be read first.

Under RSX-IIM, the magtape ancillary control
(MTAACP) supports the ANSI file structure.

The MTAACP supports the following file setups:

• A single file on a single volume
• A single file on multiple volumes
• Multiple files on a single volume
• Multiple files on multiple volumes

processor

Random-access devices, also called block-st~uctured devices
or block-replaceable devices, have the following characteristics.
They can:

• Store and retrieve data in units called blocks

• Write or read blocks in any order

• Rewrite blocks without interfering with other blocks.

Hard disks (RL01/02, RP06, RM02/03), diskettes (RXII, RX211)
and DECtape II are examples of random-access devices.

386

FILE I/O

The FILES-II file structure, the standard RSX file structure,
is supported by the FILES-II ancillary control processor
FIIACP supports multiple files on a volume, but a file
extend across volumes. The COpy command (PIP in MCR)
the FILES-II structure during transfers ~f files within

-device and between FILES-II devices on a system.

(FIIACP) •
may not

maintains
a given

The ANSI file structure is useful for transfers of files
between different (possibly non-DIGITAL) systems. FILES-II is
useful between DIGITAL systems under RSX-IIM, RSX-IIM-PLUS, lAS
and VMS if the two systems have a device in common (e.g., both
systems have RL02s). The FLX utility is provided to facilitate
transfers between RSX and other DIGITAL systems which don't
support FILES-II, or between systems which support FILES-II (even
between two RSX-IIM systems) which do not have a common FILES-II
device. In that case, the FLX transfer is typically made on
magtape, using DOS or RT-II format.

387

FILE I/O

COMMON CONCEPTS OF FILE I/O

Common Operations

File I/O is often used to perform the following operations.

• Creating a file

• Deleting a file

• Modifying existing data within a file

• Appending new data to a file (or extending the file).

Steps of File I/O

Use the following three basic steps to do file I/O.

1 • ope n th e f i 1 e •

Specify a LUN and the file. The ACP connects a task
LUN to the file. specify the access rights desired.
The ACP checks against the file protection code. If
you are creating a new file, specify the file
characteristics (e.g., format and initial length).

2 • Pe r for m th e I/O 0 pe rat ion s •

Use macros to invoke subroutines to store data in the
file and/or retrieve data from the file.

3. Close the file.

Notify the system
completed, so tha t
performed.

388

that the file operations are
appropriate cleanup work can be

FILE I/O

FILES-11

In order to use FILES-II, you need to understand its
structure and how to interact with it.

FILES-11 Structure

A block is the smallest unit of storage which is read from,
or written to, a FILES-II device. Typically, the blocks are
256 (1 0) wo r d s 0 r 5 12 (1 Qj) _ b yt e s long • So me d ev ice s d i v ide 0 r
format their volumes into pieces which are 256(10) words long, and
others do not. Therefore, the FILES-II structure does some
converting or mapping so that you work with logical blocks which
are all standard size. When the volume is formatted, logical
block numbers are assigned to each 256(10) word area on the disk,
starting with logical block 0. Generally, the position of data on
a FILES-II volume can be described in three alternate ways, by:

• Physical location
• Logical block number
• Virtual block number

Table 9-1 compares the three ways. Figure 9-1 shows an
example of the mapping among the different methods. Typically,
you will reference data only within files. The files are
referenced by virtual block numbers within the file, starting with
1. Logical 'block numbers are assigned to the entire disk,
starting from 0.

The system converts virtual block number references to
logical block number references. For example, if you request a
read of virtual block 5, the system looks at the mapping and finds
that this corresponds to logical block 1622(8). This logical
block, in turn, is mapped to one or more specific sectors on the
disk, which are read from the disk.

389

FILE I/O

Table 9-1 Comparison of physical, Logical and Virtual Blocks

Typically, data is accessed as records, units which are not
exactly one block or 512(10) bytes long. A record is a unit of
user specified size, corresponding, for example, to a single bank
account or a single line of text at a terminal.

Figure 9-2 shows how the operating system handles a request
to read a record using FCS. The first. row shows a FORTRAN READ.
The FORTRAN READ instruction is converted by the compiler to a
GET$ call to the File Control Services (FCS) to read that record.
In MACRO, you will issue the GET$ call yourself. FCS checks to
find out which virtual block within the file contains that record
and issues the QIO directive for you. The Executive converts the
virtual block number to its corresponding logical block number and
issues a read logical blockQIO. The driver then converts the
logical block number to the appropriate physical locations, and
reads a block of data into memory. The record itself will then be
located within the block of data.

The second row shows "a BASIC-PLUS-2 READ under the Record
Management Services (RMS)~ The BASIC-PLUS-2 compiler converts the
READ to aRMS $GET call. r RMS converts this to a QIO, to read the
corresponding virtual block. From that point on, the steps are
just like those in the FORTRAN example.

390

VIRTUAL
BLOCK #'S
(IN THE
FILE)

PHYSICAL
LOCATIONS
(ON THE
VOLUME)

FILE I/O

FILE SAMPLE. TXT; 1

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 10

NOTE: BLOCK NUMBERS ARE IN OCTAL

TK-7738

Figure 9-1 Example of Virtual Block to Logical Block,
to Physical Location Mapping

391

FORTRAN

· · · READ (5,10) COMPILER
1 DATA

· · ·
FORTRAN RECORD

BASIC-PLUS-2

· · ·
READ DATA

· · ·
BASIC-PLUS-2
RECORD

COMPILER

MACRO-11
ENTERS HERE

· · ·

FILE I/O

· · · GET$ I FCS. OIOIO.RVB.

· · · · · ·
FCS RECORD VIRTUAL

BLOCK #

RMS

· · · $GET

· · ·
RMS RECORD

· "
EXEC · r--.... ...,....,

· F11ACP OIOIO.RLB DRIVER

· · -' · TRANSFER

LOGICAL FROM PHYSICA L

BLOCK # LOCATIONS ON
DISK

TK·7743

Figure 9-2 How the Operating System Converts Between
Virtual, Logical, and Physical Blocks

Figure 9-3 shows the FILES-II structures which are used to
support virtual-to-logical block mapping. Every FILES-II volume
has a number of system files on it, one of which is the Index File
(INDEXF.SYS) • The Index File contains certain blocks which are
for system use, plus a file header block for each file on the
vol ume.

Each file header block contains file retrieval pointers which
are used in mapping virtual blocks to logical blocks. "Each file
retrieval pointer locates a range of contiguous logical blocks.
The first byte tells how many contiguous blocks are in the group,
and the next three bytes specify the logical block number of the
first block in the group. Therefore, in the figure, there are
five contiguous blocks, starting with logical block 336851(10).
Virtual block 1 = log ical block 336851 (10), vb 2 = lb 336852 (10) ,
vb 3 = Ib 336853 (10), vb4 = lb 336854 (10), and vb 5 = Ib
336855(10). The next group of blocks, starting with virtual block
6 has 51(10) blocks and begins at logical block 336900(10) up
through logical block 336950(10). The last 17(10) virtual blocks
(virtual blocks 57 (10) to 73 (10» beg in at log ical block
337006(10) up through logical block 337022(10). These file
retrieval pointers are updated each time a change in block
allocation occurs as a result of a file I/O operation.

392

VBN

/'
/'

/'

2

/
/'

/

3 4

FILE I/O

VOLUME

~~~--f-INDEX FILE 

"-
"'-

"'-

"" "-
"'" ......... 

"-I FILE I FILE 1 FILE 1 FILE I· · · ~ 
HDR HDR HDR HDR ~ 

5 6 / 7 \ 10 N 

/ \ 
/ \ 

/ \ 
/ \ 

FILE HEADER 
FILE 3 ~~~-RETRIEVAL POINTERS 

/ 
/ 

/ 
SIZE J 

1ST LBN 

SIZE 1ST LBN 

5. H:005 L:021723 = 336851. 

51. H : 005 L : 022004 = 336900. 

17. H:005 L:022156 = 337006. 

Figure 9-3 FILES-II Structures Used to Support 
virtual-to-Logical Block ~apping 

393 

TK·7741 



FILE I/O 

Directories 

The operating system identifies files by file IDs, which are 
used to calculate the location of the file header within the index 
file. When you need to locate a file, it is difficult to remember 
where it is on the disk, or even what its file ID is. Instead, 
you use a file specification, a more English-like way of 
identifying a file. An example of a file specification is: 
DRl:[5,6]SAMPLE.TXTil. Tasks you write also usually identify 
files with a file specification. Directories are structures set 
up on a FILES-II volume that are used to group files together, and 
to convert file specifications to file IDs. 

A directory is a list of files belonging to a single user, or 
grouped together for other organizational purposes. An example of 
files grouped together for organization is the libraries in User 
File Directory (UFO) [1,1] on the system device. On a FILES-II 
volume, a directory is a special file containing a list of the 
files belonging to that user or group. For each file, the list 
has: 

• The file specification: name, type, and version number 
• The file ID 

The file ID consists of a file number and a sequence number. 
The file number identifies the offset within the index file to the 
virtual block containing the file's file header. The sequence 
number is used to distinguish this file from previously deleted 
files which used the same file header. There are two levels of 
directories on a volume, as follows. 

• One Master File Directory (MFD) which is directory [0,O] 
• One or more User File Directories (UFDs) 

Figure 9-4 shows the relationship between the two levels and 
the files. The MFD contains a list of the system file, plus one 
entry for each UFD on the volume. Each UFD file has a name of the 
form gggmrnm.DIR, where [ggg ,mmm] is the user identification code 
(UIC) of the owner. Each UFD contains a list of the files in that 
directory. 

394 



FILE I/O 

MFD 
[0,0] 

- - - - _-,-----__ -"--1 __ ------, ____ _ 

I 
UFD 
[200,1] 

1 -----1"--------'-----.1------

HIYA.MAC;1 FLY.TXT;1 

UFD 
[303,5] 

~--------~-----------'I-----------1 I 

IZZY.TXT;1 OZY.TXT;1 LOGIN.CMD;1 

TK-3965 

Figure 9-4 Directory and File Organization on a Volume 

Figure 9-5 shows the steps used in locating and accessing the 
blocks of the file DR2: [5,6]SAMPLE.TXTil. The device name, DRl: 
tells which device or volume to look on. The operating system 
reads the MFD file header to find the retrieval pointers for the 
MFD file itself. It converts the virtual blocks to logical blocks 
and reads the blocks of the MFD file. It searches through the 
directory list for the UFD [5,6], namely the file 005006.DIR. 

When it finds that name in the list, it uses the file ID to 
locate the UFD file header. It reads the retrieval pointers 
there, converts the virtual blocks to logical blocks, and reads 
the blocks of directory [5,6]. It looks for an entry 
SAMPLE.TXTil. When it finds that entry, it uses the file ID to 
locate the SAMPLE.TXTs file header. It then reads the retrieval 
pointers in the file header, converts" the virtual blocks to 
logical blocks, and reads the blocks of the file itself. 

If th is so und s 1 i ke a 10 t 0 f wo r k, it is. La te r , yo u wi 11 
learn about a way to go directly to the file header using the file 
ID if it is opened a second time during a task's execution. 

395 



MFD 
HEADER 

UFD 
HEADER 

FILE 
HEADER 

RETRIEVAL 
POINTERS 

RETRIEVAL 
POINTERS 

RETRIEVAL 
POINTERS 

FILE I/O 

DR 1 :[5,6]SAMPLE. TXT; 1 

005005.DIR FILE ID 
005006.DIR FILE ID 

• 

MFD 

SAMPLE.TXT;1 FILE ID UFD [5,6] 
• 

THIS IS A SAMPLE FILE 

• 
• 

FILE 

SAMPLE.TXT;1 

TK-7735 

Figure 9-5 Locating a File on a FILES-II Volume 

396 



FILE I/O 

Five Basic System Files 

There are five basic system files found on all FILES-II 
volumes. They are all created when the volume is initialized and 
are all entered in the MFD. Two of these, the Index File and the 
Master File Directory, have been mentioned previously. The five 
files and their purposes are as follows. 

• The Index Fil e: INDEXF. SYS. 

Boot block - used when a system volume is bootstrapped 

Home block - contains volume identification and other 
info rmation 

Index file bitmap - a record of which header blocks 
are in use; used by FIIACP when allocating header 
blocks to files 

File header blocks for all files on the volume 

• The Storage Map: BITMAP.SYS. 

A record of which blocks on the volume are in use 

Used by FIIACP when allocating blocks to files 

• The Bad Bloc k Fil e: BADBLK. SYS. 

A list of blocks on the volume known to be bad 

• The Master File Directory: 000000.DIR. 

Entries for the five system files 

An entry for each UFD file 

• The System Checkpoint File: CORIMG.SYS. 

Space used for checkpointing if the system manager 
allocates space in it. 

397 



FILE I/O 

Functions of the ACP 

The FIIACP maintains the FILES-II structure on a volume 
d ur i ng its use. 

The most elementary functions performed by the ACP are as 
follows. 

• Maintaining the File Header Blocks. This includes: 

Allocating and initializing a file header when a file 
is created 

Recovering a file header for reuse when a file is 
deleted 

Maintaining file attributes such as protection code, 
leng th, etc. 

Maintaining the file retrieval pointers 

• Maintaining directories. This includes: 

Creating directory entries when a file or UFD is 
created, or when a file synonym is created (e.g., by 
the PIP /EN switch) 

Removing entries from directories when a file is 
deleted or a file synonym is removed (e.g., by the PIP 
/RM swi tch) 

• Maintaining block allocation. This includes: 

Allocating blocks to files when a file is created or 
ex tended 

Recovering blocks for reuse when a file is deleted or 
truncated 

• Controlling and facilitating task access to files. 
incl ud es: 

This 

Checking protection codes to determine access rights 

Connecting a task's LUN to a file to allow virtual 
block I/O 

Controlling shared access to files. 

398 



FILE 1/0 

Table 9-

2 

shows the FllACP functions performed when yoU 

request some typical file 1/0 operations. 

Table 9-2 EXamples of use of FllACP Functions 

399 



FILE I/O 

Figure 9-6 shows the flow of control during the processing of 
an I/O request. This figure parallels Figure 9-2, which shows how 
the operating system converts virtual blocks to logical blocks to 
physical locations. 

The user task issues a read record request which is converted 
by an Fes routine in the user task to a QIO, to read a virtual 
block. The Executive converts the virtual block number to a 
logical block number, using file retrieval pointers in pool. 
These retrieval pointers are built by FIlACP from the retrieval 
pointers in the file header. The Executive issues a read logical 
block request to the driver. The driver converts the logical 
block number to the actual physical locations and copies the block 
into the user buffer. ' 

For additional information on the FILES-II structure, see 
Chapter 5 of the IAS/RSX-Il I/O Operations Reference Manual. 

USER TASK 

[
~EAD~ECORD 

FCS OR RMS 

OIOIO.RVB 

BUFFER 

POOL 

RETRI-EVAL POINTERS~ - - - - - - - - - - - -, 

EXEC DRIVER 

F11ACP 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I L _________________________ ~ 

FI LE HEADER 

FILE BODY 

TK-7737 

Figure 9-6 Flow of Control During the Processing of an 
I/O Request 

400 



FILE I/O 

OVERVIEW AND COMPARISON OF FCS AND RMS 

Common Functions 

The File Control Services (FCS) and the Record Management 
Services (RMS) both offer easy methods for performing file I/O. 
The operator or programmer need not be concerned with all the 
nitty-gritty details, but can instead let FCS or RMS take care of 
them. Both pe r fo rm the fo llowing funct ions: 

• Serve as an interface to the ACPs 

• Allow I/O to the virtual blocks of a file 
block-by-block basis (Block I/O) 

on a 

• Divide files into logical records and allow I/O to 
individual records within a file (Record I/O) 

• Allow the programmer to process records using one of the 
following buffers (Figure 9-7) 

A buffer reserved by the programmer with another 
buffer transparently used by FCS or RMS (move mode) 

Directly in the buffer used by FCS or RMS (locate 
mode) 

• Allow device independent I/O - the routines are written to 
work correctly with terminals, disks, etc. 

• provide mechanisms for controlling shared access to files. 

Beyond that, FCS and RMS each 
organizations, record types) and 
described in the following sections. 

401 

offer a variety of file 
access modes. These are 



DISK 

DISK 

FILE I/O 

MOVE BLOCK 
TO INTERNAL 
BUFFER 
(I F NECESSARY) 

MOVE BLOCK 
TO INTERNAL 
BUFFER 
(IF NECESSARY) 

MOVE MODE 

TASK 
___ ~(I.N MEMORY) 

rA~B;;;C~.:-:-. :-. ----1+---4- USER RECORD 
BUFFER 

MOVE RECORD 
TO USER 
RECORD BUFFER 

..... __ I--INTERNAL 
~~~---r-L~ BUFFER 

LOCATE MODE

TASK
(IN MEMORY)

~---

POINTER
/

/ POINT
/ POINTER

/ TO RECORD
/

/

i+----f- INTERNAL
I-----.--L. __ --.-.......L.-I B U F FER

TK-7742

Figure 9-7 Move Mode and Locate Mode

402

FILE I/O

FCS FEATURES

File Organizations

Essentially, all FCS supported files are sequential, meaning
that new records are added at the end of the file, and records are
stored in the order they are written. Figure 9-8 shows a file
with sequential organization.

RECORD RECORD
1 2

RECORD
3

END OF FILE

RECORD
n

,

SEQUENTIAL FILE ORGANIZATION

Figure 9-8 Sequential Files

Supported Record Types

FCS supports two record types, fixed-length records and
variable-length records. Variable-length records may be sequenced
or nonsequenced. An example of each type of file is shown below
with the following three records:

12345
123 1234
AAAA BBBB CC D

The examples are in DMP format; the six-digit number on the
left is the byte count in octal of the first byte in that row.
Then 16(10) = 20(8) bytes follow in order in octal. Below each
byte in octal is its equivalent in ASCII. An underscore ()
stands for an ASCII blank. Consult the examples as you read the
description of each record type which follows.

403

FILE I/O

Examples:

Fixed- Leng th Records (record leng th = 17(10))

000000 061 062 063 064 065 040 040 040 040 040 040 040 040 040 040 040
1 2 3 4 5

000020 040 xxx 061 062 063 040 061 062 063 064 040 040 040 040 040 040
pad 1 2 3 1 2 3 4

000040 040 040 040 xxx 101 1"01 101 101 040 102 102 102 102 040 103 103
pad A A A A B B B B C C

000060 040 f04 040 040 040 xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
D pad

Variable-Length Records

000000 005 000 061 062 063 064 065 xxx 010 000 061 062 063 040 061 062
1 2 3 4 5 pad 1 2 3 1 2

000020 063 064 016 000 101 101 101 101 040 102 102 102 102 040 103 103
3 4 A A A A B B B B C C

000040 040 104 xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
D

Sequenced variable-Length Record s

000000 007 000 001 000 061 062 063 064 065 xxx 012 000 002 000 061 062
1 2 3 4 5 pad 1 2

000020 063 040 061 062 063 064 020 000 003 000 101 101 101 101 040 102
3 1 2 3 4 A A A A B

000040 102 102 102 040 103 103 040 104 xxx xxx xxx xxx xxx xxx xxx xxx
B B B C C D

404

FILE I/O

Fixed-length records all contain the same number of bytes.
Therefore, the location of the beginning of any record within the
file can be computed from its record number. With all record
types, each record begins on an even word boundary. This means
that in files with fixed-length records, if each record contains
an even number of bytes, the next record begins immediately after
it. If, on the other hand, each record contains an odd number of
bytes, one byte is unused after each record, and the next record
begins at the next word boundary. This unused byte is called a
pad byte.

variable-length records may each have different lengths. For
all files with variable-length records, the first word of each
record contains a byte count, telling how many bytes are in that
record. For variable-length nonsequenced records, this count word
is followed by the data itself.

Following this, at the next word boundary, is the byte count
for the next record and then its data. To locate a given record
within the file, you must first read the byte count for the first
record in the file. You can then use the byte count to locate the
second record. You then continue reading byte counts and locating
successive records until you reach the desired record.

variable-length sequenced records contain a byte count, a
user specified sequence word, and then the data itself. The
sequence word can contain the record number or any other user
specified value. Variable-length sequenced records are not used
much under FCS. They are supported to allow compatibility with
RMS variable-with-fixed-control records.

405

FILE I/O

Table 9-3 compares the different FeB record types.

Table 9-3 Comparison of FCS Record Types

406

FILE I/O

Record Access Modes

Fes offers two record access modes, sequential access and
random access. Table 9-4 compares the two access modes. The
major difference is that with random access, the user can process
records in any order (e.g., record 12, then record 4, then record
29). This is possible with fixed length records only, because FeS
can calculate the position of each record within the file from the
record number and the record size.

with variable-length records, on the other hand, Fes can't
locate record 12 unless it reads records 1 through 11 first, using
the record length in the first word of each record to calculate
the starting position of the next record. Therefore, you must use
sequential access with variable length records. You may choose
either of the two access modes for fixed length records, depending
on how your application processes the records.

407

FILE I/O

Table 9-4 Comparison of Sequential Access I/O and
Random Access I/O

408

FILE I/O

File Sharing

A task which opens a file may choose one of the following
options:

• Tha t no other accesso r chang e an y data in the f i I e wh i Ie
it has access ("shared" read, "exclusive" write).

If this task desires read access, other accessors may
have simultaneous read access, but no other accessor
may have simultaneous write access.

If this task desires write access, no other accessor
may have simultaneous read or write access.

Any access request causing a conflict is rejected.

• That other accessors may change the data while it has
access ("shared" read/write access).

If this task requests read or write access, other
accessors may have simultaneous read or write access.

Use extreme care - Any precautions against corrupted
data are the responsibility of the accessors.

• That no other accessor changes any block within the file
which has already been accessed (block locking). Shared
access to the file is allowed, but:

Each block which is written to is locked for exclusive
write access.

Each block which is read is locked for shared read
access.

It is not recommended if accessing a large numbers of
blocks, because each block lock uses four words of
pool.

Any attempt to access a block which causes a conflict,
returns an error.

409

FILE I/O

RMS FEATURES

File Organizations

RMS supports three file organizations, sequential, relative
and indexed. See Figure 9-9. sequential files under RMS are the
same as sequential files under FCS. A relative file is composed
of a series of cells of uniform size. The cell size is greater
than or equal to the largest record to be placed in the file. A
single record may be written to a cell, or the cell can be empty.
The cells may contain variable-length records. variable-length
records within relative files can be accessed randomly because
each record is contained within a fixed-length cell. Also, when
you read successive records in a relative file, empty records are
automatically skipped.

An indexed file is composed of records, plus one or more
indexes which are used to access those records. Each index is
used to retrieve records according to the contents of a particular
field, or key, within the record. The data records themselves are
ordered according to a primary key which you declare when you
create the file.

Figure 9-9 shows an indexed file with a single key, namely
last name. In the example, the data records are in the bottom
row, ordered alphabetically by last name. The index for this file
contains two other levels, levelland level 2 (the root level).

A search for a record begins at the root level. For example,
to find the record with key value FRANCIS, search through the root
level, checking for the first value which is greater than or equal
to FRANCIS. The first such value is SMITH. Go to the next level
and again search for the first value greater than or equal to
FRANCIS; it is GROSS, the first value. Now go to the next level
and search again; this time the value FRANCIS is found. Since
this is level 0, we have found the record.

As new records are added to the file, they are inserted in
order at level 0 of the primary index. The primary index
structure is adjusted for the new entry at the same time. In
addition, any alternate index structures for other keys are
adjusted as well. There is always one primary key, and there may
be as many as 254(10) alternate keys.

410

LEVEL 2
(ROOT)

LEVEL 1

LEVEL 0

FILE I/O

L--_.....L.. __ '-_--' ... I~E::::r FILE

SEQUENTIAL FILE ORGANIZATION

CELL NO.r~-,---= ____ ~~~=4~~~5 ~
.. ·I~ECORDI

RELATIVE FILE ORGANIZATION

INDEXED FILE ORGANIZATION
TK-1748

Figure 9-9 RMS File organizations

Level 0 of the alternate keys contains pointers to the
original location of the data record itself. If a data record is
ever moved in order to maintain the index structure, a pointer is
created and maintained in the records original location, which
points the data record's new location.

One specific advantage of an indexed file over a relative
file is that an indexed file allows you to search for records
using several different key fields, while only the cell number can
be used with relative files. Even with a single key, indexed
files offer keys consisting of any ASCII characters, in contrast
to just a cell number for relative files.

There is, of course, more space overhead required in the file
for th e in d ex s t r uc t u res • I n ad d i t ion, m 0 r e ex e cut ion tim e is
required to insert new records, because the index structures must
be updated as well. We are keeping things rather simple in the
discussion here. For additional information, see the
RMS-ll user's Guide.

411

FILE I/O

Record Formats

RMS supports three record formats; fixed-length records,
variable-length records, and variable-length records with fixed
control. Fixed-length records and variable-length records are the
same as fixed-length records and nonsequenced variable-length
records respectively, under FCS. They are both supported under
all three file organizations.

variable-length records with fixed-control (VFC) contain a
fixed-length portion, for control, followed by a variable-length
portion. The fixed control portion may be up to 255(10) bytes
long. A sequenced variable-length record under FCS is the same as
a VFC record with a 2-byte (one word) fixed control portion.

An example of the use of VFC records is a bank account file,
where some accounts have both savings and checking, and others
have just one or the other. The fixed control portion could
contain the account number plus an indication of the kinds of
accounts contained in it. The variable portion contains the
account information for those accounts. The length of this
portion varies, depending on how many accounts the person has.
VFC records are supported under sequential and relative file
organizations only.

Record Access Modes

RMS supports three record access modes: sequential access,
random access, and access by Record File Address (RFA).
Sequential access and random access are similar to the FCS access
modes, except that they are applied differently for indexed files.

For sequential access on an indexed file, the "next" record
is the record with the next highest key value using the specified
key, not the next record added to the file. For random access, a
key value for a certain key is specified, and that record is
located and accessed. To access a record-by-record file address,
save pointers to the record (called its record file address or
RFA) from one access, then use the pointers to subsequently access
the record again.

Table 9-5 describes the various access modes
each file organization and how they work.
information, see the RMS-ll User's Guide.

412

suppo rted fo r
For additional

FILE I/O

Table 9-5 File organization, Record Formats, and Access Modes

413

File Sharing Features

RMS 0 ffers more
sequential files can
indexed files can be
opening a relative
following options.

FILE I/O

sophisticated file-sharing options than Fes.
be shared for read access only. Relative and
shared for read and write access. When
or indexed file, a task indicates one of the

• No other accessor can change data in the file while it has
access ("shared" read, exclusive "write") •

• Other accessors can change data, but subsets of the file
are protected at a time, while in use.

Relative and indexed files are divided into units called
buckets (of user specified si ze, each 1 to 32 (10) blocks long).
In fact, all actual I/O tranfers are performed on full buckets
only. In implementing protection of subsets of the file at a
time, protection is on a bucket-by-bucket basis (bucket-locking).

A bucket is locked from the time any task with write access
accesses a record in a bucket, until that task begins operations
on another bucket, or closes the file. This means that records
within a given bucket can't be accessed by other tasks while
another task with write access is using the bucket. But other
tasks may access other buckets in the file during that time.

414

FILE I/O

Summary

Table 9-6 summarizes our comparison of Fes and RMS. The next
module discusses the details of how to use Fes in a program.

Table 9-6 Comparison of Fes and RMS

415

FILE I/O

Table 9-6 Comparison of FCB and RMB (Cont)

Now do the tests/exercises for this module in the
Tests/Exercises book. They are all written problems. Check your
answers against the provided solutions in the Tests/Exercises
book.

If you think that you have mastered the mater ial, ask your
course administrator to record your progress on your personal
Progress plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material,
return to this module for further study.

416

FILE CONTROL SERVICES

I

FILE CONTROL SERVICES

INTRODUCTION
The File Control Services (FCS) subsystem provides the means

through which most tasks perform file I/O. You make calls
directly to the FCS routines.

This module introduces you
services it offers, and the
services.

to the structure of FCS, the
ways in which you can use those

OBJECTIVES
1. To choose file characteristics for a specific application,

then create a file with those characteristics

2. To write tasks which read or write data using record I/O
or block I/O (MACRO onl y)

3. To identify and implement methods of optimizing file I/O.

RESOURCE
• IAS/RSX-ll I/O OPERATIONS MANUAL, ,Chapters 1, 2, and 3

(Additional reading - Chapters 4 and 6)

419

FILE CONTROL SERVICES

REVIEW OF FILE I/O

Use the following basic steps to perform file I/O.

I • Ope n th e f i Ie.

• Ask ACP to connect LUN to file.

• Specify access rights desired (RWED).

• Specify type of access.

Block I/O or record I/O

For record I/O only

Random or sequential access
Move or locate mode

• If new file, specify file characteristics.

Record type

Record attributes

File initial size and extend size

2. perform the actual I/O operations.

3. Close the file.

• Perform any needed clean-up work.

421

FILE CONTROL SERVICES

INTRODUCTORY EXAMPLE
We begin our discussion

is to give you a feeling
file I/O. After that, we
involved, and the specific
them to perform file I/O.

of FCS with an example. The purpose
for how to perform the basic steps of
will examine the data structures
steps for setting them up and using

Example 10-1 creates a file with variable-length records
using sequential access. The records are input from TI: and then
placed in the file. The following notes are keyed to the example.

o
o

o

o
e

The interface with FCS is through system macros.

FCSERR is an error message macro supplied with this
course. Its source and documentation concerning its use
are in Appendix A. It is used here to avoid having to
worry about the details of the code.

The FSRSZ$ macro reserves space in the user task for a
general FCS data area which is called the file storage
region (FSR). This macro must be issued in every program
that uses FCS.

A file descriptor block (FOB) contains data structures for
a file opened by FCS. A separate FOB is required for each
file which is open at the same time. The FDB and its
related data structures can be filled in at assembly time
or at run time. In this example, they are set up mostly
at assembly time, which is more run time efficient.

open the new file VARI.ASC. Notice that the run-time
macro references the label of the FOB. This is necessary
in the case of multiple FOBs, for multiple files opened by
a single program.

Get input record from TI:.

Write (PUT$) the record to the file. For variable-length
records, specify the record length in bytes.

Branch on any FCS error.

422

FILE CONTROL SERVICES

C» Get next record. On a ~Z, close the file and exit.

G) On the Dump - A file dump is included for each example in
this module which creates a new file. The dumps were
created using the DMP utility, and are in octal byte
format. Because this file has variable-length records,
the first word in each record is a byte count for the
record. See the section on FCS File Organizations in the
File I/O module for additional information on the dump.

423

3
4

6
7
8
9

:LO
11
12
13
14
1. ~)
16
17
18

O[~9 ..:.0 o 21
'')'') e ;~
24

26
=~7
28 o 29
30
31
32
33
~54
35
36
:~7

:1EJ
39
4() _[41.

W 42
43 -[:; V 46
47
48

;+

FILE CONTROL SERVICES

.TITLE

.IDENT

.ENABL

CRESE(~

lOll
LC Enable lower case

File CRESEQ.MAC

CRESEQ creates a file VARI.ASC of variable-Ien~th
records usinS seGuential access. It reads records from
TI:, and places them in the file. A ~Z terminates
input and closes the file.

Assemble and task-build instructions:

MACRO/LIST LB:[l,l]PROGMACS/LIBRARY~dev:[ufdJ
"")CRESEQ
LINK/MAP CRESEQ,LB:[l,lJPROGSUBS/LIBRARY

.MCALL

.MCALL

.MCALL

.MCALL

EXSTSC,QIOWSC,QIOWS,DIRS ; System macros
FSRSZS,FDBDFS,FDATSA,FDRCSA,FDOPSA ; System
NMBLKS,OPENSW,PUTS,CLOSES; FCS macros
DIRERR,IOERR,FCSERR ; SUPplied macros

FSRSZS 1 ; 1 file for record liD
; Define file descriptor block for VARI.ASC
FDB: FDBDFS Allocate the FDB

FNAME:
BUFF:
lOST:

FDATSA R.VAR,FD.CR Variable lensth records,

FDRCSA "BUFF

FDOPSA 1"FNAME

NMBl.I(S VAl:': I "ASC
.BL.KB 80.
.BLKW 2
.EVEN
.ENABL LSB

Listins - implied
<CR>,<L.F>

Seauential access and
reeD rd I 10 b~1
default, BUFF is
user record buffer

Use LUN 1, file spec
at FNAME

aVARI.ASC·
User Record Buffer
1/0 status block

Enable local symbol
block.

; Open file for write, call ERRl if open fails
START: OPENSW #FDB"""ERRl
; Get record from terminal, put to file.
lOS: QIOWSC IO.RVB,5,1"IOST,,<BUFF,80.>

BCS ERR2D Branch on directive

TSTB
BLT

lOST
ERR21

error
Check. for 1/0 error
Branch on 110 error

Example 10-1 Creating a File in MACRO-II (Sheet 1 of 2)

424

FILE CONTROL SERVICES

fa [;6 a 51

MOV IOST+2,Rl Number of b~tes input
PUTS :fI:FDB, , R:L Put record to file
BCS ERR3 Branch on FCS error

852
53
54
55
56
~57

BR lOS Get next recor'd

EXIT: CLOSES tFDB,ERR4 Close file
EXSTSC EXSSUC ; E~·dt with success

; status
; Error code - Close f:i.le if necessar~, displa~1 err'or

58 ; messa~e and exit
59 ERR1: FCSERR tFDB,(ERROR OPENING FILE)
60 ERR2D: DIRERR (DIRECTIVE ERROR ON READ)
61 ERR2I: CMPB iIE.EOF,IOST ; Is it -z?
62 BEQ EXIT ; If eaual, close file

G)

63 ; and exit
64 IOERR tIOST,(ERROR ON READ) ; Displa~ error
65 ; messa~e and exit
66 ERR3: CLOSES #FDB,ERR4 ; Close file
67 FCSERR tFDB,(ERROR WRITING RECORD)
68 ERR4: FCSERR tFDB,(ERROR CLOSING FILE)
69 .END START

>RUN CRESEQ
1:1.:1.:1.

~~3~!'
JAZZ Jazz JAZZ Jazz
HcJVf:~ ~~()I..J t:,'VE.' r ~;;(~en the sun?
f.)6 /.i6 66 1.)1.)
"'Z

D'Jmp of DB1:[305,30:l.JVARI.ASC;27 .- File
Virtual block O,OOOOOl.

000000 004 000 061 061 061 06:1. 0:1.0 000
000020 003 000 063 063 063 000 023 000
000040 172 040 112 101 132 132 040 112
OOO()6() 166 145 040 171 157 165 040 145
000100 040 164 150 145 040 :1.6:3 :1.65 :1.56
OOO:L20 066 040 066 066 040 066 066 000

ID 34772,6,0
- Size 512.

062 062 062
112 101 .132
141 172 172
166 145 162
077 000 013
000 000 000

b~tes

062 062
132 040
000 033
040 163
000 066
000 000

Example 10-1 Creating a File in MACRO-II (Sheet 2

425

040 06:~ 062
112 14:L 172
000 110 141
145 145 156
066 040 066
000 000 000

of 2)

FILE CONTROL SERVICES

$$FSR1
(BLOCK
BUFFER
POOL)

$$FSR2

BLOCK BUFFER

BLOCK BUFFER

BLOCK BUFFER

IMPURE DATA

TK·7734

Figure 10-1 The File Storage Region

426

FILE CONTROL SERVICES

USING FCS

In this course, we cover many of the options supported by
FCS. However, we cannot cover all of the options in detail.
Therefore, it is very important that you read the reading
references mentioned in the IAS/RSX-ll I/O Operations Reference
Manual for further information. This is especially important if
you are going to use an option which is not discussed in detail in
this course. For a general discussion of FCS and its use, read
Chapter 1 of that manual.

Preparing to Open a File

The File storage Region (FSR) -- The FSR is an area allocated
in your task as working storage for FCS operations. The FSR
consists of two program sections which are always contiguous to
each other. Figure 10-1 shows the layout of the FSR. The program
sections and their purposes are as follows.

$$FSRI -- contains space for block buffers and the block
buffer headers for record I/O operations. You determine the
size of this area at assembly time with the FSRSZ$ macro.
Block buffers and headers are allocated from this area when a
file is opened for record I/O operations. Enough space must
be allocated for the greatest need of your task at anyone
time.

$$FSR2 -- contains impure data which is used and maintained by
FCS when performing both record I/O and block I/O operations.
The area is set aside at assembly time. portions of it are
initialized at task-build time; other portions are maintained
by FCS at run time.

The data flow during record I/O operations for locate mode
and move mode is shown in Figure 10-2. Note that blocks of data
are transferred directly between the device and the FSR block
buffer. In locate mode, you usually access the data directly in
the FSR block buffer. In move mode, an additional transfer is
made of the specified record between the FSR block buffer and a
user specified buffer.

The data flow during block I/O operations is different, as
show in Figure 10-3. Blocks of data are transferred directly
between the device and a user specified buffer. No FSR block
buffer is needed.

427

DISK

DISK

FILE CONTROL SERVICES

MOVE
BLOCK
(IF NECESSARY)

MOVE MODE

TASK
_--__ (IN MEMORY)

rA;-;B;;C:-:.~.~.:----l.---L USE R R ECOR D
BUFFER

MOVE
RECORD

...... __ "-- FSR BLOCK
~---r--L.:..":'="='-.--.L.....j BU F FER

LOCATE MODE
TASK
(IN MEMORY) ------

r--- - --- - !+-__ -I--USER RECORD a..---------J BUFFER

FSR BLOCK
BUFFER

TK·7729

Figure 10-2 Move Mode Versus Locate Mode for Record I/O

428

DISK

FILE CONTROL SERVICES

MOVE
BLOCK

TASK
(IN MEMORY) -------

ABC ...

Figure 10-3 Block I/O Operations

TK-8636

Initialization of the FSR

Use the FSRSZ$ macro to establish the size of the FSR at
assembly time. This macro must be used in any program using FCS,
whether fO,r block I/O or record I/O. The format of the FSRSZ$
macro is as follows.

FSRSZ$ fbufs,bufsize,psect

fbufs - for block I/O only, specify 0

- for record I/O or record and block I/O, maximum
number of buffers needed for record I/O

bufsize - total space needed for block buffers (in bytes).
Defaults to fbuf*5l2(10)

psect - return Psect if other than default.

429

FILE CONTROL SERVICES

Examples:

FSRSZ$ 0

using FCS for block I/O only. Allocate FSR space for impure
data only ($$FSR2).

FRSRSZ$ 2

using FCS, allocate FSR space for impure data ($$FSR2), and
for record I/O block buffers ($$FSRl). Total allocation for
block buffers in $$FSRI is two headers plus 2*512(10) =
10 2 4 (1 0) b yt e s •

FSRSZ$ 3,2048

using FCS, allocate FSR space for impure data ($$FSR2), and
for record I/O block- buffers ($$FSR1). Total allocation for
block buffers is three headers plus 2048(10) bytes. For
example, two are 512(10) bytes long and the third is 1024(10)
bytes long.

The buffer size usually corresponds to a disk block (512(10»
for disks, or the buffer width for terminals. If all record I/O
operations use single buffering with the default buffer size of 1
disk block (512 (10», then fbufs should be the max imum number of
files open at the same time for record I/O. Bufsize can be
defaul ted to that number, times 512 (10) •

If double buffering is used for some record I/O operations,
or larger block buffers are desired (to reduce the number of I/O
transfers) , speci fy val ues for fbufs and/or bufsi ze. This allows
for your maximum need for files open at the same time for record
I/O.

See section 2.6.1 on FSRSZ$ in the IAS/RSX-ll Operations
Reference Manual for a discussion on how to calculate bufsize.

430

FILE CONTROL SERVICES

The File Descriptor Block (FOB)

Functions of the FOB - The FOB contains information used by FCS in
opening and processing a file. One FOB is required for each file
that is open at the same time by your program. An FOB may be
reused once the file associated with it is closed. The FOB is
used by:

• The task, to pass information to FCS

• FCS, to return information to the task

• FCS, for internal bookkeeping for the file.

You must allocate space for each FOB and initialize specific
portions, before opening a file. You may use either assembly-time
or run-time macro calls. Figure 10-4 shows an FOB and its
different parts.

FILE ATTRIBUTE
SECTION

RECORD OR BLOCK
ACCESS SECTION

FI LE OPEN SECTION

BLOCK BUFFER
SECTION

FILE NAME
BLOCK SECTION

FILE DESCRIPTOR BLOCK

RECORD TYPE AND SIZE
FILE TYP,E AND SIZE

BUFFER DESCRIPTORS AND
POINTERS - ACCESS MODE

ASSOCIATED LUN

MULTI-BUFFERING DESCRIPTOR
BUFFER SIZE

FILE SPECIFICATION
FI LE ID

FDAT$A

FDRC$A AND
FOR BLOCK FDBK$A

FDOP$A

FDBF$A

POINTERS IN FDOP$A
(BUI L T AT OPEN FROM
DSPT OR NAME BLOCK
PLUS INFO. FROM FILE)

TK-7740

Figure 10-4 The File Descriptor Block

431

FILE CONTROL SERVICES

Allocating Space for FOBs - Use the FDBDF$ macro to allocate space
for one FOB. The format of the call is:

1 abel: FOB DF$

FOB IN: FDBDF$

The label is used later to refer to a specific FOB.

Initializing an FOB - You can initialize an FOB either at assembly
time or at run time. Whenever possible, use the assembly-time
macros because they do not need to be executed at run-time.
Therefore, your task will be more run-time efficient. With the
assembly-time macros, use parameters which are valid source
arguments for .WORD or .BYTE assembler directives. Many values
have symbolic equivalents which can be used instead of the actual
numer ic val ues.

With the run-time macros, use parameters which are valid
source arguments for MOV or MOVB instructions. This is similar to
the convention for the $ form versus the $S form of the executive
directives. At assembly time, use FCS macros which end with $A;
at run time, use FCS macros which end with $R. The assembly-time
macros must immediately follow the FDBDF$ macro which reserves
space for the FOB. The run-time macros have an additional initial
argument to specify which FOB they refer to.

Run-time initialization macros override any previous FOB
settings. In addition, you can also override the settings in the
file open operation or in an I/O operation.

As an aid in referencing a given FOB at run time, all FCS
run-time initialization and file-processing macros return the FOB
address in R0. If no FDB pointer is specified in subsequent FCS
macro calls, it defaults to R0. The other registers are saved and
restored by all FCS run-time macros.

For additional information on the use of
different forms of the FCS macro calls,
Assembly-Time FOB Initialization Macros, and
Run-Time FOB Macro-Call Exceptions in
Operations Reference Manual •

parameters in the
see section 2.2.1 on
section 2.2.2.1 on

the IAS/RSX-ll I/O

The following sections describe how to use the different FCS
FOB initialization macros to initialize an FOB.

432

FILE CONTROL SERVICES

Specifying New File Characteristics

Use either the FDAT$A macro, at assembly time, or the FDAT$R
macro, at run time, to specify new file characteristics. These
macros are only required where you create a new file. FCS uses
the established characteristics for existing files. The format of
the FDAT$A,macro is:

FDAT$A rtyp,ratt,rsiz,cntg,aloc

rtyp - record type
R.FIX = fixed length
R.VAR = variable length
R.SEQ = sequenced

ratt - record attributes

carriage control
FD.FTN = FORTRAN type
FD.CR = list type
default = no implied carriage control

spanning of blocks
FD.BLK = spanning blocks not allowed
default = spanning blocks is allowed

rsiz - record size

cntg - initial number of blocks for file

aloc - extend size for file.

Examples:

1. FDA T$A R. VAR

File will have variable-length records. Defaults: no
implied carriage control, may span block boundaries,
initial size of zero blocks, default extend size, on
disk, generally five blocks.

2. FDAT$A R. FIX, FD. CR, 64.

File will have fixed-length records, list carriage
control, and 64(10) byte records. Defaults: records may
span block boundaries, initial size of zero blocks
default extend size.

433

FILE CONTROL SERVICES

3. FDAT$A R.FIX,RD.FTN!FD.BLK,100.,-15.

File to have fixed-length records, FORTRAN type carriage
control; records may not span block boundaries; 100(10)
byte records, initial file size of 15(10) blocks, not
necessarily contiguous. Default: default extend size.

4. FDAT$R #FBDl,#R.FIX,#FD.FTN!FD.BLK,#100.,#15.

The same as the previous example, but using the run-time
form.

Note the difference in the format of the parameters in the $A
(for assembly-time) and the $R (for run-time) forms. For the $A
form, the parameters are symbolic or numeric values, all valid
source arguments for .WORD or .BYTE assembler directives. For the
$R form, on the other hand, the parameters are all valid source
arguments for MOV or MOVB instructions.

If records are allowed to span block boundaries, then a
record at the end of a block, which doesn't fit completely within
the block, is continued in the next block. If records are not
allowed to span block boundaries, a record which doesn't fit
completely is started at the beginning of the next block. The
space remaining in the current block is unused. This technique
uses more file space, but permits quicker I/O operations in locate
mode.

Specify one of three possible types of carriage control in
the ratt parameter. FD.FTN indicates that the first data byte of
each record contains a FORTRAN carriage-control character (e.g.,
space for single space, 0 for double space). FD.CR indicates that
when the record is written to a line printer or a terminal, each
record is to be preceded by an <LF) character and followed by a
<CR) character. This causes single spacing between records in the
printout. If you specify neither FD.FTN nor FD.CR, no carriage
control is implied. Any carriage control characters must be
imbedded in the data. List (.LST) files are set up with no
implied carriage control.

See section 2.2.1.2
Operations Reference Manual
FDAT$A parameters.

on FDAT$A in
for additional

434

the IAS/RSX-ll I/O
information on the

FILE CONTROL SERVICES

Selecting Data Access Methods

First decide whether to use block I/O or record I/O.
Normally use block I/O for files with no record structure, and
record I/O for record structured files. However, block I/O is
faster than record I/O, because no blocking or deblocking of
records is required, and transfers are made directly between the
device and the user buffer. Therefore, if your operation does not
require accessing individual records within the file, e.g., a file
copy operation, use block I/O because it is more efficient.

After you select block I/O or record I/O, there are some
other considerations. For block I/O, no FSR block buffer is
needed. Instead, you must specify a user buffer. Block I/O is
asynchronous; set up an event flag or an AST for synchronization.
Also, you must use the additional FDBK$A or FDBK$R macro to
specify the user buffer and the synchronization techniques.

For record I/O, choose either sequential access
access mode. Sequential access can be performed on
either variable-length records or fixed-length
Successive PUTS or GET$ operations in sequential
access successive records in the file. This is useful
to process all records in the file in order. It is
the file has variable-length records.

or random
files with

records.
access mode
if you need
required if

Random access can be performed only in files' with
fixed-length records. With random access, your program can access
records randomly by specifying a record number in each PUTS or
GET$ call. Random access is desirable if you want to access
records in an order which is different from their order in the
file.

with sequential access, you can use FCS routine to save
pointers to an accessed record, and later return to that record.
This offers you a limited ability to access records in a random
order, or at least an ability to back up to a certain point in the
file and continue from there. The actual subroutines are
discussed later in this module under performing I/O.

For record I/O, an FSR block buffer is used for the actual
I/O transfers. Blocking and deblocking of records is done
transparently for you by FCS. When FCS blocks a record on output,
it places it into one -or more virtual blocks as needed. When FCS
deblocks a record on input, it takes one or more virtual blocks
and constructs a logical record. Because GET$/PUT$ operations,
used for record I/O, process records which are contained in
virtual blocks, not all I/O operations cause an actual I/O
transfer. Generally, an I/O transfer is needed only when the end
of a block is reached.

435

FILE CONTROL SERVICES

You may choose either move mode or locate mode. Figure 10-2
compares the two. In move mode, you always access records in a
user specified buffer, sometimes called a user record buffer.
Move mode is simple to program, but every PUTS or GET$ operation
requires an extra transfer of the record between the user record
buffer and the FSR block buffer. A user record buffer is
required.

In locate mode, as long as complete records are located
totally within an FSR block buffer, you access the record directly
in the FSR block buffer. FCS returns information in the FDB about
the location and the size of the record. If records are allowed
to span block boundaries and the last record in a block does span
the block boundary, then" the full record cannot be accessed until
the next virtual block is read (in the case of a GET$ operation),
or until the current virtual block is written (in the case of a
PUTS operation). In that special case, the record is accessed in
a user specified buffer. Therefore, a user record buffer is
required in locate mode only if one or more records actually span
block boundaries. Table 10-1 summarizes the situations when a
user record buffer is needed.

Record I/O operations are synchronous. All synchronization
is handled for you by FCS. Control is returned to your program
only after the requested PUTS or GET$ operation is completed.

Table 10-1 When the User Record Buffer Is Needed

436

FILE CONTROL SERVICES

Specifying Data Access Methods

Use the FDRC$A or the FDRC$R macro to specify data
methods.

FDRC$A racc,urba,urbs

racc - type of access

methods
FD.RWM = block mode
FD.RAN = record mode, random I/O
default = record mode, sequential I/O

f i 1 e t r un cat ion

access

FD.INS = PUTS in middle of file does not truncate
file

defaul t = does tr uncate file

move or locate
FD.PLC = locate mode
defaul t = move mode

urba - user record buffer address (Table 10-1)

urbs - user record buffer si ze (in bytes).

Examples:

1. FDRC$A ,BUFF,80.

Defaults to record I/O, sequential access in move mode.
User record buffer at BUFF, 80. bytes long.

2. FDRC$A FD.RWM

Block I/O. buffer is specified in FDBK$A macro or in
open, READ$, or WRITE$ macros.

3. FDRC$R #FDB4,#FD.RAN!FD.PLC,#BUFF,#100.

Record I/O, random access in locate mode. User record
buffer at BUFF, 100. bytes long. This is a run-time
macro which initializes the FDB at FDB4.

437

FILE CONTROL SERVICES

If FD.INS is not specified, a PUTS in the middle of the file
places the log ical end-of-file right after that record, which
truncates the file. If FD.INS is specified, a PUTS in the middle
of the file does not change the logical end-of-file. See section
2.2.1.3 on FDRC$A in the IAS/RSX-ll I/O Operations Manual for
additional information.

Additional Initialization of the FOB for Record I/O

Normally, no further initialization is needed for record I/O.
However, if you wish to override one or more of the defaults, use
the FDBF$A or the FDBF$R macro. The defaults are included in the
list of parameters below. The format of the FDBF$A call is:

FDBF$A efn,ovbs,mbct,mbfg

efn event flag used internally for synchronization
(default is 32(10))

ovbs - overr ide FSR block buffer si ze (in bytes)
is standard block size for device)

(default

mbct - multiple buffer count (default generally 1, or
single buffering)

mbfg - multiple buffering type (only for multiple buffering)

FD.RAH = read ahead operations
FD.WRB = write behind operations
(default - FD.RAH if file opened for read only,
FD.WRB if file opened for a write operation)

Examples:

1. FDB F$A , ,2

Use double buffering. Defaults: event flag 32(10), FSR
block buffer size standard for device (e.g., 512(10)
bytes for disk). Multiple buffering type - read ahead if
file is opened for read only, write behind if it is
opened for a write operation.

2. FDBF$A 12.,2048.

Use event flag 12(10) and an FSR block buffer size of
2048(10) bytes. This is the standard size for ANSI
magtape. It can also be used for disks to cut down on
the number of I/O transfers. Default: single buffering.

438

FILE CONTROL SERVICES

In the second example, you must reserve enough space in the
FSR using the FSRZ$ macro. See section 2.2.1.6 on FDBF$A in the
IAS/RSX-11 I/O Operations Reference Manual for further informa-
tion.

Additional Initialization for Block I/O

For block I/O, you only specify the access method in the
FDRC$A or FDRC$R macro. You must use the FDBK$A or FDBK$R macro
to set up the user buffer and your synchronization methods. The
format of the FDBK$A macro is as follows.

FDBK$A bkda ,bkds ,bkvb ,bkef ,bkst ,bkdn

bkda

bkds

bkvb

bkef

bkst

bkdn

user buffer address

user buffer size (in bytes)

address of two-word virtual block number

event flag for synchronization (default =
32(10))

I/O status block address (must be specified
for FCS to return I/O status)

AST service routine address

Bkvb must be
opened us i ng
WRITE$ call.

NOTE
specified after

the $R form, or
the file is
in a READ$ or

Example:

FDBK$A MYBUF,1024.,,20.,IOST

User buffer at MYBUF, size is 1024(10) bytes. Use event flag
20(10), the I/O status block is at lOST. No AST routine.

Bkvb is the address of a two-word data block containing the
first virtual block number for a block I/O operation. This data
block is copied into the FDB and then used to locate the starting
block for the I/O operation.

439

FILE CONTROL SERVICES

However, the virtual block number in the FDB is always
initialized to 'I' when a file is opened. Therefore, this
parameter must be specified after the file is opened if you wish
to start I/O operations with a block other than virtual block 1.
Do this using either a FDBK$R, a READ$, or a WRITE$ call.

The parameter should be left null if you use the $A form. It
is present in the $A form only for compatibility with the $R form.

Bkst is the address of an I/O status block. Unlike record
I/O, where FCS sets up its own internal I/O status block, block
I/O requires that you specify an IOSB in order to get I/O status
reports. FCS issues QIOS for you. With record I/O, FCS reports
both directive errors and I/O errors automatically. With block
I/O, I/O errors are reported only if you specify an IOSB address
in a FDRK$A or FDBK$R call.

Initializing the File-Open Section of the FOB

You must also initialize the file-open section of the FDB
before opening a file. It contains information about the file to
be opened. You must set up data structures so that FCS can build
a file specification for the file. In addition, you must specify
the LUN to be ass ig ned to the fi Ie and the' ki nd of access rights
yo u nee d (rea d, wr i t e, ex tend 0 r del e t e). Yo u can do all 0 f t his
with an assembly or run-time macro, or in the actual open macro
call.

Setting Up the File Specification in the FDB -- At run time, FCS
constructs a standard file specification in the filename block in
the FDB using the following, in order:

1. The dataset descriptor
2. The default filename block
3. Other defaults of the task or system

FCS first uses any information which is set up in the dataset
descriptor. Any non-null data is translated from ASCII to
Radix-50 format, and stored in the appropriate offsets in the
filename block. If any pieces of the file specification are not
specified in the dataset descriptor, FCS next checks the default
filename block for any of the missing pieces. Any missing pieces
which are found there are filled in next.

440

FILE CONTROL SERVICES

If the device or the UFD is still not filled in, normal
system defaults are used. The device defaults to the current LUN
assignment of the LUN to be used to access the file. The UFD
defaults to the default UIC of the task, which is typically the
default UIC of the user who runs the task. If the file name or
the file type are still not filled in, a file open failure occurs.

If only a dataset descriptor or a default filename block is
specified, and not both, the missing structure is skipped.
Typically, the dataset descriptor is used for building file
specifications at run time. Several routines (get command line
(GCML), command string interpreter (CSI), etc.) are available for
prompting for input, getting a command line, and then filling in a
dataset descriptor. Typically, the default filename block is used
to default any fields not specified in the dataset descriptor, or
to completely set up a file specification at assembly time.
However, one or both structures may be set up at assembly time, if
desired.

If you want to have FCS perform I/O to a terminal, just build
a file spec with the device TTnn: or TI:. If the specified
device is a terminal, FCS just issues QIOs to the terminal. The
advantage of this technique over issuing QIOs yourself is that the
same I/O routines work correctly with file-oriented devices and
terminals. You do not have to rewrite the I/O code to change
between device types. The system utility PIP uses FCS calls for
all of its I/O operations.

Setting Up the Dataset Descriptor

The dataset descriptor is a six-word data area in your
program containing the sizes and the addresses of the ASCII data
strings that together make up a file specification. The format of
the data area and the ASCII strings is:

label:

adrdev:
Idev
adrufd:
lufd
adrnam
Inam

.WORD

.WORD

.WORD

Idev,adrdev
1 ufd ,ad r ufd
Inam,adrnam

.ASCII /dev/
=.-adrdev
• ASCI I /ufd/
=. -adr ufd
.ASCII /full name/
=.-adrnam

441

FILE CONTROL SERVICES

Example for file DBl:[202,1]SAMPLE.MAC:

DSPT: .WORD LDEV, DEV
.WORD LUFD, UFD
.WORD LNAIV1, NAM

DEV: .ASCII /DBI :/
LDEV =.-DEV
UFD ._ASCII /[202,1]/
LUFD =.-UFD
NAM: .ASCII/SAMPLE.MAC/
LNAM =.-LNAM

This example sets up the dataset descriptor and all of its
file specification pieces at assembly 'time. This can also be done
at run time. As shown above, FCS builds the file spec
DBl:[202,1]SAMPLE.MAC. If no default filename block is specified,
the version number takes the normal system default, the latest
version for an existing file, and the latest version, plus one,
for a new file. See section 2.4.1 on the Dataset Descriptor of
the IAS/RSX-ll I/O Operations Reference Manual for additional
information.

Setting Up the Default Filename Block

The default filename block is an area within your program
containing the various elements of a file specification. Use the
NMBLK$ macro call to both reserve space for this area, and to
initialize it at assembly time. The format of the NMBLK$ call is:

label: NMBLK$ fnam,ftyp,fver,dvnm,unit

Example for file DBl:SAMPLE.MAC:

NMBLK$ SAMPLE,MAC, DB ~l

Notice that you divide the file specification into pieces in
the macro call. Also. note that you cannot specify a UFD in the
default filename block. It can be specified using a dataset
descriptor. otherwisei it is usually taken from the default UIC
of the task.

See section 2.4.2 (on Default Filename Block - NMBLK$ Macro
Call) for additional information on the default filename block.
It also explains how to manually define or override data in the
default filename block.

442

FILE CONTROL SERVICES

Initializing the File-Open Section Prior to Opening the File

Use the FDOP$A or the FDOP$R macro call. The format of the
FDOP$A call is as follows.

FDOP$A lun,dspt,dfnb,facc,actl

lun - LUN for I/O requests

dspt - pointer to dataset descriptor

dfnb - pointer to default name block

facc - type of file access (Table 10-2)

actl - access control

The type of file access indicates the kind of activity that
you will perform on the file. Table 10-2 lists these types. Note
that you do not specify read, write, extend, or delete; but
instead write, read, append, modify, or update. Each implies a
request for a particular set of access rights. The meanings of
the types are:

write - Write (create) a new file.

read - Read an existing file.

append - Append (add) data to the end of an existing file.

modify - Modify an existing file without changing its length.

update - Update an existing file, extending its length if
necessary.

In all cases, the file can also be read.

443

FILE CONTROL SERVICES

The actl parameter is used to override the defaults for
certain FDB control information, namely:

• Initial magnetic tape position - default depends on file
operation.

• Locking of a disk file opened for write if
properly closed, e.g~, if the task is aborted.
that the file is locked.

it is not
Default is

• The number of retrieval pointers in pool for a disk file
window. Default is volume default.

• Enable or disable block locking. Default is disable block
locking.

See section 2.2.1.5 on FDOP$A in the IAS/RSX-ll I/O
Operation Reference Manual for an explanation of the defaults, and
the arguments to override them. This section also covers
additional information on the FDOP$A and the FDOP$R macros.

If desired, you can specify all of the FDOP$A or FDOP$R
parameters, except actl, in the open macro call instead. The
following examples show the use of the FDOP$A call, dataset
descriptors, and default filename blocks.

444

FILE CONTROL SERVICES

Table 10-2 Types of Access

445

FILE CONTROL SERVICES

Examples:

1.
FDOP$A 1, , DFNB

.
DFNB: NM B LK $ M YF I L E , DA T , , DB , 0

Use LUN 1, build the file spec in the FDB with the default
filename block (since there is no dataset descr iptor). The
file spec will be DB0:MYFILE.DAT. The UFD will be taken from
the default UIC of the task; the version number takes the
normal default.

2.

DSPT:

ADRUFD:
LUFD
ADRNAM:
LNAM

FDOP$A 2, DS PT

.WORD' 0,0

.WORD LUFD,ADRUFD

.WORD LNAM,ADRNAM

.ASCII /[15,12]/
=. -ADRUFD
.ASCII /MYFILE.FFF;3/
=.-ADRNAM

Use LUN 2, build the file spec first with the dataset
descriptor, then go to task and system defaults (since there
is no default filename block). The File spec will be
[lS,12]MYFILE.FFF;3. The device will be defaulted to the
currentLUN assignment and to SY: if not currently assigned.

3.
FDOP$A 1,DSPT1,DFNB1,FO.WRT

DFNB 1: NMBLK$ ANY,FIL
DSPT 1: .WORD LDEV,DEV

.WORD 0,0

.WORD LNAM,'NAM
DEV: .ASCII /DK2:/
LDEV =.-DEV
DNAM: .ASCII /MINE/
LNAM =.-NAM

446

FILE CONTROL SERVICES

Use LUN 1; open the file for write (create a new file).
Build the file spec first from the dataset descriptor, then
fill in any missing information from the default filename
block. The resulting file spec will be DK2:MINE.FIL. The
UFD and version number take normal system defaults. The
filename is MINE because the dataset descriptor is used
first. Since the name is then filled in, the default
filename block is not checked for a name.

Examples of Setting up an FDB

The following examples show the complete process of setting
up and initializing FDBs at assembly time before opening a file.
Two examples are included for creating a new file, plus two for
accessing an existing file. The line comments offer an
explanation of the examples.

Creating a New File:

1.
FSRSZ$ 1

FDBl: FDBDF$
FDAT$A R.VAR,RD.CR

FDRC$A ,BUFF,80.

FDOP $A 2, , DFNB

DFNB: NMBLK$ VARIABLE,ASC

447

; 1 file will be open for
; record I/O

; variable length records,
"list" carriage control
URB at BUFF, length 80.
bytes. Defaults: sequential
access, move mode
Use LUN 2, file spec from
Default Name Block
File Spec VARIABLE.ASC

FILE CONTROL SERVICES

2.
FSRSZ$ 1

.
FDBl: FDBDF$

FDAT$A R.FIX,FD.FTN,80,

FDRC$A RD.RAN,BUFF,80.

FDOP$A 1 , DS PT , , F 0 • WR T

DSPT: .WORD 0,0
.WORD 0,0
.WORD LNAM, NAM

NAM: .ASCII . / M IN E • F I L ; 2/
LNAM =.-NAM

Accessing an Existing File:

1 •

FDBl:

FSRSZ$ 1

.
FDBDF$
FDRC$A

FDOP$A

,URB,25.

3, , DFNB

448

Fixed length records,
; FORTRAN carriage control,
; 80. byte records

Random access, URB at BUFF,
length is 80. bytes

; Use LUN 1, build file spec
; from dataset descriptor,

open a new file for write
; Use default device . Use default UFD ,
; pointer to file spec

File name
; Leng th of file name

; UR Bat UR B, 1 eng th = 25.
bytes. Defaults: sequential

; access, move mode
Use LUN 3, build file spec

; f rom De fa ul t Name Bloc k

2.

FDBl:

FDBI:

FDBO:

DSPTO:

DEV:
LDEV

FILE CONTROL SERVICES

FSRSZ$; Only block I/O

FDBDF$
FDRC$A FD.RWM ; Block I/O, no URB needed
FDBK$A BUFF,512. ; For block I/O - sets up

; buffer at BUFF, length =
; 512. bytes

FDOP$A 2"DFNB ; Use LUN 2, build file spec
; from Default Name Block

LEARNING ACTIVITY 10-1
The example below shows two FDBs. The second
FDB is filled in to display a file at a
terminal. Fill in the first FDB for a file
YOURS.MAC, with variable length records which
will be read and displayed. Use sequential
access in locate mode.

FSRSZ$ 2 ; 2 "Files" open for record I/O

; To be filled in by the student

FDBDF$
FDAT$A R.VAR,RD.CR ; Variable length records,

; implied carriage return,
; line feed

FDRC$A ,BUFF,80. Sequential I/O, move mode,
; URB at BUFF, length = 80.
; bytes

FDOP$A 2,DSPTO Use LUN 2, override LUN
; assignment. Build file spec
; using dataset descriptor

.WORD LDEV,DEV ; pointers to ASCII data

.WORD 0,0

.WORD 0,0

.ASCII /TI :/ ; Device is TI:
=.-DEV

449

FILE CONTROL SERVICES

Opening a File

Whether or not you set the file access parameter with an
FDOP$A or FDOP$R macro call, you can use the general OPENS macro
call to open the file. If the access parameter is not already
specified, specify it in the OPENS call. You can also use a
number of other open macro calls, which have a single letter
suffix to specify the file access. See Table 10-2 for the
suffixes and their meanings. with file open macros, you can
choose:

• Whether shared access is allowed

• Whether a file is permanent or temporary (deleted when
closed)

• Which FCS object modules are used to open the file.

The following list shows all of the possible open macros.

OPENS fdb,facc,lun,dspt,dfnb,racc,urba,urbs,err

Gene ral fo rm
File access specified in facc or previously using
FDOP$A or FDOP$R

OPEN$x* fdb,lun,dspt,racc,urba,urbs,err

used for most applications
Requests exclusive write access, shared read access

OPNS$x fdb,lun,dspt,racc,urba,urbs,err

Allows shared access

OPNT$D fdb,lun,dspt,racc,urba,urbs,err

Opens temporary file, deletes when closed

OFID$x fdb,lun,dspt,racc,urba,urbs,err

Opens file by file ID

OFNB$x fdb,lun,dspt,racc,urba,urbs,err

specifies file by file name block.

* The "x" in the macro name represents one of the suffixes listed
in Table 10-2.

450

FILE CONTROL SERVICES

Examples:

OPENS #FDBI,#FO.WRT""",ERRI

open the file using the FDB at FDBI for write access (create
a new file). Call ERRI on an error. All other information
is already in the FDB.

OPEN$W # F DB 1 , , , , , , ERR 1

The same as the last example, only using the other form of
the call.

OPNT$D #FDB3"", ,ERR2

Open a new file as a temporary file using the FDB at FDB3.
Call ERR2 on an error.

OPNS$U R0,#3"",ERR5

Open the file for update using the FDB whose address is in
R0. Allow shared access. Use LUN 3. Call ERR3 on an error.

OPENS R0,#FO.UPD!FA.SHR,#3"""ERR5

The same as the last example, using theOPEN$ form of the
call.

OPENS

Open the file using the FDB pointed to by R0. All
information is already in the FDB. The user should check the
carry flag for an error.

There is no difference in functionality between the OPENS
macro with the facc argument filled in, and the OPEN$x, OPNS$x, or
OPNT$D forms. Use the form which is most convenient.

OFNB$x uses information already in the filename block of the
FDB to open the file. When this occurs, Fes does not build a file
spec prior to the open call. This is more efficient if the
filename block is still intact, or has been restored after a
previous open and close of the file. However, the OFNB$X call
causes the Task Builder to include different object modules in
your task, thus increasing your task's size. These will be
additional modules unless OFNB$x is already used in your program.
The same run-time savings can be achieved if you first fill in the
filename block and then use an OPENS, OPEN$x, or OPNS$x call, with
no additional object modules added.

451

FILE CONTROL SERVICES

OPFNB$x is useful only in overlay situations, or when OFNB$X
is already included. Note that the Get Command Line routine
(GCML) uses OFNB$X.

As shown in the last module, accessing a file-by-file
specification involves a minimum of six disk reads (see Figure
9-5). If you know the file ID of ' a file, opening the file-by-file
ID reduces the number of file accesses to two. This is possible
if you reopen a file for a second time or use other Fes routines
to obtain the file ID. This is because the file ID allows direct
access to the file header of the file~

Any time the file ID field in the FDB is filled in, any open
macro call automatically opens the file-by-file ID. .The OFID$x
call performs the same function, but like the OFNB$x call, it
causes the Task Builder to include different object modules in
your task, thus increasing its size. Therefore, fill in the file
ID and use the regular open macros to open a file-by-file ID.
only use the OFID$x call in an overlay situation, or if OFID$x has
already been included in your task.

452

FILE CONTROL SERVICES

ERROR CHECKING

If an error condition is detected during any of the file
processing operations, the FCS routines set the carry bit in the
processo r sta tus word (PSW) , and return the error cod e and the
type of error to FDB offset locations F.ERR and F.ERR+l.

The run-time FDB initialization macros are an exception to
this convention. They do not return any error indications because
they involve only moves into FDB locations. The FCS
file-processing routines issue appropriate QIOs for you.

As with regular QIOs you issue yourself, directive errors or
I/O errors can occur. For record I/O, FCS returns the error codes
to the offset F.ERR of the FDB for you so that you don't have to
check the I/O status block and the directive status word (DSW)
directly yourself. The error codes are always returned as byte
values. Since some of the error code values for directive and I/O
errors overlap, another byte, offset location F.ERR+I in the FDB,
contains an indicator, whether the error was a directive or an I/O
error. A val ue of '''' in F. ERR+I ind icates an I/O error, a
negative value indicates a directive error.

Therefore, to check for errors, check the carry bit on return
from each file-processing FCS macro call. If there is an error,
use a TSTB to check offset location F.ERR+I to distinguish whether
it is an I/O error or a directive error. Then, check and display
the error code value. The following section of code shows a
technique for doing this.

453

FILE CONTROL SERVICES

Example of Error Checking and Processing

BUFF:
ARG:
EDIR:
EIO:

; Er ror
ERRl:

10:

FNSET:

ERRQIO:

.BLKB 80

.BLKW 1
• ASCIZ /FCS DIRECTIVE
• ASCIZ ?FCC I/O ERROR •
.EVEN

OPEN$W #FDB
BCS ERRI

Processing
TSTB F.ERR+l(R0)

BEQ 10
MOV #EDIR,Rl

BR FINSET
MOV #EIO,Rl

MOVB F.ERR(R0),R0
MOV R0,ARG
MOV #ARG,R2
MOV #BUFF,R0
CALL $EDMSG

; output buffer
; Argument block for $EDMSG

ERROR • ERROR CODE = %D./
ERROR CODE = %D.?

Open file
Branch on FCS error

; Directive error or I/O
; error?
; Branch on I/O error
; Addr of directive error text
; string for $EDMSG
; Branch to common code
; Addr of I/O error text string
; for $EDMSG signs
; Sign extend FCS error
; code and place
; in arg block
; Output buffer
; Edit error message

QIOW$S #IO.WVB,#5,#1",,<#BUFF,Rl,#40> ; Display message
BCS ERRQIO ; Branch on directive error
EXIT$S ; Exit

; Directive error code

using the READ$ and WRITE$ macros, directive errors are
returned normally by FCS. Unlike record I/O, with block I/O FCS
does not set up an internal IOSB for you. Therefore, you will not
get I/O success or failure indications if you do not set up and
specify an IOSB.

454

FILE CONTROL SERVICES

The error code is sign extended because $EDMSG works only on
word values, not on byte values. The error codes and their
meanings are listed in Appendix I of the IAS/RSX-II I/O
Operations Reference Manual. They are also in the RSX-IIM Mini
Reference. Just the directive error codes are in Appendix B of
the Executive Reference Manual, and just the I/O error codes are
in Appendix B of the RSX-IIM/M-PLUS I/O Driver's Reference Manual.

You can also specify the address of your own error-handling
routine, and specify it as the last macro call parameter. A JSR
PC instruction to the specified user routine is generated. This
takes the place of the BCS, and causes a call to the
error-handling subroutine in the case of an FCS error. Note that
it is a JSR PC which places the return address on the stack. You
must clear off the stack for a nonfatal error if you do not use a
return at the end of the error routine.

455

FILE CONTROL SERVICES

PERFORMING RECORD I/O

Different Forms of PUTS and GETS

Th~ three different forms of the PUTS and GET$ macros are:

• GET$ and PUTS

used for sequential access

Can also be used for random access if either:

Records are actually accessed in sequence

Program manually changes record number field in
the FDB

• GET$S and PUT$S

Used for sequential access only

Takes less space than GET$ and PUTS

Used only to optimize space in an overlaid task

• GET$R and PUT$R

Used for random access only.

The formats of the macro calls are:

GET$

GET$S

GET$R

PUTS

PUT$S

PUT$R

fdb,urba,urbs,err

fdb,urba,urbs,err

fdb,urba,urbs,lrcnm,hrcnm,err

urba and urbs override any previous URB setups

lrcnm and hrcnm - the low word and high word of
the record number (random I/O only)

fdb,nrba,~rbs,err

fdb,nrba,nrbs,err

fdb,nrba,nrbs,lrcnm,hrcnm,err

nrba and nrbs override the previous settings
for the next record buffer (NRB)

456

FILE CONTROL SERVICES

Examples:

PUTS iFDBI",ERR

Write the record pointed to by the next record buffer pointer
into the file at the current location. Use the FOB at FDBI.

GET$R ,iMYBUF,i64.,i93.

Read record 93(10) into the buffer MYBUF. The buffer length
is 64(10). R0 contains the FOB address.

Sequential Access

For sequential access, use PUTS and GET$, or PUT$S and GET$S.
FCS uses internal pointers to identify the record to be operated
on next. The initial pointer location is at the beginning of the
file unless the file is opened for Append. In that case, the
original pointer location is at the end of the file. Each PUTS or
GET$ operation sets the pointers to the record after the record
just accessed. This means that a series of PUT$s or a series of
GET$s work on successive reCords.

To update a record in place, you cannot use a GET$, then
update the record, and then use a PUTS. With that seqeunce, the
GET$ updates the record after the one you read. Instead, use two
special file control routines, .MARK and .POINT, which allow you
to save and reset the internal pointers. Use a .MARK before you
do the GET$, and save the returned pointers to the record. Then
do a GET$ and update the record. Use a .POINT to reset the
internal pointers. Finally, issue a PUTS to update the record.
See sections 4.10.1 on .POINT, and 4.10.3 on .MARK, in the
IAS/RSX-II I/O Operations Reference Manual for details on how to
use these routines.

After all GET$ operations, the next record buffer (NRB)
descriptors identify the address and length of the record just
read. The address is located at offset F.NRBD+2 in the FOB, and
the length is at offset F.NRBD.

For all PUTS operations, the NRB descriptors identify the
'record to be written. Depending on whether you use move or locate
mode, as described in the following paragraphs, you mayor may not
need to use the NRB descriptors.

457

FILE CONTROL SERVICES

In move mode (Figure 10-2), GET$ operations always move the
record read to the user specified record buffer. Therefore, in
general, specify the URB address and size once (in a FDRC$A,
FDRC$R, or a file open call). Once these are set up, do not
specify them again unless you want to use a different buffer.
After each GET$, access the record directly in the URB, which has
a known address. If you specify a different URB in a GET$ call,
that becomes the URB for later GET$ calls, unless another URB is
specified.

PUTS operations in move mode (Figure 10-2) assume that the
record has been built at the location set up in the NRB
descriptor. This defaults to the URB. Therefore, the easiest
method is to specify the URB once, and then build all records in
the URB. Then issue PUT$s without specifying an NRB.

If you want to build your records in a different buffer, you
must specify an NRB in the first PUTS call. After that, for
successive PUT$s, build all records in the NRB so that you won't
have to respecify an NRB. If however, you mix GET$s and PUT$s,
you must specify your NRB in each PUTS call, because each GET$
call updates the NRB descriptors to point to the record just read
(specifically the NRB pointer points to the URB).

In locate mode (Figure 10-2), you generally access records
directly in the FSR block buffer. The only time a user record is
needed is if a record spans block boundaries. Set up a URB only
if this is a possibility.

For GET$ operations, the NRB descriptors identify the record
just read. Access the record at the NRB address (offset
F.NRBD+2). This pointer points directly into the FSR block buffer
if the record does not span block buffer boundaries.

For records which span block buffer boundaries, FCS moves the
record to the URB and the NRB pointer points to the URB instead of
a location within the FSR block buffer. Do not specify a new URB
unless you want to use a different URB for records that span block
boundaries.

For PUTS operations in locate mode (Figure 10-2), build the
record at the NRB address. This assumes that the NRB descriptors
have already been updated to point to the record to be built,
either by the file open macro, or the previous PUTS or GET$. Once
the record is built, use a PUTS to allow FCS to do some internal
bookkeeping and update its internal pointers for the next
operation.

458

FILE CONTROL SERVICES

In locate mode, be very careful when you write to a file,
because you are working directly in the FSR block buffer. If you
build a record in the wrong location by mistake, you cannot easily
recover any record which gets overwritten. In move mode, on the
other hand, since you work in a separate URB buffer, a mistake
discovered before issuing a PUTS does not update the FSR block
buffer.

For both move and locate modes, you can also use the .POINT
routine to return to the beginning of a file, or the .MARK and
.POINT routines to save and later return to a record previously
accessed. This allows a very limited form of random access.

Random Access

For random access, use PUTS and GET$ or PUT$R and GET$R.
PUT$R and GET$R are easier to use because you can specify the
record number in the macro call. For random operations, on each
PUTS or GET$ call, the record number field in the FDB (offsets
F.RCNM, high-order word, and F.RCNM+2, low-order word) is used to
calculate the position of the record to be operated on.

When the file is opened, the record number is always
initialized to '1', even if the file is opened for Append. After
each PUTS or GET$ operation, the record number is set to one more
than the last record accessed. You can override this default by
specifying a record number in a PUT$R or GET$R call, or by
manually placing the record number directly into the FDB before a
PUTS or GET$ call.

For move mode, the URB and NRB mechanics are exactly the same
as for sequential access. For locate mode, GET$ operations are
the same as for sequential access.

PUTS operations are very similar. For PUTS operations in
locate mode, build the record directly at the NRB address. After
each PUTS operation, the NRB pointer is updated to point to the
record after the record written. Therefore, if you are updating a
record other than the next record, use either a dummy GET$R call
or the .POSRC routine to set the NRB pointer to the record to be
built. See section 4.10.2 on .POSRC in the IAS/RSX-ll
I/O operation Reference Manual for details on how to use that
routine.

459

FILE CONTROL SERVICES

For all types of access, as you do PUT$s to a file, FCS
transparently extends the file as necessary.

NOTE
FCS updates the logical end-of-file
information in the FDB, but not in the file
header. Close the file using the CLOSES
macro to write the end-of-file information
out to the file header. See the next
section, on closing the file, for additional
info rmat ion.

See sections 3.9 (on GET$) through 3.14 (on PUTS) in the
IAS/RSx-ll I/O Operation Reference Manual for additional infor
matlon on performing record I/O.

Closing the File

Use the CLOSES macro to explicitly close a file, specifying
the address of the FDB. CLOSES performs appropriate cleanup work
which involves I/O transfers to the file.

• Waiting for I/O in progress to complete (multiple buffered
record I/O onl y)

• performing any needed write of 'the FSR block buffer
(record I/O only)

• Updating the file header (high block, end of file block,
fir s t f r e e b yt e) •

Since CLOSES performs I/O transfers to the file, always check
for errors on return to ensure that the transfers were
successfully performed. If a CLOSES is not issued before a task
exits, the Executive closes the file. If the file was opened with
write access (write, modify, append, or update), the Executive
locks the file unless you specify "no lock of files" in the FDOP$A
or FDOP$R call.

460

FILE CONTROL SERVICES

Examples of Record I/O

This section contains several examples which show how to use
the various FCS services discussed previously for record I/O.
Also, look back at Example 10-1, our introductory example. It
shows how to create a file with variable-length records using
sequential I/O. Examples 10-2 and 10-3 show how to create a file
with fixed-length records using sequential I/O. Example 10-2 uses
the assembly-time FOB initialization macros, and Example 10-3 uses
the run-time FOB initialization macros. Examples 10-1 to 10-3 all
use move mode. Example 10-4 shows how to read records from an
existing file using locate mode. Example 10-5 shows how to read
records from an existing file using random access in move mode.

Example 10-2 creates the file FIXED.ASC. It takes records
input at TI: and places them in the file, terminating input and
closing the file when a ~z is typed. The following notes are
keyed to Example 10-2.

o

Symbol for record size. Allows easy modification of the
reco rd si ze •

The user record buffer (URB). Input from TI: is read
into this buffer and then written to the file using PUT$s.

Output buffer, argument block, and format strings for
generating error messages using $EDMSG. This is for both
QIO errors and FCS errors.

o Allocate FSR space; one FSR block buffer for record I/O.

o
o

o

The default size is 512(10) bytes.

Assembly-time initialization of FDB.

Open file for write. All FOB parameters are already set.
The extra ERR1 argument causes a call to the subroutine
ERR1 in the case of an open error.

Fill the URB with blanks before each read to avoid garbage
from a previous read, because you will be reusing the
buffer.

Issue read. Check for directive and I/O errors. Display
an error message and exit on either type of error using
common code at SHOERR, except for a ~Z. In that case,
branch to a common exit routine which closes the file and
exits.

461

FILE CONTROL SERVICES

8 Use PUTS to write the record to the file. FCS takes the
record at NRB (in th i s case the same as URB by defaul t) ,
writes it to the file and updates its internal pointers

CD
CD

for the next PUTS. Call the subroutine ERR2 in the case
of an error.

Branch back, clear the URB and read the next input.

After a AZ, close the file, check for errors and exit.
Use BCS here instead of an additional CLOSES argument, to
show that this technique is also possible. The two forms
are similar. The only difference is that BCS does not
affect the stack, while the additional argument form uses
a JSR PC, which pushes the return address onto the stack.

Error processing, as discussed in the section on Error
Checking. This code always issues an explicit CLOSE so
that the file is unlocked. No error occurs if a file
which is not yet - opened, is closed. This code does not
distinguish whether the error was caused by the OPEN$R, a
PUTS, or the CLOSES call. Additional code can be added to
tell which call caused the error.

462

1
2
:3
4
5
6
7
8
9

10
11
12
13
14
15 o 16
17
18 o 19
20
21
22

A 23
V 24

26
27
28
29
;50 o 31
32
33
34

O 35
36
:37
38
39
40 o 41
42

e[:;
46

FILE CONTROL SERVICES

;+

.TITLE

.IDENT

.ENABL

CREFXA
lOll
LC Enable lower case

File CREFXA.MAC

CREFXA opens FIXED.ASC for write, inputs records
from TI: and puts them seGuentiall~ to the file.
A ~z terminates input and closes the file.

;-

RSIl
lOST:
PRINT:
BUFF:
OBUFF:

.MCALL

.MCALL

.MCALL

.MCALL

.NLIST
:::: 30.
.BLKW
QIOWS
• BLI\B
.BLKB

ARG: .BLKW

EFDQIO: • ASCIl
EFIQIO: .ASCIl
EFCDIR: • ASeIl
EFCSIO: • ASCIl

.EVEN

.LIST

EXSTSC,QIOWSC,QIOWS,DIRS ; S~stem macros
FSRSZS,FDBDFS,NMBLKS S~stem FCB
FDRCSA,FDATSA,FDOPSA macros
OPENSW,GETS,PUTS,CLOSES ;
BEX ; Suppress ASCII

; Record size (b~tes)

2 ; QIO status block
IO.WVB,5,1",,<OBUFF,0,40>
RSIZ ; User record buffer
80. Output buffer for

; error messa~es
1 Ar~ument block for

SEDMSG
IDIRECTIVE ERROR ON GIO. ERROR CODE - %D.I
1110 ERROR ON QIO. ERROR CODE - %D.1
IFCS DIRECTIVE ERROR. ERROR CODE - %D.I
1FCS 110 ERROR. ERROR CODE - %D.1

BEX Show offsets

FDB:
FSRSlS 1
FDBDFS

1 file for record 110
File descriptor block
User buffer and size, FDRCSA ,BUFF,RSIl

FDATSA

FDOPSA
FILE: NMBLKS

START: OPENSW

CLRBUF: MOV
MOV

LOOP: MOVB
SOB

default is record 110
with seGuential access

R.FIX,FD.CR,RSIZ ; Fixed len~th records,
implied <CR><LF>

1"FILE use LUN 1
FIXED,ASC FIXED.ASC

:fI:FDB"", ,ERr~1

:fI:RSIl"Rl
:JI:BUFF"R2
:fI:" , (1~2) +
R1,100p

OPEN; if open fails,
CALL EI~Rl

Size of URB
Addr of URB
Blank fill record
so no ~arba~e fill

Example 10-2 Creat ing a Fi Ie 0 f Fixed Leng th Records,
Initializing FDB at Assembly Time (Sheet 1 of 3)

463

FILE CONTROL SERVICES

47 QIOW$C IO.RVB,5,1"IOST,,<BUFF,RSIZ>~ Read a
48 line from TI:
49 £{CC IIIROK Branch on Iii rectiv(-? ok
50 MOV tEFItQIO,Rl Set IJP for $EItMSG
5:L MOV t$IISW,R2 ~,

52 BR SHOERR Branch to show error
5:~ and e~·dt
54 ItIROK: TSTB lOST Check for 1/0 error

0 55 BGT OKlO Branch if 110 ok
56 CMPB f.IE.EOF,IOST Check for EOF
57 BEQ EXIT If-EQ, close and e~dt
58 MOVB IOST,RO liD status is sign
~59 eHtended and plc.=Jced
60 in argument block
61 MOV RO,ARG for $EDMSG call
62 MOV :JI:ARG,R2 Set UP for $EIIMSG call
63 MOV tEFICHO,R1
64 BR SHOERR Branch to show error
65 and e~·dt a 66 OKlO: PUT$ tFIIB, , , ERI~2 Write neHt rec.'ord

1)67 BR CLRBUF Get neHt record
68

CD[~~
EXIT: CLOSE$ tFDB Close file

BeS ERR:~ Branch on FCS eT'ror
EXST$C EX$SUC E~·dt with status of 1

72
73 ~ Error Processing
74 ERR1:
75 ERR2:
76 ERR:3 : TSTB F + ERR+ 1 (F~O) Directive error Dr liD
77 error'
78 BEQ 10 Branch (In liD E~ T' T'O T'
79 MOV tEFCDIR,R1 Set IJP for $EDMSG,
80 directive error
81 BR FINSET Brcmch to finish S€~tup

82 10: MDV tEFCSIO" R:I. Set UP for $EDMSG, 110 e 83 error
84 FINSET: MOVB F.ERR(RO),RO FCS error code
85 MOV RO,ARG is sign e~·,tended and
86 MOV tARG,R2 placed in arg block
87 $EIIMSG argument block
88 SHOERR: MOV tOBUFF,RO OUtF'IJt buffeT'
89 CALL $EDMSG ; Fc.1rmat error message
90 MOV R1,PRINT+Q.IOPL+2 ; Size of message
91 IIIR$ tPRINT Print erT'or message
92 CLOSE$ tFItB Close file
93 EXST$C EX$EI~R EHit with status of 2
94 .ENIt START

Example 10-2 Creating a File of Fixed Length Records,
Initializing FDB at Assembly Time (Sheet 2 of 3)

464

FILE CONTROL SERVICES

F:ur. f:)e~;;~.; :i. on:

>r~UN Cf~EFXA
1:1.1:1.1
2222
3;33;3:~3

44
Where d:i.d \:~Ol..l ~.:fC) 'i)
cS6b6 66
r-.Z
:>

{Jump of DB1:[305~301]FIXED.ASC~4 - File ID 23746,13,0
V:i.rtual. block 0,,0()()()O1 .- Size 512. b~tes

000000 061 061 061 061 061 040 040 040 040 040 040 040 040 040 040 040
000020 040 040 040 040 040 040 040 040 040 040 040 040 040 040 062 062
000040 062 062 040 040 040 040 040 040 040 040 040 040 040 ()40 040 040
000060 040 040 040 040 040 040 040 040 040 040 040 040 063 063 063 063
000100 063 063 ()40 040 040 040 040 040 040 04() 040 040 040 040 040 040
000120 040 040 040 040 040 040 040 040 040 040 064 064 040 040 040 040
000140 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040
000160 040 040 040 040 040 040 040 040 1.27 150 145 162 145 040 144 151
000200 144 040 :1.71 157 165 040 147 157 077 040 040 ()40 040 ()40 040 040
000220 040 040 040 040 040 040 066 066 066 066 040 066 066 040 040 040
000240 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040
000260 040 040 040 040 000 000 000 000 000 000 000 000 000 000 000 000
000300 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

Example 10-2 Creating a File of Fixed Length Records,
Initializing FDB at Assembly Time (Sheet 3 of 3)

465

FILE CONTROL SERVICES

Example 10-3 performs the same function as Example 10-2, but
it uses the run-time FDB initialization macros. The following
notes are keyed to Example 10-3.

4t Include the run-time ($R) macros.

o At assembly time, simply allocate space for the FDB and
initialize the default filename block.

Issue the run-time FDB initialization macros, specifying
the FDB address in the first call. The first call returns
the FDB address in R0. The subsequent calls default the
FDB address to R0.

466

0

1
2
~~
4
5
6
7
8
9

l.()

1,1.
:L2
:1.3
1,4
15
16
17
:L8
19
2()
21
22
:'~3
24
25
26
27
28
29
3()
31
32
3:~
34 o [~55
36
37
38
39
40
4:L
42 e 43
44
45
46
47

;+

FILE CONTROL SERVICES

.TITLE

.IDENT

.ENABL

CI~EFXR

10:1.1
LC Enable lower case

File CREFXR.MAC

CREFXR opens FIXED.ASC for write, inputs records
from TI: and puts them seGuentiall~ to the file.
A -Z terminates input and closes the file.

This proSram uses the SR macros at run time to
initializ~ the FDB

;-
.MCALL
.MCALl.
• MCALL-
.MCALL
.NLIST

RSIZ - 30.
lOST: • Bl.KW
PRINT: QIOWS
BUFF: • BLt<B
OBUFF: .Bl.KB

ARG: • Bl.KW

EFDQIO: .ASCIZ
EFIQIO: .ASCIZ
EFCDIR: .ASCIZ
EFCSIO: .ASCIZ

.EVEN

.l.IST

FSRSZS
FDB: FDBDFS
DFILE: NMBLKS

START: FDATSR

EXSTSC,QIOWSC,QIDWS,DIRS ; S~stem macros
FSRSZS,FDBDFS,NMBLKS S~stem FCS
FDRCSR,FDATSR,FDDPSR macros
OPENSW,GETS,PUTS,CLOSES
BEX P Suppress ASCII

; Record size (b~tes)
2 ; QIO status block
IO.WVB,5,1",,{OBUFF,0,40}
RSIZ User Reco~d Buffer
SO. Output buffer for

error 1TI€~ssage~;

1 Argument block for
SEDMSG

IDIRECTIVE ERROR ON QID. ERROR CODE = %D.I
1110 ERROR ON QID. ERROR CODE = %D.1
IFCS DIRECTIVE ERROR. ERROR CODE = %D.I
1FCS 1/0 ERROR. ERROR CODE = %D.1

BEX

1

Show offsets

1 file for record 1/0
Allocate space for FDB
Default Name Block,
for 'FIXED.ASC"

tFDB,tR.FIX,tFD.CR,tRSIZ ; Fixed length
recordsv implied {CR}
{LF}

User buffer addr and
size, move mode and
seGuential access b~
default

Use LUN 1, Default
Name Block

Example 10-3 Creating a File of Fixed Length Records,
Initializing FDB at Run Time (Sheet 1 of 3)

467

FILE CONTROL SERVICES

4B OPEN$W , , , , , , EI:;:R 1 OPEN - if open fails,
49 CALL ERR1
~5() CLRBUF: MOV :fI:RSIZ"Rl Size of URB
51 MOV :fI:BUFF,R2 Addr of URB
52 LOOP: MOVB :1:' ,(R2)+ Blank fill T'ecord
5~5 SOB Rl,l.OOP ; so no garbag~~ fill
54 QIOW$C 10.RVB"5,,1,,,IOST,,(BUFF,,30.) ; Read a
55 line from TI:
56 Bee DIROK Branch on Directive ok
~57 MOV :fI:EFDQ:J:O" 1~1 Set UP for $EDMSG
~5B MOV :J$[JSW,R2
59 BR SHOERI~ Branch to show error
60 and e}·d t
61 DIROK: TSTB lOST Check for 1/0 error
62 BGT 010: 0 Branch if liD c)k
63 CMPB :JI::J:E.EOF,IOST Check for EOF
64 BEQ EXIT If EQ, close and e}·dt
/.)5 MOVB lOST" F.:O liD s tatlJ~; is sign
66 e}·,tended and placed
67 in argument blc)ck
68 MOV ROl'ARG for $EDMSG call
69 MOV :J:ARG"R2 Sc-?t UP for $EDMSG call
70 MOV :JEFICHO" 1~1
71 BR SHOERR Branch to show error
72 and eNit
73
74 OKlO: PUT$ iFDB,,,,ERR2 Write neNt record
75 BR Cl.RBUF Get neNt recoT'd
76
77 EXIT: Cl.OSE$:JI:FDB Close fi If.:'

78 BCS ERR3 Branch on FCS error
79 EXST$C EX$SUC EN:J.t with stc~tus of 1
80
8l ; Error Processing
82 ERR:I.:
8:3 ERR2:
84 ERR3: TSTB F.ERR+l(RO) Directive errc)r CH' liD
85 e r T'CH'
86 BEC~ 10 BT'anch on liD err'or
87 MOV iEFCDIR,Rl Set UP fc)r $EDMSG,
8B directive erT'or
89 BR FINSET Branch to finish set,l.Jp
90 10: MOV iEFCSIOl'R1 Set UP for $EDMSG, IIO
91 error
92 FINSET: MOVB F.ERR(RO),RO FCS error code
9:~ MOV RO"AI:W is s;isn eHtended and
94 MOV :l:ARG,R2 placed in ars block
95 frJr ~~E[JMSG

Example 10-3 Creating a File of Fixed Length Records,
Initializing FDB at Run Time (Sheet 2 of 3)

468

FILE CONTROL SERVICES

96 SHOERR:
97
(f8
(f9

100
101
102

f~un Session

>RUN CREFXR
11111

3;3~S33;3

44

MOV
CALL
MOV
DII~$

CLOSE$
EXST$C
+END

Where did ~ou go?
61.>6[;. 66
···z

:l:OBUFF,RO
$EDMSG
Rl,PRINT+Q.IOPL+2
:fI:PRINT
tFDB
EX$ER~~

START

DIJITIP of DB1:[305,301JFIXED.ASC95 - File
Virtual block 0,000001

000000 061 061 061 061 061 040 040 040·
000020 040 040 040 040 040 040 040 040
000040 062 062 040 040 040 040 040 040
000060 040 040 040 040 040 040 040 04()
000100 0t')3 063 040 040 040 040 040 040
OOO:L20 040 040 040 040 040 040 040 040
000],40 040 040 040 040 040 040 040 040
OOO:L60 040 040 040 040 ()40 040 040 040
000200 144 040 171 157 165 040 147 157
000220 040 040 040 040 040 040 066 066
000240 040 040 040 040 040 040 040 040
000260 040 040 040 040 000 000 000 000
000:300 000 000 000 000 000 000 000 000

Output buffer
Format error mest:;ase
; Size of message
Print error message
Close file
E~dt with statIJ~') of

ID 24564,6,0
_. Size 512. b~tes

040 040 040 040 040
040 040 040 040 040
040 040 040 040 040
040 040 040 040 06:~
040 040 040 040 040
040 040 064 064 040
040 040 040 040 040
127 150],45 162 145
077 040 040 040 040
066 066 040 066 066
040 040 040 040 040
000 000 000 000 000
000 000 000 000 000

~~

040 040
040 062
040 040
063 063
040 040
040 040
040 040
040 144
040 040
040 040
040 040
000 000
000 000

Example 10-3 Creating a File of Fixed Length Records,
Initializing FDB at Run Time (Sheet 3 of 3)

469

040
062
040
063
040
040
040
151
040
040
040
000
000

FILE CONTROL SERVICES

Example 10-4 reads the first five records of the file
VAR1.ASC (which is created using Example 10-1) and displays them
at TI:. It uses sequential I/O in locate mode. The following
notes are keyed to Example 10-4.

Ct FDB allocation and initialization. Specify locate mode;
default is sequential access. No FDAT$A or FDAT$R macro
is needed because the file already exists. No user record
buffer is needed because none of the first five records
spans block boundaries. None span block boundaries
because the maximum input record for Example 10-1 is
80(10) bytes. specify a URB if records can span block
bo un dar i e s •

o Set up loop counter to read five records.

o

o

GET$ a record. The FDB pointer is returned in R0 after
the OPEN$R call.

Write the record at TI:. The pointer to the record is at
offset F.NRBD+2 in FDB; size is at offset F.NRBD in FDB.
No '#' is used because we want to use the contents of
those locations as arguments.

Decrement the counter and loop back until done.
done, close the file and exit •

:L

3
4
5
6
?
8
9

10
1:L
12
1.3
14

;+

• TITLE I~EADLC

.IDENT /0:1..1
• ENABL. I ... C

F i]. ~~ READLC. MAC

Enable lower case

This task reads the first 5 records from the file
VARI.ASC and displa~s them at the terminal. It uses

.MCALL OPENSRvGETSvQIOWSSvNMBLKS,FDOPSA

.MCALL CLOSES,EXITSSvFDBDFS,FDRCSA,FSRSZS

:I. FSR block buffer
FDB:

FSF~SZ$ 1
FDBDFS

Locat€." modf:~

When

[i~ Ct :L7
18
19
20

DFNB:

FD~~C$A FD. PLC
FDOPSA 1" "DFNB

NMBL..K$ VAFU "ASC

L.UN ly default file
name block
File FIXED.ASC

Example 10-4 Acces$ing a File in Locate Mode (Sheet 1 of 2)

470

FILE CONTROL SERVICES

22
2~5

24
2~5

26
27 o 2B

8 29

O
30

. 31

[

3':>

A 3~5
V 34

:35
36
:3"i'
38
39
40
41
42
43
44
45
46
47
48
49
~:50

51

DBUFF: • BU,W
ARG: • BU,W
EFCDIFn .ASCIZ
EFCSIO: .ASCIZ

.EVEN
STf~RT: OPENSI:;:

BCS
MOV

LOOP: GETS
BCS
CHOW$S
SOB
CLOSES
BCS
EXIT$S

V Error code
ERI:;:C:
ERHF~ :
ERF~(): TSTB

BE(~

MOV
BR

IOERR: MOV
FINSET: MOVB

MOV
MOV
MOV
CALL
QIOW$S

80. ; Error messa~e buffer
1 ; SEDMSG arsument block
/FCS DIRECTIVE ERROR. ERROR CODE = %D./
'FeS I/O ERROR. ERROR CODE = %D.'

=lJ:FDB
E~-;;F~O

:JI:~) , F~2

Open file for read
Branch on FCS error
L.oop countf.~ T'

Gf.~t r'f.·~co rd
ERRR ; Branch on error
IIO.WVB~:JI:5,*1",,<FDB+F.NRBD+2,FDB+F.NRBD,.40>

R2,L.OOP Decrement loop counter

ERF,C

F.ERR+1(RO)

IOEI:;:F,
=lJ:EFCDH-;;IIF;~:I.

FINSET
:IJ:EFCS I 0" I:~:I.
F • ERF, (RO) , RO

Clo~a~ fi :I,(;:~
Branch on f.·~rT'C)T'
E~·dt

Directive error or I/O
€~rrc)r?

Branch on I/O error
Set UP for $EDMSG
Branch to displas code
Set UP for SEDMSG
SiSn extend FCS error

RO~ARG code and place in
IARG,R2 arSument block
=lJ:OBUFF~RO Output buffer
SEDMSG ~ Format error messaSe
=lJ:IO.WVB,=lJ:5,I:I.",,<#OBUFF,Rl,#40> v Write

5~5

54

CLOSE~; #FDB
EXITSS

messa!-:tco:'
Clo~:;e fil€~

E~·dt

>RUN READLC
1111

333

.END

JAZZ Jazz JAZZ Jazz

START

Have sou ever seen the sun?

Example 10-4 Accessing a File in Locate Mode (Sheet 2 of 2)

471

FILE CONTROL SERVICES

Example 10-5 uses random access to read records from the file
FIXED.ASC, which is created using either Example 10-2 or Example
10-3. It prompts at TI: for a record number and displays that
record at TI:. The following notes are keyed to Example 10-5.

o

o

o
o
e
o
o

o

o

FCSMC$ is a macro containing .MCALLs for most of the FCS
macros. using it can avoid having to specify all of the
FCS macros in .MCALL statements. Note that GET$R is not
included in FCSMC$, so it is specified separately.

Using the $ form of all QIOs. With the exception of the
QIO at PRINT, all parameters are set at assembly time.
Therefore, any of the three forms ($, $C, or $8) can be
used for the QIOs at ECHO, PROMPT, and WARN. Either the $
or the $S can be used for the QIO setup at PRINT.

The record number is input in ASCII (up to two dig its) •

FDB for file. Use random access I/O.

Open file for read. prompt for and read record number.

On a directive error, use the supplied macro DIRERR to
display an error message and the DSW, and then exit.

Check for I/O error. If the error was a A Z , branch to
EXIT to close the file and exit. If any other error
occurred, use the supplied macro IOERR to display an error
message and the IOSB, and then exit.

Set up and call .DD2CT to convert the record number from
ASCII to double-precision binary. During setup, make sure
that at least one digit was input. If none were input,
prompt again. Double precision is used only to show how
to take advantage of the full range of record numbers (up
to 3 1 bit sin two wo r d s) •

Move the low-order 16 bits of the record number to
use GET$R to read the record. Call the subroutine
any FCS error. Only the low-order 16 bits are
because we know the record number is less than or
99 (10) •

R2, and
ERR2 on
needed,

equal to

Display the record and prompt for the next record number.
Always display 30(10) characters, because the file has
fixed-length records.

472

FILE CONTROL SERVICES,

On FC S err 0 r s, fir s t c he c k for end - 0 f - f i Ie. If it i s not,
branch to common FCS error code at ERR3. If the error is
read past end-of- fil e , d ispl ay a warning messag e and
prompt for the next input. Because this routine is
entered with a JSR PC instruction, you must clear the

-return address off the stack before using a BR
ins t r uc t ion.

Notice that the suppl ied macros DIRERR and IOERR are, used for
QIO errors, but not for FCS errors. This is because FCS returns
error status to the FDB. In fact, DIRERR would work correctly
because the DSW is returned by the Executive, and FCS moves the
DSW value into the FDB. IOERR however, does not work correctly
because FCS sets up its own internal I/O status block, and its
address is not available to the user task. The supplied macro
FCSERR is set up to handle both types of FCS errors.

473

1
2
3
4
5
6
7
8
9

:1- ()

11
12
1 ~S
14
:L ~j
16
:1.7
1B

0 19
20

0
21
:~:~

o [~~
29
30
:~H

~'S2 A [3:~
V ~'S4

:35
36
:37
:~8
39
40
41
42
43
44

FILE CONTROL SERVICES

.TITLE

.IDENT

.ENABL

F?I~NnOM

lOll
LC Enable lower case

RANDOM uses direct access to a file, FIXED.ASC, which
contains fixed length records. This task prompts at
TI: for a record number, and displa~s it at TI:
It exits when a control Z is input

Assemble and task-build instructions:

; LOCAL..

ECHO:
PRMPT:
WAI:;:N:
PRINT:

BUFF:
lOST:
AREC:
I:;:EC:
OUT:

MES1:

MES2:
MES:3 :

EFCDIR:
EFCSIO:

>MACRO/LIST LB:[l,l]PROGMACS/LIBRARY,dev:CufdJ
--~}RANDOM

>LINK/MAP RANDOM,LB:[l,lJPROGSUBS/LIBRARY

.MCALL QIOWS,DIRS,EXITSS,GETSR; S~stem macros

.MCALL FCSMCS Macro to get most

.MCALL
FCSMCS
.NLIST
DATA
/:;:SIZ
cnows
CHOWS
QIOW$
CHOWS

.BLKB
• BU,W
.BLKW
.BLKW
• BLKB

.ASCII
SIZl --
.ASCIZ
.ASCII
SIZ3 -~-

.ASCIZ

.ASCIZ

.EVEN

DIRERR,IOERR

BEX

s~stem FCS macros
SUF'P 1 i ed mac ros
Get most FCS macros
SuP T'(-?f.>S ABC I I

=30. ; Record size
IO.WVB,5vl",,(BUFF,30.,40>
IO.RPR,5,1"IOST"(AREC,2,,MES1,SIZ1,'S}
IO.WVB,5,1",,(MES3,BIZ3,40>
IO.WVB,5,1",,(OUT,0,40>

RSIZ
'-)
A .•

:I.

:L 00 •

Ir';:ECORD NUMBER'~ I
+ ~~ME~a

User record buffer
IIO status block
Record number in ASCII
Record number in binar~
SEDMSG output buffer

IFCS ERROR. ERROR CODE = %D.I
I***PAST END OF FILE***I
.-MEB3
IFCS DIRECTIVE ERROR. CODE = %D.I
'FCB 1/0 ERROR. CODE = %D.'

Example 10-5 Accessing a File in Random Mode
(Sheet 1 of 3)

474

4b
47

o[~~
!51
52
5~5

!54

,.,

O 58
[

':~'7

r::'0
.. 17

60
cd.

O
62,

. 6:3

o [~~

o

66
67
68
69
"70
71
72
73
74
75
:76

O[;~
~ [79
W 80

81
82

[

B3 o !:J;~
B,.)
86
87
88
89

A 90
.. ~~1

(12
9~:~
(14

FDB:

FILE:

FILE CONTROL SERVICES

FSI:;:SZS

FDBDF$
FDI:;:CSA

FDOP$A

1 1 file opened for
T'ecord I/O

; File descriptor block
FD.RAN~BUFF~RSIZ ; Random access, URB

addT' and si:;i!('?
lvvFILE Use LUN 1, default

FIXEDl'ASC
name block at FILE

Default name
FIXED.ASC

.ENABL I...SB

START: OPENSR IFDBvvvl'vvERRl Open file foT' read
CALI... ERRl on open

Y (·?rrOT'
lOS: DIR$ IPRMPT Prompt foT' record

Y numb(~r

BCC DIROK Branch on dir ok
DIRERR <ERROR ON QIO)

DIROK: TSTB lOST Check for I/O error
BLT ERR1I ; Branch on error

ConveT't ASCII record number to double-worded decimal
MOV IOST+2,R4 I of characteT's to

BE(~

MOV

MOV

CALI...

MOV
GET~~I~

DIR$
BF~

; F.::!=~I~~OR ROUTINES

10$

:Jf:REC,R3

.DD2CT

REC+2,R2
:U:FDB, , , R2, ";::RR2
:JI:ECHO
10~;

Y convert
; If no charactersl'

prompt asain
y Address of ASCII
; cha racte 1'S

; Buffer to store
converted number

Convert ASCII to
; decimal
; Move low order 16 bits
; Get specified record

Print it on TI:
Prompt for next input

ERR1I: CMPB :U:IE.EOFl' lOST ; ~Z?

BEQ EXIT ; If wesl' branch to EXIT
IOERR IIOSTl'<ERROR ON QIO)

; HeT'e for errors on GET$
ERR2: CMPB IIE.EOFl'F.ERRCRO); Was the error an EOF?

BNE ERR1 No, it is another
; error. bT'anch to ERR!

Just displa~ a warnins for end of file
DIR$ IWARN Displa~ EOF mess ass
TST CSP)+ Clean off return addr

f rrJIT. s tc1Cv..
10$ Prompt for next input

Example 10-5 Accessing a File in Random Mode
(Sheet 2 of 3)

475

FILE CONTROL SERVICES

9~') ERt:;:3:
96 E!=~Rl : MOVB
97 MOV
9B MOV
99 TSTB

lOO BEQ
101 MOV
102 BR
10:3 IOEI:;:I:;: : MOl.,'
1()4 DSPEI:;:R: MOV
10~5 CALL
10c!) MOV
107
lOB DIF~$

lO9 CLOSE~~

:U,O EXIT~~S

[1:l1 EXIT: CLOSE~~ o :1,1.2 EXIT$S
113 .END

Run Bf'~ss:j,()n:

>I:;:UN F~AND()M

I;:ECORD NUMBEF~'l)l

:1,:1.:1. :1. :I.
r':':ECOI:;:n NUMBER'i):3
33:'53:'5:'3
1:~ECc)F~D NUMBE!=~?9

PAST END OF FILE
r~EC()I:~D NUMBEI:~?5

Where did ~DU so?

F • ERR (RO) , r~~5
R~i, 108T
:IH OST" R2
F + ERI:;:+ :1, (F~O)
IOEI:;:I:~

:Jl:EFCD I I:;: "R:l
DSPERR
:JJ:EFCSIO y 1:;::1.
:IHHJT, RO
$EDMSG v
Rl"PRINT+Q.IOPL+2

:JI:PRINT
:IJ:FDB

:JI:FDB y ERR:3

START

EHtend ~:;ign cm e T' rc))"
c()df.~ and move into
arg'Jment blc)ck

I/O c)r dir€~ctive eT' r()T"~
Bra,..,(~h on I/O c:~rT'or

Di T'ectiv€,~ c:~rroT' message
Bl"anch to d:i,spla~ code
I/O error me~:;sc~g€:'

Output bu'rf(~~ r
Edit OlJf:"Jt lTJessag€~

; Length of er rC)T'
; message
P T' :i, r'lt error me~~~~cH:je

Close file
EXIT
Clo~:;e file
E~,dt

Example 10-5 Accessing a File in Random Mode
(Sheet 3 of 3)

476

FILE CONTROL SERVICES

PERFORMING BLOCK 1/0

READ$ and WRITE$ Calls

The formats of the READ$ and WRITE$ calls are:

READ$
WRITE$

fdb, bkd a ,bkd s,b kvb, bke f ,bks t ,bkdn ,er r
fdb ,bkda ,bkds ,bkvb ,bkef ,bkst ,bkdn ,err

All parameters except fdb and err override any previous FDB
settings. Always use a user specified buffer, which can be
specified in a FDBK$A, or FDBK$R call, an open call, or in a READ$
or WRITE$ call.

The length of the transfer is controlled by the bkds
parameter. The starting virtual block number in the FDB is
initially set to 1, unless the file is opened for Append. FCS
updates the block number after each operation to point to the
block after the last one accessed. To override the default block
number, set up a two-word data block for the virtual block number
and specify the address of the block in a FDBK$R macro call (after
the file is opened), or in a READ$ or WRITE$ macro call.

The following piece of skeletal code shows how to use block
5, then block 12 (10), and finally block 13 (10) •

BLCKNM: .WORD

OPEN$R
BCS

READ$

MOV
READ$

READ$

0,5

#FDB
ERRl

; Starting block number

; open file

F DB , , , # B LC KN M , , , ERR 2 Read block 5

12., BLCKNM+2 ; Update bloc k #
#FDB",#BLCKNM",ERR3 ; Read virtual

; block 12 (10)

#FDB"""ERR4 ; Read next virtual block

477

FILE CONTROL SERVICES

Unlike record I/O, for block I/O each READ$ or WRITE$ causes
an I/O transfer between the user buffer and the file.

Synchronization and Error Checking

For block I/O, FCS issues asynchronous QIO directives. You
must p~ovide synchronization and check for both directive and I/O
errors. Use an event flag or an AST routine for synchronization.
Check for errors on return from the READ$ or WRITE$ call (after
the QIO directive is issued).

Also check for I/O errors after the I/O operation completes.
To get I/O error indications, you must set up and specify an I/O
status block. Otherwise. no I/O status conditions are returned,
and success must be assumed.

If you use an AST routine for synchronization, check the IOSB
directly for I/O errors. If you use an event flag for
synchronization, use a WAIT$ call to wait for the flag to be set,
rather than a wait for Single Event Flag (WTSE$) directive. with
WAIT$, FCS returns its standard error indications. This means the
carry bit is clear for success and set for an I/O error. In
addition, for errors, the I/O error code. is returned at offset
F.ERR in the FDB. If you use the wait for Single Event Flag
directive (WTSE$) instead, standard FCS error codes are not
returned. In that case, you must check the IOSB directly
yo ur sel f.

Se e sec t ion s 3. 15 (0 n REA D$), 3. 16 (0 n WR IT E $), an d 3. 1 7 (0 n
WAIT$) for additional information about block I/O calls,
synchronization, and error checking.

Examples 10-6 and 10-7 show how to use block I/O. Example
10-6 creates a file BLOCK.ASC using block I/O. Example 10-7 reads
a virtual block from the file BLOCK.ASC and displays it at TI:.
The following notes are keyed to Example 10-6.

o You still need an FSRSZ$ statement to set up an FCS, but
no FSR block buffers are needed.

o FDB setup. FDAT$A and FDOP$A are the same as for record
I/O. The only difference here is that a dataset
descriptor is used instead of a default filename block.
This is done just to show the use of a dataset descriptor.
FDRC$A specifies read/write mode (block I/O). FDBK$A
specifies the address and size of the user buffer, the
event flag for synchronization, and the IOSB address.
Don't specify the address of the block number until after
opening the file.

478

o

e

FILE CONTROL SERVICES

Other data structures: A two-word block for the
block number, initially set to virtual block 1;
buffer, and the I/O status block.

virtual
the user

prompt for and read virtual block number. "Low onl y"
means only a one-word virtual block number, rather than a
two-word val ue •

place a terminating null character at the end of the ASCII
virtual block number to set up for a call to $CDTB. Use
$CDTB to convert ASCII decimal to binary. There is no
error check included, but it can be added.

Move the converted virtual block number to the virtual
block number block.

~ prompt for and get a character to place in the block.

ct Fill the user buffer with the character.

o Ope n (c rea t e) th e f il e •

CD start the I/O transfer. specify the address of the
virtual block now, since the "open" call initializes the
block number to 1.

Display the message and wait
complete. Using WAIT$, FCS
indications. Call subroutine
error.

Close the fi Ie.

for the I/O transfer to
returns its standard error

ERR3 in the case of an

Set up to display the number of characters transferred,
branch to common code to edit and display the message, and
then exit. The code is common to the" error message code.

CD Common error code. Set up for an I/O or directive error
message. Set up to exit with error status.

CD Common code for displaying a message, closing the file,
and ex i ting • In the case 0 f a successful wr i te, yo u end
up calling CLOSES twice. There is no error for closing
the file after it is already closed. Use of the common
code saves space in the task.

479

1
2
3
4
5
6
'1
8
9

10
11
12
:13
14
15
:1.6
:L'1
18
:L 9
20
:~1

2~5

24
2~5
26
2'1
28
29
30 o :3:1.
:~2
~33

~34
3~5

~56
~37 o :~8
~59

40
41
42
43
44

.[:~
47
4B
49
~50

51

Example

;+

FILE CONTROL SERVICES

.TITLE

.IDENT

.ENABL

BLOCKl
lOll
LC Enable lower case

File BLOCK1.MAC

BLOCKl creates a file BLOCK.ASC and fills the specified
virtual block of the file with the specified character.
It uses block 110.

;-

MES:L:
LENl
MES2:
LEN2:::
MES3:
LEN3
MES4:

MESD:
MESI:

CHAR:
BUFF:

FDB:

DSPT:

NAM:
LNAM

VBN:
BLOC/(:
108B:

TYPE1:
TYPE2:
TYPE:~ :

10-6

+MCALL
~MCALL
+MCALL

QIOW$,DIR$,QIOW$S,EXST$S ; S~stem macros
FDBDF$,FDRCSA,FDBK$A,FDOP$A,NMBLK$
FDAT$A,FSRSZ$,OPEN$W,WRITE$,WAIT$,CLOSE.

.NLIST BEX
+ASCII IVIRTUAL BLOCK NUMBER (LOW ONLY>: I
::: + .- MESl
.ASCII ICHARACTER: I
• - MES2
.ASCII /1 BLOCK BEING WRITTEN TO FILEI
:::: + -- MES3
.ASCII IWRITE COMPLETED, %D BYTES WRITTEN TO I
.ASCIZ IFILEI
.ASCIZ IFCS DIRECTIVE ERROR, CODE::: %D.I
.ASCIZ 'FCS liD ERROR, CODE::: %D.'

.BLKB 1

.BLKB lOO.

.LIST BEX

.EVEN

Character to write
Buffer for $EDMSG

FSRSZ$ 0 No FSR block buffers
needed for block 1/0

FDBDF$
FDAT$A
FDRCSA
FDBKSA

FDOP$A
.WORII
.WORII
.WORD
+ASCII
:: .-NAM
.EVEN
.WDRD
+BLKW
.BLKW

QIOW$
CHOWS
CHOWS

Reserve FIIB space
R.VAR,FD.FTN File characteristics
FD.RWM ; Readlwrite mode
BLOCK,512.,,1,IOSB ; Adr, size of buffer,

1,DSPT
0,0
0,0
LNAM,NAM
IBLOCK.ASCI

256.
2

ef 1, IOSB addr
LUN 1, DSPT
Len~th and addr of device
Len~th and addr of UIC
Len~th and addr of name
File name and t~pe

Default VBN
Use r buffe T'

liD status block

IO.RPR,5,1"IOSB"(BUFF,6,,MES1,LEN1,'$)
IO.RPR,5,1""(CHAR,1,,MES2,LEN2,'$)
IO.WVB,5,2",,(MES3,LEN3,40)

Creating a File With Block I/O (Sheet 1 of 3)

480

o !53

[

54

O ~5~5

;; e 58
0 59

o[~~
63
64
65

OA66
W67

CD [~~
G 70

[

71
A 72
W 7~5

74
7~5
76
7"7
"78
79
80
81.
82
8~S

84
85
86
87
88
89
90
ell
92
93
94
95
96
97
98

FILE CONTROL SERVICES

; Code
START: DIRS iTYPE1 ; Prompt and ~et VBN

MOV IOSB+2,RO ; Len~th in RO
CLRB BUFF(RO) Put null b~te at end
MOV iBUFF,RO RO =) ASCII di~its
CALL SCDTB ; Convert to binar~
MOV R1,VBN+2 ; Store as low VBN
DIRS iTYPE2 ; Input character

Fill user buffer with character
MOV tBLOCK,RO ; Get address
MOV i512.,R1 ; and size of user buffer

lOS: MOVB CHAR,(RO)+ Move character
SOB R1,10S Loop back until done

; Open file to receive characters, write virtual block
OPENSW iFDB"""ERRl Open, ERR1 if no ~ood

ERR1:
ERR2:
Er~R3 :
EF~R4 :

WRITES
DIR.
WAITS
CLOSES
MOV

MOV
BR

T8TB
BE(~

MDV
BR

IOERR: MDV
FCSSET: MOVB

MDV

J"iVBN""ERR2 ; Start transfer
iTYPE3 , Sa~ transfer started
, , ,ERF~3
,ERR4
:ft:MES4,R1.

tEXSSUC,R5
FORMAT

F.ERR+l(RO)
IOEI:;:R
:JI:MESD,R1
FCSSET
:JI:MESI,R1.
F.ERRCRO),R4
R4,IOSB+2

Wait until it's done
Close file
Adr of completion

; messag(~

; Exi t, statl.JS
Branch to common code

; for message display
and e~·d t

Directive or 1/0 error?
Branch on 110 error
=) 110 error messa~e

; Branch to common code
=) Dir error messa~e
Sisn extend error code
Use 110 status block
for arg block

MOV iEXSERR,R5 ; Exit status to R5
; Print messaSe, exit with status in R5
FORMAT:

MOV
MOV
CALL.
CHOWSS

CLOSES
EXSltS
.END

iIOSB+2,R2 ; R2 =) 110 status
:JI:BUFF,RO ; RO =) SEDMSG buffer
SEDMSG ; Format the text
iIO.WVB,:JI:5,:JI:2",,<iBUFF,R1.,:JI:40); And

write it out to TI:
tFDB ; Close file and
R5 ; Exit with status
START

Example 10-6 Creating a File With Block I/O (Sheet 2 of 3)

481

FILE CONTROL SERVICES

>F~UN BI ... OCK:I.
VIRTUAL BLOCK NUMBER (LOW ONLY): 2
CHAF<I~CTEI:~: \ C:~

1 BLOCK BEING WRITTEN TO FILE
WRITE COMP~ETED, 512 BYTES WRITTEN TO FILE

Virtual block 0,000001- Size 512. b~tes

Contains whatever was previousl~ in that block on the disk

DumF' of DR2:C305,301JBLOCK.ASC;10 F:i.lc·? If.! :3?3~5:5, 2y 0

ViT'tU(!Jl block OyOOOO02 S:i. ~~f? 512. b~~te~;

000000 145 :1.45 14~:; 145 :J.4~:; :1.4:5 14:7; :I. 4~7; 14~5 :1.4:5 :1.4~5 :I.4~5 :1.4::5 14!:5 :I.4!5

000020 14~5 14:7; 145 :1.4:7; 145 14:5 :1.45 :1.45 :1.4~:; :I.4~) 14~) :l.4~5 :1.4~5 :l.4~) :l.4~5

000040 :1.4:5 14~5 14:7i 14::5 14:5 :1.4::5 :1.4:5 :1.45 :l.4~:; :1.45 14::5 1. 4~5 :J.4~5 :1.4::i 145

145

14~5

:J.4~:i

000740 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145

000760 145 :1.45 145 145 :1.45 145 145 :1.45 145 145 :1.45 :1.45 145 145 145 145

*** EOF ***

Example 10-6 Creating a File With Block I/O (Sheet 3 of 3)

482

FILE CONTROL SERVICES

Example 10-7 prompts at TI: for a virtual block number, and
then reads and displays that block of BLOCK.ASC. The following
notes are keyed to the example.

o

o
e

This example displays, in addition to the error codes,
text error messages which tell the user which FCS call
caused the error.

No FSR block buffers are needed for block I/O.

This is the FDB setup. Use read/write mode. Use FDBK$A
to specify the user buffer address and size, the event
flag, and the IOSB address.

o open the file for read and prompt for the virtual block
number.

o place a null byte at the end of block number for a call to
$CDTB. Use $CDTB to convert the block number from ASCII
decimal to binary.

o

o

Store the resul t, returned in Rl by $CDTB, in the low byte
of the virtual block number block.

Issue a READ$ to read the specified block, and use WAIT$
to wait for the I/O operation to complete. READ$' and
WAIT$ return standard FCS status and error returns.

Display a heading and the virtual block.

o Close the file and ex it.

CD Error code to display the text message, including the
error code for each type of error.

483

1.
2
3
4
5
6
?
8
9

10
11
12
1. :~
:1.4
15
:1.6
17
18
1,9
20
2:l
:~2
23

0 24
',)1::'
.. ~.,J

26
27
28
29
3()

31
32

o [~1!

a[H V 38
~'59

40
41
42
43
44
45
46
47
48
49
~50

H ..

FILE CONTROL SERVICES

.TITl.E

.IDENT

.ENABl.

BLOCK2
lOll
LC Enable lower case

File BLOCK2.MAC
;
; BLOCK2 prompts at TI: for a virtual block number
; and then reads and displa~s that block of nBLOCK.ASC·

CR
LF
MESl:
LENl
MES2:
LEN2
MES3I:
MES~~D :
MES4I:
MES4D:
MES5I:
MES5D:
MES6I:
MESf.>D:
BUFF:

FDB:

FILE:

• MCAI...L
.MCALL
.MCALL

.NLIST
::: 15
:::: :1.2

QIOWS,DIRS,QIOWSS,EXSTSS,EXITSS
FDBDFS,FDRCSA,FDBKSA,FDOPSA,NMBLKS
FSRSZS,OPENSR,READS,WAITS,CLOSES

BEX

.ASCII IVIRTUAL BLOCK NUMBER: I
:::: • - MESl
.ASCII <CR><LF>/HERE IS THE BLOCK : I<CR><LF>

:::: • - MES2
.ASCIZ 'IIO ERROR
.ASCIZ IDIRECTIVE

ON OPENSR, CODE::: %D.'
ERROR ON OPENSR, CODE::: XD.I
ON READS, CODE:::: %D.' .ASCIZ

.ASCIZ

.ASCIZ

.ASCIZ

.ASCIZ

.ASCIZ
• BLKB

'110 ERROR
IDIRECTIVE
'IIO ERROR
IDIRECTIVE
,. IIO EIi:ROR
/DIRECTIVE
80 •

ERROR ON READS, CODE - XD.I
AFTER WAITS, CODE:::: XD.'
ERROR AFTER WAIT', CODE:::: XD.I
ON CLOSES, CODE::: %D.'
ERROR ON CLOSES, CODE::: XD./

; SEDMSG output buffer

.LIST BEX

.EVEN
FSRSZS

FDBDFS
FDRCSA
FDBKSA

FDOPSA
NMBLKS

o No FSR block buffer
needed for block I/O

FDB for input file
FD.RWM ; Read/write. mode
BLOCK,512.,,1,IOSB ; Buffer adr, size,

ef 1, iosb adJ'
1"FILE ; LUN 1, DFNB
BLOCK,ASC ; Name i~ BLOCK.ASC

VBN: .WORD
BLOCK: • BLKW
lOSS: - .BLKW

256.
2

; . DefalJI t VBN
; User buffer
; 10SB

PROMPT: QIOWS

DONE: QIOWS

DUMP: QIOW$

; Prompt and ~et VB t
IO.WVB,5,1,,~,<MES2,LEN2,40> ; Done

; messa~e

IO.WVB,5,1",,<0,64.,40> ; Displa~ of VB

Example 10-7 Reading a File With Block I/O (Sheet 1 of 3)

484

!51

o [;~
54

O [;~
!57

A. !5B
V ~5(";

O [60
61
62

o
6~5

64
65
6c)
67
6B
6(,

o[70
71
'.72
73
74
75
76
77
7B
79
BO
8:1.
B2
B:~
B4
B5
B6
87
88
89
90
9:1.
92
93
94
95
9c)
97
98
99

100

V CC.H:ie
START:

FILE CONTROL SERVICES

ClPENSR
DIr~~~

MOV
CLI~B

MDV
CALL
MOV
READS
WAIT~.

Drr~s

iFDB"""ERR1 Open file
iPROMPT Ask for a VBN
IOSBt2,RO Put null at end
BUFF(RO) of digit string
tBUFF,RO RO =) VBN
SCDTB Convert to binar~
R1,VBN+2 ; Store as low VBN
tFDB",tVBN""ERR2 ; Read in the block
, , "ERR~5
tDONE

; Wait until done
; Tell them lID is done

Now dump 8 lines of 64. characters each
MOV iBLOCK,RO RO =) 1st line to dump
MDV t8.,Rl i of lines to dump

1$: MOV RO"DUMPtQ.IOPL Addr of current line
DIRS tDUMP Dump it
ADD t64.,RO Point at next line
SOB R1,1$ Dump all 8. lines
CLOSES iFDB,ERR4 Close file
EXIT$S Exit

; Error code
ERR1:

TSTB
BE(~

MOV
BR

IDEF~Rl: MOV
BR

TSTB
BE(~

MOV
BR

IOERR2: MDV

ERR3:
BR

TSTB
BE(~

MOV
BR

I OER/~3: MOV
B/=<

EF~R4 :
TSTB
BEQ
MOV
BR

I(]EF~R4: MOV

F • ERR+ 1 (I~O)
IOERR1
tMES3D"R1
FCSERR
tMES3I,R1
FCSERR

F.ERRtl(RO)
IOERR2
tMES4D,R1
FCSERR
iMES4I,Rl
FCSERR

F.ERR+l(RO)
IOERR3
tMES5D,R:J.
FCSERR
tMES5I"/:;:1
FCSERR

F.ERRtl(RO)
IOERR4
tMES6D"Rl
FCSERR
tMES6I,Rl

lID or directive error?
Branch on lID error
=) Dir error messa~e 3
Branch to common code
=) lID error message 3
Branch to common code

lID or directive error?
Branch on lID error
=) Dir e~ror message 4
Branch to common code
=) liD error message 4
Branch to common code

lID or directive error?
Branch on 1/0 error
=) Dir error message 5
Branch to common code
=> liD error message 5
Branch to common code

lID or directive error?
Branch on lID error
=) Dir error message 6
Branch to common code
=) 1/0 error message 6,
fall into common code

Example 10-7 Reading a File With Block I/O (Sheet 2 of 3)

485

G

FILE CONTROL SERVICES

101 FCSERR:
102 MOVB
103 MOV
104 MOV
105 FORMAT:
106 MOV
107 MOV
108 CALL
109 QIOWSS
110
111 CLOSES
112 EXSTSS
113 .END

Run Session

>RUN BLOCK2
VIRTUAL BLOCK: 2

HERE IS THE BLOCK:

F.ERR(RO),R2
R2,IOSB
tEXSERR,R5

Si~n extend error code
and move into 10SB

Exit status in R5

iIOSB,R2 Set UP for SEDMSG
tBUFF,RO
SEDMSG
iIO.WVB,i5,tl",,<iBUFF,Rl,t40> Displaw

iF DB
R5
START

messa~e

Close the file
Exit with status

eeeeeeeeeeeeeeeeeeeee~ee

ee
ee
ee
ee
ee
ee
ee

Example 10-7 Reading a File With Block I/O (Sheet 3 of 3)

486

FILE CONTROL SERVICES

ADDITIONAL TOPICS

Deleting a File

Use the DELET$ macro to delete a file. If the file is open,
DELET$ closes the file and then deletes it. If the file is
closed, DELET$ just deletes the file. The format of the DELET$
call is:

DELET$ fdb,err

DELET$ FDB 3

NOTE
Unlike the DCL DELETE command, if no version
is specified, the latest version of the file
is deleted.

File Control Routines

You can use a number of internal FCS routines in your task.
Some of the available functions include:

• Filling in an FDB filename block from a dataset descriptor
or default filename block.

• Finding, inserting, or deleting a directory entry.

• Marking a place in a file for later return.

• Setting a pointer to a byte within a virtual block, or to
the start of a record in a file.

• Renaming, extending or truncating a file.

• Marking a temporary file for deletion, or deleting a file
by FDB filename block.

We have already discussed the use of the routines .MARK and
.POINT for marking a place in a file so that you can later return
to it, and .POSRC for locating a record with random access in
locate mode. See Chapter 4 of the IAS/RSX-II I/O Operations
Reference Manual for a description of each of the file control
routines, plus information on how to use them.

487

FILE CONTROL SERVICES

Command Line Processing

You can use two other collections of routines to facilitate
input and processing of command lines, which are useful in general
or utility tasks. The routines and their functions are:

• Get Command Line (GCML)

performs command line
prompts, gets input)

input

• Command String Interpreter (CSI)

operations (issues

parses the file specification in a command line from
GCML into a dataset descriptor, for use by FCS

Parses and processes any switches and switch values in
the command line.

See Chapter 6 on Command Line processing in the
IAS/RSX-ll Operations Reference Manual for a description of the
command line processing routines. The program CSI.MAC should be
available on-line (under UFD [202,1]). It is also listed in
Appendix G, and contains an example of the use of GCML and CSI.
This example is needed to do optional exercise 6 for this module.

Now do the Tests/Exercises for this module in the Tests and
Exercises book. They are all lab problems. Check your answers
against the solutions provided, either the on-line files (should
be under UFD [202,2]) or the printed copies in the Tests/Exercises
book.

If you think that you have mastered the material, ask your
course administrator to record your progress on your Personal
Progress Plotter. You will then be finished- with this course.

If you think that you have not yet mastered the material,
return to this module for further study.

488

APPENDICES
•

I

APPENDIX A
SUPPLIED MACROS

The supplied macros are designed for simple invocation. They
are intended for use early in the course (before QIOs are taught)
to provide easy ways of doing I/O t~ TI:, and in labs to make
writing programs easier for the student. They are also used in
some example programs to allow brevity of code and to establish
consistency in error checking.

These macros are contained in the macro library PROGMACS.MLB
and can be assembled by using the following assembler and
task-builder calls:

MACRO/LIST LB:[l,l]PROGMACS/LIBRARY,dev:[ufd]SAMPLE
(in MCR, MAC SAMPLE,SAMPLE=LB:[l,l]PROGMACS/ML,dev: [ufd]SAMPLE)

LINK/MAP SAMPLE,LB:[l,l]PROGSUBS/LIBRARY Needed to include
the internal
subroutines

(in MCR, TKB SAMPLE,SAMPLE=SAMPLE,LB:[I,l]PROGSUBS/LB)

NOTE
If you make copies of PROGMACS.MLB and
PROGSUBS.OLB in your UFD (or enter a
synonym), then the LB:[l,l] and the dev:[ufd]
can be omitted.

This appendix includes directions for using the
macros, the MACRO-II source code for the macros,
internally-called subroutines.

491

supplied
and any

SIMPLE MESSAGE OUTPUT

Invocations:

Description:

Examples:

Outputs:

Note:

Task-Building:

TYPE
TYPE
TYPE

<message>
<message>"psect
message-address,message-length

In the first two forms, supply the text of
the message; the macro will generate the
storage. Use 'the second form if you are pro
gramming in a Psect other than the default;
supply the name of the Psect in which you are
writing.

In the third form, provide the message address
and length using standard addressing modes.
The message can be ASCII or ASCIZ. If it is
ASCIZ, supply a value of 0 for the message
length; if it is ASCII, supply the length in
bytes.

M S G 1 : • AS C I Z
MSG2: .ASCII
MSG2LN=.-MSG2

ITHIS IS MESSAGE ill
ITHIS IS MESSAGE i21

TYPE
TYPE
TYPE

iMSG1,i0
iMSG2,iMSG2LN
<THIS IS MESSAGE i3>

All registers are preserved.

C-bit is set for error;
clear for no error.

Event flag 24(10) is used for synchronization.
Avoid using this flag for other purposes in
your task.

This macro requires subroutine modules TYPOUT
and LENGTH from PROGSUBS.OLB~

492

SIMPLE MESSAGE INPUT

Invocations:

Description:

Outputs:

Note:

Task-Building:

INPUT buffer,length

Accepts input data from TI:, into specified
buffer. Length is in bytes. Use standard
addressing modes for all arguments.

R0 points to the input buffer.
R1 contains the byte count from the I/O status
block if there is no error.

C-bit is set for error;
clear for no error.

For directive errors, RI is clear; $DSW
contains directive error code.

For I/O errors, R1 contains error code
from the I/O status block.

Event flag 24(10) is used for synchron
ization. Avoid using this flag for other
purposes in your task.

This macro requires subroutine module TYPIN
from PROGSUBS.OLB.

•

493

ERROR MESSAGE MACROS

Error message macros generate error messages appropriate to
Executive directives, I/O operations, and FeS calls.

• All macros have message, length, and Psect arguments whose
interpretations are identical to those for the TYPE macro.
These are used to specify the user-defined section of the
error message.

• The calling program must check for acceptable errors
before calling the error message macro, because the error
routine aborts the task.

• All macros exit unconditionally with "severe error" status
after the error message is printed.

• All macros require the subroutine modules EREXIT, TYPOUT,
and LENGTH from PROGSUBS.OLB.

EXECUTIVE DIRECTIVE ERRORS

Invocations:

Notes:

Format of
Message:

•

DIRERR
DIRERR
DIRERR

<message>
<message>"psect
message-address,message-Iength

User should check C-bit and dismiss acceptable
errors before calling DIRERR.

DIRECTIVE ERROR
<user-defined message>
DSW = <value> •

494

I/O ERRORS

Invocations:

Notes:

Format of
Message:

FCSERRORS

Invocations:

Notes:

Format of
Message:

IOERR
IOERR
IOERR

iosb,<message>
iosb,<message>"psect
iosb,message-address,message-length

iosb is a pointer to the I/O status block.

User should check the low-order byte of the
first word of the I/O status block, and dismiss
acceptable errors before calling IOERR.

I/O ERROR
<user-defined message>
I/O STATUS BLOCK = <hb>,<lb>/<2nd word>

hb is the high byte of the first word.
lb is the low byte of the first word.

FCSERR
FCSERR
FCSERR

fdb,<message>
fdb,<message>"psect
fdb,message-address,message-length

fbd is a pointer to the file descriptor block
for the operation which caused the error.

User should check the C-bit and/or check F.ERR
in the FDB, and dismiss acceptable errors before
calling FCSERR.

FCS ERROR
<user-defined message>
DSW = <value>

or

FCS ERROR
<user-defined message>
I/O ERROR CODE = <value>.

495

MACRO-11 CODE FOR SUPPUED MACROS

1
2
3 ;+

.MACRO TYPE

.NLIST
MESSG,LEN,PSCT

4 COPYRIGHT.(C) 1981 BY DIGITAL EQUIPMENT CORPORATION
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

;-

Macro to invoke the -TYPOUT- routine to t~pe a line on
TI:.

Invoke usinS one of two forms:

TYPE <messa~e)
or

TYPE

In the first form ~ou specif~ the text of the message.
The macro reserves storage for the string.

WARNING: The character is used as the delimiter in a
.ASCII directive when wou invoke the first form, so
~bu maw not use this character in ~our message.

In the second form ~ou must use addressing modes to
specifw the address and length of a string which ~ou
have reserved in ~our proSram. The first arSument is
the address of an ASCII or ASCIZ strins. The second
arSument should have a value of 0 if the string is
ASCIZ, else should be the lensth of ·the ASCII string.
addressins modes using the stack pointer are not
allowed.

If wou use the first form and are programming in other
than the blank Psect, ~ou must explicitl~ provide a
null -LEN· arSument, and specif~ a third argument
(psect). This arSument must be the name of the Psect
in which ~ou are programmins.

Needed subroutine modules: TYPOUT and LENGTH

s~mbols SAV.Rn

.LIST

.GLOBL TYPOUT

SAV.RO = -1

SAV.R1 = -1

SAV.R2 = -1

= -1 if Rn is not saved on the
stack

)= 0 indicates Rn is stored on
the stack at SAV.Rn(SP).

Subroutine to issue
directive

GIO

Assume no need to save
RO

Assume no need to save
R1

Assume no need to save
R2

496

54
55
56
57
58
59
60
61
f.,::!
63
64
65
66
67
C)S
69
70
71
72
73
74
75
'76
77
78
79
80
81
f.J2
83
84
85
86
87
88
89
90
91
92
93
94
9~':;

96
97
98
99

100
101
102
l03

.IF B

.IFF

LEN

.PSECT MSGTXT
$$$MES=.
• ASCI I 'MESSG'
$$$LEN=. ""$$$MES
.PSECT PSCT
MDV RO,-(SP)
MOV t$$$MES,RO
MOV Rl,-(SP)
MOV t$$$LEN,Rl
SAV + RO "" 2
SAV.Rl ::: 0

Blank LEN arS means
fi rst, form

Set UP text in Psect
MSGTXT

Back to oriSinal Psect
Save old RO
RO ::::> messaSe
S(~ve old Rl
Rl == messaSe lensth
Note RO saved on stack
Note Rl saved on stack

Second form of
; invocation

If arSuments are not already in the correct resisters,
save them temporarilw on the stack

.NTYPE ADM.Al,MESSG

.IF NE,ADM.Al
MOV MESSG,-(SP)

SAV.RO == 0

SAV.R2 == 0
.ENDC

.NTYPE

.IF
MOV

ADM.A2,LEN
NE,ADM.A2-1
LEN,-(SP)

Addressins mode of
MESSG

If anwthins but BRO·
Save arSument on the

stack
RO will be saved here
later

We'll need to save R2

AddressinS mode of LEN
If anwthins but BRIB
Save arSument on the
stack

SAV.Rl == 0

.IIF GE,SAV.RO,

Rl will be saved here
; later

SAV.RO==SAV.RO+2 ; Increase

SAV.R2 ::: 0
.ENDC

; offset of RO
; We'll need to save R2

Swap the reSisters with their arSument values which we
stored on the stack.

.IF EQ,SAV.R2 ; If we need to save R2
MOV R2,-(SP) ; Save R2
.IIF GE,SAV.RO, SAV.RO=SAV.RO+2 ; Increase

offset of RO
.IIF GE,SAV.Rl, SAV.RI=SAV.Rl+2 ; Increase

offset of Rl
.ENDC

497

104 .IF GE,SAV.RO It' RO's en'g was put on
105 stack,
106 MOV RO,R2 swap RO with its
107 MOV SAV • 1:;:0 (SP) , RO argument vallJe
lOB MOV R2"SAV.RO(SP)
109 .ENIIC
110
111 .IF GE"SAV.Rl It' R1's arg was F,ut on
112 stack,
113 MOV R:I. ,R2 Swap R1 with its
114 MOV SAV.R1(SP),R1 argument value
115 MOV R2,SAV.R1(SP)
116 .ENDC
117
:1.18 .ENDC Forms at' invocation
119
:1.20 CAL.L.. TYPOUT
121 Restore resisters
122 .IIF GE,SAV.R2" MOV (SP)+,R2 Restore old R2
12~5 .IIF GE"SAV.R1, MOV (SP)+,R1 Restore old 1~1
:1.24 .IIF GE"SAV.RO" MOV (SP)+"RO Restore old RO
12~5 .ENIIM TYPE

498

1 .MACRO INPUT
2
3 COPYRIGHT (C) 1981 BY DIGITAL EQUIPMENT CORPORATION
4
5 Macro to invoke the "TYPIN u routine to input data from
6 TI:.
7
8 Invoke using:
9

10 INPUT address,lensth
11
12
13
14
15
16
17
18
19
20
21
22
23
24

;

where address and length are the address and
lensth of the input buffer.

OUTPUTS: Data is input swnchronouslw from LUN 5

RO => buffer

C-bit is set for error, clear for no
error (for directive or I/O errors)

If no error, Rl contains bwte count from
I/O status block.

25 If a directive error is encountered, R1
26 ; is clear, $DSW contains error code
27
28 If an I/O error is encountered, Rl
29 contains error code from I/O status block
30
31 Needed subroutine module: TYPIN
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

WARNINGS: 1. ROUTINE USES EVENT FLAG .24 FOR
SYNCHRONIZATION
2. RO AND R1 ARE DESTROYED

.GLOBL TYPIN Subroutine to issue aIO
; directive

.NTYPE ADRMOD,BUFFER; Check addressing mode
.IF NE,ADRMOD Buffer pointer alreadw in R01

.ENDC

.IF

.ENDC

MOV BUFFER,RO ; No, move it there

.NTYPE ADRMOD,LEN; Check addressing mode
NE,ADRMOD-l Lensth alreadw in Rl?
MOV LEN,Rl No, move it there

CALL TYPIN

.ENDM

Call subroutine to issue aIO
directive

499

1
2

.TITLE TYPOUT Subroutine to output to TI:

3 COPYRIGHT (C) 1981 BY DIGITAL EQUIPMENT CORPORATION
4
5 TYPOUT provides a simple wa~ for MACRO-11 routines to
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

t~pe out

CALL:

INPUTS:

OUTPUTS:

WARNING:

a messaSe

JSR

RO
Rl

LUN

on TI:.

PC,TYPOUT

=> ASCII or ASCIZ messaSe
o if strins is ASCIZ
n>O for ASCII strinS of lensth n

5 is assumed to be assisned to TI:

MessaSe is output s~nchronousl~ to LUN 5

All resisters preserved

C-bit is set for error, clear for no
error

Routine uses event flas 124 for
s~nchronization

26 The macro "TYPER can be used to invoke this routine
27 in a fairlw transparent manner.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

.GLOBL LENGTH

.MCALL QIOW$S

TYPOUT:: TST
BNE

Rl
1$

Subroutine to determine
lensth of strins

S~stem macro

ASCII input or ASCIZ?
Branch if ASCII. R1
alread~ has lensth

CALL LENGTH Find lensth of strinS
(returned in Rl)

1$: MOV R2,-(SP) Save R2 on stack
SUB t4,SP Reserve space for IOSB
MOV SP,R2 ; R2=>IOSB

Do a Sarden varietw output to TI:
QIOW$S tIO.WVB,t5,t24.,yR2y,(RO,Rl,t40>
BCC 2$ Branch on directive OK

ADD

500

Directive error. PurSe
10SB from stack

47
48

BR 6$ Exit (with C-bit set)

49 Directive succeeded. Record anw liD errors, recbrd
50 bwte count~ pur~e stack
51
52
53
54
55
56
57
58
59
60

2$:

3$:

4$:

CMPB
BEQ
SEC

BR
CLC

TST

Irs.suc,(SP)+
4$

5$

(SP)+

61 ; COMMON EXIT
62
63
64
65

6$: MOV (SP)+,R2
RETURN
.END

501

rio error?
Branch if no error
Set C-bit to indicate
error

Branch to ~et liD count
Clear C-bit to indicate

no error
Clean UP stack

Restore R2
Return

:I.
2

.TITLE TYPIN Subroutine to input from TI:

3 COPYRIGHT (C) 1981 BY DIGITAL EQUIPMENT CORPORATION
4
5
6
7
B
9

10
11
1 ':>

:1. :3
14
15
:1.6
:1.7
:LB
:1.9
20
2:L

25
26
27
2B
29
30
:':H
:'~2

~;S:·~

34
35
~56
37
38
39
40
4:L
42
4~~

44
4~5

46
47
4B
49
~50

51

TYPIN provides a simple wa~ for MACRO-11 routines to
input data from TI:.

CALL..: .. JSR

INPUTS: F~O

R1.
=:> Inf'ut buffer

OUTPUTS:

LenSth of buffer in b~tes

LUN 5 is assumed to be assi~ned to TI:

Data is input s~nchronousl~ from LUN 5

RO i s unch<:~n~.~(~':!r..i

C-bit is set for errorv clear for no
(~q' r C) r (f.o r d :i. r f~ c t i V (.? 0 T' I/O €.~ r rOT's)

If no errorv R1 contains b~te count from
I/O status block.

If a directive error is encountered v R1
is clearv $DSW contains error code

If an I/O error is encountered, R1
contains error code from I/O status
block

ROUTINE USES EVENT FLAG #24 FOR
SYNCHRONIZATION

The macro "INPUT R can be used to invoke this routine
in a fairl~ transparent manner.

• MCALI... Q I OWlS S~-lS telTl ITI(!~C ro

TYPIN:: MOV R2,-(SP) Save R2
SUB t4,SP Reserve space for IOSB
MOV SP,R2 ; R2~>IOSB

Do a ~arden variet~ input from TI:
QIOWSS #IO.RVB,tSvi24."R2,,(RO,R1>
BCC 2$ Branch on directive OK
ADD t4,SP Directive error. Pur~e

10SB from stack
CLR R1 Note directive error
SEC
BR 6~.

502

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

1
2

Directive succeeded. Check for I/O errors, record
b~te count, purSe stack

2$: MOV
CMPB
BEQ
TST

SEC

BR
4$: CLC

MOV

COMMON EXIT

RETURN
.END

(SP)+,R1
tIS.SUC,R1
4$
(SP)+

6$

(SP)+,R1

(SP)+,R2

.TITLE LENGTH

Get success/error code
1/0 error?
Brnch if no error
Error. For~et about

1/0 count
Just return with C-bit
set and I/O status in
R1

Branch to common exit
Clear carry bit
Return 1/0 count in R1

Restore R2
Return

3 COPYRIGHT (C) 1981 BY DIGITAL EQUIPMENT CORPORATION
4
5 LENGTH finds the len~th of an ASCIZ strin~
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

CALL:

INPUT:

OUTPUT:

;
LENGTH:: CLR

MOV

1$: TSTB

BEQ

INC
BR
MOV

RETURN
.END

CALL LENGTH

RO => ASCIZ strin~

RO preserved
Rl - Len~th of strin~ (not includin~

terminatin~ null)

Rl
RO,-(SP)

(RO)+

2$

Rl
1$
(SP)t,RO

503

Clear counter
Save pointer to
be~innin~ of strin~

Real character or null
b~te?

Null means end of
strin~

Count real character
And look at next b~te
Restore original
pointer

Return

1 .MACRO DIRERR MESSAG,LEN,PSCT
2
3 COPYRIGHT (C) 1981 BY DIGITAL EQUIPMENT CORPORATION
4
5 Macro to ~enerate a Bdirective error l messa~e and
6 print out the value of the DSW, plus a user-defined
7 message. The task is forced to exit after the messa~e
8 is printed.
9

10 The form of the resultant error messa~e is:
11
12 DIRECTIVE ERROR
13 <USER-DEFINED MESSAGE>
14 DSW = <VALUE>
15
16 It is su.~ested that the user-defined messa~e identifw
17 the operation which returned the error.
18
19 It is the caller's responsibilitw to check the c-bit
20 prior to invokin~ DIRERR. This convention allows the
21 user to accept certain twpes of errors, then invoke
22 DIRERR for anw other kinds of errors.
23
24 Invoke usin~ one of two forms:
25
26 DIRERR <messa~e>
27 or
28 DIRERR ADDRESS,LENGTH
29
30 In the first form wou specifw the text of the messa~e.
31 The macro reserves stora~e for the strin~.
32
33
34
35
36
37
38
39
40
41
42
43
44

In the second form wou must use addressin~ modes to
specifw the address and len~th of a strin~ which wou
have reserved in wour pro~ram. The first ar~ument is
the address of an ASCII or ASCIZ strin~. The second
ar~ument should have a value of 0 if the strin~ is
ASCIZ, else should be the len~th of the ASCII strin~.

If wou use the first form and are pro~rammin~ in other
than the blank Psect, wou must explicitlw provide a
null BIen' ar~ument, and supplw as the third ar~ument
the name of the Psect to return to.

504

45 .GLOBL EREXIT COlTlmon routine
46 .GLOBL DIRERI -DIRECTIVE ERROR u

47 in?'Jt string for
48 $EDMSG
49 .GLOBL ERARGS· $EIIMSG argument block
~50 Offsets into arg'Jment block:
51 .GLOBL E.RUMA User-message address
5;! .GLOBL E.RUML User-message lensth
5~5 .GLOBL E.RDSW rrsw 'v'al'Je
~54
55 MOV tERARGSl'R2 R2=>$EDMSG aI's block
56 .IF B LEN Blank len arg means
57 first form
58 .F'SECT MSGTXT
59 $$$MES=.
60 .ASCII IMESSAGI
61 $$$LEN=. ·-$$$MES
62 .F'SECT F'SCT
63 MOV t$$$MES,E.RUMA(R2) ; Load message addr
64 MOV t$$$LEN,E.RUML(R2) ; and ITlessage length
65 ; ir.to arg bloc"~
66 .IFF
67 MOV MESSAG,E.RUMA(R2) Load message addr
68 MOV LEN,E.RUML(R2) ; ar.d message length
69 ; into arg block
70 .ENDC
71 MOV $DSWl'E.RDSW(R2) Load DSW into arg block
7:~ MOV tDIRERI,R3 R3=}$EDMSG inPIJt string
73 ,JMF' EREXIT JIJm? to common error
74 eHit routine
7~5 .ENDM

505

1 +MACRO IOERR
2 ;+
3 COPYRIGHT (C) 1981 BY DIGITAL EQUIPMENT CORPORATION
4
5 Macro to ~enerate an HI/O error A messa~~ and print out
6 the value of the 1/0 status block, plus a user-defined
7 messaSe+ The task is forced to exit after the messaSe
8 is printed+
9

10 The form of the resultant error messa~e is:
11
12 1/0 ERROR
13 (user-defined messa~e>
14 1/0 STATUS BLOCK = <hb>,(lb>/(2nd word>
15
16 where Ahb H and AlbA are the hi~h bwte and low byte of
17 the first word of the liD status block+
18
19 It is su~~ested that the user-defined messa~e identify
20 the operation which returned the error.
21
22
23
24
25
26
27
28
29
30
31
32
33
34

It is the caller's responsibility to check the first
word of the 1/0 status block prior to invokin~ IOERR,
to see whether the operation has been a success or a
failure+ This convention allows the user to accept
certain twpes of errors, then invoke IOERR for any
other kinds of errors.

Invoke usin~ one of two forms:

IOERR
or

IOERR

35 In either form uiosb u is the address of the 1/0 status
36 block, in any addressin~ mode+
37
38 In the first form YOU specifw the text of the messa~e+
39 The macro reserves stora~e for the strin~+
40
41 In the second form wou must use addressin~ modes to
42 specifw the address and len~th of a strinS which YOU
43 have reserved in your pro~ram+ The second arSument is
44 the address of an ASCII or ASCIZ strin~. The third
45 ar~ument should have a value of 0 if the strinS is
46 ASCIZ, else should be the len~th of the ASCII strinS+
47
48 If wou use the first form and are pro~ramminS in other
49 than the blank Psect, YOU must explicitly provide a
50 null -LEN" ar~ument, and supply as the fourth ar~ument
51 the name of the Psect to return tOt
52 ;-

506

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

.GLOBL EREXIT

.GLOBL IOERIN

.GLOBL ERARGS
Offsets into ar~ument block:

.GLOBL E.RUMA

.GLOBL E.RUML

.GLOBL E.RIOS

.IF B
MOV
LEN

.PSECT
SSSMES=.

.ASCII
$$$LEN=.-S$$MES

.PSECT
MOV

.IFF

~ENDC

MOV

MOV
MOV

MSGTXT

/MESSG/

PSCT
t$SSMES~E.RUMA(R2)
t$$$LEN,E.RUML(R2)

MESSG,E.RUMA(R2)
LEN,E.RUML(R2)

Common routine
'I/O ERROR- input
strin~ for SEDMSG

SEDMSG ar~ument block

User-messa~e address
User~messaSe len~th

First word of I/O
status block

R2=)$EDMSG ar~ block
Blank LEN arS means
first form

Load messa~e addr
and messa~e len~th
into ar~ block

Load messa~e addr
and messa~e len~th
into ar~ block

; Cop~ I/O status block into SEDMSG arS block
MOV IOSB,Rl Rl =) I/O status block
MOVB 1(Rl),R3 Get hi b~te of first

MOV
MOVB

R3,E.RIOS(R2)
(Rl),R3

word (and si~n-extend
it)

Cop~ into ar~ block
Get 10 b~te and
si~n-extend

MOV R3,E.RIOS+2(R2) Cop~ into ar~ block
MOV 2(Rl),E.RIOS+4(R2); Cop~ 2nd word of

10SB
MOV tIOERIN,R3 R3 =) SEDMSG input

JMP EREXIT

.ENDM

507

strin~

Jump to common error
exit routine

1
2
3 COPYRIGHT ec) 1981 BY DIGITAL EQUIPMENT CORPORATION
4
5 Macro to ~enerate an -FCS ERROR- messa~e and print out
6 the error code plus a user-defined messa~e. The task
7 is forced to exit after the messa~e is printed.
8
9 The form of the resultant error messa~e is:

10
11 FeS ERROR
12 (USER-DEFINED MESSAGE>
13 DSW = (VALUE>
14
15 or
16
17 FCB ERROR
18 (USER-DEFINED MESSAGE>
19 I/O ERROR CODE = <VALUE>
20
21 It is su~~ested that the user-defined messa~e identif~
22 the operation which returned the error.
23
24 It is the caller's responsibilit~ to check F.ERR in
25 the FDB prior to invokin~ FCSERR, to see whether the
26 operation has been a success or a failure. This
27 convention allows the user to accept certain t~pes of
28 errors, then invoke FCSERR for an~ other kinds of
29 errors.
30
31 Invoke usinS one of two forms:
32
33
34
35
36

or
FCSERR fdb,(messa~e>

FCSERR fdb,address,len~th

37 In either form, ·fdb- is the address of the file
38 descriptor block for the FCS operation which has
39 ~enerated the error.
40
41 In the first form ~ou specif~ the text of the messa~e.
42 The macro reserves stora~e for the strin~.
43
44 In the second form ~ou must use addressin~ modes to
45 specif~ the address and len~th of a strin~ which ~ou
46 have reserved in ~our pro~ram. The second ar~ument is
47 the address of an ASCII or ASCIZ strin~. The third
48 ar~ument should have a value of 0 if the strin~ is
49 ASCIZ, else should be the len~th of the ASCII strin~.
50
51 If ~ou use the first form and are pro~rammin~ in other
52 than the blank Psect, ~ou must explicitl~ provide a
53 null BIen- arsument, and suppl~ as the fourth ar~ument
54 the name of the Psect to return to.
55

508

56
57
58
59
60
61
62
63
64
b5
66
b7
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
9~5

96
97
98
99

100
101

.GLOBl.
• Gl.OBL
.GLOBL

Offsets into
.GLOBL
.GLOBL
.GLOBL

.MCALL
FDOF$L

MOV
.IF 13 LEN

.f'SECT
$$$MES=.

.ASCII
$$$LEN=.-$$$MES

.f'SECT
MOV

.IFF

.ENDC

MOV

MOV
MOV

MOV

MOVB

MOV
TSTB

BEQ

EREXIT
FCStrIR,FCSIO
ERARGS

arsument block:
E.RUMA
E.RUML
E.RCOD

FDOF$L

tERARGS,R2

MSGTXT

/MESSG/

f'SCT
t$$$MES,E.RUMA(R2)
t$$$LEN,E.RUML(R2)

MESSG,E.RUMA(R2)
LEN 1I E. J~UML (R2)

F.ERR(R1),RO

RO,E.RCOtr(R2)
F.ERRt1(Rl)

10
Directive error:

MOV tFCSDIR,R3

JMf' EREXIT

10: MOV

JMf' EREXIT

.ENDM

509

Common rOIJt i ne
$EDMSG input strinss
$EDMSG arsument block

User-messase address
User-messase lensth
Error code (DSW value
or I/O error)

Define FtrB offsets

R2=)$EDMSG ars block
Blank len ars means
first form

Load messase addr
and messase lensth
into ars block

Load messase addr
and messase lensth
into ars bloct<.

Rl=) file descriptor
block

Get error code
(sisn-extend) and
store into ars block

Directive error or I/O
err'or?

Branch on I/O error

R3=) HFCS DIRECTIVE
ERROR H $EDMSG strins
Jump to common error
e~d t routine

R3=)HFCS I/O ERROR'
$EDMSG strins
Jump to common error
exit routine

1 .TITLE EREXIT ERROR EXIT ROUTINE
2 ;+
3 COPYRIGHT (C) 1981 BY DIGITAL EQUIPMENT CORPORATION
4
5 This is a common exit routine called bw the
6 error-processin~ macros DIRERR, IOERR, and FCSERR. It
7 twpes out an error messa~e and for6es the task to exit
8 with status ·severe error-.
9

10
:Ll.
12
1.3
1.4
15
16
17
18
:t (~
2()
2:t
22
2~5

24
25
26
27
28
29
3()
31
:'~2

:33
34
35
36
37
38
39
40
4l.
42
43
44
45
46
47
48
49
50
51
52

Cc-Jll : JMP EREXIT

Inp'Jts: R2 :::::> ERARGS ($EDMSG ar~'Jment block,
defir.ed irl this routir.e)

The aT'~UIT.ent block has alreadw
been filled in with the
user-messa~e descriptor, and the
s~Jstem error code (DSW value or
IOSB poir.ter) • A 'Jse r-messa~e
len~th :: 0 means that the
user lTIessa~e is ir. ASCIZ form.

R3 ::::). One of the $EIIMSG input strin~s
defined in this routine

.GLOBL $EIIMSG

.GLOBl. LENGTH Comp'Jtes len~th of
ASCIZ strin~

.MCALL EXST$C Swstem macro

.MCALL TYPE S'JPpl ied macro

EX$SEV M .. 4 Error exit stat'Js

$EIIMSG input strings:
;
DIRERI:: .ASCII IXNIIIRECTIVE ERRORI

.ASCII IZNXVAI

.ASCIZ IXNDSW:: XDI
;
FCSDIR:: .ASCII I%NFCS ERRORI

.ASGII IXNZVAI

.ASCIZ IXNDSW:: XDI
;
IOERIN:: .ASCII @XNI/O ERROR@

.ASCII I%NXVAI

.ASCIZ @XNI/O STATUS BLOCK:: XD, XD I XD@

FeSIO:: .ASCII
.ASCII
.ASCIZ

@%NFCS ERROR@
/XNXVAI
@%NI/O ERROR COIlE - XD@

510

54
OUTBUF: • BLKB

.EVEN
200.

55 ; $EDMSG arSument block
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
7(J
80
81
82
83
84
85
86
87

ERARGS::
E. RUML:::::: + -ERARGS

.WORD
E.RUMA::::::::.-ERARGS

.WORD
; Error codes
E.RDSW::::::::.-ERARGS
E. RIOS:::::: + -ERARGS
E • Ii: CO [I:::::::: • '-ERARGS

;
EREXIT::

.WORD

.WORD

.WO/i:D

TST E.RUML(R2)

BNE 1$

MOV E.RUMA(R2),RO
CALL. LENGTH
MOV Rl,E.RUML(F'~2)

;
1.$: MOV :l:OUTBUF,RO

MDV R3,R:L

CALL $EDMSG
TYPE tOUTBlJF, Rl

EXST$C EX$SEV
.END

511

$EDMSG output buffer

User-messaSe lensth

User-messaSe address

DSW for DIRERR
rOSB for IOERR
FCS code for FCSERR

User messaSe ASCII or
ASCIZ"~

ASCII
If ASCIZ, find lensth
RO ::::) user messaSe
(ret'..tr'ned irl Rl)
Set lensth field in

arsument block
Output buffer for

$EIIMSG
Put input strins
pointer into proper
resister for $EDMSG

(returns lensth in Rl)
T~pe out formatted

messaSe
Exit/severe error

APPENDIX B
CONVERSION TABLES

Table B-1 Decimal/Octal, Word/Byte/Block Conversions

Words(10)/Words(8) Bytes(10)/Bytes(8)

1/1 2/2

32/40 64/100

1K =1024/2000 2048/4000

2K =2048/4000 4096/10000

4K =4096/10000 8192/20000

8K =8192/20000 16384/40000

16K =16384/40000 32768/100000

32K =32768/100000 65536/200000

64K =65536/200000 131072/400000

128K=131072/400000 262144/1000000

Table B-2 APR/Virtual Addresses/Words

APR Virtual Addresses

0 000000-017776

1 020000-037776

2 040000-057776

3 060000-077776

4 100000-117776

5 120000-137776

6 140000-157776

7 1-60000-177776

513

Blocks(10)/Blocks(8)

1/1

32/40

64/100

128/200

256/400

512/1000

1024/2000

2048/4000

4096/10000

Conversions

Words

0-4K

4-8K

8-12k

12-16K

16-20K

20-24K

24-28K

28-32K

,APPENDIX C
FORTRAN/MACRO-11 INTERFACE

CALLING A MACRO-11 SUBROUTINE FROM A FORTRAN PROGRAM

FORTRAN Program Call:

CALL SUBNAM (I,J,K)

MACRO translation:

1. Set up table of arguments.

R5 ----) Icount=3

Address of I

Address of J

Address of K

2. Issue subroutine call.

JSR PC,SUBNAM

or

CALL SUBNAM

The FORTRAN Callable MACRO-II Subroutine

Accessing:
Argument count = (R5)
Argl = @2(R5)
Arg2 = @4(R5)

; Arg3 = @6(R5)
SUBNAM: :

RTS PC ; or RETURN

515

CALLING A FORTRAN PROGRAM FROM A MACRO-11 PROGRAM

In the MACRO program:

LINK: • BYTE 3,0
.WORD A
.WORD B
.WORD C

A: .WORD 2
B: .WORD 3
C: .WORD 0

MOV #LINK,R5
JSR PC,SUB

In the FORTRAN program:

SUBROUTINE SUB (L,M,N)
N=L+M
RETURN
END

NOTE
This method is also used to call a FORTRAN
callable subroutine (written in MACRO-II).

Example 7-3 in the Static Regions module shows a shareable
library LIB.MAC, which contains FORTRAN callable subroutines.
USELIB.MAC, also in Example 7-3, shows a referencing task which
calls subroutines in the library.

516

APPENDIX D
PRIVILEGED TASKS

RSX-IIM systems have two classes of tasks, privileged and
nonprivileged. The basic difference is that privileged tasks have
certain system-access capabilities that nonprivileged tasks do not
have. These privileges include one or more of the following:

• Access to Executive routines and data structures

• Automatic mapping to the I/O page

• Bypass of system security features.

NOTE
Privileged tasks may be hazardous to a run
ning system.

Use one of the following qualifiers (switches) to build a
privileged task.

1. /PRIVILEGE:0 qualifier (MCR /PR:0)

This task is built in the same way as a nonprivileged task
and does not map to the Executive or the I/O page. It
can, however, do the following:

• Bypass file protection

• Issue directives which require privileges (e.g., Alter
Priority, QIO for Write Logical Break-through)

• Issue QIOs to write logical blocks to a mounted
volume, regardless of who issued the MOUNT or ALLOCATE
command.

2. /PRIVILEGE:4 or /PRIVILEGE:5 (MeR /PR:4 or /PR:5)

This task has the privileges of a /PRIVILEGE:0 task, plus
it maps to the Executive and the I/O page. The user task
code is mapped beginning at APR 4 or 5, as specified. The
APRs below the one specified are used to map to the
Executive, and APR 7 is used to map / the I/O page. Use
/PRIVILEGE:4 if the Executive is 16K words or less; use
/PRIVILEGE:5 if the Executive is between 16K and 20K
words. If the task code extends beyond the end of the
addresses mapped by APR 6, then APR 7 is used to map the
excess code, and the task does not map to the I/O page.

517

Privileged tasks are discussed in detail in the RSX-llM
Internals Course. See also Chapter 6 on Privileged Tasks in the
RSX-IlM/M-PLUS Task Builder Manual.

518

APPENDIX E
TASK BUILDER USE OF PSECT ATTRIBUTES

The Task Builder collects scattered occurrences of program
sections of the same name and combines them in a single area in
your task image. The program section attributes control how the
Task Builder collects and places each program section.

See Chapter 2 of the RSX-llM/M-PLUS Task Builder Manual for a
complete discussion of program section attributes.

Example of allocation code attributes:

CON (concatenate) versus OVR (overlay)

1. A.OBJ has Psect Q,CON - length 100(10) words

B.OBJ has Psect Q,CON - length 50(10) words

When task-built:

LINK A,B

Yields 150(10) words in Psect Q
(first A's 100(10) words, then B's 50(10) words).

2. A.OBJ has Psect Q,OVR - length 100(10) words

B.OBJ has Psect Q,OVR - length 50(10) words

When task-built:

LINK A,B

Yields 100(10) words in Psect Q
(A's 100(10) words. B's 50(10) words are the
same as A's first 50(10) words).

519

Example of scope code attributes:

LCL (local) versus GBL (global)

Overlay Tree B.ODL file:

B1
I

I
B

B3
I

B2
I

.ROOT B-*!(B1,B2-B3)

.END

Task-build command (for all): LINK B/OVERLAY __ DESCRIPTION

1. B.OBJ has Psect Q,LCL,CON - length 100(10) words

B1.0BJ has Psect Q,LCL,CON - length 50(10) words

When task-built:

Yields 100(10) words in Psect Q in root segment B
Yields 50(10) words in Psect Q in overlay segment B1

2. B.OBJ has Psect Q,GBL,CON - length 100(10) words

B1.0BJ has Psect Q,GBL,CON - length 50(10) words

When task-built:

yields 150(10) words in Psect Q in root segment B (in the
segment closest to the root); B's 100(10) words, then
B1's 50(10) words.

If GBL,OVR instead, yields 100(10) words in Psect Q in the
root segment. B's 100 words, with B1's 50(10) words the
same as B's first 50(10) words.

520

3. B2.0BJ has Psect Q (LCL or GBL) - length 100(10) words

B3.0BJ has Psect Q (LCL or GBL) - length 50(10) words

When task-built:

If CON, yields 150(10) words in Psect Q in overlay segment
B2 (allocation collected, since it is all in the same
overlay segment).

If OVR instead, 100(10) words in Psect Q in overlay
segment B2. B3's 50(10) words are the same as B2's first
50(10) words.

LCL and GBL are used only
non-overlaid task or within an
task, allocations are collected
specified, as in Example 3.

for overlaid tasks. In a
overlay segment in an overlaid
when either LCL or GBL is

Example of FORTRAN COMMONs at Psects:

Psect attributes are always: RW,D,GBL,OVR,REL

COMMON /RDATA/ 1(100)

Macro translation:

.PSECT RDATA,RW,D,GBL,OVR,REL

521

APPENDIX F
ADDITIONAL SHARED REGION TOPICS

SHARED REGIONS WITH OVERLAYS

• Can be referenced using a smaller window in referencing
task

• Reuse virtual addresses in the referencing task

• Must be memory-resident overlays

• Have overlay structures which are placed in the .STB file
and later placed in root segment of referencing task.

BUILDING A RESIDENT LIBRARY WITH OVERLAYS

1. Code and assemble library modules.

2. Write regular .ODL file to define ,overlay structure.

• Typical structure has a null root.

3. Task-build as a shared region.

• Only symbols defined or referenced in the root are
included in the .STB file.

• Force inclusion of global references into root, when
necessary, using GLBREF option.

Example .ODL file OVRLIB.ODL (Figure F-l):

• NAME
.ROOT
.END

OVRLIB
OVRLIB-* ! (H, I-J)

Example task-build command:

)LINK/NOHEADER/MAP/SYMBOL TABLE/OPTIONS OVRLIB/OVERLAY-
-) DESCRIPTION -
Option? STACK=0
Option? PAR=OVRLIB:140000:40000
Option? GBLREF=H,I,J
Option? <RET)

523

Referencing task is created using regular procedure to
reference library OVRLIB.

See section 5.1.4 (on Shared Regions with Memory-Resident
Overlays) in the RSX-IIM/M PLUS Task Builder Manual for additional
information.

VIRTUAL
MEMORY ---- -----

-- \\t-J\~ ~
~~~~-------,~-~ 

-160000 APR7 

140000 APR6 

120000 APR5 

100000 APR4 

60000 APR3 

40000 APR2 G 
(16K WORDS) 

20000 APR 1 

o APRO ~ ________ _ 

-----
__ -- -:.. TIME 1 
_ (MAP) ... ----

-----
INITIAL 
LOAD 

-----

PHYSICAL 
MEMORY 

J 

I 

H 

G 

TK-7773 

Figure F-l A Shared Region With Memory-Resident Overlays 

524 



REFERENCING MULTIPLE REGIONS IN A TASK 

• Use the usual procedure if: 

The number of available APRs in the referencing task 
is sufficient 

Shared regions are logically independent (one library 
does not call the other library) 

• If shared regions are built absolute, APRs (and virtual 
addresses) cannot overlap. 

Example task-build for logically independent libraries (Figure 
F-2): 

Libraries: ARES built absolute at V.A. 160000(8); length 4K 
words 

BRES built absolute at V.A. 120000(8); length 6K 
words 

Referencing task: REF 

)LINK/MAP/OPTIONS REF 
Option? RESLIB=ARES/RO 
Option? RESLIB=BRES/RO 
Option? <RET) 

525 



VIRTUAL 
MEMORY 

TASK REF 

ARES 

160000 APR7 

140000 APR6 

120000 APR5 

100000 APR4 

60000 APR3 

40000 APR2 REF 
(16K WORDS) 

20000 APRl 

o APRO 

II 
I 

I 

-' 

-' I I 
I / 

II II 
----1-__ / 

I 7--__ 
/ 

--1-'------/ 
/ 

I 

---------

PHYSICAL 
MEMORY 

BRES 

ARES 

REF 

Figure F-2 Referencing Two Resident Libraries 

526 

TK-7772 



INTERLIBRARY CALLS 

One library can call another library 

FORRES calls FCSRES 

To build libraries with interlibrary calls, use any of these 
techniques. 

• Build as a single combined library, then build referencing 
task (Figure F-3). 

• If referenced library does not contain overlays (Figure 
F-4): 

Build referenced library. 

Build referencing library, 
library to resolve calls. 

specifying referenced 

Build referencing task, specifying only referencing 
library. 

• If referenced library has overlays (Figures F-5 and F-6): 

You must revector interlibrary calls to allow access 
to overlay structure and autoload vectors (always in 
root of referencing task). 

Once revectoring is included, build shared regions and 
referencing task as if regions are logically 
independent. 

Example task-build commands for each technique follow. 

Example task-build command for combined libraries (Figure 
F-3): 

>LINK/MAP/NOHEADER/SHAREABLE:LIBRARY/SYMBOL TABLE
->/OPTIONS F4PRES,LB:[I,I]F4POTS/LIBRARY -
Option? STACK=0 
Option? PAR=F4PRES:120000:60000 
Option? <RET> 

Referencing task is created using normal procedure to 
reference the library F4PRES. 

527 



160000 APR7 

140000 APR6 

120000 APR5 

100000 APR4 

60000 APR3 

40000 APR2 

20000 APR1 

VIRTUAL 
MEMORY 

---------~ 

F4PRES 

, (FCSRES) 

12K WORDS 

USER 
(12K WORDS) 

/,....-

o APRO '--_______ ~ 

,.,. 
,....-/' 

,.,.""" 
"'" 

"'" 

.' 

." 

PHYSICAL 
MEMORY 

F4PRES 

- (FCSRES) 

USER 

TK-7776 

Figure F-3 Referencing Combined Libraries 

528 



Example task-build commands for building one library, then 
building the second (referencing) library (Figure F-4): 

>LINK/MAP/NOHEADER/SHAREABLE:LIBRARY/SYMBOL TABLE-
->/OPTIONS/CODE:PIC FCSRES -
Option? STACK=0 
Option? PAR=FCSRES:0:20000 
Option? <RET> 

>LINK/MAP/NOHEADER/SHAREABLE:LIBRARY/SYMBOL TABLE
->/OPTIONS F4PRES,LB:[1,1]F4POTS/LIBRARY -
Option? STACK=0 
Option? LIBR=FCSRES:RO 
Option? PAR=F4PRES:140000:40000 
Option? <RET> 

Referencing task is created using normal procedure to 
reference just the library F4PRES. F4PRES must be mapped using 
APRs 6 and 7 because it is built absolute. FCSRES is mapped at 
the next available APR, namely APR 5, because it is built position 
independent. 

529 



160000 

140000 

120000 

100000 

60000 

40000 

20000 

0 

VIRTUAL 
MEMORY 

APR 7 F4PRES 

(8K WORDS) 

APR 6 
FCSRES 

APR 5 
(4K WORDS) 

APR 4 

APR 3 

APR 2 

USER 

APR 1 (12K WORDS) 

APR 0 

.-

.... 

------
--------

------

-------

PHYSICAL 
MEMORY 

F4PRES 

FCSRES 

USER 

TK-7771 

Figure F-4 Building One Library, Then Building 
a Referencing Library 

530 



FCSl FCS2 F4PCLS USER 

.FSRPT::-... .OPEN:: .GET:: CALL .OPEN 

.OPEN::j 

DISPAT: JMPTBL:: · 

AUTOLOAD ROUTINE, MAPS TO 
FCS1, THEN TRANSFERS CONTROL 

Figure F-5 Revectoring 

See Section 5.2.1.3 (on User Task Vectors 
all Interlibrary References) in the 
Builder Manual for a9ditional information on 
also Section 5.2.3 on Examples for commented 
for building libraries with revectoring. 

531 

· 
.OPEN+-
.PUT 
.GET 

• · · 
TK-7777 

Indirectly Resolve 
RSX-llM/M-PLUS Task 

revectoring. See 
task-build commands 



Example task-build commands when revectoring are used 
(Figure F-6): 

>LINK/MAP/NOHEADER/SHAREABLE:LIBRARY/SYMBOL TABLE
->/OPTIONS/CODE:PIC FCSRES/OVERLAY DESCRIPTION 
Option? STACK=0 -
Option? PAR=FCSRES:0:20000 
Option? GBLREF=.CLOSE 
Option? GBLREF=.CSII 
Option? GBLREF=.CSI2 

Option? GBLREF=.WAIT 
Option? <RET> 

>LINK/MAP!NOHEADER/SHAREABLE:LIBRARY/SYMBOL TABLE:
->F4PCLS/TASK:F4PCLS/OPTIONS F4PRES,LB:[1,lTF4POTS-
->/LIBRARY,LB:[l,l]SYSLIB/INCLUDE:FCSVEC 
Option? STACK=0 
Option? PAR=F4PCLS:l40000:40000 
Option? GBLINC=.FCSJT 
Option? GBLXCL=.CLOSE 
Option? GBLXCL=.CSIl 
Option? GBLXCL=.CSI2 

Option? GBLXCL=.WAIT 
Option? <RET> 

Referencing task is created using normal procedure to 
reference libraries FCSRES and F4PCLS. 

532 



160000 APR7 

VIRTUAL 
MEMORY 

F4PCLS 

(8K WORDS) 

...-

........,...-

,...,...-

-~-
~ 

~ 

.-~ --
, 

--~ --140000 APR6 1-----_-----+lE::::::'"::::: _1'ME 2 .... 

120000 APR5 

100000 APR4 

60000 APR3 

40000 APR2 

20000 APRl 

USER 

(12K WORDS) 

o APRO '--_______ ....... _ 

-==--TiME~ -----

----
INITIAL 

LOAD AND M _ AP ... 
-----

PHYSICAL 
MEMORY 

F4PCLS 

FCS2 

FCS1 

USER 

TK-7775 

Figure F-6 Using Revectoring When Referencing Library Has Overlays 

533 



CLUSTER· LIBRARIES 

• Allow shared libraries to overlay each other (Figure F-7). 

Can use one window for several libraries. 

Only enough virtual address space is needed for 
largest library. 

• One library can call another. 

Generally moving in one direction only. 

First library in cluster is initially mapped (no 
autoload). 

When a call is made to another library in cluster: 

Autoload routines save mapping context and map 
called library for a call. 

Original library is remapped for return from 
subroutine. 

• Revectoring is necessary for interlibrary calls (Figure 
F-5). 

Special coding must be included in the resident 
libraries. 

• Some special rules must be followed when building the 
resident libraries. 

• Are useful for FORTRAN tasks using 
time system (FORRES, F4PRES, or 
products. 

the resident object 
F77RES), plus layered 

See Section 5.2 on Cluster Libraries in the RSX-IIM/M-PLUS 
Task Builder Manual for additional information. 

Example of task-build command: 

>LINK/MAP/OPTIONS/CODE:FPP CLSDEM,LB:[I,I]HLLFOR,
->LB: [1,1]F4POTS/LB,LB:[1,1]FDVLIB/LB 
Option? CLSTR=F4PCLS,FMSCLS,FCSRES:RO 
Option? <RET> 

534 



160000 APR7 F4PCLS 
f- (8K) 

140000 APR6 

120000 APR5 f-

100000 APR4 f-

60000 APR3 f-

40000 APR2 -

20000 APR1 

0 APRO 

VIRTUAL 
MEMORY 

FMSCLS 
~UNUSED~ 

(8K) 
FCS11 FCS2 
(4K) (4K) 

UNUSED~ 

I\. 

TASK 

(22K WORDS) 

'\ 
'\ 

'\ 
'\ 

\ 
'\ 

\ 
\ 

Figure F-7 

/' 

./ 

\ 

\ 

PHYSICAL 
MEMORY 

F4PCLS 

FMSCLS 

FCS2 

FCS1 

TASK 

160000 APR7 F4PCLS 

(8K) 

140000 APR6 

120000 APR5 

100000 APR4 

60000 APR3 

40000 APR2 

20000 APR1 

o APRO 

VIRTUAL 
MEMORY 

FMSCL 

(8K) 

TASK 

(22K WORDS) 

---

'\ 
'\ 

'\ 
'\ 

\ 

---

'\ 

\ 
\ 

\ 

, 

\ 

Cluster Libraries (Sheet 1 of 2) 

535 

PHYSICAL 
MEMORY 

F4PCLS 

FMSCLS 

FCS2 

FCS1 

TASK 

TK-781S 



160000 APR7 £4PCLS 
(BK) 

140000 APR6 

120000 APR5 .... 

100000 APR4 ~ 

60000 APR3 f-

40000 APR2 f-

20000 APRl '-

o APRO 

VIRTUAL 
MEMORY 

aaUNUSED :?di 
FMSCLS 

(8K) 
FCSl I FCS2 '\ 
(4K) (4K) 

UNUSED~ 

1\ 

TASK 

(22K WORDS) 

Figure F-7 

'\ 

" 
'\ 

'\ 

PHYSICAL 
MEMORY 

F4PCLS 

FMSCLS 

FCS2 

FCSl 

TASK 

160000 APR7 

120000 APR5 

100000 APR4 

60000 APR3 

40000 APR2 

20000 APRl 

VIRTUAL 
MEMORY 

TASK 

(22K WORDS) 

o APRO '--_______ ~ 

\ 
'\ 

'\ 

Cluster Libraries (Sheet 2 of 2) 

536 

\ 
\ 

'\ 
'\ 

"-

" 

\ 

\ 
\ 

\ 

PHYSICAL 
MEMORY 

F4PCLS 

FMSCLS 

FCS2 

FCSl 

TASK 



APPENDIX G 
ADDITIONAL EXAMPLES 

The f~llowing examples should be available on-line, probably 
under UFD [202,1]. They are needed for the Tests/Exercises. 
Therefore, they are listed here in case --they are not available 
on-line at your site. 

:I. 

·7 ..... 
4 ,+ 

.TITLE 

.IDENT 

.ENABL 

5 File READF.MAC 
b 

F<EADF 
/0:1./ 
LC Enable lower case 

7 This task starts up, sets event fla~ 1, reads the 
8 event fla~s, moves them into re~isters RO-R3 and then 
9 exits. It uses the' form of the directive calls. 

:1.0 
l.:t. 
12 
:1.3 
14 
:1.5 
:L6 
:I.? 
18 

Tht~~ f 1. iSSS; 

bit 
bit 

are T'C:.~turned as follows: 

worr..i 0 .~. event flass 1-16 
word 1 ~ .. event fla!~s :I. 7~-32 
wCH'd '") 

.:-. ._. event fla~s 3:3·-48 
word :~ _ .. eVf:nt flass 4 (j>-f.) 4 

set m€~ans) fla£~ is s~~t , 
c 1 E~~H' ITleans f I c~~j :i.s clf.~ar 

:L ~} !I .• ~ 

20 
2:1. 

26 
2? 
2B 
29 
~5() 

:H 
32 
3:~ 

34 
35 
36 
37 
:~8 

39 
40 
41 
42 
4~5 
44 
45 
46 
47 
48 
49 
50 
51 

.MCALL RDAF.,SETF.,EXIT.S,DIR.; S~stem macros 

BUFF: .BLKW 

READ: fUtAF$ 

SETF: SETF. 

STAf~T: CL.J:~ 

DIF~!~ 

BCS 
DIR. 

BCS 
MOV 
MOV 
MOV 
MOV 
lOT 

4 

BUFF 

R4 
:JI:SETF 
ERR:t. 
tREAD 

E~~1~2 

BUFF,RO 
BUFF+2,R1 
BUFF+4,R2 
BUFF+6,R3 

; Come here on directive errors 
ERR2: INC R4 
ERR1: INC R4 

MOV $[tSW"RO 
rOT 

.END START 

Buffer for event flaS 
val,-,(.~s 

DPB for Read All Event 
FlaSs di rectivf? 

DPB for Set Event Flas 
directive 

Clear error counter 
Set event flag 1 
Branch on dir error 
Read the event flass 

(1 - 64). 
Branch on dir error 
Move the event flag 
vallJes into the 
registf.~rs 

Trap and displaw 
registers 

R4=2 for read error 
R4=1 for set event 
flag error' 

Error code into RO 
Trap and displa~ the 
reSisters 

Example G-l Reading the Event Flags (for Exercise 1-1) 

537 



2 
3 
4 

.TITLE 

.IDENT 
+ENABL 

csr 
lOti 
I...C ; Enable lower case 

5 CSI illustrates the use of the command strins 
6 interpreter. This task accepts a command line from the 
7 terminal in the form: 
B 
9 dev:Cx,wJfilename.filetwpe;version/switch 

10 
t1 where switch can be: 
12 DE - Delete file 
13 DI:N - Displaw N copies of file 
14 
15 
16 
17 
1B 
:1.9 
20 
21 
22 
23 
24 

26 
27 
2B 
29 
30 
31 
~52 

3~:S 

34 
35 
:~6 
~37 

38 
39 
40 
41 
42 
4~5 
44 
45 
46 
47 
48 
49 
!:50 
51 

53 

TYPE1: 
TYPE2: 
TYPE:~ : 
TYPE4: 
ERR1: 

ERR2: 

+MCALL GCMI...BS,GCMLS,CSIS,CSrS1,CSIS2 
+MCALL CSISSV,CSISSW,CSISND 
.MCALL FSRSZS,FDBDFS,FDRCSA,FDOPSA,FINITS 
+MCALL QIOWSS,QIOWS,DIRS,EXITSS 
+MCALL DELETS,OPENSR,OPENSW,GETS,PUTS,CLOSE$ 

.NLIST BEX 

LOCAL DATA 

arows IO.WVB,5,1",,<ERR1,SIZ1,40) 
aIOW$ IO+WVB,5,1",,<ERR2,SIZ2,40) 
aIOWS IO.WVB,5,l",,<ERR3,SIZ3,40) 
aIOW$ IO.WVB,5,1",,<ERR4,SIZ4,40) 
+ASCII IGET COMMAND LINE ERROR/ 
SIZ1:::.··-EJ~F~1 

.ASCII ICSI ERROR. ILLEGAL COMMANDI 
SIZ2::::. ·· .. EliR::! 
+ASCII ICaI ERROR. FILE SPEC ERRORI 
S I Z3::: + "-ERF~~3 

ERR4: .ASCII IERROR PERFORMING TASKI 
SIZ4~"::. --ERli4 

BUFF: • BLKB 100 + ()ut~":.out t€-~xt buff~~ r 
TBUFF: +BLKB 132. ; Transfer buffer 
FMT: .ASCrZ IYOU HAVE REQUESTED A %7A JOBI 

+EVEN 
DATA: .WORD 0 ; Arsument block 
DELTXT: +ASCII IDELETE/<O) ; ASCII text 
TYTXT: .ASCII ITYPE/<O)<O)<O) 
NOTXT: • ASC I I INOTH I NGI 

CBLK: 

+EVEN 

CSIS 
+BLKB 
.EVEN 

C.SIZE 

DEMSK .. - 1 
DIMSK :::: 2 

Define CSI offsets 
allocate CSI storase 

Delete IT,a~~k 

D i SF' I iS~~ mi:~~;k 

Example G-2 Using the Routines GCML and CSI (for Exercise 10-6) 
(Sheet 1 of 3) 

538 



54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

SWTBl: 
CSI'SW DE,DEMSK 
CSI'SW DI,DIMSK""NUM 

Switch descriptor table 
Delete switch = DE 
Display switch = DI, 
also allow DI:N 

CSI'ND End of switch table 

CSI'SV OCTAL,COPY,2,NUM; Value N for IDI:N is 
in octal and will 
be stored in COpy 

CSI.ND End of switch value 
table 

66 ;GET COMMAND lINE BLOCK DEFINITIONS 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 

GBLK: 

FDB: 

FSRSZ' 1 

GCMlB' ,CSI,,5 

FDBDF$ 

FDOP.A 1,CBlKtC.DSDS 

GCML uses record 1/0 

Prompt with 'CSI' on 
LUN 5 

FDB for file to delete 
or display~ 

URB AT TBUFF, len~th 

132. 
LUN 1, dataset 
descriptor from CSI 

79 NOTE: Need a 2nd FDB for displaw 
80 
81 .EVEN 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 

JMPTBl: .WORD NONE,DElETE,DISPlY ~ Jump table for 
subroutines dependin~ 
on switches 

COpy: 

START: 

.WORD 0 

.ENABLE LSB 

FINIT' 

Value for N in IDI:N 

Initialize FCS, this 
is normall~ done with 

92 an OPEN statement. 
93 For delete we do net 
94 need an open statement. 
95 NEXT: GCML' #GBLK Prompt and set command 
96 BCC 10' Branch if command OK 
97 ; Check for ~Z. If ~z, exit. 
98 CMPB iGE.EOF,GBLKtG.ERR; Is it -Z1 
99 BNE REALER Branch on other error 

100 EXITSS EXIt 
101 REALER: DIR' tTYPEl Display error text for 
102 set command line error 
103 EXIT'S Exit 
104 
105 
106 
107 
108 
109 
110 

~ Parse 

10$: 

input for illeSal characters 

CSI'l tCBLK,GBLKfG.CMLDf2,GBLK+G.CMLD ; Format 
is CSI addr, addr of 
command, lensth of 
command 

Example G-2 Using the Routines GCML and CSI (for Exercise 10-6) 
(Sheet 2 of 3) 

539 



:I. :I. :1. 
:1.12 
LI. 3 
LI.4 
:1.15 
116 
:L 17 
:1. :l. fJ 
:1.1.9 
:l.20 
1.2:1. 
1 ':>':> 

:L2:3 
:1.24 
:l.2~) 

126 
:1.27 
128 
1.29 
130 
:1.31 
132 
:1.:33 
:I.~54 
:L3~::i 

:1.:36 
:1.37 
1.:38 
1.3(Y 
140 
1.41 
142 
:1.43 
:1.44 
14~5 

1.46 
1.4'1 
:1.48 

Bce 20$ 
D:r I:~~~ :If:TYF'E2 

.EXIT$S 

Branch on OK command 
Displa~ error text ~or 
ill e!=.i«31. cOlTlmand 

E~·dt 

Create a dataset descriptor ~rom the ~ile specification 

20$: C81$2 

BCC 
DIF~~; 

EX1T$~) 

ICBLKvOUTPUTvlSWTBL ~ Expect output file 

30$ 
:U:TYPE3 

; s}~'f.·~c 
Branch on file spec OK 
Displa~ text for file 

; Call the appropriate subroutine 

MOV 

MOV 
ASL 

CALI... 
BR 

:Jl:FDB,I/=i:O 

CBI ... K+C + MI\W:1. v I:~:I. 
Rl 

@JMPTBL(R:I.) 
NEXT 

Adf.".i T'(::~S~:; c)f f :i.l (:~ 
d f:~~:; C T' if':' t (J T' 

Mask value = 0, 1, or 2 
Double for word offset 

i ntc) ,jUITIP tab 1. (:~ 
Call the subroutine 
Get next comlTland line 

Subroutine NONE, entered if no switches specified 

NONE! MOV :Jl:NOTXT v D(.rrl~ S(·:~t I .. tP fo T' out}~ut Df 
ITIE~~:;sa~~~f.~ 

~ Common displa~ messsSe cDde 

CH.JTM: MOV 
MOl,,' 
MOl,,' 
CALI ... 
(~I ()W~;~) 

I:;:ETUF~N 

:II:BUFF, I:~O 
:U:Ft1T, H:I. 
:If:DATA!I F~2 

Set UP for $EDMSG 

$EDMSG Edit messaSe 
IIO.WVB,IS,I:I.",,<IBUFF,Rl,140> 

:1.49 Subroutine DELETE - Just displa~ a messaSe 
:/. ~i() 
:I. ~7j :I. 
:I.~::;2 

:L ~)~5 
:1.54 

:I.~5b 

:L ~5'1 
:l.5B 
159 
:r. f.)() 

:1.6:1. 
:l.b2 

DELETE: MOl"l :If:DELTXT!I DI~TI~ 

Br~ OUTM 

; Subroutine DISF'LY - Just displa~ 

DIBPI ... Y: MOV ITYTXTvDATA 

BR OUTM 

tEND STAr~T 

Set UP for output of 
IT! C-? ~; ~:; a ~.t f:') 

B T'«3nch tC) CC)ITIITIOn 
d:i ~:;P 1 a~:~ cod(·:~ 

Set UP for output of 
m E) !:; ~5 a ~:.{ (~) 

Branch to common 
d :i. ~:;p 1. a~~ cc)cf(~~ 

Example G-2 Using the Routines GCML and CSI (for Exercise 10-6) 
(Sheet 3 of 3) 

540 



APPENDIX H 
LEARNING ACTIVITY ANSWER SHEET 

Learning Activity 2-1 (Directives) 

1. Either: a) Do some work, then check the flag by using the 
CLEF$ 35. directive. Check the DSW. IS.SET (=+2) means 
the flag was set; IS.CLR (=0) means the flag was clear, 
or b) read flags 4 through 64 using RDAF$ and then test 
bit 2 of the third word in the buffer to read flag 35. In 
either case, keep doing more specific work and 
periodically check the flag. 

2. The Executive, would only set event flag 1 for Task A. It 
would not set Task B's event flag 1; therefore, Task B 
wouldn't realize that the data had been sent. 

3. Local flags are accessible only to the task itself. They 
are specifically provided for synchronization between the 
Executive and a task. 

541 



Learning Activity 6-1 (Overlays) 

1. 

• ROOT-* ! (P, Q) 
.END 

2. LINK/MAP ROOT,P,Q 

Learning Activity 6-2 

1. Di ag ram 

JOB1 JOBXX 
I I 

I 
A 
I 

I 
TOTAL 

I 
MAIN 

B 
I 

2 •• ROOT MAIN-TOTAL-*(A-(JOB1,JOBXX) ,B) 
.END 

3 •• ROOT MAIN-TOTAL-*! (A-! (JOB1,JOBXX) ,B) 
.END 

4 •• ROOT MAIN-TOTAL-*! (A-(JOB1,JOBXX) ,B) 
.END 

542 



Learning Activity 10-1 (File Control Services) 

Wi thout a User Record buffer (no spanning of blocks): 

FDBDF$ 
FDRC$A FD. PLC ; Use locate mode 
FDOP$A I,DFNB ; Use LUN 1, default name block 

DFNB: NMBLK$ YOURS,MAC File Spec 

With a User Record Buffer 

FDBDF$ 
FDRC$A FD.PLC,URB,80.; 80.= maximum record size, 

FDOP$A 
DFNB: NMBLK$ 

I,DFNB 
YOURS.MAC 

Record size can be checked after 
; the file is opened as well. 

You can use a dataset descriptor as well. 

If you use a default name block to specify TI:, use: 

NMBLK$ ",TI,0 

543 





GLOSSARY 

I 





GLOSSARY 

ASYNCHRONOUS SYSTEM TRAP (AST) - A system condition which occurs 
as a result of a speclfled event such as completion of an I/O 
request. 

On occurrence of the event, control passes to an AST service 
routine, and the AST is added to an Executive first-in first-out 
queue for the task in which the service routine appears. 

ATTACH - Device: Dedicate a physical device unit for exclusive 
use by the task that requested attachment. 

A task attaches a given device by issuing a QIO directive, or QIO 
and WAIT directive, specifying the I/O function IO.ATT. 

Region: Include a region in a task's logical address space. 

A task attaches a region by issuing an Attach Region directive or 
by being the target of another task's Send-By-Reference directive. 

CLUSTER LIBRARIES - A special setup with shared resident libraries 
which permits a task to use the same virtual address window to map 
several difficult libraries. For example, the resident FORTRAN 
Object Time System and the resident FCS library could use the same 
virtual addresses. The run-time routines map and remap the 
regions as they are needed, somewhat similar to what happens with 
regular memory-resident overlays. 

DATASET DESCRIPTOR - A six-word area in the user task containing 
sizes and addresses of ASCII data strings, which FCS consults in 
order to obtain a run-time file specification. 

A dataset descriptor for a given file is a user-created data 
structure which contains a file specification for that file. 

When the filename block associated with a given file does not 
contain sufficient information to enable FCS to do run-time file 
processing on that file, FCS tries to get the needed information 
from the file's dataset descriptor, if specified. Otherwise, FCS 
consults the file's default filename block, if specified, in order 
to get the desired information. 

DEFAULT FILENAME BLOCK - An area in the user task that supplies 
FCS with those default values that are needed to build a routine 
file specification. 

When the filename block associated with a given file does not 
contain sufficient information to allow FCS to process the file, 
and when a dataset descriptor does not contain the needed 
information, then FCS consults the default filename block 
associated with the file to obtain the missing information. 

547 



GLOSSARY 

A default filename block may be used to supply a default name, 
extension, and/or version for the file. The MACRO programmer uses 
the NMBLK$ macro to create this block at assembly time. 

DETACH - Device: Free an attached physical device unit for use by 
tasks other than the one that attached it. 

A physical device unit can only be detached by means of an IO.DET 
I/O function issued by the task that attached it, or by the 
Executjve, if the task is terminated with the device still 
attached. 

Region: Remove a region from a task's logical address space. 

A task detaches a region by issuing a Detach Region directive or 
by ex i ting • 

DIRECTIVE STATUS WORD - A word in the user task header into which 
the Executive returns status information about the most recently 
called directive. 

After processing a directive, ~he Executive passes the status of 
that directive to the issuing task by putting a success or error 
code into the task's Directive Status Word, which is assigned the 
global label $DSW. If $DSW is negative, the Executive rejected 
the directive; if $DSW is +1, the directive was successful. 

EVENT FLAG - A software flag which can be specified in a program 
request to ind icate to the issuing task wh ich 0 f several spec if ied 
events has occurred. 

There are 96(10) event flags. 

Event flags 1 - 32(10) are local 
33(10) - 64(10) are system global flags 
65(10) - 96(10) are group global flags 

Local flags are used for intra-task synchronization, while group 
global and system global flags are used for inter-task 
synchronization and communication. 

EXECUTIVE DIRECTIVE - A program request for Executive services. 

An Executive directive is issued from a FORTRAN program by calling 
a subroutine in the system object library. It is issued from a 
MACRO-II program by invoking a macro in the system macro library. 

FILE DESCRIPTOR BLOCK (FOB) - The tabular data structure which 
provides FCS with information needed to perform I/O operations on 
a file. 

548 



GLOSSARY 

A task must allocate, through calls to the FDBDF$ macro, or 
dynamically through the use of run-time macros. 

FILE STORAGE REGION (FSR) - The area in user task which FCS uses 
to buffer all virtual blocks read or written during record 
processing. 

FCS requires one FSR block buffer for each file to be opened at 
the same time for record I/O. When the task requests a record 
that is not in the FSR buffer, FCS reads a virtual block from the 
file into the task's file storage region. On the other hand, FCS 
writes virtual blocks in the file storage region to the file when 
a record must be put to the file. 

The user task allocates this area by issuing an FSRSZ$ macro. 

FILENAME BLOCK - The part of a file's File Descriptor Blo~k which 
FCS uses for building, and later using, a file specification. 

The filename block contains the file's UFD, name, extension, 
version number, device name, and unit. When a file is initially 
opened, FCS fills in the filename block from user-supplied 
information in the dataset descriptor and/or default filename 
bloc k. 

I/O STATUS BLOCK - A two-integer array which receives success or 
error codes on completion of an I/O request. If an I/O status 
block has been specified in an I/O request, the Executive clears 
both words when the I/O operation is queued. On completion ,- the 
low b yt e 0 f the fir st wo r d con t a ins + 1 i f th e I/O wa s s u c c e s sf u 1 , 
and a negative error code otherwise. 

If the I/O function involved a transfer, the second word contains, 
on completion, the number of bytes transferred. 

LOGICAL ADDRESS SPACE - The set of all physical addresses to which 
a task has access rights. 

If a task is running on a mapped system that includes support for 
the memory management directives, it may issue directives in order 
to manipulate its logical address space at run time. 

LOGICAL BLOCK - A 512(10) byte (256(10) word) block of data on a 
block addressable volume. 

To achieve device independence, each block addressable volume is 
organized into logical blocks, numbered 0 to n-l, where n is the 
number of logical blocks on the volume. 

The mapping of logical blocks to physical blocks is handled by the 
driver. 

549 



GLOSSARY 

LOGICAL UNIT NUMBER (LUN) - A number associated with a physical 
device unit during a task's I/O operations. 

The association of a LUN in a task with a given physical device 
may be done by the Task Builder, by the operator using the 
REASSIGN command, or at run time by the task, by issuing an Assign 
LUN directive. 

RANDOM ACCESS - A method of I/O to disk files in which records (or 
vlrtual blocks) are specified by record (or virtual block) number. 

Under FCS, a file must be organized into fixed length records in 
order for a task to do random access to the file. 

FCS supports the use of block I/O, in which virtual blocks are 
read from, or written to, the file without regard for the 
structure of those blocks. The FORTRAN language does not support 
block I/O. 

READ/WRITE MODE - An FCS file access method in which the user task 
uses the READ$ and WRITE$ macros to do block-structured I/O to a 
file. 

REGION - An area consisting of one or more contiguous 32.-word 
blocks of physical memory. 

A r:gion may be name~ or unnamed, but is always assigned a unique 
reglon ID. A reglon has an associated protection word which 
specifies the access rights a task may have with respect to that 
region. Any task that satisfies the region protection word may 
attach a named region, but no task can attach an unnamed region 
unless the task has the region ID. 

RESIDENT COMMON - A shared region which contains data. 

RESIDENT LIBRARY - A shared region containing subroutines and/or 
functions. 

SEQUENTIAL ACCESS - A mode of record access in which the n+lth 
record in the file is processed after the nth record in the file. 

Each record is assigned a record number, and each successive GET 
or PUT causes the record number to be incremented. 

SYNCHRONOUS SYSTEM TRAP (SST) 
typically occurs as a result 
executing task. 

A " so ftware inter r upt" whi ch 
of an error or fault within the 

On recognition of an SST, the Executive aborts the task, unless 
there is an SST vector table to an SST routine in th~ task. 

550 



GLOSSARY 

VIRTUAL ADDRESS - A 16-bit address which may be directly specified 
uSIng one of the general purpose registers. 

A task specifies a virtual address whenever it 
addressing modes in executing an instruction. 
word addresses may be specified by a task. 

uses one of the 
Up to 32K virtual 

On a mapped system, the memory management hardware dynamically 
maps virtual addresses to real physical addresses. 

VIRTUAL ADDRESS WINDOW - A contiguous chunk of a task's virtual 
address space. 

Each virtual address window in a task begins on a 4K word boundary 
and consists of one or more 32(10) word blocks of virtual address 
space. Each window has a unique number assigned to it by the 
Executive. Window 0 always maps the task's header, stack, and 
code. A task may divide its virtual address space into eight 
windows. 

VIRTUAL BLOCK - One of the logical blocks belonging to a file. 

Each file consists of one or more logical blocks. The logical 
blocks belonging to a file are called virtual blocks 1, 2, 3, etc. 
The mapping of virtual blocks in a file to logical blocks on disk 
is performed by the file system. 

WINDOW DESCRIPTOR BLOCK (WDB) - A data structure used in a task in 
order to represent a dynamIcally created window. 

551 




